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Abstract. In the field of computational neuroscience, spiking neural
network models are generally preferred over rate-based models due to
their ability to model biological dynamics. Within AI, rate-based artifi-
cial neural networks have seen success in a wide variety of applications.
In simplistic spiking models, information between neurons is transferred
through discrete spikes, while rate-based neurons transfer information
through continuous firing-rates. Here, we argue that while the spiking
neuron model, when viewed in isolation, may be more biophysically ac-
curate than rate-based models, the roles reverse when we also consider
information transfer between neurons. In particular we consider the bio-
logical importance of continuous synaptic signals. We show how synaptic
conductance relates to the common rate-based model, and how this rela-
tion elevates these models in terms of their biological soundness. We shall
see how this is a logical relation by investigating mechanisms known to be
present in biological synapses. We coin the term ‘conductance-outputting
neurons’ to differentiate this alternative view from the standard firing-
rate perspective. Finally, we discuss how this fresh view of rate-based
models can open for further neuro-AI collaboration.

Keywords: Artificial neural network · Spiking neural network · Com-
putational neuroscience · Conductance models

1 Introduction

Progress in neuroscience research has been impressive. We now understand the
central nervous system with increasing anatomical detail. Additionally, we are
rapidly elucidating how the brain functions down to cellular and molecular res-
olution. Based on brain anatomy and cellular results, research can now also
focus on understanding how the neural connectome is functionally integrated
on macro, meso- and microscale levels. Central to future progress within this
research field is the development of powerful computational tools to analyse
the big data sets generated by the neural connectome. Within this area, the
subfield Computational Neuroscience exists where researchers attempt to model
and simulate these brain processes at different levels of abstraction; in partic-
ular, cell and network level modelling where biological detail is a prerequisite
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as well as a constraint. In terms of network modelling, empirically derived phe-
nomenological models such as spiking neural networks (SNN)[15] are commonly
employed. While these network models seem to replicate biological dynamics,
SNNs have had limited success with regards to task-solving.4 However, there’s
growing research investigating how SNNs can be applied to tasks such as fea-
ture learning and control[14, 13, 7] using Hebbian-like[2] spike-timing dependent
plasticity (STDP)[17, 25] learning rules. Research in the area has however yet
to show rivalling results to that of conventional feed forward Artificial Neural
Networks (ANN) employed by the machine-learning community.

AI-ANN research has achieved impressive success in a wide variety of applica-
tions by use of abstracted neuron models. However, the name ‘artificial neurons’
implying a replica of biology, tends not to be well accepted by the neuroscience
community. While AI frequently looks to biology for inspiration, researchers
in the field have granted themselves freedom from biological detail. Even lead-
ing AI researchers are now stating that ANN models are more mathematical
constructs than attempts of modelling the complexity of biological neurons[18].
These artificial neurons negate the characteristic spiking behaviour prevalent in
biological neurons, and instead output rates of neural spikes. For this reason,
these artificial neurons are commonly referred to as ‘firing-rate’ models. A com-
mon and long-standing debate is whether or not firing-rates sufficiently capture
the information transfer between neurons[3, 8, 11, 24].

SNNs are typically praised as being more biologically accurate, and are some-
times even referred to as the 3rd generation of neural networks[15].5 In this paper
we investigate commonalities between the commonly employed neuron models
within the two fields, as well as their respective distinctions. In particular, we
look at the resulting output signals of each model and see how they compare
with respect to the receiving downstream neuron. We find that a fresh look at
the standard rate-based model suggests that these models are more similar to
their spiking counterparts than they may first appear. We also argue that sim-
plified point spiking neurons may be biologically inferior to firing-rate models
when considering synaptic transfer in network wide simulations. To support this
argument, we investigate information flow between biological neurons, and com-
pare this to spiking and firing-rate neurons. By this investigation, we further
find that firing-rate neurons can be viewed as conductance-outputting models,
and see how this alternative view increases these models’ biological support and
intuition. We finally discuss why this alternative view is of importance.

2 Background

2.1 Information transfer between biological neurons

Information flow between biological neurons is a complex process involving a
cascade of events. A summarized illustration of this flow from one neuron to
4 partly due to this not being the main priority of these models
5 with rate-based models being the 2nd generation and threshold perceptrons being

the 1st.
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Fig. 1. Neural flow of information through an excitatory synapse between biological
neurons. AP is the Dirac delta action potential, g(t) is the synaptic conductance rang-
ing from 0 to 1, wij is the synaptic efficiency, EPSP (t) is the excitatory post-synaptic
potential, V (t) is the membrane potential at the soma.

the next is shown in Figure 1. Here, upstream neuronal action potentials (APs)
cause the release of neurotransmitters into the synaptic cleft between two neu-
rons. In excitatory synapses, this neurotransmitter is commonly glutamate[19],
and can be viewed as a carrier of synaptic conductance[26, p.173]. The amount
of glutamate released into the synaptic cleft follows the firing-rate of the presy-
naptic neuron[26, p.175], where high pre firing-rates yield greater releases of
neurotransmitter up to some saturation point. The increase of glutamate in
the synaptic cleft results in higher synaptic conductance as glutamate pairs
with postsynaptic ionotropic receptors, such as AMPA[9], which open and be-
come permeable to ionic currents. This allows for an influx of sodium into the
postsynaptic dendrite, resulting in a depolarization known as an excitatory post-
synaptic potential (EPSP). The more receptors available, the higher the synaptic
weight/efficiency, and the stronger effect the presynaptic activation has on the
postsynaptic neuron. The EPSP further propagates down the dendrite to the
soma, depolarizing the somatic membrane potential V (t). If the potential rises
above a certain threshold, the neuron fires an action potential (AP). This AP
in turn propagates down the axon causing the release of glutamate at a synapse
between it and a downstream neuron, repeating the whole process there.

2.2 Information transfer in simple spiking neuron models

Many SNN simulations employ point neuron models and largely simplify the
synapse in order to make these models computationally efficient[10]. These mod-
els often view discrete spike-events as the main source of information passing
between neurons. Figure 2 illustrates the flow of information between spiking
neurons. These discrete spikes influence postsynaptic membrane potential di-
rectly in proportion to the synaptic efficiency:

Vj =

N∑
i=0

δi (Vi)wij (1)

Here, N is the nr of presynaptic neurons i connected to a downstream neuron
j, δi is the Dirac delta function which equals 1 when the membrane potential Vi
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Fig. 2. Neural flow of information between simple spiking point neurons. δ is the Dirac
delta function.

of the presynaptic neuron goes above some firing threshold and 0 otherwise. In
these networks the weight is often updated through STDP[17, 25] which considers
the timing of pre-post spiking events similarly to a Hebbian rule.

2.3 Information transfer between firing-rate neuron models

The standard ANN employs the firing-rate model[22]. These neurons do not
model internal states such as spiking neurons do with their membrane potentials.
They are thus typically static in nature,6 whereas spiking neurons are highly
dynamic. The function of the firing-rate neuron is modelled on the observation
that biological neurons fire APs at rates proportional to the strength of their
inputs[22]. By assuming that most of the information lies within these firing
rates, firing-rate models simply convert upstream firing rates directly into new
firing rates, foregoing the complex dynamics of membrane potentials and spikes.

Figure 3 illustrates this information exchange between firing-rate neurons.
These neurons often employ some non-linear activation function on their inputs.
Traditionally, this has been a squashing function which acts to bound the outputs
between 0 (not firing) and 1 (firing at maximum frequency) using a sigmoid
function f :7

aj = f

(
N∑
i=0

aiwij + bj

)

f(x) =
1

1 + e−x

(2)

Here, ai is the activation level (firing-rate) of the presynaptic neuron i, bj
is the neuron’s natural bias (baseline activity even in the absence of input[28]),
and wij is the weight (synaptic efficiency) between neuron i and j.

From a biological perspective, a firing-rate neuron seems to be an overly
simplified model compared to spiking neurons and in particular compared to the
complexity of real biological neurons. In addition, rate neurons seem to dismiss
any possible information that may lie within the timing of spikes[16]. We shall

6 apart from a few special versions e.g. continuous ANNs
7 although several successful but less biologically motivated activation functions have

come about in recent years[20]
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Fig. 3. Neural flow of information between firing-rate neurons. ai is the activation of
a presynaptic neuron, wij is the synaptic efficiency between them, and bj is the bias;
the neuron’s natural firing frequency.

in the next section examine how important the conveying of spikes really is in
the view of postsynaptic neurons.

3 Portraying rate-based neurons as conductance-
outputting models

Reviewing the information flow between biological neurons described in the pre-
vious section, it does not seem that a post-synaptic neuron actually ever receives
a discrete all-or-nothing spike from its upstream connections. Instead, the post-
synaptic neuron receives a continuous conductance as a result of presynaptic
spikes. The neuron is thus oblivious to any spiking events other than the result-
ing conductance changes in the synaptic cleft. In this case, the passing of discrete
spike events often employed in spiking networks, appears no more biologically
realistic than the firing-rates used by rate-based neurons when considering net-
work wide simulations. In fact, we state that firing-rates viewed as conductance
traces are a more biologically realistic view than either of the above. In the
following sections, we present three different arguments to support this claim.

3.1 Argument 1: Mathematical equivalence

We here propose that rate-based neurons can alternatively be viewed as conductance-
outputting models. To exemplify this, we investigate a mathematical model de-
scribing the total synaptic current going into a biological neuron j at any given
dendritic location[26, p.174]. This current is the sum of synaptic currents from
neurons i to j at the given location:

Isyn(t) =

N∑
i=0

gi(t)wij(E − Vj(t)) (3)

were Isyn(t) is the total synaptic current, gi(t) is the conductance, E is the
reversal potential of the input current, Vj(t) is the post-synaptic membrane
potential, and wij is the synaptic efficiency. If we allow ourselves a common
simplification; that the incoming current is independent of the post-synaptic
potential (PSP), we can simplify equation 3:
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Fig. 4. Revised neural information flow demonstrating the direct mapping of conduc-
tances between neurons i and j.

Isyn(t) =
N∑
i=0

gi(t)wij (4)

We now have an equation similar to (2) representing the integration of inputs
employed by common ANN models. Here, the output firing-rate of the neuron
ai(t) has been replaced by a conductance gi(t), thus making gi(t) essentially a
function of ai(t). This conductance model effectively represents an average of
the firing-rate, as seen in Figure 5 which shows the relation between membrane
potential and the output conductance. Similar to the bounded firing-rate due
to the squashing function, g(t) can be equally bounded between 0 and 1 with
the values representing the concentration of glutamate within the synaptic cleft.
Glutamate can thus be non-present (0) or at saturation (1).

In our biological model, the integrated input to neuron j further causes a
rise in the EPSP and the somatic potential Vi(t). Vi(t) impacts whether the
neuron will fire an AP. These APs in turn cause the release of glutamate into
the synaptic cleft, and therefor increase the conductance at the synapse. If we
were to simply bypass these intermediate steps through EPSP, Vi(t) and AP,
we can instead define a direct mapping function h from input current to output
conductance where we obtain gj(t) (the output of neuron j) directly:

gj(t) = h(Isyn(t)) (5)

Figure 4 illustrates this point. gj(t) is hence obtained as a function of the
total current Isyn(t) going into neuron j, the same way aj(t) is a function of
Isyn(t) (where Isyn(t) =

∑
aiwij in the rate-based case). As in the rate based

case which often includes a bias b; f(Isyn(t) + bf ), it is possible to include this
natural and biologically relevant activation level to our conductance outputting
model as well: h(Isyn(t) + bh).

In summary, the conductance outputting neuron model circumvents the in-
ternal voltage dynamics of the neuron as well as the firing of APs. Instead a direct
mapping from input current to output conductance is performed Isyn(t)→ g(t),
and this can be viewed as similar to the mapping of the input current to the
firing-rate of ANN neurons Isyn(t)→ a(t).
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Table 1. Simulation parameters

Parameter Value Unit Description
R 10 KΩ Membrane resistance
C 1 µF Membrane capasitance
τg 10 ms Time constant for conductance

δ(AP ) 20 mV AP threshold
τref 2 ms Refractory period

3.2 Argument 2: artificial firing-rate neurons approximate biological
conductance models in simulations

To demonstrate the above point; that the synaptic conductance is equivalent
to the firing rate of the neuron, we run a simulation of a biological neuron
model in which we apply an external input current. This input current, which
can be viewed either as input from upstream neurons or an external electrode,
modulates the resulting behaviour of our simulated neuron. Here, strong input
currents cause the membrane potential to depolarize faster and hence output
higher AP firing rates and thus influence the synaptic conductance to post-
synaptic neurons.

The neuron model we use for this experiment is the leaky integrate-and-fire
(LIF) model[5]:

C
dV (t)

dt
=
RIsyn(t)− V (t)

R
(6)

Here, V (t), R and C are the membranes voltage potential, resistance and capac-
itance respectively. Isyn is the input current. The membrane potential V (t) is
reset when surpassing the firing threshold δ(AP ). The neuron goes into a short
refractory period in which V (t) is held at zero.

The conductance model we use is an exponential decay function borrowed
from [26], which acts as a low-pass filter:

τg
dg(t)

dt
= δ(AP )− g(t) (7)

Our simulation parameters are shown in table 1, with parameters also from
[26].

Figure 5 shows the result of our simulation using a single LIF neuron and
the conductance equations: (6) and (7) respectively. We have scaled g(t) such
that the its average lies between 0 and 1, as to output 1 during maximum
firing frequency. This maximum frequency can be calculated using the neurons
refractory period along with the duration of an AP, here set to 2ms and 1ms
respectively[26]. For these values, the maximum firing frequency is calculated to
be:8

8 we have simplified here by disregarding depletion of neurotransmitters: i.e. we assume
that neurotransmitters re-uptake is able to keep up with the pace of release.
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Fig. 5. Top: The input current of 10.6µA, cut off at 125 ms. Middle: The somatic
membrane potential. The spikes are APs, here firing at 191 Hz. Bottom: The output
conductance, showing a smoothed value of about 0.6, which is equal to: firing rate

maximum rate
=

191
333

≈ 0.6.

maxiumum rate =
1000ms

2ms + 1ms
≈ 333Hz (8)

We set a constant input current to the neuron of 10.6µA for 125ms before
cut-off. We register that this yields a firing frequency of 191 Hz. As calculated in
equation (8) the maximum firing frequency, given our parameters in table 1, is
333Hz. We find that 191/333.33 ≈ 0.6, which is the same value as our smoothed
conductance converges to. These correspondences are true for all input current
values, which we have verified below.

As can be observed in Figure 5, the conductance effectively represents the
firing-rate average of the neuron, but more as a moving average due to the
time constant τg rather than an instantaneous firing-rate. This is due to the
conductance acting as a low-pass filter, which has advantages as the conductance
provides a less erratic signal to the post-synaptic neuron. We can say that the
function h in equation (5), yields an instantaneous average firing-rate similar
to f in equation (2), while g is an low-pass filtered firing-rate. As such g(t)
approaches a(t) for τg → 0.

We further plot the firing-rate against the stationary conductance for multiple
input currents: 2-50µA. The resulting graph is shown in Figure 6. As expected,
there is a linear dependence between the firing-rate a(t) and the conductance
g(t). Furthermore, the scaled firing-rate is essentially equal to g(t).
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Fig. 6. The firing-rates calculated by spikes
200ms

vs the average g(t) signal. 28 simulations
where run each for 200ms real-time (20 000 timesteps at a simulation resolution of
0.01ms). Each simulation was run with a different input current with currents ranging
from 2µA to 50µA (higher inputs yield higher firing-rates). The y-axis to the right
displays the scaled firing-rate, showing that g(t) is accurately encoding the firing-rate.

3.3 Argument 3: Synaptic plasticity models using discrete spikes
don’t work well

When introducing plasticity into SNN simulations, it has been common practice
to employ some sort of phenomenological STDP model[25]. This model takes into
account the precise timing of pre- and post-synaptic action potentials in order
to update the synaptic weight between two neurons. The model is motivated by
experimental findings[25] as well as its computational efficiency.

Further experimental evidence however, goes against these simple STDP
models, as neuroscience has discovered more and more diverse STDP phenom-
ena[23, 4] as shown in Figure 7. This indicates that the process of synaptic tuning
is governed by other factors than mere spike-times. More biophysically inspired
plasticity models rely on continuous conductances, calcium currents and internal
cell voltages rather than discrete spikes[23, 6]. These models have demonstrated
the ability to account for multiple STDP phenomena demonstrating the im-
portance of continuous signals in the synapse. The dependency on continuous
synaptic signals further argues against simplistic spike-based views.
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Fig. 7. The many STDP phenomena that have been experimentally observed can only
be explained using continuous synaptic states. Here, we see that long-term potentiation
shows varying dependence on spike-timing. The x-axis is the pre-post spiking interval,
while the y-axis is the amount of positive/negative potentiation that occurs due to this
timing. Courtesy of [4]

4 Discussion

4.1 Finding the right abstraction level

Biological neurons transmitting spikes to one another as a means of information
transfer is a simplistic view of a highly complex transaction. Within chemical
synapses in the brain, transmission is in the form of continuous and bounded con-
centrations of neurotransmitters. Hence, utilizing spiking neuron models does not
necessarily make the overall network dynamics similar to biology if the informa-
tion transfer between neurons is insufficiently modelled. We argue therefore that
simplistic SNN networks utilizing discrete spikes at synapses are biologically infe-
rior compared to rate-based, or as shown in this paper ‘conductance-outputting’,
neural network models. Only when applying conductance-based synapses in spik-
ing networks should we expect similarity to biological dynamics.

Neurons portrayed as point conductance-outputting models is naturally a
large simplification too, compared to the vast internal dynamics and structures
of biological neurons. However, in our quest towards understanding neural net-
works and replicating some of their amazing abilities, reducing complexity and
computational cost of our models is essential. We must ask which details really
matter. For example, one could argue that if (a) we had a complete architectural
map of the brain down to the molecular level, and (b) we had the computational
resources to simulate all molecular interactions, we could essentially simulate a
complete working brain. Most researchers do not think (or at least hope) that
this level of detail is necessary to understand the principles governing compu-
tation within neural networks. It may be that the complex emergent behaviour
can be replicated by simple local interactions without modelling the complex
dynamics within each and every neuron and synapse. We know from work on
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Cellular Automata that complex behaviour in networks can come about from
such simple local rules[27].

So how many levels of dynamics and interactions are we required to model
in order to achieve computability on a par with biological networks? Is there an
upper limit to complexity? These are fundamental questions we need to answer.
For this we need to better understand complex dynamics in simpler networks
and how these dynamics translate to more sophisticated models. Conductance-
outputting neurons seem a good candidate in this context. In fact, several exper-
iments have indeed demonstrated that multiple dynamical phenomena observed
in biological networks can be simulated by networks using continuous firing-rate
models[24].

4.2 Firing-rates vs conductance: why the perspective matters

In most sensory systems, the firing rate generally increases non-linearly with
increasing stimulus intensity[12]. This discovery has led to the widely discussed
assumption that neurons convey information through firing rates. Such a view
has been highly influential in the resulting ANN models which employ firing-rate
neurons. However, it is not obvious how downstream neurons would be able to
observe upstream firing-rates at any instance of time. In order for such an analogy
to work, there has to be some mechanism that dynamically encodes this firing-
rate. Synaptic conductance resolves this problem by effectively representing the
firing-rate as g.

The alternative view is important not only with respect to biological accu-
racy, but also because although firing-rate models are inspired by findings in
neuroscience, today AI and neuroscience speak very different languages. This
is largely due to the use of seemingly incompatible models. The ‘artificial neu-
ron’ is often frowned upon by neuroscientists due to it’s ambitious name and
discrepancy with biological principles. We believe that the gap between the two
fields can be bridged through an alternative view and terminology; viewing rate-
based models as conductance-outputting, which revive these models in a more
biologically plausible manner. An analogy such as this makes it easier to com-
pare the benefits and limitations of models on both sides and creates a common
platform for discussion. A different view can additionally stimulate new ideas
and opportunities for more cross-disciplinary research. Such research is in fact
becoming increasingly more common these days as many research institutions
are connecting neuroscientists and AI researchers[1, 21]. Despite the impressive
results of ANN research, as well as the fascinating findings in neuroscience, we
are still far from understanding the computational abilities of biological neural
networks. As researchers from both fields work on similar problems, a common
language is both beneficial and highly necessary for collaboration and fruitful
scientific progress.
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5 Future work

This paper introduces the concept of conductance-based models: a model that
is simpler than SNNs, yet more biologically intuitive than firing-rate neurons.
Future work will involve the comparison of larger scale network dynamics of: (a)
spiking networks with discrete synapses, (b) spiking networks with conductance
modelled synapses, and (c) the continuous conductance-outputting model put
forth here.

6 Conclusion

The common and widely applied firing-rate neuron model employed in ANN
research has been examined and presented from a fresh point of view as a
conductance-outputting model. The alternative view allows for better biological
appreciation of these models, and also argues that they may be more biologically
accurate than simple SNNs when employed in network wide simulations. This is
especially prevalent when the synapse and plasticity models of SNNs base them-
selves on discrete events, which they often do. The takeaways from this is that
one should not naively assume spiking neuron models to be biologically superior
to firing-rate neurons. Information transfer between neurons is a large part of
the equation and getting this part wrong can not be compensated by employ-
ing biologically sophisticated and detailed neural models. Furthermore finding
good modelling abstraction levels is essential in order to better understand the
computational abilities in neural networks. This is also important for creating a
common language between researchers in neuroscience and AI.
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