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Sammendrag 

Behovet for å forstå biologisk kompleksitet har vært en sterk 
pådriver for utvikling av ny teknologi og nye 
kunnskapsressurser. Avanserte og kvantitative 
storskalateknologier har gjort det nærmest trivielt å 
framstille massive datamengder for et gitt biologisk system. I 
arbeidet med å generere kunnskap fra disse datamengdene, 
har avansert genomskala dataanalyse blitt en flaskehals. God 
forvaltning av eksisterende kunnskap som skapes av det 
globale vitenskapssamfunnet er sentralt for å kunne 
ekstrahere biologisk innsikt fra nye storskaladata. 

I den foreliggende doktorgradsavhandlingen presenteres 
arbeid som bidrar til et grunnlag for systemnivå-analyse av 
gastrin-induserte signaltransduksjon-kaskader og cellulære 
responser (‘gastrin-signalsystemet’). Arbeidet beskriver 
integrasjon av kunnskap fra mange ulike kilder som bidrar til 
en nettverksmodell for gastrin-signalsystemet. Denne 
nettverksmodellen kan spille en rolle for framtidig forskning 
og derigjennom bedre vår forståelse av gastrin-indusert 
signaltransduksjon og genreguleringsnettverk. 

Transkripsjonsfaktorer utgjør et viktig bindeledd mellom 
signaltransduksjonskaskadene og påfølgende endringer i 
genuttrykk. For å bidra til presis og tilgjengelig kunnskap om 
transkripsjonsfaktorer (TFs), fokuserer avhandlingen dels på 
etablering av robuste retningslinjer for kuratering (målrettet 
registrering og sammenstilling av kunnskap) av 
transkripsjonsfaktorer som er eksperimentelt bekreftet og 
dokumentert i litteraturen, og dels på konstruksjon av 
TFcheckpoint databasen. Sistnevnte er en omfattende 
høykvalitets-informasjonskilde for transkripsjonsfaktorer, 
tilgjengelig på www.tfcheckpoint.org. Videre presenterer 
avhandlingen den første konseptuelle demonstrasjon av en 
komplementær tilnærming til gastrin systembiologi, utviklet 
ved NTNU, nemlig semantisk systembiologi. 

Sett under ett, danner arbeidet som er utført og presentert i 
denne avhandlingen et solid rammeverk for storskala 
hypotesegenerering som igjen kan bidra til å oppnå 
omfattende mekanistisk innsikt i gastrin-indusert 
genregulering og cellulære responser. Flere av de presenterte 
tilnærmingene har generell anvendelse for analyser av 
regulatoriske systemer. 
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ABSTRACT 
 

The wish to understand biological complexity has been a great driver for 
the development of new technologies and knowledge resources. 
Advanced and quantitative high-throughput technologies have made 

the generation of enormous amounts of data on a system almost trivial. 
To acquire knowledge from the data, advanced genome-scale data 
analysis approaches have become the next bottleneck. The proper care 

and management of existing (prior) knowledge produced by the global 
scientific community is pivotal for extracting advanced biological insight 
from novel high-throughput data.   

This doctoral thesis presents the work performed to provide a 
foundation for systems level analysis of gastrin mediated signal 
transduction cascades and cellular responses (the ‘gastrin signaling 

system’). It describes the integration of knowledge from a great variety 
of sources into a network model that captures the knowledge at the time 
of submitting this thesis concerning the gastrin signaling system, which 

should impact the way future work can further the comprehensive 
understanding of gastrin responsive signal transduction and gene 
regulation networks.  

Transcription factors constitute an important link between the 
signaling cascades and ensuing gene regulatory changes. To provide 
precise knowledge concerning transcription factors (TFs), this thesis 

focuses in part on constructing a comprehensive overview of the current 
knowledge on TFs, both by establishing a robust set of curation 
guidelines for curating the transcription factors that are experimentally 
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verified and documented in literature, and by building and making 
available the TFcheckpoint database: a high-quality and comprehensive 

information resource on transcription factors, available at 
www.tfcheckpoint.org. The thesis furthermore presents the first proof of 
concept of a complementary approach to perform gastrin systems 
biology developed at NTNU, namely Semantic Systems Biology.  

Together, the work carried out and presented in this thesis provides a 
solid framework for large-scale hypotheses generation to gain 

comprehensive mechanistic insight concerning gastrin mediated gene 
regulation and cellular responses. Moreover, many of the approaches 
are generally applicable for any regulatory system analysis. 
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INTRODUCTION 
  

1. Systems biology  
  
Complexity in a biological system arises due to intricate interactions 
between its different components and the surrounding environment. 
System-level understanding of these connections can provide detailed 

view of the biological mechanisms that underlie homeostasis or 
response to biological signals.  “Systems Biology” is concerned with the 
study of biological function that is derived from interactions [1-4]. 
‘System’ (from the Latin word ‘syst ma’, and this again, is from the 

Greek  ‘syst ma’) stands for an entity that maintains its 
existence through the mutual interaction of its parts [5]. Systems 
biology is an inter-disciplinary approach which aims at systems-level 

understanding of biological systems, and as such it involves the 
representation and analysis of complex biological systems. The roots of 
systems biology are found in various disciplines such as biology, bio-

medicine, biochemistry, computer science/informatics, mathematics, 
physics, and engineering, and the meaning of systems biology is 
different for each of these different disciplines. It generates new insight 
and knowledge which can have qualitative and/or quantitative 

predictive or explanatory power at the system level [6]. As shown in 
Figure 1, in this approach iterative cycles of modeling and 
experimentations are applied which can be used to tackle the challenges 

faced in understanding the systems level behavior of cells or organisms. 
According to Mendoza [7], “systems biology is a transition from 
qualitative biology towards a quantitative biology, from structural, 
static descriptions to functional, dynamic properties, and from 
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descriptive knowledge to mechanistic knowledge”. Systems biology 
combines reductionist and integrative approaches by which it attempts 

to decipher and understand the biological meaning of vast genome scale 
data. The reductionist approach tries to identify and characterize 
different parts of the system whereas the integrationist approach 
focuses on investigating interactions between different parts and with 

their environment. It is an integrated approach that brings together 
and leverages theoretical, experimental and computational approaches 
in order to establish connections among central molecules or groups of 

molecules in order to aid the eventual mechanistic explanation of 
cellular processes and systems [8].  

 

 

FFigure 1: Systems biology cycle. Systems biology allows building, simulating 

and validating new hypotheses from a systems perspective, taking into account 

the dynamic interactions of biological parts and processes and the emergence of 

new functionalities. This is achieved by iterated cycles through a systems 

biology workflow where genome- or system-wide, or experimental results on 

systems with interactions between only a few components provide data for the 

generation of hypotheses which, via adequate hypothesis testing provide an 

improved understanding of the system as well as improved cycles of 

experimental work (genome-wide screening or small scale), hypothesis 

generation and hypothesis testing Modified from [9].  
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In the following sections, I will first give an overview of the model-
driven knowledge discovery approaches in systems biology, followed by 

a description of biological networks that provide biological insight of the 
intracellular regulatory mechanisms and an introduction to biological 
databases, integration approaches for biomedical knowledge 
management. In the last part of the introduction, I provide an overview 

of the hormone gastrin and its biological significance. 

22. Systems biology modeling and approaches for 
biological discovery 

2.1 Modeling in systems biology 
Complexity in biological systems mainly arises from large numbers of 
interactions. A model of these interactions epitomizes knowledge 
concerning the functionality, structure or behavior of a biological 

system. There are four basic steps that have to be considered when 
building a model: construction, verification, calibration and validation 
[10]. Due to the inability of existing software to perform all these steps, 
a user has to consider a number of different software packages. 

Strengths and weaknesses of some of the software packages for model 
building are discussed by Alves et al. [11]. A computer-based model 
capturing the systems property can be either qualitative or quantitative 

in nature. 

In a qualitative model, network elements are connected by functional 

interactions, and each element is characterized by its local state. The 
states of the components change in time based on their interactions in 
the network, creating different global states. This type of model mainly 
represents prior knowledge concerning a biological system in the form of 

reactants and reactions. Qualitative models are nondeterministic hence 
they allow many possible outcomes of a chain of events. Today there are 
several web-based and stand-alone modeling tools  for the graphical 



4 
 

representation of qualitative models [12]. CellDesigner [13] is one such 
tool that has been utilized to create qualitative maps e.g. EGFR 

mediated signaling [14], mTOR signaling network [15], and AlzPathway 
[16]. A qualitative model embodies structural properties of the system; 
and by incorporating temporal behavior in a qualitative model, it is 
possible to forecast time dependent dynamics of the system. For 

example, Boolean networks [17, 18] and Petri nets [19]. Each 
component in a quantitative model is characterized by quantity (e.g. 
concentration or activity). A quantitative model denotes spatio-temporal 

characteristic of a system, expressed as quantities or activities over 
time, and the temporal dynamics of the network as a whole is the 
essential feature of a quantitative model. A number of different 

methodologies for quantitative modeling exist [20], such as continuous 
dynamic models e.g. ordinary differential equation (ODE) approaches, 
which allows to calculate the change of concentration per unit time for 
any given species in the model. And, discrete dynamic models that allow 

dynamic simulations even without exhaustive quantitative information 
of time dependent variation of the components in a network. 
Quantitative models can be either deterministic or stochastic. In the 

latter variant, reactants interact in probabilistic manner. Quantitative 
models allow simulation of the processes that the model describes as 
well as have predictive power to generate novel hypotheses.  

Experimental validation or falsification of the hypotheses generated by 
qualitative or quantitative models helps to improve the model. The 
study by Kholodenko and his coworkers on downstream events of EGFR 

and MAPK cascade with kinetic modeling and experimental validation 
approach was a stepping stone in this direction [21-23], which was later 
adapted and adopted by others [24, 25]. Kholodenko et al. derived a 

kinetic model by converting each reaction in the EGFR signaling 
cascade into mathematical equations known as chemical kinetic 
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equations. This model not only predicts the cellular outcome in response 
to EGF but also provides detailed insight about conditions that lead to 

time dependent activation of various signaling components in response 
to EGFR stimulation [21]. Similarly, Nakakuki et al. [26] constructed 
an initial ODE model, which was further refined following the 
experimental validation, to describe the role of c-Fos transcription factor 

in EGF and HRG mediated cell fate decisions.  Zhang et al. [27] 
formulated a Boolean dynamic model of T cell large granular 
lymphocyte (T-LGL) survival signaling through which they managed to 

identify and validate experimentally the potential causes and regulators 
of the T-LGL survival. Schilling et al. generated a quantitative model 
that has ability to predict the role of cytokine-receptor mediated ERK 

activation in cell fate decisions [28]. Similarly, Bianconi et al. 
constructed a dynamic model of EGFR and IGF1R mediated pathways 
in non-small cell lung cancer to study the involvement of MAPK cascade 
in governing migration or proliferation after receptor alteration [29].  

22.1.1 Graph based modeling 
Functional organization of biological systems is attributed to networks 

of large numbers of components and their interactions [30]. These 
networks represent the architectural framework that is associated with 
cellular decision making [31-33]. Topological analysis of the network 
can provide very useful information concerning network organization. 

As illustrated in Figure 2, the basic network features that allow us to 
study the network topology and characterize complex networks include: 
a) node degree and degree distribution; reflecting the number of links 

the node has to other nodes, and the characteristics of all nodes in a 
system, b) path length; which tells the number of links we need to pass 
through to travel between two nodes, and c) clustering coefficient, 

represents the tendency of a network to form clusters of interconnected 
nodes [30, 34]. 



6 
 

 

FFigure 2: Network topology analysis. (A) An undirected network that includes 

10 nodes. The degree k of node number four (blue) in this network is ‘4’. The 

‘red’ lines represent the network distance between node 1 and 10, which in this 

case is ‘4’. ((B) In the directed version of the network, node number four (blue) is 

characterized by in-degree = 2, and out-degree = 3. The network distance (red 

arrow) to travel between node 1 and 10, in this case is ‘6’. The clustering 

coefficient of node four in both the cases is 0.2. Modified from [34]. 

 

As shown in Figure 3, there are three kinds of graph based network 
models: i) Random networks; where most nodes are connected by an 

‘average’, or typical number of edges (Figure 3A), ii) Scale-free 
networks; where networks are characterized by highly non-uniform 
distribution (following a power-law distribution) which means most 

nodes have only a few links whereas a few nodes have a large number of 
edges (Figure 3B). Such highly connected nodes are often called as hubs, 
and iii) Hierarchical networks; where small clusters of densely linked 

nodes (Figure 3C) are interlinked with other dense clusters by a few 
hubs, generating a hierarchical network that possesses scale-free 
property and large average clustering coefficient [30, 34]. 
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FFigure 3: Network models ((A) Random network, where node degree follows 

Poisson distribution indicating that most nodes have approximately same 

number of links, ((B) Scale-free networks, characterized by a power-law degree 

distribution, and ((C) Hierarchical network, which integrates scale-free topology 

with large clustering coefficient. Modified from [30]. 

 
2.2 Biological discovery approaches in systems biology 
 

2.2.1 Bottom–up approach 
In bottom-up systems biology, the starting point is structure with low 
spatial dimensionality such as genes and proteins in an organism. The 

detailed knowledge about the interactions between these components 
constitutes the building blocks of bottom-up systems biology approaches 
(Figure 4). From this knowledge, the modeler aims to reconstruct a 
network of the system, including feed-forward and feedback regulatory 

relations [3]. In other words, functionality and behavior of a system are 
deduced from components of the system that are well characterized with 
high levels of mechanistic detail.  
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FFigure 4: Bottom-up systems biology approach. In this approach, the available 

knowledge about the components e.g. genes, proteins etc. and their interactions 

is assembled into a model. This model can be converted into a dynamic model 

that has capacity to simulate the system behavior in different conditions. This 

achieved by continuous revision of the model from the knowledge gained 

through comparison between model-based predictions and their experimental 

validation. Modified from [35]. 

As illustrated in Figure 5 Bottom-up systems biology studies rely on: (i) 
experimental observations that determine the kinetic and 
physicochemical properties of the components (e.g. enzyme kinetics, 
diffusion properties) either by studying the components in isolation or 
by using parameter estimation strategies; (ii) knowledge concerning 
responses of the subsystem to perturbations while it is in the context of 
the cell; (iii) the construction of detailed models to calculate the data 
from (ii) (for model validation and improvement) and to improve 
experimental design; and (iv) the development of tools for model 
analysis and representation [36].  
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Figure 5: Illustration of Bottom-up and Top-down systems biology approaches. 

See text for details. Reprinted from The Lancet, Volume 15, Issue 1, Frank J.  
Bruggeman , Hans V.  Westerhoff, The nature of systems biology, 45 – 50, 
Copyright (2007), with permission from Elsevier. 

 
Models are built based on the information available in the literature of 
specific and sometimes independent experiments. Reconstruction of 
whole systems with all the mechanistic details from parts of the model 
or module might work for simple organisms such as prokaryotes but for 

eukaryotes, organizational complexity at various levels can be a major 
bottleneck in achieving well-functioning reconstructed whole systems. 
Often parameter estimation of whole system using small, 

mechanistically verified module gives false kinetic parameters. It is 
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more difficult for eukaryotes than for prokaryotes to measure kinetic 
parameters in vitro hence there is a need to develop strategies to 

measure kinetics of the components in vivo [37]. 

 

22.2.2 Top-down approach 
Top-down systems biology approaches start with experimental data of 
the system and try to find out its components and their interactions 
(Figure 6). New hypotheses are generated with the use of correlation 

and clustering approaches to identify groups of molecules or components 
which are inter-dependent and/or co-regulated.  Comprehensive 
understanding of a system has led to the generation of large data sets 
with numerous data points for a single organism, however with limited 

number of perturbations (e.g. genetic, knock-out, environmental).  

A large variety of  statistical, pattern finding and classification methods 

are used to elucidate knowledge from large-scale data [38]. Clustering, 
which is a type unsupervised learning method that enables class 
discovery, is a widely used approach [38]. Furthermore, to gain detailed 

insight from gene expression data, knowledge-based clustering 
approaches are becoming popular because of the fact that these 
approaches integrate known information concerning genes from various 
sources [39]. These approaches are utilized for deducing e.g. groups of 

co-expressed and co-regulated genes from large gene expression data. 
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FFigure 6: Top-down systems biology approach. In this approach, the starting 

point is genome-wide data collected from a system that is exposed to different 

conditions or factors (e.g. growth factors, mutations, nutrients etc.). The data is 

analyzed using appropriate statistical method to identify components e.g. 

genes, proteins, or metabolites that exhibit significant change in response to 

the perturbation. This is followed by clustering and other computational 

analyses in which structural information e.g. protein-DNA interaction, protein-

protein interaction are integrated that can lead to the identification of co-

regulated modules.  Modified from [35]. 

 
2.2.3 Middle-out approach 
Practical limitations in bottom-up and top-down approaches have led to 
the adoption of hybrid approaches like the so called “middle-out” 

approach.  Such approaches can be regarded to combine the bottom-up 
and top-down approaches, as they start somewhere in-between and then 
work out exploring both ‘higher’ and ‘lower’ levels [3, 40]. As 

represented in Figure 7, systems and functions represent ‘higher’ levels 
whereas molecular data and mechanisms depict ‘lower’ levels.  Often, 
some knowledge about interactions between various players or 
components of the model is available. Interactions can be partially 

understood but sufficiently accurate knowledge may still be lacking, 
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thus significantly reducing the space of the network structure [41]. 
Thus, from such a middle position (Figure 7) with incomplete knowledge 

about model components and structure, both higher and lower levels of 
structural complexity can be uncovered by exploring parameter spaces. 
This strategy has been followed in the modeling of the heart. For the 
heart modeling, the starting point was the cellular level modeling of the 

processes and components that contribute to metabolic or mechanical 
functions [42, 43]. These cellular models then reached to the tissue and 
organ level through the incorporation of detailed  information of the 

higher-level structural complexity [44]. In addition, they managed to 
move from cellular level models to genome level models by modeling the 
influence of known genetic alterations on the model proteins[45].  

  

 

Figure 7: Middle-out systems biology approach. See text for details. Reprinted 
by permission from Macmillan Publishers Ltd: Nature Review, Molecular Cell 
Biology [46], copyright (2002). 
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3. Biological networks 
Biological networks represent biological insight about intracellular 
mechanisms gathered through both small-scale and large-scale studies. 
Among the intracellular networks; gene regulatory, signal transduction 

and metabolic networks are widely investigated. Since the focus of the 
present thesis has been towards signal transduction and gene 
regulation, metabolic networks will not be discussed in detail.  

3.1 Protein-protein interaction (PPI) networks 
Proteins are the main players of the cellular machinery [47]. In most 
instances, proteins carry out their biological functions through 
interaction with several other proteins. For example, the role of 

androgen and estrogen sex steroids in differentiation is determined by 
their interacting protein partners, which usually vary with cell types 
and physiological states [48]. Similarly, the nuclear pore complex 
(NPC), involved in nucleocytoplasmic shuttling, is estimated to be 

composed of ~30 distinct proteins (nucleoporins) [49] and engages in a 
very high number of protein-protein-interactions. In Figure 8, 
interaction partners of the nucleoporin 210 kDa (NUP210) protein are 

represented.  

Advances in proteomics technologies led to generation of massive 
amounts of PPI data. PPI based studies have been performed 

extensively on yeast Saccharomyces cerevisiae [50-53] to understand 
the biological properties resulting from these interaction networks. 
System-wide PPI detection approaches aim to identify all protein 
interactions in a system.  However, through such approaches there are 

problems in terms of false positives (i.e. the method reports protein-
protein interactions that are not true), as well as missing interactions 
(false negatives, i.e. true interactions not reported by the method) [54].  



14 
 

  
 

Figure 8: Illustration of nucleoporin 210 (NUP210) protein (red) 

interaction partners generated using STRING [55] data source. 

 

Currently, several strategies are in practice for large-scale PPI 
mapping, including: 

1) Literature curation of protein interaction data [56]  

2) Computational prediction of protein interaction data [57] 
3) High-throughput experimental mapping [58] 

Each strategy has its own advantages and limitations. Literature 

curation provides protein interactions derived from small-scale 
experiments. The observations made from such small-scale experiments 
are less prone to false positive results. However, literature-curated PPIs 
have limitation for not being comprehensive. Additionally, due to lack of 

formalized curation guidelines for recording PPIs from literature there 
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is variability in the curation process. Similarly, computational 
prediction methods have the advantage of being applicable at genome 

and proteome scale in a cost effective manner but are limited by rules 
for the protein interaction predictions because these rules are not yet 
precise and exhaustive so that they can reduce the number of false 
positives and false negatives. From a high-throughput experimental 

point of view, binary interaction and co-complex interaction methods 
are widespread in use (Figure 9). Yeast 2 hybrid (Y2H) system based 
high-throughput method for binary interaction detection, and protein 

purification followed by identification of constituents by mass 
spectrometry for co-complex interaction detections are widely used 
methods for large scale detection of PPIs. Both Y2H and protein 

purification based methods have their own limitations. As depicted in 
Figure 9, Y2H may detect interactions which do not occur in vivo 
whereas protein purification based methods may not detect all the 
interaction partners of a complex. 

 

FFigure 9: Binary interaction and Co-complex interaction methods to determine 

PPIs. Adapted from [59]. 
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With the continuous increase in PPI data, the repositories that record 
PPI information (detail list in Table 1) also increased exponentially. 

Some of the widely accessed PPI databases are the Human Protein 
Reference Database (HPRD), which is a curated database of human 
proteins and their interactions [60], IntAct which is an open access 
resource for molecular interactions derived from literature curation or 

direct user submissions [61], and iRefWeb that consolidates protein 
interaction data from 10 different sources [62]. 

TTable 1: PPI databases and resources.  Adapted from [59]. 
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The protein-protein interaction networks are not only the structural or 
architectural building blocks but also act as molecular machines.  

Therefore such networks are one of the active areas of research to 
understand molecular mechanisms underlying cellular events. This is 
evident from the fact that the PPIs exhibit emergent properties by 
performing biological functions beyond the sum of all individual 

components. For example, the proteasome degradation complex is a 
collection of ~50 different protein subunits which act together to 
degrade other proteins [63]. With the technological advances to produce 

PPI data, network-based applications for the analyses of PPIs also 
developed exponentially. A list of PPI based analysis and visualization 
tools are compiled in Table 2. 
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TTable 2: Network visualization tools. Modified from [12]. 
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33.2 Signal transduction networks 
Only selected stimulatory signals from the external environment are 

passed through the cell membrane. These stimuli can for instance 
originate from growth factors, mechanical signals, cell-cell contacts, or 
nutrients. As shown in Figure 10, signal transduction networks 
represent a roadmap for the information flow within a cell in response 

to extrinsic stimuli or intrinsic cues resulting in a number of possible 
cellular responses such as cell proliferation, migration, and apoptosis. 
The flow of information through signaling cascades is triggered when 

stimuli mostly in the form of ligands bind and activate specific cell 
receptors. Localization of the receptors can be either extracellular or 
intracellular. Extracellular receptors are integral transmembrane 
proteins, spanning the plasma membrane, with one part of the receptor 

outside the cell and the other inside, e.g. G-protein coupled receptors 
(GPCR), receptor tyrosine kinases (RTKs), and toll-like receptors 
(TLRs). The ligand e.g. a hormone or a growth factor binds to the 

outside part of the extracellular receptor and stimulates a cascade of 
events inside the cell. Intracellular receptors are soluble proteins 
localized either in the cytosol or nucleus and are also termed 

cytoplasmic receptors (e.g. NOD like receptors), or  nuclear receptors 
(e.g. steroid receptors, retinoic acid receptors). Most nuclear receptors 
shuttle between the nucleus and cytoplasm.  Ligands which activate 
these receptors pass through the plasma membrane and bind to the 

receptor e.g. steroid hormones which bind nuclear receptors.   

As depicted in Figure 10, basically there are two stages in signal 
transduction processes: 

a) Extracellular stimulus activates specific receptor protein on 
the membrane 
b) Second messengers and proteins (e.g. kinases, phosphatases 

etc.) transmit signals inside the cell and elicit cellular responses.  
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FFigure 10: Illustration of signal transduction pathway. Signal transduction 

cascades are activated in response to extrinsic and intrinsic cues which 

regulate transcription programs in the cell. Transcription factors are the key 

components of the transcription regulation that plays a determining role in 

conferring various cellular responses. However, changes in gene expression are 

not mandatory for cellular outcomes to occur in response to a signal since 

signaling components present in the cell at the time point of stimulation can 

sometimes trigger responses like e.g. secretion from pre-filled vesicles via post-

translational mechanisms.  Reprinted by permission from Macmillan 
Publishers Ltd: Nature Clinical Practice Rheumatology [64],  copyright (2007). 

 
During the course of signal transduction processes usually many 

proteins and other molecules participate in transducing the information 
from a given receptor to the cellular responses, thus creating a signal 
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cascade (Figure 10). Interconnections between signaling pathways 
results in networks. In a network, a component can receive signals from 

multiple inputs or signaling pathways. Such components can be 
regarded as integrators/junctions. Similarly, certain components can be 
involved in transmitting signals to multiple pathways. These 
components are considered as nodes that split the signal [65]. 

Furthermore, components that receive multiple inputs and transmit 
signals to multiple pathways can act as switches. For enhanced 
understanding of the intracellular cascades and signaling cross-talks 

which are linked to various cellular responses, a comprehensive 
representation of the signaling reactions is crucial. Section 2.1 of this 
thesis provides a brief account of the literature-curated signal 

transduction pathways. 

33.3 Gene regulatory networks (GRNs) 
Gene regulatory networks depict physical and/or regulatory 
relationships between transcription factors and their target genes. 

These networks are bipartite and have a functional flow of information 
from transcription factors (TFs) to target genes (TGs). There are two 
aspects of the interaction between a TF and TG: one concerning direct 

binding of a TF to specific sequences in the gene regulatory regions 
(promoter/enhancer) of a TG and the other pertaining to the regulatory 
effect of a TF on a given TG (Figure 11a). The regulatory interaction 
results in positive or negative influence of a TF on transcriptional 

activity at a given TG. Generally, each TF regulates many TGs and each 
TG is regulated by more than one TF (Figure 11b). 
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FFigure 11: Transcription regulatory network. (A) Sequence-specific DNA 

binding transcription factors bind to the specific DNA sequence in the 

regulatory region of the target gene to regulate its expression and further 

protein systhesis. ((B) A transcription factor can regulate many TGs, and a TG 

can be regulated by many TFs.  

 

A variety of methods including both small-scale and large-scale 
experimental, as well as computational are used to identify specific 

interactions between a TF and the regulatory regions of its target genes 
[66, 67]. Some of the experimental methods for the identification of 
interactions between TF and the TG regulatory region DNA sequences, 

include EMSA, SELEX, DNA footprinting, protein-binding microarrays 
(PBM) and ChIP-seq (reviewed in [66]). Computational approaches that 
are used for identification of interaction of TFs with TG regulatory 

regions include de novo motif finding, as well as algorithms that can 
identify  transcription factor binding sites (TFBS) in genomic regions 
near genes based on consensus TFBS motifs [66]. MotifLab is one of the 
freely available online tools for discovering TFBS and cis-regulatory 

modules (CRM) [68]. CRM is stretch of DNA (100-1000 bp) where 
number of TFs bind and regulate expression of TGs.  Experimental 
approaches used to identify the regulatory relation between a TF and a 
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given TG includes reporter gene assay [69], and the experiments 
performed in whole organism where it is documented that the protein in 

question binds to the TG regulatory region e.g. measuring the influence 
of TF on the expression of TG by RNA interference mediated knock-
down of TF [70].  

Various model organisms ranging from unicellular E.coli to the higher 

non-chordates such as sea urchin have been employed to investigate 
gene regulatory networks [66]. Each of these model organisms has 
different advantages and limitations. Davidson et al pioneered the 

mapping of the complex connections between the gene regulatory 
components underlying development in the model organism sea urchin 
[71, 72]. Compared to non-mammalian organisms progress in 

understanding GRNs with mammalian organism such as mouse and 
human has been relatively slow. However, the Encyclopedia of DNA 
Elements (ENCODE) project (http://genome.ucsc.edu/ENCODE/), which 
is mammalian-centered, was initiated with an objective to decipher 

systems-level gene regulatory networks across different cell lines and 
cell types. The ENCODE consortium has produced massive amounts of 
data relevant for the understanding of DNA regulatory elements, and 

ongoing analyses of these data is expected to greatly improve an in-
depth understanding of the gene regulatory networks [73, 74]. So far, 
ENCODE has generated 457 ChIP-seq data sets on 119 human TFs in 
72 cell lines. They developed a computational method (de novo motif 

discovery) to identify and further characterize sequence-specific motifs 
of each of these TF in ChIP-seq peaks [75]. Furthermore, analysis of the 
genome-wide TF binding profiles and TF co-association patterns by 

Gerstein et al. has provided the beginning of a systems-level 
understanding of the TF regulatory wiring [76]. 
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44. Knowledge discovery and integration  

4.1 Omics data, information and knowledge management 
The advent of high throughput experimental technologies revolutionized 
biological research from a relatively data poor discipline into a data 
rich. The whole–genome sequencing of Haemophilus influenza in year 

1995 [77], and the successful completion of human genome sequencing 
in 2003 [78] revolutionized the omics field. The term ‘omics’ refers to the 
totality of a class of data of a biological system under a series of 

perturbations. Due to profound advancements in high throughput 
technologies, a variety of omics subdisciplines (genomics, proteomics, 
metabolomics, interactomics and so on) have begun to emerge [79], 

generating massive amounts of data for the comprehensive 
understanding of biological systems and processes. According to Joyce et 
al. [80]; as illustrated in Figure 12, the molecular information captured 
by these omics data can be classified into three broad categories: 

 i) Components data – which yields information regarding the specific 
molecular content of the cell or systems e.g. genomics, proteomics, 

transcriptomics and metabolomics. 
ii) Interactions data – which specifies the connectivity that exists 
between the molecular components e.g. protein-DNA and protein-

protein interaction data. 
iii) Functional states data – which captures overall behavior/phenotype 
of the biological system e.g. fluxomics and phenomics. 
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FFigure 12: Omics data aim to provide comprehensive information of all 

components and interactions within the cell. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Review, Molecular Cell Biology [80], 
copyright (2006). 
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To gain significant biological insights from omics data, it is mandatory 
to have structured and standardized data storage formats to enable 

data sharing between multiple sources, usually enabled through 
databases where they can be queried, analyzed and compared. The 
solutions for data reporting standards include minimum information 
checklists i.e. The Minimum Information for Biological and Biomedical 

Investigations (MIBBI) [81], controlled vocabularies or ontology terms 
[82], and standard file formats [83]. The Genomic Standards 
Consortiums (GSC) published a guideline as ‘minimum information 

about a genome sequence’ (MIGS) defining core descriptors for genome 
and metagenome submissions [84]. Similarly, there are various data 
standard initiative such as MIAME for microarray [85], HUPO and 

MIAPE for proteomics data [86, 87], and metabolic standard initiative 
[88] for metabolomics studies. The next hurdle is to establish efficient 
and standardized data exchange formats which can aid the integration 
of data residing in different sources and to provide users an interface to 

access merged information which is unified and unambiguous. To 
achieve this, data from different sources must be parsed and merged 
into unified formats, where the main challenge is to handle different 

formats from different sources. Today there are many such databases 
e.g. GeneCards [89-93], which is a compendium of annotated 
information concerning human gene, whereas BioMart [94] and DAVID 
[95] are knowledge bases and analysis tools that provide unified view of 

the data retrieved from one or multiple resources.  Similarly, 
IntegromeDB [96] semantically integrates various molecular biology 
resources, and provides this integrated information for each searchable 

gene/protein. 
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44.1.1 Biological discovery using omics data 
The exponential increase in omics data creates major bottleneck for 
approaches to extract biologically meaningful information from the 
data. There are several data-driven modeling approaches for signal 
transduction and gene regulation networks each with its own 

advantages and disadvantages [97, 98]. Typically, such network 
modeling methods include Boolean, Bayesian, and neural networks, or 
models built around differential equations [99]. The network linkages 

inferred from these approaches may indicate the existence of previously 
unknown interactions and may thus enable generation of new 
hypotheses which can subsequently be tested by pertinent experiments. 
As depicted in Figure 13, computational approaches to extract biological 
insight from the high- throughput data generally address three aspects: 
i) identify the network scaffold by delineating the connections that 
exists between molecular components of the cell; ii) decompose the 

network scaffold into its constituent parts, or network modules, in an 
attempt to understand the overall network structure and iii) develop 
models to simulate and predict network behavior that gives rise to 

cellular phenotypes [80]. 
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FFigure 13: General approaches to investigate the properties of omics data sets. 

(A) Network scaffold identification, ((B) Network scaffold decomposition, and ((C) 

Modeling and analysis of cellular systems. Modified from [80]. 

 

Networks and pathway visualizations have become routine in the 
scientific community, to communicate their findings from high 

throughput data. This is one of the reasons for the continuous increase 
in the web resources holding networks and pathways. The majority of 
such resources can be found in a biological pathway portal, Pathguide 
(http://www.pathguide.org/) [100]. Similarly, in order to visualize and 

infer biological insights from large data there has been a significant 
increase in omics data visualization tools too [12].  

4.2 Knowledge Bases  
Biological knowledge concerns information or knowledge that is 
documented through scientific research in the life sciences. The existing 
biological knowledge is the foundation for all biological research. This 
knowledge is available either in an unstructured form in scientific 
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publications or in a structured form in biological databases. With the 
technological advances enabling large scale biological system 

measurements, there has been a rapid increase in the databases that 
hold this information. Databases may focus on knowledge about one 
particular aspect of biology for example UniProtKB [101] and Protein 
Data Bank (PDB) [102] are protein centric; BioModels [103], Reactome 

[104], and PANTHER [105] are pathway centric. Similarly, there are 
different repositories for storing information retrieved through different 
experimental investigations e.g. the Genomes OnLine Database (GOLD) 

[106] and GenBank [107] as repositories for genomics related data; GEO 
[108] and ArrayExpress [109] for transcriptomics; and ENCODE [110] 
for protein-DNA interactions. With the exponential increase in the 

number of individual databases it is speculated that by 2015 the 
number of publications citing ‘database’ in the title can reach up to 2000 
per year [111]. This is evident from the fact that currently there are 
more than 300 databases that encompass pathway related information 

[112], about 100 that are concerned with protein structure and protein 
domain, and over 50 databases that hold transcriptomic information 
(http://www.oxfordjournals.org/nar/database/c/), and this number is 

increasing year after year. As a consequence, for each data type there 
are multiple data resources that present overlapping or only slightly 
different views of the same data, therefore, a strategy that can provide 
unified information from multiple resources is required. Systems 

biology and integrative biology are closely linked. Thus, knowledge 
management in systems biology addresses the need of knowledge 
unification through integration of the biological knowledge from various 

sources that is available in digital formats.  
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4.2.1 Ontologies and controlled vocabularies 
The word ‘ontology’ originates from metaphysics where ontology 
represents the branch that concerns with the study of being and their 
relations. According to Gruber [113] “an ontology is an explicit 

specification of a conceptualization”. Ontologies are classified into 
different types : domain specific ontologies such as Gene Ontology (GO) 
[114] which focuses on concepts that are relevant for the molecular and 

cellular biology domain; application ontologies e.g. Cell Cycle Ontology 
(CCO) [115] which brings together the various concepts concerning cell 
cycle control; and top-level ontologies e.g. Basic Formal Ontology (BFO) 
[116] which models common elements that define a generic, integrative 

framework for essentially all existing domain ontologies (e.g. GO). 

Because of the fact that ontologies provide a common vocabulary to 

support sharing and reuse of knowledge, ontologies provide the 
foundation for biological knowledge management. To improve 
communication across different biomedical domains for knowledge 

management, a repository of biomedical ontologies or controlled 
vocabularies was created under the auspices of the Open Biomedical 
Ontologies (OBO) [82]. In addition, ontology-based web services of the 
National Center for Biomedical Ontologies (NCBO) became available 

(http://bioportal.bioontology.org/), which facilitated the biomedical 
community to automatically annotate knowledge with biomedical 
ontologies. For this, NCBO has developed BioPortal [117], a web portal 

that enables access to biomedical ontologies developed in variety of 
knowledge representation formats such as OBO, Web Ontology 
Language (OWL) [118], and Resource Description Framework (RDF) 

[119]. The NCBO web services can be conveniently incorporated into 
software applications to access ontology contents. This feature has 
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allowed the development of numerous data annotation applications that 
use NCBO web services, e.g. ISAcreator [120] which supports automatic 

annotation of experimental metadata. 

44.2.2 Data annotation 
In the present information rich era, one of the major challenges for the 

knowledge sources is to provide high-quality and up-to-date 
information. Annotation of the biological information contained in 
knowledge sources such as Gene Ontology [114], UniprotKB [101], 

IntAct [61], KEGG [121], Reactome [104], Entrez gene [122], Ensembl 
[123] and many more is therefore of high importance. An annotation 
reflects a connection between an entity and an ontology term assigned 

to that entity. This connection is created on the basis of inferences 
drawn from the interpretations that a curator can make from a 
scientific publication [124]. Experimental analyses or a variety of 
computational analyses (structural, sequence-based, and other) are 

some of the methods that can support the curation. Knowledge sources 
that provide annotated information ideally specify their own guidelines 
for data annotations. For example, the Gene Ontology Consortium 

(GOC) provides guidelines for creating annotations to gene products 
with specific GO terms based on observations and inferences drawn 
from the experiments, author’s statement, or structure and sequence 
similarity based computational analysis. For each annotation, GO 

evidence codes describe the type of observation method (e.g. type of 
experiment (direct assay, mutant phenotype), author statement, 
computational analysis) that was used for a GO annotation. 

Curation is the process of creating annotations of data from the 
scientific publications. 
There are two methods of creating annotations: 

1) Manual curation, where knowledge bases employ human 
curators who read scientific publications and create annotations 
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from that publication. Manually curated databases are generally 
regarded to contain high quality information but sometimes 

questions have been raised regarding their completeness as well 
as on quality [125]. 

2) Computationally assigned annotation approaches where 
computer programs are designed to generate data annotations. 

These programs are created around certain rules which are 
tested and validated against published data or knowledge. The 
rules can be created to generate annotations not only from the 

scientific publications but also by searching sequence or 
structure similarity. The UniProt consortium has developed an 
automatic annotation pipeline that uses InterPro to 

automatically annotate UniProtKB/TrEMBL protein entries. 
Similarly, GOC uses the Inferred from Electronic Annotation 
(IEA) evidence code for annotations that are transferred 
automatically either from a database or based on sequence 

similarity matches that are not reviewed by a curator.  Text 
mining is an emerging field in the direction of creating computer 
assigned annotations. In this approach computer algorithms 

automatically extract information from the scientific literatures. 
This approach has been implicated for extracting information 
concerning pathway modeling using PathText [126, 127], and for 
mining the transcription regulatory events [128]. 

44.3 Data integration 
There is no single approach for data integration. Technological solutions 

to production of a large variety of biological data have led to an increase 
in the databases storing this information.  Thus, to gain a 
comprehensive view on their data, users must go through a large 

number of different existing databases harboring relevant information 
for a given data type. Therefore, it is of utmost significance to unify 
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information that presently resides in different resources at one place 
through data integration. Integrated data sources will assist 

researchers in biological discovery by providing larger and wider 
overview of the data. Efforts such as BioMart [94], KEGG [121], DAVID 
[95] and KA-SB [129] are already in place that allow a user to access 
integrated information. Some popular data integration approaches are 

described here [130]. Data integration faces some key challenges by 
virtue of the complexity in various kinds of data resources. For 
successful integration of the data resources some of these challenges 

such as common identifier, name, reporting standards, shared 
semantics, and data curation need to be addressed [130]. As a solution 
for some of the data integration challenges the World Wide Web 

Consortium (W3C) founder Tim Berners-Lee coined the term ‘Semantic 
web’. According to the W3C (http://www.w3.org/2001/sw/), "The 
Semantic Web provides a common framework that allows data to be 
shared and reused across application, enterprise, and community 
boundaries."  BioGateway [131] is one of many semantically integrated 
knowledge resources, which is built on an RDF store that allows access 
of biomedical ontologies and biological resources. Thus, BioGateway 

aggregates OBO foundry [82], CCO [115], NCBI taxonomy [132], Swiss-
Prot [101], and GO annotation [133] data resources. BioGateway serves 
as a single source for querying semantically integrated information from 
these resources through SPARQL [134]. Similarly, there is Gaggle [135] 

that provides a framework for data exploration and analysis between 
different software tools and databases within the systems biology 
community, and Galaxy which is a web-based platform that provides for 

the integration of several data sources e.g. BioMart [94] and InterMine 
[136] together with the data analysis tools, has its own data type 
converters that handles tool specific data format conversion.  
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55. Gastrin Biology  

5.1 Gastrin hormone overview 
Gastrin is a gastrointestinal peptide hormone primarily synthesized 
and released by G cells of gastric antrum (Figure 14). In humans, 
gastrin is encoded by a gene located on chromosome 17q21. Biologically 

active gastrin processed via multiple steps with the help of proteolytic 
enzymes has a C-terminal pentapeptide amide and sulfation of the 
tyrosine at position 7.  

 

Figure 14: Illustration of cellular interactions of the human gastric mucosa. ((a) 

Cellular interactions of the corpic/fundic mucosa, and ((b) the antro-pyloric 

mucosa. Reprinted by permission from Macmillan Publishers Ltd: Nature 
Reviews Cancer[137], copyright (2006). 

Gastrin exerts its biological functions by binding to the G protein-

coupled receptor, CCK2R. CCK2 receptors are located on multiple cell 
types in the central nervous system, and peripheral organs including 
stomach (reviewed in [138]),  pancreas, and gall bladder [139]. CCK2R-
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positive cells in the stomach are enterochromaffin-like (ECL) cells and 
parietal cells in the corpic/fundic mucosa; (Figure 14b) and D-cells 

which are in both antro-pyloric and corpus/fundic part of gastro-
intestine (Figure 14), Gastrin concentration fluctuates in response to a 
meal. The pH of the stomach influences gastrin release. High gastric 
acid (low pH) in the stomach inhibits gastrin secretion from G cells of 

the gastric antrum (Figure 14a) and low gastric acid (high pH) promotes 
gastrin secretion. As shown in Figure 14b, gastric acid secretion by 
parietal cells is mainly controlled by histamine, which is synthesized 

and secreted by ECL cells of the corpic/fundic part of the stomach and 
thus functions in a paracrine manner. Figure 14b shows how the 
activity of the ECL cells to secrete histamine is controlled by gastrin 

(acting in an endocrine manner since it is produced in a different part of 
the stomach mucosa) and somatostatin (acting in a paracrine manner, 
since it is produced by D-cells in the corpic/fundic region) (Figure 14b). 
Gastrin and somatostatin show antagonistic effect on ECL cells. On the 

one side, gastrin act as a stimulator, and on the other side, somatostatin 
sends inhibitory signals to the ECL cells.  

The hormone gastrin plays a role in regulation of growth and 
differentiation of gastric and colonic mucosa [140]. The scientific 
interest in this hormone is however strengthened by its implication with 

several diseases. A study on transgenic mice overexpressing human 
gastrin concluded that hypergastrinemia promotes gastric atrophy, and 
progression towards gastric cancer [141]. However, in contrast to the 
above findings, Zavros et al. demonstrated that chronic gastritis in 

gastrin-deficient mice progresses to gastric adenocarcinoma [142]. It is 
believed that gastrin overexpression leads to a boost of mitogenic 
effects, and that it thus promotes the progress of cancer development, 

whereas, in case of gastrin loss, bacterial overgrowth in the stomach 
due to hypo-acidity can be a driver of cancer development [137]. In line 
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with the proposed role of increased levels of gastrin in carcinogenesis, 
infection with Helicobacter pylori has been shown to increase the 

expression of gastrin [143], and gastrin is considered to be one of the  
risk factors in H. pylori driven gastric carcinogenesis [144].  

55.2 Gastrin mediated cellular responses 
Gastrin is suggested to affect several cellular responses including 
proliferation, migration and apoptosis. Like many other extracellular 
signals such as hormones, growth factors and neurotransmitters acting 

via GPCRs, gastrin leads to activation of multiple signaling pathways 
and transcription factors for the regulation of target genes. Many of the 
cellular responses are mediated through the expression of target genes 

(reviewed in [138, 145]). Cell line model systems (see Table 3) have been 
the main tool for exploring the underlying molecular mechanisms of 
these responses. Nevertheless, some of these finding are also verified in 
experimental animal model systems such as transgenic mice 

overexpressing gastrin (INS-GAS) [146] or transgenic mice expressing 
human CCK2R (ElasCCK2R) [147]. In the following section, I will 
provide a brief account of the regulatory mechanisms that are pivotal in 

the regulation of gastrin mediated cellular responses.  

Proliferation 

Gastrin is the most important trophic hormone of the stomach. One of 
the main physiological functions of gastrin is to regulate gastric 
mucosal growth and intestinal epithelial cell proliferation (reviewed in 

[145, 148]). Through whole animal and cell line studies, it is well 
established that gastrin stimulates ECL cell proliferation in the 
stomach [149-151]. Similarly, growth promoting effect of gastrin is also 

reported in many gastro-intestinal cancer cell lines including rat 
pancreatic adenocarcinoma cells, AR42J [152], and human stomach 
cancer cells, AGS [153]. Figure 15 illustrates that gastrin after binding 
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to its receptor CCK2R, regulates proliferation through activation of 
multiple signaling cascades such as MAPKs [154-157] and small 

GTPases [158, 159] , and through regulation of effector proteins such as 
cell-cycle regulator, cyclin D1 [160]. In AGS cells, gastrin dependent 
induction of cyclin D1 gene expression is mediated via  
catenin/Transcription factor 7-like 2 (TCF7L2) and CREB [160]. 

Inducible cAMP early repressor (ICER) is regarded to be a negative 
feedback inhibitor of cyclin D1 expression and this has been observed in 
AR42J cells in response to gastrin [161] (Figure 15). In contrast to the 

growth promoting function of the gastrin in AR42J and AGS cells [152, 
153], Muerkoster et al. found that gastrin suppresses growth by 
inducing apoptosis in colon cancer cells (Colo320) transfected with 

CCK2 receptor [162]. 

AApoptosis 

Apoptosis plays an important role in cell homeostasis in the 
gastrointestinal tract [163]. Gastrin is reported to exert both pro- and 
anti-apoptotic functions [162, 164-166]. A study on hypergastrinemic 

mice concluded that gastrin induced apoptosis of gastric cells 
contributes to gastric carcinogenesis [167]. Another finding suggests 
that hypergastrinemia increases susceptibility of gastric cells to 

undergo apoptosis [164]. As shown in Figure 15, gastrin is documented 
to promote anti-apoptosis through inactivation of pro-apoptosis 
mediator proteins such as forkhead transcription factors (FOXO1 and 3) 
and BCL-family proteins [166, 168]. It has been shown that gastrin 

induces anti-apoptosis through MAPKs, NF B, PI3K, AKT1, and Rho 
GTPases dependent regulation of cell survival proteins such as Mcl-1, 
survivin and clusterin [159, 166, 169-171]. 
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TTable 3: List of cell line model systems that have been utilized for investigating 

gastrin mediated responses.  

cell type  species  source  
GH3 rat  pituitary 
AR42J* rat pancreas 
IEC-6 rat small intestine 
IMGE-5 rat gastric epithelial 
RGM1 rat gastric mucosa 
colonic epithelial cells rat colon 
Rat PSC rat pancreas 
Rat-1 rat fibroblast 
RIE-1 rat small intestine 
RGaR9 rat gastric mucosa 
AtT-20 mouse neuroendocrine tumor 
MC-26 CRC cells mouse colon carcinoma 
NIH-3T3 mouse embryonic fibroblast 
COS-7* monkey kidney 
AGS* human adenocarcinoma of the stomach 
colo320* human colorectal carcinoma 
DLD-1 human colorectal adenocarcinoma 
HEK293 human embryonic kidney 
HUVEC human umbilical vein 
KATO-III human stomach carcinoma 
MKGR26 human gastric cancer 
OE33 human oesophagus 
Panc1 human pancreas 
Caco-2 human colorectal adenocarcinoma 
HCT-116 human colon carcinoma 
HT-29 human colon carcinoma 
SW-480 human colon carcinoma 
SIIA human gastric cancer 
CHO* hamster ovary 
InR1G9 hamster pancreatic cancer 
MDCK dog kidney 

 
*frequently used cell-lines for investigating gastrin mediated responses. This is 
based on their documentation in at least five gastrin related scientific publications. 
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FFigure 15 Gastrin mediated cellular response signaling pathways. Gastrin 

binds to CCK2R receptors and activates multiple signaling cascades. MAPKs 

are central in regulating gastrin activated cell proliferation, migration, and 

survival responses. Gastrin dependent activation of MAPKs can follow 

PLC/PKC/Ras-Raf and/or PKC/MMP3/EGFR/Grb2-Sos route. JAK2/STAT3, 
Src-FAK/Paxillin and IRS1/PI3K, and PAK1/E-cadherin-  catenin signaling are 

involved in the regulation of cell migration while PI3K/AKT1 and Rho GTPase 

signaling are central in regulating gastrin dependent cell survival (anti-

apoptosis). See text for more details. 
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MMigration and invasion 

Gastrin has been reported to promote disruption of adherens junctions 
formed upon the interaction of -catenin with E-cadherin and -catenin 
in intestinal epithelial cell culture experiments [172] (Figure 15). Loss 

of cell adhesion to the extracellular matrix increases cell motility and 
invasion which are thought to be linked to promotion of carcinogenesis. 
As evident from Figure 15, multiple signaling pathways are reported to 
be associated with gastrin mediated migration and invasion for example 

MAPKs [173, 174], JAK2/STAT3 [172], FAK/Paxillin [175, 176], and 
Rho GTPases [159]. In human stomach cancer cells, gastrin is reported 
to promote migratory responses by augmenting the expression of matrix 

metalloproteinases, MMP7 and MMP9 [173, 174, 177]. MAPKs, AP1, 
and -catenin signaling pathways are central in gastrin dependent 
regulation of MMPs [173, 178]. Similarly, gastrin mediated activation of 
plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator 

inhibitor-2 (PAI-2) proteins via multiple signaling cascades are 
documented to be involved in promoting AGS cells migration [179, 180].  
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OBJECTIVES OF THE STUDY 

  

In modern molecular medicine, a major challenge concerns development 

of new strategies for knowledge management, including new methods 
for generation of predictive models that capture essential laws, patterns 
and principles of biological systems and incorporate experimental data. 

Biological systems are extremely complex, representing significant 
modeling and simulation challenges. Model-based systems 
understanding is also a prerequisite for the development of improved 
diagnosis and prognosis as well as for identification of new drug targets 

for e.g. tumor treatment.  
The principal objective of the work presented here is to contribute to a 
comprehensive understanding of the cellular processes involved in 

carcinogenesis in the gastrointestinal tract, with a particular focus on 
gastrin-mediated responses. The component objectives are to: 

1. Contribute to model-based reasoning for gastrin responses in the 
form of a complete computer-readable map of the gastrin 
response signaling pathways augmented by integration of 
protein-protein interaction data. 

2. Provide high quality information resources for experimentally 
documented mammalian transcription factors by establishing 
adequate database resources as well as detailed and user-

friendly guidelines for Gene Ontology curation.  
3. Contribute to better management of knowledge pertaining to 

gene expression processes in the form of a knowledge base for 

enhanced reasoning on gene regulation networks, and 
demonstrate how these knowledge bases can help in knowledge 
discovery. 
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SUMMARY OF THE PAPERS 
  

 
Paper I 
The Gastrin and Cholecystokinin Receptors mediated signaling 
network: A scaffold for data analysis and new hypotheses on regulatory 
mechanisms 
 
The aim of this study was to construct a literature-curated map of 
cholecystokinin receptors 1 and 2 (CCKR) signaling pathways 

mediating biological responses to gastrin and cholecystokinin. We 
extracted information from more than 250 scientific publications and 
used CellDesigner software (http://www.celldesigner.org/) to build a 
comprehensive map that encompasses 519 molecular species including 

214 proteins, which are connected by 424 reactions. The map reflects 
biological understanding extracted from scientific publications and 
pathway databases. The comprehensive map was curated using the 

community curation platform Payao. Next, we performed network 
topology analysis of the CCKR map and identified potential central 
regulators of the CCKR signaling cascades which include AKT1, SRC, 
PKC, PAK1, GTPase and HRAS. Furthermore, with the help of BiNoM, 

we decomposed the CCKR map into sub-networks that can be 
represented in 18 modules. Each module represents higher level 
structures and provides enhanced understanding of intracellular 

processes involved in cellular decisions. In addition, we predict new 
candidate regulators of CCKR signaling by integrating comprehensive 
map with large scale protein-protein interaction data. This integration 

provided us with more than 4000 proteins as novel interactors of the 
comprehensive network components, including a subset of ~100 
interactors that significantly increase the connectivity of the signal 
transduction network, indicating their potential roles as new regulators 

of gastrin and cholecystokinin signaling. Using Network Component 
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Analysis (NCA) informed by gastrin high-throughput time series gene 
expression data, we generated transcription factor activity profiles that 

illustrate the dynamic behaviour of the CCKR-regulated transcription 
factor networks. In this work, we demonstrate how a computational 
model of complex biological processes such as signal transduction and 
gene regulation can be integrated with multiple dimensions of large 

scale data acquisition and analysis thus represents a source for new 
hypotheses and experimentation to further improve our understanding 
of CCKR-mediated processes.  

PPaper II 
TFcheckpoint: a curated compendium of transcription factors 
 
The objective of this work was to establish a repository for mammalian 

RNA polymerase II (RNAP II) regulating sequence-specific DNA 
binding TFs (DbTFs) that are documented in the scientific literature. A 
DbTF by definition binds to specific DNA sequences and regulates the 
RNAP II mediated transcription of the gene that it binds to. We 

compiled a list of 3462 proteins from 9 major transcription factor 
database sources for the purpose of curating them with literature 
evidence. The Gene Ontology term sequence-specific DNA-binding RNA 
polymerase II transcription factor activity (GO:0000981) was selected as 
the minimum defining term for qualifying a protein as an RNAPII 
regulating DbTF. We checked for specific scientific publications that 

would contain evidence to qualify TFs according to our DbTF annotation 
criteria. Using these criteria we found literature evidence supporting 
DbTFs for 983 proteins of a total of 3462. Results of our annotation 
efforts were made available through the TFcheckpoint database 

(www.tfcheckpoint.org). Entries in this database can be queried by 
Entrez ID, UniProt ID, gene symbol, and gene name. TFcheckpoint 
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provides a useful resource for the large-scale gene regulatory network 
based analyses. 

PPaper III 
Gene Ontology Annotation of Sequence specific DNA-binding 
Transcription Factors: Setting the Stage for a Large Scale Curation 
Effort 
 
The purpose of this work was to extend on our work in paper II and 
establish rigorous guidelines enabling user-community driven creation 

of Gene Ontology annotations for mammalian sequence-specific DNA 
binding transcription factors (DbTFs) based on experimental evidence 
in scientific publications. We devised a framework for using the 

controlled vocabularies defined by the Gene Ontology Consortium to 
curate DbTFs based on experimental evidence reported in literature, 
and to provide an overview of Gene Ontology terms for DNA binding, 
transcription regulation and transcription factor activity that are 

eligible for creating DbTF specific annotations. In addition, we describe 
how to use TF-binding and TF-binding TF activity terms to capture the 
activity of a TF that is dependent on an interaction with another TF. 

To contribute to a uniform and well-structured documentation of the 
experimental evidence for DbTF Gene Ontology annotations, we 
compiled a list of experimental assays documenting DNA binding, 

transcription regulation and TF-binding, discussed the eligibility of 
each of these assays for GO annotations, and indicated how the assays 
translate into GOC experimental evidence codes.  In this work we also 
describe the strategy to record information reported in literature 

regarding the target gene that is regulated by the transcription factor 
that is being annotated. The annotations created using these curation 
guidelines are made available to the Gene Ontology Consortium and 

are also stored in our publicly available TFcheckpoint database, 
together with detailed experimental assay information.  Today, GOC 
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holds experimental evidence-based annotations for 202 mammalian 
DbTFs. With the initiative describe here, we expect to enrich the GO 

database with an additional ~600 DbTF annotations that are verified 
experimentally at the time of the thesis submission. 

PPaper IV 
Network candidate discovery using the Gene eXpression Knowledge 
Base 
 
In this paper our main goal was to establish a number of use cases of a 
knowledge base that provides integrated knowledge concerning gene 

expression events. For this, we established and used The Gene 
eXpression Knowledge Base (GeXKB), which was built on three 
application ontologies that capture knowledge concerning gene 
expression. The GeXKB semantically integrates data from GOA, the 

IntAct database, KEGG, PAZAR, UniProtKB and NCBI Gene. The 
GeXKB-contained knowledge was utilized to formulate hypotheses on 
gastrin mediated regulation of CREB1, TCF7L2, and NF B 

transcription factors. We evaluated the hypotheses obtained from 

GeXKB for further experimental validation based on 1) their 
documentation in scientific publications as well as on 2) their relevance 
for gastrin mediated gene regulation assessed from our in-house gastrin 
time series transcriptomic observations in the AR42J cell line model 

system. This work demonstrated the value of semantic knowledge bases 
for knowledge discovery. 
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DISCUSSION 

  
How a cell responds to external signals (e.g. hormones, growth factors) 

depends on the state of the cell as well as on information received 
through the signaling cascades. The information transmission process 
through these cascades often stimulates several distinct but 
interrelated cellular responses. These cellular responses are associated 

with changes in the gene-expression that is controlled by transcriptional 
regulatory networks. Thus, to unravel the mechanisms governing 
gastrin mediated cellular responses, we performed extensive genome-

wide microarray 14h time-series experiments on gastrin treated AR42J 
cells. These analyses provided us a list of ~2000 gastrin responsive 
genes [181]. High-throughput genomic data provides information 

concerning cellular processes and the intricate connections between 
different components that are responsible for controlling these 
processes. Similarly, our gastrin treated microarray time-series data 
have the potential to depict information about the components and their 

interactions that are involved in regulating the gene expression changes 
in response to gastrin during the 14h time period covered in our study. 
Detailed prior knowledge about the components and their roles in a 

system can be a powerful tool for deciphering the information encoded 
in large scale data [182]. The potential significance of the background 
knowledge led to the development of tools that automatically extract 
information from structured databases e.g. DAVID [95]. We used this 

tool in our analyses of the gastrin responsive genome-wide 
transcriptome data. Another type of initiative aimed at developing tools 
to access background knowledge is BioCreative 

(http://www.biocreative.org/), which is a community-wide effort for 
enhancing the background information extraction process from 



47 
 

literature through text mining [183]. As illustrated in Figure 16,  
networks reconstructed on existing knowledge provide important 

scaffold for the expansion of knowledge [184].  However, we found that 
none of the currently existing resources provide such a comprehensive 
map of the gastrin response signaling pathways. To elucidate the 
regulatory mechanisms underlying differential regulation of the gastrin 

responsive genes it is of immense significance to have a detailed map of 
gastrin response signaling pathways depicting the flow of information 
from the gastrin receptor to cellular responses.  

 

FFigure 16: Expansion of biological knowledge through network reconstruction 

from existing biological knowledge. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Review, Molecular Cell Biology [184], copyright (2005). 

 

Currently, detailed signaling cascade maps providing comprehensive 
understanding of intracellular networks are available for e.g. EGF 
receptor [14], toll like receptor [185], gonadotropin releasing hormone 

receptor [186], and follicle-stimulating hormone induced signaling [187]. 
We have taken interest in these resources since we regard them to be 
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valuable examples for addressing the types of challenges we work with. 
Therefore, we made an effort to construct a similar literature curated 

comprehensive network of the signaling cascades that mediate cellular 
responses to Gastrin- and Cholecystokinin-receptors CCK1R and 
CCK2R (Paper I).  The map reflects the biological background 
knowledge collected from more than 250 scientific publications (until 

September 2012) concerning CCK1R and CCK2R signaling and is 
constituted of 519 molecular components that are connected by 424 
reactions. This map provides comprehensive signaling knowledge in 

both computer readable SBML format as well as a high quality 
graphical representation format that enables a visual comprehension of 
detailed as well as higher level structures of the network. Using Payao 

[188], which is a community-based curation platform, we assured high 
quality network representation by enabling detailed scrutiny of the 
CCKR network by  curators within our research group. This joint effort 
resulted in a number of new knowledge entries, which were 

subsequently implemented in an improved representation of the 
network. We then published the CCKR map in Payao as open source for 
the scientific community. Thereby we hope to receive comments and 

tags from the world-wide community of curators in order to use these to 
keep increasing the quality of the CCKR signaling pathway map and 
keep it up to date with our increasing biological understanding. A 
workflow of the CCKR pathway construction and community curation is 

shown in Figure 17. 
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FFigure 17: Comprehensive CCKR pathway construction workflow. This 

workflow summarizes the main steps of CCKR pathway reconstruction from 

literature, and the quality check using the web-based community curation 

platform Payao. Modified from [189]. 

 

In order to improve both the visibility and usability of the CCKR map 
for the wider scientific community, our CCKR map will be integrated in 
the Reactome knowledge base.  Reactome [104] is a high-quality, 

curated pathway information resource made available by the European 
Bioinfomatics Institute, and we are collaborating with Reactome 
curators to submit the CCKR network. 

Signal transduction and gene regulatory networks are central in 

controlling gene expression changes in response to a stimulus. Gastrin-
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mediated intracellular signal transduction pathways influence the 
expression of a high number of genes by regulating the activity of the 

transcription regulators in the gene regulatory network. The 
transcription regulators can be sequence-specific DNA binding 
transcription factors (DbTFs), and co-TFs (e.g. co-activators, co-
repressors, and chromatin remodeling proteins like histone modifiers) 

[190, 191]. DbTFs and factors that lack DNA binding (co-TFs) but exert 
their regulatory influence by interacting with DbTFs are central 
determinants of diverse gene-expression behavior. Among ~2000 gastrin 

responsive genes, virtually any gene that is classified as a transcription 
factor can be a key regulator in secondary gene responses underlying 
gastrin mediated cellular outcomes. Secondary responses are 

characterized by their dependence on de novo protein synthesis (i.e. new 
transcription-translation of transcription factors regulating them) 
whereas primary responses are independent of de novo protein 
synthesis (i.e. responses that proceed through post-translational 

modifications). In order to identify which of the gastrin-responsive 
genes that acts as transcription factors, we searched for resources that 
can provide comprehensive and high quality information about 

transcription factors. Today, there are several mammalian transcription 
factor information resources e.g. TFCat [192], AnimalTFDB [193], and 
TFe [194], however, as with many other domain-specific knowledge 
sources, they either lack sufficient documentation regarding their 

source of evidence, or lack completeness. To address this challenge, we 
compiled a list of 3462 candidates for transcription factors (including co-
TFs) from major TF knowledge resources and embarked on an effort to  

record mammalian sequence-specific DNA binding transcription factors 
(DbTFs) whose functionality is documented in scientific publications 
either experimentally, or by sequence/structure similarity analysis, or 

as author’s statement. The 983 mammalian DbTFs resulting from this 
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literature survey are made available through the TFcheckpoint 
database (http://www.tfcheckpoint.org/) (Paper II).  TFCat [192], which 

is the most comprehensive of the other publically available literature 
curated transcription factor information resource, contains only 892 of 
these 983 DbTFs. Thus, to our knowledge TFcheckpoint is currently the 
most comprehensive and best referenced mammalian TF database. Due 

to its high quality and comprehensive information it can be a valuable 
resource for mammalian transcription factor centric studies.  

In order to render the DbTF-information contained in the TFcheckpoint 

database into a well-documented resource, literature-based DbTF 
curation guidelines utilizing GO controlled vocabularies are required. 
Literature-curated knowledge sources are generally perceived to be of 

high-quality. However, due to lack of formalized knowledge 
representation it is often difficult for a curator to extract accurate 
information from literature. Therefore there are instances, e.g. in case 
of protein-protein interaction information curation, where the 

literature-curated information not necessarily has been of very high 
quality [195]. In order to curate DbTFs that are verified experimentally 
in the scientific publications, we formalized DbTF curation guidelines 

(Paper III). These guidelines describe the use of Gene Ontology 
controlled vocabularies that are specific for sequence-specific DNA 
binding factors (e.g. sequence-specific DNA binding RNAP II 
transcription factor activity, GO:0000981), and GOC experimental 

evidence codes to unambiguously record DbTFs from scientific 
literature. Similar initiatives have also been implemented for creating 
GO-annotations of predictive protein signatures from different 

databases in InterPro database [196], and for the peroxisome proteome 
in humans [197], where they provide detail protocol for creating specific 
GO-annotations from literature. Based on our current estimate ~800 

DbTFs are experimentally documented in literature. The GOC presently 
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contains ~200 DbTFs with experimental evidence and we are aiming to 
add the remaining ~600 DbTFs by the end of 2013. With the 

implementation of DbTF curation guidelines, we aim to not only 
improve the quality of the DbTF information content in the 
TFcheckpoint database but also to enrich the GOC database, which 
provides an interface for large-scale data analysis and omics data-based 

work. Our curation guidelines provide the basis both for the ongoing 
annotation performed in our research group together with GOC, and 
also for other community researchers who contribute TF-annotations to 

the GOC (e.g. Saccharomyces Genome Database, The Arabidopsis 
Information Resource).  

To understand the transcriptional regulatory mechanisms that can 

explain the temporal dynamics of the ~2000 gastrin responsive genes, 
we utilized the functionality of Network Component Analysis (NCA) 
[198] (Paper I). NCA calculates the temporal activity of a TF in response 
to a signal. For this, NCA requires genome-wide time series data, and 

TF-TG relation information as input. Thus, to obtain the NCA derived 
transcription factor activity (TFA) profile in response to gastrin, we 
exploited temporal mRNA profiles of ~2000 gastrin-responsive genes 

obtained from our 14 hour gastrin treated microarray time-series 
experiment in AR42J cells, and TF-TG relation matrix collected from 
the TFactS database [199]. The NCA-derived transcription factor 
activity profiles of the transcription factors that are part of the CCKR 

map indicate that the activities of transcription factors EGR1, ELK1, 
SRF, AP1, ATF2, FOXO1, FOXO3, NFkB are upregulated by gastrin 
already after 30 minutes, while the activity of transcription factor 

CREB1 peaks at 2-4 hours, and those of TCF7L2 and NFkB at 10-12 
hours. We hypothesized that the signaling components that transmit 
the gastrin-mediated regulation of the transcription factors, each with 

their characteristic protein activity profile, will be found both among the 
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upstream components already present in the CCKR map as well as 
among other components that have not yet been reported to participate 

in gastrin responses. For example, our CCKR map suggests that 
CREB1, which shows delayed activation profile in response to gastrin, 
has RSK1/2 as upstream regulator.  However, using the PPI-based 
extension of CCKR map, we identified also RPS6KA4 and RPS6KA5 as 

CREB1- interactors and thus potential CREB1 regulators. Both 
RPS6KA4/5 have been documented to be associated with delayed 
activation of CREB1 in other systems [200, 201]. Based on these 

observations, it is likely that RPS6KA4 and RPS6KA5 also contribute to 
the gastrin-mediated delayed activation profile of CREB1. Further 
experimental validation is required to support that these interactions 

are indeed involved in the gastrin response. Seok et al. [202] utilized a 
similar strategy to predict transcription factor activity time profiles and 
they found a correlation in the TG expression and activity of the 
transcription factors. TF-TG information is one of the inputs on which 

the NCA approach crucially depends. Sparsity of TF-TG information in 
the existing resources, e.g. TFactS [199], therefore is a confounding 
factor leading to uncertainty in NCA-generated estimations of TFA 

profiles. However, through our text mining efforts extracting TF-TG 
information from literature [128], we aim to improve the 
comprehensiveness of these resources.    

It is not always straightforward to procure knowledge concerning TF 

regulators from the knowledge bases. Thus, a platform which provides 
easy access to the knowledge in such resources would be invaluable for 
the research community. Keeping this in mind, we created a Gene 

eXpression Knowledge Base (GeXKB) (Paper IV), which retrieves 
information on transcription regulators (DbTFs, co-TFs) and their 
interactors/regulators (e.g. signal transduction components, interacting 

proteins) from existing resources e.g. GOC [114], IntAct [61], KEGG 
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[121], and PAZAR [203]. With the help of GeXKB we identified many 
novel potential regulators of CREB1, NF B, and TCF7L2 transcription 

factors that are documented in other systems but not found to be 
reported in response to gastrin. Our model system to investigate gastrin 
mediated responses is the AR42J cell. Many of the new regulators 
proposed by GeXKB are also identified as genes that are expressed in 

AR42J cells and can therefore participate in gastrin responses. For 
example, RPS6KA4 and RPS6KA5 (already discussed above) are also 
returned from GeXKB as potential CREB1 activators [201]. Similarly, 

GeXKB identifies CYLD and SIRT1 as NF B repressors [204], and 
RUNX3 as a repressor of TCF7L2 [205] and an activator of NF B [206].  
All of these regulators appear in the AR42J expressed genes but are not 

part of the literature curated map of gastrin signaling pathways (CCKR 
map). This illustrates how GeXKB can suggest potential novel 
regulators of transcription factors in a given biological system. 
Investigation of these regulators in adequate experimental systems for 

gastrin responses can enhance our understanding of gastrin mediated 
transcription regulation and subsequent cellular outcomes. Similar to 
GeXKB, today there are several tools that incorporate background 

knowledge to generate testable hypotheses e.g.  PILGRM [207],, which 
combines user’s knowledge and literature analysis on microarray 
genomic data to generate data-driven hypotheses. Hanalyzer [208] and 
HyQue [209] allow evaluation of hypotheses by integrating background 

scientific knowledge. Furthermore, Functional Knowledge Transfer 
(FKT), which is a machine learning algorithm, leverages integration of 
prior knowledge to generate novel hypotheses for experimental 

validation [210]. The hypotheses generated from our efforts on 
integrating the literature-based gastrin mediated signaling network, 
with experimentally documented large scale protein-protein interaction 

knowledge [211],, are likely to be of high quality and relevance. 
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Implementation of knowledge obtained from querying GeXKB on our 
model-driven hypotheses further enhance the relevance of hypotheses 

generated on gastrin mediated signal transduction. Thus, such 
hypotheses should be well suited for goal oriented and efficient 
experimental validation, aimed to deepen our discovery and insights on 
novel regulators of gastrin mediated cellular responses. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 
  

We present a model-driven systems biology approach that can 
contribute to and hinges on knowledge integration and hypothesis 
generation, furthering a comprehensive understanding of the gastrin-

mediated intracellular signaling and cellular decision making events. 
Reconstruction of gastrin signaling network provides a scaffold for 
understanding the dynamic behavior of gastrin mediated responses, by 

integrating genome-wide temporal gene expression data and gene 
regulatory network. This indicates that in order to collect more accurate 
knowledge regarding molecular mechanisms underlying cellular 
responses, it is meaningful to consider a global view in terms of network 

components’ associations and interactions with other components, 
including upstream regulators. This requires sound knowledge sources 
(such as GO database, IntAct and http://www.tfcheckpoint.org/) as well 

as robust strategies to integrate knowledge.  
Comprehensive molecular maps such as the CCKR network can serve as 
valuable starting points for further modeling - both a) quantitative 
modeling of focused parts of the pathway and b) qualitative approaches 

with large scale integration of biological background knowledge and 
new genome-wide experimental data on top of the comprehensive 
signaling cascades. Signaling networks such as those encoded in our 

CCKR map can make use of the tool generated by Tiger et al. [212] that 
uses signal transduction reactions as an input for generating 
mathematical models. Thus, using such tools together with our 

comprehensive map of the CCKR-mediated signaling it is now feasible 
to envisage a roadmap toward dynamical modeling that can enable 
numerical simulations and generation of functional predictions, which 
can provide new impetus for research in the field of gastrin and 

cholecystokinin systems biology. 
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Abstract  
Background 
The gastrointestinal peptide hormones gastrin and cholecystokinin exert their biological functions 
via their receptors cholecystokinin receptor (CCKR) 1 and 2. Gastrin is a central regulator of 
gastric acid secretion and growth and differentiation of gastric and colonic mucosa, and is 
suggested to be pro-carcinogenic. Cholecystokinin is implicated in digestion, appetite control and 
body weight regulation and may play a role in several digestive disorders. A comprehensive map 
of gastrin and cholecystokinin receptors mediated signaling cascades that supports systems level 
studies of these hormones does not exist. 
Results 
We built a literature-curated map of cholecystokinin receptors 1 and -2 signaling pathways 
mediating biological responses to gastrin and cholecystokinin. Computational decomposition of 
the cholecystokinin receptor signaling map into sub-networks revealed 18 modules, representing 
higher level structures of the signaling network and offering an enhanced understanding of 
intracellular processes involved in cellular decisions leading towards proliferation, migration and 
apoptosis.  Extension with large scale protein-protein interaction data yielded more than 4000 
proteins directly interacting with signaling map components. Topological analyses allowed the 
prediction of new candidate regulators of gastrin and cholecystokinin signaling based on their 
ability to increase the compactness of the network. The CCKR model was constructed using the 
CellDesigner software (http://www.celldesigner.org/) and is freely available together with the 
module and protein interaction knowledge data.  
Conclusion 
We here demonstrate how the literature-based CCKR signaling model, its protein interactor 
extensions and genome-scale time series transcriptome data can be integrated to generate new 
hypotheses on temporal regulation of molecular mechanisms underlying dynamic cellular 
processes.   

Keywords: cholecystokinin receptor/comprehensive map/modules/transcription factor activities/ 
analysis/protein-protein interaction

Background 
Gastrin and cholecystokinin (CCK) are 
gastrointestinal peptide hormones that share a 
common C-terminal pentapeptide amide and 
are produced primarily in G cells of the 
gastric antrum and I cells of the small 
intestine, respectively [1]. Gastrin is the 
central regulator of gastric acid secretion and 
also regulates growth and differentiation of 
gastric and colonic mucosa [2]. CCK is 
involved in physiological processes such as 
digestion, appetite control and body weight  
regulation [3]. The scientific interest in these 
hormones is further strengthened by their 
roles in several diseases. CCK has been 

implicated in acute pancreatitis [4-6], obesity 
[7, 8], irritable bowel syndrome [9] and 
gallbladder disease [10, 11]. Gastrin is 
suggested to be pro-carcinogenic, affecting 
proliferation, angiogenesis and apoptosis [2]; 
and a co-risk factor for gastric carcinogenesis 
and atrophy in Helicobacter pylori infection 
[12, 13].  
Gastrin and CCK impinge on cellular 
functions by binding to two different G 
protein-coupled receptors, CCK1R and 
CCK2R, located on multiple cell types in 
peripheral organs, such as the gastrointestine, 
the pancreas, and the  gall bladder  [14].  
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Gastrin has a strong preference for CCK2R, 
while CCK can activate both receptors with 
similar affinity [10]. Most cell types 
responsive to one or both peptide hormones 
express only one CCK-receptor variant. 
However, some cells express both CCK1R 
and CCK2R, including both normal and 
cancer cells in intact organisms as well as 
model cell lines such as the rat pancreatic 
acinar cell derived cell-line AR42J [15]. 
Today, no comprehensive map of gastrin and 
CCK signaling exists. A conceptual model 
that presents known signaling mechanisms for 
both CCK1R and CCK2R in one framework 
would be of significant support in systems 
level studies addressing the differential or 
combined effects of these hormones. The 
Nuclear Receptor Signaling Atlas (NURSA) 
(http://www.nursa.org/) is one of the 
resources which provides high quality curated 
knowledge about signaling components and 
integrate this with genome scale data [16, 17].  
Similar to NURSA initiative, the signaling 
pathway model presented here synthesizes 
published molecular mechanisms on both 
specific and shared CCK1R and CCK2R 
signaling and as such provides a foundation 
for network-based analyses targeting the 
identification of signaling hubs, modular 
structure and regulatory principles. Detailed 
signaling networks provide a scaffold for 
understanding cellular aberrations resulting 
from disease and for identification of central 
mechanistic disease modules thus enabling 
identification of therapeutic chemicals that are 
able to perturb disease module 
activity.  Strategies that build on a systems 
level understanding have among others 
allowed drug-induced rewiring of the ‘state’ 
of oncogenic signaling networks to maximize 
the susceptibility to anticancer drugs  [18]. 
Similarly, the resources presented here could 
be instrumental in the identification of key 
targets for diseases involving gastrin or CCK. 
In the past decade several manually 
reconstructed comprehensive networks of 
signaling events have been published [19-27] 

each of them providing considerable impetus 
to a systems understanding of signaling 
mechanisms. The present work extends these 
efforts to the domain of cholecystokinin 
receptors (CCKR) signaling by providing a 
comprehensive literature-based CCKR 
signaling network model that comprises 519 
molecular species and 424 reactions. 
Segmentation of this vast signaling network 
into modules using  the  BiNoM tool [28] 
resulted in 18 modules, each of which 
represents a distinct molecular signaling sub-
network that interacts with other modules to 
elicit the differential intracellular signaling 
responses by gastrin and/or CCK.  We then 
used the CCKR model as a scaffold for further 
data integration and identified ~4000 proteins 
directly interacting with at least one of the 
CCKR model proteins. Further topological 
analyses based on network connectivity and 
compactness criteria [29] revealed ~100 
tightly connected protein interactors that 
should be highly ranked as potential 
regulators of the CCKR mediated signaling 
network – with central roles in either 
individual modules, or  in the co-ordination of 
several modules. Finally, we present use cases 
that demonstrate how the CCKR model and 
its PPI extensions can provide interesting 
hypotheses for further refinement of 
molecular mechanisms governing CCKR 
intracellular signaling and for improved 
understanding the dynamics of transcription 
regulation.  

Results 
CCKR map building and availability 
We present a comprehensive map of the 
CCKR signaling network (Figure 1). The 
CCKR model represents a manual assembly 
of information retrieved from more than 250 
scientific publications, and encompasses 214 
unique proteins and their relationships to 
complexes and genes, described by reactions 
such as state transitions, transport, and 
heterodimer associations/dissociations (Table 
1).  The model was written with the use of 
CellDesigner 4.2 network editor 
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(http://www.celldesigner.org/) [30] and is 
available in the data exchange format SBML 
(Additional file 1). In addition, we have made 
available a Payao [31] web version, for a full 
view of all details concerning components, 
reactions, metadata and references at 
http://sblab.celldesigner.org:18080/Payao11/b
in/ (model name: 
comprehensive_CCKR_map). Some pathway 
members, reactions and modules of the CCKR 
signaling mechanisms can be found in the 

Reactome [32] and KEGG [33] databases.  
However, the CCKR map constitutes a much 
more comprehensive and integrated model 
providing detailed signaling reactions linking 
the receptors (CCK1R and CCK2R) all the 
way down to regulated genes and cellular 
responses; therefore it represents a significant 
increase in encoded signaling information as 
the knowledge currently in Reactome covers 
less than 5% of the pathway details presented 
here. 

  

 
Figure 1. CCKR signaling map (CellDesignerTM 4.2). A. Literature curated comprehensive map of the 
CCK1R, CCK2R mediated signaling pathways comprising 519 species and 424 reactions (Table 1for further 
details). The graphical representation is also available as SBML file (Additional file 1) B. Navigation map to 
track components and signaling cascades in the detailed map. 
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Table 1. Statistical overview of the CCKR map 

Species Reaction 
Category Number (519) Category Number (424) 
Proteins 304 (214 unique) Heterodimer associations and dissociations 43 
Complexes 61 State transitions 190 
Genes 36 Transports 59 
RNAs 63 (35 unique) Transcriptions and translations 41 
Othera 55 Otherb 91 
 

aSimple molecules, phenotype, degraded products, ions, drugs, unknown molecules 
bKnown transition omitted, truncation, unknown transitions, unknown negative influence, positive influence. 
 
 
Signaling pathways shared by CCK1R and 
CCK2R 
Signaling mechanisms downstream of both 
CCK1R and CCK2R include the trimeric 
guanine nucleotide binding protein (G 
protein) alpha q protein (G q), Protein kinase 
C (PKC) dependent phosphorylation of 
adaptor protein Src homology 2 domain-
containing-transforming protein C (SHC) and 
its association with (GRB2)/ (SOS1) leading 
to activation of the HRAS/RAF/MAPK1/3 
cascade. Shared are also pathways involving 
MAP3K11 mediated MAPK8, -9 and -10 and 
p38MAPK (MAPK14), PRKD1 (in PKC 
signaling), PI3K, AKT1, Focal adhesion 
kinase 1 (FAK1), and Rho GTPase. Both 
receptors activate PKC isoforms PKC , - , - , 
-  and -  [34-37]. Transcription factors (TFs) 
reported downstream of both CCKR1 and 
CCKR2 receptors include NF B, CREB1, 
ELK1 and AP1.  
 
Signaling pathways specific for CCK1R 
Two trimeric G-proteins appear to be 
regulated only by CCK1R. One is G alpha S 
(G s) [38], which leads to Protein kinase A 
(PKA) activation via adenylate cyclase 
catalyzed cAMP production. The other is G 
alpha 13 (G 13) [39], involved in downstream 
activation of Ras homolog family member A 
(RHOA) [40]. The nitric oxide synthase 
(NOS1) signal transduction pathway 

downstream of CCK1R  [41, 42], regulates 
Ca2+ signaling pathways by opening 
ryanodine receptors and two-pore channels 
that release calcium from endoplasmic 
reticulum and endolysosomes, respectively 
[43-45].  
 
Signaling pathways specific for CCK2R 
CCK2R activates Epidermal growth factor 
receptor (EGFR) via PKC activated MMP3, 
which cleaves membrane attached pro-
HBEGF into mature HBEGF [46, 47] . PKC 
isoforms PKC-  and PKC-  have been 
reported only downstream of CCK2R 
signaling [48, 49]. CCKR2 specific activation 
of -catenin and E-cadherin is mediated by 
p21 protein-activated kinase 1 (PAK1) [50, 
51] and CCK2R specific modulation of BCL-
protein family signaling regulates 
mitochondrial cytochrome C release [52, 53]. 
CCK2R is reported to activate MAPK7 [54], 
an upstream regulator of transcription factors 
MEF-B,-C and D, and the PKC-  target 
PRKD2  [48], which enhances nuclear export 
of HDAC7 thereby relieving  transcriptional 
repression of target genes like NR4A1 [55]. 
 
Global analysis of the CCKR map 
The CCKR signaling pathways constitute a 
complex network comprising over 500 species 
and about 400 reactions. We sought to 
pinpoint key regulators in these pathways by 



                                                                                                                                       Tripathi et al 

Page | 6  
Cholecystokinin receptors signaling network 

identifying signaling components (nodes) that 
display a high number of interactions with 
other network components as assessed by 
their node degree ( i.e., the number of other 
nodes connected directly to it) ( Materials and 
Methods and Figure S1). The global analysis 
of the CCKR map indicates scale free 
characteristics, with four protein kinases 
AKT1, SRC, PKC and PAK1 and the small 
GTPase HRAS among the ‘hub’ proteins and 
likely to be the central regulators of multiple 
signaling cascades (Table 2). AKT1, SRC, 
PKC, and PAK1 also rank among the top 6 
node degrees in the PPI network constructed 
from direct physical interactions between 
CCKR model proteins (Table S1 in Additional 

file 2). The signaling reactions encoded in the 
literature-based CCKR model are thus 
paralleled by experimentally observed PPIs. 
 
Modular representation of the CCKR 
signaling map  
The CCKR model (Figure 1) was decomposed 
into 18 sub-network modules using the 
BiNoM tool (Figure 2A, Additional file 3, 
details of modules Rho GTPase and BCL in 
Figure 3). Each of these modules represents a 
structural and functional signaling subunit, 
combining a distinct set of closely coordinated 
molecular events concerning a particular 
protein or a protein complex. Details for all 
modules are in Additional file 4. 

  

Table 2. Global analysis of the CCKR map 

Rank Species name Species 
classification 

Closeness 
centrality 

Degree Module assignment 

1 AKT1 Kinase 0,144 12 AKT1 

2 SRC Kinase 0,133 12 SRC 

3 HRAS small GTPase 0,152 11 SRC 

4 CCK2R Receptor 0,142 11 CCK2R 

5 PKC Kinase 0,136 11 PKC 

6 PAK1 Kinase 0,126 10 Rho GTPase 

 

Involvement of different signaling modules 
in gastrin regulated cellular processes 
Depending on cell types and the state of cells, 
gastrin can induce different cellular outcomes, 
such as proliferation, migration and apoptosis.  
While central modules such as PKC, AKT1, 
Rho GTPase, MAP3K11, MAPK1/3 and AP1 
are reportedly involved in all three cellular 
outcomes, other signaling mechanisms are 
more specialized, e.g. the BCL-module 
signaling in apoptosis (Figure 2A).      
Molecular mechanisms underlying gastrin-
mediated proliferation involve regulation of 
protein synthesis and cell cycle. Protein 
translation is stimulated via the AKT1-module 
component mTOR triggering p70 S6 kinase 

[56, 57]. Gastrin-induced transcription of 
Cyclin D1, a central regulator of cell cycle 
progression, is mediated by JUN, FOS, 
CREB1, and TCF7L2 [58, 59], which are 
components of the modules: AP1, ATF2 and 

-catenin. The modular representation (Figure 
2A) depicts that EGFR-associated signaling 
enhances gastrin-induced proliferation by feed 
forward mechanisms involving SRC module 
components. Since the AKT1 module inhibits 
RAF1-MAPK1/3-module pathways by AKT1 
kinase-mediated phosphorylation of RAF1, 
the involvement of AP1 and ATF2-module 
signaling in proliferation is more likely to 
proceed via SRC-MAP3K11. 
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Figure 2. CCKR modular map and module-specific PathExpand Interactors. The modules are 
connected by ‘activation’ and ‘inhibition’ relationships derived from the detailed map thus representing 
central decision-making aspects. A. The modular representation comprises receptor-centered modules 
CCK1R, CCK2R, and EGFR, modules common to CCK1R and CCK2R (PKC, SRC, MAP3K11, 
MAPK1/3, RAF1, AKT1, NF B, MAP3K11, Rho GTPase, FAK1/2) as well as the CCK1R-specific 
modules NOS1 and PKA; and CCK2R-specific modules BCL and -catenin. Color coding depicts published 
experimentally documented information concerning involvement of the module encoded signalling 
mechanisms in gastrin-mediated regulation of cellular responses proliferation, migration and apoptosis. B. 
PathExpand interactors (Table S3 in Additional file 6) of the 15 modules that are not transcription factor 
centered. Names of these PathExpand interactors are given in Table 3. 

Gastrin promotes migration by activating 
transcription of MMP7 and MMP9 [60, 61] 
via SNAI1, -catenin, MAPK8 and JUN, in 
the -catenin, MAP3K11, and AP1 modules 
respectively. Cell adhesion, tightly linked 
with cell migration, is regulated through 
components FAK1 and FAK2; Paxillin, Crk-

associated substrate (CAS), and v-crk sarcoma 
virus CT10 oncogene (CRK) in the FAK1/2 
module which is controlled via both PKC and 
SRC-modules, the latter exerting  a positive 
feedback on the FAK1/2 module. 
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Table 3. List of PathExpand module interactors
  
UniProt_ID GeneName Gene symbol Module assignment 

ARHGP Rho guanine nucleotide exchange factor (GEF) 25  ARHGEF25 CCK2R, Rho GTPase, 
SRC, AKT1 

RHG31 Rho GTPase activating protein 31  ARHGAP31 CCK2R, Rho GTPase 

TBC3F TBC1 domain family, member 3F TBC1D3F CCK2R, Rho GTPase 

ICMT isoprenylcysteine carboxyl methyltransferase  ICMT PKC, Rho GTPase, 
SRC, AKT1 

Q96T11 cDNA FLJ14518, weakly similar to ANKYRIN R  PKC, SRC 

CPSM carbamoyl-phosphate synthase 1, mitochondrial CPS1 PKC, SRC 

A8K5S8 cDNA FLJ78047  PKC, SRC 

RRP5 programmed cell death 11  PDCD11 PKC, Rho GTPase, 
MAP3K11 

DDR2 discoidin domain receptor tyrosine kinase 2  DDR2 PKC 

Q53SD7 Put uncharac RASGRP3 (RAS guanyl releasing protein 3 RASGRP3  PKC 

STP1 transition protein 1  TNP1 PKC 

E9PDN8 Guanine nucleotide exchange factor DBS MCF2L SRC, Rho GTPase, 
AKT1 

MK15 mitogen-activated protein kinase 15 MAPK15 SRC 

ERRFI ERBB receptor feedback inhibitor 1  ERRFI1 SRC 

Q498B9 ASXL1 protein  ASXL1 SRC 

Q6FHM9 CD59 antigen, complement regulatory protein CD59  SRC 

Q9NYE8 Jak3 N-terminal-associated protein MAJN (Fragment) MAJN SRC 

F263 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 PFKFB3 SRC 

P4K2B phosphatidylinositol 4-kinase type 2 beta  PI4K2B AKT1, MAP3K11 

F5GWV9 Mucin-12 MUC12 AKT1 

MUC12 Mucin-12 MUC12 AKT1 

4EBP2 eukaryotic translation initiation factor 4E binding protein 2  EIF4EBP2 AKT1 

4EBP3 eukaryotic translation initiation factor 4E binding protein 3  EIF4EBP3 AKT1 

GNB1L guanine nucleotide binding protein (G protein), beta 
polypeptide 1-like  

GNB1L AKT1 

SEC20 BCL2/adenovirus E1B 19kDa interacting protein 1 BNIP1 Rho GTPase, BCL 

OPHN1 oligophrenin 1  OPHN1 Rho GTPase 

PKHG2 pleckstrin homology domain cont, fam G (w RhoGef 
domain),2  

PLEKHG2 Rho GTPase 

Q59HA3 IQ motif containing GTPase activating protein 2 variant Rho GTPase 

ESR1 estrogen receptor 1  ESR1 BCL 

BID BH3 interacting domain death agonist  BID BCL 

STK4 serine/threonine kinase 4  STK4 BCL 

Q6FH21   BCL 

BBC3 BCL2 binding component 3 BBC3 BCL 

A8ASI8 BH3 interacting domain death agonist BID  BCL 

APR phorbol-12-myristate-13-acetate-induced protein 1 PMAIP1 BCL 

 

Anti-apoptosis is induced by gastrin via 
several mechanisms including BCL-mediated 
repression of pro-apoptotic caspases and AP1-
activated expression of Clusterin [52, 53, 62, 

63]. The modular representation reveals that 
these cellular responses are regulated by both 
PKC independent and PKC dependent 
mechanisms. This applies to NF B and its 
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downstream anti-apoptotic BIRC2 and BIRC3 
target genes, which can be activated either 
directly by PKC or independently of PKC 
through the Rho GTPase module. Likewise, 
the AKT1-involvement in regulation of the 
BCL-module can be mediated by PKC 
dependent mechanisms or independently of 
PKC by the CCKR2 - Rho GTPase–pathway. 
Activation of AP1 on the other hand, seems to 
be strictly dependent on PKC which mediates 
its effect via either RAF1-MAPK1/3 or SRC-
MAP3K11 cascades.  

We note that the AKT1-module inhibits the 
RAF1-MAPK1/3-route to AP1-activation and 
in parallel enhances Rho GTPase activation of 
the BCL-module. Thus, AKT1 can potentially 
promote BCL-module apoptosis-regulating 
mechanisms and at the same time block 
MAPK1/3-mediated AP1-activation. In the 
latter configuration the cell will rely on 
MAP3K11 to bypass the inhibitory effect of 
AKT1 on AP1-mediated regulation of gene 
expression.  

Extending the CCKR map with large-scale 
PPI data 

The comprehensive CCKR signaling map 
(Figure 1) has been constructed with a 
knowledge-driven approach based on 
molecular reactions and interactions reported 
in the literature, thereby inevitably leaving 
significant gaps concerning signaling events 
and mechanisms that are as yet unstudied. The 
sparseness of the model is also reflected by 
the fact that ~90% of nodes have a degree 3 
(Figure S1 in Additional file 2), while it is 
well known that signaling networks are 
generally more highly interconnected [64, 65]. 
We have therefore exploited large-scale PPI 
data to complement our signaling network 
scaffold. This data-driven strategy allowed us 
to access information that had not yet been 
related to gastrin or CCK responses. 

We identified 4119 proteins with binary 
interactions with CCKR signaling proteins 
(Table S2 in Additional file 5). Among those 

146 proteins are also CCKR model proteins. 
Of particular interest is a group of 74 proteins 
that satisfied the PathExpand topological 
criterion implying that each of them increase 
the compactness of the global CCKR 
signaling network [29], (Figure S2 in 
Additional file 2, Table S3 in Additional file 
6). Interestingly, 42 proteins of this global 
PathExpand group are not known to 
participate in any pathway in the KEGG 
and/or Reactome databases (Table S2 in 
Additional file 5). A GO term 
overrepresentation analysis [66] showed that 
this global PathExpand group of interactors is 
enriched in molecular functions relating to 
protein kinases, protein phosphatases, and 
GTPase-regulators indicating that many of 
them can potentially regulate  the CCKR 
pathway via phosphorylation-
dephosphorylation mechanisms and by 
interfering with small GTPases signaling.  

PathExpand analysis of each of the 18 
modules with their protein interactors 
separately, identified 72 proteins (PathExpand 
module set) that are multiply linked with and 
thus increase compactness of individual 
modules; among which 33 candidates that 
were not predicted by the PathExpand 
analysis on the global CCKR model (Table S4 
in Additional file 7). Figure 2B shows the 
PathExpand module interactors for the 15 
intracellular CCKR signaling modules (i.e. 
not showing the modules centered around one 
of the transcription factors AP1, ATF2, 
NFkB). Eleven of these proteins are linked to 
more than one module and can contribute both 
to PKC-independent (e.g. ARGHGP, RHG31, 
TBC3F) and PKC dependent (e.g. ICMT) 
signaling routes. In contrast, 24 members of 
the PathExpand module interactor set are 
linked to only one module, suggesting they 
may act as preferential regulators of this 
module. For instance, the Mitogen activated 
kinase 15 (MK15) is a compactness increasing 
protein only for the SRC module, where it 
interacts with the two kinases SRC and CSK.   
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Use cases 
CCKR map and genome-scale PPI generate 
hypotheses for refinement of Rho GTPase 
and BCL module mechanisms  
In order to demonstrate potential use of the 
CCKR map and its PPI extensions, we here 
discuss putative novel signaling mechanisms 
involved in gastrin mediated activation of 
anti-apoptosis via Rho GTPase and BCL 
modules.              
The activation of small GTPases, RHOA, 
RAC1, and CDC42 of the Rho GTPase 
module (Figure 3A)  is promoted by guanine 
exchange factor proteins (GEFs), which 
trigger conversion of the inactive GDP-bound 
form of small GTPases to the active GTP-
bound form, here exemplified by Leukemia-
associated Rho guanine-nucleotide exchange 
factor (LARG) [67]. The inactive form of the 
small GTPases is restored by the GTPase-
activating proteins (GAPs) that enhance 
hydrolyzation of the bound GTP, depicted 
here by deactivation of RHOA and RAC1 by 
GAPs Rho GTPase-activating protein 4 
(ARHGAP4) and Regulator of G-protein 
signaling 2 (RGS2), respectively. Incoming 
components of this module are trimeric G-
proteins, G q and G 13, and outgoing 
components are 3 kinases: ROCK1, PAK1 
AKT1. 
The 724 interactors of Rho GTPase module 
components include 157 GTPase associated 
proteins, comprising more than 50 of each of 
GEF-type small GTPase family activators and 
GAP-type small GTPase family deactivators 
(Table 4).  Several of these GTPase-regulating 
interactors increase compactness of Rho 
GTPase module signaling mechanisms 

according to the PathExpand method [29], 
including the GEF-type Oligophrenin 1 
(OPHN1) and Pleckstrin homology domain 
containing, family G, member 2 (PKHG2), as 
well as GAP-type IQ motif containing 
GTPase activating protein (Q59HA3), Rho 
GTPase activating protein 31 (RHG31) and 
TBC1 domain family, member 3F (TBC3F) 
(see Figure 3B).  All of these interactors also 
increase compactness of the global CCKR 
pathway.  
Sixteen of the 121 kinase interactors bind to at 
least 2 different components of the Rho 
GTPase module, including p21 protein 
(Cdc42/Rac)-activated kinases 2 and -3 
(PAK2, PAK3) as well as Mitogen-activated 
protein kinase kinase kinase 4 and -10 
(M3K4, M3K10) (Figure 3B). These kinases 
seem to indicate a vast array of 
phosphorylation-events likely to be involved 
in co-ordinating the signaling proteins 
involved in this sub-module of the CCKR 
pathway. It is worth noting that a high 
proportion of the kinase interactors (e.g. 
INSR, PK3CA, and ABL2) are linked to the 
incoming components of the Rho GTPase 
module. Table 4 shows that half of all protein 
interactors bind to and thus potentially 
regulate one of the incoming components to 
modules. Furthermore, more than half of all 
kinase interactors of the CCKR map proteins 
are found in this ‘incoming component’ 
interactor group. We believe that this 
underscores the value of this subset of 
interactors for hypotheses concerning new 
regulatory components of the CCKR 
pathways.   
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Figure 3. Rho GTPase and BCL modules and their interactors. Details of module A. Rho GTPase and B. 
BCL where ‘defining’ implies specific components within a module, ‘incoming’ as upstream regulators, and 
‘outgoing’ as downstream effectors (Additional file 3). CCKR module component interactors for C. Rho 
GTPase and D. BCL modules are either colourless (PathExpand interactors) or colored according to GO 
molecular function classification (Table S5 in Additional file 8). 

 

 

The BCL module controls release of 
cytochrome C from mitochondria, thereby 
regulating the activity of caspase 3 (Figure 
3C). This signaling process is mediated by 

homo- and hetero-oligomerizations of the pro-
apoptotic BCL family proteins BAX and 
BAD, and the anti-apoptotic BCL2, BCL2L1 
and MCL1. Incoming regulators of the BCL 
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module are the gastrin-activated kinases 
ROCK1, PAK1 and AKT1 which mediate 
phosphorylation of BAD and BCL2L1 
resulting in dissociation of BAD-BCL2 and 
BAD-BCL2L1 heterodimers, repression of 
cytochrome C release and, as a consequence 
inhibition of caspase 3 activity [53].  
Among the PathExpand interactors of the 
BCL module (Figure 3D) we find a number of 
known BCL-family protein binding partners 
including BH3 interacting domain death 
agonist (BID), BCL2 binding component 3 
(BBC3) and BCL2/adenovirus E1B 19kDa 
interacting protein 1 (SEC20) and Phorbol-12-
myristate-13-acetate-induced protein 1 (APR). 
Serine/threonine kinase 4 (STK4), on the 
other hand, interacts with and is cleaved by 
BCL-module effector caspase 3 (CASP3) 
after which its cleavage products contribute 
both to enhancing downstream apoptosis and 
to inhibition of BCL module incoming 
component AKT1 [68]. Thus, PathExpand 
interactor STK4 can contribute to fine tuning 

of the gastrin regulated anti-apoptotic 
response. 
BCL module interactors annotated with a GO 
caspase regulator term include Apoptotic 
peptidase activating factor 1 (APAF1), X-
linked inhibitor of apoptosis (XIAP) and 
caspase 1 (CASP1) (Figure 3D). Physical 
interaction of CASP1 with CCKR model 
proteins PAK1 and CASP3 as well as with 
PathExpand interactor BID strongly suggests 
that caspase 1 may also be targeted in gastrin-
mediated anti-apoptotic responses even 
though this has not yet been reported. 
 
CCKR map extended with large-scale PPI 
used to generate hypotheses for dynamic 
gene regulatory networks 
We next focus on transcriptional aspects of 
the CCKR pathway and show how kinetic 
models of transcription factor activity together 
with the CCKR map and its PPI extensions 
enables refinement of knowledge pertaining to 
molecular mechanisms involved in 
transcription regulation. 

Our analyses of genome-scale temporal gene 
expression responses to a 14 hour gastrin 
treatment period in quiescent pancreatic 
adenocarcinoma AR42J cells, have identified 
temporal mRNA profiles of more than 2000 
gastrin-responsive genes (Array Express 
accession number: GSE32869). Using 
Network Component Analysis (NCA) [69] we 
exploited these gastrin mRNA time series data 
to estimate the temporal transcription factor 
activity profiles of ~50 different transcription 
factors expressed in AR42J  (unpublished 
data). Ten of these transcription factors 
(Figure 4A) are present in the CCKR-map, 
meaning that they reportedly are involved in 
gastrin- or CCK- mediated regulation of 
transcription. The NCA derived transcription 
factor activity profiles, which we have found 
to be of high accuracy (manuscript in 
preparation), indicate that transcription factors 
ATF2, AP1, EGR1, ELK1, NF B, SRF, 

FOXO1 and FOXO3 are activated by gastrin 
already after 30-60 minutes (Figure 4B), 
while CREB1 activity displays a delayed peak 
at 2-4 hours (Figure 4C).  TCF7L2 (also 
called TCF4) activity starts to increase after 4 
hours and peaks at 10-12 hours. Furthermore, 
NF B is estimated by NCA to exhibit a 
second activity peak at 10-12 hours (Figure 
4D). The CCKR map indicates that upstream 
signaling mechanisms common to immediate 
early activated TFs involve several PKC-
activated MAP kinases as well as AKT1.  
Together, these can explain the early 
activation of ATF2, AP1, EGR1, ELK1, and 
FOXO1 and 3 (Figure 4A). The early 
activation peak of NF B is also likely to be 
mediated by PKC since we can infer from the 
other PKC-dependent responses, including 
rapid MAPK1/3 activation [70, 71] that PKC 
activation is an early event in the signaling 
process.  
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Figure 4. CCKR model transcription factor regulatory networks and activity profiles. The two dimer 
transcription factors, AP1 and NF B, are constituted of JUN-FOS and NF B1-RELA heterodimers, 
respectively. A. Upstream regulatory network (green) of CCKR model transcription factors (early: yellow, 
delayed: red, and late: blue).  B. transcription factor activity temporal profile estimated by NCA: immediate 
early; C. delayed and; D. late active TFs. E. and F. Protein-protein interaction networks of AR42J expressed 
protein interactors with ‘immediate early’ and ‘late’ TFs, respectively.  
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Table 4. Overview of protein-protein interactors of the CCKR model 

Interactor subsets # 
interactors 

Kinasea Phosphataseb GTPase-
associated 

Adaptor Transcription 
regulation 

All 4119 400 109 304 378 566 
PathExpand_Global 74 6 9 8 7 3 
PathExpand_Mod 72 7 7 6 3 21 
PathExpand_all 106 10 11 8 7 22 
Incoming_Mod 1974 276 71 206 233 239 
AKT1 1154 198 51 148 165 145 
AP1 643 84 45 37 61 163 
ATF2 445 65 22 22 35 137 
BCL 505 107 21 44 53 76 
Beta-catenin 524 70 29 38 45 93 
CCK1R 33 7 2 6 4 1 
CCK2R 276 43 6 35 30 25 
EGFR 567 88 22 45 103 57 
FAK 1/2 966 139 34 81 151 100 
MAP3K11 398 81 20 39 38 76 
MAPK1/3 506 97 34 50 48 93 
NOS1 162 45 9 7 33 10 
NF B 1041 116 23 91 88 156 
PKA 239 52 11 15 29 31 
PKC 566 116 24 55 88 74 
RAF1 565 123 21 77 55 69 
Rho GTPase 724 121 20 157 115 55 
SRC 1097 163 39 98 166 116 

 
 aThis includes kinase regulators  
  bThis includes phosphatase regulators 

 

 
 
Figure 5. CCKR model curation in Payao. Part of the CCKR map Payao implicated 
with tagsets ‘OK’, ‘DISCUSSION’, ‘INCORRECT,’ and ‘IMPLEMENTED’ to record 
input from different curators on each reaction and components. 
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Interestingly, our CCKR map PPI extension 
(Figure 4E) confirms that the MAP kinases 
reported in literature to be involved in 
immediate early transcription factor activation 
(Figure 4A) are also engaged in direct 
physical interactions with these transcription 
factors.   The PPI extension suggests that 
Casein kinase 2, alpha 1 and 2 (CSK21, 
CSK22) may also be involved in common 
mechanisms regulating the immediate early 
TFs ATF2, EGR1, FOS and JUN. Moreover, 
Figure 4E depicts extensive PPI among 
CCKR map transcription factors themselves 
as well as with additional transcription 
factors, transcription co-factors and chromatin 
modifiers, thus indicating the importance of 
devising goal directed approaches to 
experimentally address the functional 
interactome of transcription regulation. 

Since our CCKR signaling pathway model has 
RSK as the only upstream regulator of both 
the immediate early TF SRF and the delayed 
CREB1, the available gastrin- and CCK-
related literature is clearly insufficient to 
explain the differences in kinetic protein 
activity profiles of these two transcription 
factors. Searching the candidates for upstream 
signaling components we noted that CREB1 
but not SRF interacts with the CCKR model 
protein Glycogen synthase kinase-3 beta 
(GSK3B), reported to inhibit CREB1 
activation and DNA binding by 
phosphorylating other CREB amino acid 
residues than S133 [72, 73]. We speculate that 
if GSK3B is active only during the first hour 
of the gastrin response, this kinase can cause 
the delayed activation of CREB1.  

Likewise, delayed activation of CREB1 has 
been observed to be associated with 
p38MAPK mediated activation of Ribosomal 
protein S6 kinase alpha-4 (KS6A4) and 
Ribosomal protein S6 kinase alpha-5 
(KS6A5) [74, 75], and both KS6A4 and 
KS6A5 are found to be one of the interactors 

of CREB1 in our large scale PPI analysis. 
Further research on their role in gastrin 
mediated delayed activation of CREB1 is 
necessary to corroborate this. 

Similarly, the difference in the temporal 
profiles of FOXO1, which is suggested to stay 
at high activity until at least 10h of the gastrin 
response, and FOXO3, whose protein activity 
returns to baseline within 6h, cannot be 
explained by our current model, since the only 
upstream regulator, AKT1 is common to both 
of them (Figure 4A). From our PPI CCKR 
model extensions we observe three potential 
upstream regulators, p21 protein 
(CDC42/RAC)-activated kinase 1 (PAK1), v-
src (SRC) and Dual-specificity tyrosine-(Y)-
phosphorylation regulated kinase 1A 
(DYRK1A) as well as four transcription 
regulators, CCAAT/enhancer binding protein 
(C/EBP) (CEBPB), CREB binding protein 
(CREBBP), Hepatocyte nuclear factor 4, 
alpha (HNF4A) and Peroxisome proliferator-
activated receptor gamma (PPARG), which 
interact with FOXO1 but not with FOXO3 
and that may be interesting to investigate for 
their potential involvement in the prolonged 
FOXO1 activation. 

We hypothesized that the intracellular 
signaling mechanism responsible for the late 
NF B activity peak could be Rho GTPase 
since the other late transcription factor, 
TCF7L2, is also downstream of Rho GTPase 
(Figure 4A). However, gastrin-mediated 
activation of Rho GTPase in AR42J cells is 
reported to occur very early, within 15 
minutes [76]. Thus, our current CCKR map 
representation of the intracellular signaling 
mechanisms leading to NF B-activation is not 
sufficient to explain the late phase of its 
biphasic activity profile. NF B interacts with 
a large array of kinases, transcription 
regulators and chromatin modifiers (Figure 
4F) that may potentially be involved in its late 
phase activation. One of several NF B 
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partners that are transcriptionally upregulated 
by gastrin in AR42J cells, is Nuclear receptor 
coactivator 1 (NCOA1), with an mRNA peak 
at 6 hours.  NCOA1 may thus enable NF B 
mediated expression of the late gastrin-
responding genes analogous to its observed 
potentiation of NF B mediated regulation of 
other target genes [77, 78]. Likewise, 
upregulation of another NF B-interacting 
protein CCAAT/enhancer-binding protein 
beta (CEBPB) [79, 80], which exhibits an 
extended peak spanning 2-8 hours of the 
gastrin response, may enable late NF B-
mediated gene expression.  

For the late protein activity of TCF7L2, the 
PPI extension allows us to postulate that late 
activation of TCF7L2 partner Death-domain 
associated protein (DAXX) and DAZ-
associated protein 2 (F8VU62)  known to 
potentiate TCF7L2 transcription [81, 82], or 
late inactivation of TCF7L2 partner 
Hypermethylated in cancer 1 (HIC1) which 
represses TCF7L2 transcription [83] may play 
a role. Another mechanism that may be of 
interest to pursue in efforts to explain the 
TCF7L2 activity is the availability of its 
protein partner -catenin (CTNB1). CTNB1, 
in its inactive state is sequestered and thus 
rendered inaccessible for TCF7L2 by amongst 
others E-cadherin (CADH1). In the early 
phase of gastrin response, E-cadherin is 
released from its transcriptional inhibition by 
transcription factor SNAI1. Thus, increased 
levels of E-cadherin during the first hours of 
gastrin response may decrease availability of 
CTNB1 for TCF7L2-mediated transcription. 

Discussion 
We present a map of signaling cascades 
mediated by two closely related receptors 
(CCK1R, CCK2R). We enhance the 
applicability of the map for hypothesis 
generation by two central strategies. First, we 
provide a computationally modularized 
version of topologically and functionally 
connected meta-nodes. This modular view 

simplifies navigation through the 
comprehensive CCKR map and provides for 
an improved, higher level comprehension of 
pathway regulatory aspects involved in cell 
fate decisions related to proliferation, 
migration and apoptosis. Molecular 
mechanistic insight into these cellular 
responses is of high importance for improved 
understanding of normo- and 
pathophysiological processes such as  
gastrin/CCKR2-linked carcinogenesis [47, 52, 
84, 85], as well as for cholecystokinin induced 
hypoplasia, cell regeneration and digestive 
enzyme secretion [86]. Secondly, we take 
advantage of public large scale binary PPI 
knowledge to predict new potential regulators 
of  the CCKR signaling, including 106 
interactors that significantly enhance the 
compactness of the CCKR network [29], 
through tight direct and indirect interactions 
with model proteins. For the remaining close 
to 4000 interactors that do not comply with 
these strict connectivity requirements, we 
demonstrate the use of GO molecular function 
and CCKR map module interaction 
information (Figure 3) to identify specific 
subsets of potentially high interest for a more 
detailed perception of intracellular gastrin- 
and CCK-responses. Moreover, we show that 
the PPI data can be used to partly explain 
gastrin-induced temporal transcription factor 
activity in dynamic gene regulatory networks 
derived from the CCKR model and genome-
scale gene expression time series. Although 
further experimental validations are needed to 
confirm these new CCKR signaling 
mechanisms, they represent an important 
source of high quality hypotheses as a first 
step to develop a better comprehension of 
CCKR pathways functionality.   

The advantage of our strategy compared to 
other recently published computational 
approaches for high-throughput hypothesis 
generation [23, 87, 88] is the complementing 
approaches with i) biological background 
knowledge encoded in the signaling map, 
including in the modules, manually curated 
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from literature reporting detailed experimental 
analyses of gastrin- and CCK-signaling and ii) 
large-scale PPI information downloaded from 
available databases of interactions, and 
filtered for binary physical interaction based 
on detection methods.  

Conclusion 
Our work demonstrates how the integration of 
a comprehensive model of complex biological 
networks with multiple dimensions of genome 
scale data can provide new knowledge on 
molecular mechanisms underlying dynamic 
cellular processes.  The provided SBML-
version of the CCKR map can serve as a 
starting point to generate quantitative 
mathematical models [89] for simulation and 
prediction of cellular outcomes in response to 
perturbations of the network. Further 
development of the resources presented here 
should be of high interest in translational 
research aimed at identifying new targets and 
biomarkers for improved treatment of gastrin- 
and/or cholecystokinin-related disease, such 
as cancer. 

Materials and Methods 

1. Construction of the CCKR map 

Below is an overview of the CCKR pathway 
reconstruction procedure:  

i) CellDesigner 4.2 is a structured diagram 
editor for drawing gene-regulatory and 
biochemical networks, and uses the 
standardized technologies; Systems Biology 
Graphical Notation (SBGN) process diagrams 
[90] and Systems Biology Mark-up Language 
(SBML) [91]. MIRIAM (Minimum 
Information Requested In the Annotation of 
Models) was followed to characterize each 
species in the comprehensive map [92]. 

ii) Knowledge encoded in the CCKR map was 
obtained from scientific publications  and 
from pathway databases 
http://www.pathguide.org/ [93]. The 

following strategy was adopted in order to 
assemble a comprehensive corpus of scientific 
publications for generation of the model: 

a) Review articles were searched in 
PubMed using general search terms 
with different combinations of 
cholecystokinin (CCK)/CCK1R, 
gastrin/CCK2R or searched by 
expert’s name. Although these 
reviews provide important 
information they in general lack 
experimental validation to 
substantiate the interactions. Hence 
we examined all relevant original 
articles involving experimental 
evidences for the interactions quoted 
in reviews. 

b) For a more exhaustive and updated 
literature collection, we used 
literature-mining tools LitInspector 
(http://www.litinspector.org/) [94] 
and iHOP (http://www.ihop-
net.org/UniPub/iHOP/) [95]. 

c) Next, we performed a manual search 
for additional literature in PubMed 
using search terms such as 
Cholecystokinin (CCK)/CCK1R, 
Gastrin/CCK2R, or searched by 
author’s name. 

d) Last, we checked all the citations of 
already collected articles in ISI Web 
of Knowledge (Thomson Reuters 
Web of Knowledge SM).  

 iii) CellDesigner species and the reaction 
“notes” feature were used to record PMID and 
cell-type specific information for each 
reaction and interacting component in the 
CCKR map. 

iv) Final curation and quality control was 
done in a collaborative effort involving 5 
different research group members using of the 
community curation platform Payao 
(http://www.payaologue.org) [31], which 
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enabled efficient exchange of comments and 
tags. Consensus and critical comments from 
each annotator about precise representation of 
reactions, components, size and its cellular 
localization were discussed and implemented 
(Figure 5). After implementing inputs from 
curators within the group, the CCKR model 
was published as open source for the whole 
scientific community working with Payao 
[31]. Thereby we hope to receive comments 
and tags from the community of curators to 
keep increasing the quality of this CCKR 
signaling pathway map and keep it up to date 
with our increasing biological understanding. 

 

2. Global analysis of CCKR pathway 

We performed network topology study of the 
CCKR map using Cytoscape version 2.8 [96]. 
For the global analysis of the intracellular 
cascades, we removed connections 
downstream of the transcription factors in the 
comprehensive CCKR map. Resulting SBML 
file was then imported in the Cytoscape using 
BiNOM plugin [28]. BiNOM considers both 
‘reaction’ and ‘species’ of a CellDesigner map 
as a node. Therefore, the CCKR network 
when imported in Cytoscape had 807 nodes 
(475 species and 332 reactions) with 963 
edges. Next, we calculated the network 
statistics using ‘Network Analysis’ plugin 
[97] in Cytoscape assuming the network as 
undirected. Number of nodes connected 
directly to each node is called its degree and 
this data for all nodes in the network is known 
as the degree distribution of the network 
(Figure S1 in Additional file 2). The nodes 
with highest degree are called ‘hubs’. Further, 
we calculated the closeness centrality which 
implies how fast information is transferred 
from one node to any other node in the 
network. It is the reciprocal of the average of 
shortest path lengths a node has with other 
nodes. Hence, higher the closeness centrality 
(between 0-1), shortest is the distance with 
other nodes and faster is the information flow. 

3) BiNoM construction of modules 

The BiNoM software was used to import 
information from CellDesigner to Cytoscape 
[28, 98] and build a modular view of the 
CCKR pathway. This higher level pathway 
representation is fully based on the underlying 
detailed map and helps to navigate through it.  

We used the ‘prune the graph’ function of 
BiNoM to automatically separate the strongly 
connected components (SCC) of the network 
from the input and output species. The SCC 
were decomposed into smallest sub-networks 
with function ‘extract material components’. 
Next, subnetworks with 50 percent or more 
overlapping nodes were merged into a single 
subnetwork. We then compared the merged 
network from all modules with our original 
model for the completeness. Redundant nodes 
were deleted; orphan nodes were added to 
relevant modules. The main network and the 
modules are available as Cytoscape session 
file (Additional file 3). 

4) Protein-protein interaction networks 
(PPI) 

PPI data were downloaded from PSICQUIC 
(all databases, version June 2012), and filtered 
for binary physical interactions based on PSI-
MI controlled vocabulary method 
descriptions, following the procedure in [99] 
(Charles E. Chapple, personal 
communication). 4119 interactors were 
identified for CCKR signaling proteins which 
we were able to map to a specific UniProt 
accession number (Table S2 in Additional file 
5).  

The PathExpand method was applied on the 
CCKR model proteins interactors using the 
complete PPI network as a background [29].  

5) Network component analysis (NCA) 

Network component analysis is a 
computational method for approximating 
transcription factor activities (TFAs), by 
reconstructing target gene expression data by 
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matrix calculation of  known TF connectivity 
with assumed TF activity until convergence 
[69].NCA decomposition can be represented 
as 

                                                                                                                          
(1) 

Where, [E] is expression matrix, [C] 
represents connectivity matrix and 
[T]corresponds to transcription factor activity 
matrix. Based on the above formulation, the 
decomposition of [E] into [C] and [T] can be 
achieved by minimizing the following 
objective function:  

                                                                                                           
(2) 

s.t. C  Z0 

In order to guarantee uniqueness of the 
solution for the equation (2) up to a scaling 
factor, NCA criteria must be satisfied which 
includes: (a) The connectivity matrix [C] must 
have full-column rank. (b) When a node in the 
regulatory layer is removed along with all of 
the output nodes connected to it, the resulting 
network must be characterized by a 
connectivity matrix that still has full-column 
rank. (c) T matrix must have full row rank. 
We used gastrin treated (0-14h) temporal gene 
expression data (Array Express accession 
number: GSE32869) as expression matrix and 
TF-TG relation data from TFactS [100] as 
connectivity matrix. 
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Additional files 

Additional file 1 as XML document. The file is SBML version of the comprehensive 
CCKR map. 
 
Additional file 2 as pdf. The file contains Figure S1, Figure S2, and Table S1. Figure S1 
shows degree distribution of the CCKR map. Figure S2 illustrates PathExpand interactors 
of the CCKR map. Table S1 shows PPI based ranking of CCKR model proteins. 
 
Additional file 3 as cys. This file is original cytoscape session file containing BiNoM 
generated modules of the CCKR map. 
 
Additional file 4 as pdf. The file contains description of individual modules of the 
comprehensive CCKR map disentagled using BiNoM plugin in cytoscape. 
 
Additional file 5 as xls. Table S2. The file contains list of CCKR model protein interactors 
identified from large scale protein-protein interaction network. 
 
Additional file 6 as xls. Table S3. The file enlists PathExpand interactors of the global 
CCKR pathway.      
 
Additional file 7 as xls. Table S4. The file depicts PathExpand analysis of BiNoM 
modules and their protein interactors. 
 
Additional file 8 as xls. Table S5. The file encompasses list of selected Gene Ontology 
molecular function terms to classify large scale protein interactors. 
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Additional File 2 

 

Figure S1. Degree distribution of the CCKR map 

 

Figure S2. The protein kinase and phosphatase interactors that increase signaling pathway 
compactness are strong candidates to act as central regulators of the pathway via phosphorylation-
dephosphorylation-based mechanisms and  include kinases  STK4, CSK21, CSK22, ITPKA, 
FLT4, DDR2, KS6KA4 and MK15  and  a high number of Dual specificity phosphatases (DUSP1, 
2, 4, 5, 7, 9, 22) in addition to PHLPP1 and PTPRR. The PECompact adaptors SH2D3 and (SIT1 
are of high interest due to their potential to assist hypotheses on how CCKR model proteins are 
integrated with other proteins in the molecular (signaling) machinery. Of the 74 PECompact 
Global Interactors, 33 are not found to be PECompact for single CCKR pathway modules.  See 
Table 3 of main text for PECompact Interactor names. 
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Table S1. PPI based ranking of the CCKR model proteins 

Protein_model PPI Rank 

GRB2_HUMAN 29 1 

AKT1_HUMAN 26 2 

MK01_HUMAN 26 2 

MK08_HUMAN 26 2 

SRC_HUMAN 26 2 

RAF1_HUMAN 22 3 

IKKB_HUMAN 19 4 

IRS1_HUMAN 19 4 

IKKA_HUMAN 18 5 

KPCZ_HUMAN 18 5 

P85A_HUMAN 18 5 

KAPCA_HUMAN 17 6 

KPCD_HUMAN 17 6 

PAK1_HUMAN 17 6 
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Additional File 4 

Description of BiNoM segmented 
modules 
 

AKT1 module 
AKT1 module encompasses components and 
reaction involved in activation of AKT1-mTOR 
cascade downstream of the CCKR (Table 1). 
Both gastrin and CCK activate PI3K via SRC 
dependent mechanism [101, 102]. Our model 
shows that gastrin activates tyrosine 
phosphorylation of IRS1 and its association with 
p85 subunit of PI3K by recruiting p85/p110 
complex at the plasma membrane [103, 104]. 
Association of IRS1 with p85 activates PI3K 
complex. CCK2R stimulated JAK2 is 
documented to function upstream of PI3K in 

regulation of cell adhesion [105]. Active PI3K 
triggers PI3K dependent cascade by catalyzing 
PIP2 into PIP3. Activation of PI3K cascade 
promotes the recruitment of proteins with 
pleckstrin homology (PH) domains such as AKT1 
and PDPK1 to the plasma membrane. Upon 
binding to the 
membrane, AKT1 and PDPK1 become active. 
Notably, translocation of AKT1 to the plasma 
membrane also facilitates its phosphorylation by 
PDPK1 [106, 107]. This cascade of events 
phosphorylates AKT1 at Ser308 and Ser473 to 
make it active. It is likely, that activated AKT1 
regulates mTOR pathway and stimulates 
activation of Ribosomal protein S6 kinases 
70kDa (p70 S6 kinase) because mTORC1 and 
PI3K specific inhibitor rapamycin, inhibits 
gastrin dependent p70S6K activity [56].  

 

Table 1 

 
AP1 module 
AP1 module represents the life cycle of members 
of the AP1 transcription factor, JUN and FOS. 
Defining members of the AP1 module are listed 
in Table 2. Gastrin regulates JUN and FOS at 
both transcriptional and post-translational level. 
Gastrin mediated JUN gene transcription involves 
AP1 transcription factor  whereas transcription of 

FOS gene is by MAPK dependent activation of 
ELK1 transcription factor [108]. At protein level, 
MAPK8 phosphorylates S63 and S73 residues of 
the JUN to make it active whereas ATF2 and 
MAPK1/3 activate FOS by phosphorylating its 
serine residues [108-110]. Active JUN and FOS 
protein translocate into the nucleus, associate 
together and form an AP1 complex. 
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                    Table 2 

Module_AP1 
Incoming Defining 

components 
UniProt 
accession 

UniProt KB 
entry components 

UniProt 
accession 

UniProt KB 
entry 

 
ATF2 module 
This module explains the life cycle of ATF2 
transcription factor. Members of the ATF2 
module are listed in Table 3. Both MAPK8 and 
p38MAPK are associated with gastrin dependent 
activation of ATF2 by phosphorylating its 

threonine residues [108, 111, 112]. Active ATF2 
forms a homodimer and translocates into the 
nucleus.Nuclear ATF2 associates with JUN to 
form a complex which regulates the transcription 
of JUN target gene [108]. 

                   

       Table 3 

Module_ATF2 
Incoming Defining 

components 
UniProt 
accession 

UniProt KB 
entry components 

UniProt 
accession 

UniProt KB 
entry 

 

BCL module 

The BCL module includes BCL2 family proteins 
associated with gastrin dependent apoptosis 
regulation mechanism. In the comprehensive 
CCKR map, BCL2 family circumscribes both 
pro-apoptotic (BAX and BAD) and anti-apoptotic 
(BCL2, BCL2L1 and MCL1) members (Table 4). 
Gastrin activates expression of BCL2 and 
BCL2L1 via Rho GTPase dependent mechanism 
[53], whereas expression of MCL1 is mediated 
via AP1 dependent pathway [113]. Rho GTPase 
dependent activation of target proteins ROCK1 
and PAK1 influences the expression of BCL2 and 
BCL2L1 proteins. Oligomerization of the BAX 
proteins causes release of cytochrome C from 

mitochondria, as a consequence activation of 
caspase 3. The BCL2-like proteins form 
heterodimers with BAX or BAD which results in 
the inhibition of the release of cytochrome C 
from the mitochondria [52, 53, 114]. Gastrin 
activates PAK1 and AKT1 proteins which then 
phosphorylate BAD at Ser136 and Ser112 
residues, resulting in the dissociation of BAD 
from its heterodimer partners, BCL2 and 
BCL2L1 [53, 63, 115]. Dissociation of BAD 
stops release of cytochrome c from the 
mitochondria, as a consequence inhibits caspase 3 
activation [53]. Gastrin inactivates both FOXO1 
and FOXO3 transcription factors by AKT1 
dependent phosphorylation [63] resulting in the 
inhibition of apoptosis. 

 



                                                                                                                                       Tripathi et al 

Page | 29  
Cholecystokinin receptors signaling network 

Table 4 

 
Beta-catenin module 
Beta-catenin module circumscribes components 
and reactions associated with gastrin dependent 
beta-catenin/E-cadherin interaction (Table 5). 
Beta catenin and E-cadherin form an adhesion 
complex at the membrane. This adhesion 
complex is disrupted by gastrin to promote cell 
migration and invasion. Gastrin activated PAK1 
phosphorylates SNAI1 transcription factor at 
Ser246. Consequently, SNAI1 translocates to the 
nucleus and inhibits E-cadherin gene 
transcription [50, 51]. As a result, number of E-
cadherin molecules present at the membrane 
decreases. Decrease in E-cadherin molecule 
causes disruption of Beta-catenin/E-cadherin 

interaction [50]. Now, intact Beta-catenin 
translocates into the cytoplasm and undergoes 
phosphorylation at Ser45 mainly by caseine 
kinase1 (CK1). Importantly, cytosolic 
phosphorylated beta-catenin may undergo 
GSK3beta dependent phosphorylation and 
eventual degradation but gastrin activated PAK1 
prevent this degradation by inactivating 
GSK3beta. PAK1 inactivates GSK3beta by 
phosphorylating its Ser9 residue [50, 51]. 
Furthermore, PAK1 triggers nuclear transport of 
the activate beta-catenin [50, 51]. Nuclear beta-
catenin associates with transcription factor 
TCF7L2 and regulate expression of several target 
genes in response to gastrin. 

Table 5 

 
CCK1R module 
The CCK1R module depicts the life cycle of the 
CCK1 receptor. Members of the CCK1R module 
are listed in Table 6. Sulfated CCK binds to 
active CCK1R and triggers downstream signaling 
cascades. Under CCK stimulation, CCK1R is 
rapidly phosphorylated at consensus serine 
residues in the third intracellular loop, both by 
PKC and a G protein kinase, causing receptor 
inactivation [116, 117]. Desensitization and 
further recycling of the CCK1R happens by 

receptor-endocytosis in the cytosol. After 
stimulation of CCK1R by CCK, ligand bound 
receptor complex is internalized into an endocytic 
vesicle [118, 119]. From the endosome, CCK and 
CCK1R are then sorted into their destined 
cellular location. Notably, average sorting time of 
CCK and receptor in endosome is about 25 
minutes. CCK is sorted into the lysosome and 
undergoes proteosomal degradation whereas the 
receptor recycles back to the cell membrane with 
an average time of 60 min [119].  
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Table 6 

 
EGFR module 
EGFR module encompasses components 
associated with the activation of EGFR (Table 7). 
Gastrin induces expression of HB-EGF and 
EGFR transactivation as documented in human 
gastric cancer cell line [120] and in rat gastric 
epithelial cells [46, 47]. CCK2R activates matrix 
metalloproteinase 3 (MMP-3) via PKC dependent 
mechanism [46]. Activated MMP-3 cleaves Glu-
Asn site within the juxtamembrane (JM) region 
of the membrane anchored pro-HBEGF into 
soluble mature HBEGF [47, 120]. Mature 
HBEGF then binds to the EGFR and activates 

this receptor by phosphorylating several tyrosine 
residues. Both SRC and SHC1 associate with 
active EGFR. SHC1 binds to the tyrosine residues 
1148/1173 of the active EGFR. EGFR activates 
SHC1 by phosphorylating its Y317 residue [121]. 
Also, GRB2 transports from cytosol and binds to 
the active EGFR receptor at membrane on either 
phosphorylated Y1068 or Y1086 [122]. This 
binding recruits SOS1 onto the membrane which 
forms a complex with GRB2. Phosphorylated 
SHC1 associates with GRB2/SOS1 complex and 
regulate CCK2R dependent MAPK cascade [123, 
124]. 

Table 7 

 
CCK2R module 
CCK2R represents the life cycle of CCK2 
receptor. Members of the CCK2R module are 
listed in Table 8. Amidated gastrin binds to the 
CCK2R, which leads to the phosphorylation and 
activation of CCK2R. Active ligand-receptor 
complex triggers downstream signaling cascades. 
Internalization and intracellular trafficking of the 
CCK2R primarily involves binding of beta-
arrestin adaptor proteins to the receptor and 
clathrin coated pits. After CCK2R stimulation by 
gastrin, beta-arrestin ½ transports from cytoplasm 
to the plasma membrane where it interacts with 
C-terminal phosphorylated residues of the CCK2 
receptor [125]. Beta-arrestin bound CCK2R is 

then recuited into clathrin-coated endocytic 
vesicle. Interestingly, gastrin too found to be 
trapped into this endocytic vesicle but without 
any clear evidence whether it remains intact with 
the receptor or they were degraded by proteases 
[125]. It was examined that CCK2R 
internalization is also dependent on the activity of 
a GTPase, dynamin. Dynamin acts as a 
mechanochemical enzyme to clip membrane 
attached vesicles and their targeting, fusion with 
another compartment. Furthermore, internalized 
CCK2R does not recycle rapidly to the cell 
surface. Instead, CCK2R directs to the late 
endosome/lysosome, indicating a possibility of 
slow recycling/degradation.  
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Table 8 

 
FAK1/2 module 
Tyrosine phosphorylation and activation of FAK1 
is described in response to both CCK1R and 
CCK2R stimulation while FAK2 activation is 
recorded only in response to CCK. Gastrin 
controls cell adhesion by signaling pathways 
involving FAK1, Paxillin [126], Crk-associated 
substrate (CAS), and v-crk sarcoma virus CT10 
oncogene (CRK) [126-128]. Gastrin activates 
CAS/CRK complex formation by p60SRC and 
PKC dependent pathway [128] (detail list in 
Table 9). Our model represents that FAK1 
associates with p60SRC and p190RhoGEF to 
form a complex. This complex then regulates 
phosphorylation and activation of paxillin [126]. 
Interestingly, FAK1-p60SRC complex acts 
upstream of the gastrin-stimulated PI 3-kinase 
pathway [102]. In rat pancreatic acinar cells, 
CCK-8 rapidly stimulates tyrosine 
phosphorylation and activation FAK2. This 
activation of FAK2 is mediated by PKC and 

increase of [Ca2+] [129, 130]. CCK stimulation 
causes a rapid formation of both FAK2-GRB2 
and FAK2-CRK complexes [129]. The exact 
mechanism of FAK2 activation by Ca2+ is still 
not understood [131], but inhibiting PKC-  in rat 
pancreatic acinar cells has been shown to inhibit 
phosphorylation of Tyr-402 of FAK2 [36], 
indicating that PKC-  is the link between CCK1R 
stimulation and FAK2 activation. FAK2 auto-
phosphorylates at Tyr402.  Phosphorylation at 
Tyr402 provides a binding site for SH2 
containing proteins including SRC and p85. 
Binding of SRC leads to phosphorylation of 
FAK2 residues Tyr579 and Tyr580, with 
maximal FAK2 kinase activity [132, 133]. 
Phosphorylation at Tyr-881 by SRC promotes 
interaction of FAK2 with GRB2 [133]. FAK2 
also forms a complex with CRK in rat pancreatic 
acinar cells after stimulation with CCK-8 [129]. 
In rat pancreatic acinar cells CCK also stimulates 
formation of CRK-CAS complex [134]. 
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Table 9 

 
MAPK1/3 module 

MAPK1/3 module constitutes cascade of events 
associated with the activation of MAPK1 (ERK2) 
and MAPK3 (ERK1) signaling pathway 
downstream of CCKR (Table 10). CCKR activate 
MAPK1/3 through RAF dependent stimulation of 
MAP2K1/2.Activation of RAF is achieved either 
by GRB2/SOS dependent activation of HRAS or 
by stimulation of RAF through PKC-mediated 
mechanisms. Activation of RAF1 is independent 
of PKC activity in Rat1 cells whereas in human 
gastric cancer cells, RAS independent activation 
of RAF is detected in response to gastrin [70, 
71].Active RAF1 phosphorylates serine residues 

of dual specificity kinases, MAP2K1 and 
MAP2K2. Phosphorylated MAP2K1 and 
MAP2K2 then activate MAPK1/3 by 
phosphorylating their threonine/tyrosine residues. 
Active MAPK1/3 then form a homodimer and 
transports into the nucleus where they regulate 
the activity of several TFs and TGs. Active 
MAPK1/3 also triggers RSK (RSK1/2) activation 
cascade by phosphorylating its serine/threonine 
residues [135]. Active RSK translocates into the 
nucleus where it plays a role in the activation of 
CREB1 TF by phosphorylating its S133 residue 
[135, 136]. Our modular view indicates that 
MAPK1/3 module has positive influence on AP1 
and ATF2 modules. 

Table 10 

 
MAP3K11 (MLK3) module 
In the modular view, MAP3K11 module 
represents components and reactions involved in 
the activation of MAPK8 (JNK) and p38MAPK 
(Table 11). Activation of MAPK8 and p38MAPK 

is reported in response to both CCK1R and 
CCK2R stimulation by CCK and gastrin 
respectively. MAP3K11 is a serine/threonine 
kinase with SH3 domain-containing proline-rich 
kinase. HRAS seems to be the upstream regulator 
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of MAP3K11. MAP3K11 is a known activator of 
dual specificity protein kinases MAP2K4 and 
MAP2K6 by phosphorylating Ser257/Thr261 
residues of MAP2K4, and Ser207/Thr211 
residues of MAP2K6. Phosphorylated MAP2K4 
and MAP2K6 are the upstream regulators of 
MAPK8 and p38MAPK respectively [128, 137, 

138]. MAP2K4 phosphorylates Thr183/Tyr185 
residues of MAPK8 whereas MAP2K6 
phosphorylates Thr180/Tyr182 residues of 
p38MAPK. Both MAPK8 and p38MAPK 
activate transcription factor ATF2 whereas only 
MAPK8 stimulate transcription factor JUN in 
RIE-1/CCK2R cells treated with gastrin [137]. 

Table 11 

 
NF B module 
This module encircles CCKR dependent 
activation mechanism of the NF B transcription 
factor (Table 12). CCK1R and CCK2R dependent 
activation of NF B is via PKC  [108, 139]. It has 
been reported that both PKC  and PKC  are 
involved in CCK mediated NF B activation 
[139], and our model suggests that PRKD1 could 
be the possible link between this activation [140]. 
Gastrin stimulated CCK2R follows 
TRAF6/TAK1/MAP3K14 pathway to activate 
NF B [108]. In this cascade, MAP3K14 which is 
also known as NF B inducing kinase (NIK) 

activates I B kinase. Activated I B kinase then 
phosphorylates S32 and S36 residues of the I B, 
as a result releases the inhibitory effect of I B on 
the NF B1-RELA complex. Phosphorylated I B 
dissociates from the NF B1-RELA complex and 
undergoes proteosomal degradation [108], 
leaving active NF B1-RELA complex which 
then translocates into the nucleus. Gastrin and 
cholecystokinin promote NF B nuclear 
translocation via RhoA and MAPK8 dependent 
pathways respectively [141, 142]. In CCK1R 
system, it has been observed that PKC-  exerts an 
inhibitory effect on NF B activation in rat 
pancreatic acini [139].

Table 12 
Module_NF B 

Incoming Defining 

components 
UniProt 
accession 

UniProt KB 
entry components 

UniProt 
accession 

UniProt KB 
entry 
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NOS1 module 
The nitric oxide-cGMP pathway is known to be 
activated by CCK in rat pancreatic acinar cells 
[41] and in the CHO cell line by CCK1R [42, 
143, 144]. Memebers of the NOS1 module are 
listed in Table 13. The link between CCK1R and 
nitric oxide synthase (NOS1) is still unknown for 
pancreatic acinar cells, but it is shown that 
neuronal NOS1 (nNOS) is activated by the G -
subunit and activated tyrosine phosphatase SHP-2 
in CHO cells. SHP-2 associated with the G 1 
subunit, became activated, and then 
dephosphorylated nNOS through direct 
association [42].  
Activated NOS1 cleaves L-arginine, forming L-
citrulline and NO. NO then activates soluble 
guanylate cyclase [42], which produces cGMP 
from GMP. cGMP then (directly or via other 
components) activates a cytosolic ADP-ribosyl 
cyclase (CD38). This CD38 produces cyclic 
cADPr from NAD+ [145]. cADPr then activates 

ryanodine receptor (RyR) in the endoplasmic 
reticulum, which then facilitates the transport of 
Ca2+ from the ER to the cytosol [146]. RyR is 
shown to be active in signaling in pancreatic 
acinar cells [43]. The Ca2+-induced Ca2+ release 
(CICR) mechanism enhances calcium transport 
from ER to cytosol, and is also mediated by the 
ryanodine receptor [146].  
Ryanodine receptors consist of three isoforms, 
RYR1, RYR2 and RYR3, and all three isoforms 
are expressed in rat pancreatic tissue, with RYR1 
and RYR2 specifically found in pancreatic acinar 
cells [147]. Ca2+ is thus increased by both the IP3 
and cADPr pathway, and it has been shown in 
mouse pancreatic acinar cells that CCK-induced 
Ca2+-spiking can be mediated by both pathways, 
and that the pathway mediating the response is 
dependent on intracellular glucose levels: High 
glucose levels potentiates IP3-evoked Ca2+-
spiking, and low glucose levels potentiates 
cADPR-evoked Ca2+-spiking [148].  

Table 13 

Module_NOS1 
Incoming Defining 

components 
UniProt 
accession 

UniProt KB 
entry components 

UniProt 
accession 

UniProt KB 
entry 

 

PKA module 
In the modular view, CCK1R module manifests 
positive influence on the PKA module (list of 
components in Table 14). CCK1R is coupled to 
GS  and CCK1R stimulation then activates 
adenylate cyclase [149]. Active adenylate cyclase 
converts ATP into cAMP which then activates 
cAMP-dependent protein kinase (cAPK)/PKA by 
releasing the catalytic subunits from the 
regulatory subunits [150]. PKA is a 
heterotetramer in its inactive form, with two 

regulatory subunits binding the catalytic subunits. 
Different subunits have different affinities for 
cAMP, generating holoenzymes (PKA type I or 
type II). Each regulatory subunit binds two cAMP 
molecules, releasing the catalytic subunits[151]. 
PKA then phosphorylates serine and threonine 
residues on specific substrate proteins both in the 
cytoplasm and in the nucleus [152]. The catalytic 
subunits of PKA translocates to the cell nucleus, 
where the transcript factor CREB is activated 
through phosphorylation [150]. 
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Table 14 

 
 
 
PKC module 
In the comprehensive map, PKC module depicts 
activation of different members of the PKC 
family (detail list in Table 15). CCKR elicits 
DAG and IP3 production via PLC dependent 
mechanism by catalyzing PIP2. In CCK2R 
system, both PLC  and PLC 1 dependent IP3 
production has been documented while in 
CCK1R system only PLC  mediated DAG and 
IP3 production is reported.  Activated IP3 then 
binds to IP3 receptor in the ER and triggers 
oscillation of Ca2+ from ER to cytosol. PKC 
superfamily has 3 different subfamilies: i) 
conventional PKCs, members of this family 
require both DAG and Ca2+ for activation. PKC  
and PKC  are the members of this family which 
are present in our model, ii) novel PKCs, 
members of this family are DAG responsive and 
Ca2+ unresponsive. PKC , PKC , PKC , and 
PKC  are the members of this family, and iii) 
atypical PKCs, members of this family require 

neither DAG nor Ca2+ for activation. PKC  is a 
member of this family which has been reported to 
play a role in CCKR signaling. Active PKCs are 
involved in activation of another serine/threonine 
kinase, protein kinase D (PRKD). Both CCK1R 
and CCK2R dependent activation of PRKD1 has 
been established while activation of PRKD2 is 
documented only downstream of CCK2R. The 
specific PKC isoforms associated with PRKD1 
activation after CCK stimulation are PKC , 
PKC , and PKC  [36, 140]. 
In human gastric cancer cells stably transfected 
with the CCKB/gastrin receptor , gastrin 
stimulates PRKD2 activation by PKC- , - , and -

 dependent phosphorylation of its residues 
(Sturany, Van Lint et al. 2001; Sturany, Van Lint 
et al. 2002; von Blume, Knippschild et al. 2007). 
Phosphorylation of PRKD2 at Ser244 within the 
zinc-finger domain by Casein Kinase (CK1)-  
and -  promotes nuclear accumulation of PRKD2 
in response to gastrin (von Blume, Knippschild et 
al. 2007).  
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Table 15 

 
RAF1 module 
RAF family constitutes three serine/threonine 
protein kinases, A-RAF, B-RAF, and C-RAF 
(RAF1) (Table 16). These protein kinases act as a 
regulatory link between membrane bound RAS-
GTPase and MAPK cascade. CCK1R has been 
implicated to activate all three RAFs [36, 153] 
whereas only RAF1 is documented to be 
activated in response to gastrin [71]. RAF1 
module mainly represents life cycle of the RAF1 

activation. Active HRAS dissociates RAF1 from 
the RAF1-14-3-3 complex and then recruits it to 
the plasma membrane from the cytosol [154]. 
Sequential phosphorylation of 
serine/threonine/tyrosine (except S259) residues 
of the membrane attached RAF1 by different 
kinases results into an active RAF1. RAF1 
activates MAPK1/3 cascade by triggering 
phosphorylation of MAP2K1/2 proteins. Active 
AKT1 inactivates RAF1 by phosphorylating its 
S259 residue [155].

Table 16 

 
Rho GTPase module 
The Rho GTPase module represents components 
and reactions involved in the activation of 
members of the Rho GTPase family (Table 17). 
Members of this family include: RHOA, RAC1, 

and CDC42. Both gastrin and cholecystokinin 
can activate RHOA and RAC1, while only gastrin 
is reported to be involved in the activation of 
CDC42 [53]. CCK2R mediated activation of Rho 
GTPases (RHOA, RAC1 and CDC42) from the 
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inactive GDP-bound form to the active GTP-
bound form is via G q. Guanine exchange factors 
(GEFs), for example Leukemia-associated Rho 
guanine-nucleotide exchange factor (LARG) can 
serve as an effector for G q – coupled receptors 
[67] and GTPase-activating proteins (GAPs) 

hydrolyzes GTP to convert active GTP-bound 
form of Rho GTPases into inactive GDP-bound 
form Gastrin-stimulated RHOA acts through 
interaction with a serine/threonine kinase, ROCK 
whereas RAC1 and CDC42 acts through specific 
effector protein, PAK1 [53].  

Table 17 

 
SRC module 
This module represents the role of GRB2, SHC, 
and SRC proteins in the CCKR signaling (detail 
list in Table 18). Both SRC and SHC proteins are 
activated by CCKR. PKC dependent 
phosphorylation of SHC is reported for both 
CCK1 and CCK2 receptors [124, 156] while 
activation of SRC via PKC is documented only in 
response to gastrin [124]. The SHC-gene (SHC1) 
encodes three major isoforms of SHC, p46SHC, 
p52SHC, and p66SHC. Gastrin mediates time and 
dose dependent increase in tyrosine 
phosphorylation of p46 SHC and p52SHC 

isoforms of adaptor protein SHC1 in AR42J cells. 
Gastrin induced phosphorylation of SHC is 
dependent on SRC kinase [157] and PKC 
isoforms (PKC- ,- ,- ) [124]. Active SRC, SHC1 
associate with ligand bound EGFR. Further, 
active EGFR associates with GRB2 at the 
membrane which then recruits SOS1 onto the 
membrane from the cytosol. SHC1 forms an 
active complex with GRB2-SOS1 which leads to 
the activation of HRAS-RAF1-MAPK cascade 
[123]. GRB2 and SRC are also involved in 
activation of the FAK2 cascade in response to 
cholecystokinin [158, 159]. 
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Table 18 
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    Additional File 6 
     Table S4. The file enlists PathExpand interactors of the global CCKR pathway. 
 

UniProt_ID Gene name HGNC symbol PECompac
t_module 

4EBP2_HUMAN eukaryotic translation initiation factor 4E binding protein 2  EIF4EBP2 yes 
4EBP3_HUMAN eukaryotic translation initiation factor 4E binding protein 3  EIF4EBP3 yes 
A8K0R3_HUMAN osteoglycin  OGN no 
A8K5S8_HUMAN SH2 domain containing 3C  SH2D3C yes 
AFAP1_HUMAN actin filament associated protein 1  AFAP1 no 
AKA28_HUMAN A kinase (PRKA) anchor protein 14  AKAP14 no 
ARHGP_HUMAN Rho guanine nucleotide exchange factor (GEF) 25  ARHGEF25 yes 
ASXL1_HUMAN additional sex combs like 1 (Drosophila)  ASXL1 no 
ATP5J_HUMAN ATP synthase, H+ transporting, mitochondrial Fo complex, 

subunit F6  
ATP5J no 

BIEA_HUMAN biliverdin reductase A  BLVRA no 
CPSM_HUMAN carbamoyl-phosphate synthase 1, mitochondrial  CPS1 yes 
CXB1_HUMAN gap junction protein, beta 1, 32kDa  GJB1 no 
DDR2_HUMAN discoidin domain receptor tyrosine kinase 2  DDR2 yes 
DUS2_HUMAN dual specificity phosphatase 2  DUSP2 yes 
DUS22_HUMAN dual specificity phosphatase 22  DUSP22 no 
DUS4_HUMAN dual specificity phosphatase 4  DUSP4 yes 
DUS5_HUMAN dual specificity phosphatase 5  DUSP5 yes 
DUS7_HUMAN dual specificity phosphatase 7  DUSP7 yes 
DUS9_HUMAN dual specificity phosphatase 9  DUSP9 yes 
E9PDN8_HUMAN MCF.2 cell line derived transforming sequence-like  MCF2L yes 
ERRFI_HUMAN ERBB receptor feedback inhibitor 1  ERRFI1 yes 
F263_HUMAN 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3  PFKFB3 yes 
F5GWV9_HUMAN mucin 12, cell surface associated  MUC12 yes 
FA59A_HUMAN family with sequence similarity 59, member A  FAM59A no 
FCG2C_HUMAN Fc fragment of IgG, low affinity IIc, receptor for (CD32) 

(gene/pseudogene 
FCGR2C no 

GAB3_HUMAN GRB2-associated binding protein 3  GAB3 no 
GCYA3_HUMAN guanylate cyclase 1, soluble, alpha 3  GUCY1A3 no 
GNB1L_HUMAN guanine nucleotide binding protein (G protein), beta 

polypeptide 1-like  
GNB1L yes 

GRDN_HUMAN coiled-coil domain containing 88A  CCDC88A no 
GRP3_HUMAN RAS guanyl releasing protein 3 (calcium and DAG-regulated)  RASGRP3 no 
GSCR1_HUMAN glioma tumor suppressor candidate region gene 1  GLTSCR1 no 
ICMT_HUMAN isoprenylcysteine carboxyl methyltransferase  ICMT yes 
IKBZ_HUMAN nuclear factor of kappa light polypeptide gene enhancer in B-

cells inhibitor, zeta  
NFKBIZ no 

IP3KA_HUMAN inositol-trisphosphate 3-kinase A  ITPKA no 
K2026_HUMAN KIAA2026  KIAA2026 no 
KS6A4_HUMAN ribosomal protein S6 kinase, 90kDa, polypeptide 4  RPS6KA4 yes 
KSR1_HUMAN kinase suppressor of ras 1  KSR1 no 
MK15_HUMAN mitogen-activated protein kinase 15  MAPK15 yes 
MTPN_HUMAN myotrophin  MTPN yes 
MUC12_HUMAN mucin 12, cell surface associated  MUC12 yes 
NCF1B_HUMAN neutrophil cytosolic factor 1B pseudogene  NCF1B no 
NFAC3_HUMAN nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 3  
NFATC3 no 

OPHN1_HUMAN oligophrenin 1  OPHN1 yes 
P3C2B_HUMAN phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit 

type 2 beta  
PIK3C2B no 

P4K2B_HUMAN phosphatidylinositol 4-kinase type 2 beta  PI4K2B yes 
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PAR6G_HUMAN par-6 partitioning defective 6 homolog gamma (C. elegans)  PARD6G no 
PDE3B_HUMAN phosphodiesterase 3B, cGMP-inhibited  PDE3B no 
PEBP4_HUMAN phosphatidylethanolamine-binding protein 4  PEBP4 no 
PHLP1_HUMAN PH domain and leucine rich repeat protein phosphatase 1  PHLPP1 no 
PKHG2_HUMAN pleckstrin homology domain containing, family G (with 

RhoGef domain) member  
PLEKHG2 yes 

PP14A_HUMAN protein phosphatase 1, regulatory (inhibitor) subunit 14A  PPP1R14A no 
PTPRR_HUMAN protein tyrosine phosphatase, receptor type, R  PTPRR no 
Q0VDC6_HUMAN FK506 binding protein 1A, 12kDa  FKBP1A no 
Q498B9_HUMAN additional sex combs like 1 (Drosophila)  ASXL1 yes 
Q53SD7_HUMAN RAS guanyl releasing protein 3 (calcium and DAG-regulated)  RASGRP3 yes 
Q59HA3_HUMAN IQ motif containing GTPase activating protein 2  IQGAP2 yes 
Q5SXQ0_HUMAN protein tyrosine phosphatase, non-receptor type 7  PTPN7 yes 
Q64GA9_HUMAN interferon regulatory factor 5  IRF5 yes 
Q6FHM9_HUMAN CD59 molecule, complement regulatory protein  CD59 yes 
Q96RR5_HUMAN TPX2, microtubule-associated, homolog (Xenopus laevis)  TPX2 yes 
Q96T11_HUMAN receptor-interacting serine-threonine kinase 4  RIPK4 yes 
Q9BTX6_HUMAN ret proto-oncogene  RET no 
Q9NYE8_HUMAN TGFB1-induced anti-apoptotic factor 1  TIAF1 yes 
RHG31_HUMAN Rho GTPase activating protein 31  ARHGAP31 yes 
RL27_HUMAN ribosomal protein L27  RPL27 yes 
RRP5_HUMAN programmed cell death 11  PDCD11 yes 
SEC20_HUMAN BCL2/adenovirus E1B 19kDa interacting protein 1  BNIP1 yes 
SEMG2_HUMAN semenogelin II  SEMG2 no 
SH2D3_HUMAN SH2 domain containing 3C [ SH2D3C no 
SIT1_HUMAN signaling threshold regulating transmembrane adaptor 1  SIT1 no 
STP1_HUMAN transition protein 1 (during histone to protamine replacement)  TNP1 yes 
TBC3F_HUMAN TBC1 domain family, member 3F  TBC1D3F yes 
TRH_HUMAN thyrotropin-releasing hormone  TRH no 
VGFR3_HUMAN fms-related tyrosine kinase 4  FLT4 no 
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Additional File 8 
Table S5: Gene Ontology molecular function terms to classify large scale protein 
interactors. 
 
GO_ID MF term description Category 
GO:0060090 binding, bridging adaptor 
GO:0030674 protein binding, bridging adaptor 
GO:0032947 protein complex scaffold adaptor 
GO:0035591 signaling adaptor activity adaptor 
GO:0005078 MAP-kinase scaffold activity adaptor 
GO:0042169 SH2 domain binding adaptor 
GO:0017124 SH3 domain binding adaptor 
GO:0030159 receptor signaling complex scaffold activity adaptor 
GO:0008093 cytoskeletal adaptor activity adaptor 
GO:0003779 actin binding adaptor 
GO:0008092 cytoskeletal protein binding adaptor 
GO:0043028 cysteine-type endopeptidase regulator activity involved in 

apoptotic process 
caspase regulator 

GO:0043274 phospholipase binding enzyme-receptor binding  
GO:0050998 nitric-oxide synthase binding enzyme-receptor binding  
GO:0002020 protease binding enzyme-receptor binding  
GO:0019902 phosphatase binding enzyme-receptor binding  
GO:0019901 protein kinase binding, enzyme-receptor binding  
GO:0005102 receptor binding enzyme-receptor binding  
GO:0030695 GTPase regulator activity GTPase 
GO:0005083 small GTPase regulator activity GTPase 
GO:0005092 GDP-dissociation inhibitor activity GTPase 
GO:0005095 GTPase inhibitor activity GTPase 
GO:0005085 guanyl-nucleotide exchange factor activity GTPase 
GO:0005096 GTPase activator activity GTPase 
GO:0003924 GTPase activity GTPase 
GO:0051020 GTPase binding GTPase 
GO:0004672 protein kinase activity kinase 
GO:0019887 protein kinase regulator activity kinase regulator 
GO:0030295 protein kinase activator activity kinase regulator 
GO:0004860 protein kinase inhibitor activity kinase regulator 
GO:0004721 phosphoprotein phosphatase activity phosphatase 
GO:0019888 protein phosphatase regulator activity phosphatase regulator 
GO:0019208 phosphatase regulator activity phosphatase regulator 
GO:0019211 phosphatase activator activity phosphatase regulator 
GO:0019212 phosphatase inhibitor activity phosphatase regulator 
GO:0004620 phospholipase activity phospholipase 
GO:0019787 small conjugating protein ligase activity protein ligase 
GO:0004842 ubiquitin-protein ligase activity protein ligase 
GO:0019788 NEDD8 ligase activity protein ligase 
GO:0019789 SUMO ligase activity protein ligase 
GO:0004888 transmembrane signaling receptor activity receptor 
GO:0005200 structural constituent of cytoskeleton structural 
GO:0005198 structural molecule activity structural 
GO:0000981 sequence-specific DNA binding RNA polymerase II 

transcription factor activity 
transcription 

GO:0003700 sequence-specific DNA binding transcription factor activity transcription 
GO:0000988 protein binding transcription factor activity transcription 
GO:0008134 transcription factor binding transcription 
GO:0003712 transcription cofactor activity transcription 
GO:0003713 transcription coactivator activity transcription 
GO:0003714 transcription corepressor activity transcription 
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GO:0000989 transcription factor binding transcription factor activity transcription 
GO:0035257 nuclear hormone receptor binding transcription 
GO:0035035 histone acetyltransferase binding transcription, chromatin 

organization 
GO:0004407 histone deacetylase activity transcription, chromatin 

organization 
GO:0004402 histone acetyltransferase activity transcription, chromatin 

organization 
GO:0042054 histone methyltransferase activity transcription, chromatin 

organization 
GO:0042393 histone binding transcription, chromatin 

organization 
GO:0042826 histone deacetylase binding transcription, chromatin 

organization 
GO:0003682 chromatin binding transcription, chromatin 

organization 
GO:0022857 transmembrane transporter activity transporter 
GO:0008565 protein transporter activity transporter 
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ABSTRACT
Summary: Gene regulatory network assembly and analysis requires
high quality knowledge sources that cover functional aspects of the
various components of the gene regulatory machinery. A multiplicity
of resources exists with information about mammalian transcription
factors (TFs), yet only few of these provide sufficiently accurate
classifications of the functional roles of individual TFs, or standardized
evidence that would justify the information on which these functional
classifications are based. We compiled the list of all putative TFs from
9 different resources, and checked available literature for references
that support their function as a true sequence-specific DNA-binding
TF (DbTF). The results are available in the TFcheckpoint database,
an exhaustive collection of TFs annotated according to experimental
and other evidence on their function as true DbTFs. TFcheckpoint.org
provides a high quality and comprehensive knowledge source for
genome scale regulatory network studies.
Availability: The TFcheckpoint database is freely available at
www.tfcheckpoint.org
Contact: martin.kuiper@ntnu.no
Supplementary material: Supplementary information is available at
Bioinformatics online.

1 INTRODUCTION
Transcription factors (TFs) lie at the basis of gene-expression

diversity in different cell-types and conditions. TFs constitute

key gene regulatory components that usually participate in

large multiprotein-DNA complexes, where they guide RNA

Polymerase (i.e. RNAP I, II and III) activity and regulate the

onset and rate of RNA synthesis. These protein complexes

may include general transcription factors (GTFs) that bind to

core-promoter DNA; general co-factors that bind to GTFs to

form a pre-initiation transcription complex; specific DNA-binding

transcription factors and factors that lack DNA-binding domains

but exert their regulatory roles through interaction with other

∗authors contributed equally
†to whom correspondence should be addressed

proteins in the transcription complex. This last class of protein-

interacting transcription regulators includes co-activators, co-

repressors, histone modifiers and chromatin remodeling proteins

(Lee and Young, 2000).

The DNA-binding transcription factors (DbTFs) play a central

role in specifying which genes are transcribed, as they guide

the transcription machinery to distinct target genes by binding to

specific gene regulatory elements located in proximal promoters as

well as in distal enhancer regions (Mitchell and Tjian, 1989). The

DbTF proteins that regulate RNA Polymerase II (RNAP II) enjoy a

special focus in gene regulatory network building due to their strong

ability to explain the protein coding gene expression landscape

of biological responses. Access to accurate and genome-scale

knowledge concerning these DbTFs therefore is of key importance.

Multiple resources with knowledge about mammalian transcription

factors exist (Harris et al., 2004; Fulton et al., 2009; Kummerfeld

and Teichmann, 2006; Messina et al., 2004; Ravasi et al., 2010;

Sandelin et al., 2004; Schaefer et al., 2011; Vaquerizas et al.,
2009; Zhang et al., 2012), however, we observed that 1) most

of them do not distinguish well between true DbTFs, protein-

interacting TFs and general TFs and 2) only in a minority of

cases do they provide standardized evidence for the functional role

of the TFs. Because of this, users of these resources will only

have an obscured view at the domain of DbTFs. Here we present

TFcheckpoint (www.tfcheckpoint.org), a comprehensive repository

of human, mouse and rat TF candidates. All entries have been

manually checked for literature information pertaining to their

potential biological function as DbTFs. The database serves as a

checkpoint for TF information, is freely available and supports ID

or name searching, browsing and bulk download.

2 RESULTS
2.1 Database content
TFcheckpoint contains the cumulative inventory of 9 major TF

information sources (Fig. 1 and Supplementary Material), and we

manually checked each of these entries for literature describing

evidence for RNAP II-regulating DNA binding transcription factors,

c© Oxford University Press 2005. 1
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Fig. 1. TF candidate and associated literature references. For each

resource, the total numbers of TF entries (light grey) and TF entries with

literature references (dark grey) are given. For GOC data, all unique proteins

annotated to ”Sequence specific DNA-binding transcription factor activity

(GO:0003700)” or any of its children, are listed. The bar to the far right

indicates 3462 unique TF entries in TFcheckpoint; 983 of these (adjacent

black bar) were deemed to be true DbTFs.

for human, mouse or rat. The evidence that we selected should at

least support Gene Ontology term ”Sequence-specific DNA-binding

RNA polymerase II transcription factor activity (GO:0000981)”,

taking this as the minimum defining term for a true RNAPII

regulating DbTF. In general we selected the first PubMed paper(s)

that showed satisfactory evidence for a specific TF (for details see

Supplementary Material).

We assembled a list of 3462 putative TFs from the above resources

(Fig 1). We have used orthology mappings from UniProt to identify

corresponding gene Entrez IDs from human, rat and mouse. For

983 proteins we could identify one or more relevant papers with

the evidence for a DbTF, yielding a total of 1072 unique PubMed

references. 824 DbTFs are supported by literature references with

experimental evidence, whereas a further 154 are supported by

author statements and a final 5 are supported by sequence based

analysis. The full list and the literature reference results are available

from the TFcheckpoint database.

The availability of high quality and exhaustive information at

one central place facilitates the access by the global scientific

community. We are currently working together with the Gene

Ontology Consortium to develop and apply general standards for

TF annotation and merge our findings with the GO database (Harris

et al., 2004).

2.2 Database user interface
TFcheckpoint is powered by MySQL and accessible through

a web interface created with Joomla (http://www.joomla.org),

implementing HTML and PHP scripts. The database is hosted on

an apache server at the Norwegian data infrastructure Norstore

(http://www.norstore.no), and available at www.tfcheckpoint.org.

The database can be used for simple browsing of all 3462 candidate

TFs as well as the subset of DbTFs with literature evidence. For each

DbTF the literature reference(s) and information about the original

TF candidate resource that we obtained it from are provided. All TF

entries are linked to Entrez and UniProt IDs. The NCBI official gene

symbol is used as a primary key, but the data can also be searched for

any of the NCBI provided synonyms, as well as Entrez and UniProt

identifiers. All data is also downloadable as a tab-delimited text file.

3 CONCLUSION
A literature-based exhaustively curated list of transcription factors is

an invaluable resource for researchers working on gene regulatory

mechanisms. The ENCODE project is targeting the generation

of evidenice for some 3000 putative TFs (ENCODE Project

Consortium et al., 2012). Our current list of curated TFs provides a

reference both for small scale experiments and genome-scale studies

where researchers either need to verify predicted lists of TFs even

before characterizing the role of these regulatory proteins (Choi

et al., 2006; Gray et al., 2004) or use background knowledge of TFs

to infer gene regulatory networks (Ye et al., 2009). By ensuring that

these annotations become part of the GO database this knowledge

will become available to all analysis approaches based on Gene

Ontology knowledge.
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Supplementary Material 
Introduction: 
In this document we provide additional information about the different sources that we 
checked to obtain the input list of candidate transcription factors (TFs) for the 
TFcheckpoint database. In addition, we provide some details about the text curation effort 
that we undertook to establish the existence of experimental evidence that would support a 
DNA-binding transcription factor (DbTF) classification of the putative TFs.  
 

a) Overview of TF-data sources 

We built a cumulative list of putative TFs by collecting all entries marked as transcription 
factor from sources with mammalian TFs (see Supplementary Table 1). This provided a list 
of 3462 unique putative TFs that we next checked for functional evidence in literature. 
 
Supplementary Table 1. Transcription factor sources. 

Sources Entries Species URL PubMed / Version / Date 

TFCat (Fulton, et 
al., 2009) 

1052 human, 
mouse, rat 

http://www.tfcat.ca/ PMID: 19284633/ Release 1.0 / 
March 12, 2009 

JASPAR 
(Sandelin, et al., 
2004) 

115 human, 
mouse, rat 

http://jaspar.cgb.ki.se/ PMID: 18006571 / October 12, 
2009 

DBD 
(Kummerfeld and 
Teichmann, 
2006) 

1395 human, 
mouse, rat 

http://www.transcription
factor.org/index.cgi?Ho
me   

PMID: 16381970 / Release 2.0 

ORFeome 
(Messina, et al., 
2004) 

1770 human  PMID: 15489324 / October, 2004 

AnimalTFDB 
(Zhang, et al., 
2011) 

1681 human, 
mouse, rat 

http://115.156.249.50/TF
DB/index.php 

PMID: 22080564 / November 12, 
2011 

Vaquerizas et al 
(Vaquerizas, et 
al., 2009) 

1909 human  PMID: 19274049 / April, 2009 

Ravasi et al 
(Ravasi, et al., 
2010) 

1967 human, 
mouse 

 PMID: 20211142 / March 05, 2010 

TcoF-DB 
(Schaefer, et al., 
2011) 

1860 human http://cbrc.kaust.edu.sa/t
cof/index.php 
 

PMID: 20965969 / October 2010 

GOC (Harris, et 
al., 2004) 

1120 Human, 
mouse, rat 

http://amigo.geneontolog
y.org  

PMID: 10802651 / February 16, 
2013 

 
Data from 9 sources (column 1) were downloaded and used to assemble a comprehensive 
list of proposed TFs. The table shows the identifier(s) of the source; the number of unique 
entries obtained from that source, the species, the URL if the source is a database, the 
PubMed ID of the appropriate reference and the time of download.   
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b) DbTF annotation procedure  
 
A DbTF by definition binds to specific DNA sequences and regulates the transcription of 
the gene that it binds to. Therefore, in our DbTF annotation procedure we considered the 
following two functional properties as the minimum criteria to qualify a protein as DbTF: 

i) there is evidence that the protein binds to specific DNA sequences and 
ii) the protein has been demonstrated to be involved in RNAPII dependent 
regulation of transcription.  

Next, we compiled a list of experimental assays for protein-DNA interaction and 
transcription regulation in order to identify the above evidence types for TFs in scientific 
publications. 
 
Then we looked for specific scientific publications that would contain evidence to qualify 
TFs according to our DbTF annotation criteria. We started checking the already existing TF 
annotations by inspecting the literature that their annotations referred to. The majority of 
these existing annotations came from GOC (174 DbTFs), JASPAR (112 DbTFs) and TFCat 
(231 DbTFs). Next, we searched the literature for experimental evidence supporting the 
remaining TF candidates, by performing searches for gene names in the following 
resources: UniProt (http://www.uniprot.org/), NCBI’s Entrez Gene (Maglott, et al., 2007), 
iHOP (Hoffmann and Valencia, 2004), Gene Cards (Safran, et al., 2002), and NCBI’s 
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). This yielded additional literature 
references for 466 DbTFs.  
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Abstract 
Transcription factors control which information in a genome becomes transcribed in order 
to produce RNAs that function in the biological systems of cells and organisms. Reliable 
and comprehensive information about transcription factors is invaluable for large-scale 
network based studies. However, existing transcription factor knowledge bases are still 
lacking in well documented functional information.  

Here we provide guidelines for a curation strategy, which constitutes a robust framework 
for using the controlled vocabularies defined by the Gene Ontology Consortium (GOC) to 
annotate specific DNA binding transcription factors based on experimental evidence 
reported in literature.  Our standardized protocol and workflow for annotating specific 
DNA binding RNA polymerase II transcription factors (DbTFs) is designed to document 
high quality and decisive evidence from valid experimental methods. Within a 
collaborative biocuration effort involving the user community, we are now in the process 
of exhaustively annotating the full repertoire of human, mouse and rat proteins that 
qualify as DbTFs in as much as they are experimentally documented in the biomedical 
literature today.  The completion of this task will significantly enrich Gene Ontology 
based information resources for the research community. 

 

Introduction 
Specific gene regulation mechanisms 
determine which part of the genome 
becomes transcribed in order to 
provide the active molecular parts of 
living organisms in various 
environmental conditions. Central in 
these mechanisms are multiprotein 
complexes present at the regulatory 
regions of genes that determine onset 
and rate of RNA synthesis by 
regulating RNA polymerase activity  
(1, 2). These multiprotein complexes 
comprise general transcription 
factors (GTFs), general co-factors 
(3), RNA polymerase II (RNAP II) 
sequence-specific DNA binding 
transcription factors (DbTFs) (4), 

and a large array of transcription 
factors that lack DNA-binding 
activity but exert their regulatory 
roles through protein interaction with 
the aforementioned proteins and that 
include co-activators, co-repressors, 
histone modifiers and chromatin 
remodeling proteins (1, 2). GTFs 
bind to core-promoter DNA where 
they constitute pre-initiation 
transcription complexes (PICs), in 
concert with general co-factors, 
whereas DbTFs bind to gene-specific 
proximal and distal gene regulatory 
regions. RNAP II, one of the three 
nuclear RNA polymerases (RNAP I, 
II and III) involved in transcription 
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of mammalian genes, draws special 
attention in studies directed at gene 
regulatory mechanisms since it is 
responsible for transcribing protein-
coding genes as well as miRNA 
genes (5). 

Due to their selective binding within 
regulatory regions of distinct genes, 
the DbTFs play decisive roles in 
directing the assembly of the 
multiprotein transcription machinery 
to a particular subset of genes. This 
assembly can either be followed by 
immediate RNAP II dependent 
transcription or it can result in 
promoter-proximal pausing of RNAP 
II that can subsequently be released 
into active transcription triggered by 
either DbTFs or by other 
mechanisms (6, 1, 7). DbTFs also 
play a central role in transcription 
repression either by competing with 
activating DbTFs for DNA binding 
or by recruiting transcriptional co-
repressors (8, 2). Through these 
functions, DbTFs link the 
phenotypical state of the cell - 
reflected in abundance and activation 
state of proteins in the transcriptional 
machinery - to the decoding of 
regulatory information embedded 
within the genome sequence. Thus, 
the DbTFs are a point of 
convergence for mechanisms 
involved in upward causation, i.e. the 
flow of information from genome to 

phenome (central dogma), as well as 
in downward causation, which 
enables the organism to respond to 
cues from the extrinsic and intrinsic 
environment  (9).  

Current estimates suggest that the 
human genome contains ~1900 
DbTF-coding genes (10). With the 
increasing trend to pursue systems-
level understanding of gene 
regulatory networks (11) it is of key 
importance to have available 
genome-wide and accurate 
information concerning DbTFs 
including their specific roles in 
transcription regulation, their target 
genes (TGs) and their expression 
patterns related to cell type and to 
developmental as well as to normal- 
and pathophysiological processes. 
This need for genome-wide 
information has sparked among 
others the ENCODE project, an 
initiative to identify all functional 
elements in the human genome 
sequence as well as regulatory 
interactions between TFs and their 
transcription factor binding sites 
(TFBS) (12). Thus, experimental 
data will continue to become 
available in ever increasing volumes, 
and subsequent comprehensive 
annotation of functional aspects of 
DbTFs in public databases will be of 
high value for ongoing and future 
gene regulatory studies. 
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Gene Ontology (GO) provides a 
common vocabulary for the 
functional description of genes and 
gene products and consists of three 
sub-ontologies: Biological Process 
(BP), Molecular Function (MF) and 
Cellular Component (CC) (13). The 
Gene Ontology Consortium (GOC) 
provides high quality classifications 
for types of transcription factors and 
captures the supporting evidence for 
the assignment of classes to gene 
products. Recently (2010-2011) the 
GOC undertook a major 
reorganization of the representation 
of transcription factors within GO to 
bring this area up to date with current 
knowledge. This process generated a 
more accurate ontology structure 
utilizing newly introduced 
definitions to define precise 
relationships between terms (14). For 
example, since nucleic acid-binding 
transcription factors must bind 
nucleic acid as part of their function, 
Molecular Function (MF) terms for 
types of “nucleic acid binding 
transcription factor activity” have 
“has_part” relationships to the 
appropriate MF terms for “nucleic 
acid binding” (e.g. “sequence-
specific DNA binding RNA 
polymerase II transcription factor 
activity” (GO:0000981) has_part 
“RNA polymerase II regulatory 
region sequence-specific DNA 
binding” (GO:0000977)).Similarly, 

MF “transcription factor activity” 
terms (e.g. “sequence-specific DNA 
binding RNA polymerase II 
transcription factor activity” 
(GO:0000981)) have “part_of” 
relationships to appropriate 
Biological Process (BP) terms for 
“regulation of transcription” (e.g. 
“regulation of transcription from 
RNA polymerase II promoter” 
(GO:0006357)), since another 
required aspect of a DNA-binding 
transcription factor lies in its role in 
regulating transcription. These 
“part_of” relationships are shown in 
Figure 1.   

Today1, GOC provides annotations 
that allow for identification of ~300  
human, mouse, and rat DbTFs which 
is about 15% of the expected DbTFs  
(10). A mere  ~200 of these are 
presently supported by experimental 
evidence, while ~100 are annotated 
with evidence based on 
computational prediction, sequence 
and structure similarity or author 
statement1. There are several 
mammalian DbTF databases, 
including TFcat (15), JASPAR (16), 
and TFe (17) that also hold 
experimentally documented DbTF-
information based on cited scientific 
literature. But the information in 
these databases lacks the informative 
annotations founded on ontologies 

                                                            
1 GO database release on 16th Feb. 2013 
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and evidence codes as provided by 
the GOC and necessary for rigorous 
computational reasoning and 
analysis. 

The above findings suggest that to 
date no single comprehensive 
information resource for mammalian 
DbTFs exists with the level of 
coverage and high-quality annotation 
that is needed for genome-scale data 
analysis and interpretation. The GOC 
has standard procedures for 
annotating proteins, and their 
database is authoritative in providing 
comprehensive annotations to the 
myriad of tools that use GO 
information for data analysis. 
However, the capacity of expert 
curators at the GOC is presently not 
scaled for or focused on dedicated 
efforts to comprehensively annotate 
one particular functional protein 
class. Therefore, we have embarked 
on a collaborative effort involving 
community users and GOC members 
to exhaustively curate experimentally 
documented mammalian DbTFs. 
Similar to other sub-domain 
annotation initiatives (18, 19), our 
first aim was to develop specific  
guidelines for curating 
experimentally documented DbTFs 
from literature. This included the 
assembly of a list of experimental 
assays that would qualify to provide 
verifiable functional evidence for 
genuine DbTFs. Here, we provide a 

detailed report in the form of a 
comprehensive curation protocol, 
based on which we currently are 
engaged in a focused effort to curate 
all DbTFs from a collection of 
candidate proteins compiled from the 
major TF information sources. A 
database providing detailed 
information about TF information 
sources and assembled DbTF 
documentation is available at 
www.tfcheckpoint.org.  

Creation of annotations for 
sequence specific DNA 
binding RNAPII 
Transcription Factors 
(DbTFs) 
Our curation guidelines for high 
quality annotation of experimentally 
verified DbTFs are designed to 
capture the essential functional 
capabilities of DbTFs and record 
published evidence using rigorous 
semantics. In the following sections 
we describe fundamental functional 
characteristics of a DbTF, how these 
characteristics can adequately be 
described by Gene Ontology terms, 
and how these terms and evidence 
codes can be asserted based on 
experimental work reported in 
literature. The assembled procedure 
facilitates a precise representation of 
DbTF functional attributes using the 
standard GOC defined gene-
association file format (GAF2.0; 
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http://www.geneontology.org/GO.for
mat.gaf-2_0.shtml) and the PSI-MI 
data exchange format used for 
recording interaction data (20). A 
detailed DbTF annotation guideline 
document is provided in 
Supplementary material. 

Criteria that qualify a DbTF 
A DbTF is a DNA binding 
transcription factor that binds to a 
specific DNA sequence and regulates 
the transcription of the associated 
gene. The specific DNA sequences 
bound by DbTFs are termed 
transcription factor binding sites 
(TFBS) and are located in gene 
regulatory regions either upstream 
and proximal to the core promoter, or 
in more distal upstream or 
downstream enhancer regions. Once 
a DbTF recognizes a TFBS it may 
recruit other accessory factors or 
RNAPII or it may interfere with 
binding of other regulatory proteins 
to regulate the expression of the 
target gene. This means that a DbTF 
must exhibit both DNA-binding and 
transcription regulation capacity. 
Therefore, the minimum criteria to 
qualify a protein as DbTF for 
RNAPII are that it: i) binds to 
specific DNA sequences in gene 
regulatory regions and ii) is involved 
in RNAPII-dependent regulation of 
transcription. It is evident that in 
order to capture these functional 

aspects accurately and efficiently, the 
specific Gene Ontology terms that 
substantiate these assertions need to 
be precisely defined. These GO 
terms must address both “sequence 
specific DNA binding” and 
“transcription regulation” capabilities 
accurately. In the following sections, 
we provide a detailed reasoning 
behind the selection of specific GO 
terms of different granularity as well 
as assignment of GO evidence codes 
and experimental assays that are 
considered adequate and necessary 
for creating a DbTF annotation.  
 

Gene Ontology terms used for 

DbTF annotation 
Specific DNA binding  

To capture the capability of a protein 
to bind to specific DNA sequences, 
GO molecular function (MF) terms 
are used that describe “sequence-
specific DNA-binding” such as 
GO:0043565 (sequence-specific 
DNA binding), and  GO:0000977 
(RNA polymerase II regulatory 
region sequence-specific DNA 
binding) of which the latter depicts 
binding to any portion of the 
regulatory sequence for a gene 
transcribed by RNA polymerase II. 
Whenever information is available 
indicating whether the protein binds 
proximal or distal regulatory regions,
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the terms GO:0000978 (RNA 
polymerase II core promoter 
proximal region sequence-specific 
DNA binding) or GO:0000980 (RNA 
polymerase II distal enhancer 
sequence-specific DNA binding) are 
used (see Figure 1 A, terms colored 
yellow). 
 
Involvement in RNAPII dependent 
regulation of transcription  
The involvement of a protein in 
transcription regulation is well 
captured by the GO biological 
process (BP) terms GO:0006357 
(regulation of transcription from 
RNA polymerase II promoter) or any 
of its children that specify whether 
the protein is involved in positive or 
negative regulation of transcription 
(see Figure 1A, terms in blue).  
 
Sequence specific DNA binding 
RNAP II transcription factor activity  
The goal of this curation project is to 
assign a DNA binding transcription 
factor activity term, i.e. GO: 
0000981 (sequence-specific DNA 
binding RNA polymerase II 
transcription factor activity) or one 
of its children to appropriate DbTFs 
(Figure 1A, terms colored green). As 
indicated above, this requires that the 
composite functional aspects of 
DbTF proteins: DNA binding and 
transcription regulation; must each 
be represented by their proper MF 

and BP GO terms. These different 
aspects of DbTF activity:  DNA 
binding and involvement in 
transcriptional regulation are 
typically demonstrated in different 
experiments, sometimes not even 
presented in the same paper, so the 
annotations to DNA binding (MF) 
and transcriptional regulation (BP) 
terms are made separately, and only 
when both are assigned (each in their 
inherent logic of the GO-structure) 
can they be combined to infer DbTF 
activity molecular function terms 
(Table 1).  
The child terms of  GO: 0000981 are 
used to delineate whether the TF  
exerts its activity by binding to the 
promoter proximal region or  the 
distal enhancer , i.e. GO:0000982 
(RNA polymerase II core promoter 
proximal region sequence-specific 
DNA binding transcription factor 
activity) or GO:0003705 (sequence-
specific distal enhancer binding RNA 
polymerase II transcription factor 
activity) and  whether the result of 
binding is positive or negative 
regulation of target gene 
transcription e.g. GO:0001077 (RNA 
polymerase II core promoter 
proximal region sequence-specific 
DNA binding transcription factor 
activity involved in positive 
regulation of transcription) and 
GO:0001205 (RNA polymerase II 
distal enhancer sequence-specific 
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DNA binding transcription factor 
activity involved in positive 

regulation of transcription)

 
 
Table 1: Inference of DbTF activity terms from DNA binding- and transcription 
regulation terms. Each transcription factor activity term (green) is determined by the 
composite annotation of corresponding DNA binding term (yellow) and transcription 
regulation terms (blue).  
 

DNA 
binding 
terms (MF) 

Transcription regulation terms (BP) 

GO:0006357  
regulation of transcription 
from RNA polymerase II 
promoter 

GO:0045944  
positive regulation of 
transcription from RNA 
polymerase II promoter 

GO:0000122  
negative regulation of 
transcription from RNA 
polymerase II promoter 

GO:00043565 
sequence-
specific DNA 
binding 

GO: 0000981  
sequence-specific DNA 
binding RNA polymerase II 
transcription factor activity 

GO:0001228  
RNA polymerase II transcription 
regulatory region sequence-
specific DNA binding 
transcription factor activity 
involved in positive regulation 
of transcription 

GO:0001227  
 RNA polymerase II transcription 
regulatory region sequence-
specific DNA binding 
transcription factor activity 
involved in negative regulation 
of transcription 

GO:0000977  
RNA 
polymerase II 
regulatory 
region 
sequence-
specific DNA 
binding 

GO: 0000981  
sequence-specific DNA 
binding RNA polymerase II 
transcription factor activity 

GO:0001228  
RNA polymerase II transcription 
regulatory region sequence-
specific DNA binding 
transcription factor activity 
involved in positive regulation 
of transcription 

GO:0001227  
 RNA polymerase II transcription 
regulatory region sequence-
specific DNA binding 
transcription factor activity 
involved in negative regulation 
of transcription 

GO:0000978  
RNA 
polymerase II 
core promoter 
proximal region 
sequence-
specific DNA 
binding 

GO:0000982  
RNA polymerase II core 
promoter proximal region 
sequence-specific DNA 
binding transcription factor 
activity 

GO:0001077 
RNA polymerase II core 
promoter proximal region 
sequence-specific DNA binding 
transcription factor activity 
involved in positive regulation 
of transcription 

GO:0001078 
RNA polymerase II core 
promoter proximal region 
sequence-specific DNA binding 
transcription factor activity 
involved in negative regulation 
of transcription 

GO:0000980  
RNA 
polymerase II 
distal enhancer 
sequence-
specific DNA 
binding 

GO:0003705 
sequence-specific distal 
enhancer binding RNA 
polymerase II transcription 
factor activity 

GO:0001205  
RNA polymerase II distal 
enhancer sequence-specific 
DNA binding transcription factor 
activity involved in positive 
regulation of transcription 

GO:0001206  
RNA polymerase II distal 
enhancer sequence-specific 
DNA binding transcription factor 
activity involved in negative 
regulation of transcription 
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TF-binding and TF-binding TF 
activity  
Transcriptional regulation 
mechanisms are complex. Usually 
many TFs work together in concert 
to regulate transcription. In instances 
where the activity of a TF is reported 
to be dependent on interaction with 
another protein or multi-subunit 
complex, the protein-protein 
interaction is annotated using 
“transcription factor binding” 
molecular function GO terms as 
shown in Figure 1B (terms in 
yellow). Furthermore, a different set 

of “transcription factor activity” 
terms, i.e. GO:0001076 (RNA 
polymerase II transcription factor 
binding transcription factor activity) 
or any of  its children, is chosen 
reflecting the fact that the activity is 
dependent on binding to another TF 
(Figure 1B, terms with green color).  
Once TF-binding and transcription 
regulation are each annotated 
individually, the GO structure allows 
generating TF-binding TF activity 
annotations by combining the 
separate annotations (Table 2). 

 

Table 2. Inference of TF binding activity terms from TF binding and transcription 
regulation. Each TF-binding transcription factor activity term (green) is determined by 
the composite annotation of corresponding TF binding term (yellow) and transcription 
regulation term (blue).  
 

TF binding 
terms (MF) 

Transcription regulation terms (BP) 

GO:0006357  
regulation of transcription 
from RNA polymerase II 
promoter 

GO:0045944  
positive regulation of 
transcription from RNA 
polymerase II promoter 

GO:0000122  
negative regulation of 
transcription from RNA 
polymerase II promoter 

GO: 0008134  
Transcription 
factor binding 

 

GO: 0001076  
RNA polymerase II 
transcription factor binding 
transcription factor activity 

GO:0001190  

RNA polymerase II transcription 
factor binding transcription factor 
activity involved in positive 
regulation of transcription 

GO:0001191 

RNA polymerase II transcription 
factor binding transcription factor 
activity involved in negative 
regulation of transcription 

 

GO: 0001085  

RNA polymerase 
II transcription 
factor binding 

 

GO: 0001076  
RNA polymerase II 
transcription factor binding 
transcription factor activity 

GO:0001190  

RNA polymerase II transcription 
factor binding transcription factor 
activity involved in positive 
regulation of transcription 

GO:0001191 

RNA polymerase II transcription 
factor binding transcription factor 
activity involved in negative 
regulation of transcription 
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When the functional unit of a TF is a 
complex 
In instances where the complex is a 
homodimer, or higher order multimer 
of the same protein, there are no 
special annotation issues as all of the 
activities demonstrated are properties 
of the same gene product. However, 
when the functional unit is a 
heterodimer or other multi-subunit 
complex, then there are some 
additional considerations for 
annotation.  
 
The “contributes to” qualifier is 
specifically intended for the 
annotation of functions that occur in 
the context of complexes, rather than 
being an activity of a single subunit 
within the complex. In the case of a 
heterodimer, there are times where 
one of the two proteins does not bind 
DNA on its own. However, in some 
cases a subunit that does not bind 
DNA independently can be shown to 
contribute to the sequence specificity 
of binding when present within a 
heterodimer.  In this situation, the 
subunit that does not bind DNA 
alone could be annotated to 
appropriate “sequence-specific DNA 
binding” terms (Figure 1A, in 

yellow) using the qualifier 
“contributes to” to indicate that it 
contributes to the DNA binding of 
the heterodimer. More generally, the 
“contributes to” qualifier can be used 
in conjunction with any MF term, 
including the “transcription factor 
activity” terms, to indicate that it 
contributes to that function within 
the context of a complex, even 
though it does not possess that 
activity independently. In contrast, in 
a multi-subunit TF where the DNA 
binding activity is known to be 
confined to one or more specific 
subunits, other subunits should not 
be annotated to a “DNA binding” 
term at all. 
 
For any subunit within a TF 
complex, it is appropriate to annotate 
all appropriate GO terms for which 
that function has been experimentally 
shown, either individually or as part 
of the complex indicated with the 
“contributes to” qualifier. Thus, in 
some cases, a given protein may be 
annotated both with a “sequence 
specific DNA binding RNAP II 
transcription factor activity” term as 
well as with a ‘TF binding RNAP II 
transcription factor activity’ term.     
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Evidence codes and 
experimental assays 
 
In accordance with the overall 
guidelines for GO annotations, each 
DbTF annotation must be qualified 
with an evidence code indicating 
how the annotation is supported by 
experimental evidence 
(http://www.geneontology.org/GO.e
vidence.shtml). The DbTF curation 
guidelines presented in the current 
work use one of the following GO 
evidence codes:  Inferred from Direct 
Assay (IDA), Inferred from Physical 
Interaction (IPI), Inferred from 
Mutant Phenotype (IMP), or Inferred 
by Curator (IC). 
When a single scientific paper 
comprises all experimental evidence 
necessary to support each of the 
annotations for ‘DNA- or TF-
binding’ and ‘Transcription 
regulation’, the evidence codes for 

these two annotations are transferred 
to the composite DbTF annotation to 
a MF “transcription factor activity” 
term (see Table 3). However, when 
the two different types of annotations 
(‘DNA - or ‘TF-binding’ and 
‘transcription regulation’) for a given 
TF cannot be generated from one 
single paper, the evidence code 
‘Inferred by Curator’ (IC) is used 
along with the GOC generated 
reference, GO_REF:0000036 
(http://www.geneontology.org/cgi-
bin/references.cgi#GO_REF:000003
6). The IC code, which requires use 
of the two GO IDs for the 
appropriate ‘binding’ and 
‘transcription regulation’ terms, 
indicates that GO-annotations based 
on evidence from two different 
sources have been combined by a 
curator to infer the appropriate 
transcription factor activity term. 

 

Table 3: Evidence code table. Transcription factor activity evidence code is selected 
based on the evidence for DNA-binding/TF-binding (MF) term and transcription 
regulation (BP) term.  

DNA binding/-
TF-binding 

Transcription 
regulation TF activity 

IDA IDA IDA/IC* 
IMP IMP IMP/IC* 
IDA IMP IDA, IMP/IC* 
IMP IDA IMP, IDA/IC* 
IPI** IDA IPI**, IDA/ IC* 

IC* if evidence for ‘DNA binding / TF-binding’ and ‘transcription regulation’ comes from two different 
papers 
IPI** applicable only for TF-binding terms 
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In order to provide for a uniform 
standard for evaluation of 
experimental evidence for DbTF 
annotations we surveyed several 
relevant resources defining 
experimental assays that can 
document TF function, including 
ORegAnno (21),  TRRD (22),  
RegulonDB (23), and the PSI-MI 
controlled vocabulary for molecular 
interactions (20).  
In the following sections we have 
compiled selected sets for the 
experimental assays that we deemed 
to be most relevant for annotation of 
DNA binding, TF binding and 
transcription regulation. PSI-MI-
unique identifiers are given wherever 
they exist. Augmentation of the PSI-
MI vocabulary to span a larger 
repertoire of TF-defining 
experiments is ongoing.  

Specific DNA-binding 
Experimental data documenting 
specific DNA binding is obtained 
from experiments that show in vitro 
binding of a TF to specific DNA 
sequences present in either cloned 
TG regulatory regions (proximal 
promoter and/or distal enhancer) or 
in synthetic DNA sequences 
representing canonical TF binding 
sites or specific TG regulatory 
regions (see Table 4 ). We have 
chosen not to rely on assays 
measuring in vivo TF-DNA 
interaction (e.g. the ChIP (Chromatin 

ImmunoPrecipitation) assay) because 
it is not possible to ascertain in these 
assays that the TF in question 
actually binds directly to DNA, or 
whether some other component in 
the in vivo system mediates the TF-
DNA-association. 
The in vitro assay that has been most 
frequently used for documenting 
sequence-specific binding of TF is 
the Electrophoretic Mobility Shift 
Assay (EMSA) (24). The most 
common variants of this assay 
present the TF in the form of  

i) nuclear extract from native 
tissue or cells 

ii) nuclear extracts from cells or 
tissue with ectopic expression 
of a TF  

iii) purified TF (in vitro 
translated or purified from 
cell extract) 

iv) nuclear extract from cells 
with ectopic expression of a 
mutated TF  

v) purified mutated TF (in vitro 
translated or purified from 
cell extract) 
 

When the TF is presented in any of 
the variants ii – v, the EMSA 
qualifies for annotation of a GO term 
for ‘specific DNA binding’. In the 
case where the TF is presented as a 
nuclear extract from native cells or 
tissue (i), we require that the specific 
TF is identified with an additional 
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experimental approach. This may 
involve the use of a TF-specific 
antibody (EMSA supershift), or 
specific competition experiments 
demonstrating that the EMSA gel 
shift is not abolished by competition 
with an unlabeled DNA probe with a 
point mutation in a known TFBS for 
this specific TF, whereas competition 
with unlabeled DNA probe 
containing the wild type TFBS does 
abolish the gel shift. If no additional 
experimental verification of the TF is 
reported, nuclear extract based 
EMSAs of type i) do not suffice to 
qualify DNA binding properties of a 

TF, and the experiment needs to be 
dismissed. Similarly, the other assays 
listed in Table 4 must have been 
performed in a manner that provides 
for identification of the specific TF 
tested and to assess specific 
interaction between this TF and a 
specified DNA probe. For MI:0114 
X-ray crystallography, to qualify as 
experimental evidence of a TFs DNA 
binding, it is required that the protein 
is co-crystallized with a DNA 
sequence that represents either a 
canonical TFBS or an authentic gene 
regulatory region. 

 

Table 4: Assays documenting specific DNA binding.  

Experimental assays Evidence code PSI-MI code 

Electrophoretic mobility shift assay (EMSA) IDA MI:0413 

Electrophoretic mobility supershift assay (EMSA supershift) IDA MI:0412 

Footprinting  IDA MI:0417 

DNase I footprinting (DNA footprint) IDA MI:0606 

Methylation interference assay (MIC) IDA MI:1189 

Ultraviolet (uv) footprinting (UV-footprint) IDA MI:1191 

Dimethylsulphate footprinting (DMS-footprint) IDA MI:0603 

Hydroxy radical footprinting (Hydroxy-footprint) IDA MI:1190 

Potassium permanganate footprinting (KMnO4-footprint) IDA MI:0604 

Affinity chromatography technology IDA MI:0004 

Pull down IDA MI:0096 

Southwestern blot assay (SW-blot) IDA 

In vitro evolution of nucleic acids (SELEX) IDA MI:0657 

X-ray crystallography IDA MI:0114 
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RNAP II transcription regulation 

The ‘transcription regulation’ terms 
need support from assays that 
document modulation of 
transcriptional process in response to 
TF action. These assays mainly fall 
into two groups: either reporter gene 
assays measuring the transcriptional 
regulatory effect of a TF on a 
regulatory region cloned upstream of 
a reporter gene (for instance 
luciferase, beta-galactosidase, or 
chloramphenicol acetyltransferase 
(CAT)), or measurement of 
expression levels of a target gene 
mRNA (see Table 5). Within each of 

the assays a variety of experimental 
strategies can allow for the 
identification of the specific TF (‘e.g. 
knock in’ (ectopic expression) and/or 
‘knock down’). Furthermore, the 
gene regulatory region can be 
presented and assessed in different 
ways in the reporter gene assays (e.g. 
‘canonical TFBS’ or ‘authentic TG 
promoter/enhancer’) and different 
methods used to assay mRNA 
expression levels of specific TGs.  
The combinations of different modes 
of TF and TG detection together 
define the GO evidence codes to be 
used (Table 5).  

 

Table 5. Reporter gene-based assays variants documenting transcription 
regulation. This table a decision matrix for selecting GO evidence codes based on the 
method used for TF identification (purple) and transcription regulation (green). 

 
 
       TF 
identifica
tion 

Transcription  regulation assays 

reporter gene assay TG expression assay 
canonic
al TFBS 

authentic 
TG 
promoter 

authentic TG 
promoter with 
TFBS point 
mutation 

authentic TG 
promoter with 
deletion 
mutations 

primer 
specific PCR 

northern 
blot 

ribonucle
ase assay 

wt TF 
overexpress
ion 

IDA IDA IDA IDA IDA IDA IDA 

mut TF 
overexpress
ion 

IMP IMP IMP IMP IMP IMP IMP 

TF knock 
down 
(RNAi/antis
ense RNA) 

IMP IMP IMP IMP IMP IMP IMP 

 

Whereas the experimental assays 
depicted in Table 5 are most often 
carried out by transfecting expression 
and reporter plasmids into cell line 

model systems, transcription 
regulation annotations can also be 
supported by whole organism 
experiments, e.g. knock out 
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mutations or RNAi knock down 
strategies. However, as such 
experiments do not by themselves 
prove a role in regulation of 
transcription; such annotations must 
be made with caution and will 
depend on a strict awareness of 
additional information such as e.g. 
the concomitant documentation of 
specific binding by the protein in 

question, to regulatory regions of an 
RNAP II regulated gene.  

TF-binding 

‘TF-binding’ specific terms are based 
on any assay that provides evidence 
for protein-protein interactions.  
Table 6 lists experimental assays and 
evidence codes that are eligible for 
TF-binding specific terms. 

 

Table 6: Assays documenting TF binding. 
 

Assays evidence Code PSI-MI code 

2-hybrid interactions IPI MI:0018 
Co-purification IPI, IDA MI:0004 
Co-immunoprecipitation IPI, IDA MI:0019 

 

Annotating target genes 
(TGs) 
An obvious important biological 
property of a TF lies in the particular 
TGs that it regulates. Proper 
recording of this information is of 
key importance for the building of 
gene regulatory networks. In studies 
of DbTF functionality, often one or 
several specific target genes will be 
identified and experimentally 
documented. The Gene Ontology 
Consortium has introduced an 
Annotation Extension field to capture 

additional information that provides 
more biological context to the GO 
annotation (GAF 2.0, 
http://www.geneontology.org/GO.for
mat.gaf-2_0.shtml). This field can be 
used to record information regarding 
specific TGs regulated by the TF that 
is being annotated. The TG is 
recorded in the Annotation Extension 
field for the BP transcription 
regulation GO term using the 
“has_regulation_target” relationship 
combined with the gene identifier(s) 
for the target gene(s). 
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Work flow of annotation  

The annotation workflow is depicted 
in Figure 2. An annotation effort 
typically starts with one of the 
scientific papers suggested in 
databases such as TFCat and 
JASPAR to document a candidate 

DbTF, or by searching for adequate 
literature in one of the following 
resources: UniProt 
(http://www.uniprot.org/), NCBI’s 
Entrez Gene (25), iHOP (26), Gene 
Cards (27), or NCBI’s PubMed 
(http://www.ncbi.nlm.nih.gov/pubme
d/).  

 

 
 
Figure 2: Sequence - specific DNA binding TF (DbTF) curation workflow. This workflow 
represents the step-by-step procedure for curating experimentally verified mammalian DbTFs from 
scientific publications. Selection of scientific publication from the literature corpus is the starting 
point of the curation procedure. From each relevant publication, DbTF specific GO-terms are 
annotated and recorded. 
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Each scientific paper is first checked 
for information providing correct 
identification of species origin of the 
TF studied. Since we are focusing on 
DbTFs from human, mouse, and rat 
studies, only papers allowing 
identification of a DbTF from one of 
these species will proceed to further 
curation. Then, adequate 
experimental evidence to support one 
or several DbTF annotations is 
searched.  If either TF species origin 
or sufficient experimental evidence is 
not identifiable, the curator returns to 
the scientific literature corpus to 

search for other suitable papers. 
When both criteria are fulfilled, the 
individual GO annotations (i.e. 
DNA-binding and/or TF-binding and 
transcription regulation) are assigned 
together with a supporting evidence 
code. Finally, the composite TF 
activity GO terms is inferred. TF 
annotation data are submitted to 
UniProt-GOA in the form of a gene 
association file (GAF2.0; 
http://www.geneontology.org/GO.for
mat.gaf-2_0.shtml) and will 
subsequently appear in the GOC 
database (Figure 3). 

 

 

 

Figure 3: UniProt-GOA screenshot of some of the DbTF annotations generated using the 
DbTF curation guidelines discussed here. 
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Discussion 

Benefits of a focused 
annotation project 
A comprehensive resource of high 
quality annotations of TFs is of high 
value both for small-scale 
experiments where it is important to 
select an optimal subset of relevant 
TFs as well as for genome-scale 
studies. In the latter case, access to 
extensive  background knowledge for 
TFs is essential to infer gene 
regulatory networks (28) or to design 
experiments to characterize this 
group of proteins as a functional 
class in a system-wide approach (29, 
30).  
Compilation and in-depth analysis of 
available information on 
transcription factors indicates that 
more than 800 mammalian DbTFs 
are experimentally documented in 
the scientific literature 
(www.tfcheckpoint.org). The current 
work aims to provide the foundation 
to curate this source of information 
and to record adequate GO 
annotations in compliance with the 
standards defined here. Currently2 
only 202 human, mouse, and rat 
proteins are annotated as DbTFs with 
GO:0000981 (or any of its child 
terms) supported by experimental 
evidence; meaning that some 600 
DbTFs still need to be processed. We 

                                                            
2 GO database release on 16th Feb. 2013 

aim to complete this task before the 
end of 2013. Even though the 
number of curators involved is small, 
the efficiency of this focused 
annotation project is high, since the 
number of different GO terms and 
evidence codes is limited and well 
defined, thus allowing each curator 
to process a relatively high number 
of scientific papers (typically 5 
papers or more per working day). 
 
Added value of rigorous 
classification of experimental 
assay requirements for the 
annotations 
The catalogue of experimental assays 
that qualify for supporting TF 
annotations presented here is 
assembled based on the extensive TF 
annotation experience in the 
collaborating organizations. This 
aspect of the annotation procedure 
improves the quality of the GO 
annotations since it provides a 
uniform standard for interpretation of 
evidence strength in published 
experimental work. As some of the 
assays presently are not adequately 
covered by PSI-MI vocabulary (20), 
part of our efforts have been directed 
to collaborate with the PSI-MI 
consortium to develop additional 
PSI-MI terms. 
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The proper documentation of 
experimental evidence for each TF 
annotation will enable us to work 
towards submitting  annotated data to 
the IntAct database (31). Moreover, 
we plan to make the experimental 
assay details for the TF annotations 
available to users via our TF 
database 
(http://www.tfcheckpoint.org/). This 
will enable users to select subsets of 
TFs based on the specific 
experimental methods used to 
characterize them.  
 
Concluding remarks 
The fact that of formalized 
knowledge representation metadata 
are rarely presented in biomedical 
publications often makes it difficult 
for a curator to extract accurate 
information for ontology- or 
structured vocabulary-annotation 
from natural language used in the 
literature. The GOC provides not 
only guidelines for the curation of 
gene products information from 
scientific publications, but also 
procedures for identification of the 
type of evidence that supports the 
curated information. Because of 
these standardized conventions, 
literature-curated data in the GO 
database is deemed to be of high 
quality. In the present work, we have 
established a comprehensive and, 
specific curation procedure for TFs 

of RNA polymerase II which, similar 
to other data standardization 
initiatives, provides details on the 
requirements to properly record an 
experimentally verified DbTF.  
The GOC is centrally involved in 
efforts to provide annotation 
guidelines for particular protein 
functional categories. However, the 
elaboration of procedures for specific 
tasks like the curation of distinct 
functional categories of proteins, or 
of biological process subdomains, is 
enhanced when experts in the 
respective fields are involved in the 
curation process. Moreover, the 
active participation from domain 
experts is greatly facilitated by 
generating detailed curation 
guidelines as vehicles for productive 
interactions. With the transcription 
factor curation effort presented here 
we wish to provide not only a greater 
number of high quality annotations 
for DbTFs and their TGs across three 
mammalian species, but also to 
exemplify the constructive use of 
detailed guidelines to facilitate 
collaborative biocuration efforts 
across institutions. 
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Curation workflow 

 
Identify TF species 

The current curation guidelines are focused on the 
mammalian species: human, mouse, rat 
 

The species that the TF (i.e. its coding sequence) 
originates from must be unequivocally determined. 
If the publication used for curation does not state this 
explicitly, TF references must be traced for species 
determination or authors contacted to obtain relevant 
information.   
If it is not possible to assert the species of the TF 
studied, then the paper cannot be used for curation 
 

 

 
 
                  

Figure 1: Curation workflow 

 

Create annotations for DNA binding, 
Transcription Regulation, TF binding  

Identify an experiment that qualifies for annotation.  
Use Assay look-up Tables (pages 2 - 6) to assess 
eligibility and GO evidence code.   
 

 Assign experimental assay term and 
PSI-MI code   

Use Assay look-up Tables (pages 2 - 6) to assign 
experimental assay, its variant and PSI-MI code 
 
 
Create annotations for DbTF activity or TF 
binding activity 
Create these terms by combining the DNA (or TF) 
binding and transcription regulation terms generated 
in the steps above.  

Use ‘Decision Tables’ for DNA binding TFs (Table 3, 
page 4) or TF binding TFs (Table 6, page 6)  
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DNA binding annotations 
 
 

Use Table 1 to identify valid experimental evidence for one of the 
GO terms for DNA-binding shown in Figure 2  

Whenever possible, choose GO:0000977 - RNA polymerase II 
regulatory region sequence-specific DNA binding or one of its 
children. Use GO:00043565 only when it is not possible to identify 
information stating that the specific DNA sequence bound by the 
protein is found in a gene regulatory region,  and GO:0000976 only 
when it is not possible to identify information stating that the 
regulatory region containing the DNA-sequence specifically bound 
by the protein is not part of a gene regulated by RNA polymerase 
II. 

DNA binding detection methods differ in how the TF is presented 
(as detailed for EMSA variants in Table 1). Presentation of TF as a 
nuclear extract from native cells or tissue is not sufficient for 
annotation of DNA binding (“No evid.”). In these instances we 
search for other experimental evidence that can identify the 
specific TF, e.g. TF-specific antibody in EMSA supershift.  

X-ray crystallography used as evidence for DNA binding requires 
that the TF is co-crystallized with a DNA sequence that represents 
either a canonical TFBS or an authentic gene regulatory region. 

 
 

 
 

Figure 2: GO terms for MF DNA binding 

 

 
Table 1:  Assays and evidence codes for Molecular Function DNA binding terms 

Experimental assays Variants 
Evidence 
code 

PSI-MI 
code 

Electrophoretic mobility shift assay (EMSA) nuclear extract from native tissue or cells No evid. MI:0413 
 nuclear extracts from cells or tissue with ectopic expression of a 

TF  
IDA MI:0413 

 purified TF (in vitro translated or purified from cell extract) IDA MI:0413 
 nuclear extract from cells with ectopic expression of a mutated 

TF  
IMP MI:0413 

 purified mutated TF (in vitro translated or purified from cell 
extract 

IMP MI:0413 

Electrophoretic mobility supershift assay (EMSA 
supershift) 

nuclear extract from native tissue or cells IDA MI:0412 

 nuclear extracts from cells or tissue with ectopic expression of a 
TF  

IDA MI:0412 

 purified TF (in vitro translated or purified from cell extract) IDA MI:0412 
 nuclear extract from cells with ectopic expression of a mutated 

TF  
IMP MI:0412 

 purified mutated TF (in vitro translated or purified from cell 
extract) 

IMP MI:0412 

Footprinting   IDA MI:0417 
DNase I footprinting (DNA footprint)  IDA MI:0606 
Methylation interference assay (MIC)  IDA MI:1189 
Ultraviolet (uv) footprinting (UV-footprint)  IDA MI:1191 
Dimethylsulphate footprinting (DMS-footprint)  IDA MI:0603 
Hydroxy radical footprinting (Hydroxy-footprint)  IDA MI:1190 
Potassium permanganate footprinting (KMnO4-
footprint) 

 IDA MI:0604 

Affinity chromatography technology  IDA MI:0004 
Pull down  IDA MI:0096 
Southwestern blot assay (SW-blot)  IDA  
In vitro evolution of nucleic acids (SELEX)  IDA MI:0657 
X-ray crystallography  IDA MI:0114 
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Transcription Regulation annotations 

 

 
Use Table 2 to identify valid experimental evidence for 
one of the GO terms for transcription regulation shown 
in Figure 3.  
 
Whenever possible, indicate whether the regulation is 
positive or negative, by using the adequate GO terms 
 
 
 
 
 

 

 
 

Figure 3: GO terms for BP transcription regulation 
 

 
 
Transcription regulation annotations can also be supported by whole organism 
experiments, e.g. knock out mutations or RNAi knock down strategies.  
 
Such experiments do not by themselves prove a role in regulation of transcription and 
must therefore be made with caution: they depend on a strict awareness of additional 
information such as the concomitant documentation of specific binding by the protein 
in question, to regulatory regions of an RNAP II regulated gene.  
 

 

 
 
 

 

 
Table 2:  Assays and evidence codes for Biological Process Transcription regulation terms 
 

TF identification 

Transcription regulation assays 

reporter gene assay TG expression assay 

canonical 
TFBS 

authentic 
TG 

promoter 

authentic 
TG 

promoter 
with TFBS 

point 
mutation 

authentic 
TG 

promoter 
with 

deletion 
mutations 

primer 
specific 
PCR              

northern 
blot 

ribo-
nuclease 
assay 

MI:0088 MI:0929 MI:0920 

wt TF overexpression IDA IDA IDA IDA IDA IDA IDA 

mut TF overexpression IMP IMP IMP IMP IMP IMP IMP 

TF knock down 
(RNAi/antisense RNA) IMP IMP IMP IMP IMP IMP IMP 
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DNA binding TF activity annotations 
 
 
Based on the protein’s existing GO 
annotations for specific DNA-binding 
(MF) and for transcription regulation 
(BP), create a DNA-binding TF activity 
(MF) annotation. 
 
Use Decision Table 3 to identify the 
correct GO term (shown in green in 
Figure 4). 
 

 
 

Figure 4: GO terms for MF DNA binding TF activity 

 
Assign evidence codes according to 
Table 4 – see next page. 
 

 

 
Table 3:  Decision table DNA binding TF activity 
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Evidence codes for DNA binding TF activity  

 
DNA binding (MF) and transcription regulation (BP) annotations from 
 

 same publication and with same evidence code (either both IDA or both 
IMP), - DNA binding TF activity (MF) term receives this GO evidence code 

 same publication but with different evidence codes (IDA and IMP),              
- DNA binding TF activity (MF) term is repeated twice, once with each of 
the two GO evidence codes 

 two different publications: use GO evidence code ‘IC: Inferred by curator’.  

 
To generate GO evidence code ‘IC’: 
The two GO identifiers (DNA binding and transcription regulation) assigned to the 
same TF from two different publications are inserted into the 'with/from' field.   
Reference GO_REF:0000036 is generated  
(see also:  http://www.geneontology.org/GO.evidence.shtml#ic) 
 
 
 
                   Table 4: Evidence code table 

DNA binding 
Transcription 
regulation TF activity 

IDA IDA IDA/IC 

IMP IMP IMP/IC 

IDA IMP IDA, IMP/IC 

IMP IDA IMP, IDA/IC 
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TF binding TF activity annotations 
 

Use Table 5 to identify valid 
experimental evidence for one 
of the GO annotations for TF-
binding shown in orange in 
Figure 6.  

The IPI evidence code indicates 
that the interaction is a direct 
1:1 interaction. The IDA 
evidence code should be used 
when the protein being 
annotated is shown to bind to a 
TF that is a complex. 

The TF binding partner(s) must 
be recorded in ‘with/from’ field 
(http://www.geneontology.org
/GO.evidence.shtml).  

 

Transcription regulation BP 
annotations (shown in blue in 
Figure 6) are made as described 
above for Transcription 
Regulation annotations, page 3. 

 

Use Decision Table 6 to identify 
the correct GO annotation for 
TF-binding TF activity shown in 
pink in Figure 6.  

For assignment of evidence code for TF 
binding activity see Table 7: 
when TF binding (MF) and transcription 
regulation (BP) annotations are from 
 

 same publication but with different 
evidence codes (IDA, IPI or IMP), - TF 
binding TF activity (MF) term is 
repeated twice or three times, once 
with each of the GO evidence codes 

 two different publications: use GO 
evidence code ‘IC: Inferred by curator’ 
(as described on page 5).  

 
 
 
 

 
Figure 6: GO terms for MF TF binding TF activity 

 
 
Table 5:  TF binding: assays 

Assays GO evidence 
Code 

PSI-MI code 

2-hybrid interactions IPI MI:0018 

Co-purification IPI, IDA MI:0004 

Co-immunoprecipitation IPI, IDA MI:0019 
 
 
Table 6:  Decision table TF binding TF activity 
 

 
 
Table 7: TF binding activity evidence code table 

TF-binding Transcription regulation TF activity 
IDA IDA IDA/IC 

IMP IMP IMP/IC 

IDA IMP IDA, IMP/IC 

IMP IDA IMP, IDA/IC 

IPI IDA IPI, IDA/ IC
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When the functional unit of a TF is a complex 
 
When the complex is a homodimer, or higher order multimer of the 
same protein, there are no special annotation issues as all of the 
activities demonstrated are properties of the same gene product.  

 

Additional considerations for heterodimers and other 
multisubunit complexes 

The “contributes to” qualifier must always be used to indicate the 
annotation of functions that occur in the context of complexes. The 
“contributes to” qualifier can be used in conjunction with any MF term, 
including the “transcription factor activity” terms, to indicate that it 
contributes to that function within the context of a complex, even 
though it does not possess that activity independently  

In the case of a heterodimer where one of the two proteins does not 
bind DNA on its own but is still found to contribute to the sequence 
specific binding of the other subunit within a heterodimer: the subunit 
that does not bind DNA alone can still be annotated to “sequence-
specific DNA binding”, or possibly a more specific term, using the 
qualifier “contributes to” to indicate that it contributes to the DNA 
binding of the heterodimer.  

In a multisubunit TF where the DNA binding activity is known to be 
confined to one or more specific subunits: other subunits should not be 
annotated to a “DNA binding” term. 

For any subunit within a TF complex, it is appropriate to annotate to all 
appropriate GO terms for which that function has been experimentally 
shown, either individually or as part of the complex indicated with the 
“contributes to” qualifier. Thus, in some cases, a given protein may be 
annotated both a ‘sequence specific DNA binding RNAP II transcription 
factor activity’ term as well as a ‘TF binding RNAP II transcription factor 
activity’ term. 
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Target gene (TG) annotations 

 
Use the ‘annotation extension’ column shown in Figure 7 to capture information for one or several 
TGs shown to be regulated by the TF whose function is annotated by using 
“has_regulation_target”, source of TG identifier and TG identifier, as explained below. 
 
 

 
 
Figure 7: DbTF sample annotations with TG information (rows 2 and 5) shown as “column 16” of 
the spread sheet GAF2.0 format; http://www.geneontology.org/GO.format.gaf-2_0.shtml. 
 

The relationship ‘’has_regulation_target’’ is used to capture TG information in the spread sheet row 
used to record the transcription regulation term. This row can either hold terms that have is_a 
relationships to the term “biological regulation” (i.e. are BP-terms), or MF terms representing regulators 
that are part of regulatory processes (i.e. have part_of relationships to a BP regulation term).  
In the examples shown in Figure 7, the transcriptiojn regulation term is GO:0045944 positive regulation 
of transcription from RNA polymerase II promoter. 
 
When we use the “has_regulation_target” relationship, we are saying that the GO term used for the 
annotation, e.g. “regulation of transcription from RNA polymerase II” or “sequence-specific DNA binding 
RNA polymerase II transcription factor activity” has a target, and we use a gene ID (URI) to specify what 
that target is. 
 
To indicate multiple TGs in the same annotation: separate each 'relationship(identifier)' pair with a pipe, 
“|”.  
 
Example: to capture the two TGs, the annotation extension column should contain: 
 

has_regulation_target(source:GeneURI1) | has_regulation_target (source:GeneURI2) 

where source can be UniProtKB, ENSEMBL, Entrez, or a model organism database, e.g. MGI, RGD, etc. 
and Gene URI1 and GeneURI2 denote identifiers from any of the above sources. 
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GO terms  
 

Transcription terms  
 

GO:0006357 regulation of transcription from RNA polymerase II promoter 
Definition: “Any process that modulates the frequency, rate or extent of 
transcription from an RNA polymerase II promoter.” 
 
GO:0045944 positive regulation of transcription from RNA polymerase II 
promoter 
Definition: “Any process that activates or increases the frequency, rate or extent 
of transcription from an RNA polymerase II promoter.” 
 
GO:0000122 negative regulation of transcription from RNA polymerase II 
promoter 
Definition: “Any process that stops, prevents, or reduces the frequency, rate or 
extent of transcription from an RNA polymerase II promoter.” 
 

 
 
DNA Binding terms  
 

GO:0043565 - sequence-specific DNA binding  
Definition: "Interacting selectively and non-covalently with DNA of a specific 
nucleotide composition, e.g. GC-rich DNA binding, or with a specific sequence 
motif or type of DNA e.g. promotor binding or rDNA binding."  
 
GO:0000977 - RNA polymerase II regulatory region sequence-specific DNA 
binding  
Definition: "Interacting selectively and non-covalently with a specific sequence of 
DNA that is part of a regulatory region that controls the transcription of a gene or 
cistron by RNA polymerase II."  
 
GO:0000978 - RNA polymerase II core promoter proximal region sequence-
specific DNA binding  
Definition: "Interacting selectively and non-covalently with a sequence of DNA 
that is in cis with and relatively close to a core promoter for RNA polymerase II."  
comment: Note that the phrase "upstream activating sequence", or UAS is often 
used in S. cerevisiae literature to refer to regulatory sequences that occur in the 
region upstream and proximal to the core promoter. In contrast, in bacteria such 
as E. coli, the phrase "upstream activating sequence", or UAS is a synonym for 
"enhancer". 

 
GO:0000980 - RNA polymerase II distal enhancer sequence-specific DNA binding  
Definition: "Interacting selectively and non-covalently with a RNA polymerase II 
(Pol II) distal enhancer. In mammalian cells, enhancers are distal sequences that 
increase the utilization of some promoters, and can function in either orientation 
and in any location (upstream or downstream) relative to the core promoter."  
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Sequence-specific DNA binding transcription factor activity terms  
 

 
GO: 0000981 - sequence-specific DNA binding RNA polymerase II transcription 
factor activity 
Definition: Interacting selectively and non-covalently with a specific DNA sequence in 
order to modulate transcription by RNA polymerase II. The transcription factor may 
or may not also interact selectively with a protein or macromolecular complex.  
GO:0001227 - RNA polymerase II transcription regulatory region sequence-specific 
DNA binding transcription factor activity involved in negative regulation of 
transcription 
Definition: Interacting selectively and non-covalently with a sequence of DNA that is 
in the regulatory region for RNA polymerase II (RNAP II) in order to stop, prevent, or 
reduce the frequency, rate or extent of transcription from an RNA polymerase II 
promoter.  
 

GO:0001228 - RNA polymerase II transcription regulatory region sequence-specific 
DNA binding transcription factor activity involved in positive regulation of 
transcription 
Definition: Interacting selectively and non-covalently with a sequence of DNA that is 
in the transcription regulatory region for RNA polymerase II (RNAP II) in order to 
activate or increase the frequency, rate or extent of transcription from the RNAP II 
promoter.  
 

GO:0000982 - RNA polymerase II core promoter proximal region sequence-specific 
DNA binding transcription factor activity 
Definition: Interacting selectively and non-covalently with a sequence of DNA that is 
in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in 
order to modulate transcription by RNAP II.  
 
GO:0001077- RNA polymerase II core promoter proximal region sequence-specific 
DNA binding transcription factor activity involved in positive regulation of 
transcription  
Definition : Interacting selectively and non-covalently with a sequence of DNA that is 
in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in 
order to activate or increase the frequency, rate or extent of transcription from the 
RNAP II promoter. 
 
GO:0001078- RNA polymerase II core promoter proximal region sequence-specific 
DNA binding transcription factor activity involved in negative regulation of 
transcription 
Definition: Interacting selectively and non-covalently with a sequence of DNA that is 
in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in 
order to stop, prevent, or reduce the frequency, rate or extent of transcription from 
the RNAP II promoter. 
 

GO:0003705 - sequence-specific distal enhancer binding RNA polymerase II 
transcription factor activity 
Definition: Interacting selectively and non-covalently with a sequence of DNA that is 
in a distal enhancer region for RNA polymerase II (RNAP II) in order to modulate 
transcription by RNAP II. 
 

GO:0001205 - RNA polymerase II distal enhancer sequence-specific DNA binding 
transcription factor activity involved in positive regulation of transcription. 
Definition: “Interacting selectively and non-covalently with a sequence of DNA that is 
in a distal enhancer region for RNA polymerase II (RNAP II) in order to activate or 
increase the frequency, rate or extent of transcription from the RNAP II promoter.” 
 



11 
 

Supplementary material Curation guidelines  

GO:0001206 - RNA polymerase II distal enhancer sequence-specific DNA binding 
transcription factor activity involved in negative regulation of transcription. 
Definition: “Interacting selectively and non-covalently with a sequence of DNA that is 
in a distal enhancer region for RNA polymerase II (RNAP II) in order to stop, prevent, 
or reduce the frequency, rate or extent of transcription from an RNA polymerase II 
promoter.” 

 
   Transcription factor binding terms 
 

GO:0008134 - Transcription factor binding (MF) 
Definition: Interacting selectively and non-covalently with a transcription factor, 
any protein required to initiate or regulate transcription. 
 
GO:0001085 - RNA polymerase II transcription factor binding (MF) 
Definition: Interacting selectively and non-covalently with an RNA polymerase II 
transcription factor, any protein required to initiate or regulate transcription by 
RNA polymerase II. 
 
 
 

Transcription factor binding transcription factor activity 
terms 
 

GO:0001076 - RNA polymerase II transcription factor binding transcription 
factor activity (BP) 
Definition: Interacting selectively and non-covalently with an RNA polymerase II 
transcription factor, which may be a single protein or a complex, in order to 
modulate transcription. A protein binding transcription factor may or may not 
also interact with the template nucleic acid (either DNA or RNA) as well. 
 
GO:0001190 - RNA polymerase II transcription factor binding transcription 
factor activity involved in positive regulation of transcription (BP) 
Definition: Interacting selectively and non-covalently with an RNA polymerase II 
transcription factor, which may be a single protein or a complex, in order to 
increase the frequency, rate or extent of transcription from an RNA polymerase II 
promoter. A protein binding transcription factor may or may not also interact 
with the template nucleic acid (either DNA or RNA) as well. 

 
GO:0001191 - RNA polymerase II transcription factor binding transcription 
factor activity involved in negative regulation of transcription (BP) 
Definition: Interacting selectively and non-covalently with an RNA polymerase II 
transcription factor, which may be a single protein or a complex, in order to stop, 
prevent, or reduce the frequency, rate or extent of transcription from an RNA 
polymerase II promoter. A protein binding transcription factor may or may not 
also interact with the template nucleic acid (either DNA or RNA) as well. 
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GOC Evidence Codes 
 

 
IDA – Inferred from direct assay 
Description (GOC): The IDA evidence code is used to indicate that a direct assay was carried out to 
determine the function, process, or component indicated by the GO term.  
 

IMP – Inferred from mutant phenotype 
Description (GOC): The IMP evidence code covers those cases when the function, process or cellular 
localization of a gene product is inferred based on differences in the function, process, or cellular 
localization between two different alleles of the corresponding gene. The IMP code is used for cases 
where one allele may be designated 'wild-type' and another as 'mutant'. It is also used in cases 
where allelic variation occurs naturally and no specific allele is designated as wild-type or mutant. 
 

IC - Inferred by Curator 
Description (GOC):  The IC evidence code is to be used for those cases where an annotation is not 
supported by any direct evidence, but can be reasonably inferred by a curator from other GO 
annotations, for which evidence is available. 
 

IPI - Inferred from Physical Interaction 
Description (GOC):  Covers physical interactions between the gene product of interest and another 
molecule (such as a protein, ion or complex). IPI can be thought of as a type of IDA, where the actual 
binding partner or target can be specified, using "with" in the with/from field. 
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