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Quantum spin Hall edge channels hold great promise as dissipation-less one-

dimensional conductors. However, the ideal quantized conductance of 2e2/h is only 

found in very short channels – in contradiction with the expected protection against 

backscattering of the topological insulator state. In this paper we show that enhancing 

the band gap does not improve quantization. When we instead alter the potential 

landscape by charging trap-states in the gate dielectric using gate training, we 

approach conductance quantization for macroscopically long channels. Effectively, the 

scattering length increases to 175 μm, more than one order of magnitude longer than 

in previous works for HgTe-based quantum wells. Our experiments show that the 

distortion of the potential landscape by impurities, leading to puddle formation in the 

narrow gap material, is the major obstacle for observing undisturbed quantum spin 

Hall edge channel transport.  
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Over a decade ago, the quantum spin Hall (QSH) effect was found in HgTe quantum wells 

(QWs) [1], which have become the prototype two-dimensional topological insulator [2-

7]. For QW thicknesses larger than 6.3 nm, the band structure of unstrained HgTe 

becomes topologically nontrivial, and a pair of counter propagating, spin-polarized [8] 

channels emerge on the edge of the sample [1]. In the ideal edge mode picture, the 

chemical potentials of a multi-terminal device can be calculated with the Landauer-

Büttiker formalism [9]. Thus, a 4-probe longitudinal resistance measurement on a six-

terminal Hall bar device yields a quantized conductance of 2 e2/h.  

This value, however, is only observed for channels of a few μm length [1]. For longer 

channels, the observed conductance drops considerably. This is a fundamental puzzle in 

the field, and a serious problem for potential device applications that require fully 

transmitting channels. Various explanations for the reduced conductance are discussed 

in literature [10-21]. Scattering on small charged islands (puddles) [17,20,21] captures 

best the observed weak temperature dependence [1,5], and is supported by scanning-

gate measurements [22]. In devices of the narrow-gap system HgTe, such puddles form 

mainly due to charged defects at the semiconductor-insulator interface and within the 

polycrystalline insulator itself.  The charge state of the defects determines the potential 

landscape.  

A schematic sketch of the potential landscape along the edge of a device is given in 

Figure 1(a). It is obvious that the edge channel conductance can be improved by 

increasing the band gap (right figure) or by flattening the potential landscape (left 

figure). In both cases the distance between areas where backscattering may be possible 

increases effectively. We study both mechanisms experimentally and find that for HgTe 

quantum well structures the flattening of the potential landscape provides a successful 

approach to achieve quantized conductance even in macroscopically large devices. 

First, we investigate the influence of the band gap size on the QSH conductance. 

Väyrynen et al. [17,20] predict an exponential decay of scattering from charge islands 

with increasing band gap and consequently a channel conductance which approaches 

the expected quantized value. We study this dependence on a set of five QWs A to E 
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with band gaps ranging from 14 to 55 meV, respectively.  The QW thicknesses vary 

between 7.5 and 9.8 nm. A variation of the band gap is achieved by growing the HgTe 

QW layer on substrates with different lateral lattice constant imposing either tensile or 

compressive strain. The strain level is determined by high resolution X-ray diffraction. 

This method of band gap engineering is explained in more detail in Ref. [23]. Each QW 

exhibits a Cd0.7Hg0.3Te top barrier of 16 to 18 nm. The relevant sample parameters are 

summarized in Table 1.  

For transport experiments, the samples are lithographically structured into six-terminal 

Hall bar devices equipped with a gold top gate. The top gate is separated from the 

semiconductor by a 110 nm thick amorphous SiO2/Si3N4 alternating multilayer stack of 

five periods. Fig. 1 (b) shows the band dispersion for the samples A through E obtained 

from an eight band k·p calculation for all samples [24]. The size of the gap is confirmed 

experimentally by temperature activated transport measurements (c.f. supplementary 

material Fig. S1).  

For each sample we investigate two devices with different distances between two 

neighbouring voltage probes. The effective edge channel length, ledge, between those 

contacts is either 620 or 58 μm. For the transport characterization we perform 

four-terminal measurements at 2K using standard ac techniques.  

The gate-dependent longitudinal resistance is shown in Fig. 1 (c) for each sample 

comparing the two device sizes. Note that for easier comparison the gate voltages VG 

are listed with respect to the voltage V0 where the resistance exhibits a maximum. This 

maximum characterizes the transition regime between n-type and p-type conductance 

for positive and negative VG, respectively.  

From the measurement of the longitudinal resistance [Fig. 1 (c)] it is not possible to draw 

any conclusion on the effect of an increased band gap on the conductance inside the 

band gap. The variations of maximum value in Rxx are random and independent of the 

gap size. Thus, we conclude that an increase of the band gap is not a determining factor 

for the scattering length in our devices. 
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Even though the conductance in the devices of Fig. 1 is much smaller than the expected 

conductance quantum, one can still make an argument that the current is carried by the 

edge states. Evidence can be found from comparing the resistance ratio, γG = Rxx58/Rxx620, 

between small and large device for each sample. Since the aspect ratio of length to width 

(l/w = 3) is the same for both device sizes, the resistance ratio would yield γG = 1 if the 

current is carried solely by bulk modes. However, if one expects an edge mode 

conductance where the existence of charge puddles introduces an ohmic behaviour, the 

channel length would determine γG, which yields an approximately ten times lower 

value: γG ≈ 58/620 ≈ 0.1. In Fig. 2 γG is plotted for all samples (A … E). One can clearly 

distinguish two regimes: First, the bulk conducting regime for large positive and negative 

VG where γG ranges around unity, and second, the band gap regime where γG approaches 

0.1, indicating a one-dimensional ohmic behaviour.  Note that the gate voltage region 

where γG = 0.1 represents the regime where edge channel transport dominates over 

bulk transport which not necessarily implies that the Fermi energy is located within the 

band gap over the entire voltage range. 

Another approach to improve the edge channel conductance is to modify the potential 

landscape. In a study on hysteretic effects in gate-dependent transport experiments we 

have previously established that in our devices surface defects and the polycrystalline 

insulator layer are the source for charge trap states in the vicinity of the semiconductor-

insulator interface [25]. As soon as VG exceeds a certain threshold, for positive or 

negative gate voltage, charges may tunnel from or into the QW and charge or discharge 

these trap states, respectively, which modifies the effective screening and thus the 

electrostatic potential landscape. The charging effect is hysteretic and determines the 

dependence of n on VG. We now use this memory effect to perform a controlled gate 

training to achieve an optimally homogeneous electrostatic potential landscape. In 

order to enhance the potential smoothening we use sample F, which has a thick top 

barrier (140 nm). A thick barrier moves the charged trap states further away from the 

QW, but should still allow for sufficient gating. Note that in order to avoid strain 

relaxation in the HgTe QW due to the thick top barrier layer, Zn was added to reduce 

the strain (cf. Table 1). For comparison, we perform the same gate training on sample D 
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with a much thinner HgCdZnTe top barrier (16 nm). For sample F, we additionally 

fabricated a micro-structured Hall bar with a 13 μm channel length between neighboring 

voltage probes, a device size which is still larger than the largest so far where we 

observed quantized edge channel conductance [26]. Note that for the devices in Ref. 

[26] a special wet-etching technique was applied to achieve to reduce the potential 

roughness in the vicinity of the edge channels. 

The gate training consists of the following procedure: Starting at zero gate voltage, VG is 

increased up to a certain negative voltage Vmax and then decreased back to zero. During 

both VG sweeps, the longitudinal resistance of the sample is monitored. This step is then 

repeated, scanning to a slightly more negative Vmax. A sequence of resistance traces 

obtained in this manner is shown for three device sizes of sample F in Fig. 3. The figure 

shows Rxx separated into the two sweep directions, zero to negative Vmax in left and the 

reverse direction in the right panel. The maximum negative Vmax for each sequence step 

is indicated by a colored bar.  

The measurement shows that there is a minimum in the sequence of resistance maxima 

for each sweep direction (indicated by a black dot in Fig. 3). Due to charging and 

discharging of charge puddles the traces for both sweep directions differ from each 

other. For our samples we find that a sweep back to zero exhibits the lowest values for 

Rmax, i.e., values which are closest to the expected h/2e2. In Fig. 4 (a) we plot the 

minimum conductance values Gmin = 1/ Rmax as a function of the Vmax value for which 

they were obtained.  

For the large device the minimum conductance reaches a value of approximately 0.4 

e2/h at Vmax = -5 V after optimal training, which is the largest observed so far for such a 

large device. The training effect is even more apparent for smaller devices. The 

conductance for the 58 μm device reaches 80% off of the expected conductance value, 

and training establishes successfully the expected quantized minimum conductance for 

the smallest device.  We have repeated the gate training for different cooling cycles and 

find that the minimum conductance reproduces very well [open and close dots in Fig. 4 

(a)]. All together, these results indicate that with a controlled gate training an optimized 
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potential landscape can be established which minimizes the scattering probability along 

an edge channel. Further charging again roughens the potential.  

Increasing the thickness of the top barrier turns out to be essential for effective gate 

training. In Fig. 4 (a) we also show gate training results for sample D which has a thin (16 

nm) top barrier. Even though the charging effect is observable for both devices (cf. the 

plot of the same data on a smaller scale in Fig. S2), the effect is hardly recognizable for 

sample D on the presented scale. We conclude that the close vicinity of individual trap 

states to the QW influences the roughness of the potential landscape significantly and 

makes gate training much less efficient. 

We now use the results of the gate training to estimate of the average distance between 

charge puddles which lead to backscattering. We consider an edge channel as a perfectly 

conducting one dimensional channel, which is intersected by charge puddles 

responsible for backscattering. Thus, we express the edge channel resistance as 

Redge = h/e2 (1 + ledge/λ), where λ is the average distance between two fully-dephasing 

scattering events. For small λ, the resistance is proportional to ledge (ohmic), while, when 

λ exceeds the device size, the channel resistance saturates at h/e2 (nonohmic). 

In Fig. 4 (b) we plot the observed minimal conductance as a function of channel length 

before (red dots) and after gate training (blue dots). To extract λ, we fit these data points 

using the above expression [G = 1/R = 2/Redge = 2e2/h(1 + ledge/λ)-1]. The red line, fitted 

to the initial minimum conductance (red dots), yields an average puddle distance of λ ≈ 

8 μm while after training λ increases to 175 μm (fit parameter for the blue line, 

optimized minimum conductance), with an error of ± 25 µm, determined by the accuracy 

of the fitting. For small λ, the data points can still be well represented by an ohmic 

behavior (dashed red line). However, as λ exceeds the device size, saturation to the 

expected quantized value becomes apparent, an observation which additionally 

demonstrates the occurrence of dominant edge channel transport. Our data points are 

in good agreement with our trial function which indicates that our assumptions are 

reasonable. We interpret the cutoff of the blue dashed line at 175 μm as reflecting the 
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intrinsic crystalline quality which limits the device size for the observation of quantized 

edge channel conductance. 

In comparison, recent work on the large-gap material WTe2 [27] finds saturation to 2 

e2/h only for channels of a few hundred nm, which gives rise to a λ only  of about 500 

nm. This again demonstrates that even for materials with a large band gap (WTe2: 100 

meV) potential fluctuations are the dominant factor which limits the conductance 

quantization. 

In conclusion, we have achieved optimized edge channel conductance for HgTe QW 

structures by controlled gate training. With this technique the long awaited use of 

quantized helical edge channel transport becomes feasible in macroscopic devices. 

Additionally, these results demonstrate the evidence for puddles as the major obstacle 

for the observation of quantized conductance in topologically protected helical edge 

channels. 
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Figure 1: a) Schematic sketch of the potential landscape along the edge channel for small 

(left) and large fluctuations (center), and an enlarged band gap (right). CB and VB denote 

the conduction and valence band, respectively. (b) Calculated band dispersions around 

the Γ-point of samples A through E. The arrow indicates the band gaps. (c) Longitudinal 

resistance as function of the gate voltage for samples A through E for large (red, ledge = 

620 µm) and small devices (blue, ledge = 58 µm) at T ≈ 2 K. The gate voltages VG are shifted 

by V0 corresponding to the resistance maximum.   

(a) 

(b) 

(c) 
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Figure 2 Resistance ratio γG = Rxx58/Rxx620 as function of gate voltage. Dashed lines 
indicate ideal values for pure sheet conductance (γG = 1) and pure edge conductance 
(γG = 0.1).  
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Figure 3: Gate training: Longitudinal resistance Rxx as a function of gate voltage at T = 
2K for (a) the large device (ledge = 620 μm), (b) the small (ledge = 58 μm) and (c) the micro 
device (ledge = 13 μm). Left and right panel represent different sweep directions, from 
zero to Vmax (indicated by a colored bar) and Vmax back to zero, respectively. Black dots 
mark the resistance maximum for each training sequence.   
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Figure 4: (a) Minimum conductance values of the corresponding maximum resistance 
(dots in Fig. 3) as a function of Vmax for all three channel lengths. Open and closed dots 
represent sample F and triangles sample D. Open dots are obtained from a second cool-
down. The dashed line marks the expected quantized conductance value of 2e2/h. (b) 
shows the conductance closest to the expected value of 2e2/h as a function of channel 
length for initial (red) and optimized (blue) minimum conductance (extracted from (a)). 
The solid line corresponds to a fit of the average scattering length within the edge 
channel, which yields λ = 8 μm (red) and 175 μm (blue). The dashed line represents the 
ohmic behaviour with Gmin ∝ 1/ledge.   

(a) 

(b) 
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 dins  

(nm) 

db  

(nm) 

dQW 

(nm) 

ε  

(%) 

EG 

(meV) 

barrier material 

A 110 17 8.8 -0.2 14 Hg0.3Cd0.7Te 

B 110 17 8.4 0.0 21 Hg0.3Cd0.7Te 

C 110 17 9.0 0.4 31 Hg0.3Cd0.7Te 

D 110 16 9.8 0.6 33 Hg0.3Cd0.7Te 

E 110 18 7.5 1.4 55 Hg0.3Cd0.41Zn0.29Te 

F 110 140 8.0 0.5 37 Hg0.3Cd0.57Zn0.13Te 

Table 1 Sample Parameters. Indicating the insulator (dins), top barrier (db), and quantum 
well thickness (dQW), the deduced strain (ε < 0: tensile; ε > 0: compressive), and the 
related band gap (EG). The last column gives the composition of the top barrier.  
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