
DISPERSION FORCES IN INHOMOGENEOUS PLANARLY LAYERED
MEDIA: A ONE-DIMENSIONAL MODEL FOR EFFECTIVE

POLARISABILITIES

A PREPRINT

J. Fiedler ∗
Physikalisches Institut

Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 3

79104 Freiburg, Germany
johannes.fiedler@physik.uni-freiburg.de

F. Spallek
Physikalisches Institut

Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 3

79104 Freiburg, Germany

P. Thiyam
Division of Theoretical Chemistry

Lund University
P.O. Box, S-22100 Lund, Sweden

C. Persson
Centre for Materials Science and Nanotechnology

Department of Physics
University of Oslo

P. O. Box 1048 Blindern
NO-0316 Oslo, Norway

M. Boström†
Department of Energy and Process Engineering

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

M. Walter‡§
Physikalisches Institut

Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 3

79104 Freiburg, Germany

S. Y. Buhmann ¶
Physikalisches Institut

Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 3

79104 Freiburg, Germany

June 5, 2019

ABSTRACT

Dispersion forces such as van der Waals forces between two microscopic particles, the Casimir–
Polder forces between a particle and a macroscopic object or the Casimir force between two dielectric
objects are well studied in vacuum. However, in realistic situations the interacting objects are often
embedded in an environmental medium. Such a solvent influences the induced dipole interaction.
With the framework of macroscopic quantum electrodynamics, these interactions are mediated via
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Figure 1: Sketch of the considered setups for the spherical problem and the one dimensional analogon: a) Two particles
embedded in a medium creating an Onsager’s real cavity with inhomogeneous dielectric profile; b) one-dimensional
analogon with planarly inhomogeneous profile; c) Two spherical nano-particles embedded in a medium with an
inhomogeneous cavity; d) the corresponding one-dimensional problem with two dielectric plates of finite thickness
embedded in a medium with inhomogeneous profile.

an exchange of virtual photons. Via this method the impact of a homogeneous solvent medium can
be expressed as local-field corrections leading to excess polarisabilities which have previously been
derived for hard boundary conditions. In order to develop a more realistic description, we investigate
on a one-dimensional analog system illustrating the influence of a continuous dielectric profile.

1 Introduction

Dispersion forces belong to the weakest forces in nature and are caused by the ground-state fluctuations of the
electromagnetic field [1]. In this description, these fluctuations induce dipole moments inside the considered objects
which can interact with other materials. Alternative accounts derive dispersion forces from position dependent ground-
state energies of the coupled field-matter system [2, 3]. The dispersion forces resulting from this process are classified
by three different types of interacting partners: the Casimir force which describes the interaction of two neutral
macroscopic dielectric objects, the van der Waals force acting between two polarisable particles and the Casimir–Polder
force connecting both by describing the interaction of a polarisable particle with a macroscopic dielectric body. During
recent years these forces were well studied in several experiments [4, 5, 6, 7] and in theory [2, 8, 9, 10]. However, all
these investigations were restricted to laboratory conditions by using vacuum chambers which remove any environment.

In natural situations, where these effects play an important role, such as the Gecko feet [11] or colloids [12], this
assumption is not valid any more. In principle, one can assume that an environmental medium results in a decrease of
the interaction caused by the screening by the medium of permittivity ε. This is expressed by a factor ε−1 leading to the
expected decrease of the potential.

Due to the presence of the particle, a Pauli exclusion cavity is formed [13] This has given rise to the development
of a cavity model [14] describing the boundaries of both medium and particle as hard discontinuous changes in the
permittivity. For the resulting excess polarisabilities, a spherical two- or three-layer system is considered for Onsager’s
real cavity model and the finite-size model, respectively. In the two layer case the particle is treated to be point-like
in the centre and the optical response is modified by the transmission of light through the boundary following Mie
reflection (Fig. 1 a). For larger objects, such as clusters or molecules, the particle’s extension has to be taken into
account which will be modelled by an additional layer (Fig. 1 b). In this case, the excess polarisability is determined by
the reflection of light at the outer boundary. The statistical nature of interactions between particles and medium (e.g.
in molecules in solvents) suggests that these boundaries are better described by continuous profiles [15], which were
numerically investigated [16].

In this manuscript, we analyse the influence of continuous boundary profiles on dispersion forces. For simplicity we
consider planarly layered systems leading to an effective one-dimensional model. Figure 1 illustrates the corresponding
models. Two particles interacting via van der Waals forces are sketched, Fig. 1 a), which are embedded in a medium
and create an inhomogeneous boundary profile. The corresponding one-dimensional situation is depicted in b), where
we consider two planar cavities with continuous boundaries and centred particles interacting with each other. Figure 1 c)
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Figure 2: Sketch of the arrangement for the van der Waals force between two atoms distant by l and embedded in an
inhomogeneous planarly layered media (red curve) with a cavity radius RC .

illustrates the finite-size cavity model with an inhomogeneous boundary. The corresponding situation consists of two
plate of finite thickness embedded in a planar cavity, see Fig. 1 d).

We hence consider two scenarios: two particles or two plates in a five-layer system, representing the van der Waals and
the Casimir force, respectively. In these two cases, we cover all important wave propagations at an inhomogeneous
profile - the transmission through and the reflection at a continuous profile.

2 Casimir force and van der Waals potential

Figures 2 and 3 sketch a cross section along the perpendicular direction to the layers for the van der Waals and Casimir
cases, respectively. Two objects are embedded in a medium of permittivity ε2 and create a cavity with a vacuum
permittivity ε1 = 1. We focus on the impact of the continuous boundary conditions onto the dispersion forces. To this
end, we repeat the important steps of the theory via scattering Green’s functions, derive the Green’s functions for the
layered case and calculate the impact of the cavity in terms of a local field correction in analogy to the known excess
polarisabilities. Finally, we model the reflection at a continuous dielectric profile and illustrate the effect by applying
the method to example profiles.

ε1

ε2

z
ld1 d2

RC

Figure 3: Sketch of the arrangement for the Casimir force between two parallel plates (grey) of thickness d1 and d2
distant by l and embedded in an inhomogeneous planarly layered media (red curve) with a cavity radius RC .

The Casimir force can be obtained from the electromagnetic stress tensor [10] as a surface integral over the considered
body. The Abraham stress tensor can be obtained in terms of dyadic Greens function [12]

T(r) = −~
π

∞∫
0

dξ

{
ξ2

c2
ε(iξ)G(r, r, iξ) +

G̃(r, r, iξ)

µ(iξ)
− 1

2
tr

[
ξ2

c2
ε(iξ)G(r, r, iξ) +

1

µ(iξ)
G̃(r, r, iξ)

]}
, (1)

where G̃(r, r, ω) denotes the contributions from the magnetic field

G̃(r, r, ω) = ∇×G(r, r′, ω)×∇′|r′→r . (2)

For infinite plates it is sufficient to introduce the force density per unit area

f =
dF

dA
= ez · (T(r)|z=b − T(r)|z=b′) , (3)

where b and b′ = b− d1 denotes the positions of the right and left boundary of the considered plate, respectively. The
dyadic Green function G(r, r′, ω) is the fundamental solution of the vector Helmholtz equation for purely dielectric
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systems [9] [
∇×∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r− r′) . (4)

A similar method can be applied to calculate the van der Waals interaction. We consider two polarisable particles at
positions r1 and r2 with polarisabilities α1 and α2. By applying fourth-order perturbation theory to the interaction
Hamiltonian H = −d̂1 · Ê(r1)− d̂2 · Ê(r2) the van der Waals potential can be found as [10]

UvdW (r1, r2) = −
~µ2

0

2π

∞∫
0

dξ ξ4α1(iξ)α2(iξ) tr [G(r1, r2, iξ) ·G(r2, r1, iξ)] . (5)

By comparing Eqs. (1) and (5) one observes that Casimir force requires the coincidence limit (r′ → r), whereas the
van der Waals potential depends on the Green’s tensor at two positions. Thus, the Casimir force is governed by the
reflections of virtual photons and the van der Waals force by their transmissions.

To address the influence of an inhomogeneous dielectric profile on the van der Waals force, we separate the profile into
nine sections as illustrated in Fig. 2: five regions with spatially constant dielectric function and four with continuous
profiles.

We start our investigations by neglecting the inhomogeneous profile regions. As mentioned before the important
quantities are the transmission and reflections at these interfaces, which leads us to write the influence of the cavities in
terms of reflection coefficients and to perform the transition to the cavities with continuous profiles via exchanging the
hard-boundary refection coefficients with the ones determined for a continuous dielectric profile. The situation for the
Casimir force is nearly the same. However, in this case we have to consider two additional layers denoting the plates
representing the interacting objects and have to calculate the reflection coefficients at both sides of one of these plates,
e.g. the left one illustrated in Fig. 3.

3 Green’s functions for planar multi layered systems and local field corrections for planar
cavities

We assume the cavity around the particles to be small compared to the separation of the particles, d1, d2 � l and that
the latter is small enough such that the interaction is nonretarded. This allows us to approximate the Green’s function
for the five-layer system in terms of a local-field corrected bulk Green’s function.

The Green’s function of a system involving inhomogeneous media can be described by the bulk Green’s function
modified with the local field correction factors arising from the reflection and transmission of the electromagnetic field
through the various layers of inhomogeneities of the system [10]. That is, for the five-layer system considered here, the
full Green’s tensor can be written as, similar to the local-field correction for cavities [17]

G(r, r′, ω) =

∞∫
0

dκ e−iκ(z−z
′) t̃(κ)

∣∣
r
·G(1)(z, z′, κ, ω) · t̃(κ)

∣∣
r′
, (6)

where t̃
∣∣
r

and t̃
∣∣
r′

represent the generalized transmission coefficients close to the final and source point, respectively,
while G(1)(r, r′, ω) denotes the scattering Green’s tensor for a bulk system. The transmission and reflection coefficients
marked with a tilde denotes the complete ones including multiple reflections, whereas the ones without a tilde are the
ordinary Fresnel coefficients at a single interface.

In order to estimate the complete van der Waals interaction, we write down the scattering Green’s function for a single
interface and obtain the multiple reflection coefficients for the multiple reflections. The scattering Green’s tensor for a
source situated in layer 1 and field in layer 2 is given by [10]

G(r, r′, iξ) =
i

8π2

∞∫
0

d2k‖

k⊥
eik

‖·(r−r′)−i(k⊥2 z−k
⊥
1 z

′)
∑
σ=s,p

tσ12e
σ−
2 eσ−1 , (7)

for z < 0 and z′ > 0, where k‖ and k⊥j are the components of the wave vector parallel and perpendicular to the
interface, respectively, eσ−j are the unit vectors for the polarisations given by

es−j =

(
sinϕ
− cosϕ

0

)
, ep−j =

1

kj

k⊥j cosϕ
k⊥j sinϕ

k‖

 . (8)
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We shifted to imaginary frequencies ω = iξ. We set the transversal coordinates to zero, x = x′ = y = y′ = 0. Thus, the
k integration can be transformed via polar coordinates d2k‖ = sinϕdϕdk‖ and the angle integration can be performed
leading

G(r, r′, iξ) =
1

8π2

∞∫
0

dk‖k‖

κ⊥1
e−(κ

⊥
2 z−κ

⊥
1 z

′)

πts12
(
1 0 0
0 1 0
0 0 0

)
+ tp12

πc2

ξ2
√
ε1ε2

κ⊥1 κ⊥2 0 0
0 κ⊥1 κ

⊥
2 0

0 0 −2k‖2

 , (9)

with the imaginary part of the perpendicular wave vectors in each layer κ2j = εjξ
2/c2 + k‖

2
. In the non-retarded limit,

we have k‖ � ξ/c. Thus, the contribution of the scattering of p-polarised waves dominates the process

G(r, r′, iξ) =
c2

8πξ2
√
ε1ε2

∞∫
0

dκ e−κ(z−z
′)tp12κ

2 diag (1, 1,−2) , (10)

where we have used κ = κ⊥1 = κ⊥2 = k‖ meaning that k‖ dominates the dispersion relation. Further, in the non-retarded
limit, the transmission coefficient simplifies to the Fresnel coefficient [18, 19, 10]

tp12 =
2ε1

ε1 + ε2
, (11)

and consequently it becomes independent from the wave vector k. By further considering a homogeneous medium,
which means that ε1 = ε2 the transmission coefficient simplifies to 1 and the integral can be performed [10]

G(r, r′, iξ) =
c2

4πξ2ε

1

(z − z′)3
diag (1, 1,−2) . (12)

The result can be compared with the non-retarded bulk Green’s tensor [10]

G(r, r′, iξ) =
c2

4πξ2ε%3
[I− 3e%e%] , (13)

with the three-dimensional unit matrix I, the relative coordinate % = r − r′, its absolute value % = |%| and its unit
vector e% = %/%. By again setting x = x′ = y = y′ = 0 in Eq. (13), we indeed recover Eq. (12). Thus, the results are
consistent.

Coming back to the original situation, we consider the three layer system. By assuming a large central layer we can
neglect the multiple scattering inside this layer due to the large damping by the propagation through it. Thus, we can
construct the complete transmission by the product of the transmission coefficient entering the middle layer t12 and
exiting it t23, leading to identify the generalized transmission coefficients from Eq. (6) by

t̃
∣∣
r
= t12 , t̃

∣∣
r′
= t23 . (14)

Assuming that both particles are the same, also the shape of the cavities will equal and the transmission out of the
middle layer can be transformed to

t23 = 1 + r23 = 1− r32 = 2− t32 . (15)

Thus, for a symmetric profile, we further simplify the generalized transmission coefficients to

t̃
∣∣
r
= t12 , t̃

∣∣
r′
= 2− t12 . (16)

In order to adapt the transmission through a two-layer system to the aimed five-layer scenario, the transmission
coefficient has to be modified with respect to multiple reflections at the additional interfaces. Regarding the five-layer
problem depicted in Fig. 2 together with the assumption of small cavity sizes d = 2RC � l the multiple reflection
inside the layer separating both particles can be neglected due to the strong absorption along the propagation inside this
region ∝ e−κ2l. This leads to the restriction of the consideration of multiple reflection only inside the cavity with width
d. For a single cavity, it is sufficient to consider a three-layer system, where a centred medium with dielectric function
ε1 and width d is in contact with two infinite extended layers with dielectric functions ε2± (where “+” denotes the right
medium and “-” the left medium). We consider a particle centred in the middle layer and estimate the transmission of
an electromagnetic wave created at the particle into the right medium ε2+. All optical paths starting inside the cavity
and terminating in this medium can be written as

t̃12+ = t12+
+r12+pr12−pt12+ + r12+pr12−pr12+pr12−pt12+ + . . .

+r12−pt12+ + r12−pr12+pr12−pt12+ + . . . , (17)
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with the propagation along the cavity p = e−κd. The first term denotes the part which is directly transmitted, the second
line denotes all odd parts, which are initially sent towards right interface and the third line denotes the even parts, which
starts with a reflection at the left interface before all are transmitted into the third layer. This equation can be written
into a geometric series

t̃12+ =
[
1 + r12−e

−κd] [ ∞∑
n=0

(
r12−r12+e

−2κd)n] t12+ =
1 + r12−e

−κd

1− r12−r12+e−2κd
t12+ , (18)

again the first term collects even and odd paths, the second term is the sum over all multiple reflections and finally the
transmission into the right layer. By considering the left and right medium to be equal ε2− = ε2+ and using the relation
between reflection and transmission coefficients for a layered system t = 1 + r the local-field corrections simplify to

t̃ =
1 + r

1− re−κd
, (19)

with the Fresnel reflection coefficient r = (ε− 1)/(ε+ 1). In the limit of vanishing cavity size (d→ 0) the local-field
correction can be further simplified to

t̃ =
1 + r

1− r
. (20)

Thus it can be further simplified to t̃ = ε. Summarising, the local-field correction, Eq. (6), reads

G(r, r′, ω) =

∞∫
0

dκ e−iκ(z−z
′) 1 + r

1− re−κd
G(1)(z, z′, κ, ω)

(
2− 1 + r

1− re−κd

)
, (21)

and can be further simplified to

G(r, r′, ω) = ε(2− ε)
∞∫
0

dκ e−iκ(z−z
′)G(1)(z, z′, κ, ω) ,

(22)

by assuming a vanishing cavity.

In order to describe the corresponding situation for the Casimir force, we again start with the scattering Green’s function
for a two layered system. In contrast to the van der Waals case, the source and final points have to be located in the
same layer in this case. Hence, we begin our calculation with a similar expression for the Green’s function and need to
replace the transmission coefficients by the corresponding expression for reflections, leading to [10]

G(r, r′, ω) =
i

8π2

∞∫
0

d2k‖

k⊥
eik

‖·(r−r′)−i(k⊥2 z−k
⊥
1 z

′)rp12e
p+
1 ep−1 , (23)

where in the non-retarded limit the reflection coefficient for s-polarised wave vanishes directly for a dielectric medium.

I II III IV V VI VII VIII IX

δ1 d1 δ2 l δ3 d2 δ4

Figure 4: Sketch of the nine-layer system for the Casimir force.
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In this case, we have to consider a nine-layer system depicted in Fig. 4 and estimate the Casimir pressure acting on the
left plate. In Fig. 4 the two plates of thickness d1 and d2 are illustrated as layer III and VII. Each of them is located in a
cavity marked by layer II and IV with thickness δ1 and δ2 for the left plate and layer VI and VIII with thickness δ3
and δ4. Layer I and IX have an infinite thickness. Both subsystems are separated by the middle layer V of thickness
l. Before we continue with the estimation of the local-field correction for this case, we recall the motivation for this
analysis which is the estimation of the impact of a continuous dielectric profile for the one-dimensional analog for the
real cavity models. This means that the two subsystems consisting of the layers I to IV and of the layers VI to IX are
fixed. Thus, we can treat these two subsystems as two effective layers and can map the situation onto the well-known
case of a planar cavity resulting the simple expression for the Casimir force [10]

f =
~

2π2

∞∫
0

dξ

∞∫
0

dk‖κ⊥k‖
r+p r

−
p e
−2κ⊥l

1− r+p r−p e−2κ⊥l
ez , (24)

where r±p denotes the reflection coefficients for p-polarised waves at the right, which is the subsystem 2 consisting of
the layers VI-IX, and left interface, which is subsystem 1 with layers I-IV, according to the three layer system discussed
for the van der Waals force and we used that the reflection coefficients for s-polarised waves vanish.

Let us consider the local-field correction for the left subsystem (layer I to IV). In terms of the nine-layer system the
effective reflection coefficient at the interface between the fifth and the fourth layer has to be determined. It will be
constructed iteratively starting with effective reflection between the third and second interface [19]

r̃32 = r32 +
t32r21t23e

−κIIδ1

1− r32r23e−2κIIδ1
, (25)

where κII denote the imaginary part of the wave vector in the second layer. Starting from this effective reflection
coefficient, one can continue with the next interface

r̃43 =
r43 + r̃32e

−2κIIId1

1− r43r̃32e−2κIIId1
, (26)

and finally

r̃54 =
r54 + r̃43e

−2κIVδ2

1− r54r̃43e−2κIVδ2
, (27)

with the wave vectors in the third and fourth layer κIII and κIV. Assuming that εII = εIV = 1 and εI = εV = ε which
leads to equal wave vectors in the corresponding layers and equal distances for the cavity layers (κII = κIV = κ and
δ1 = δ2 = RC) and thus only two elementary reflection coefficients are important, the one between the cavity and the
slab r23 = r43 = r1 and between the cavity and the medium r21 = r45 = r and the generalized reflection coefficient
simplifies to

r̃ = − 1 + r21e
−2κRC

r41e
−4κRC + rr31e

−3κRC − rr1e−3κRC + 2r21e
−2κRC + 1

[
r2r1(r

2
1 − 1)e−2κIIId1−κRC

+(rr41 + r1)e
−2κIIId1−2κRC + (rr21 − r)e−2κIIId1−3κRC + r31e

−2κIIId1−4κRC

+(rr21 − r1)e−2κRC + r21re
−2κIIId1 − r31e−4κRC + r

]
×
[
r41e
−2κIIId1−2κRC + r31re

−2κIIId1−κRC + r21e
−2κRC − r1re−2κIIId1−κRC + r21e

−2κIIId1 + 1
]−1

.(28)

The generalized reflection coefficient at the right interface can be determined analogously leading the same result by
exchanging the reflection coefficient at the slab to the other materials r1 = (ε1−1)/(ε1+2) 7→ r2 = (ε2−1)/(ε2+1).
Now, we restrict ourselves to the case that both slabs consist of equal materials leading to the same reflection coefficient.

4 Reflection at an inhomogeneous boundary

With respect to an arbitrary one-dimensionally spatial susceptibility profile, ε(z, ω), the resulting reflection coefficient
can be obtained by solving the Riccati differential equation [19]

R′(z) = −2κ

√
ε(z, ω) +

(
k‖

κ

)2

R(z)− 1

4

ε′(z, ω)

ε(z, ω)

2k2‖ + κ2ε(z, ω)

k2‖ + κ2ε(z, ω)

[
1−R2(z)

]
, (29)

for p-polarised waves, with κ = ω/c. We omit the discussion of s-polarised waves, because they vanish in the
nonretarded limit. This equation has a unique solution with the initial condition R(z → −∞) = 0 and result in the

7
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ε1

ε2

RC
za

Figure 5: Sketch of the different spatial dependent dielectric functions for the hard boundary (red dotted curve), the
linear profile (blue curve) and the non-linear profile (green dashed curve).The black arrows illustrate the considered
reflections which take place for the hard boundary at the cavity radius RC and for the functional profiles at their ends.
Shifted by a distance a compared to the hard-boundary case.

right-sided reflection coefficients R+(z) at the position z. The capital letter R denotes the reflection coefficient at the
position z. In contrast the small letter r denotes the reflection coefficient at the specific distance which is required for
the local-field corrections. Analogously, we find the left sided reflection coefficients by using the relation

R−(z) = −R+(z) . (30)

Figure 5 illustrates the different profiles of inhomogeneity, where we want to describe the reflection process. Due to the
spatial dependence of the profile the point of reflection changes by the distance a which we assume to be equal for
all types of profiles and define its value by the crossing point of a linear profile reaching the final value as depicted in
Fig. 5.

Again, we apply the non-retarded limit to estimate the reflection coefficients. Then the Riccati differential equation
simplifies to

R′(z) = −2k‖R(z)−
1

2

ε′(z, ω)

ε(z, ω)

[
1−R2(z)

]
. (31)

This equation can be solved analytically for vanishing wave vector (k‖ = 0) and results in

R(z) = tanh

{
−1

2
[ln ε(z, ω)− ln ε(−a, ω)]

}
, (32)

which can be simplified further to

R(zend) =
ε2 − ε1
ε2 + ε1

, (33)

by assuming that the profile connects both dielectric functions as depicted in Fig. 5. This result denotes the ordinary
Fresnel reflection coefficient in agreement to the considered case of non-propagating waves. Due to this fact, we can
figure out the impact of the linear term describing the absorption of light by the propagation through the finite profile of
the length 2a.

Corresponding to the profile plotted in Fig. 5, we choose two different spatial profiles for the dielectric function:
(i) a linear function

ε(z, ω) = ε1(ω) + [ε2(ω)− ε1(ω)]×


1 for z < −a
a−z
2a for |z| ≤ a
0 else

, (34)

and (ii) a Thomas-Fermi distributed profile

ε(z, ω) = ε1(ω) + [ε2(ω)− ε1(ω)]
(
1 + e

2z
a

)−1
, (35)

8
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Figure 6: Geometric dependence of the reflection coefficients for both profiles - Thomas-Fermi and Linear - with the
exact solution of the Riccati (black dotted line) equation and the corresponding approximations (grey solid lines).

approximating typical profiles, see Ref. [15]. Both profile have the same slope in the origin (z = 0). The width of
the inhomogeneous profiles are 2a. Thus, the profiles end at the point a. The boundary conditions are for case (i)
R(−a) = 0 and for case (ii) R(z → −∞) = 0.

Numerical solutions of the Riccati differential equation (31) are depicted in Fig. 6 where we evaluated the reflection
coefficient at the end of inhomogeneous profile which is for the linear profile the distance a and for the Thomas-Fermi
distribution we increased the final point to 3a reaching the final value with a deviation of less than 1%. It can be observed
that the k‖ dependence is related to the thickness of the inhomogeneous region 2a. Several checks with different
parameters showed that the resulting curves only depend on the product of the wave vector and the corresponding length
scale of the inhomogeneity. The depicted results can be understood by introducing the wavelength λ = 2π/k‖ leading
to the ratio of the wavelength and the inhomogeneity’s thickness as the relevant quantity. It can be seen that if this ratio
is small a/λ < 1 the specific profile does not matter to the result and the solution behaves like a hard boundary. In the
other case where the ratio is large a/λ > 1 the reflection decreases to zero. The interesting region is denoted by the
case when the wavelength is comparable to the thickness λ ≈ a. From the numerical simulations one can conclude that
the final reflection coefficient separates into a product of two terms: one describes the dielectric properties and the other
the geometric properties

r [k, ε1(ω), ε2(ω), a] =
ε2 − ε1
ε2 + ε1

· f(ka) , (36)

satisfying the k‖ → 0 limit, Eq. (33). For both investigated cases the expression of the result are the same with different
parameters. In analogy to the solution of the Riccati equation, Eq. (32) and in agreement with the numerical results
depicted in Fig. 6, we approximate the k‖-dependence of the reflection coefficient by

f(ka) ≈ 1

2

[
1− tanh

(
ln(ka)− λ1

λ2

)]
. (37)

The resulting parameters are given in Table 1, which prefectly match the curves with an accuracy of ≈ 100% for the
linear profile and of 99.96% for the Thomas-Fermi distribution. Note that the reflection coefficients for a linear profile
have also been determined in Refs. [20, 21, 22] based on methods similar to ours.

Profile λ1 λ2
Linear −0.555 2.028
Thomas-Fermi −2.067 1.452

Table 1: Fitting parameter for both profiles (linear and Thomas-Fermi distributed) based on the approximation
equation (37).
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Figure 7: Spatial density profile of water surrounding a helium atom with the cavity radius RC . Simulated profile
enclosed the blue area which is approximated by a Thomas-Fermi distribution (red line) with the corresponding
thickness of the inhomogeneous region 2aTF and by a linear profile (grey line) with the thickness 2al.

5 Results and discussion

Applying the local-field correction, Eq. (6), to the van der Waals potential (5) one finds

UvdW (z, z′) =

− 3~
64π3ε20

∞∫
0

dξ
α1(iξ)α2(iξ)

ε1(iξ)ε2(iξ)

∞∫
0

dκdκ′ κ2e−κ(z−z
′)t̃(κ)[2− t̃(κ)]e−κ

′(z−z′)t̃(κ′)[2− t̃(κ′)]κ′2 , (38)

with the local-field corrected transmission coefficients (19), and the reflection coefficient r has to be evaluated for the
inhomogeneous profile which is modelled by Eqs. (36) and (37).

In order to illustrate the theory we consider helium atoms solved in water. Helium’s polarisability were taken from
Ref. [23] and the dielectric function for water from Ref. [24]. Assuming the permittivity to be proportional to the
distribution of water around the helium atom [15], the resulting dielectric profile is depicted in Fig. 7. The simulated
profile is fitted to a Thomas-Fermi distribution

%(z) =
(
1 + e−α(z−RC)

)−1
, (39)

with the cavity radius RC = 1.71Å and the profile’s slope α = 10.1Å−1, via a least square algorithm. A comparison
of this function with the profiles used to solve the Riccati differential equation (35), relates the fitting parameter α
to the generalised profile width al = 2/α directly denoting the thickness for the linear profile. Using the same value
to determine the thickness of the Thomas-Fermi distributed profile would result an error which can be improved by
increasing the layer size. To do so, we define the thickness in this case by a threshold of 99% [%(aTF ) = 0.99]
leading to aTF = − ln(0.0101)/α. The resulting parameters are 0.198Å for the linear profile and 0.455Å for the
Thomas-Fermi profile.

The van der Waals potentials for helium atoms in water are depicted in Fig. 8. A planarly layered cavity profile
surrounding two helium atoms is considered, which has an equivalent dimension as the spherical cavity. This means
that the atoms are 1.71Å behind the water-vacuum interfaces. In the figure, the relative potential with respect to the
vacuum potential over the thickness of the intermediate layer l is plotted. It can be observed that for large separations
(30 nm, which is approximately ten-times the extension of the cavity layer), the interaction becomes independent of the
microscopic details of the cavity profile and agrees with the predicted screened and local-field corrected result (38). For
shorter distances the hard-boundary profile (blue dotted line) results in a further reduction whereas the potentials for the
more realistic linear (solid black line) and for the Thomas-Fermi distributed profiles (green dashed dotted line) increase
for shorter distances, in the latter case by a factor of up to two. The hierarchy of different results can be understood
from the fact that the van der Waals potential is due to photons exchanged between the two atoms. The transmission
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Figure 8: Relative van der Waals potentials for the cavity model with hard boundaries (blue dotted line), linear
boundaries (black solid line) and Thomas-Fermi distributed boundary profiles (green dashed-dotted line) with respect to
the vacuum potential. The general damping of the potential caused by the absorption of water (factor ≈ 20) can be
observed (red dashed line).

of these photons is least effective for the hard-boundary case due to the strong reflectivity and most effective for the
smooth and more weakly reflecting Thomas-Fermi profile.

For the Casimir force, we apply the method to a similar example, where we replace the helium atoms by two helium
plates of finite thickness set to the van der Waals radius of helium d1 = d2 = d = 1.43Å [25], similar values
can be found in Refs. [26, 27]. The dielectric function of these plates can be estimated via the Clausius–Mossotti
relation [28, 14]

ε =
1 + 2α/(4πε0d

3)

1− α/(4πε0d3)
, (40)

entering the reflection coefficient

r1 =
ε− 1

ε+ 1
. (41)

By approximating the reflection coefficients for the cavities via Eq. (37) and applying the result to the local-field
corrected Casimir force, Eq. (24) together with Eq. (28), the Casimir force acting on two helium plates in water can be
obtained. The results are depicted in Fig. 9. Again, the local-field corrected screening due to the water can be observed
in the long-range (> 30 nm) limit of all models, where all models coincide. Analogously to the van der Waals potential,
the models strongly differ on shorter scales. Surprisingly, the hard boundary model (blue dotted line) results in the
strongest force. The linear profile (black solid line) yields a slight increase of the force similar to the van der Waals
case. However, the Thomas-Fermi distributed boundary profile (green dashed dotted line) yields a force which is further
reduced in comparison to the long-range result. The differences in the results can be explained from the fact that the
Casimir force arises from a reflection of photons, which is strongest for the hard-boundary case and weakest for the
Thomas-Fermi profile.

6 Conclusions

The aim of this article is the illustration of the impact of a cavity with a continuous boundary profile on dispersion
interactions in media. To this end, we investigated an equivalent situation with a one-dimensional cavity and derived
the local-field correction induced by the cavity simplifying the theory to be applicable for known two and three layer
cases. Further, we approximated the Fresnel reflection coefficient at a continuous profile with a fitted function which is
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Figure 9: Relative impact of the cavity boundaries on the Casimir force for an helium plate embedded in water relative
to the force in vacuum. Without any cavity corrections (red dashed line), with hard boundaries (blue dotted line), with
the linear profile (black solid line) and with the Thomas-Fermi distributed profile (green dashed-dotted line).

valid for the cases of a linear profile or a Thomas-Fermi distributed profile. To illustrate the impact on the relevant
dispersion forces we applied the method to the case of a two helium atoms in water (van der Waals potential) and for
two helium plates embedded in water (Casimir force). We found that the influence is relevant at small distances. On
larger scales the impact of the continuous profile vanishes and the hard-boundary case is a suitable description. To
account for more realistic three-dimensional systems, an adaptation of this theory to three-dimensional spherical objects
is required, which will be subject of further investigations.
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