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Abstract

For products sold with a two-dimensional warranty policy, the warranty servicing cost can be

reduced through reliability growth during development. This paper investigates a multi-phase re-

liability growth test program for repairable products with independent competing failure modes.

Considering a test-find-test scheme, an accelerated reliability growth model is developed, allow-

ing different failure modes having distinct accelerated relationships. Taking usage heterogeneity

and mode-specific failure learning effect into account, the reliability growth is achieved through

periodic fixes on a phase-by-phase basis. From the manufacturer’s perspective, the main objective

is to achieve the optimal trade-off between the warranty cost and the reliability growth test cost

by determining the optimal test program that minimizes the expected total cost per product sold,

ensuring that the pre-specified reliability growth requirement is met. Assuming the tri-Weibull

product failure distribution, we illustrate the proposed optimization model numerically and study

the effect of relevant parameters on the optimal reliability growth test program. The results show

that the proposed approach yields significant cost reduction and reliability improvement for the

examples studied in this paper, especially when the manufacturer possesses high failure learning

ability, and the product has expensive repair cost per a warranty failure and extensive warranty

coverage.
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1. Introduction

Increasing global competition and rapid changes in technology have resulted in new products

appearing on the market at a faster pace. A new generation of products are usually an improvement

over earlier ones with changes to design. However, initial prototypes invariably have reliability

and performance deficiencies that generally could not be foreseen and eliminated in early design

stages. The problem of unexpected failures due to poor product reliability inevitably increases

warranty costs resulting from claims servicing. Herein warranty is a contractual agreement that

requires the manufacturer to repair or replace the faulty item in the event of failures occurred

within specified warranty coverage. Product warranty has been studied by researchers from many

different aspects. For detailed information on warranty research, the reader is referred to several

review papers [26, 29, 25, 34], and other relevant literature [46, 19, 35, 6, 24, 47, 45, 42, 32].

The warranty cost can be reduced via reliability growth during product developmental process,

in which reliability is improved through an iterative Test-Analyze-And-Fix (TAAF) procedure. Ini-

tial prototypes are exposed to a range of stresses that they are expected to encounter during field

use. The observed failures are analyzed to identify the failure modes and determine the root causes.

Subsequent fixes are implemented to design, operation, maintenance procedures or the associated

manufacturing process for the purpose of improving reliability. This process is repeated until the

pre-specified reliability growth target is achieved. Since reliability growth results in both costs

and benefits (reduction in warranty cost due to reliability improvement, etc.) [33], it motivates the

problem of how to plan a viable reliability growth test program to both prevent prohibitive costs

and achieve the reliability growth requirement.

Reliability growth modeling techniques have received significant attention over the years. Fries

and Sen [11] and Wong et al. [44] provide a comprehensive survey of significant research work on

reliability growth modeling. Generally speaking, these models fall into discrete and continuous
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groups according to the usage of the system. Discrete growth models apply to systems for which

usage is measured on an enumerative base such as pass or fail [11, 12]. While continuous growth

models apply to systems for which usage is measured on a continuous scale, such as time in

hours or distance in miles [4, 5, 7]. Duane [7] introduced the earliest reliability growth model

based on the empirical observation that on a log-log scale, there showed an approximately linear

relationship between the plots of cumulative mean time between failures (MTBF) and cumulative

test time. Crow [4] further derived the stochastic basis of Duane’s model, that was wihin a test

phase, reliability growth can be modeled by a non-homogeneous Poisson process (NHPP) with a

decreasing Weibull intensity function. The resulting model is also known as the Army Material

Systems Analysis Activity (AMSAA) model and remains to be the most commonly-used reliability

growth method in a variety of applications.

Reliability growth test planning involves addressing test program schedules, resources avail-

able, and realism of the program in achieving its requirement [23]. More attention has been paid to

the research on reliability growth test planning to perform trade-offs with reliability improvement,

incremental cost and test resources, etc [3, 20, 36, 21, 2, 38, 13, 14]. The majority of planning

models are Crow/AMSAA-based, which commonly assume large expected number of failures and

sufficient opportunities for immediate implementation of fixes, so as to allow the reliability growth

to be portrayed as a smooth curve [23]. Such test is conducted under the test-fix-test scheme, that

is, test stops whenever a failure is observed until a fix is implemented and takes no time. In most

situations, test is likely to continue with minimal repair in the event of failures, and the fix will

be implemented later. Crow developed an extended reliability growth projection model assuming

that all fixes take no time and are delayed until the end of test [5]. Based on AMSAA projec-

tion methodology, Ellner and Hall [8] proposed a new reliability growth planning approach, by

firstly taking the lag time associated with implementation of fixes into consideration. This is the

well-known PM2 approach that can be applied to test programs with limited opportunities for im-

plementation of fixes. Compared to Crow Extended model, the PM2 model is independent of the
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NHPP assumption and valid for reliability growth planning over multiple test phases, with fix de-

lays and the associated lag-time incorporated. However, although this model assumes there exists

a certain number of independent failure modes, each failure mode has an exponential distributed

time to first occurrence, and is assigned with an average fix effectiveness factor (FEF) across the

test phases. With limited testing time, reliability growth can be merged with accelerated tests at

high levels of one or more accelerating variables (e.g. usage rate, temperature, voltage or pres-

sure) [1, 18]. There has been research that introduces accelerated reliability growth testing by

modifying the Crow/AMSAA reliability growth planning model with a system-level acceleration

factor included [10]. The approach is based on the assumption of a linear relationship between the

reliability growth attained under an accelerated stress and that occurred under only the use-level

stress. Intuitively, the time to failure occurrence due to a given failure mode decreases as stress in-

creases. However, as noted by Escobar and Meeker [9], the time compression is not equivalent for

each failure mode in the product. When multiple failure modes exist, separate models are required

to characterize the effect of the accelerating variable on the mode-specific rate of occurrence of

failures (ROCOF).

The existing literature on reliability growth modeling has focused on failures indexed by a

single timescale. The previous research conducted by Murthy and Nguyen [28] and Hussain and

Murthy [15] is limited to reliability growth modeling in the case of one-dimensional warranties,

under which only the time is restricted. In contrast, no work on reliability growth modeling un-

der two-dimensional warranties has been found in the literature. As a natural extension of one-

dimensional warranty, a two-dimensional warranty is characterized by a region in two-dimensional

plane with one axis representing age and the other usage. Such a warranty policy has been widely

used on many complex and repairable commercial products, including printers, automobiles and

aircrafts. It is common to observe that different users have different usage rates for the same

product. Such customer usage heterogeneity caused by usage rate randomness need to be taken

into account when modeling reliability growth. Ignorance of this fact may lead to inaccurate cost
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estimation and an inferior reliability growth test decision. In addtion, for products sold with two-

dimensional warranty, failures are modeled as random points in a two-dimensional plane. Three

different approaches have been commonly used to model the two-dimensional product failure pro-

cess [16], including the one-dimensional approach, the bivariate approach and the composite-scale

approach. These approaches differ from the current reliability growth modeling techniques that

mainly focus on a single time scale.

In view of the above problematic issues, this paper proposes a modified accelerated reliability

growth model for new repairable products sold with a two-dimensional warranty. Considering a

multi-phase test-find-test scheme, limited product prototypes containing independent competing

failure modes, are exposed to accelerated life testing where usage is utilized as a stress to induce

failures. Within each test phase, test continues with minimal repair in case of failures. Periodic

fixes implemented at the end of each test phase are aimed to reduce the failure intensities of sur-

faced failure modes. Effects of test usage rate on mode-specific failures are modeled through the

Accelerated Failure Time (AFT) approach with distinct accelerated relationships. Based on these

settings, the mean number of test failures and warranty failures can be computed by taking us-

age heterogeneity into account. After that, the expected total cost per product sold, consisting of

reliability growth test cost and warranty servicing cost, is estimated from the manufacturer’s per-

spective. The optimal reliability growth test program including the optimal number of fixes and the

associated test usage rates under which failure modes are surfaced within each test phase, is deter-

mined with the objective of cost minimization and the pre-specified reliability growth requirement

being met.

The outline of this paper is organized as follows. In Section 2, we provide model assumptions,

notations and model formulation. In Section 3, we derive the expected total cost per product to

the manufacturer for the proposed reliability growth test program, and provide an analysis of the

cost-based optimization model. A numerical example with sensitivity analysis is conducted to

illustrate the proposed model in Section 4. Finally, a summary of our study and future research
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directions are concluded in Section 5. In the following sections, we will use the terms product and

item interchangeably without distinguishing them.

2. Model formulation

In this section, we first present the model assumptions and notations to make the mathematics

tractable. Then, we consider a two-dimensional non-renewing free repair warranty (NFRW) policy

and model the product failure process when independent competing failure modes are present.

Thirdly, an accelerated reliability growth model incorporating mode-specific failure learning effect

and usage heterogeneity is developed.

2.1. Model Assumptions and Notations

The following assumptions are taken into account:

• Limited identical product prototypes undergo the reliability growth test concurrently. Each

prototype contains a known number of independent latent failure modes competing to the

cause of product failure. The time to first occurrence of each failure mode follows a certain

probability distribution.

• A multi-phase test-find-test program with fixed total testing time L is planned. Product

prototypes are exposed to accelerated usage rate θ j within test phase j ( j = 1, . . . , n). Upon

a failure, discovery is immediate and the surfaced failure mode is known with certainty.

• In the event of failures, test continues with minimal repairs which make no change in the

product failure intensity. Fix is delayed until the conclusion of each test phase, resulting in

reliability improvement on a phase-by-phase basis.

• The mean lag time of each fix due to failure root-cause analysis, corrective action review,

approval and implementation, etc., is incorporated between test phases. The necessary time

for minimal repair is sufficiently small and assumed to be negligible.
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• The effect of fixes on the product failure intensity is characterized by a drop in the mode-

specific failure intensities considering failure learning effect. For each fix, the mode-specific

FEF depends on the number of failures occurred in the preceding test phase due to that

failure mode, and the failure learning level.

• After reliability growth, finished products are sold with a two-dimensional NFRW policy.

Within the specified warranty coverage, any failed item is repaired minimally by the man-

ufacturer at no cost to the user. Each failure results in an immediate warranty claim that is

valid and executed.

• To reduce uncertainty and modeling complexity, the parameters’ values in the proposed

model are assumed to be known with certainty.

We use the following mathematical notations for the purpose of this paper:

W, U warranty time and usage limits

x, u product cumulative age and usage

θ0 nominal usage rate in product design

ρ average warranty usage rate

Θ, g(θ) usage rate (random variable) and density function for Θ

k number of latent failure modes

RX(x|θ) product reliability function given that the usage rate Θ = θ

Ri(x|θ) mode-specific reliability function conditional on Θ = θ (i = 1, . . . , k)

hX(x|θ), λX(x|θ) product hazard function and failure intensity function

associated with RX(x|θ)

Fi(x|θ0) mode-specific failure distribution function with nominal usage rate θ0

Fi(x|θ) failure distribution function of failure mode i given Θ = θ

FX(x|θ), fX(x|θ) product failure distribution function and associated density function

conditional on Θ = θ
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λi(x|θ), hi(x|θ) initial mode-specific failure intensity function and hazard function

given Θ = θ

L total testing time

n number of fixes implemented during test (decision variable)

θ j test usage rate in phase j (decision variables, j = 1, . . . , n)

zi accelerated coefficient of failure mode i

λ
j
i (x|θ) conditional failure intensity function of failure mode i after the jth fix

λm
i (x|θ), λm

X (x|θ) minimum achievable conditional failure intensity functions of product

and failure mode i, respectively

λd
X(x|θ) product failure intensity function after reliability growth given Θ = θ

p j
i mode-specific fix effectiveness factor (FEF) of the jth fix

tf mean lag time of fix

ξ
j
i cumulative effective age under failure mode i till the jth test phase starts

b failure learning level

Cs, Cd set-up cost and operational cost per unit time during test for each product

to be sold

C j
f cost of the jth fix per product

Cr, Cm minimal repair cost of a test failure and a warranty failure, respectively

φ reliability growth test program with φ = {n, θ1, θ2, . . . , θn}

Nd(φ) number of total test failures

ECd(φ), ECw(φ) expected test cost and warranty cost per product, respectively

TC(φ) manufacturer’s expected total cost per product sold

E[·] expectation of the variable in the bracket
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2.2. Warranty policy and product failures modeling

As mentioned earlier, the finished products are repairable and sold with a two-dimensional

NFRW policy. The manufacturer is responsible to rectify all item failures that occur within

the region specified in the warranty with no charge to the customer. Different shapes for two-

dimensional warranty region are available; e.g., the rectangle, triangle, and the L-shape, etc. The

commonly used rectangular region [0,W] × [0,U] is considered here with two parameters-W and

U being the time and usage limits. The warranty expires at the first instance when the age of the

product reaches W, or its total usage exceeds U.

The products are intended to be sold to a population of customers with heterogeneous usage

intensities. It is assumed that the usage rate is a constant for each customer over the use period,

but varies across the population. The usage variation is modeled by a random variable Θ with a

probability density function g(θ). Let θ be a realization of Θ. We further assume that the manu-

facturer knows this distribution either through historical data or detailed customer survey. Given

Θ = θ, the time to first failure occurrence of product has a conditional failure intensity function

that is dependent on product age x and field usage rate θ. Such one-dimensional approach treats

the usage rate as covariate with the usage being a linear function of age.

Each product is at risk of failures due to k failure modes which are assumed to be mutually

independent. Under a given set of conditions, each failure mode competes to be the cause of

product failure. If i = 1, . . . , k is the only failure mode to which the product is exposed, given

Θ = θ, a sequence of latent failure times can be envisioned. Let Xi denote the time to first failure

due to failure mode i when none of the other failure modes are present. Therefore the first failure

time is denoted by X = min(X1, X2, . . . , Xi, . . . , Xk) when all k failure modes are present. With

Θ = θ, the product conditional survivor function and hazard function denoted by RX(x|θ) and

hX(x|θ), are given by

RX(x|θ) = P{X1 > x, X2 > x, . . . , Xi > x, . . . , Xk > x|θ} =

k∏
i=1

Ri(x|θ), (1)
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and

hX(x|θ) = −
d
dx

lnRX(x|θ) = −
d
dx

ln
k∏

i=1

Ri(x|θ) =

k∑
i=1

hi(x|θ) (2)

where Ri(x|θ) is the conditional reliability function for failure mode i and hi(x|θ) is the associated

conditional hazard function with hi(x|θ) = − d
dx lnRXi(x|θ).

The subsequently failures depend on the repair strategy performed on the product. We confine

our attention to minimal repair with negligible repair time in case of failures occurred within

either the test duration or the warranty coverage. Therefore, conditional on Θ = θ, the number

of product failures over time occur according to a NHPP with failure intensity function λX(x|θ)

having the same form as the hazard function hX(x|θ) that is given by Equation (2). Similarly, there

is λi(x|θ) = hi(x|θ) where λi(x|θ) is the conditional failure intensity function of failure mode i.

The effect of usage rate on product reliability is modeled through the Accelerated failure time

(AFT) approach. More specifically, the product is initially designed with a nominal usage rate θ0.

When the field usage rate θ differs from θ0, the product reliabiltiy is affected. The stresses on the

product increases with θ, and this in turn accelerates the degradation. Using the AFT formulation,

let Xi (X0) be the time to first failure due to failure mode i under usage rate θ (θ0), then we have

Xi

X0
= (

θ0

θ
)zi (3)

where zi (>0) represents the accelerated coefficient of failure mode i.

Conditional on θ = θ0, let Fi(x|θ0) be the failure distribution function due to failure mode i.

The conditional hazard function associated with Fi(x|θ0) is then

hi(x|θ0) =
dFi(x|θ0)/dx
1 − Fi(x|θ0)

. (4)
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Then, under the usage rate θ, the mode-specific failure distribution function is given by

Fi(x|θ) = F[(
θ

θ0
)zi x|θ0] (5)

and the associated hazard function is

hi(x|θ) =
dFi(x|θ)/dx
1 − Fi(x|θ)

= (
θ

θ0
)zihi[(

θ

θ0
)zi x|θ0]. (6)

Finally, the product failure intensity function under random usage rate θ is given by

λX(x|θ) =

k∑
i=1

(
θ

θ0
)ziλi[(

θ

θ0
)zi x|θ0]. (7)

A common standard product reliability metric is the mean time between failures (MTBF),

which also refers to the unconditional s-expected time between failures. Suppose the time required

to repair the failed item is very short compared to the mean time to failure (MTTF). Upon removing

the condition on usage rate θ, the product MTBF is therefore obtained by

MTBF = E[X] =

∫ ∞

0

(∫ ∞

0
x fX(x|θ)dx

)
dG(θ)

= −

∫ ∞

0

(∫ ∞

0
xR

′

X(x|θ)dx
)

dG(θ)

=

∫ ∞

0

∫ ∞

0
RX(x|θ)dxdG(θ)

=

∫ ∞

0

∫ ∞

0
e−λX(x|θ)dxdG(θ)

(8)

in which fX(x|θ) is the probability density function associated with FX(x|θ), and λX(x|θ) is given

by Equation (2).
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2.3. Accelerated reliability growth modeling

As illustrated in Figure 1, with an overall duration L, a periodic test-find-test program consist-

ing of n test phases with equivalent length τ is considered. Within any test phase j ( j = 1, . . . , n),

each prototype is tested under usage rate θ j to activate failure modes. Test still proceeds with min-

imal repair in case of failures, which makes no change in the product failure intensity. Fixes are

scheduled between each two successive test phases. Such delayed fixes result in a significant jump

in the product reliability by reducing the mode-specific failure intensities on a phase-by-phase ba-

sis. Before a fix is carried out, one failure mode may be minimally repaired one or more times.

Let tf be the mean lag time of each fix, as a result, the mean test interval τ is given by L/n − tf .

The usage rate implemented remains constant throughout a test phase. The proper selection

of n and θ1, . . . , θ j, . . . , θn is critical to avoid cost prohibitive as well as achieve required reliability

growth. In this study, the reliability growth test program is denoted by φ and characterized by

the set of parameters φ = {n, θ1, . . . , θ j, . . . , θn; 1 ≤ j ≤ n}. We confine that the reliability growth

requirement will be met only if the product MTBF after exceeds the lower limit π, the value of

which can be determined by design engineers and failure analysis experts, etc. As can be seen

in Figure 1, the idealized reliability growth curve is single and smooth, while the planned growth

curve is constructed on a phase-by-phase basis.

Reliability growth is the positive improvement in a reliability parameter over a period of time

due to implementation of fixes to product design. In this paper, we characterize the reliability

growth by the reduction in the overall product failure intensity which occurs in a series of finite

steps corresponding to discrete and periodic fixes. A modified probabilistic approach - (p, q) rule,

is used to model the fix effectiveness of each failure mode [30] at the end of each phase. That

is, after the jth fix, the failure mode i has a minimum achievable failure intensity - λm
i (x|θ) with

probability p j
i , and the failure intensity in the preceding test phase - λ j−1

i (x|θ) with probability

q j
i = 1 − p j

i . Clearly, if p j
i = 1, the fix reduces the mode-specific failure intensity to the maximum

degree. If p j
i = 0, the failure intensity of that discovered failure mode can not be removed by any

12



amount. As a result, after the jth fix, the conditional failure intensity function of failure mode i at

time x is given by

λ
j
i (x|θ) = p j

iλ
m
i (x|θ) + (1 − p j

i )λ
j−1
i (x|θ) (9)

with λ0
i (x|θ) = λi(x|θ) being the initial failure intensity function of failure mode i conditional on

Θ = θ before the test initiates.

At the time of jth fix, instead of assuming average FEF for all failure modes across the test

phases, the manufacturer can determine the mode-specific FEF through learning from the failures

occurred within the jth test phase due to that surfaced failure mode. Learning from failure has

been investigated in the operations and maintenance area [22, 40, 41, 39, 37]. Referring to the

approach proposed by Tarakci [39] to quantify the effect of failure learning based on the number

of failures, we model the mode-specific FEF of the jth fix that is denoted by p j
i in Equation (9), as

the following form:

p j
i = 1 −

(
1 + E[N(ξ j

i + τ|θ j) − N(ξ j
i |θ j)]

)−b

= 1 −

1 +

∫ ξ
j
i +τ

ξ
j
i

λ
j−1
i (x|θ j)dx

−b (10)

in which E[N(ξ j
i +τ|θ j)−N(ξ j

i |θ j)] is the expected number of mode-specific failures occurred during

the jth phase under test usage rate θ j. The magnitude of learning from test failures is denoted by b,

that also refers to the failure learning level. Since b ≥ 0, the second term on the right-hand side of

Equation (10) is always less than or equal to 1. It can be seen that p j
i increases with b. In addition,

if we keep b unchanged, the higher value of mean test interval τ will lead to a larger number of

failures triggered within a test phase and hence a higher value of p j
i .

In Equation (10), the random variable ξ j
i represents the cumulative effective age of the product

till the beginning of the jth test phase when exposed to failure mode i. It is necessary to note that

the AFT model is able to easily incorporate piecewise constant usage rates into product failure

modeling. In this paper, the planned test consisting of n test phases is actually a piecewise usage
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Figure 1: Idealized and planned reliability growth curves with MTBF threshold requirement.

accumulation process. The accelerated usage rate implemented in a test phase is a constant value,

but the usage rates differ across test phases. We assume a product is initally tested for τ time units

under usage rate θ1. After fix, it starts a new mission with usage rate θ2. With AFT formulation,

the product’s mode-specific cumulative effective age ξ2
i can be obtained as τ( θ1

θ2
)zi . This means that

testing the product under usage rate θ1 for τ time units is equivalent to testing it under usage rate

θ2 for τ( θ1
θ2

)z1 time units. By that analogy, we can derive the general form of ξ j
i as

ξ
j
i =


0 j = 1∑ j−1

l=1 ( θl
θ j

)ziτ j = 2, . . . , n.
(11)

The computation of ξ j
i doesn’t take the mean lag time of fix tf into account, because the product is

not exposed to test during fix hence the usage rate in this period is considered to be zero.

After reliability growth, the conditional product failure intensity denoted by λd
X(x|θ) can be

derived as

λd
X(x|θ) =

k∑
i=1

λn
i (x|θ) (12)

in which λn
i (x|θ) is the conditional mode-specific failure intensity function after the nth fix, that is

14



also the end of whole test.

According to Equation (8), the product MTBF after reliability growth test can be given by

MTBF(φ) =

∫ ∞

0

∫ ∞

0
e−λ

d
X(x|θ)dxdG(θ) (13)

where λd
X(x|θ) is given by Equation (12). We confine that the reliability growth requirement will be

met only if the product MTBF after test exceeds the lower limit π, that is also referred to as MTBF

threshold requirement (see Figure 1). The value of π can be determined by design engineers and

failure analysis experts, etc.

3. Model analysis and optimization

The main goal of this section is to obtain the expectation of total cost per product incurred

to the manufacturer, including both the reliability growth test cost and the warranty cost. Before

deriving the mathematical cost formulas, we evaluate the expected number of test failures and

warranty failures. After that, the cost-based optimization model is developed.

3.1. Failures during reliability growth test

Under the test usage rate θ j and the assumption of minimal repair, the failures occurred due

to failure mode i during the jth test phase constitute a NHPP with the failure intensity func-

tion λ j−1
i (x|θ j). Therefore, the associated mean number of mode-specific test failures is Poisson-

distributed and equals to the integral of λ j−1
i (x|θ j) over the mean test interval τ, which is derived

as
∫ ξ

j
i +τ

ξ
j
i

λ
j−1
i (x|θ j)dx. Considering k failure modes and n test phases, the expected total number of

test failures therefore satisfies the following equation:

E[Nd(φ)] =

n∑
j=1

 k∑
i=1

∫ ξ
j
i +τ

ξ
j
i

λ
j−1
i (x|θ j)dx

 (14)
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3.2. Failures within warranty coverage

In additional to test failures, we need to obtain the expected number of warranty failures.

Define the average warranty usage rate ρ = U/W. Let Wθ denote the warranty expiry time when

the usage rate is θ, then there is

Wθ =


W θ ≤ ρ

U
θ

θ > ρ.

Since minimal repair actions are performed within the warranty region, under usage rate θ,

the failures under warranty occur according to a NHPP with the product failure intensity function

λd
X(x|θ). Conditional on Θ = θ, the number of warranty failures denoted by Nw(φ|Wθ) is a Poisson

variable with mean number of occurrences that equals to the integration of product failure intensity

over the warranty period [0,Wθ]:

E[Nw(φ|Wθ)] =

∫ Wθ

0
λd

X(x|θ)dx. (15)

Combined with Equation (12), the expected number of warranty failures is obtained by taking

expectation of Equation (15) with respect to usage rate θ:

E[Nw(φ)] =

∫ ∞

0
E[Nw(φ|Wθ)]dG(θ)

=

∫ ∞

0

∫ Wθ

0

k∑
i=1

λn
i (x|θ)dx

 g(θ)dθ.
(16)

3.3. Cost analysis

The expected total cost per product sold consists of the reliability growth test cost and the

warranty cost, in which the test cost depends on the number of fixes n, and the test usage rates in

each phase - θ1, θ2, . . . , θn. Let Cs be the set-up cost of the test per product, Cd be the operational

cost per unit test time, and Cr be the average repair cost to rectify a test failure. The cost of the jth
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fix is given by

C j
f =

k∑
i=1

C j
f,i

in which C j
f,i represents the model-specific cost of the jth fix. It is reasonable to assume that C j

f,i

could be divided into a fixed cost and a variable cost modeled by an increasing power function of

mode-specific FEF of the jth fix, p j
i . Thus, we model C j

f,i as

C j
f,i = C f

f,i + Cv
f,i(p j

i )
σ (17)

with C f
f,i and Cv

f,i being the fixed cost and variable cost, respectively, and σ > 0.

As a result, the expected test cost per product sold is denoted by ECd(φ) and expressed as

ECd(φ) = Cs + CdL +

n∑
j=1

C j
f + CrE[Nd(φ)] (18)

in which E[Nd(φ)] is given by Equation (14). On the right-hand side of Equation (18), the first two

terms represent the set-up cost and variable cost which is proportional to the total test time L. The

last two terms refer to the cost of n fixes and the expected minimal repair cost of the test failures.

The warranty cost depends on the product failure intensity after reliability growth, and the

maintenance strategy performed within warranty coverage. Let Cm be the repair cost per warranty

failure, the expected warranty cost per product is denoted by ECw(φ) and then given by

ECw(φ) = CmE[Nw(φ)] (19)

with E[Nw(φ)] given by Equation (16) and Cm > Cr (since Cm includes both shop repair cost and

additional repair cost).

By summing up each expected cost obtained in Equations (18) and (19), we derive a formula
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to estimate the expected total cost per product sold that is denoted by TC(φ) as follows:

TC(φ) = ECd(φ) + ECw(φ)

= Cs + CdT +

n∑
j=1

k∑
i=1

[C f
f,i + Cv

f,i(p j
i )
σ] + Cr

n∑
j=1

 k∑
i=1

∫ ξ
j
i +τ

ξ
j
i

λ
j−1
i (x|θ j)dx


+ Cm

∫ ∞

0

∫ Wr

0

k∑
i=1

λn
i (x|θ)dx

 dG(θ).

(20)

It is necessary to mention that reliability growth test is performed in a few early product proto-

types, while the warranty policy applies to all products sold in the marketplace. The cost function

TC(φ) derived in Equation (20) refers to the expected total cost per product sold in the marketplace

instead of the expected total cost per product tested. The values of test cost related parameters in-

cluding Cs, Cd, C j
f and Cr are averaged ones for each sale of the product, and they are relatively

lower than the value of warranty servicing cost related parameter such as Cm.

3.4. Cost-based optimization model

In this part, given the cost function represented by Equation (20), the cost-based optimization

model for reliability growth test program φ can be expressed as

{n∗, θ∗1, θ
∗
2, . . . , θ

∗
n} = argmin TC(φ),

s.t. MTBF(φ) ≥ π,

n ∈ {1, . . . , bT/tfc − 1},

0 < θ1, . . . , θ j . . . , θn ≤ θ,

(21)

in which bT/tfc − 1 and θ are the upper limits for the feasible number of fixes and the possible test

usage rate, respectively. An upper limit for n is necessary since the mean test interval τ must be

greater than zero. A ceiling for θ j is reasonable due to test conditions limitation. An extremely

high test usage rate would cause some extraneous failures modes that would not occur at the actual
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use levels [31].

Considering the special case of no reliability growth test ψ (n = 0 and θ1, θ2, . . . , θn = 0), the

expected total cost per product equals to the warranty servicing cost per item. Then there is

TC(ψ) = CmE[Nw(ψ)] = Cm

∫ ∞

0

(∫ Wθ

0
λX(x|θ)dx

)
dG(θ), (22)

in which TC(ψ) represents the upper bound of the expected total cost per product, which also refers

to the benchmark cost. In mathematical terms, the reliability growth test is beneficial if there is

TC(φ) < TC(ψ)

or

Cs + CdT +

n∑
j=1

k∑
i=1

[C f
f,i + Cv

f,i(p j
i )
σ] + Cr

n∑
j=1

 k∑
i=1

∫ ξ
j
i +τ

ξ
j
i

λ
j−1
i (x|θ j)dx


< Cm

∫ ∞

0

∫ Wθ

0

k∑
i=1

[λ0
i (x|θ) − λn

i (x|θ)]dx

 dG(θ).

(23)

This implies as long as the test cost incurred under the reliability growth test program φ is lower

than the benefits derived from the reduction in the number of warranty failures occurred, reliability

growth is cost-efficient.

The optimal reliability growth test program is found by minimizing the cost function TC(φ)

given by Equation (20), ensuring the product MTBF threshold requirement π is achieved as well.

The optimal values of n, θ1, θ2, . . . , and θn are obtained using a two-stage process. In the first

stage, we fix n and find {θ∗1, θ
∗
2, . . . , θ

∗
n} by minimizing TC(n, θ1, θ2, . . . , θn). In the second stage,

n∗ is found by minimizing TC(n, θ∗1(n), θ∗2(n), . . . , θ∗n(n)), and then n∗ = n∗(θ∗1(n), θ∗2(n), . . . , θ∗n(n)).

Because of the structure of TC(n, θ1, θ2, . . . , θn), it may be impossible to derive general analytical

results and so the optimization procedure will be carried out numerically.
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4. Numerical example

In this section, we present a numerical example to illustrate the proposed reliability growth

test planning model in Section 3 and 4. To generate a prominent bathtub-shaped product hazard

function and model multiple failure processes simultaneously, we hereby assume the product life-

time follows a baseline tri-Weibull distribution in this example. As a shape-scale distribution, the

tri-Weibull distribution is a typical case of n-fold Weibull competing risk model that describes the

minimum of several independent random variables where each is Weibull distributed [17]. The

time to failure occurrence due to failure mode i (i = 1, 2, 3) follows a two-parameter Weibull dis-

tribution. Under nominal design usage rate θ0, the mode-specific failure intensity function is given

by

λi(x|θ0) =
βi

αi
(

x
αi

)βi−1

in which αi and βi are the scale and shape parameters of failure mode i. Then according to Equa-

tions (6) and (7), before reliability growth test is conducted, the initial product failure intensity

function given usage rate Θ = θ is given by

λX(x|θ;α1, α2, α3, β1, β2, β3) =

3∑
i=1

βi

αi
(
θ

θ0
)ziβi(

x
αi

)βi−1. (24)

Similarly, conditional on Θ = θ, the minimum achievable product failure intensity function is

therefore

λm
X (x|θ) =

3∑
i=1

βi

αm
i

(
θ

θ0
)ziβi(

x
αm

i
)βi−1

where αm
i is the minimum value of scale parameter αi for failure mode i.

Moreover, the product usage rate θ is random and assumed to be Gamma distributed with the

density function g(θ) = 1
δ
δ1
2 Γ(δ1)

θδ1−1e−
r
δ2 , where δ1 and δ2 are the shape and scale parameters. The

parameter values are given in Table 1, of which the time is measured in year and the unit of money

is US dollar ($).
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Table 1: Model parameter settings.

Notation Description

Warranty limits W = 3(years), U = 6(104km), ρ = U
W = 2

Product failure distribution θ0 = 2 , α1 = 2.73, α2 = 6, α3 = 10 (i = 1, 2, 3),
β1 = 0.5, β2 = 1, β3 = 5,
αm

1 = 23, αm
2 = 20, αm

3 = 12
Accelerated coefficients z1 = 0.8, z2 = 0.5, z3 = 1.2
Failure learning level b = 6
Usage rate distribution δ1 = 5.85, δ2 = 0.3
Reliability growth test T = 0.5, tf = 0.03, Cs = 3, Cd = 10, C f

f,i = 5,
Cv

f,1 = 123, Cv
f,2 = 37, Cv

f,3 = 33, σ = 3, Cr = 10
Warranty service Cm = 300
Product MTBF threshold requirement π = 3

4.1. Optimal solution

With no reliability growth, the benchmark cost per product to the manufacturer is calculated

through Equation (22). According to Equation (8), the initial product MTBF before test implemen-

tation is 2.2348 (years), and the maximum achievable value of product MTBF is 7.2319 (years).

Suppose the manufacturer expects the product MTBF after reliability growth to be more than

3 years at least. For (3 years, 6 × 10, 000km) as the specified warranty contract coverage, we

consider n feasible number of fixes with n ∈ {1, . . . , 15} and the possible test usage rates with

θ j ∈ (0, 10] ( j = 1, . . . , n and θ = 10).

Under the above-mentioned two-stage optimization framework, when n is fixed, a penalty

function is constructed to transfer the nonlinear optimization problem with inequality constraints

to the unconfined extreme problem. Then the gradient descent method is used to search for the

optimal values of θ∗1, θ
∗
2, . . . and θ∗n. After that, we determine the optimal set of {n∗, θ∗1, θ

∗
2, . . . , θ

∗
n}

which minimizes TC(φ) while assuring MTBF(φ∗) ≥ π. In addition, we designed an improved

particle swarm optimization (PSO) algorithm to solve the proposed model. Applied with 5 repeti-

tions under an initial population of 30 particles, the typical PSO is terminated at both 20 and 200

iterations to obtain the optimal results. The detailed optimization producedures based on these two

algorithms are provided in the Appendix part. At last, the optimal test solutions derived with both
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Figure 2: Product failure intensity function conditional on Θ = δ1δ2.

approaches are presented in Table 2 to compare the computational accuracy.

Table 2: Optimal reliability growth test solutions using two different approaches.

Approach n∗ {θ∗1, . . . , θ
∗
j , . . . , θ

∗
n} TC(φ∗) MTBF(φ∗) TC(ψ) MTBF(ψ)

Gradient descent 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
Improved PSO

3 {0.262, 5.232, 9.701} 306.488 3.8771 397.303 2.2348
(20 iterations)
Improved PSO

3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
(200 iterations)

As can be seen, using the gradient descent approach, the optimal number of fixes n∗ is 3 and

the associated optimal test usage rates are obtained with θ∗1 = 0.353, θ∗2 = 5.443 and θ∗3 = 10.000,

with the minimum cost being 305.953, which is reduced by 22.99% compared to the benchmark

cost being 397.303. The product MTBF after reliability growth increases to be 3.8966 (years).

It shows the optimal test program can reduce the expected cost per product to the manufacturer

and improve the product reliability as well. Specially, conditional on the mean customer usage
22



level δ1δ2 = 1.755, the product failure intensity functions before and after reliability growth, and

the minimum achievable failure intensity function are depicted in Figure 2. By comparison, the

optimal test solution results in a little higher minimum cost and lower product MTBF when the

improved PSO algorithm is used and terminated with 20 iterations. While with 200 iterations, the

optimal results obtained are as same as those derived with the gradient descent method.

4.2. Sensitivity analysis

For simplicity of computation, the model parameter values are given directly. In practice,

especially with respect to the product failure distribution parameters, they should be estimated

from real data to build a more accurate model. As warranty data contain valuable information

on product field reliability and customer behavior, through joint analysis of warranty claim data

from products of previous generation and the supplementary tracking data from customers, point

estimation for the model parameters could be readily conducted [42, 43]. Point estimators could be

determined using maximum likelihood (ML) or Bayesian estimation methods. Before parameter

estimation, appropriate mode-specific lifetime models could be selected based on initial tests,

past designs and/or prior engineering knowledge of the deterioration mechanisms the items are

exposed to. When the mode-specific failure time distributions are unclear to the manufacturer due

to lack of knowledge, the nonparametric estimate together with a probability plot is helpful to

decide the appropriate lifetime distributions of each failure mode, based on which the subsequent

parametric analysis can be conducted. In addition, to account for the uncertainty in the point

estimate, confidence interval estimation can be done by using asymptotic normal approximation

and bootstrap method.

To reduce parameter uncertainty, sensitivity analysis is performed to investigate how variations

in the model inputs cause changes to the model outputs. Several parameter changes are studied as

follows: failure learning level b, repair cost per a warranty failure Cm, mean lag time of fix tf and

average warranty usage rate ρ. For each parameter investigated, the other parameter values are
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kept the same as in Table 1 and we modify that parameter in five levels. The results are presented

in Table 3 and depicted in Figures 3 to 7.

Table 3: Effect of key parameters on the optimal reliability growth test solutions.

Parameter n∗ {θ∗1, . . . , θ
∗
j , . . . , θ

∗
n} TC(φ∗) MTBF(φ∗) TC(ψ) MTBF(ψ)

Failure learning level, b
2 1 {10.000} 324.258 3.5300 397.303 2.2348
4 2 {0.987, 10.000} 309.729 3.7196 397.303 2.2348
6 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
8 3 {0.175, 2.733, 10.000} 300.336 4.0566 397.303 2.2348
10 3 {0.117, 1.873, 8.707} 299.752 4.1874 397.303 2.2348

Repair cost per a warranty failure, Cm

150 2 {0.142, 1.685} 188.764 3.4172 198.651 2.2348
200 3 {0.202, 2.959, 10.000} 230.067 3.7813 264.869 2.2348
250 3 {0.265, 3.980, 10.000} 268.364 3.8319 331.086 2.2348
300 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
350 3 {0.426, 6.574, 10.000} 342.872 3.9422 463.520 2.2348

Mean lag time of fix, tf
0.01 3 {0.295, 4.252, 10.000} 302.970 3.9603 397.303 2.2348
0.03 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
0.05 2 {0.554, 7.476} 308.323 3.9107 397.303 2.2348
0.07 2 {0.630, 8.935} 308.721 3.9020 397.303 2.2348
0.09 2 {0.680, 10.000} 309.207 3.8582 397.303 2.2348

Average warranty usage rate, ρ (U fixed)
1 (W = 6) 3 {0.440, 6.698, 10.000} 350.284 3.9474 470.911 2.2348
1.5 (W = 4) 3 {0.408, 6.266, 10.000} 331.057 3.9303 439.080 2.2348
2 (W = 3) 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
2.5 (W = 2.4) 3 {0.293, 4.478, 10.000} 281.331 3.8547 356.394 2.2348
3 (W = 2) 3 {0.249, 3.748, 10.000} 260.123 3.8026 321.269 2.2348

Average warranty usage rate, ρ (W fixed)
1 (U = 3) 3 {0.224, 3.365, 10.000} 246.626 3.8018 298.694 2.2348
1.5 (U = 4.5) 3 {0.302, 4.626, 10.000} 285.283 3.8613 362.908 2.2348
2 (U = 6) 3 {0.353, 5.443, 10.000} 305.953 3.8966 397.303 2.2348
2.5 (U = 7.5) 3 {0.377, 5.820, 10.000} 315.511 3.9122 413.055 2.2348
3 (U = 9) 3 {0.388, 5.994, 10.000} 319.574 3.9192 419.572 2.2348

Effect of failure learning level, b The results are illustrated in Table 3 and Figure 3. It is

noted that in Figure 3 (and in the figures for other parameters), the left-hand y-axis represents the

minimum expected total cost per product with reliability growth and the benchmark cost per prod-
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uct without reliability growth. Whereas the right-hand y-axis depicts the product MTBF before

and after optimal reliability growth. At b = 2, the optimal decision is to set only one test phase

(one fix) and to make the test condition as harsh as possible (highest test usage rate). It can be

seen that the fix frequency increases as the failure learning level goes up. This should make sense

since higher levels of failure learning imply more effective fixes which motivates the manufacturer

to perform more of them.

An interesting observation is that although we don’t confine θ j ≤ θ j+1 when deriving the op-

timal test usage rates, it is observed that there is θ∗j < θ∗j+1. Such result is reasonable since when

the product failure intensity is reduced phase by phase through discrete fixes, the improved prod-

uct will be less sensitive to the elevated usage rate. Generating additional failures hence requires

applying a harsher test condition. When b changes from 6 to 10, the optimal number of fixes n∗

keeps to be 3 while the optimal test usage rates in each phase decrease gradually. At b = 10, the

optimal usage rate implemented in the final test phase is not necessarily the upper limit 10. This

implies the manufacturer can afford to keep test usage rates lower when possessing higher failure

learning ability. In addition, the higher the failure learning level, the lower the expected total cost

per product and the higher product MTBF after optimal reliability growth.

Effect of repair cost of a warranty failure, Cm Table 3 and Figure 4 show that, the optimal

number of fixes n∗ increases to be 3 when Cm ≥ 200 and remains unchanged when Cm is between

200 and 350. Both the minimum cost per product with optimal reliability growth TC(φ∗) and the

benchmark cost per product TC(ψ) are higher at higher Cm values. The cost reduction through

optimal reliability growth reflected by TC(ψ) − TC(φ∗), is more significant as Cm goes up (see

Figure 4). The optimal test usage rate θ∗j in the jth phase increases with Cm, while when Cm ≥ 200,

the value of θ∗n in the final test phase is always the upper limit 10. Presumably the marginal cost

of warranty failures becomes higher than that of test failures. Therefore, the manufacturer affords

to keep test usage rates higher. As a result, the product MTBF after optimal reliability growth
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increases with Cm.

Effect of mean lag time of fix, tf It can be seen from Table 3 and Figure 5 that the optimal

fix frequency n∗ decreases as the mean lag time of fix tf goes up. With the value of n∗ being either

2 or 3, the optimal test usage rates in each phase increase with tf . This should be intuitive since

with the total test time L fixed, higher tf will shorten the length of mean test interval τ, thus it

makes more sense to implement harsher test conditions (higher test usage rates) in a test phase.

Accordingly, as tf increases, the minimum cost per product with reliability growth goes up slightly

and the product MTBF after optimal reliability growth decreases little by little.

Effect of average warranty usage rate, ρ This part illustrates the effect of different average

warranty usage rates ρ on the optimal test solutions (Table 3, Figures 6 and 7). With ρ = U/W, we

set five level of ρ (1, 1.5, 2, 2.5, 3) by changing the values of W and U respectively. For fixed value
28
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Figure 7: Effect of average warranty usage rate, ρ (W fixed).

of U, the rectangle warranty region becomes narrower when ρ increases, hence the corresponding

benchmark cost per product TC(ψ) goes down. The optimal number of fixes n∗ remains unchanged

equal to 3. The optimal test usage rate θ∗j ( j = 1, 2) increases with ρ, while the value of θ∗n (n = 3)

is always the upper limit 10. This makes sense to perform less test effort when products are sold

with a smaller warranty region. Consequently, the product MTBF after optimal reliability growth

drops gradually with ρ.

By contrast, if varying the values of U with fixed W, the warranty coverage enlarges as ρ goes

up and results in higher benchmark cost per product without reliability growth. Similarly, the

optimal value of n keeps unchanged equal to 3, whereas the corresponding test usage rates in the

first two phases show a gradual increase, and the product MTBF after optimal reliability growth

rises slowly. The benefit from reliability growth reflected by the reduction in the expected total

cost per product, is much more apparent if the manufacturer extends the warranty coverage.
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5. Conclusions

This paper has developed a multi-phase reliability growth test planning model for products sold

with a two-dimensional non-renewing FRW policy by introducing a modified reliability growth

modeling technique that differentiates distinct failure modes, each having a different accelerated

coefficient. The aim is to provide decision makers with the insights of effectively allocating lim-

ited test time for reliability improvement. Specifically, a test-find-test scheme is considered, under

which product prototypes are operated under different usage rates in multiple test phases to trigger

failures. Taking the difference in accelerated relationships and usage heterogeneity into account,

the effect of usage acceleration on the product reliability is modeled through the Accelerated Fail-

ure Time (AFT) approach. Fixes are implemented at the end of each test phase to reduce the

mode-specific failure intensities with distinct fix effectiveness considering failure learning effect.

From the manufacturer’s perspective, we have presented a mathematical optimization model to

derive the optimal reliability growth test program to minimize the expected total cost per product

sold, ensuring the reliability growth requirement is achieved as well.

From the results of numerical example, when the failure learning level increases, the optimal

number of fixes and the product MTBF after optimal reliability growth increase, while the optimal

test usage rates implemented in each phase as well as the minimum expected total cost per product

decreases. When the mean lag time of fix increases, the optimal number of fixes decreases whereas

the optimal test usage rates go up. For products sold with high repair cost of a warranty failure

and extensive warranty coverage, the optimal reliability growth test program yields significant cost

reduction and reliability improvement.

There could be several possible topics for further research. This study has assumed mutual

independence among the competing failure modes. It can be modified by introducing a certain de-

gree of dependence between the failure modes, which may have a noticeable effect on the model

formulation. In addition, considering that failure learning ability may need to be trained at certain

cost instead of happening naturally, the quantification of benefit from failure learning can be in-

31



corporated when extending the current model. Other warranty policies other than the FRW, such

as the non-renewing free replacement policy and renewing policies, can be considered. Other

warranty servicing strategies (e.g., imperfect/perfect repair strategies) and other shapes for the

warranty region (e.g. [27] and [46]) also need further investigation. In addition, we suppose that

the manufacturer’s primary concern in this study is cost minimization given specified reliability

growth requirement. Other optimization models with the objectives of reliability maximization or

profit maximization including both the cost and the product performance outcome, can be devel-

oped. Finally, this study presents the values of entries in the mathematical optimization model

directly. In practice, the values should be estimated from real data to construct a more accurate

model.
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Appendix

Optimization procedure based on gradient descent approach

Step 1 Input model parameters and cost functions. Fix n (n = 1, . . . , bT/tfc − 1).

Step 2 Set i = 1. Initialize the penalty factor Mi, accuracy εM > 0 and reduction coefficient

β ∈ (0, 1).

Step 3 For Mi, construct a new objective function based on Equations (20) and (21) as

follow:

min P(θ; n,Mi) = TC(θ; n) + Mi

2n+1∑
l=1

1
gl(θ; n)

(25)

with θ = {θ1, . . . , θn} and gl(θ; n) ≥ 0 being the lth inequality constraint in Equation (21).

Step 4 Select the initial feasible solution θi, j = {θ
i, j
1 , . . . , θ

i, j
n } randomly. Set j = 1 and select

the initial learning rate λ j, decay rate α and accuracy εN > 0.
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Step 5 Calculate 5P(θi, j; n,Mi). If ‖ 5 P(θi, j; n,Mi)‖ < εN , stop and accept θi, j as the optimal

solution, then go to Step 8. Otherwise, go to Step 6.

Step 6 Set Di, j = − 5 P(θi, j; n,Mi). According to the learning rate λ j, search along Di, j and

obtain the next feasible solution θi, j+1 = θi, j + λ jDi, j.

Step 7 Calculate 5P(θi, j+1; n,Mi) and new learning rate λ j+1 = 1
1+α· jλ j. Set j = j + 1 and go

to Step 5.

Step 8 If θi, j meets the accuracy requirement that is Mi
∑2n+1

l=1
1

gl(θi, j;n) < εM, stop and accept

θi, j as the optimal solution. Otherwise, set Mi+1 = βMi and i = i + 1, then go back to Step 3.

It is noted that we can select the initial feasible point randomly for multiple times. This helps

to escape from the saddle point and reduce the possibility of dropping into local optimum. We find

that in this way the approach ensures convergence to the same optimal solution.

Step 9 Output the optimal solution θi, j and the corresponding cost TC(θi, j; n).

Step 10 Search TC(n, θi, j(n)) to determine n∗ which yields the smallest value for TC(n, θi, j(n)).

Output the optimal test solution (n∗, θi, j(n∗)) and the associated cost TC(n∗, θi, j(n∗)).

Optimization procedure based on improved PSO algorithm

Step 1 Input model parameters and cost functions. Fix n (n = 1, . . . , bT/tfc − 1).

Step 2 Initialize the particle swarm. For each particle k (k = 1, . . . ,N), initialize its position

θk = {θk
1, . . . , θ

k
n} and velocity vk = {vk

1, . . . , v
k
n} ( j = 1, . . . , n) randomly with θk

j ∈ (0, θ] and

vk
j ∈ [−0.5, 0.5] .

Step 3 Initialize the counting variable F = 1. At each iteration time t (t = 1, . . . , tmax),

calculate the fitnesss value of particle k denoted by TC(θk(t); n) based on Equation (20).

Step 4 Compare TC(θk(t); n) with TC(θk
best(t); n) in which θk

best(t) is the individual best po-

sition of particle k already found until time t. If TC(θk(t); n) < TC(θk
best(t); n), update θk

best(t) and

TC(θk
best(t); n) by θk

best(t) = θk(t) and TC(θk
best(t); n) = TC(θk(t); n) respectively. In addition, update

F by F = F + 1. Otherwise, set F = 0.
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Step 5 Compare TC(θk(t); n) with TC(θg
best(t); n) in which θg

best(t) is the globally best position

already found in the particle swarm until time t. If TC(θk(t); n) < TC(θg
best(t); n), update θg

best(t) and

TC(θg
best(t); n) by θg

best(t) = θk(t) and TC(θg
best(t); n) = TC(θk(t); n) respectively.

Step 6 Update the velocity and position of particle k at time t + 1 by

vk(t + 1) =


ωvk(t) + c1r1(θk

best(t) − θ
k(t)) + c2r2(θg

best(t) − θ
k(t)), F ≤ 5

vr(t) + c1r1(θk
best(t) − θ

k(t)) + c2r2(θg
best(t) − θ

k(t)), F > 5
(26)

and

θk(t + 1) = θk(t) + vk(t + 1). (27)

In the above two equations, the coefficients c1 and c2 are given acceleration constants and r1, r2 ∈

[0, 1] are random values generated. The inertia weight ω = 1/t aims to provide balance between

global and local search. There is vr(t) = {vr
1(t), . . . , vr

n(t)} with vr
j(t) ∈ [−0.5, 0.5] ( j = 1, . . . , n)

being random values generated.

Step 7 Check the termination condition of the algorithm. If the maximum iteration times

tmax is reached or the convergence criteria is met, go to Step 8. Otherwise, go back to Step 3.

Step 8 Output the globally optimal position θg
best and the corresponding fitness TC(θg

best; n).

Step 9 Search TC(n, θg
best(n)) to determine n∗ which yields the smallest value for TC(n, θg

best(n)).

Output the optimal test solution (n∗, θg
best(n

∗)) and the associated cost TC(n∗, θg
best(n

∗)).
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