
Learning Multi-granularity Dynamic Network
Representations for Social Recommendation

Peng Liu?, Lemei Zhang, and Jon Atle Gulla

Department of Computer Science, NTNU, Trondheim, Norway
{peng.liu,lemei.zhang,jon.atle.gulla}@ntnu.no

Abstract. With the rapid proliferation of online social networks, per-
sonalized social recommendation has become an important means to help
people discover useful information over time. However, the cold-start is-
sue and the special properties of social networks, such as rich temporal
dynamics, heterogeneous and complex structures with millions of nodes,
render the most commonly used recommendation approaches (e.g. Col-
laborative Filtering) inefficient. In this paper, we propose a novel multi-
granularity dynamic network embedding (m-DNE) model for the social
recommendation which is capable of recommending relevant users and in-
terested items. In order to support online recommendation, we construct
a heterogeneous user-item (HUI) network and incrementally maintain
it as the social network evolves. m-DNE jointly captures the temporal
semantic effects, social relationships and user behavior sequential pat-
terns in a unified way by embedding the HUI network into a shared low
dimensional space. Meanwhile, multi-granularity proximities which in-
clude the second-order proximity and the community-aware high-order
proximity of nodes, are introduced to learn more informative and robust
network representations. Then, with an efficient search method, we use
the encoded representation of temporal contexts to generate recommen-
dations. Experimental results on several real large-scale datasets show
its advantages over other state-of-the-art methods.

Keywords: Social recommendation, Heterogeneous social network, Net-
work embedding, Temporal context, Community detection

1 Introduction

In the last few decades, the rapid development of Web 2.0 and smart mobile
devices have resulted in the dramatic proliferation of online social networks. Ac-
cording to Twitter statistics, the number of users is estimated to have surpassed
300 million generating more than 500 million tweets per day1. Faced with the
abundance of user generated content, a key issue of social networking services
is how to help users find their potential friends or interested items that match

? Corresponding author.
1 https://www.omnicoreagency.com/twitter-statistics/.

2 P. Liu et al.

the users’ preference as much as possible, by making use of both semantic in-
formation and social relationships. This is the problem of personalized social
recommendation.

Collaborative filtering (CF) has been shown to be an effective approach to
recommender systems. It makes predictions about user’s interests based on pref-
erences of other users. However, CF is generally designed for bipartite graphs
which model interactions between users and items and thus cannot be easily
applied over complex heterogeneous social networks. Besides, cold start issue
becomes even more severe in online settings as the new users and new items will
join in constantly over time. Many approaches [1, 2] have been proposed to alle-
viate this problem, but they are not designed specifically for online environment.

Recently, network representation learning (NRL) has attracted a considerable
amount of interest from various domains, with recommender systems being no
exception [3, 4]. The popularization of NRL in recommendation can be mainly
attributed to the network embedding techniques which learn low-dimensional
vertex representation by modelling vertex co-occurrence in individual user’s
interaction records, thus capturing the semantic relationships among vertices
and boosting recommendation accuracy [4]. Cold start issues can be alleviated
through mining the structure and relations among existing and newly arrived
nodes. Despite these positive results, we argue that NRL for social recommenda-
tions still suffers from the following four challenges: 1) Different from widely used
homogeneous networks, heterogeneous network which includes different-typed
objects and links, is seldom studied but more commonly seen in real world. Be-
sides, online networks often incorporate millions even billions of nodes and edges
in real world, which brings more obstacles in dealing with them. 2) Most real-
world networks are intrinsically dynamic with addition/deletion of edges and
nodes. Meanwhile, similar as network structure, node attributes also change as
new content patterns may emerge and outdated content patterns will fade. 3) So
far, most previous network representation methods primarily preserve the local
structure and content, such as the first- and second-order proximities of nodes,
the global community structure, which is one of the most prominent features, is
largely ignored. 4) Considering the online environment and frequently changing
velocity of social networks, the scalability and updating complexity of learning
algorithms should also play a pivotal role and be seriously reckoned. Recent re-
searches only pay attention to several of the abovementioned challenges while
still neglect one or more of them [5–9].

To address the problems raised above, we propose a novel multi-granularity
dynamic network embedding (m-DNE) model for online social recommenda-
tion. Specifically, we firstly construct a heterogeneous user-item (HUI) network
which is incrementally maintained as the social network evolves. Then, a low
complexity incremental learning algorithm is applied to embed HUI into low-
dimensional representation space with the use of multi-granularity proximity
information (second-order and community-aware high-order proximities) of each
vertex. Afterwards, an efficient search method and a time-decay mechanism are
adopted to conduct recommendation tasks. To the best of our knowledge, we

Online Social Recommendation 3

are the first to jointly model the temporal semantic effects, social relationships
and user behavior sequential patterns in a unified way to address the issue of
temporal dynamics, cold start and context awareness in an online social recom-
mendation. Our experiments show that the proposed approach is superior to all
baselines and state-of-the-art methods in social recommendation tasks.

In this paper, section 2 introduces the related work. In section 3, we define
the key concepts and our problem. Section 4,5,6 present our model. We describe
the experimental setup and results in section 7 and section 8 concludes the study.

2 Related Work

Social Recommender System In recent years, many studies have demon-
strated the success of utilizing rich social network information to improve the
recommendation performance [2, 4]. However, these efforts have not considered
online updating or incremental processes. In order to capture the evolution of
the recommender systems, Agarwal et al. [10] proposed a fast online bilinear
factor model to learn item-specific factors through online regression by using
a large amount of historical data to initialize the online models and thus re-
ducing the dimensionality of the input features. Diaz-Aviles et al. [11] presented
Stream Ranking Matrix Factorization, which utilizes a pairwise approach to ma-
trix factorization for optimizing the personalized ranking of topics and follows
a selective sampling strategy to perform incremental model updates based on
active learning principles. Huang et al. [12] presented a practical scalable item-
based collaborative filtering algorithm, with the characteristics such as robust-
ness to implicit feedback problem. Subbian et al. [13] proposed a probabilistic
neighbourhood-based algorithm for performing recommendations with streaming
data. The recommendation strategies proposed by [12] and [13] focus on scala-
bility and dynamic pruning in recommender systems. Our proposed framework
considers the combination of the heterogeneous characteristics of social networks
and graph-based updating schemes in online settings, and thus is substantially
different from the above-mentioned systems.

Network Representation Learning Recently, network representation learn-
ing which aims to learn low-dimensional node embedding is attracting increasing
attentions. DeepWalk [6] models the second-order proximity for node embedding
with path sampling, whose complexity is O(|V |log|V |). Node2Vec [14] extends
DeepWalk with a controlled path sampling process, which requires O(|V |log|V |+
|V |a2) where a is the average degree of the graph. LINE [5] preserves both first-
and second-order proximity with complexity of O(a|E|). Compared with our
methods, the above works have a lower or comparable complexity, but they are
neither worked for heterogeneous networks nor aware of community structure.
Metapath2vec [15] extends the network embedding methods to heterogeneous
network by introducing metapath based random walk with the complexity of
O(a|E||V |). PTE [16] utilizes labels of words and constructs a large-scale hetero-
geneous text network to learn predictive embedding vectors for words with com-

4 P. Liu et al.

plexity of O(a|E|). The above-mentioned approaches can model heterogeneous
network but are still not community preserving. There is little work that tries to
take into account community structure and dynamic environment. For example,
Cavallari et al. [7] proposes a community embedding framework, ComE, which
adopt global community structure to optimize node embedding results with rel-
atively lower complexity of O(|V |+|E|) but on homogeneous and static network.
In [8], DANE performs network embedding in a dynamic environment also for
homogeneous network with barely local structure of nodes, and thus ignores
the importance of the high-order proximity. The online complexity of DANE is
O(|V |). M-NMF [9] constructs the modularity matrix, then applies non-negative
matrix factorization to learn node embedding and community detection together
with a higher complexity proportional to O(|V |2) based on static network. Our
work is highly built upon LINE and DeepWalk. The novelty lies in the idea of
adopting the network embedding methods into the dynamic environment for on-
line recommendation with comparatively low complexity O(|V |log(|V |)) in worst
cases. As far as we know, it is the first attempt to improve the representation
learning with incorporating the temporal community structure into the dynamic
network embedding method.

3 Problem Formulation

In this section, we define the key concepts and present the problem statement
of this study before the detailed description of our m-DNE model.

Definition 1. Heterogeneous User-Item (HUI) Network A heterogeneous
user-item network can be represented by Gmix = Guu∪Gpp∪Gup, which consists
of the user-user relationship network Guu = (U , εuu), the item-item relationship
network Gpp = (P, εpp) and the user-item interaction network Gup = (U ∪
P, εup). Among this, U = {u1, u2, ...un} is the set of users, where ui is the user
profile represented with a three tuple (uId,L,D), which indicates userID, user
social links and a set of items associated with ui. P = {p1, p2, ...pn} is the set of
items, where pi is the item profile with a five tuple (iId,M,H,W, ρ), representing
itemID, named entity, hashtag/category, content, create time respectively. εuu,
εpp and εup are the sets of edges, which indicate different relation types.

Definition 2. Community A community c is a group of vertices, including
both users and items, in Gmix, and all vertices can be grouped into K commu-
nities C = {c1, c2, ..., cK}. The communities can be overlapping, which is to say
each vertex v ∈ U ∪ P, can belong to different c to different degree.

Finally, we formally define the problem investigated in our work. Given a
time-stamped heterogeneous user-item network, we aim to provide online social
recommendations stated as follows.

Problem 1 (Online Social Recommendation) Given a heterogeneous user-
item network Gmix at timestamp t and a querying user u ∈ U , the task is to
generate a ranked list of user or item recommendations that u would be interested
in.

Online Social Recommendation 5

4 Heterogeneous User-Item Network

4.1 HUI Network Construction

For notational simplicity, we ignore the time-subscript in this subsection. Given
a set of users U = {u1, u2, ...um} and a set of items P = {p1, p2, ...pn}, to inte-
grate the semantic effects, social relationships and the user behavior sequential
patterns simultaneously, we construct a heterogeneous user-item network com-
prising two types of nodes and three types of edges, as shown in Fig. 1. The two
types of nodes which consist of user and item nodes are formed by projecting the
user set and item set respectively. The three types of edges are defined as follows:
1) Each user node ui and each item node pj are connected if user ui shows an
interest on item pj . In the HUI network, such an edge is indicated by yellow
solid lines. The associated item nodes of the user node ui are denoted as Ip(ui),
the associated user nodes of the item node pj are denoted as Iu(pj). 2) Two user
nodes ui and uj are connected with the property of user similarity simu(ui, uj)
if they have a social link, such as follower or followee. In the HUI network, such
edge is indicated by grey dash lines. The adjacent user nodes of the user node
ui are denoted as Au(ui). 3) Two item nodes pi and pj are connected with the
item similarity simp(pi, pj) if they have a semantic link such as Named Entity
or Hashtag. In the HUI network, such edge is indicated by orange dash lines.
The adjacent item nodes of the item node pi are denoted as Ap(pi).

Fig. 1: The Heterogeneous User-Item (HUI) Network.

We assume that Ri is a r-dimensional vector representing the social links
of user ui, where r is the total number of users, and the k-th dimension of
vector Ri equals 1 only if there is an edge between ui and uk, otherwise 0. The
user similarity simu(ui, uj) between user ui and user uj can be defined as the
cosine similarity between the two vectors. Likewise, we use the cosine similarity
simp(pi, pj) to measure the similarity between two item nodes pi and pj .

Directly applying random walk to the HUI network does not work due to
different edge types, leading to a challenging problem. To this end, we propose
a novel way to capture the different edge type characteristic into the transition
probability matrix P , where three parameters α, β, γ with α + β + γ = 1 are

6 P. Liu et al.

used to respectively control the relative importance of user behavior sequential
patterns, social relationships and semantic effects. The values of α, β and γ will
be varied depending on different datasets2.

Definition 3. A transition probability matrix P ∈ R(m+n)×(m+n) is constructed
for the HUI network,

P =

(
Pu Pup

Ppu Pp

)
(1)

which comprises four matrix blocks Pu ∈ Rm×m, Pup ∈ Rm×n, Ppu ∈ Rn×m
and Pp ∈ Rn×n respectively representing the transition probabilities of random
walks between user nodes, from user nodes to item nodes, from item nodes to
user nodes and between item nodes. That is

Pi,j = Prob(uj |ui), i < m, j < m

=
β

α+ β
× simu(ui, uj)∑

uk∈Au(ui)
simu(ui, uk)

, if uj ∈ Au(ui), otherwise 0.
(2)

Pi,m+j = Prob(pj |ui), i < m, j < n

=
α

α+ β
× wij∑

pk∈Ip(ui)
wik

, if pj ∈ Ip(ui), otherwise 0.
(3)

Pm+i,j = Prob(uj |pi), i < n, j < m

=
α

α+ γ
× wji∑

uk∈Iu(pi)
wki

, if uj ∈ Iu(pi), otherwise 0.
(4)

Pm+i,m+j = Prob(pj |pi), i < n, j < n

=
γ

α+ γ
× simp(pi, pj)∑

pk∈Ap(pi)
simp(pi, pk)

, if pj ∈ Ap(pi), otherwise 0.
(5)

In the above definition, to incorporate user bias in our algorithm, we intro-
duce wij which denotes the rating score that the user ui assigns to item pj , and
it has different rating scales. For example, in the movie recommendation case,
wij might correspond to an explicit rating given by user ui to movie pj or, in
the case of twitter/music recommendation, wij is implicitly derived from user’s
interaction patterns, e.g., how many times user ui has clicked/listened item pj .

4.2 HUI Network Update

Assume at timestamp t, the current HUI network Gmix,t = (Vt, εt) = (Ut, εuu,t,
Pt, εpp,t, εup,t) contains the user node set Ut, item node set Pt and their related
edge sets εuu,t, εpp,t and εup,t. Due to the evolution of the network, Ut and
Pt will contain the sets of the newly attached nodes, denoted as ∆Ut and ∆Pt
2 In our experiments, we set α = β = γ = 1/3 by grid-search over {1/9, 3/9, 4/9, 7/9}

which achieves the best recommendation performance for all datasets.

Online Social Recommendation 7

respectively, while there exists another subsets of Ut and Pt containing the nodes
that have user or item profile changed at the current timestamp, which are
denoted as ΘUt and ΘPt. Similarly, subsets of εuu,t, εpp,t and εup,t contain the
newly attached edges, separately denoted as ∆εuu,t, ∆εpp,t and ∆εup,t, while
the edges with changed similarities or rating scores within εuu,t, εpp,t and εup,t
at timestamp t are denoted as Θεuu,t, Θεpp,t and Θεup,t.

It is necessary to update the HUI network from timestamp t−1 to t according
to the evolving nodes (∆Ut∪ΘUt, ∆Pt∪ΘPt) and edges (∆εuu,t∪Θεuu,t, ∆εpp,t∪
Θεpp,t, ∆εup,t ∪ Θεpp,t). This can be achieved by updating the two types of
nodes and three types of edges in HUI network. Therefore, the active nodes at
timestamp t (denoted as Ṽt and nodes in Ṽt are unique) are defined as follows:

Ṽt =∆Ut ∪ΘUt ∪∆Pt ∪ΘPt ∪ {ui|∃eu ∈ ∆εuu,t ∪Θεuu,t, eu = (ui, uj)}
∪ {pi|∃ep ∈ ∆εpp,t ∪Θεpp,t, ep = (pi, pj)}
∪ {uk, pf |∃eup ∈ ∆εup,t ∪Θεup,t, eup = (uk, pf)}}

(6)

The underlying principle of constructing the network and updating process
can be analogous to the case of adopting sliding window schema to manage
continuous data streams. The construction process of HUI network are based on
the historical records, and the updating course of the network can be conducted
only within several timestamps like a certain length sliding window. The worst
case happens only when all nodes {vi|vi ∈ Vt} have changed within timestamp
t. In such case, the retraining process of the whole HUI network is inevitable.

5 Multi-granularity Dynamic Network Embedding

Inspired by DeepWalk [6] and the idea of modelling document [17] in natural
language processing, our model contains three main stages as shown in Fig. 2:
heterogeneous random walk, community integration and model learning process,
based on which, vertex representations will evolve after incremental learning.
Given the length of random walk as h and the total number of random walks as
l, the starting step will be performed at each of the active node Ṽt at timestamp
t. Based on the updated transition probability matrix P , the random walk with
restart on heterogeneous network proposed by [18] is employed to generate pos-
sible route sequences for active nodes, denoted as S = {s1, s2, ..., s|Ṽt|}. In the

rest part of this section, we will illustrate the last two stages.

5.1 Community Integration

As the analogy between words in the text and vertices in walk sequences, we in-
troduce the idea of processing streaming data in topic models to detect overlap-
ping communities in heterogeneous dynamic networks. Before the introduction of
community integration procedure, we make two assumptions on heterogeneous
random walk sequences, graph vertices and communities as follows: (1) Each
vertex in the HUI network can belong to multiple communities with different

8 P. Liu et al.

Fig. 2: The m-DNE Model.

preferences of Pr(c|v), and each vertex sequence also owns its community distri-
bution. (2) A vertex in a specific sequence belongs to a distinct community, and
the community is determined by the community’s distribution over sequences
Pr(c|s) and the vertex’s distribution over communities Pr(v|c).

With the above assumptions and heterogeneous random walk sequences, we
can assign community labels to vertices in particular sequence. More specifically,
for a vertex v in a sequence s, we compute the conditional probability of a
community c with the following equation:

Pr(c|v, s) =
Pr(c, v, s)

Pr(v, s)
∝ Pr(v|c)Pr(c|s) (7)

where Pr(v|c) represents the role of v in community c, and Pr(c|s) represents
the community distribution in sequence s.

An ordinary way to estimate Pr(v|c) and Pr(c|s) is to use Gibbs Sampling.
But it is not suitable for our updating progress. Thus, instead, we extend the
Streaming Gibbs Sampling method proposed in [19] to achieve the conditional
probability in our environment. According to the Bayesian Streaming Learn-
ing [19], if we fix the community distribution C1:t−1 of the previous arrived
sequences, then C1:t of the current timestamp can be achieved with C1:t−1,
and normal Gibbs Sampling on Ct. Therefore, the conditional distributions of
Pr(v|c) and Pr(c|s) can be estimated as follows:

Pr(v|c) =
N t(v, c) + βl∑

v′∈V N
t(v′, c) + |V|βl

, P r(c|s) =
N t(c, s) + αl∑

c′∈C N
t(c′, s) +Kαl

(8)

where N t(v, c) is the number of times the vertex v assigned to community c at
timestamp t and N t(c, s) is the number of vertices in sequence s are assigned
to community c at t. Both N t(v, c) and N t(c, s) will be updated dynamically
as community assignments change, and for different timestamps. βl and αl are
smoothing factors in Latent Dirichlet Allocation[20]. With estimated Pr(v|c) and
Pr(c|s), we assign a discrete community label c for each vertex v in sequence s.

Online Social Recommendation 9

5.2 Incremental Network Embedding Learning

To initialize the learning process on HUI network Gmix = (V, ε), given a certain
vertex sequence s = {v1, v2, ..., v|s|}, for each vertex vi and its assigned commu-
nity ci, we will learn the representations of both vertices and communities by
maximizing the average log probability of predicting context vertices using both
vi and ci as formalized below:

L(s) =
1

|s|

|s|∑
i=1

∑
i−|W |≤j≤i+|W |

logPr(vj |vi, ci) (9)

where vj is the context node of the node vi, and the probability Pr(vj |vi, ci) is
defined using the softmax function:

Pr(vj |vi, ci) =
exp(v′j · vi)∑

v′∈V exp(v
′ · vi)

(10)

where v′j is the context representation of its context node vj . vi is the average
vector representation of the center node vi and community label ci defined as
vi = 1/2(vi + ci). In such case, the local context and the global community
structure can be incorporated to enhance vertex representation learning. Then
subsequently, during incremental learning process at each timestamp t > 1, the
heterogeneous random walk procedure will start with active node set Ṽt to obtain
possible route sequence set S.

To improve the computational efficiency of Eq. (10), in practical environment,
we adopt hierarchical softmax3, a computational efficient approximation of the
full softmax in [21]. More precisely, given the average vector representation vi of
vi and ci for target context vj , let L(vj) be the length of its corresponding path,
and let b

vj
n = 0 when the path to vj takes the left branch at the n-th layer and

b
vj
n = 1 otherwise. Then, the hierarchical softmax defines Pr(vj |vi, ci) as follows:

Pr(vj |vi, ci) =

L(vj)∏
n=2

([σ(vTi θ
vj
n−1)]1−b

vj
n · [1− σ(vTi θ

vj
n−1)]b

vj
n) (11)

where σ(z) = 1
1+exp(−z) . All parameters are trained by using the Stochastic

Gradient Descent method. To derive how θ is update at each time step, the
gradient for θ

vj
n−1 is computed as follows:

∂L(vj , n)

∂θ
vj
n−1

= [1− bvjn − σ(vTi θ
vj
n−1)]vi (12)

To derive how the context embedding vectors are updated, the gradient for
vi is computed as follows:

∂L(vj , n)

∂vi
= [1− bvjn − σ(vTi θ

vj
n−1)]θ

vj
n−1 (13)

3 The hierarchical softmax needs to evaluate only about log(|V|) nodes instead of all
the |V| nodes to obtain the probability distribution.

10 P. Liu et al.

With this derivative, an embedding vector vi and ci in the context of node
vj can be updated as follows:

vi ← vi + η

L(vj)∑
n=2

∂L(vj , n)

∂vi
, ci ← ci + η

L(vj)∑
n=2

∂L(vj , n)

∂vi
(14)

In Algorithm 1, we summarize the learning process using hierarchical soft-
max for proposed m-DNE model. The algorithm iterates through all possible
route sequences and updates the embedding vectors until the procedure con-
verges. In each iteration, given a current node, the algorithm first obtains its
embedding vectors and computes its context embedding vector. Based on the
derivative above, the binary tree in hierarchical sampling is updated followed
by the embedding vector (line 9-14). Given the vector size of d, the leaf nodes
number |V |, the sequence length |s| within one iteration and window length |W |,
then the time complexity for an iteration is O(d · |W | · |s| · log(|V |)).

Parallelizability For real-world social networks, the frequency distribution of
vertices in random walks follows a power law which results in a long tail of in-
frequent vertices [6]. Therefore, the updates of vertices’ representation will be
sparse in nature. Based on this, we adopt the lock-free solutions in the work
[22] to parallelize asynchronous stochastic gradient descent (ASGD). Given that
our updates are sparse and we do not acquire a lock to access the model shared
parameters, ASGD will achieve an optimal rate of convergence.

Algorithm 1: Heterogeneous Softmax Algorithm for m-DNE
Input: Possible route sequence set S, window length |W |, embedding vector dimension d,

sequence length |s|.
Output: The embedding representation vi of vi and representation ci for ci

1 Initialize the parameters randomly;
2 Shuffle the dataset;
3 repeat
4 Sample a route sequence s = {v1, v2, ..., v|s|} from S;

5 for i = 1 to |s| do
6 Set e← 0;
7 Compute the average representation vi = 1/2(vi + ci);
8 for each vj ∈ s[i− |W |, i+ |W |] do
9 for n = 2 to L(vj) do

10 q ← σ(vi · θ
vj
n−1);

11 g ← η · (b
vj
n − 1− q);

12 e← e+ g · θ
vj
n−1;

13 Update θ
vj
n−1 ← θ

vj
n−1 + g · vi;

14 end
15 Update vi ← vi + η · e;
16 Update ci ← ci + η · e;
17 end

18 end

19 until convergence;

6 Recommendation Using m-DNE

Recommendation procedure can be performed after obtaining the embeddings
for each vertex. To recommend top-K friends to a user ui ∈ U withD dimensional

Online Social Recommendation 11

representation vector of −→ui = (xi1, xi2, ..., xiD) and query time t, we compute the
ranking score for user node uj which does not have a direct link with ui through
the inner product of −→ui and −→uj . Similar procedure can be found when recom-
mending top-K items. Except that, to consider the freshness of the items such
as tweets, we bring in the time decay function defined as f(tj , λ) = e−λ(t−tj),
where tj is the publication timestamp of item pj and λ is employed to adjust
the decay rate. Thus, the ranking score of item pj can be obtained as follows:

S(ui, pj , t) = −→ui · −→pj = f(tj , λ)
∑D
n=1 xin · zjn. For computational efficiency, we

adopt the Threshold-based Algorithm (TA) [23], which is capable of finding the
top-k results by examining the minimum number of users/items.

7 Experiments

7.1 Experimental Setup

Dataset Description For experimental study, we evaluate the proposed m-
DNE model on three real-world datasets: Twitter, Last.fm and Flickr. We col-
lected Twitter dataset from January to March 2017 with Twitter API4, which
includes users and their posts, and the Last.fm dataset for 1 month through
Last.fm API5, which contains users and artists. We also adopted Flickr dataset6

released online with friend relationships, images, and the activities of user com-
ment image. In order to enrich the information about user and image, we ex-
tracted the timestamp of user comments, image uploading timestamp and image
description with Flickr API7. For all datasets, the user-user links are constructed
from bi-directional friendships between social network users, user-item links are
constructed from the different activities of users (e.g., posting, listening or com-
menting items), and item-item links are constructed if the two artists/images
share the same tag or the two posts have the same hashtag. The statistics of
each dataset are summarized in Table 1.

Table 1: Some statistics of the datasets.
Datasets #Users #Items #User-user links #User-item links #Item-item links

Twitter 69,830 6,284,665 429,836 69,131,820 30,795,807
Last.fm 41,258 10,361 235,417 11,486,510 1,820,649
Flickr 2,037,538 1,262,978 219,098,660 14,913,164 97,549,330

Baselines We compared our model with five state-of-the-art methods:

– Weighted Regularized Matrix Factorization (WRMF). A state-of-
the-art offline matrix factorization model introduced by [24] is computed in
batch mode, assuming the whole stream is stored and available for training.

– Stream Ranking Matrix Factorization (RMFX). It achieves partly
online and much quicker updates of matrix factorization introduced in [11].

4 https://dev.twitter.com/docs.
5 http://www.last.fm/api/.
6 http://arnetminer.org/lab-datasets/flickr/flickr.rar.
7 https://www.flickr.com/services/api/.

12 P. Liu et al.

– Metapath2vec (M2V) [15]. It uses metapath-based random walks on het-
erogeneous graphs to obtain node representations. Following [15], we em-
ploy 5 meaningful meta-paths whose lengths are not longer than 4, “UIU”,
“UUIU”, “UIIU”, “UIUIU” and “UUIIU”, since long meta-paths are likely
to introduce noisy semantics. Here, ′U ′ = User and ′I ′ = Item.

– PTE [16]. We build three bipartite heterogeneous networks: user-user, user-
item and item-item, and retrain it as an unsupervised embedding methods.

– M-NMF [9]. It jointly models node and community embedding using non-
negative matrix factorization.

Parameter Settings WRMF setup is as follows: λWRMF = 0.015, C = 1,
epochs = 15 for all datasets, which corresponds to a regularization parameter, a
confidence weight that is put on positive observations, and the number of passes
over observed data, respectively [24]. For RMFX, we set regularization constants
λRMFX , learning rate η0, and a learning rate schedule α equal to 0.1, 0.1, 1 for
Twitter, 0.15, 0.05, 1.5 for Last.fm and 0.1, 0.15, 1 for Flickr using grid-search
on stream data with cross validation [11]. Moreover, the number of iterations is
set to the size of the reservoir. For all the embedding algorithms (metapath2vec,
PTE, M-NMF and our model), the embedding dimensionality is set to 128, con-
text window length is set to 8, walk length is set to 40, walks per vertex is set to
30, the neighborhood size is equal to 7 and the size of negative samples is equal
to 5 for all datasets. For M-NMF, we followed the same tuning procedure in [9],
and we found out that α = 0.1 and β = 5 works at best for Twitter and Last.fm,
while α = 10 and β = 5 for Flickr. As for our m-DNE model for three datasets,
we also set the dimension of community representation as 128. Following [20],
the smoothing factors αl and βl are set to 2 and 0.5 respectively. We set decay
rate λ = 0.2 for Twitter and 0.1 for Last.fm and Flickr. The number of commu-
nities K is set to 20 for m-DNE and M-NMF model [9]. We run experiments on
Linux machines with eight 3.50GHz Intel Xeon(R) CPUs and 16GB memory.

Evaluation Criteria Given a dataset D ordered according to time, includ-
ing user and item profiles, we use the first 50% of D as historical data pool
to train the models, while the rest half data mimics the streaming input called
“candidate set”. For evaluation, we first randomly select a reference time as
“current time” in candidate set. Then, we test our recommendations for the fol-
lowing week starting from reference time, while the data before reference time
in candidate set are used to tune the hyper-parameters. However, WRMF and
RMFX cannot explicitly handle new user/item introduction during the testing
phase. For a fair comparison, all testing sets only cover users/items existing in
training set. During evaluation phase, all experimental results are averaged over
10 different runs for reliability, and there is no temporal overlapping between
any testing set.

Since we are interested in measuring top-k recommendation instead of rating
prediction, we measure the quality by looking at the Recall@K [25] and Average
Reciprocal Hit-Rank (ARHR) [26], which are widely used for evaluating top-k
recommender systems. We show the performance when k = {1, 5, 10}, as a larger
value of k is usually ignored for a typical top-k recommendation [25].

Online Social Recommendation 13

7.2 Results

Recommendation Effectiveness Table 2 summarizes the item and friend rec-
ommendation performance between our model and baselines. Besides, we also
test our model without community attribute integration represented as DNE.
From the results, we can observe that the Recall@K value grows gradually along
with the increasing number ofK, and the performance of item recommendation is
better than friend recommendation. Besides, we can also observe on all datasets
that: 1)Embedding-based algorithms (PTE, M2V, M-NMF, DNE and m-DNE)
consistently perform better than non-embedding based benchmarks (WRMF,
RMFX). It is because embedding-based algorithms can fully explore the net-
work structure of the given information, which alleviates the issues of sparse
and noisy signals. 2)The significant improvements show the promising benefit of
the community integration and our incremental learning approach, which lead
to the better performance of m-DNE than the other listed embedding methods.

Table 2: Top-k items and friends recommendation w.r.t. Recall@K (K=1,5,10).

Method
Twitter Last.fm Flickr

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
Top-k items recommendation

WRMF 0.152 0.229 0.301 0.226 0.293 0.387 0.204 0.261 0.356
RMFX 0.115 0.194 0.273 0.197 0.276 0.358 0.171 0.252 0.334
PTE 0.219 0.292 0.379 0.276 0.352 0.433 0.246 0.327 0.394
M2V 0.236 0.307 0.392 0.291 0.374 0.467 0.263 0.341 0.435

M-NMF 0.264 0.328 0.426 0.342 0.407 0.506 0.311 0.386 0.479
DNE 0.251 0.324 0.417 0.331 0.403 0.498 0.306 0.374 0.470

m-DNE 0.309 0.385 0.472 0.395 0.471 0.557 0.368 0.449 0.531
Top-k friends recommendation

WRMF 0.113 0.175 0.266 0.172 0.247 0.314 0.148 0.220 0.281
RMFX 0.097 0.146 0.204 0.136 0.225 0.290 0.118 0.196 0.267
PTE 0.152 0.226 0.313 0.224 0.276 0.347 0.198 0.255 0.329
M2V 0.176 0.235 0.327 0.234 0.292 0.348 0.203 0.267 0.334

M-NMF 0.226 0.267 0.339 0.262 0.321 0.378 0.237 0.304 0.351
DNE 0.213 0.256 0.332 0.254 0.317 0.363 0.228 0.296 0.344

m-DNE 0.243 0.294 0.371 0.298 0.352 0.406 0.275 0.329 0.390

1 5 10 15 20 25 30

K

0.00

0.05

0.10

0.15

0.20

0.25

AR
HR

WRMF

RMFX

PTE

M2V

M-NMF

DNE

m-DNE

(a) Top-k items recommendation

1 5 10 15 20 25 30

K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

AR
HR

WRMF

RMFX

PTE

M2V

M-NMF

DNE

m-DNE

(b) Top-k friends recommendation

Fig. 3: Recommendation performance w.r.t. ARHR.

Fig. 3 compares the performance of alternative approaches taking ARHR as
metric. During experiments, we vary the number of recommendations K from 1
to 30. As expected, our m-DNE model performs better with ARHR as well, and
M-NMF ranks the second place followed by DNE, which shows the same orders

14 P. Liu et al.

in Table 2. In Fig. 3(a), as we recommend more items, since we have more chance
to answer the true interested items correctly, ARHR grows gradually with in-
creasing number K. The same trends appear in the friend recommendation task.
To evaluate the efficiency of our model, we compare our m-DNE with other base-
lines on Twitter. As all baselines are not designed to handle dynamics except
RMFX, we compare their cumulative running time over all time steps and plot
it in a log scale. Each time step represents one day period. As can be seen in
Fig. 4, m-DNE is much faster than the baselines which need to retrain and still
show advantages compared with RMFX.

10 20 30 40 50 60 70 80 90

Time Steps

102

103

104

105

C
u
m
u
la
ti
v
e
 R
u
n
n
in
g
 T
im
e
(s
)

m-DNE

RMFX

PTE

M-NMF

M2V

WRMF

Fig. 4: Cumulative running
time comparison.

Twitter Last.fm Flickr
0.00

0.05

0.10

0.15

0.20

0.25

R
e
ca
ll@

1
0

PTE

M2V

M-NMF

DNE

m-DNE

(a) Item recommendation

Twitter Last.fm Flickr
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
e
ca
ll@

1
0

PTE

M2V

M-NMF

DNE

m-DNE

(b) Friend recommendation

Fig. 5: Recommendations for cold-start cases.

Test for Cold Start Problem We also conduct experiments to study the effec-
tiveness of different algorithms in addressing cold-start issues. As pre-processing,
the target users who have less than 20 available items and social links in total are
selected. As there are not many interaction records between users and items avail-
able for cold-start cases, WRMF and RMFX which are based on collaborative
filtering, are not suitable for cold-start experiments. Thus, we compare m-DNE
with the baselines which can leverage social information to recommend cold-
start cases. The experimental results are shown in Fig. 5, from which we have
the following observations: 1) m-DNE model still performs best consistently in
recommending cold-start cases; 2) by comparing with Table 2, the Recall value
of all algorithms decreases. For instance, the Recall value of M-NMF rapidly
drops from 42.6% to 12% for twitter item recommendation but still better than
DNE model, while m-DNE deteriorate slightly, which validates that community-
aware high order proximity and the ability to capture the dynamic properties of
the network are key factors affecting the recommendation performance.

Sensitivity to Parameters In this experiment, we study the influence of the
embedding dimension d, the number of samples l and time decay rate λ by fix-
ing the window size |W | = 8 and the random walk length h = 40. We vary one
parameter each time to test the impact on recommendation performance with
other parameters fixed. Because of the page limit, we only show the results on
Twitter. But similar observations can be made on other datasets. Recommen-
dation Recall value of m-DNE model is not highly sensitive to the dimension d,
but still presents a tendency that its recommendation accuracy increases with
the increasing number of d holistically, and it reaches peak when d is around 128.

Online Social Recommendation 15

However, m-DNE is sensitive to l with the Recall score varying a lot. First, the
performance of m-DNE increases quickly with the increasing number of l, this
is because the model has not achieved convergence. Then, it does not change
significantly when the number of samples becomes large enough, since m-DNE
has converged. Thus, to achieve a satisfying trade off between effectiveness and
efficiency of model training, we set l = 30 and d = 128 on all datasets. In Fig.
6(c), λ shows different influence on item/user recommendation tasks. For item
recommendation, the performance reaches the peak when λ = 0.2 but drops
significantly afterwards. However, for user recommendation, the performance
constantly decreases with the increasing value of λ. These phenomena show that
in our case, items are more sensitive to time compared with users, and a suitable
value of λ can help to improve the recommendation performance.

16 32 64 128 256

Dimensions d

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
e
ca
ll@

1
0

l=1

l=5

l=10

l=20

l=30

l=40

(a) dimensions, d

1 5 10 20 30 40 50 60

Sampling Frequency l

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
e
ca
ll@

1
0

d=16

d=32

d=64

d=128

d=256

(b) number of samples, l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Decay rate λ

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
e
ca
ll@

1
0

Item recommendation without λ

Item recommendation with λ

Friend recommendation without λ

Friend recommendation with λ

(c) time decay rate, λ

Fig. 6: Effect of different parameters on performance.

8 Conclusion

In this paper, we propose m-DNE, an efficient model which learns the embedding
of heterogeneous social network by jointly modelling the temporal semantic ef-
fects, social relationships and user behavior sequential patterns in a unified way.
Community-aware high-order proximity is applied to optimize the node represen-
tations. Besides, a parallel incremental learning algorithm and an efficient query
processing technique are employed for recommendation efficiency. The experi-
mental results show the effectiveness of our m-DNE on social recommendations.
In the future, we will consider to integrate attributes from multiple social sites.
Additionally, short-term user interest changes also need to be considered with
the use of advanced deep learning models such as Recurrent Neural Network.

Acknowledgments. This work was supported by the Research Council of Nor-
way (grant number 245469).

References

1. Sedhain, S., Sanner, S., Braziunas, D., Xie, L. and Christensen, J.: Social collabo-
rative filtering for cold-start recommendations. In: RecSys. pp. 345-348 (2014)

2. Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M. and Getoor, L.: Hyper: A flexi-
ble and extensible probabilistic framework for hybrid recommender systems. In:
RecSys. pp. 99-106. ACM (2015)

16 P. Liu et al.

3. Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan,
V. and Sharp, D.: E-commerce in your inbox: Product recommendations at scale.
In: SIGKDD. pp. 1809-1818. ACM (2015)

4. Covington, P., Adams, J. and Sargin, E.: Deep neural networks for youtube rec-
ommendations. In: RecSys. pp. 191-198. ACM (2016)

5. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J. and Mei, Q.: Line: Large-scale
information network embedding. In: WWW. pp. 1067-1077 (2015)

6. Perozzi, B., Al-Rfou, R. and Skiena, S.: Deepwalk: Online learning of social repre-
sentations. In: SIGKDD. pp. 701-710. ACM (2014)

7. Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C. and Cambria, E.: Learning
community embedding with community detection and node embedding on graphs.
In: CIKM. pp. 377-386. ACM (2017)

8. Li, J., Dani, H., Hu, X., Tang, J., Chang, Y. and Liu, H.: Attributed network
embedding for learning in a dynamic environment. In: CIKM. pp. 387-396 (2017)

9. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W. and Yang, S.: Community Preserving
Network Embedding. In: AAAI. pp. 203-209 (2017)

10. Agarwal, D., Chen, B.C. and Elango, P.: Fast online learning through offline ini-
tialization for time-sensitive recommendation. In: SIGKDD. pp. 703-712 (2010)

11. Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L. and Nejdl, W.: Real-time top-n
recommendation in social streams. In: RecSys. pp. 59-66. ACM (2012)

12. Huang, Y., Cui, B., Zhang, W., Jiang, J. and Xu, Y.: Tencentrec: Real-time stream
recommendation in practice. In: SIGMOD. pp. 227-238. ACM (2015)

13. Subbian, K., Aggarwal, C. and Hegde, K.: Recommendations for streaming data.
In: CIKM. pp. 2185-2190. ACM (2016)

14. Grover, A. and Leskovec, J.: node2vec: Scalable feature learning for networks. In:
SIGKDD. pp. 855-864. ACM (2016)

15. Dong, Y., Chawla, N.V. and Swami, A.: metapath2vec: Scalable representation
learning for heterogeneous networks. In: SIGKDD. pp. 135-144. ACM (2017)

16. Tang, J., Qu, M. and Mei, Q.: Pte: Predictive text embedding through large-scale
heterogeneous text networks. In: SIGKDD. pp.1165-1174. ACM (2015)

17. Le, Q. and Mikolov, T.: Distributed representations of sentences and documents.
In: ICML. pp. 1188-1196 (2014)

18. Li, Y. and Patra, J.C.: Genome-wide inferring genephenotype relationship by walk-
ing on the heterogeneous network. Bioinformatics, 26(9), 1219-1224 (2010)

19. Gao, Y., Chen, J. and Zhu, J.: Streaming gibbs sampling for lda model. arXiv
preprint arXiv:1601.01142 (2016)

20. Blei, D.M., Ng, A.Y. and Jordan, M.I.: Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(1), 993-1022 (2003)

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J.: Distributed
representations of words and phrases and their compositionality. In: NIPS (2013)

22. Recht, B., Re, C., Wright, S. and Niu, F.: Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In: NIPS (2011)

23. Fagin, R., Lotem, A. and Naor, M.: Optimal aggregation algorithms for middle-
ware. Journal of computer and system sciences, 66(4), 614-656 (2003)

24. Hu, Y., Koren, Y. and Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM. pp. 263-272. IEEE (2008)

25. Cremonesi, P., Koren, Y. and Turrin, R.: Performance of recommender algorithms
on top-n recommendation tasks. In: RecSys. pp. 39-46. ACM (2010)

26. Deshpande, M. and Karypis, G.: Item-based top-n recommendation algorithms. In:
TOIS, 22(1), pp.143-177 (2004)

