
A multiple-try Metropolis–Hastings algorithm with
tailored proposals

Xin Luo
Department of Mathematical Sciences, Norwegian University of Science and Technology

Håkon Tjelmeland
Department of Mathematical Sciences, Norwegian University of Science and Technology

Abstract

We present a new multiple-try Metropolis–Hastings algorithm designed to be especially
beneficial when a tailored proposal distribution is available. The algorithm is based on a
given acyclic graph G, where one of the nodes in G, k say, contains the current state of
the Markov chain and the remaining nodes contain proposed states generated by applying
the tailored proposal distribution. The Metropolis–Hastings algorithm alternates between
two types of updates. The first update type is using the tailored proposal distribution
to generate new states in all nodes in G except in node k. The second update type
is generating a new value for k, thereby changing the value of the current state. We
evaluate the effectiveness of the proposed scheme in an example with previously defined
target and proposal distributions.

Key words: Acyclic graph, Gibbs updates, Markov chain Monte Carlo, multiple-try Metropolis–
Hastings algorithm, tailored proposal distribution,

1 Introduction

In the field of Bayesian inference, a popular and powerful tool is Markov chain Monte Carlo
(MCMC) methods (Gilks et al. 1996; Robert and Casella 1999; Gamerman and Lopes 2006).
This includes the Gibbs sampler (Geman and Geman 1984) and the Metropolis-Hastings (MH)
algorithm (Metropolis et al. 1953; Hastings 1970), where the former is a special case of the
latter. In principle, any distribution p(x) that can be evaluated up to a normalizing constant,
can be simulated using the Metropolis–Hastings setup. The algorithm is iterative with each
iteration consisting of two parts. Letting x denote the current state, first a potential new
state x̃ is generated from a proposal distribution q(x̃|x), and thereafter x̃ is accepted with
probability

α(x|x̃) = min

{
1,
p(x̃)q(x|x̃)

p(x)q(x̃|x)

}
(1)

and otherwise the current state x is retained. The choice of the proposal distribution q(x̃|x)
is essential for the convergence and mixing properties of the simulated Markov chain, and
therefore for the computation time necessary for exploring the target distribution p(x). Of-
ten very simple proposal distributions are adopted, with a Gaussian centered at the current
state x and full conditional distributions being the most popular ones, and for many target

1

distributions this is sufficient to get acceptable convergence and mixing properties. For other
target distributions p(x), however, such choices give too slow convergence and mixing for the
algorithm to be practical. In the literature different remedies have been proposed to cope with
such a situation. In principle, a simple solution is to tailor the proposal distribution to the
specific target distribution in question. The Metropolis–Hastings setup is very general, and in
particular the proposal distribution is allowed to depend on properties of the target distribu-
tion. Thereby one may let q(x̃|x) depend on properties of the target distributions p(x) close
to, in some sense, the current state x. Such a tailored proposal distribution may dramatically
reduce the number of iterations to get convergence and sufficient mixing, and may therefore
be beneficial even if simulating from such a tailored proposal distribution typically requires
a lot more computation time than sampling from one of the simple proposal distributions
discussed above. Examples of such tailored proposal distributions can for example be found
in Tjelmeland and Hegstad (2001), Chib and Ramamurthy (2010) and Luo and Tjelmeland
(2017).

Liu et al. (2000) introduces an alternative strategy for coping with a target distribution
where the use of token proposal distributions do not give sufficiently good convergence and
mixing. An generalized version of the Metropolis–Hastings algorithm is proposed, called
the Multiple-try Metropolis (MTM) algorithm. Also this algorithm is based on a proposal
distribution q(x̃|x), but instead of proposing only one potential new state in each iteration,
MTM generates several potential new states from the proposal distribution. The potential
new states are generated conditionally independent given the current state x. Next, one of the
potential new states is, with a certain probability for each potential state, chosen as the next
current state, or all the proposed states are rejected and the current state thereby retained.
The idea is that by generating several potential states one can better explore the sample space
and thereby better convergence and mixing can be obtained. Moreover, as the potential new
states are generated independently given the current state, the generation of the potential new
states can be parallelized. Intuitively one should expect the performance of MTM to improve
as the number of potential new states increases. Martino and Louzada (2017) show, however,
that there are cases where the performance does not improve when increasing the number of
potential new states. Many variants of the MTM algorithm have later been proposed, see
in particular Qin and Liu (2001), Craiu and Lemieux (2007), Pandolfi et al. (2010), Martino
et al. (2012) and Casarin et al. (2013). The use of MTM is also discussed in Bédard et al.
(2012), Martino and Read (2013) and Martino et al. (2014).

In this article we propose a setup which combines the two approaches discussed above. The
starting point of our scheme is an acyclic graph with n nodes, where the nodes are numbered
from 1 to n. A small example graph is shown in Figure 1(a). To each node i in the graph
we associate a random quantity xi with the same sample space as the target distribution
f(x). We also introduce a random index k ∈ {1, . . . , n} with a distribution f(k), which may
be the uniform distribution. Given a value for k we assume the distribution of xk to equal
the target distribution. Next, given xk the distribution of the remaining variables xi, i 6= k
is defined by a proposal distribution q(·|·). For example, if the acyclic graph is the one in
Figure 1(a) and k = 5, we assume x1, x15, x16 and x17 be be conditionally independent and
identically distributed according to q(·|x5), and in the next step we assume x2, x3 and x4 to
be conditionally independent and independently distributed according to q(·|x1), and so on.
We end up with the directed acyclic graph (DAG) shown in Figure 1(b), where all the directed
edges represent the same proposal distribution. We have thereby defined a joint distribution
for k and x1, . . . , xn and can adopt a Metropolis–Hastings algorithm to simulate from this joint

2

1

2 3

45

6

7
8 9

10

11

12

13
1415

16

17

1

2 3

45

6

7
8 9

10

11

12

13
1415

16

17

(a) (b)

Figure 1: (a) An acyclic graph with n = 17 nodes, where the nodes are numbered from 1 to
17. (b) The directed acyclic graph resulting from the graph in (a) when k = 5.

distribution. By construction the conditional distribution of xk given k is equal to the target
distribution so by simulating from the joint distribution we also get samples from the target
distribution of interest. Even if we define a joint distribution for all k, x1, . . . , xn, the xi, i 6= k
is best considered as proposed potential new states. One should note that the potential new
states are not conditionally independent given xk as are common in MTM methods, so in
this sense our setup defines a generalized MTM scheme. Even if our setup is well defined for
any proposal distribution q(·|·), we should only expect favorable results with the procedure
when q(·|·) is tailored to the specific target distribution of interest. If, for example, a simple
random walk proposal is adopted and the graph is as shown in Figure 1 with k = 5, one should
expect the higher order proposals in x6, x7, . . . , x14 to be in the tail of the target distribution
and thereby to have low acceptance probabilities. With a proposal distribution tailored to
the specific target distribution, however, also higher order proposals should have a reasonable
chance of getting high acceptance probabilities.

The remainder of this article is organized as follows. In section 2 we specify and present the
mathematical details for our proposed multiple-try Metropolis–Hastings algorithm, assuming
the sample space of the target distribution to be of a fixed dimension. In Section 3 we generalize
the setup to a situation where the sample space is allowed to be of varying dimension, so
that a reversible jump proposal must be used. In Section 4 we present the results of some
simulation examples, and finally we give some closing remarks in Section 5.

2 The algorithm

As in the setup of a standard MH algorithm, we let p(x), x ∈ Rm denote the target distribution
and q(x̃|x) a proposal distribution from state x to state x̃, where x, x̃ ∈ Rm. In addition, the
algorithm is based on a chosen connected undirected acyclic labeled graph G = (V, E) with
n > 1 vertices, where V = {1, . . . , n} is the set of vertices and E ⊂ {{i, j}|i, j ∈ V, i 6= j} is
the set of undirected edges. An example of such a graph with n = 17 vertices is illustrated in
Figure 1(a). Note that the notation {i, j} with a pair of curly braces represents an undirected
edge connecting vertex i and vertex j. Given the graph G, for each k ∈ V let Gk = (V, Ek) be
the DAG obtained from G by defining vertex k to be a root vertex and letting all edges be

3

oriented away from this root. Thus, Ek ⊂ {(i, j)|i, j ∈ V, i 6= j}, where the notation (i, j) with
a pair of parentheses represents an edge in the direction from vertex i to vertex j. Figure 1(b)
depicts the resulting G5 when G is as shown in Figure 1(a).

To each i ∈ V we associate a stochastic variable xi ∈ Rm. We also define a discrete
stochastic variable k ∈ V, which we assume to be uniformly distributed. Given k we assume
xk to be distributed according to the target distribution, i.e. f(xk|k) = p(xk). Next, given
xk the distribution of the remaining variables xi, i 6= k is defined by the graph Gk and the
proposal distribution q(·|·). More specifically, we assume the xi’s to have a Markov property
as specified by Gk, and for each (i, j) ∈ Ek we assume xj |xi ∼ q(xj |xi). Thereby the joint
distribution of k and xi, i ∈ V becomes

f(k, x1, . . . , xn) =
1

n
· p(xk)

∏
(i,j)∈Ek

q(xj |xi). (2)

Note that by construction f(k, xk) = f(k)p(xk). Thereby we have f(xk|k) ∝ f(k, xk) ∝ p(xk).
This means that we can obtain a sample from the target distribution p(x) by first producing
a sample (k, x1, . . . , xn) from (2) and thereafter picking out xk.

We now discuss how to simulate from the distribution given in (2). We choose to draw
the values of k and {xi|i ∈ V, i 6= k} in turn by Gibbs updates. The full conditional for
{xi|i ∈ V, i 6= k} is clearly

f(x1, . . . , xk−1, xk+1, . . . , xn|k, xk) =
∏

(i,j)∈Ek

q(xj |xi). (3)

We simulate the new values for {xi|i ∈ V, i 6= k} in the order specified by Gk. For the graph
in Figure 1(b) for examples, k = 5 so we first sample x1, x15, x16 and x17 given x5, thereafter
we can sample x2, x3 and x4 given x1, and finally we can sample x6, x7 and x8 given x2, x9,
x10 and x11 given x3, and x12, x13 and x14 given x4.

The full conditional distribution for k becomes

f(k|x1, . . . , xn) =
p(xk)

∏
(i,j)∈Ek q(xj |xi)∑n

r=1

[
p(xr)

∏
(i,j)∈Er q(xj |xi)

] . (4)

Since k is a discrete variable, we readily sample the new value of k by first computing the
probability for each possible value of k, and thereafter applying the standard algorithm for
sampling from a discrete distribution, see for example Gamerman and Lopes (2006).

Note that in the above setup we specify the simulation algorithm by choosing the proposal
distribution q(·|·) and the graph G. By choosing a graph with many vertices we get an
algorithm where a large number of potential new states are proposed in each iteration, and
by choosing a graph with long paths some of the proposed states may differ a lot from the
current state xk. If we use the graph in Figure 1 and k = 5 for example, the potential new
states x6 to x14 are generated by applying the proposal distribution q(·|·) three times. As
also discussed in the introduction, it is not reasonable to combine such a graph with a simple
random walk proposal q(·|·), since applying such a q(·|·) several times will just leave us in some
tail of the target distribution p(·). Adopting a more tailored proposal mechanism, however,
we can obtain high probability proposals even after having iterated the proposal mechanism
several times. Clearly the computation time necessary for each iteration of the procedure
proposed above depends on the number of vertices in the graph, so choosing a good graph G

4

is a trade-off between the possibility for large changes in the state vector in each iteration and
required computation time for each iteration. We expect that the better tailored the proposal
distribution is to the target distribution, the larger the graph and the longer the paths of the
graph should be.

Furthermore, the algorithm can be implemented in parallel not only in sequence. Based
on the structure of the graph, it gives the property of conditional independence, so given a
vertex the vertices conditioned on it can be sampled in parallel. For example in Figure 2(b),
given vertex 5 we can sample vertices 1, 15, 16 and 17 in parallel. Given vertex 1 we can then
sample vertices 2, 3 and 4 in parallel, and so on until all vertices are sampled.

In the above we have assumed the dimension, m, of the state vector to fixed. In the next
section we generalize the setup to a situation where the sample space of the state vector is
a union of spaces of different dimensions, i.e. to the reversible jump (Green 1995) situation.
For each edge (i, j) ∈ Gk a new state is then proposed as in the reversible jump setup. The
basic simulation procedure remains the same, but the mathematical details become different.

3 The algorithm with a reversible jump proposal distribution

Let p(x);x ∈ X denote the target distribution of interest, where the sample space X may be
a union of spaces of different dimensions. As in the standard reversible jump setup (Green
1995). More specifically, we first generate a potential new state x̃ by first proposing a variable
u ∈ U from a proposal distribution q(u|x);x ∈ X , u ∈ U , where the sample space U also may
be a union of spaces of different dimensions. Next, the potential new state x̃ is given by some
deterministic function of x and u, x̃ = h(x, u) say. Moreover, we have a deterministic function
of x and u which returns a ũ ∈ U , ũ = g(x, u) say, so that we have the one-to-one relation

x̃ = g(x, u)
ũ = h(x, u)

}
⇔

{
x = g(x̃, ũ)
u = h(x̃, ũ)

(5)

for any x, x̃ ∈ X and u, ũ ∈ U . As usual in the reversible jump setting the dimension matching
criterion must be met, i.e. dim(x) + dim(u) = dim(x̃) + dim(ũ). The Jacobian determinant
of the transformation from (x, u) to (x̃, ũ) we denote by

J(x, u) =

∣∣∣∣∣∣∣∣
∂g

∂x
(x, u)

∂g

∂u
(x, u)

∂h

∂x
(x, u)

∂h

∂u
(x, u)

∣∣∣∣∣∣∣∣ . (6)

Note that the one-to-one relation in (5) implies that

J(x̃, ũ) = J(x, u)−1. (7)

In addition to the target distribution p(x), the proposal distribution q(u|x) and the one-
to-one relation in (5), our algorithm here is as in the previous section based on a chosen
undirected acyclic labeled graph G = (V, E) with n > 1 vertices, where V = {1, . . . , n} and
E is the set of undirected edges. As in the previous section we also let Gk = (V, Ek) denote
the DAG resulting from G by defining the vertex k ∈ V to be a root. To each i ∈ V we
again associate a stochastic variable xi ∈ X , define a uniformly distributed discrete stochastic
variable k ∈ V, and given k we assume xk ∼ p(xk) so that f(xk|k) = p(xk). Given k and

5

xk the distribution for the remaining xi, i 6= k is defined by the DAG Gk and the reversible
jump proposal mechanism discussed above. Thus, to each directed edge (i, j) ∈ Ek we have
a u(i,j) ∈ U where u(i,j)|xi ∼ q(u(i,j)|xi) and xj = g(xi, u(i,j)). One should note that to each
directed edge (i, j) ∈ Ek we also have a u(j,i) = h(xj , u(i,j)) which can be used to take us from
xj to xi = g(xi, u(j,i)) if the direction of the edge is reversed.

Before defining an MCMC algorithm able to simulate the variables discussed above we
need to formulate the joint distribution for the variables involved. This is, however, difficult
when using the above notation. The distribution is specified by k ∼ Uniform(V), xk|k ∼
p(xk) and u(i,j)|xi ∼ q(u(i,j)|xi), but formulated in this way the value of k decides not only
the distribution of the remaining variables, but also what variables that are involved in the
specification. We therefore need a new notation where only the values of the variables involved
change with the value of k. Therefore, let x ∈ X , without a subscript, be equal to xk, whatever
values k have, and let u{i,j} ∈ U be equal to u(i,j) if (i, j) ∈ Gk and equal to u(j,i) if (j, i) ∈ Gk.
The joint distribution of interest can then be formulated as

f(k, x, {u{i,j}|{i, j} ∈ E}) =
1

n
· p(x)

∏
(i,j)∈Ek

q(u{i,j}|xi). (8)

To simulate from (8) we basically adopt the same strategy as we did in the previous section,
we update k and {u{i,j}, {i, j} ∈ E} in turn by Gibbs updates. For updating {u{i,j}|{i, j} ∈ E},
the full conditional is simply

f({u{i,j}|{i, j} ∈ E}|k, x) ∝
∏

(i,j)∈Ek

q(u{i,j}|xi). (9)

This implies that we can sample the new values of the u{i,j}’s sequentially according to Gk.
For example, regarding the case in Figure 1(b) where k = 5, we first independently sample
u(5,1), u(5,15), , u(5,16) and u(5,17) given x5 from q(·|x5), and compute x1 = g(x5, u(5,1)), x15 =
g(x5, u(5,15)), , x16 = g(x5, u(5,16)) and x17 = g(x5, u(5,17)). Thereafter we independently
sample u(1,2), u(1,3) and u(1,4) given x1 from q(·|x1), and compute x2 = g(x1, u(1,2)), x3 =
g(x1, u(1,3)) and x4 = g(x1, u(1,4)), and so on until we have sampled new values for all u{i,j}
and obtained new values for all xi, i 6= k.

When updating k we keep all xi, i ∈ V and u(i,j), u(j,i) for {i, j} ∈ V fixed. One should note
this implies that the variables x and u{i,j}, {i, j} ∈ E used to formulate the joint distribution
in (8) may change. Arbitrarily choosing k = 1 as a base case, we choose to sample the new
value of k independent of its current value from the distribution

r(k) =
p(xk)

∏
(i,j)∈Ek q(u(i,j)|xi)

∏
(i,j)∈E1\Ek |J(xi, u(i,j))|∑

l∈V

[
p(xl)

∏
(i,j)∈El q(u(i,j)|xi)

∏
(i,j)∈E1\El |J(xi, u(i,j))|

] , k ∈ V. (10)

One should note that choosing another base case, for example substitute E1 with E3 in the
above formula, will not not change the distribution r(k). The effect of such a change is just to
multiply the numerator and the denominator with the same product of Jacobians. Since k is
a discrete variable it is easy to sample from r(k) by, just in Section 2, applying the standard
algorithm for sampling from a discrete distribution.

We show in Appendix A that the Metropolis–Hastings reversible jump acceptance prob-
ability when using proposal distribution r(k) is identical to one. To update k by sampling
the new value from (10) can therefore best to thought of as a Gibbs update. Just as in a
standard Gibbs update the proposed value is generated independently of the current value
and the proposed value is always accepted.

6

4 Simulation examples

In the geostatistical community it has over the past years become common practice to estimate
a prior model for the spatial distribution of reservoir properties from one or several training
images. A training image can be an observed or constructed scene of a discrete variable defined
in a rectangular lattice, see for example Mariethoz and Caers (2014) and references therein.
Luo and Tjelmeland (2017) introduce a Markov mesh model (MMM) and a corresponding
tailored proposal distribution for such a situation. Here the target distribution p(x) is the
posterior of the model parameters in a Markov mesh model (Abend et al. 1965; Cressie and
Davidson 1998) when conditioning on a training image. In the following we first discuss the
target distribution p(x) and the corresponding tailored proposal distribution, and thereafter
present simulation results for two different training images.

4.1 The target distribution

Consider a rectangular lattice of size m × n and use v = (i, j), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
to denote a specific node of this lattice, corresponding to the notation used for the elements
in a matrix. We let D denote the set of all nodes, and to each node v ∈ D we have an
associated binary variable yv = y(i,j) ∈ {0, 1}. We denote the sequence of all these variables
by y = (yv, v ∈ D), and we use yA = (yv, v ∈ A) to denote the sequence of variables in a
subset A ⊆ D. We define the set of predecessors, ρv = ρ(i,j), of a node v = (i, j) to consist of
all nodes numbered before (i, j) when the nodes are numbered in the lexicographically order,
i.e. ρv = ρ(i,j) = {(k, l) ∈ D : nk + l < ni + j}. To each node v ∈ D the Markov mesh
model associates a sequential neighborhood νv ⊆ ρv. Except for nodes close to the boundary
of the lattice we assume all sequential neighborhoods to be translations of the same template
sequential neighborhood τ ⊂ {(i, j) : i, j ∈ N , i < 0} ∪ {(0, j) : j ∈ N , j < 0}, where N is
the set of all integers. A Markov mesh model for y is then assuming the following Markov
structure

f(y|ϕ) =
∏
v∈D

f(yv|yνv , ϕ), (11)

where ϕ is the model parameters. Moreover, it is assumed that

f(yv|yνv , ϕ) =
exp{yv · θ(δ(νv, y)	 v)}
1 + exp{θ(δ(νv, y)	 v)}

, (12)

where θ(λ) for λ ⊆ τ is a parameter value associated to the set λ, δ(νv, y) = {v ∈ νv : yv = 1}
is the set of nodes in the sequential neighborhood of node v for which yv = 1, and δ(νv, y)	v is
the set δ(νv, y) back transformed to the template sequential neighborhood τ , i.e. for v = (k, l)
we have δ(νv, y)	 v = {(i− k, j − l) : (i, j) ∈ δ(νv, y)}. Letting Ω(τ) denote the power set of
τ , Hammer and Rudeanu (1968) show that {θ(λ), λ ∈ Ω(τ)} can be uniquely represented by
a set of interaction parameters {β(λ) : λ ∈ Ω(τ)} according to the relation

θ(λ) = β(λ) +
∑
λ?⊂λ

β(λ?). (13)

To limit the number of free model parameters Luo and Tjelmeland (2017) defines a set Λ ⊆
Ω(τ) of active interaction parameters and restrict β(λ) = 0 whenever λ 6∈ Λ. To facilitate the
construction of a proposal distribution the set of active interactions Λ is restricted to be dense

7

Figure 2: DAG visualization of a Markov mesh model in which the sets Λ =
{∅, {(0,−1)}, {(−1, 0)}, {(−1,−1)}, {(−1, 1)}, {(0,−1), (−1, 0)}, {(0,−1), (−1, 1)}} and τ =
{(0,−1), (−1,−1), (−1, 0), (−1, 1)}. � is used in the vertices of the DAG to represent the
node (0, 0) whilst each � represents each node (i, j) ∈ λ for each λ ∈ Λ.

in the sense that if λ ∈ Λ one must also have λ? ∈ Λ for all λ? ⊂ λ. A Markov mesh model
is thereby defined by ϕ = {τ,Λ, {θ(λ) : λ ∈ Λ}}. Note that the set of active interactions
Λ can be visualized by a DAG, and an example is shown in Figure 2. For a given training
image y of interest, Luo and Tjelmeland (2017) propose to adopt a Bayesian setting and
consider the training image as a realization from a Markov mesh model f(y|ϕ) parameterized
as discussed above. A prior f(ϕ) favoring parsimonious models is constructed, so that the
posterior distribution of interest becomes

f(ϕ|y) ∝ f(ϕ)f(y|ϕ). (14)

To sample from this distribution the Metropolis–Hastings algorithm is adopted and two pro-
posal distributions tailored to the specific target distribution f(ϕ|y) is constructed. We use
the multiple-try Metropolis–Hastings setup introduced in Section 3 to sample from f(ϕ|y).
We adopt the two tailored proposal distributions defined in Luo and Tjelmeland (2017). In
each iteration we draw at random which of the two proposal strategies to use. In the next
section we briefly describe the proposal distribution and refer to Luo and Tjelmeland (2017)
for a more detailed description.

4.2 The tailored proposal distribution

Two tailored proposal distributions are constructed in Luo and Tjelmeland (2017). One is
updating the parameter values {θ(λ) : λ ∈ Λ} only, whereas the other is proposing changes in
all three parts of ϕ. Each time we are to propose a new state ϕ we decide at random what
proposal distribution to use.

When deciding to update {θ(λ) : λ ∈ Λ} only, we keep τ and Λ fixed and generate new
parameter values. We first draw a direction {∆(λ) : λ ∈ Λ} from a uniform distribution and
let the new parameter values be defined as θ?(λ) = θ(λ) + α?∆(λ), where the value of α? is

8

sampled from the corresponding full conditional for α? in the target distribution. To generate
the sample from the full conditional we use adaptive rejection sampling as introduced in Gilks
(1992). The resulting proposal {θ?(λ) : λ ∈ Λ} can be said to be tailored to the specific target
distribution in question because we sample α? from the full conditional.

When choosing to update all three elements of ϕ, we propose a change in Λ by adding or
removing one element from this set, corresponding to adding or removing one node in the DAG
representation illustrated in Figure 2. We first draw at random whether to add an element
to Λ or to remove an element from this set. If it is decided that an element in Λ should be
removed it is first identified what elements in Λ that can be removed when requiring also the
reduced set to be dense. For each of these elements λ? ∈ Λ we compute the resulting change in
the logarithm of target density by removing λ? from Λ and setting the values of the remaining
parameter values {θ(λ) : λ ∈ Λ \ λ?} by minimizing a sum of squares criterion between the
current and potential new logarithms of the target densities. As discussed in more detail in
Luo and Tjelmeland (2017) the change in the logarithm of the target density when removing
λ? becomes d(λ?) = β(λ?)

2|λ?|
, where |λ?| is cardinality of λ?. To obtain a tailored proposal we

want a higher probability for removing an element λ? that results in a small change in target
distribution, so we let the probability for removing λ? be

q(λ?) ∝ exp

{
−κ β(λ?)

2|λ?|

}
, (15)

where κ is an algorithmic tuning parameter.
When it is decided to add a new element to Λ, it must first be decided what λ? 6∈ Λ

to add. As no tailoring is used for this we refer to Luo and Tjelmeland (2017) for how this
is done. After it has been decided that a specific λ? should be added to Λ, the associated
parameter value θ?(λ?) must be sampled and potential new values for the old parameters,
{θ?(λ) : λ ∈ Λ}, must be decided. As a function of θ?(λ?) the {θ?(λ) : λ ∈ Λ} is chosen
by adopting the same minimum sum of squares criterion as discussed above. Thereby each
θ?(λ), λ ∈ Λ is given deterministically as a function of θ?(λ?). To get a tailored proposal
distribution the ideal would have been to sample θ?(λ?) from the full conditional for this
value. However, this full conditional is not available in closed form. It is possible to sample
from the full conditional by adaptive rejection sampling, but the normalizing constant is not
available analytically. Therefore, a Gaussian approximation to the full conditional is defined
and used as proposal distribution. To obtain reasonable values for the mean and variance of
this Gaussian proposal distribution, a set of samples of θ?(λ?) is first generated from the full
conditional and then the sample mean and sample variance is used as mean and variance of
the proposal distribution.

4.3 Experimental setup

For the target and proposal distributions defined in Sections 4.1 and 4.2, respectively, we now
want to explore the convergence and mixing properties of the multiple-try reversible jump
Metropolis–Hastings algorithm defined in Section 3. We run simulation experiments for two
graphs. Each of the two graphs are characterized by two positive integers L,N ≥ 1, and
given L and N the graph is constructed as follows. We start by one node, node 0 say. We
let this node have N neighbors and we say these N neighbors are on level 1. To each of the
nodes on level 1 we add N − 1 more neighbors and say that these N(N − 1) nodes are on
level 2. Including node 0 each of the nodes in level 1 thereby have N neighbors. For the

9

(a) (b)

Figure 3: Binary training images used in the simulation experiments. The gray area represent
unobserved nodes. (a) Cancer data set. Black and white pixels represent high and low cancer
mortality rates, respectively. (b) Sisim data set.

nodes in level 2, and so on, we repeat this process until we have defined nodes on level L.
The resulting graph we denote by GL,N . The graph in Figure 1(a) is a G2,4 graph. In the
simulation experiments we use G3,5 and G1,1 graphs. Note that the G1,1 graph has only two
nodes, i.e. only one proposal in each iteration. The G3,5 has 106 nodes so that the resulting
algorithm uses 105 proposals in each iteration.

The target distribution we are using is defined for a given training image. We consider two
training images, both previously considered in Luo and Tjelmeland (2017) using a standard
Metropolis–Hastings algorithm. The first training image, shown in Figure 3(a), is a mortality
map for liver and gallbladder cancers for white males between 1950 and 1959 in the eastern
United States, analyzed by Riggan et al. (1987). This data set is previously considered by
Sherman et al. (2006), Liang (2010) and Austad and Tjelmeland (2016) using Markov random
field models, see also Liang et al. (2011). In Figure 3(a) the black (yv = 1) and white (yv = 0)
pixels represent counties with high and low cancer mortality rates, respectively. Following Luo
and Tjelmeland (2017), we define the Markov mesh model on an extended lattice to reduce
the boundary effects. In Figure 3(a) this is shown as a gray area which thereby represents
unobserved nodes. The second training image we are using is shown in Figure 3(b) and is a
data set previously considered by Stien and Kolbjørnsen (2011). They fitted a Markov mesh
model to this data set, but with manually chosen neighborhood and interaction structures.
This data set was simulated by the sequential indicator simulation procedure (Journel 1982;
Deutsch and Journel 1998), and we name the data set "sisim". The sisim scene is represented
on a 125 × 125 lattice. To reduce the border effects of the Markov mesh model we again
include unobserved pixels, shown in gray in Figure 3(b).

To simulate from the defined distribution we alternate between the update discussed in
Section 3 and single site Gibbs updates for the values of the unobserved nodes. The parameter
space from which we simulate is complicated, the dimensionality of the state vector varies
and the interpretation of the parameters varies. To evaluate the convergence and mixing
properties of the algorithms we focus on three scalar functions. The two first are the number
of interactions, i.e. number of elements in the set Λ, and the logarithm of the posterior density.
The third scalar function we use is specifically constructed to reveal lack of convergence. For
each of the two graphs G3,5 and G1,1 we make five runs, all starting with the empty model,
Λ = ∅. Separately for each of the two graphs we form the third scalar function as follows.

10

Based on trace plots of the first two scalar functions we set and discard a (preliminary) burn-
in period from each of the runs. Based on the simulated models of all five runs we start by
finding the most frequently visited model Λ and put this model into a group number 0. If
the (estimated) probability of this state is less than a threshold η we find all visited models
Λ that can be formed by starting with the model included in group 0 and thereafter adding
or removing one interaction. We call these models neighbor models of group 0. The neighbor
model with the highest (estimated) probability we add to group 0. If the total frequency of
group 0 is still less than η, we repeat the process. We find all visited neighbor models to
models in group 0, which are not already in group 0, and put into group 0 the model of these
neighbor models with the highest estimated probability. We stop the process when the total
probability of the models in group 0 is at least η or if the models in the group have no visited
neighbor models outside the group. We then start form another group of models, group 1. We
first find the most frequently visited model which is not in group 0 and put this model into
group 1. If this model has probability less than η we begin adding visited neighbor models to
group 1 in the same way as described for group 0, except that we now disregard models that
are already put into group 0. Thereafter we make group 2 in the same way, now disregarding
models that are already in group 0 or 1, thereafter we make group 3 and so on until all visited
models have been assigned a group. The third scalar function is then defined as the group
index of the visited state. To evaluate whether the chains really have converged we limit the
attention to groups that have probabilities larger than or close to η and find the observed
frequencies of the various groups in each of the five runs. If the observed frequencies vary a
lot it is a clear indication that the chains have not converged.

4.4 Results

In this section, we present the simulation results of the setup defined above. We start by
showing and discussing the results for the cancer data set. We use parallel computing when
running based on the G3,5 graph and compare the performance of the two algorithms in
observed clock time. The run based on the G1,1 graphs is running approximately five times
faster, in clock time, than the run based on the G3,5 graph. Figures 4(a) and (b) shows trace
plots of the number of interactions and the logarithm of the posterior density for the initial
parts of the runs based on G3,5. All five runs are shown in the same plot and the number
of iterations is specified along the x-axis. The same is shown for the runs based on the G1,1
graph in Figures 4(c) and (d), except that the numbers along the x-axis is now the number
of iterations divided by five so that the results in the two rows are comparable in clock time.
Based on these trace plots it is no clear difference in the length of the burn-in measured in
clock time. Preliminarily we set the length of the burn-in period for the G3,5 case to 2000
iterations and for the G1,1 case to 5× 2000 iterations.

We then form groups as discussed in Section 4.3, separately for the G3,5 and G1,1 cases, and
estimate the frequencies of each group in each of the five runs. The results for the six most
probable groups are shown in Table 1. We see that the fractions for the five runs are close to
each other, giving a clear indication that the chains for both graph cases have converged.

We then shift focus to the mixing properties of the chains. Figure 5 shows trace plots,
well after the burn-in period, of the number of interactions and the logarithm of the posterior
density for 50000 iterations for the G3,5 case and 5× 50000 interactions for the G1,1 case. The
number of interactions seem to mix better for the G3,5 case than for the G1,1 case, whereas it
is difficult to see any difference for the logarithm of the posterior density. To study the mixing

11

0 500 1000 1500 2000 2500 3000

1
3

5
7

9
1

1
1

3
1

5

(a)
0 100 200 300 400 500−

7
5

0
0

−
7

0
0

0
−

6
5

0
0

−
6

0
0

0
−

5
5

0
0

(b)

0 500 1000 1500 2000 2500 3000

1
3

5
7

9
1

1
1

3
1

5
1

3
5

7
9

1
1

1
3

1
5

(c)
0 100 200 300 400 500−

7
5

0
0

−
7

0
0

0
−

6
5

0
0

−
6

0
0

0
−

5
5

0
0

(d)

Figure 4: Cancer data set example: Trace plots of the first part of the Markov chain runs,
where (a) and (b) are simulation results for the runs based on the G3,5 graph and (c) and
(d) are results for the runs based on the G1,1 graph. The number of interactions is shown in
(a) and (c), and the logarithm of the posterior density is shown in (b) and (d). In (a) and
(b) the number of iterations is specified along the x-axis, whereas in (c) and (d) the numbers
along the x-axis is the number of iterations divided by five. All plots show the traces of five
independent runs.

12

Table 1: Cancer data set example: Fractions of the top six most probable group indices for
each of five independent runs based on (a) the G3,5 graph, and (b) the G1,1 graph.

(a)

Group 1: 0.499 0.481 0.488 0.489 0.463
Group 2: 0.392 0.376 0.398 0.390 0.369
Group 3: 0.009 0.033 0.011 0.026 0.050
Group 4: 0.012 0.035 0.037 0.011 0.033
Group 5: 0.030 0.025 0.023 0.025 0.024
Group 6: 0.029 0.024 0.016 0.029 0.028

(b)

Group 1: 0.505 0.464 0.458 0.479 0.506
Group 2: 0.390 0.377 0.370 0.373 0.401
Group 3: 0.007 0.047 0.039 0.027 0.006
Group 4: 0.022 0.042 0.017 0.037 0.012
Group 5: 0.027 0.014 0.040 0.031 0.024
Group 6: 0.022 0.021 0.031 0.022 0.029

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

3
4

5
6

7
8

9
1

0
1

2

(a)
5e+04 6e+04 7e+04 8e+04 9e+04 1e+05−

6
5

0
0

−
6

0
0

0
−

5
5

0
0

(b)

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

3
4

5
6

7
8

9
1

0
1

2

(c)
5e+04 6e+04 7e+04 8e+04 9e+04 1e+05−

6
5

0
0

−
6

0
0

0
−

5
5

0
0

(d)

Figure 5: Cancer data set example: Trace plots well after the burn-in period, where (a) and
(b) are simulation results for the runs based on the G3,5 graph and (c) and (d) are results for
the runs based on the G1,1 graph. The number of interactions is shown in (a) and (c), and the
logarithm of the posterior density is shown in (b) and (d). In (a) and (b) iteration number
is specified along the x-axis, whereas in (c) and (d) the numbers along the x-axis is iteration
number divided by five. Each trace plot is for one Markov chain run.

13

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)
0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

Figure 6: Cancer data set example: Estimated autocorrelation functions for (a) number of
interactions and (b) logarithm of the posterior density. The solid curves are for the runs
based on the G1,1 graph, whereas the dashed curves are for runs based on the G3,5 graph. The
numbers along the x-axis is the number of iterations for the runs based on the G3,5 graph,
whereas for the runs based on the G1,1 graph it is the number of iterations divided by five.

further we also estimate the autocorrelation functions of the same two scalar functions. The
estimates are based on all five runs and shown in Figure 6. The solid curves represent the
result for the G3,5 graph case and the dashed curve is the results of the G1,1 graph case. Note
that to make the estimated autocorrelation functions comparable (in clock time) the x-axis
shows the number of iterations for the G3,5 case, but the number of iterations divided by
five for the G1,1 case. The results of G3,5 imply clearly better mixing since the corresponding
estimated autocorrelation function in Figure 6(a) decays more rapidly.

We next present and discuss the results for the sisim training image. With this training
image the simulations turned out to be more troublesome. Again we ran five MCMC runs for
each of our two graphs. The runs based on the G1,1 graph were approximately a factor eight
faster (in clock time) than the runs based on G3,5. Figure 7 corresponds to Figure 4 and the
upper row shows trace plots of the number of interactions and the logarithm of the posterior
density for the initial parts of the runs based on G3,5. All five runs are shown and the number
of interactions is shown along the x-axis. Corresponding quantities for the runs based on G1,1
are shown in the lower row of Figure 7, except that the numbers along the x-axis is here the
number of iterations divided by eight. From these trace plots it is difficult to see any clear
difference in the length of the burn-in periods measured in clock time. Preliminarily we set
the length of the burn-in period for the G3,5 case to be 2000 iterations and for the G1,1 case
to 8× 2000 iterations.

We then again form groups as discussed in Section 4.3, separately for each of the two
cases, and study the frequencies of each group in each of the five runs. The results for the
six most probable groups are give in Table 2. Both for the runs based on the G3,5 graph
and the runs based on G1,1, we see that the various runs are not visiting all groups. This
clearly indicates very slow mixing and as a consequence the preliminarily burn-in periods set
is most likely much too short. Since the mixing of the simulated Markov chains is so slow it is
not possible to get a clear conclusion about the relative mixing properties of the two Markov
chains. However, to get a first indication of the mixing properties for the two chains we still
estimate the autocorrelation functions for the same two scalar functions as used in the cancer
data example. When estimating the autocorrelation functions we discard the burn-in periods

14

0 500 1000 1500 2000 2500 3000

1
4

7
1

1
1

5
1

9
2

3
2

7
3

1

(a)
0 100 200 300 400 500

−
1

8
0

0
0

−
1

4
0

0
0

−
1

0
0

0
0

−
6

0
0

0

(b)

0 500 1000 1500 2000 2500 3000

1
4

7
1

1
1

5
1

9
2

3
2

7
3

1

(c)
0 100 200 300 400 500

−
1

8
0

0
0

−
1

4
0

0
0

−
1

0
0

0
0

−
6

0
0

0

(d)

Figure 7: Sisim example: Trace plots of the first part of the Markov chain runs, where (a)
and (b) are simulation results for the runs based on the G3,5 graph and (c) and (d) are results
for the runs based on the G1,1 graph. The number of interactions is shown in (a) and (c), and
the logarithm of the posterior density is shown in (b) and (d). In (a) and (b) the number of
iterations is specified along the x-axis, whereas in (c) and (d) the numbers along the x-axis is
the number of iterations divided by eight. All plots show the traces of five independent runs.

Table 2: Sisim example: Fractions of the top six most probable group indices for each of five
independent runs based on (a) the G3,5 graph, and (b) the G1,1 graph.

(a)

Group 1: 0.000 0.000 0.121 0.167 0.000
Group 2: 0.000 0.109 0.000 0.000 0.150
Group 3: 0.000 0.000 0.110 0.189 0.000
Group 4: 0.000 0.074 0.000 0.000 0.194
Group 5: 0.000 0.208 0.066 0.000 0.000
Group 6: 0.000 0.000 0.112 0.150 0.000

(b)

Group 1: 0.116 0.000 0.127 0.033 0.000
Group 2: 0.000 0.000 0.005 0.248 0.150
Group 3: 0.100 0.000 0.130 0.039 0.000
Group 4: 0.000 0.251 0.000 0.000 0.000
Group 5: 0.120 0.000 0.103 0.040 0.000
Group 6: 0.000 0.000 0.000 0.000 0.258

15

0 10000 20000 30000 40000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)
0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

Figure 8: Sisim example: Estimated autocorrelation functions for (a) number of interactions
and (b) logarithm of the posterior density. The solid curves are for the runs based on the G1,1
graph, whereas the dashed curves are for runs based on the G3,5 graph. The numbers along
the x-axis is the number of iterations for the runs based on the G3,5 graph, whereas for the
runs based on the G1,1 graph it is the number of iterations divided by eight.

preliminarily set as discussed above. The estimated autocorrelation function are shown in
Figure 8. Of the two scalar functions we see that it is the autocorrelations for the number of
interactions that decay slowest and for this scalar function the difference between the two cases
is very small. This indicates that the multiple-try algorithm based on G3,5 gives approximately
the same mixing as for the G1,1 graph when using the sisim training image.

5 Closing remarks

In this article we define a novel multiple-try Metropolis–Hastings algorithm to be used together
with a tailored proposal distribution. Previously defined multiple-try Metropolis–Hastings
algorithms typically generates several independent proposals in each iteration, whereas in
our setup many of the proposals may be dependent. Moreover, our multiple-try scheme is
new in that the proposals are generated by applying a (tailored) proposal mechanism several
times without any intermediate acceptance steps. As all multiple-try Metropolis–Hastings
algorithms our setup is also ideal for parallel computing.

We present two examples to evaluate the effectiveness of our approach. In the examples
the target distribution is defined on a sample space which is a union of spaces of different
dimensions. A reversible jump version of our multiple-try algorithm must therefore be used.
We adopt a previously defined tailored proposal distribution and use it in our multiple-try
scheme. In one of the examples the multiple-try scheme gives much better mixing properties
compared to a scheme with only one proposal in each iteration, when the two chains are run
for the same clock time. In the other example the multiple-try scheme does not seem to give
any advantages.

A graph G is used to define our multiple-try Metropolis–Hastings algorithm and the number
of proposals in each iteration is given by the number of nodes in G. We have not yet explored
how the size and form of G influence the mixing properties of the multiple-try algorithm.
Intuitively we expect it to be beneficial to increase the number of nodes in G when more
processors are available. Moreover, the better tailored the proposal mechanism is to the
target distribution the more levels L we expect to be optimal.

16

One should note that our multiple-try scheme can be modified in several ways. We use a
Gibbs step to generate a new value for k, but any proposal distribution may be used for k.
In particular we expect it to be advantageous to assign high proposal probabilities to values
of k that correspond to states that are much different from the current state. Moreover, in
the scheme discussed above we consider the graph G as given and fixed. By letting also G be
stochastic one may define a proposal procedure where one on the fly add neighbor nodes to
nodes that contain good (in some sense) proposals.

References

Abend, K., Harley, T., and Kanal, L. (1965). “Classification of binary random patterns.” IEEE
Transactions on Information Theory , 11, 538–544.

Austad, H. and Tjelmeland, H. (2016). “Approximate computations for binary Markov random
fields and their use in Bayesian models.” Statistics and Computing . (to appear).

Bédard, M., Douc, R., and Moulines, E. (2012). “Scaling analysis of multiple-try MCMC
methods.” Stochastic Processes and their Applications, 122, 3, 758–786.

Casarin, R., Craiu, R., and Leisen, F. (2013). “Interacting multiple try algorithms with
different proposal distributions.” Statistics and Computing , 1–16.

Chib, S. and Ramamurthy, S. (2010). “Tailored randomized block MCMC methods with
application to DSGE models.” Journal of Econometrics, 155, 19–38.

Craiu, R. V. and Lemieux, C. (2007). “Acceleration of the multiple-try Metropolis algorithm
using antithetic and stratified sampling.” Statistics and computing , 17, 2, 109.

Cressie, N. and Davidson, J. (1998). “Image analysis with partially ordered Markov models.”
Computational Statistics and Data Analysis, 29, 1–26.

Deutsch, C. and Journel, A. (1998). GSLIB: Geostatistical Software Library . 2nd ed. Oxford:
Oxford University Press.

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation
for Bayesian Inference. 2nd ed. London: Chapman & Hall/CRC.

Geman, S. and Geman, D. (1984). “Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721–741.

Gilks, W. R. (1992). “Derivative-free adaptive rejection sampling for Gibbs sampling.” In
Bayesian Statistics 4 , eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith,
641–649. Oxford: Oxford University Press.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in
practice. London: Chapman & Hall.

Green, P. J. (1995). “Reversible jump MCMC computation and Bayesian model determina-
tion.” Biometrika, 82, 711–732.

17

Hammer, P. L. and Rudeanu, S. (1968). Boolean Methods in Operation Research and Related
Areas. Berlin: Springer.

Hastings, W. K. (1970). “Monte Carlo simulation methods using Markov chains and their
applications.” Biometrika, 57, 97–109.

Journel, A. (1982). “The indicator approach to estimation of spatial distributions.” In 17th
APCOM Symposium Prooceedings. Society of Mining Engineers.

Liang, F. (2010). “A double Metropolis–Hastings sampler for spatial models with intractable
normalizing constants.” Journal of Statistical Computation and Simulation, 80, 1007–1022.

Liang, F., Liu, C., and Carroll, R. (2011). Advanced Markov Chain Monte Carlo Methods:
Learning from Past Samples. Wiley.

Liu, J. S., Liang, F. M., and Wong, W. H. (2000). “The multiple-try method and local
optimization in Metropolis sampling.” Journal of American Statistical Association, 95,
121–134.

Luo, X. and Tjelmeland, H. (2017). “Prior specification for binary Markov mesh models.” Tech.
rep., ArXiv e-prints 1707.08339v1, Available from http://arxiv.org/abs/1707.08339v1.

Mariethoz, G. and Caers, J. (2014). Multiple-point Geostatistics: Stochastic Modeling with
Training Images. 1st ed. Chichester: Wiley Blackwell.

Martino, L., Del Olmo, V. P., and Read, J. (2012). “A multi-point Metropolis scheme with
generic weight functions.” Statistics & Probability Letters, 82, 7, 1445–1453.

Martino, L., Leisen, F., and Corander, J. (2014). “On multiple try schemes and the particle
Metropolis-Hastings algorithm.” Tech. rep., ArXiv e-prints 1409.0051v1, Available from
http://arxiv.org/abs/1409.0051v1.

Martino, L. and Louzada, F. (2017). “Issues in the multiple try Metropolis mixing.” Compu-
tational Statistics, 32, 1, 239–252.

Martino, L. and Read, J. (2013). “On the flexibility of the design of multiple try Metropolis
schemes.” Computational Statistics, 28, 6, 2797–2823.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
“Equation of state calculations by fast computing machines.” Journal of Chemical Physics,
21, 1087–1092.

Pandolfi, S., Bartolucci, F., and Friel, N. (2010). “A generalization of the Multiple-try Metropo-
lis algorithm for Bayesian estimation and model selection.” In International Conference on
Artificial Intelligence and Statistics, 581–588.

Qin, Z. S. and Liu, J. S. (2001). “Multi-point Metropolis method with application to hybrid
Monte Carlo.” Journal of Computational Physics, 172, 827–840.

Riggan, W. B., Creason, J. P., Nelson, W. C., Manton, K. G., Woodbury, M. A., Stallard,
E., Pellom, A. C., and Beaubier, J. (1987). U.S. Cancer Mortality Rates and Trends, 1950-
1979 . Vol. IV (U.S. Goverment Printing Office, Washington, DC: Maps, U.S. Environmental
Protection Agency).

18

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. Berlin: Springer.

Sherman, M., Apanasovich, T. V., and Carroll, R. J. (2006). “On estimation in binary autol-
ogistic spatial models.” Journal of Statistical Computation and Simulation, 76, 167–179.

Stien, M. and Kolbjørnsen, O. (2011). “Facies modeling using a Markov mesh model specifi-
cation.” Mathematical Geosciences, 43, 611–624.

Tjelmeland, H. and Hegstad, B. K. (2001). “Mode jumping proposals in MCMC.” Scandinavian
Journal of Statistics, 28, 205–223.

A Acceptance probability for the proposal of k in Section 3

We use notation as in Sections 2 and 3, and let (k, z) and (k̃, z̃) denote the current and the
proposed states, respectively, where z = (x, {u{i,j}|{i, j} ∈ E}) and z̃ = (x̃, {ũ{i,j}|{i, j} ∈ E}).
Recalling from Section 3 that when k and k̃ are given, there exists a deterministic one-to-one
relation between z and z̃. The acceptance probability for the proposal is then

α(k̃, z̃|k, z) = min

{
1,
f(k̃, x̃, {ũ{i,j}|{i, j} ∈ E})r(k)

f(k, x, {u{i,j}|{i, j} ∈ E})r(k̃)
·
∣∣∣∣∂z̃∂z

∣∣∣∣
}
, (16)

where
∂z̃

∂z
is the Jacobian determinant for the transformation from state z to state z̃.

In order to show that the acceptance probability α(k̃, z̃|k, z) = 1, we need to prove that
the value of

A(k̃, z̃|k, z) =
f(k̃, x̃, {ũ{i,j}|{i, j} ∈ E})r(k)

f(k, x, {u{i,j}|{i, j} ∈ E})r(k̃)
·
∣∣∣∣∂z̃∂z

∣∣∣∣ (17)

is identical to 1. Inserting (8) and (10) into (17) and using that x = xk and x̃ = x
k̃
, that

u{i,j} = u(i,j) for (i, j) ∈ Ek, and that ũ{i,j} = u(i,j) for (i, j) ∈ E
k̃
, all factors except the

Jacobian determinants vanish, so we obtain

A(k̃, z̃|k, z) =

∏
(i,j)∈E1\Ek |J(xi, u(i,j))|∏
(i,j)∈E1\Ek̃

|J(xi, u(i,j))|
·
∣∣∣∣∂z̃∂z

∣∣∣∣ . (18)

Trivially, if k = k̃ we have A(k̃, z̃|k, z) = 1. In the following we first find ∂z̃
∂z when k and k̃ are

neighbors, thereafter find the same when k 6= k̃ and k and k̃ are not neighbors, and finally we
insert these expressions in (18) to show that A(k̃, z̃|k, z) equals one.

If vertex k and vertex k̃ are neighbors, then (k, k̃) ∈ Ek and (k̃, k) ∈ E
k̃
, whereas all other

edges in Ek and E
k̃
are in the same direction, i.e. Ek \{(k, k̃)} = E

k̃
\{(k̃, k)}, so the one-to-one

transformation becomes

x̃ = g(x, u{k,k̃})

ũ{k,k̃} = h(x, u{k,k̃})

ũ{i,j} = u{i,j}, (i, j) ∈ Ek \ {(k, k̃)}

 ⇔


x = g(x̃, ũ{k,k̃})

u{k,k̃} = h(x̃, ũ{k,k̃})

u{i,j} = ũ{i,j}, (i, j) ∈ Ek̃ \ {(k̃, k)}.
(19)

Note that the elements of the Jacobian
∂z̃

∂z
depend on the order of the elements in z and

z̃. Without loss of generality, we set x and u{k,k̃} as the first and second elements in z, put

19

the remaining variables u{i,j}, {i, j} ∈ Ek \ {{k, k̃}} thereafter in some order, and arrange

the elements in z̃ correspondingly. The upper left corner of the Jacobi determinant
∂z̃

∂z
then

becomes
∂g

∂x
(x, u{k,k̃})

∂g

∂u
(x, u{k,k̃})

∂h

∂x
(x, u{k,k̃})

∂h

∂u
(x, u{k,k̃}),

(20)

and the remaining diagonal and non-diagonal elements all become equal to one and zero,
respectively. Thereby we get

∂z̃

∂z
= J(x, u{k,k̃}) = J(xk, u(k,k̃)), (21)

where J(·, ·) is as defined in (6) and we have used that for the state (k, z) we have x = xk and
u{k,k̃} = u

(k,k̃)
.

If k 6= k̃ and k and k̃ are not neighbors in the graph G, let k = k0, k1, . . . , km = k̃ denote
the shortest path from vertex k to vertex k̃ in G. For example, if G is the one shown in Figure
1(a) and k = 5 and k̃ = 9, the shortest path has m = 3, k0 = 5, k1 = 1, k2 = 3 and k3 = 9.
Note that with this notation we also have that Ek \ Ek̃ = {(k0, k1), (k1, k2), . . . , (km−1, km)}.
The transformation from z to z̃ then may be decomposed into a series of subtransformations
by following the path from k to k̃ step by step. Letting zs denote the state when k = ks, for
s = 0, 1, . . . ,m, we may first transform z = z0 to z1, thereafter transform z1 to z2, and so
on until we reach zm = z̃. The Jacobi determinant for the whole series of transformations,
∂z̃
∂z is equal to the product of the Jacobi determinants for each of these subtransformations.
Moreover, since ks−1 and ks by construction are neighbors in G for each s ∈ {1, 2, . . . ,m} we
have from (21) that

∂zs

∂zs−1
= J(xks−1 , u(ks−1,ks)). (22)

Thereby we get
∂z̃

∂z
=

m∏
s=1

J(xks−1 , u(ks−1,ks)) =
∏

(i,j)∈Ek\Ek̃

J(xi, u(i,j)). (23)

Noting that this last expression for ∂z̃
∂z is consistent with (21) also when k and k̃ are neighbors

we get for all k, k̃ ∈ V,

A(k̃, z̃|k, z) =

∏
(i,j)∈E1\Ek |J(xi, u(i,j))|∏
(i,j)∈E1\Ek̃

|J(xi, u(i,j))|
·

∏
(i,j)∈Ek\Ek̃

|J(xi, u(i,j))|. (24)

To simplify this expression let k? denote the vertex in the shortest path from k to k̃ that is
closest to vertex 1. In particular, k? = 1 if vertex 1 is in the shortest path from k to k̃. We then
have Ek\Ek̃ = (Ek\k?)∪(Ek?\Ek̃), E1\Ek = (E1\Ek?)∪(Ek?\Ek) and E1\Ek̃ = (E1\Ek?)∪(Ek?\Ek̃),

20

which can be used to split in two each of the three products in (24). We then get

A(k̃, z̃|k, z) =

∏
(i,j)∈E1\Ek? |J(xi, u(i,j))|∏
(i,j)∈E1\Ek? |J(xi, u(i,j))|

×
∏

(i,j)∈Ek?\Ek |J(xi, u(i,j))|∏
(i,j)∈Ek?\Ek̃

|J(xi, u(i,j))|

×

 ∏
(i,j)∈Ek\Ek?

|J(xi, u(i,j))|

×
 ∏
(i,j)∈Ek?\Ek̃

|J(xi, u(i,j))|

 (25)

=

∏
(i,j)∈Ek?\Ek |J(xi, u(i,j))|∏
(i,j)∈Ek\Ek? |J(xi, u(i,j))|

Moreover, first using (7) and thereafter that (i, j) ∈ Ek \ Ek? ⇔ (j, i) ∈ Ek? \ Ek we get

1∏
(i,j)∈Ek\Ek? |J(xi, u(i,j))|

=
∏

(i,j)∈Ek\Ek?

|J(xj , u(j,i))| =
∏

(i,j)∈Ek?\Ek

|J(xi, u(i,j)|. (26)

Inserting this in (25) we see that all factors cancel and we get A(k̃, z̃|k, z) = 1. The proof is
thereby complete.

21

