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Abstract

We propose prior distributions for all parts of the specification of a Markov mesh model.
In the formulation we define priors for the sequential neighborhood, for the parametric
form of the conditional distributions and for the parameter values. By simulating from
the resulting posterior distribution when conditioning on an observed scene, we thereby
obtain an automatic model selection procedure for Markov mesh models. To sample from
such a posterior distribution, we construct a reversible jump Markov chain Monte Carlo
algorithm (RJMCMC). We demonstrate the usefulness of our prior formulation and the
limitations of our RJMCMC algorithm in two examples.

Key words: Markov mesh model, prior construction, pseudo-Boolean functions, reversible
jump MCMC, sequential neighborhood.

1 Introduction

Discrete Markov random fields (MRFs) defined on rectangular lattices are often used in spa-

tial statistics, see for example Kindermann and Snell (1980) and Hurn et al. (2003). A discrete

MRF is typically used to model available prior information about an unobserved scene x of a

discrete variable. This is combined with a likelihood function describing the relation between

x and some observed data y into a posterior distribution. The posterior is then the basis for

making inference about x. When specifying the MRF prior, the most frequent approach is

to fix the neighborhood and parametric model structures and also to specify the values of

the model parameters a priori. However, several authors have also considered a more fully

Bayesian approach by assigning a prior to the model specification of the MRF. The resulting

posterior distribution then becomes doubly-intractable in that the normalizing constant of the

MRF, which is computationally intractable, comes in as a factor in the posterior. Recently

several strategies to cope with such doubly-intractable posterior distributions have been pro-

posed, see for example Heikkinen and Högmander (1994); Higdon et al. (1997); Friel et al.

(2009); Everitt (2012); Cucula and Marin (2013); Friel (2013); Stoehr et al. (2015) and ref-

erences therein. Coping with doubly-intractable posterior distributions computationally is,

however, in general very computer intensive.

In this article we propose to circumvent the problem with doubly-intractable posterior

distributions in the situation discussed above by replacing the MRF prior with a Markov mesh
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prior. The class of Markov mesh models was introduced already in Abend et al. (1965) and

was later generalized to partially ordered Markov models (POMMs) in Cressie and Davidson

(1998). In contrast to the situation for MRFs, the normalizing constants of Markov mesh

models and POMMs are analytically available and easy to compute. Thus, adopting a Markov

mesh model as prior in a fully Bayesian setting results in a posterior that is easy to compute

up to a normalizing constant. Simulation from the resulting posterior can thereby readily be

done by the Metropolis–Hastings algorithm.

That the normalizing constants are easy to compute for Markov mesh models is a clear

advantage over MRFs. However, Markov mesh models have also disadvantages relative to

MRFs. Whereas it is easy to specify an isotropic MRF or to specify an MRF with a certain

type of anisotropy, this is seemingly impossible for a Markov mesh model. When used as

a prior with manually specified model structure and parameter values, an MRF is therefore

clearly to be preferred over a Markov mesh model. Then the computationally intractable

normalizing constant of the MRF constitutes no problem and we can specify isotropy or

anisotropy as we want in the MRF. In a fully Bayesian model setup, however, the situation is

reversed. Then the computationally intractable normalizing constant of the MRFs constitutes

a major problem, and since we do not want to specify the model structure and parameter

values of the underlying spatial field a priori it is not so important that we can not control

the anisotropy in the Markov mesh model.

Our goal in the present article is to demonstrate how one can fit a Markov mesh model

to an observed scene. To do this, we consider the scene as an observation and assume it to

be a realization from a Markov mesh model. We put this into a Bayesian setting and define

a flexible prior for both the model structure and the parameter values of the Markov mesh

model, and generate realistic Markov mesh models for the observed scene by simulating from

the resulting posterior distribution. Considering the fully Bayesian setup discussed above

is clearly a natural next step, but beyond the scope of the present paper. In the present

article we also limit the attention to binary Markov mesh models, but our approach can be

generalized to a situation where each node can take more than two possible values.

The remainder of this article is organized as follows. In Section 2 we formulate a flexible

class of Markov mesh models. In Section 3 we construct our prior distribution, and in Section

4 we formulate proposal distributions that we use in a reversible jump Markov chain Monte

Carlo algorithm to simulate from the corresponding posterior when conditioning on an ob-

served scene. In Section 5 we present two examples and lastly we give some closing remarks

in Section 6.
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2 Construction of a flexible Markov mesh model

In this section we formulate a flexible class of homogeneous binary Markov mesh models

(Abend et al., 1965) on a rectangular lattice. We first introduce basic notation related to

the lattice and the binary variables. Thereafter we define the Markov assumption used to

define Markov mesh models and describe how we construct the sequential neighborhoods from

a template sequential neighborhood. Finally, we describe how we use a template pseudo-

Boolean function to define a parametric form for Markov mesh model.

2.1 Basic notation

We consider a rectangular m×n lattice and let χ = {(i, j) : i = 1, . . . ,m; j = 1, . . . , n} denote

the set of all nodes in the lattice, where i and j specify the vertical and horizontal positions

of a node, respectively. We number the rows from i = 1 at the top of the lattice to i = m at

the bottom, and number the columns from j = 1 at the left end to j = n at the right end.

We also use v = (i, j) ∈ χ to denote an arbitrary node in the lattice. To each node v ∈ χ
we associate a binary stochastic variable xv ∈ {0, 1}. We use x = (xv; v ∈ χ) to denote the

collection of all these binary variables and for a set of nodes λ ⊆ χ we use xλ = (xv; v ∈ λ)

to denote the collection of all the binary variables associated to nodes in this set.

2.2 Markov assumption and template sequential neighborhood

The Markov mesh model is based on numbering the nodes in the lattice in the lexicographical

order, from left-to-right and top-to-bottom, from one to mn. For a node v ∈ χ, the predecessor

set ρv is the set of all nodes coming before node v, i.e.

ρ(i,j) = {(k, l) ∈ χ : nk + l < ni+ j}, (1)

see the illustration in Figure 1(a). The Markov mesh model uses that the distribution of x

can then be given as

f(x) =
∏
v∈χ

f(xv|xρv). (2)

The Markov mesh model adopts a Markov assumption in that the conditional distribution

f(xv|xρv) in fact only depends on a subset of the variables in xρv , see Figure 1(b) for an

illustration. More precisely, for each v ∈ χ we assume we have a sequential neighborhood

νv ⊆ ρv so that

f(xv|xρv) = f(xv|xνv). (3)

It should be noted that the chosen numbering of the nodes and the assumed Markov property

will for most scenes x not reflect the actual data generating process. The chosen numbering
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Figure 1: Illustration of the predecessor set ρv and a possible sequential neighborhood νv for

node v = (4, 4) in a 8× 10 lattice. (a) The nodes in ρv are shown in gray. (b) The nodes in a

possible sequential neighborhood νv = {(4, 3), (3, 3), (3, 4), (3, 5)} are shown in gray.

and the Markov property is just a pragmatic approach to obtain a joint distribution f(x) for

which we can easily compute the normalizing constant.

In this article we assume all the sequential neighborhoods are generated by a translation

of a template sequential neighborhood τ . The τ can best be thought of as the sequential

neighborhood of node (0, 0) in an infinite lattice. More precisely, τ is required to contain a

finite number of elements and

τ ⊂ ψ = {(i, j) : i ∈ Z−, j ∈ Z} ∪ {(0, j) : j ∈ Z−}, (4)

where ψ can be though of as the predecessor set for (0, 0) in an infinite lattice, and Z =

{0,±1,±2, . . .} and Z− = {−1,−2, . . .} are the set of all integers and the set of all negative

integers, respectively. The sequential neighborhood for node v ∈ χ is then defined as

νv = (τ ⊕ v) ∩ χ, (5)

where the translation operator ⊕ is defined as

τ ⊕ (i, j) = {(k + i, l + j) : (k, l) ∈ τ}. (6)

As illustrated in Figure 2, sequential neighborhoods for all nodes sufficiently far away from

the lattice borders then have the same form, whereas nodes close to the borders have fewer

sequential neighbors.

To model f(xv|xνv) we the consider the logit transformation of the conditional probability

for xv being equal to one,

logit [f(xv = 1|xνv)] = ln

(
f(xv = 1|xνv)

1− f(xv = 1|xνv)

)
. (7)
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Figure 2: Illustration of the construction of sequential neighborhoods from a template τ . The

left figure shows a possible template τ = {(0,−1), (−1,−1), (−1, 0), (−1, 1)}, where the node

(0, 0) is represented with � and the elements of τ are shown in gray. The right figure shows

the resulting sequential neighborhoods (again in gray) for nodes v1 = (5, 5), v2 = (8, 8) and

v3 = (2, 10) in a 8× 10 lattice.

This is a real function of the binary variables in the vector xνv and thereby a pseudo-Boolean

function (Hammer and Holzman, 1992; Grabisch et al., 2000). To obtain simpler expressions

when modeling this pseudo-Boolean function we choose to define it as a function of the set of

nodes in νv for which the associated stochastic variable has the value one. This set of nodes

we denote by

ξ(x, νv) = {u ∈ νv : xu = 1} (8)

and use θv(·) to denote the pseudo-Boolean function, i.e.

logit [f(xv = 1|xνv)] = θv(ξ(x, νv)). (9)

In the following we require the Markov mesh model to be homogeneous. One should note

that the different pseudo-Boolean functions θv(·), v ∈ χ are defined on different domains, so

mathematically we can not just set them equal. To get a homogeneous model we define a

template pseudo-Boolean function defined on τ ,

θ : Ω(τ)→ R, (10)

where Ω(τ) is the power set of τ , and relate all θv(·), v ∈ χ to θ(·) by the relation

θv(λ) = θ(λ	 v) for λ ⊆ νv, (11)

where the translation operator 	 is defined by

λ	 (i, j) = {(k − i, l − j) : (k, l) ∈ λ}. (12)

Combining (7) with (9) and inserting the relations (5) and (11) we then get

f(xv|xνv) =
exp {xv · θ(ξ(x, (τ ⊕ v) ∩ χ)	 v)}
1 + exp {θ(ξ(x, (τ ⊕ v) ∩ χ)	 v)}

. (13)
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Assuming, as we do, the Markov mesh model to be homogeneous is convenient in that we

do not need to specify a separate pseudo-Boolean function for each node v ∈ χ, and it is

also statistically favorable as it limits the number of parameters in the model. However,

one should note that this choice implies that for a node v ∈ χ close to the boundary of the

lattice so that the set (τ ⊕ v) \ χ is non-empty, the conditional distribution f(xv|xνv) is as

if the nodes (for an infinite lattice) in the translation of τ that fall outside the lattice χ are

all zero. Thus, even if the model is homogeneous it is not stationary, and in particular one

should expect strong edge effects since we are essentially conditioning on everything outside

the lattice χ to be zero. To reduce the boundary effects to a tolerable level we propose to

include an unobserved boundary area around the observed scene. In the examples in Section

5 we adopt this strategy and one should note that the same strategy has previously been used

to reduce the edge effects in Markov random fields.

2.3 Template pseudo-Boolean function

With the above construction the Markov mesh model is specified by the template sequential

neighborhood τ and the template pseudo-Boolean function θ(λ), λ ⊂ τ . In this section we

discuss the modeling of the latter.

Hammer and Rudeanu (1968) show that any pseudo-Boolean function can be uniquely

represented by a collection of interaction parameters (β(λ);λ ∈ Ω(τ)) by the relation

θ(λ) = β(λ) +
∑
λ?⊂λ

β(λ?) for λ ⊆ τ . (14)

The corresponding inverse relation is given by

β(λ) = θ(λ) +
∑
λ?⊂λ

(−1)|λ\λ
?|θ(λ?) for λ ⊆ τ . (15)

The one-to-one relation in (14) and (15) is known as Moebious inversion, see for example

Lauritzen (1996).

To limit the number of parameters in the model we allow only a subset of the interaction

parameter to differ from zero. More specifically, for some Λ ⊆ Ω(τ) we restrict β(λ) = 0

for all λ 6∈ Λ. One can then represent the pseudo-Boolean function θ(·) by the interaction

parameters {β(λ), λ ∈ Λ}, and the relation in (14) becomes

θ(λ) =
∑

λ?∈Λ∩Ω(λ)

β(λ?) for λ ∈ Ω(τ), (16)

where Ω(λ) is the power set of λ. We then say that θ(·) is represented on Λ. Moreover, we

term λ ∈ Ω(τ) an interaction and we say an interaction is active if λ ∈ Λ and otherwise we

say it is inactive.
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Figure 3: DAG visualization of the set Λ = {∅, {(0,−1)}, {(−1, 0)}, {(−1,−1)}, {(−1, 1)},
{(0,−1), (−1, 0)}, {(0,−1), (−1, 1)}} based on τ = {(0,−1), (−1,−1), (−1, 0), (−1, 1)}.
Thinking of the elements of τ as a finite set of nodes in a lattice, � is used in the ver-

tices of the DAG to represent the node (0, 0), whereas each node (i, j) ∈ λ for each λ ∈ Λ is

represented by a � placed in position (i, j) relative to �.

In the following we allow an interaction λ to be active only if all subsets of λ are active,

i.e. we require λ ∈ Λ⇒ Ω(λ) ⊆ Λ. We then say the set Λ is dense and that we have a dense

representation of θ(·) on Λ. Moreover, in the following we require the template sequential

neighborhood τ to be minimal for Λ in that all nodes v ∈ τ are included in at least one of

the elements of Λ. One should note that if Λ is dense and τ is minimal for Λ then there is

a one-to-one relation between the elements in τ and the sets λ ∈ Λ which contains only one

node,

{{v} : v ∈ τ} = {λ ∈ Λ : |λ| = 1}. (17)

As also discussed in Austad and Tjelmeland (2017), the set of active interactions Λ can

be visualized by a directed acyclic graph (DAG), where we have one vertex for each active

interaction λ ∈ Λ and a vertex λ ∈ Λ is a child of another vertex λ? ∈ Λ if and only if

λ = λ? ∪ {v} for some v ∈ τ \ λ?. Figure 3 shows such a DAG for Λ = {∅, {(0,−1)},
{(−1, 0)}, {(−1,−1)}, {(−1, 1)}, {(0,−1), (−1, 0)}, {(0,−1), (−1, 1)}}, which is based on

τ = {(0,−1), (−1,−1), (−1, 0), (−1, 1)}. In the vertices of the DAG shown in the figure, node

(0, 0) is represented by the symbol �, whereas each of the nodes in λ ∈ Λ is represented

by the symbol �. Thinking of τ as a finite set of nodes in a lattice, the position of the �

representing node (i, j) ∈ λ is placed at position (i, j) relative to �.

As also discussed in Arnesen and Tjelmeland (2017), one should note that a pseudo-

Boolean function θ(·) that is represented on a dense set Λ ⊆ Ω(τ) can be uniquely specified
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by the values of {θ(λ) : λ ∈ Λ}. The remaining values of the pseudo-Boolean function,

θ(λ), λ ∈ Ω(τ) \ Λ, are then given by (14) and (15) and the restriction β(λ) = 0 for λ 6∈ Λ.

Moreover, as the relations in (14) and (15) are linear, each θ(λ), λ ∈ Ω(τ) \ Λ is a linear

function of {θ(λ) : λ ∈ Λ}.
Having defined our class of homogeneous Markov mesh models as above, a model is spec-

ified by the template sequential neighborhood τ , the set of active interactions Λ ⊆ Ω(τ) on

which the pseudo-Boolean function θ(·) is represented, and the parameter values {θ(λ) : λ ∈
Λ}. Thus, to adopt a fully Bayesian approach, we need to formulate prior distributions for τ ,

Λ and {θ(λ) : λ ∈ Λ}, and this is the focus of the next section.

3 Prior distribution

When constructing our prior distribution for the template sequential neighborhood τ , the set

of active interactions Λ and the parameter values {θ(λ) : λ ∈ Λ}, we have two properties in

mind. Firstly, the prior should be vague so that the Markov mesh model manages to adapt to

a large variety of scenes. To obtain this, the number of elements in τ should be allowed to be

reasonably large and higher-order interactions should be allowed in the model. Secondly, to

avoid over-fitting, the prior should favor parsimonious Markov mesh models, and in particular

this implies that the highest prior probabilities should be assigned to models with just a few

higher-order interactions.

We define the prior as a product of three factors

f(τ,Λ, {θ(λ) : λ ∈ Λ}) = f(τ)f(Λ|τ)f({θ(λ) : λ ∈ Λ}|τ,Λ), (18)

where f(τ) is a prior for the template sequential neighborhood τ , f(Λ|τ) is a prior for the set

of active interactions Λ when τ is given, and f({θ(λ) : λ ∈ Λ}|Λ) is a prior for the parameter

values given τ and Λ. In the following we discuss each of these factors in turn.

3.1 Prior for the template sequential neighborhood τ

We restrict the template sequential neighborhood to be a subset of a given finite set τ0 ⊂ ψ,

where ψ is defined in (4). The τ0 can be though of as a set of possible sequential neighbors

for node (0, 0). To get a flexible prior it is important that the number of elements in τ0 is not

too small, and it is natural to let τ0 include nodes close to (0, 0). For example, one may let ψ

include all nodes that are inside the circle centered at (0, 0) with some specified radius r. In

the examples discussed in Section 5 we use this with r = 5, see the illustration in Figure 4.

Given the set τ0 we specify the prior for τ ⊆ τ0 by first choosing a prior distribution for

the number of elements in τ , and thereafter a prior for τ given the number of elements in τ .
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Figure 4: Illustration of the τ0 used in the examples in Section 5. � is node (0, 0), and gray

nodes are elements of τ0. The black curve is a part of the circle centered at (0, 0) and with

radius r = 5.

Letting nτ = |τ | denote the number of elements in τ we thereby have

f(τ) = f(nτ )f(τ |nτ ). (19)

For simplicity we choose both f(nτ ) and f(τ |nτ ) to be uniform distributions. The possible

values for nτ are all integers from 0 to |τ0|, so we get

f(nτ ) =
1

nτ + 1
for nτ = 0, 1, . . . , |τ0|. (20)

Moreover, having chosen τ to be uniform given nτ = |τ |, we get

f(τ |nτ ) =
1(|τ0|
nτ

) , (21)

where the binomial coefficient in the denominator is the number of possible sets τ ’s with nτ

elements.

One should note that our choice of the two uniforms above is very different from adopting

a uniform prior for τ directly. A uniform prior on τ would have resulted in very high a

priori probabilities for nτ being close to |τ0|/2 and very small a priori probabilities for values

of nτ close to zero, which is clearly not desirable. One should also note that we do not

require the sequential neighborhoods to be contiguous. In fact, in one of our two examples

in Section 5 most of the a posteriori simulated models have sequential neighborhood that are

not contiguous.

One can easily construct other reasonable priors for τ than the one defined above. For

example, one could want to build into the prior f(τ |nτ ) that nodes close to (0, 0) are more

likely to be in τ than nodes further away. Recalling that we want to simulate from a cor-

responding posterior distribution by a reversible jump Markov chain Monte Carlo algorithm

(RJMCMC) (Green, 1995), the challenge is to formulate a prior with this property so that

we are able to compute the (normalized) probability f(τ |nτ ), as this is needed to evaluate

the Metropolis–Hastings acceptance probability. For the data sets discussed in Section 5,
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we have also tried a prior f(τ |nτ ) in which we split the nodes in τ0 into two or three zones

dependent on their distances from (0, 0) and have a different prior probability for a node to

be in τ dependent on which zone it is in. As long as the number of zones is reasonably small,

it is then possible to compute the normalizing constant of f(τ |nτ ) efficiently. However, in our

examples this gave essentially the same posterior results as the very simple double uniform

prior specified above.

3.2 Prior for the set of active interactions Λ

To specify a prior for the set of active interactions Λ, we first split Λ into several subsets

dependent on how many nodes an element λ ∈ Λ contains. More precisely, for k = 0, 1, . . . , |τ |
we define

Ωk(τ) = {λ ∈ Ω(τ) : |λ| = k} and Λk = {λ ∈ Λ : |λ| = k}. (22)

Thus, Ωk(τ) contains all k’th order interactions, and Λk ⊆ Ωk(τ) is the set of all k’th order

active interactions. As we have assumed τ to be minimal for Λ, τ is uniquely specifying

Λ1 = {λ ∈ Λ : |λ| = 1}, see the discussion in Section 2.3 and in particular (17). Moreover, we

restrict ∅ always to be active, i.e. ∅ ∈ Λ with probability one, which implies that we force the

pseudo-Boolean function θ(·) always to include a constant term. As we have already assumed

Λ to be dense and τ to be minimal for Λ this is only an extra restriction when τ = ∅. Thus,

for given τ the sets Λ0 and Λ1 are known, so to formulate a prior for Λ we only need to define

a prior for Λk, k = 2, . . . , |τ |. We assume a Markov property for these sets in that

f(Λ|τ) =

|τ |∏
k=2

f(Λk|Λk−1). (23)

Thus, to choose a prior f(Λ|τ) we only need to formulate f(Λk|Λk−1), and to do so we adopt

the same strategy for all values of k. In the specification process of f(Λk|λk−1) we should

remember that we have already restricted Λ to be dense, so the chosen prior needs to be

consistent with this. For a given Λk−1, an interaction λ ∈ Ωk(τ) can then be active only if

all k − 1’th order interactions λ? ∈ Ωk−1(λ) are active. We let Πk denote this set of possible

active k’th order interactions, i.e. we must have

Λk ⊆ Πk = {λ ∈ Ωk(τ) : λ? ∈ Λk−1 for all λ? ⊂ λ}. (24)

We assume each interaction λ ∈ Πk to be active with some probability pk, independently of

each other, and get

f (Λk|Λk−1) = p
|Λk|
k (1− pk)|Πk|−|Λk| for Λk ⊆ Πk. (25)

One should note that if Λk−1 = ∅ one gets Πk = ∅ and thereby also f(Λk = ∅|Λk−1) = 1.
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The probabilities pk, k = 2, . . . , |τ | should be chosen to get a reasonable number of higher-

order active interactions. To obtain a parsimonious model, one need to adopt a small value for

pk if the number of elements in Πk is large, but to favor a model to include some higher-order

interactions, the value of pk can be large when the number of elements in Πk is small. We

choose

pk =


p? if |Πk| ≤ |Λk−1|,

p? · |Λk−1|
|Πk|

otherwise,
(26)

where p? ∈ (0, 1) is a hyper-parameter to be specified. One should note that this choice in

particular ensures the expected number of active k’th order interactions to be smaller than

|Λk−1|.

3.3 Prior for the parameter values {θ(λ) : λ ∈ Λ}

Given τ and the set of active interactions Λ, the set of model parameters for which we need to

formulate a prior is {θ(λ) : λ ∈ Λ}. From (13) we have that each θ(λ), λ ∈ Λ haa a one-to-one

correspondence with the conditional probability

p(λ) = f(xv = 1|xρv) =
exp{θ(λ)}

1 + exp{θ(λ)}
for λ = ξ(x, νv). (27)

Since the θ(λ)’s define probabilities conditioning on different values for xρv , we find it rea-

sonable, unless particular prior information is available and suggests otherwise, to assume

the θ(λ), λ ∈ Λ to be independent. In the following we adopt this independence assumption.

Moreover, as we do not have a particular class of scenes in mind but want the prior to be

reasonable for a wide variety of scenes, we adopt the same prior density for all parameters

θ(λ), λ ∈ Λ.

To formulate a reasonable and vague prior for θ(λ), we use the one-to-one correspondence

between θ(λ) and the probability p(λ). The interpretation for p(λ) is much simpler than that

of θ(λ), so our strategy is first to choose a prior for p(λ) and from this derive the corresponding

prior for θ(λ). As we do not have a particular class of scenes in mind but want our prior to

be reasonable for a wide variety of scenes, we find it most natural to adopt a uniform prior on

[0, 1] for p(λ). However, as previously mentioned we want to explore a corresponding posterior

distribution by running a reversible jump Metropolis–Hastings algorithm, and in particular

we want to use adaptive rejection sampling (Gilks, 1992) to update θ(λ). For this to work,

the full conditional for θ(λ) needs to be log-concave. Adopting the uniform on [0, 1] prior for

p(λ) the resulting posterior full conditional becomes log-concave, but the second derivative

of the log full conditional converges to zero when θ(λ) goes to plus or minus infinity. As this

may generate numerical problems when running the adaptive rejection sampling algorithm,

we adopt a prior for p(λ) slightly modified relative to the uniform and obtain a posterior
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Figure 5: The prior distributions for p(λ) and θ(λ). (a) The density curve of f(p(λ)|τ,Λ)

when σ = 10, and (b) the corresponding density curve f(θ|τ,Λ) given in (28).

distribution where the second derivative of the log full conditional for θ(λ) converges to a

value strictly less than zero. More precisely, we adopt the following prior for θ(λ),

f(θ(λ)|τ,Λ) ∝ eθ(λ)

(1 + eθ(λ))2
· e−

θ(λ)2

2σ2 , (28)

where the first factor is the prior resulting from assuming p(λ) to be uniform, the second factor

is the modification we adopt to avoid numerical problems when running the adaptive rejection

sampling algorithm, and σ > 0 is a hyper-parameter to be specified. The resulting priors for

p(λ) and θ(λ) when σ = 10 are shown in Figure 5. We see that the prior for p(λ) is close to the

uniform. One can also note that f(θ(λ)|Λ) have heavier tails than a normal distribution with

the same variance. One should note that the normalizing constant in (28) is required when

updating Λ in a reversible jump Metropolis–Hastings algorithm targeting a corresponding

posterior distribution, but since (28) is a univariate distribution this normalizing constant

can easily be found by numerical integration. Letting c(σ) denote the normalizing constant

of f(θ(λ)|τ,Λ) the complete expression for the prior for {θ(λ) : λ ∈ Λ} is

f ({θ(λ) : λ ∈ Λ} |τ,Λ) =
∏
λ∈Λ

[
c(σ) · eθ(λ)

(1 + eθ(λ))2
· e−

θ(λ)2

2σ2

]
. (29)

Having specified priors for τ , Λ and {θ(λ) : λ ∈ Λ} we formulate in the next section a re-

versible jump Metropolis–Hastings algorithm for simulating from the corresponding posterior

when a scene x is observed.

4 Simulation algorithm

In this section we assume we have observed a complete scene x = (xv; v ∈ χ) and assume this

to be a realization from the Markov mesh model defined in Section 2. We adopt the prior
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defined in Section 3 and want to explore the resulting posterior distribution

f (τ,Λ, {θ(λ) : λ ∈ Λ} |x) ∝ f(τ,Λ, {θ(λ) : λ ∈ Λ})f(x|τ,Λ, {θ(λ) : λ ∈ Λ}), (30)

by a reversible jump Markov chain Monte Carlo algorithm, see Green (1995). We combine

two types of updates. In the first update class, we keep τ and Λ unchanged and update the

parameter vector {θ(λ) : λ ∈ Λ} by a Gibbs step along a direction sampled uniformly at

random. In the second update class, we propose a trans-dimensional move by adding an inac-

tive interaction to Λ or removing an active interaction from Λ, and proposing corresponding

changes for the parameter vector {θ(λ) : λ ∈ Λ}.
It is clearly of interest to consider also the resulting posterior distribution when parts of

the scene x is unobserved or when x is an unobserved latent field. The former is of interest

if one wants to reduce the boundary effects of the Markov mesh model by letting x include

an unobserved boundary around the observed area, and the latter is a common situation in

image analysis applications. However, to simplify the discussion of the simulation algorithm

in this section, we assume the complete scene x to be observed. In Section 5, where we present

two examples, we describe how to adapt the simulation algorithm to situation in which a part

of x is unobserved.

In the following we describe each of the two update types in turn, starting with the Gibbs

update for the parameter values. We only discuss the proposal distribution, as the acceptance

probabilities is then given by standard formulas.

4.1 Gibbs update for the parameter values {θ(λ) : λ ∈ Λ}

Let τ , Λ and {θ(λ) : λ ∈ Λ} be the current state. In this update, we keep τ and Λ unchanged

and generate new parameter values {θ?(λ) : λ ∈ Λ}. To generate the new parameter values

we first draw a random direction {∆(λ) : λ ∈ Λ} by sampling ∆(λ) from a standard normal

distribution, independently for each λ ∈ Λ. We then set

θ∗(λ) = θ(λ) + α∆(λ), (31)

where α ∈ R is sampled from the full conditional

f(α|τ,Λ, {θ(λ) + α∆(λ) : λ ∈ Λ}, x) ∝ f({θ(λ) + α∆(λ) : λ ∈ Λ}|τ,Λ)

· f(x|τ,Λ, {θ(λ) + α∆(λ) : λ ∈ Λ}).
(32)

As α is sampled from its full conditional, this is a Gibbs update and the Metropolis–Hastings

acceptance probability is one. The full conditional (32) for α is not of a standard form, but

in Appendix A we show that it is log-concave, so to generate samples from it we adopt the

adaptive rejection sampling algorithm of Gilks (1992).
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4.2 Updating the set of active interactions

Let again τ , Λ and {θ(λ) : λ ∈ Λ} be the current state. In this update we modify Λ, and

possibly also τ , by adding an inactive interaction to Λ or by removing an active interaction

from Λ. We let τ? and Λ? denote the potential new values for τ and Λ, respectively. With

a change in Λ, the number of parameter values {θ(λ) : λ ∈ Λ} is also changed, and to try

to obtain a high acceptance rate, we in fact propose a change also in some of the parameter

values that are in both the current and potential new states. We let {θ?(λ) : λ ∈ Λ?} denote

the set of potential parameter values.

To generate τ?, Λ? and {θ?(λ) : λ ∈ Λ?}, we first draw at random whether to add an

inactive interaction to Λ or to remove an active interaction from Λ. In the following we

specify in turn our procedures for proposing to remove and add an interaction.

4.2.1 Proposing to remove an active interaction from Λ

Having decided that an interaction should be removed, the next step is to decide what inter-

action λ? ∈ Λ to remove. As the potential new Λ? = Λ \ {λ?} should be dense, we first find

the set of active interactions λ? that fulfills this requirement,

Λr = {λ ∈ Λ \ {∅} : Λ \ {λ} is dense}. (33)

Thereafter we draw what interaction λ? ∈ Λr to be removed, with probabilities

q(λ?) =
exp {−νd(λ?, τ,Λ, {θ(λ) : λ ∈ Λ})}∑
λ̃∈Λr

exp
{
−νd(λ̃, τ,Λ, {θ(λ) : λ ∈ Λ})

} for λ? ∈ Λr, (34)

where ν ≥ 0 is an algorithmic tuning parameter to be specified, and d(λ?, τ,Λ, {θ(λ) : λ ∈ Λ})
is a function that should measure the difference between the current pseudo-Boolean function

defined by τ , Λ and {θ(λ) : λ ∈ Λ} and the potential new pseudo-Boolean function defined by

τ?, Λ? and {θ?(λ) : λ ∈ Λ?}. We specify below the precise formula used for d(λ?, τ,Λ, {θ(λ) :

λ ∈ Λ}), after having specified how to set the potential new parameter values {θ?(λ) : λ ∈ Λ?}.
By setting the algorithmic tuning parameter ν = 0, we draw Λ? uniformly at random from

the elements in Λr. With a larger value for ν, we get a higher probability for proposing

to remove an interaction λ? that gives a small change in the pseudo-Boolean function. If

it should happen that Λr = ∅, we simply propose an unchanged state. Assuming we have

sampled a λ? to remove, we have two possibilities. If λ? is a higher-order interaction the

sequential neighborhood is unchanged, i.e. τ? = τ , whereas if λ? is a first-order interaction

the sequential neighborhood is reduced to τ? = τ \ λ?.
Having decided τ? and Λ?, the next step is to specify the potential new parameter values

{θ?(λ) : λ ∈ Λ?}. To understand our procedure for doing this, one should remember that

there is a one-to-one relation between the current parameter values {θ(λ) : λ ∈ Λ} and a
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set of current interaction parameters {β(λ) : λ ∈ Λ}, where the relation is given by (14)

and (15). Moreover, together with the restriction β(λ) = 0 for λ 6∈ Λ, this defines a pseudo-

Boolean function {θ(λ) : λ ∈ Ω(τ0)}. Correspondingly, there is a one-to-one relation between

the potential new parameter values {θ?(λ) : λ ∈ Λ} and a set of potential new interaction

parameters {β?(λ) : λ ∈ Λ?}, and together with the restrictions β?(λ) = 0 for λ 6∈ Λ?

this defines a potential new pseudo-Boolean function {θ?(λ) : λ ∈ Ω(τ0)}. To get a high

acceptance probability for the proposed change, it is reasonable to choose the potential new

parameter values {θ?(λ) : λ ∈ Λ?} so that the difference between the two pseudo-Boolean

functions {θ(λ) : λ ∈ Ω(τ0)} and {θ?(λ) : λ ∈ Ω(τ0)} is small. One may consider the

potential new pseudo-Boolean function {θ?(λ) : λ ∈ Ω(τ0)} as an approximation to the

current {θ(λ) : λ ∈ Ω(τ0)} and, adopting a minimum sum of squares criterion, minimize

SSE({θ?(λ) : λ ∈ Λ?}) =
∑

λ∈Ω(τ0)

(θ?(λ)− θ(λ))2 (35)

with respect to {θ?(λ) : λ ∈ Ω(τ0)}. Grabisch et al. (2000) solved this minimization problem.

Expressed in terms of the corresponding interaction parameters {β(λ) : λ ∈ Λ}, the optimal

potential new parameter values are

β?(λ) =

 β(λ)−
(
−1

2

)|λ?|−|λ|
β(λ?) if λ ⊂ λ?,

β(λ) otherwise,
(36)

and the obtained minimum sum of squares is

min {SSE({θ?(λ) : λ ∈ Λ})} =
β(λ?)

2|λ?|
. (37)

We use the latter to define the function d(λ?, τ,Λ, {θ(λ) : λ ∈ Λ}), used in (34) to define the

distribution for what interaction λ? to remove. We simply set

d(λ?, τ,Λ, {θ(λ) : λ ∈ Λ}) =
β(λ?)

2|λ?|
. (38)

Combining the expression in (36) with the one-to-one relations in (14) and (15), one can

find the potential new parameters {θ?(λ) : λ ∈ Λ?} in terms of the current parameters

{θ(λ) : λ ∈ Λ}. In particular, we see that this relation is linear and we have a |Λ|× |Λ| matrix

A so that [
θ?

β(λ?)

]
= Aθ ⇔ θ = A−1

[
θ?

β(λ?)

]
, (39)

where θ? = (θ?(λ) : λ ∈ Λ?)T and θ = (θ(λ) : λ ∈ Λ)T are column vectors of the potential new

and current parameter values, respectively. As the number of elements in θ? is one less than

the number of elements in θ, we use β(λ?) to obtain the one-to-one relation we need for a

reversible jump proposal. The Jacobian determinant in the expression for the corresponding

acceptance probability is clearly det(A), and in Appendix B we show that the absolute value

of this determinant is always equal to one, i.e. |det(A)| = 1.
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4.2.2 Proposing to add an inactive interaction to Λ

If it is decided that an inactive interaction should be added to Λ, the next step is to decide

what interaction λ? ∈ Ω(τ0) \ Λ to add. We do this in two steps, first we draw at random

whether a first-order or a higher-order interaction should be added to Λ. If a first-order

interaction should be added, we draw uniformly at random a node v? from τ0 \ τ and set

λ? = {v?}. Then τ? = τ ∪ λ? and Λ? = Λ ∪ {λ?}. If τ = τ0, so that no such v? exists, we

simply propose an unchanged state. If a higher-order interaction should be added we need to

ensure that Λ ∪ {λ?} is dense. We therefore first find

Λa = {λ ∈ Ω(τ0) \ Λ : |λ| > 1 and Λ ∪ {λ} is dense} (40)

and thereafter draw λ? uniformly at random from Λa. Then τ? = τ and Λ? = Λ ∪ {λ?}. If it

should happen that Λa = ∅, we again simply propose an unchanged state.

Having decided τ? and Λ?, the next step is to generate the potential new parameter values

{θ?(λ) : λ ∈ Λ?}. When doing this, one should remember that this adding a potential new

interaction proposal must be one-to-one with the reverse removing an interaction proposal

discussed in Section 4.2.1. Therefore, the proposal distribution for the potential new param-

eter values {θ?(λ) : λ ∈ Λ?} must conform with (36), and thereby also with (39). A natural

way to achieve this is to draw a value β?(λ?) from some distribution and define the potential

new interaction parameters by the inverse transformation of (36), i.e.

β?(λ) =

 β(λ) +
(
−1

2

)|λ?|−|λ|
β?(λ?) if λ ⊂ λ?,

β(λ) otherwise.
(41)

It now just remains to specify from what distribution to sample β?(λ?). The potential new

parameter values {θ?(λ) : λ ∈ Λ?} are linear functions of β?(λ?), and by setting β?(λ?) = α

it can be expressed as in (31) for the Gibbs update. The difference between what we now

have to do and what is done in the Gibbs update is that in the Gibbs update the values ∆(λ)

are sampled independently from a Gaussian distribution, whereas here these are implicitly

defined by (41) together with the one-to-one relations (14) and (15). It is tempting to sample

α = β?(λ?) from the resulting full conditional, as this would give a high density for values of

β?(λ?) that corresponds to models with a high posterior probability. As discussed in Section

4.1 for the Gibbs update, it is computationally feasible to sample from this full conditional

by adaptive rejection sampling. However, the normalizing constant of this full conditional is

not computationally available, and for computing the associated acceptance probability the

normalizing constant of the distribution of β?(λ?) must be available. To construct a proposal

distribution for β?(λ?) = α, we therefore instead first generate r (say) independent samples

α1, . . . , αr from the full conditional for α, by adaptive rejection sampling, and thereafter

draw α = β?(λ?) from a Gaussian distribution with mean value ᾱ = 1
n

∑r
i=1 αi and variance
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s2
α = 1

r−1

∑r
i=1(αi − ᾱ)2. Our proposal distribution for β?(λ?) is thereby an approximation

to its full conditional.

As this is a reversible jump proposal, the associated acceptance probability includes a

Jacobian determinant. By construction the Jacobian determinant for this proposal is the

inverse of the Jacobian determinant for the removing an interaction proposal discussed in

Section 4.2.1. As we have |det(A)| = 1, we also get | det(A−1)| = 1.

5 Examples

In this section we investigate our prior and proposal distributions on two binary example

scenes. As discussed also in the introduction our goal is not to analyze these two data sets,

but just to demonstrate that with the Bayesian setup defined above we are able to find Markov

mesh models that are reasonable models for the observed scenes.

The first scene we consider is a mortality map for liver and gallbladder cancers for white

males from 1950 to 1959 in the eastern United States, compiled by Riggan et al. (1987).

Using Markov random field models, this data set has previously been analyzed by Sherman

et al. (2006), Liang (2010) and Austad and Tjelmeland (2017), see also Liang et al. (2011).

Secondly, we consider a data set previously considered by Stien and Kolbjørnsen (2011). They

also fitted a Markov mesh model to this data set, but with manually chosen neighborhood

and interaction structures. In the following we first discuss some general aspects relevant for

both the two examples and thereafter present details of each of the two examples in turn.

As also briefly discussed in Section 4, we reduce the boundary effects of the Markov mesh

model by letting x include an unobserved boundary around the observed area. We choose

the unobserved boundary large enough so that each of the observed nodes are at least 20

nodes away from the extended lattice boundary. We let χ denote the set of nodes in the

extended lattice and let x = (xv; v ∈ χ) be the corresponding collection of binary variables.

We assume x to be distributed according to the Markov mesh model defined in Section 2,

and for τ , Λ and {θ(λ) : λ ∈ Λ} we adopt the prior specified in Section 3. We let χo ⊂ χ

denote the set of nodes for which we have observed values. Thereby χu = χ \ χo is the set

of unobserved nodes. Correspondingly, we let xo = (xv, v ∈ χo) be the observed values and

xu = (xv, v ∈ χu) the unobserved values. The posterior distribution of interest is thereby

f(τ,Λ, {θ(λ), λ ∈ Λ}|xo). To simplify the posterior simulation, we include xu as auxiliary

variables and adopt the reversible jump Metropolis–Hastings algorithm to simulate from

f(τ,Λ, {θ(λ), λ ∈ Λ}, xu|xo) ∝ f(τ,Λ, {θ(λ), λ ∈ Λ})f(xo, xu|τ,Λ, {θ(λ), λ ∈ Λ}). (42)

To simulate from this distribution, we adopt the updates discussed in Section 4 to update τ , Λ

and {θ(λ), λ ∈ Λ} conditioned on x = (xo, xu), and we use single-site Gibbs updates for each

unobserved node v ∈ χu given τ , Λ, {θ(λ), λ ∈ Λ} and xχ\{v}. We define one iteration of the
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algorithm to include |χu| single-site Gibbs updates for randomly chosen nodes in χu followed

by either one Gibbs update of the parameter values {θ(λ), λ ∈ Λ} as discussed in Section

4.1 or one update of the active interactions as discussed in Section 4.2. In each iteration we

independently update the parameter values or the active interactions with probabilities 0.55

and 0.45 respectively.

The prior defined in Section 3 contains three hyper-parameters, the radius r which defines

the set of possible neighbors, the probability p? in (26), and the parameter σ in (28). The

radius r should be chosen large enough to allow interactions between nodes at some distance

from each other. If setting the value of r too large, however, we get a more difficult posterior

distribution to sample from. In our two examples we have found r = 5 to be a reasonable

trade-off. This gives the 34 possible neighbors shown in Figure 4. To get a prior where the

probability for a Markov mesh model with higher-order interactions is reasonably high, we

set the value of p? as high as 0.9, and to get an essentially uniform prior distribution for p(λ),

we set σ = 100. The proposal distribution discussed in Section 4.2 has one algorithmic tuning

parameter, ν, and based on simulation results in preliminary runs we set ν = 0.5.

We have implemented the RJMCMC algorithm in C++ (Online Resource 1) and in the

following we present the example scene and discuss corresponding simulation results for each

of our two examples. We start with the cancer mortality map compiled by Riggan et al.

(1987).

5.1 Cancer mortality map

The cancer mortality map data are shown in Figure 6(a), where black (xv = 1) and white

(xv = 0) pixels represent counties with high and low cancer mortality rates, respectively. The

gray area around the observed map represents unobserved nodes which we included in the

model to reduce the boundary effects of the Markov mesh model.

Adopting the Markov mesh and prior models discussed in Sections 2 and 3, respectively,

with the hyper-parameters defined above, we use the RJMCMC setup discussed above to

explore the resulting posterior distribution. We run the Markov chain for 2 500 000 iterations,

and study trace plots of different scalar quantities to evaluate the convergence and mixing

properties of the simulated Markov chain. Figure 7 shows trace plots of the first 25 000

iterations for the number of interactions and for the logarithm of the posterior density. From

these two and the other trace plots we have studied, we conclude that the simulated chain

has converged at least within the first 10 000 − 15 000 iterations. As an extra precaution we

discard the first 25 000 iterations when estimating posterior properties.

To study the posterior distribution we first estimate, for each of the 34 a priori potential

neighbors in τ0, the posterior probability for v ∈ τ0 to be a neighbor. To estimate this we

simply use the fraction of simulated models where v is in the template sequential neighborhood
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(a) (b)

Figure 6: Cancer mortality map example: (a) Observed cancer mortality map. Black and

white nodes represent counties with high and low cancer mortality rates, respectively. The

nodes added to the lattice to reduce the boundary effects of the Markov mesh model is shown

in gray. (b) Map of estimated a posteriori marginal probabilities for each node v ∈ τ0 to be a

neighbor. A gray-scale is used to visualize the probabilities, where black and white represents

one and zero, respectively.
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Figure 7: Cancer mortality map example: Trace plots of the first 25 000 iterations of the

RJMCMCM run. (a) Number of interactions |Λ|, (b) logarithm of the posterior density

log [f (τ,Λ, {θ(λ) : λ ∈ Λ} , xu|xo)]
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Table 1: Cancer mortality map example: Table with the top 10 a posteriori most likely

interactions and their estimated posterior probabilities.

Interaction

Probability 1.0000 0.9998 0.9902 0.5452 0.0489

Interaction

Probability 0.0303 0.0280 0.0274 0.0270 0.0251

τ . The result is shown in Figure 6(b), where we use a grayscale to visualize the probabilities.

Nodes (0,−1) and (−1, 0) have high estimated posterior probabilities, equal to 0.999819 and

0.990577, respectively. The third and fourth most probable neighbor nodes are (−1,−1) and

(−1, 2), where the estimated probabilities are 0.049388 and 0.030353, respectively. From the

data set shown in Figure 6(a), we see that the dependence between neighbor nodes seems to

be quite weak, so the low number of simulated neighbors should come as no surprise.

Next we correspondingly estimate the posterior probabilities for each possible interaction

to be included in the model. Table 1 shows the top 10 a posteriori most likely interactions

and the corresponding estimated probabilities. We see that the first four interactions have

high posterior probabilities while the others have low probabilities. In addition, the four most

likely interactions only include the high probability neighbor nodes (0,−1) and (−1, 0).

We also estimate the a posteriori marginal distributions for the parameter values θ(·)
corresponding to the four high probable interactions. Note that some of the interactions do

not exist in some of the simulated models, but the θ(·) value is still well defined and can

be computed as discussed in Section 2.3. Figure 8 depicts the histograms of the simulated

parameter values θ(·). From the simulation we also estimate the posterior probability for each

of the possible models. The two most probable models are shown in Figure 9. These two

models have posterior probabilities as high as 0.475 and 0.381 while the remaining probability

mass is spread out on a very large number of models.

Finally, we generate realizations from simulated Markov mesh models. Figure 10 contains

realizations simulated from four randomly chosen models simulated in the Markov chain (af-

ter the specified burn-in). As in Figure 6(a), showing the observed data set, black and white

nodes v represent xv = 1 and 0, respectively. Comparing the realizations with the data set

in Figure 6(a), we can get a visual impression of to what degree the simulated models have

captured the dependence structure in the data set. Table 2 shows the estimated posterior

correlation structure based on a large number of realizations when the nodes are numbered

in the lexicographical order (left) and when they instead are numbered right-to-left and top-

to-bottom (right). In the lags (±1,±1) we can see a clear effect from the node ordering, but
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Figure 8: Cancer mortality map example: Histograms of the simulated parameter values θ(·)
for the top four a posteriori most likely interactions.

(a) Posterior probability: 0.475 (b) Posterior probability: 0.381

Figure 9: Cancer mortality map example: The two a posteriori most likely models and the

corresponding estimated posterior probabilities.
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Figure 10: Cancer mortality map example: Four Markov mesh model realizations where the

models used are randomly sampled from all models simulated in the RJMCMC (after the

specified burn-in). The color coding is the same as in Figure 6(a).

Table 2: Cancer mortality map example: Estimated spatial posterior correlation function

when (left) the nodes are numbered in the lexicographical order, and (right) the nodes are

numbered right to left and top to down.

-2 -1 0 1 2

-2 0.002 0.006 0.017 0004 0.001

-1 0.005 0.028 0.124 0.014 0.002

0 0.013 0.106 1.000 0.106 0.013

1 0.002 0.014 0.124 0.028 0.005

2 0.001 0.004 0.017 0.006 0.002

-2 -1 0 1 2

-2 0.003 0.005 0.017 0006 0.002

-1 0.005 0.033 0.122 0.024 0.005

0 0.012 0.097 1.000 0.097 0.012

1 0.005 0.024 0.122 0.033 0.005

2 0.002 0.006 0.017 0.005 0.003
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one should note that for both node orderings the correlations become stronger in the SE-NW

direction than in the NE-SW direction. To study the effect of conditioning on zero values out-

side the extended lattice and in particular to check whether or not the unobserved boundary

we have included is sufficiently large to remove the effect of the boundary, we estimate also

the posterior mean function by averaging over many realizations from the simulated Markov

mesh models. Close to the boundary of the extended lattice we can clearly see the effect of

conditioning to zero, but inside the observed area the estimated mean function is constant

except for some small Monte Carlo error. We thereby conclude that the unobserved area we

have included is sufficiently large to eliminate the border effect.

To study further the small scale properties of the simulated scenes, we consider the 16

possible configurations in a 2×2 block of nodes. For each of these configurations, we find in a

realization the fraction of such blocks that has the specified configuration. By repeating this

for a large number of realizations we estimate the posterior distribution for the fraction of 2×2

blocks with a specified configuration in a realization. This distribution should be compared

with the corresponding fraction in the observed data set. Figure 11 shows the estimated

density for each of the 16 configurations. The corresponding fractions for the observed data set

are marked by vertical dotted lines. Note that for most of these distributions the corresponding

fractions for the observed data set are centrally located in the distribution. The exceptions are

(g) and partly (i) and (j), where the observed quantity is more in the tail of the distribution.

The large scale properties of the simulated scenes can be studied correspondingly by choosing

one or more univariate function of a scene. It is of course possible to define infinitely many

such functions, and unless specific functions is of special interest for an application it is not

clear what functions to pick. We are not studying this any further here.

5.2 Sisim data set

In this example we reconsider a data set previously studied in Stien and Kolbjørnsen (2011).

The scene, shown in Figure 12(a), is simulated by the sequential indicator simulation proce-

dure (Journel, 1982; Deutsch and Journel, 1998) and it is a much used example scene in the

geostatistical community. We name the data set ”sisim”. The sisim scene is represented on a

121×121 lattice. To reduce the boundary effects of the Markov mesh model we again include

unobserved nodes around the observed area, shown as gray in Figure 12(a).

Again adopting the Markov mesh and prior models defined in Sections 2 and 3 and the

hyper-parameters defined above, we use the RJMCMC setup discussed above to explore the

resulting posterior distribution. For this data set each iteration of the algorithm requires

more computation time than in the cancer mortality map data, so we run the Markov chain

for only 1 250 000 iterations. To evaluate the convergence properties of the simulated Markov

chain, we study trace plots of different scalar quantities in the same way as in Section 5.1.
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Figure 11: Cancer mortality map example: Estimated a posteriori marginal densities for each

of the possible 16 configurations in a 2×2 block of nodes. Corresponding values computed from

the cancer map data set is shown as a vertical dotted line. The configuration corresponding

to an estimated density is shown below each figure, where black and white nodes represent

one and zero, respectively. 24



(a) (b)

Figure 12: Sisim data set example: (a) Given scene. Nodes added to the lattice to reduce

the boundary effects of the Markov mesh model is shown in gray. (b) Map of estimated a

posteriori probabilities for each node v ∈ τ0 to be a neighbor. A gray-scale is used to visualize

the probabilities, where black and white represents one and zero, respectively.
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Figure 13: Sisim data set example: Trace plots of the first 50 000 iterations of the

RJMCMCM run. (a) Number of interactions |Λ|, (b) logarithm of the posterior density

log [f (τ,Λ, {θ(λ) : λ ∈ Λ} , xu|xo)].

Figure 13 shows trace plots of the first 50 000 iterations for the number of interactions and for

the logarithm of the posterior density. At first glance at these two and the other trace plots

we have studied, we asserted that the simulated chain had converged at least within the first

30 000 − 40 000 iterations. As an extra precaution we discarded the first 250 000 iterations

when estimating posterior properties.

As in Section 5.1, we estimate the posterior probability for v ∈ τ0 to be in the template

sequential neighborhood τ . The results are shown in Figure 12(b), where we use a grayscale

to visualize the probabilities. There are five nodes whose estimated posterior probabilities are

essentially equal to 1, and these are (0,−1), (−1, 0), (−1, 2), (0,−3) and (−1, 4). Four more

nodes have estimated posterior probabilities higher than 0.1. These are (−2, 3), (−3,−1),

(−2,−3) and (−1, 3) with estimated probabilities 0.444608, 0.425779, 0.323181 and 0.182879,

respectively. It is interesting to note the spatial locations of the high probability nodes. At
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Table 3: Sisim data set example: The top 20 a posteriori most likely interactions and their

estimated posterior probabilities.

Interaction

Probability 1.0000 1.0000 1.0000 1.0000 1.0000

Interaction

Probability 1.0000 1.0000 0.8572 0.8525 0.8484

Interaction

Probability 0.7351 0.4446 0.4258 0.3232 0.1949

Interaction

Probability 0.1882 0.1829 0.1794 0.1531 0.1260

least for a part of the area every second node is chosen as a neighbor with high probability.

To understand this effect, we must remember that the values of two nodes that are lying

next to each other are highly correlated, so one would not gain much extra information by

including both of them in the template sequential neighborhood. Moreover, the prior prefers

parsimonious models, which we obtain by not including too many nodes in the template

sequential neighborhood.

Next, as for the cancer mortality map data set, we correspondingly estimate the posterior

probabilities for each possible interaction to be included in the model. Table 3 shows the top

20 a posteriori most likely interactions and corresponding estimated probabilities. We see

that many interactions have high posterior probabilities.

We also estimate the a posteriori marginal distributions for the parameter values θ(·)
corresponding to the top eight most likely interactions. Figure 14 depicts the histograms

of the simulated parameter values θ(·). From the simulation we also estimate the posterior

probability for each of the possible models. The most probable model is shown in Figure 15.

This model has posterior probability equal to 0.13802. The remaining probability mass is

spread out on a very large number of models.

As in the cancer mortality data set example, we also now generate realizations from the

simulated Markov mesh models. Figure 16 contains realizations simulated from four randomly

chosen models simulated in the Markov chain (after the specified burn-in). As in Figure 12(a),

showing the observed data set, black and white nodes v represent xv = 1 and 0, respectively.

Using a large number of such realizations we also for this data set estimate the spatial mean
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Figure 14: Sisim data set example: Histograms of the simulated parameter values θ(·) for the

top eight a posteriori most likely interactions.
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Figure 15: Sisim data set example: The a posteriori most likely model. The estimated

posterior probability for this model is 0.13802.
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Figure 16: Sisim data set example: Four Markov mesh model realizations where the models

used are randomly sampled from all models simulated in the RJMCMC (after the specified

burn-in). The color coding is the same as in Figure 12a.

function. As for the cancer mortality data set example, the effect of conditioning to zero

outside the extended lattice can only be seen in the unobserved area added to the original

observed lattice. Again we also estimate the distribution of values in a 2× 2 block of nodes.

Figure 17 shows the estimated density for each of the 16 configurations. The corresponding

fractions for the observed data set are marked by vertical dotted lines. Note that for most of

these distributions, the corresponding fractions for the observed data set are centrally located

in the distribution. The exceptions are (c), and partly (e), (f), (i) and (j), where the observed

quantities are more in the tail of the distribution.

In the cancer mortality data set example, essentially all of the posterior probability mass

was concentrated in a few models. In the sisim data set example, the probability mass is

spread out on a very large number of models. In particular, as also discussed above, the

most probable model has a posterior probability estimated to be as low as 0.13802. Using

the simulated models to understand the posterior model distribution is then more difficult.

As a first step in describing the posterior model distribution, our focus here is on whether

it has one or several modes. To do this we first need to define what we should mean by a

mode in this complicated model space. We start by defining two models to be neighbors if

one of them can be obtained from the other by including one extra interaction. Thus, our

proposal distribution in Section 4.2, proposing to change the set of active interactions, is
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Figure 17: Sisim data set example: Estimated posterior marginal densities for each of the

possible 16 configurations in a 2 × 2 block of nodes. Corresponding values computed from

the sisim data set is shown as a vertical dotted line. The configuration corresponding to an

estimated density is shown below each figure, where black and white nodes represent one and

zero, respectively. 30



Figure 18: Sisim data set example: The estimated a posteriori most probable model in the

second cluster of models.

always generating a potential new model that is a neighbor of the current model. To explore

whether we have several modes in our posterior distribution, we first subsample the simulated

Markov chain, keeping a realization every 50 iterations after the burn-in period. This leave us

with 20 000 realizations. From these we first find the most frequent model, visualized in Figure

15, and then all neighbor models to this most probable model, all neighbor models to the

neighbors, and so on until the process stops. The sum of the estimated posterior probabilities

of the models in the resulting cluster of models is 0.80755, giving a clear indication that the

posterior model distribution have more than one mode. To find a second mode we limit the

attention to the simulated models that was not included in the first cluster of models and

repeat the process. Thus, we first find the a posteriori most probable model not included in

the first model cluster. This model is shown in Figure 18. Then we find all neighbors of this

model, all neighbors of the neighbors and so on. The estimated posterior probability in this
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Figure 19: Sisim data set example: Trace plot visited clusters for the subsampled models. On

the y-axis 1 and 2 represent the first and second clusters of models found, respectively, and 3

represents all remaining models.

second cluster of models is 0.146563. Thus, these two first clusters contain more than 95%

of the simulated models, and we therefore choose not to search for a third cluster. Knowing

that we have two important clusters or modes it is natural to reconsider the convergence and

mixing properties of our Markov chain. Figure 19 shows a trace plot of the visited clusters for

the subsampled models, where 1 and 2 on the y-axis represent the first and second clusters

found, respectively, and 3 represents all remaining models. We then see that the second cluster

is in fact visited only once, giving a clear indication of poor mixing. We should thereby not

trust the estimated probabilities for the two clusters given above, but that the chain is first

moving from the first cluster to the second and thereafter back again clearly shows that both

of them have a significant posterior probability mass.

6 Closing remarks

In this article we propose a prior distribution for a binary Markov mesh model. The specifi-

cation of a Markov mesh model has three parts. First a sequential neighborhood is specified,

next the parametric form of the conditional distributions is defined, and finally we assign

values to the parameters. We formulate prior distributions for all these three parts. To fa-

vor parsimonious models, our prior in particular assigns positive prior probabilities for some

interaction parameters to be exactly zero. A corresponding prior formulation has previously

been proposed for Markov random fields (Arnesen and Tjelmeland, 2017). The advantage

of using it for a Markov mesh model is that an explicit and easy to compute expression is

available for the resulting posterior distribution, whereas the posterior based on a Markov

random field will include the computationally intractable normalizing constant of the Markov

random field.

To sample from the resulting posterior distribution when conditioning on an observed

scene, we adopt the RJMCMC setup. We propose an algorithm based on the combination

32



of two proposal distributions, a Gibbs proposal for the parameter values and a reversible

jump proposal changing the sequential neighborhood and parametric form of the conditional

distributions.

To explore the performance of the specified prior distribution and the corresponding RJM-

CMC posterior simulation algorithm, we consider two scenes. The first is an observed cancer

mortality map data with small spatial coupling between neighboring nodes. For this scene the

RJMCMC algorithm converges quickly and has good mixing properties. Most of the poste-

rior mass ends up in models with only two nodes in the sequential neighborhood. The second

scene we tried is a frequently used scene in the geostatistical community. It has more spatial

continuity than the first scene. The convergence of the RJMCMC algorithm becomes much

slower when conditioning on this scene. In particular the posterior seems to have at least two

modes and the mixing between the modes is slow. Our simulation results indicate that the a

posteriori most likely model has six nodes in the sequential neighborhood and the conditional

distributions has a parametric form with as much as twelve parameters. This shows that the

specified prior is flexible in that the model complexity favored by the corresponding posterior

adapts to the the complexity of the scene conditioned on.

In this article we have focused on binary Markov mesh models and thereby binary scenes.

Our strategy for prior specification and posterior simulation, however, can easily be extended

to a situation with more than two colors. The main challenge in this generalization does

not lie in the specification of the prior, but is computational in that one should expect the

convergence and mixing of a corresponding RJMCMC algorithm to be slower for a multi-

color model. A direction for future research is therefore to improve the proposal distributions

to obtain better convergence and mixing for the RJMCMC algorithm, both in the binary

and multi-color cases. In particular we think a promising direction here is to define an

MCMC algorithm where several Metropolis–Hastings proposals can be generated in parallel

and where the proposals may add and remove more than just one interaction relative to the

current model.
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A Log-concavity of the full conditional for α

In this appendix we prove that the full conditional f(α|τ,Λ, {θ(λ)+α∆(λ) : λ ∈ Λ}, x) defined

in (32) is log-concave, so that we can use adaptive rejection sampling to generate samples

from it. Defining g(α) = ln [f(α|τ,Λ, {θ(λ) + α∆(λ) : λ ∈ Λ}, x)] and using (32) we have

g(α) = ln [f({θ(λ) + α∆(λ) : λ ∈ Λ}|τ,Λ)]

+ ln [f(x|τ,Λ, {θ(λ) + α∆(λ) : λ ∈ Λ})] + C,
(43)

35



where C is the logarithm of the normalizing constant in (32). Inserting expressions for the

prior and likelihood in (29) and (13), respectively, we get

g(α) =
∑
λ∈Λ

[
c(λ) + θ(λ) + α∆(λ)− 2 ln

(
1 + eθ(λ)+α∆(λ)

)
− (θ(λ) + α∆(λ))2

2σ2

]
+
∑
v∈χ

[xv(θ(ξ(x) ∩ (τ ⊕ v)) + α∆(ξ(x) ∩ (τ ⊕ v)))

− ln
(

1 + eθ(ξ(x)∩(τ⊕v))+α∆(ξ(x)∩(τ⊕v))
)]

+ C.

(44)

Grouping terms of the same functional form, we get

g(α) = C0 + C1α−
1

2σ2

∑
λ∈Λ

(θ(λ) + α∆(λ))2 − 2
∑
λ∈Λ

ln
(

1 + eθ(λ)+α∆(λ)
)

−
∑
v∈χ

ln
(

1 + eθ(ξ(x)∩(τ⊕v))+α∆(ξ(x)∩(τ⊕v))
)
,

(45)

where

C0 = C +
∑
λ∈Λ

θ(λ) +
∑
v∈χ

xvθ(ξ(x)∩ (τ ⊕ v)) and C1 =
∑
λ∈Λ

∆(λ) +
∑
v∈χ

∆(ξ(x)∩ (τ ⊕ v)) (46)

are constants as a function of α. The second derivative of the constant and linear terms in

(45) are of course zero. Since the coefficients of the quadratic terms are all negative, the

second derivative of all of these are less or equal to zero, and unless ∆(λ) equals zero for all

λ ∈ Λ the second derivative of the sum of these terms is even strictly less than zero. The

remaining terms in (45) all have the same functional form as a function of α, namely

h(α) = −a ln
(

1 + eb+cα
)
, (47)

a term in the sum over λ ∈ Λ has a = 2, b = θ(λ) and c = ∆(λ), whereas a term in the

sum over v ∈ χ has a = 1, b = θ(ξ(x) ∩ (τ ⊕ v)) and c = ∆(ξ(x) ∩ (τ ⊕ v)). To prove that

the second derivative of all of these terms are negative, it is thereby sufficient to show that

h′′(α) < 0 for all a > 0 and α, b, c ∈ R. Simple differentiation gives

h′′(α) = − ac2eb+cα

(1 + eb+cα)
2 . (48)

Thus, h′′(α) < 0 for all a > 0 and α, b, c ∈ R, and thereby g(α) is concave and the full

conditional f(α|τ,Λ, {θ(λ) + α∆(λ) : λ ∈ Λ}, x) is log-concave.

B Jacobian determinant for the proposal in Section 4.2.1

The Jacobi determinant for our removing an active interaction from Λ proposal is det(A),

where A is defined by (39). The exact form of the matrix A depends on how we define the
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vectors θ and θ? used in (39). The vector θ should contain the set of current parameters

{θ(λ) : λ ∈ Λ}, but so far we have not specified what order to use when arranging this set of

parameters into the vector θ. Correspondingly, we have not specified what order to use when

arranging the set of potential new parameters {θ?(λ) : λ ∈ Λ?} into the vector θ?. However,

even if the elements of A depend on how we construct θ and θ?, the absolute value of the

determinant of A is the same for all arrangements of θ and θ?. To find det(A) we arrange the

vector θ so that parameters corresponding to lower order interactions come first. The first

element of the vector θ is thereby θ(∅), thereafter follows parameters corresponding to the

first order interactions {θ(λ) : λ ∈ Λ, |λ| = 1} (in an arbitrary order), then all parameters

corresponding to second order interactions {θ(λ) : λ ∈ Λ, |λ| = 2} (again in an arbitrary

order), and so on. We arrange θ? correspondingly, parameters corresponding to lower order

interactions come first.

As also touched on in Section 4.2.1, the transformation in (39) can be done in three steps.

First θ is transformed into a vector β of the corresponding current interaction parameters

{β(λ) : λ ∈ Λ}. This relation is given in (15) and is in particular linear so we can write

β = A1θ. (49)

Arranging also the vector β so that lower order interactions comes first, it is easy to see

from (15) that A1 is a lower triangular matrix with all diagonal elements equal to one. Thus

det(A1) = 1. The second step in the transformation is to use (36) to define a vector β?

containing the set of potential new interaction parameters {β?(λ) : λ ∈ Λ?}. As the proposal

is to remove an interaction, the number of elements in β? is one less than the number of

elements in β. To obtain a one-to-one relation as required in the reversible jump setup, we

include the current value β(λ?) in a vector together with β?. We let β(λ?) be the last element

in the vector and we arrange also the vector β? so that lower order interaction parameters

come first. As the relation in (36) is linear we can then write[
β?

β(λ?)

]
= A2β, (50)

where the elements of the square matrix A2 is defined by (36). To find the determinant of

A2, let r denote the number of elements in β before β(λ?), so that element number r + 1 in

β is β(λ?). From (36) it then follows that A2 has the block structure,

A2 =

[
Ir×r A12

2

0(|Λ|−r)×r A22
2

]
, (51)

where Ir×r is the r×r identity matrix, A12
2 is an r×(|Λ|−r) matrix, 0(|Λ|−r)×r is a (|Λ|−r)×r

matrix of only zeros, and A22
2 is the (|Λ|−r)×(|Λ|−r) permutation matrix where the elements

(i, i+ 1) for i = 1, . . . , |Λ| − r − 1 and (|Λ| − r, 1) equals one and all other elements are zero.
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Thereby we have det(A2) = det(Ir×r) · det(A22
2 ) = det(A22

2 ), and as A22
2 is a permutation

matrix its determinant is plus or minus one. Thus, | det(A2)| = 1. The third step in the

transformation from θ to θ? is to use (14) to transform the vector of potential new interaction

parameters, β?, to a corresponding vector θ? of potential new parameter values. As the

relation in (14) is also linear, we can write[
θ?

β(λ?)

]
= A3

[
β?

β(λ?)

]
, (52)

where the elements of the matrix A3 is defined by (14). Recalling that we have arranged

the elements in both θ? and β? so that parameters corresponding to lower order interactions

come first, it is easy to see from (14) that A3 is an upper triangular matrix with all diagonal

elements equal to one. Thus det(A3) = 1. Setting the three steps in the transformation

together we have A = A1A2A3 and thereby |det(A)| = | det(A1)| · | det(A2)| · | det(A3)| = 1.
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