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Abstract 

 This article provides a simple analytical method giving estimates of random wave-driven 

drag forces on near-bed vegetation in shallow water from deep water wind conditions. Results are 

exemplified by using a Pierson-Moskowitz model wave spectrum for wind waves with the mean 

wind speed at the 10 m elevation above the sea surface as the parameter. The significant value of 

the drag force within a sea state of random waves is given, and an example typical for field 

conditions is presented. The method should serve as a useful tool for assessing random wave-

induced drag force on vegetation in coastal zones and estuaries based on input from deep water 

wind conditions.  
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1. Introduction 

 Estuaries and coastal zones are generally characterized by shallow water depths where the 

flow is caused by surface waves and currents. The environments in estuaries and costal zones are 

vulnerable due to the combined action of waves and currents and the effect this has on changing 

the hydrodynamic and sediment transport processes, and consequently on coastal erosion. The role 

of seagrass for coastal protection has recently been addressed by Paul1; also identifying the 

existence of knowledge gaps regarding the support that seagrass can provide for sandy shorelines 

protection. Furthermore, Nowacki et al.2 found that the wave-induced bottom shear stress is about 

15% less in the presence of vegetation than the bottom shear stress due to higher waves that would 

occur without vegetation; clearly documenting the damping effect of vegetation on waves in an 

estuary. 

 A commonly used tool in coastal protection work is coastal flow circulation models including 

parameterizations of many flow mechanisms; e.g. the wave damping due vegetation is often 

represented in terms of a bulk drag coefficient formulation. However, a variety of drag coefficient 

formulae beneath wave conditions are available in the literature, and there is no consensus on how 

wave damping due to vegetation shall be taken into account; see Henry et al.3 for a critical review 

of existing drag coefficient formulations for waves as well as a literature review up to that date. 

Recent works include those of Luhar and Nepf 4, Hendersen et al.5, Nowacki et al.2  and Paul1; also 

including literature reviews. 

 By following Mendez and Losada6 the maximum horizontal drag force per unit volume acting 

on plants during a wave-cycle is 

 21

2
m DF C b NU=   (1) 
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Here it is assumed that the drag force is the main fluid force component acting on plants, and is 

given in terms of a Morison-type equation when sway motion of the plants as well as vertical forces 

and vertical force component are neglected; U  is the maximum horizontal velocity during the 

wave-cycle,   is the fluid density, b is the plant width corresponding to the plant area per unit 

height of each plant normal to U, N  is the number of plants per unit area, and DC  is a bulk (depth-

averaged) drag coefficient (see Fig. 1). It should be noted that Eq. (1) is based on neglecting the 

relative velocity between fluid and plant; but Eq. (1) is also used for flexible plants by adjusting 

DC  for rigid plants. 

 In this article the Sànches-Gonzàles et al.7 DC -formula is adopted, which as a compromise 

between simplicity and accuracy can be approximated by 

 ;( , ) (15.6, 1)d

DC cKC c d= = −   (2) 

The original coefficients were ( , ) (22.9, 1.09)c d = −  and valid in the range 15 425KC  , 

obtained as a best fit to flume test results for regular and irregular waves over artificial seagrass. 

Here /KC UT b=  is the Keulegan-Carpenter number, 2 /T  =  is the wave period, and   is the 

cyclic wave frequency. 

 For linear shallow water waves /=U a kh , i.e. independent of  the vertical coordinate z, 

where a is the linear wave amplitude, h is the water depth, and k is the wave number determined 

from the shallow water dispersion relationship as /=k gh , where g is the acceleration due to 

gravity. Thus, by combining this with Eqs. (1) and (2), the maximum wave-induced drag force per 

unit mass for shallow water regular waves becomes 
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          Based on this result for regular waves in shallow water, the random wave-induced drag force 

estimation on near-bed vegetation in shallow water is organized as follows. Section 2 presents the 

drag force for random waves in shallow water. Section 3 gives example of results for a Pierson-

Moskowitz model wave spectrum for deep water wind waves with the mean wind speed at the 10m 

elevation above the sea surface as the parameter, also providing an example representing realistic 

field conditions. Summary and conclusions are given in Section 4. 

2. Random wave-induced drag force in shallow water 

 The wave-induced drag force on plants per unit mass for an individual random wave 

component with amplitude na  and cyclic wave frequency n   at a shallow water depth h is given 

by that for regular waves in Eq. (3) as 

 n n n

g
f a

h
=   (4) 

Now 2 2 ( , )n na S h =   where 2( , ) ( / 2 ) ( )S h h g S  =  is the wave spectrum in shallow water 

(Massel8, Section 7.3), ( )S   is the deep water wave spectrum, and   is a constant separation 

between frequencies. Similarly, 
2 2 ( , )n ff nf S h =   where ( , )ffS h  is the spectrum associated 

with the wave-induced drag force on plants in shallow water. Thus, by substituting na   and nf   in 

Eq. (4), it follows for an infinite number of frequency components that 

 4
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Thus, Eq. (5) takes the form 

 0 4

1

2
fm m=   (6) 

where 0 fm   is the zeroth spectral moment of ( , )ffS h  and 
4m   is the fourth spectral moment of 

( )S  . Here the spectral moments for deep water waves are defined as 
0

( )n

nm S d  


=  ; 

0,1,2, .n = −−   A commonly used statistical quantity is e.g. the significant value of the wave-

induced drag force defined as 04sf fH m= , which from Eq. (6) is obtained as 

 42 2sfH m=   (7) 

Consequently, the significant value of mF   in Eq. (3) is 

 21

4
sF sfH cb N H


=   (8) 

 The most frequently used deep water model wave spectra, e.g. the Pierson-Moskowitz and 

JONSWAP spectra, behave as 5 −   for large  , and consequently 4m   does not exist. However, 

for a narrow-band process Longuet-Higgins9 showed that the relationship between the two spectral 

bandwidth parameters 2 2

2 0 41 / ( )= −m m m  and 2 2

0 2 1/ 1m m m = −   can be approximated by 

/ 2, =  implying that 4m  can be expressed as 

 
2 4 2

2 0
4 2 4 2

0 2 1 2

/

5 4 / (1 )

sm m H
m

m m m T




= =

− −
  (9) 

Moreover, for deep water waves the significant wave height sH , the mean spectral wave period 1T  

and the mean zero-crossing wave  period 2T  are given as (Tucker and Pitt10)   
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 04sH m=   (10) 
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which is used giving the third term in Eq. (9). Thus, by combining Eqs. (7) and (9), Eq. (7) is 

rearranged to 

 
2
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−
  (13) 

According to the results in Appendix 1, Eq. (27) gives that Eq. (13) is valid for 

 
45

92
2(0.124 ) sh H T   (14) 

and  15 425shKC    (see Appendix 1). 

3. Example of results for a Pierson-Moskowitz spectrum 

  The Pierson-Moskowitz (PM) spectrum is chosen as the deep water wave spectrum to 

exemplify the results with the mean wind speed at the 10 m elevation above the sea surface as the 

parameter. The form of the PM spectrum is (Tucker and Pitt10)  

 
5 4
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which for 4n   has the spectral moments 
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where    is the gamma function. The original form of the  PM-spectrum was given with 2 ,A g=  

0.0081, =  41.25 ,pB =  2 / , where andp p p pT T  =  are the spectral peak frequency and 

period, respectively, and with the mean wind speed at the 19.5 m elevation above the sea surface 

as the parameter. The formulation with the mean wind speed at the 10 m elevation with 

10 19.50.93U U=  gives (Tucker and Pitt10) 

 100.785pT U=   (17) 

 2

100.0246sH U=   (18) 

 1 100.606=T U   (19) 

 2 100.557T U=   (20) 

 0.425 =   (21) 

 

By substituting Eqs. (18), (20) and (21) in Eq. (13), Eq. (13) gives 

 
22.45m/ssfH =   (22) 

which according to Eq. (14) combined with Eqs. (18) and (20) is valid for 

 2

100.040h U   (23) 

Moreover, Eq. (13) is also valid for 15 425shKC  , where by using Eqs. (29) (in Appendix 1), 

(18) and (20): 
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Similarly, it follows from Eq. (28) (in Appendix 1)  that 

 
2.5

10

0.25
0.0092sh

U
H

h
=   (25) 

Further, consider 
10 15m/sU =   as an example. Then it follows that: 

• 9.0mh   from Eq. (23) 

• 5.5msH =  from Eq. (18) 

• 2 8.4sT =  from Eq. (20) 

• 4.6mshH =  from Eq. (25) with 9.0mh =   

• 201=shKC  from Eq. (24) with 9.0mh =  and exemplified with 0.1mb = ;  i.e. in the range 

of validity of  shKC . 

Further, from Eqs. (8) and (22) by taking (see Fig. 1) 31m , 1027kg/m , 1h N = = =  (i.e. one 

plant)   

             231.2 ( kgm/s )sFH N= =   

It should be noted that the wave steepness in Eq. (30) (in Appendix 1) is 0.050=ss , i.e. the 

criterion is strictly not fulfilled. However, the result should still serve as a first estimate for 

assessment of the random wave-induced drag on near-bed vegetation in shallow water. 
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4. Summary 

 A simple analytical method which can be used to make preliminary assessment of random 

wave-induced drag forces on near-bed vegetation in shallow water based on deep water wave 

conditions is provided. The drag force formulation is based on using a slightly revised version of a 

bulk drag coefficient in terms of the Keulegan-Carpenter number valid for rigid plants, and it is 

used for random waves by transforming deep water waves to shallow water waves. The significant 

value of the drag force within a seastate expressed in terms of the sea state parameters significant 

wave height and mean zero-crossing wave period is given. Results are exemplified by applying a 

Pierson-Moskowitz model wave spectrum for wind waves with the mean wind speed at the 10 m 

elevation above the sea surface as the parameter. The validity of the results are given in terms of 

the Ursell number and the wave steepness within the sea state. An example is also provided  typical 

for field conditions. The present method should be useful for estimating random wave-induced 

drag forces on near-bed vegetation in shallow water coastal zones and estuaries for well known 

wind conditions in deep water as input. Although simple, the strength of the proposed work is that 

it is a quick tool which can be applied e.g. in coastal protection work. 
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Appendix 1.  Wave parameters in shallow water 

 The Ursell number gives the ratio between nonlinear features of waves in terms of the wave 

steepness ka and the dispersive properties of the waves in terms of kh , defined as 3/ ( )RU ka kh=  

(Dean and Dalrymple11), where 0.5RU    for linear waves (Hedges12). 

 For linear harmonic waves approaching a straight coastline at normal incidence propagating 

over a gently sloping flat bottom the wave amplitude in shallow water is determined from that the 

energy flux is constant, i.e. 1/2/ (2 )=a a kh   (Dean and Dalrymple11), where deep water is used as 

a reference with / 2a H =   as the deep water wave amplitude, and H   is the deep water wave 

height. Furthermore, by using the dispersion relationship in shallow water, 2 / ( )k T gh=  where 

T is the wave period, the Ursell number in shallow water can be expressed as 

 
2.5

2.25
0.062Rh

H T
U

h

=  (26) 

By replacing H   with sH   and T  with 2T , the Ursell number for a sea state of random waves in 

shallow water is defined as 

 
2.5

2

2.25
0.062 s

Rhs

H T
U

h
=   (27) 

and is taken to be valid for 0.5RhsU  . 

 Similarly, the significant wave height in shallow water is obtained as 

 

1 1

2 4
2

2
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H T g
H
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Further, for a sea state of random waves in shallow water, /KC UT b=   is rearranged to the 

Keulegan-Carpenter number 

 2sh
sh

U T
KC

b
=   (29) 

where 
1

2( / 2) ( / )sh shU H g h=   is the characteristic horizontal velocity for a sea state in shallow 

water.  Here Eq. (29) is taken to be valid for 15 425shKC  .  

 It should also be noted that according to Hedges12 the upper limit of the wave steepness for 

linear waves in deep water is 0.04, i.e. 2/ (( / 2 ) ) 0.04.= s H g T   Thus, the wave steepness for 

a sea state in deep water is defined as 

 
2

2
2

= s
s

H
s

g
T



  (30) 

and should satisfy that 0.04ss .  
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Fig. 1    Definition of a vegetation field where a is the wave amplitude, H is the wave height, U is  

the maximum horizontal velocity during the wave-cycle, Fm is the maximum horizontal drag  

force per unit volume acting on plants during a wave-cycle, h is the height of the stands (taken  

here as a unit height). 

 


