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Abstract: Wireless capsule endoscopy (WCE) has revolutionized the diagnosis and treatment of gastrointestinal tract, especially
the small intestine which is unreachable by traditional endoscopies. The drawback of the WCE is that it produces a large amount
of images to be inspected by the clinicians. Hence, the design of a computer-aided diagnosis (CAD) system will have a great
potential to help reducing the diagnosis time and improve the detection accuracy. To address this problem, we propose a CAD
system for automatic detection of ulcer in WCE images. Firstly, we enhance the input images to be better exploited in the main
steps of the proposed method. Afterwards, segmentation using saliency map based texture and colour is applied to the WCE
images in order to highlight ulcerous regions. Then, inspired by the existing feature extraction approaches, a new one has been
proposed for the recognition of the segmented regions. Finally, a new recognition scheme is proposed based on hidden markov
model using the classification scores of the conventional methods (support vector machine, multilayer perceptron and random
forest) as observations. Experimental results with two different datasets show that the proposed method gives promising results.

1 Introduction

Wireless capsule endoscopy (WCE) is such a new technology for
non-invasive examination of the gastrointestinal (GI) tract [20].
More information about the current state of things in commercially
available capsule endoscopy (CE) device can be found in [30].
WCE produces around 55,000 images per patient which may take
a physician around 60 to 90 min for their inspection [38]. A large
amount of data makes the task time-consuming and burdensome for
a thorough diagnosis. In addition to this, in many cases, it is very
difficult to identify some small bleeding regions with naked eyes.
These are some of the reasons why a number of research works are
being carried out to reduce reading times through automatic detec-
tion of images containing abnormalities or other regions of interests
(ROIs). Given Imaging (Yoqneam, Israel), one of the manufactur-
ers of WCE, provides a tool called Suspected Bleeding Indicator
(SBI) for automatic detection of frames containing possible bleed-
ing areas. However, studies have shown that SBI is not sufficient to
screen all types of diseases in the GI tract [7]. This has paved the
way to researchers in the development of approaches for automatic
detection of other types of abnormalities in CE images with higher
accuracy.

In this paper, an automatic approach for ulcer detection is pre-
sented. The proposed method can reduce the burden of physicians in
investigating WCE video to detect ulcerous frames with a high level
of accuracy. Firstly, we pre-process the WCE image for enhance-
ment. Secondly, colour and texture based segmentation using the
saliency map is performed for the detection of the ulcerous regions.
Clinicians discriminate the ulcer from a WCE image mainly based
on some salient information. Here, texture and colour saliency maps
are introduced to imitate the diagnosis of physicians. Thirdly, the
segmentation process may fail in detecting the exact location of the
ulcer (false positives) or segments only a small part of it. Hence,
automatic classification phase is highly required to recognize the
segmented regions and will be helpful in reducing the review time for
physicians. Therefore, several feature descriptors are tested and com-
bined to characterize the segmented regions. Finally, support vector
machine (SVM), multilayer perceptron (MLP) and random forest
classifiers are used to classify the WCE images and their scores are
given as observations to a Hidden Markov Model (HMM) [19] for
the recognition. The contributions of this paper can be summarized
as follows.

• A new saliency map segmentation method is proposed. Different
from the state-of-the art methods in which only the contrast infor-
mation [1] or the colour information [39] are used to construct the
saliency map. In this work, we propose to construct the saliency map
using both the texture and colour information.
• Several feature descriptors are used. In the first stage, we test
each of the feature descriptors independently. In the next stage,
we fuse them to decide which combination is more suitable for
characterizing the ulcer in WCE images.
• Different from most state-of-the art methods which use a single
classifier to recognize the ulcerous images. A new and more con-
fident recognition scheme is proposed, in which we apply multiple
classifiers. The scores of these classifiers are given as observations
to the HMM classifier. The constructed scheme overcomes the limi-
tations of the usage of a single classifier and can provide the most
probable and confident classification in the cases where a single
classifier may fail.

The remainder of the paper is organized as follows. The related work
is introduced in Section 2. The methodology used to built the pro-
posed approach is detailed in Section 3. Experimental results are
given in Section 4. Section 5 concludes the paper.

2 Related work

Many efforts have been made in the literature of automatic ulcer
detection. These methods cqn be classified into three categories
based on the type of the features they use for ulcer detection, i.e.,
colour, texture or colour and texture features.
In [27, 55], colour based methods were developed. Yuan et al. [55]
computed the color scale invariant feature transform (SIFT) from
the bleeding, polyp, ulcer, and normal WCE image samples sep-
arately and then applied K-means clustering on these features to
obtain visual words. Then, proposed a novel approach for feature
coding based on the Locality-Constrained Linear Coding method.
Finally, they utilised the max pooling strategy prior to classification.
Kundu et al. [26] proposed to differentiate ulcerous parts based on
the brightness of colour, hence, they used the histogram of greyscale
image to investigate the distribution of the greyscale values through-
out the histogram bins. An other method utilising the histogram in Y
plane of YIQ color space was presented in [27]. The second category
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of approaches rely on texture features in order to detect ulcer from
WCE image [10, 28, 29, 33, 44]. Baopu et al. [28, 29] proposed two
methods inspired by wavelet and curvelet based local binary pat-
tern (LBP), respectively, to distinguish ulcer regions from normal
ones in patches selected from CE images. Furthermore, Charisis et
al. [10] proposed to analyis the texture information in CE images
in different colour models. This approach focuses on colour tex-
ture features in order to investigate how the structure information
of healthy and abnormal tissues is distributed on red, green, and blue
(RGB), hue, saturation, value (HSV) and CIELAB colour spaces. Bi-
dimensional ensemble empirical mode decomposition was used as a
pre-processing step in order to facilitate differential lacunarity anal-
ysis to extract the texture patterns of normal and ulcerous regions in
WCE images. LBP and combination of Leung and Malik (LM) filter
bank were investigated in [33] for detection of different abnormali-
ties in endoscopy images. SIFT and texture features were extracted
from the WCE patches and integrated then K-means algorithm was
used to form visual words for automatic ulcer detection in [57]. In
[44], a multi-scale approach based on LBP and Laplacian pyramid
transform was proposed for ulcer detection. The last category is for
methods based on both colour and texture [9, 11, 48, 52]. In [11],
aiming at boosting the chromatic features of ulcerous WCE images,
the former ones were color rotated. Afterwards, LBP descriptor were
utilised for texture information extraction. Colour and textural fea-
tures were again proposed in [52] to determine the status of the
small intestine and detect ulcer and bleeding in WCE images. In
this approach authors investigated the RGB, HSV and colour coher-
ence vector for color features extraction then used the gray-level
co-occurrence matrix (GLCM) to derive textural ones. In addition,
methods such as One Rule (OneR), SVM-recursive feature elimi-
nation and ReliefF were utilised for feature selection. Three-stage
framework for segmentation and detection of pathology was pro-
posed in [48]. In the aforementioned work, pixels are classified based
on the texture features of their neighborhood. Then, classification in
performed using a new vector supported convex hull algorithm. In a
related work, complete LBP and global-local oriented edge magni-
tude pattern descriptors were combined to detect texture and colour
features of ulcer in WCE images [9]. In a different approach for ulcer
detection using WCE images, the geometry features of ulcer were
exploited in [25]. This approach is based on Contourlet transform
and Log-Gabor filter to distinguish ulcer regions from normal ones.
Table 1 displays a comparison of different ulcer detection methods.
Some other interesting approaches aiming at detecting several abnor-
malities using WCE images were also proposed in the literature.
Method for localization of bleeding in WCE videos using a com-
bination of edge, intensity and colour saliency maps was proposed
in [12]. Bag of feature for automatic polyp detection and method for
bleeding detection in WCE images were stated in [46, 53, 54, 56].
Yuan et al. developed two approaches for polyp detection in WCE
images. In the first approach, the visual words of all images are
computed using SIFT feature vectors and K-means clustering. Then,
they calculated the saliency and non-saliency maps of the WCE
images. Finally, the histogram of the visual words of each image
is computed to represent the WCE image. In the second approach,
they improved their first one by combining both SIFT and com-
plete LBP features instead of using only SIFT to compute the visual
words. The same authors proposed a wordbased colour histogram

extraction method by applying K-means clustering on the pixel rep-
resented images to obtain the cluster centres [53]. A method based
on the extraction of geometric features around SIFT keypoints and
their concatenation with texture features for polyp detection was
presented in [13]. Usman et al. [49], proposed pixel-based bleed-
ing detection method in WCE videos using SVM. A new method
for bleeding detection using clustering based features was stated in
[16]. In [18], a new feature descriptor that extracts texture feature
using normalised GLCM (NGLCM) of the magnitude spectrum was
proposed for detecting GI hemorrhage in WCE videos. Yuji Iwa-
hori et al. [22] proposed Hessian filter and histogram of gradients
(HOG) features to distinguish between polyp and non-polyp regions,
then used K-means++ for classification phase. Moreover, a method
based on Weibull features extracted from subbands of dual-tree com-
plex wavelet, Gabor wavelet and shearlet transfroms and fed to K-nn
classifier was stated in [50]. Abnormalities detection in WCE images
using LBPV descriptor based on the the discrete wavelet transform
DWT image anlysis was presented in [8]. A method using superpixel
segmentation and naive Bayes classifier for bleeding frames detec-
tion was recently proposed in [43]. In [23, 41, 51], systems for small
intestine motility characterization and bleeding detection, based on
deep convolutional neural networks were introduced. The CE scores
to assess small-bowel inflammatory activity in Crohn’s disease were
evaluated in [37]. In [24], CE and deep enteroscopy in irritable bowel
disease were investigated. Study of the effectiveness of colon CE in
detecting colon polyps were presented in [40]. The paper [31] sum-
marizes the role of the WCE in pursuing the inflammatory disease in
the bowel.

3 Proposed approach

In this section, the new approach for detection and recognition of
ulcer in WCE images is presented. As shown in the Fig. 1, in the
first step of the proposed scheme, we pre-process the input WCE
image using 3D median filter for noise removal and illumination cor-
rection. The second step involves colour and texture saliency maps
generation and segmentation of the combined saliency map using
thresholding. Then, we extract features from the WCE segmented
regions. In the last step, the feature vectors are fed to the classifica-
tion scheme to decide whether the input WCE image is normal or
contains an ulcerous region. In the following subsections, we detail
all steps involved in the proposed ulcer detection approach.

3.1 Pre-processing

WCE image are obtained from different patients under unstable
circumstances and illumination changes in the GI tract. Hence, a pre-
processing step is highly required. For these reasons, in this work the
capsule images are filtered using 3-D median filtering in a 3× 3× 3
neighborhood around each pixel for noise removal. Particularly, we
apply an automatic illumination correction scheme [58], for reducing
the effect of illumination.

Table 1 Ulcer detection state-of-the-art methods comparison (%).
Method # of ulcer frames # of normal frames accuracy sensitivity specificity

[15] 110 110 87.27 88.64 85.75
[25] 65 72 94.16 96.92 91.67
[26] 75 75 87.23 85.13 90.42
[27] 75 75 87.49 83.68 91.08
[45] 133 79 95.11 95.64 94.83
[47] 260 650 92.01 89.90 91.32
[48] 36 500 - 97.00 66.00
[52] 190 258 85.71 87.90 84.11
[57] 170 170 92.65 94.12 91.18
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Fig. 1: Framework of the proposed scheme

Fig. 2: Segmentation results when applied to a WCE image from the first dataset (a) Original WCE image, (b) Texture saliency map, (c) Colour
saliency map, (d) Final saliency map after thresholding

3.2 Segmentation

The presented method considers the superpixel as the element of
saliency estimation. First, we over-segment a given image into super-
pixels using the Simple linear iterative clustering (SLIC) method [2].
Then, we compute saliency maps based on both texture and colour.
Finally, we fuse the generated saliency maps. In the following,
segmentation step is detailed.

3.2.1 Colour and texture based saliency map: Colour
saliency map::

Colour Saliency Map: For a sub-region ri produced by the SLIC
method, we compute colour feature map using the following for-
mula:

Scol(ri) =

N∑
k=1(k 6=i)

w(ri, rk)||Ii − Ik||2 (1)

where

w(ri, rk) = exp(−De(ri, rk))/Ci (2)

where Ii are Ik are the mean colour of all pixels in sub-regions ri
and rk, respectively. De(ri, rk) is the Euclidean distance between
sub-regions ri and rk, N is the number of the sub-regions and Ci is
scale factor that make sure

∑N
k=1(k 6=i) w(ri, rk) = 1.

Texture saliency map:: We calculate the texture saliency map based
on the method presented in [39]. Nevertheless, in this work the tex-
ture features of superpixel regions are derived using LBP [34]. The
saliency value of each region is given as follows:

Stex(ri) =
N∑

k=1(k 6=i)

w(ri, rk)Dt(ri, rk) (3)

where Dt(ri, rk) refers to the Euclidean distance on texture feature
value between the two subregions i and k. It is given by:

Dt(ri, rk) =

lm∑
m

ln∑
n

f(ti,m)f(tk,n)De(ti,m, tk,n) (4)

where lm and ln represent the number of texture type in region ri
and rk. f(ti,m) is the frequency of themth texture feature among all
texture features in region ri. f(tk,n) is the frequency of the nth tex-
ture feature among all texture features in region rk. The frequency
of a texture feature reflect the differences between textures, which
can be used to measure the weight of this texture feature.

Fusion:: The colour and texture saliency maps are combined using
a regularisation constant. The final saliency value S(ri) of region ri
is given by:

S(ri) = λScol(ri) + (λ− 1)Stex(ri) (5)

where λ is a regularisation constant for colour and texture saliency
maps. It is set to 0.5 in the experiments.

3.2.2 Thresholding of saliency map:: In the proposed
method, S is generated and used for foreground extraction. From
Fig. 2, it can be observed that foreground has higher saliency
value than background. Hence, we use thresholding to extract the
foreground and the threshold T is defined as:

T =

N∑
i=1

Si/N (6)

where Si is the saliency value of the region ri and N is the number
of the sub-regions. If Si ≥ T then ri is a salient region.

3.3 Feature extraction

According to the analysis of the approaches found in the literature,
it can be noticed that feature extraction techniques differ to some
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extent. Normally, the features used to characterize the ulcer affect
surely the performance of any proposed system. In this work, mul-
tiple state-of-the-art feature extraction techniques have been tested
and combined to verify which ones are more robust and suitable for
the proposed system.

Fig. 3: First-order discrete HMM

3.3.1 Colour LBP (CLBP): The grayscale-LBP descriptor [32,
34] is defined as the LBP descriptor applied to the grayscale image.
Colour LBP descriptor in a given colour space is derived by indi-
vidually computing the LBP descriptor on each of the three colour
components. In this paper, we apply the colour LBP in the RGB
colour space, especially, we use the LBPriu in each color compo-
nent. This produces a 30-dimensional descriptor that is formed from
concatenating the 10-dimensional vectors of the three channels.

3.3.2 Pyramid of Histograms of Orientation Gradients
(PHOG): The PHOG descriptor [6] is able to represent an image
by its local shape and the spatial layout of the shape. The local
shape is captured by the distribution over edge orientations within a
region, and the spatial layout by tiling the image into regions at mul-
tiple resolutions. In this paper, we extract ulcer shape information
using PHOG [6]. PHOG is a spatial pyramid extension of the HOG
descriptors. The HOG descriptor calculates the occurrences of gradi-
ent orientation in localized parts of an image. In the first, the PHOG
descriptor detects canny edges. Then the ulcer image is divided into
spatial grids at all pyramid levels. After that, orientation gradients
are calculated by the Sobel mask. At last, the gradients of each grid
are linked together at each pyramid level. In our experiments, we set
the number of pyramids L=3 and the bin size N=8, the orientation
range is 0–360.

3.3.3 Bag of visual words: This algorithm encloses three main
steps. The first step, feature detection, abstracts the image as several
patches. The second step is feature description, deals with how to
represent the patches as numerical feature descriptors. The last step,
named codebook generation, handles the procedure of converting the
feature descriptors into codebook which is similar to a word dictio-
nary. In the experiments, we set the number of visual words to 500
for the performance.

3.4 Recognition-based HMM

Different from the conventional methods, where the features are fed
to a single classifier for decision. In this study each feature vec-
tor extracted from the segmented regions is separately classified
by a SVM using a radial basis function kernel, MLP and Random
RF classifiers. Rather than considering the most likely class that an
observation should belongs to (label), we make use of the outputted
scores of the aforementioned classifiers which mean the probability

that an observation fit to a particular class. The scores of these clas-
sifiers are given as observations to a first-order discrete HMM (Fig.
3). We define the HMM scheme for CE recognition, shown in Fig. 3
as follows:

1. S = {Ulcer, Normal} denotes the interconnected states (N = 2),
shown in Fig. 3 and defined as follows:
• Ulcer (s1) A CE image labeled as ’ulcer’.
• Normal (s2) A CE image not labeled as the positive case.
We denote a fixed state sequence of length T as Q = q1, q2, ..., qT .
2. V = {SVM, MLP, RF} denotes the observations which are the
scores of the classifiers. Each image is classified and a score is given.
The observation sequence corresponding to Q isO = o1, o2, ..., oT .
3. A = aij , 1 ≤ i, j ≤ N, aij = P (qt+1 = sj |qt = si) denotes the
state transition matrix that characterizes the probability of transition
between the states for first-order HMM.
4. B = bj(k), bj(k) = P (ot = vk|qt = sj) denotes the observa-
tion distribution matrix and represents the probability of a specific
observation generated by a state. In our application, it is the prob-
ability of classification of an image to a particular class by the
classifiers.
5. π denotes the initial state distribution π = πi, πi = P (q1 = si)
and means the probability of each hidden state occurring at the
beginning in any sequence.

The first-order discrete HMM used in this work performs clas-
sification in two stages, i.e., training and evaluation. For model
learning, two HMMs (one model for each class) are trained using
the current image sequence dataset. Feature vectors extracted from
the ROI are fed to SVM, MLP and RF classifiers, and then the
classifiers score vectors are given as observations to the HMM.
The two HMM models are trained using the standard Baum–Welch
algorithm [5] (forward procedure) which determines the parameters
λ = (A,B, π) that maximize the probability P (Oi|λ).

λ∗ = argmaxP (O;A,B, π), (7)

P (O;A,B, π) =
∑
Q

P (O|Q;A,B, π)P (Q;A,B, π)

=
∑
Q

(

T∏
t=1

P (ot|qt;B))(

T∏
t=1

P (qt|qt−1;A))

=
∑
Q

(

T∏
t=1

Bqtot)(

T∏
t=1

Aqt−1qt)

(8)

The probability of state occupation is calculated efficiently by means
of the expectation maximization algorithm. In the testing phase, we
compare the likelihood given by the two HMM models for a given
observation. More details about how HMM can be used in (state)
classification in a supervised learning context can be found in [36].

4 Experimental results

This section presents the experimental results of the proposed
scheme along with its comparison with state-of-the-art methods and
discussion.

4.1 Datasets

Using a small number of sample frames reduces the generalization
ability and can easily lead to over-tuning. The algorithms tested
on small datasets can easily fail in realistic conditions as they are
based on illusion of good performance. The datasets for WCE patho-
logical abnormality detection are relatively small, which are far to
meet the requirement of real applications. For example, the largest
datasets so far are [48] and [42]. Although about 50 videos are used
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Fig. 4: Samples of ulcerous WCE images from the (a) First dataset, (b) Pre-processed first dataset, (c) Second dataset, (d) Pre-processed second
dataset

Fig. 5: Samples of false positive segmentation results

for evaluation in [48], there are only a small number of images
(around 600 images). In [48] segmentation of intestine content is
proposed, in which 95,148 images are used including commonly
appeared bubble and turbid that are easier to obtain. In this paper, we
use two different datasets for generalization. The first one [35] con-
tains 446 WCE images in which 159 are normal and 287 with ulcer
regions. The second one is publicly available at [14] and includes
17 patients with around 2,170 WCE images in which 570 are nor-
mal and the remaining contain ulcerous regions. To the best of our
knowledge, all the previous works evaluate their performances on a
single dataset for automatic ulcer detection for WCE images. The
first dataset were divided into 211 and 235 training and testing WCE
images, respectively. The resolutions of the images are 256× 256
and 424× 243 for first and second datastes, respectively. The sec-
ond one is composed of 2170 WCE were divided into 1050 WCE
images for training and 1120 for testing. The ground truth is pro-
vided by labeling the original images manually. Normal images are
identified as a negative samples and abnormal images as a positive
samples. In order to avoid over-fitting of the classification, three-fold
cross-validation is applied for all the classification experiments. The
classification results are expressed in terms of accuracy, specificity
and sensitivity measures, which are defined as follows:

Sensitivity =
Number of correct positive predictions

Number of positives
(9)

Specificity =
Number of correct negative predictions

Number of negatives
(10)

Accuracy =
Number of correct predictions

Total samples
(11)

4.2 Pre-processing

This section presents the results of the pre-processing step. Fig. 4
shows two WCE images from the different datasets and their cor-
responding pre-processed images along with signal-to-noise ratio of
each image before and after pre-processing.

4.3 Segmentation

After pre-processing the WCE images, we apply the segmenta-
tion method. The segmentation strategy is illustrated using ulcerous
WCE image from first dataset as shown in Fig. 2. Fig. 2 (a) shows
input WCE images. Fig. 2 (b) shows the texture saliency map gen-
erated from the ulcer WCE images. The saliency map generated
based of on the colour information is shown in Fig. 2 (c). Then, we
fused these two colour and texture saliency maps into one saliency
map. The final saliency map of the original image is thresholded to
get the most salient region Fig. 2 (d). The proposed segmentation
method fails in separating the ulcer regions in some images where
stool is present hence resulting in false positives as shown in Fig. 5.
Visual comparison of saliency maps ( Graph-Based Visual Saliency
(GBVS) [17], Itti et al. [21]) with the proposed saliency map is pre-
sented in Fig. 6. Table 2 depicts the performance of colour, texture
and the combined colour and texture saliency maps.

4.4 Feature extraction

To justify the choice of feature descriptor we have compared their
performance on the first dataset. From Table 3, we can see that the
performance of CLBP + PHOG + Bag of Words (BoW) features
is better than the other feature descriptors. Figs. 7 and 8 illustrate
abnormal and normal WCE sample images along with their cor-
responding CLBP + PHOG + BoW feature vector representation,
respectively. The CLBP, PHOG and BoW produce 30, 680 and
500-dimensional descriptor, respectively, given 1210 feature vector
dimension when combined.

4.5 Comparison

The performance of the proposed method is compared to those
described in [27, 45, 47]. These methods were implemented and
applied to the same datasets for a fair comparison. Discussion of
the obtained results is presented in the Section 4.6. Tables 4 and 5.
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Fig. 6: Saliency maps comparison (a) The original WCE image, (b) GBVS saliency map, (c) Itti’s saliency map, (d) The proposed saliency
map

Table 2 Comparison between different saliency maps on the first dataset (%).

Saliency Accuracy Sensitivity Specificity

colour 93.7 89.58 93.7

texture 94.9 71.4 96.1

fused 95.3 96.2 96.2

Table 3 Feature descriptors performance on the first dataset (%).

Descriptor Accuracy Sensitivity Specificity

CLBP 86.3 90.6 87.1

PHOG 65.4 68.1 84.1

BoW 76.3 76.6 89.4

CLBP + PHOG 81.5 80.0 93.9

CLBP + BoW 93.8 94.1 96.2

PHOG + BoW 91.0 91.9 93.9

CLBP + PHOG + BoW 95.3 96.2 96.2
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Fig. 7: Segmented ulcer WCE image from the first dataset with its
corresponding feature representation (a) Segmented ulcerous WCE
image from first dataset, (b) Feature representation
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Fig. 8: Segmented normal WCE image from the first dataset with
its corresponding feature representation (a) Segmented normal WCE
image from the first dataset, (b) Feature representation

Table 4 Comparison of classification results obtained from the first dataset (%).

Method [47] Method [27] Method [45] Proposed Method

Acc 91.3 87.5 93.8 95.3

Sens 83.9 85.6 97.2 96.2

Spec 92.1 88.9 87.2 96.2

Table 5 Comparison of classification results obtained from the second dataset (%).

Method [47] Method [27] Method [45] Proposed Method

Acc 91.3 87.4 88.5 94.8

Sens 83.9 83.6 72.0 96.2

Spec 92.1 91.0 92.7 95.5

4.6 Discussion

Aiming at describing WCE image, we proposed a novel saliency
map segmentation method that uses both texture and colour informa-
tion to estimate two saliency maps, since ulcer regions show different
colour and texture characteristics compared to their surrounding
ones. The generated saliency maps are then fused to construct a
better saliency map which better highlights the ulcerous regions in
WCE images. The proposed saliency map segmentation method can
be considered as an alternative to the classical WCE image seg-
mentation methods since it can outline abnormal region correctly.
Subsequently, we apply thresholding method to extract the fore-
ground from the fused saliency map. The experimental results show
the superiority of our model in comparison with the existing saliency
models in terms of visual effect (shown in Fig. 6). We tested many
feature extraction method (i.e., LBP [34], uniform LBP [4], colour
LBP [3], PHOG and BoW) to describe the segmented regions and
found that when we combine uniform colour LBP + PHOG + BoW
feature extractor could obtain better result than the others (Table 3).
This performance could be explained by the multi-scale, texture and
multi-orientation nature of the ulcer which are better detected by
uniform colour LBP + PHOG + BoW descriptors. The task of recog-
nizing ulcer dependent on the segmentation results and the features
extracted from the segmented ulcer regions. The presented scheme
has proven its capability in detecting and recognizing ulcer dis-
ease from WCE images with 94.8% accuracy, 96.2% sensitivity and
95.5% specificity. Compared with the state-of-art methods in the first
dataset. The proposed method outperforms the method in [47] with
3.5, 12.3 and 3.4% and the method in [27] with 7.8, 10.6 and 7.3%
in terms of accuracy, sensitivity and specificity, respectively. In addi-
tion, the proposed method shows ameliorations of 1.5 and 9.0% in
terms of accuracy and specificity, respectively, compared to method
in [45]. Regarding the second dataset, the proposed method outper-
forms the method in [47] with 3.5, 12.3 and 3.4%, the method in [27]
with 7.4, 12.6 and 4.5% and the method in [45] with 6.3, 24.0 and
2.8% in terms of accuracy, sensitivity and specificity, respectively.
This outperformance is due to the segmentation method that high-
lights well the ulcer regions based on their colour and texture while
in [47] they segment the ulcer using the masking method in the RGB
bands separately. These masks may not be suitable for all images
as the ulcer exhibits different appearances from one WCE image to
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another. While in [27, 45], the authors extract colour or texture fea-
tures directly from the input image without segmenting the ulcerous
regions. Besides, the proposed recognition scheme makes use of an
ensemble of classifiers that have been tested in most state-of-the art
researches to ensure more confidence in the classification results.

Speed efficiency is another important factor to evaluate the per-
formance for potential real-time clinical applications, especially
for tasks with large-scale data. Even though the proposed method
involves many steps i.e. images enhancement, segmentation, fea-
ture extraction and classification using different algorithms still it is
computationally efficient. This efficiency in processing time comes
from the proposed step of saliency map computation as well as
the computational simplicity of the LBP, PHOG and BoW feature
extractors. In addition, the classification phase is not timeconsum-
ing as the training phase, that requires a huge number of images,
is conducted offline only once. In this work, the training and test-
ing processes are carried out on a computer with 2.0 GHz Intel(R)
Core(TM) i3-5005U CPU and 4.0 GB memory. Most of our codes
are implemented by Matlab, the time costs for preprocessing, seg-
mentation, feature extraction, classification and total average time
spent per image are 0.1262, 0.4331, 0.2408, 0.0033 and 0.8035 s,
respectively.

The experimental results shown in section 4 demonstrates the
viability of the proposed method and also supports the discussion
arguments. For further improvements of the proposed method inves-
tigation in other directions are still possible to make the proposed
scheme more robust. The number of images in the datasets used for
WCE analysis is still one of the biggest limitations. Hence, there is a
need of a standard datasets with large number of images in order to
effectively validate the performance of the proposed method.

5 Conclusion

In this paper, a novel method for ulcer detection and recognition in
WCE images is developed. In the first step, we have pre-processed
the input WCE images. Then, we proposed to integrate colour
and texture saliency maps based on we segment the resulted map
using thresholding. For feature extraction, we found that CLBP
+ PHOG + BoW give the best result. These features are fed to
a new classification scheme based on HMM model and the con-
ventional classifiers. Experimental evidences have proved that the
proposed approach remarkably improves the classification results,
hence this method is effective in detecting ulcerous images. How-
ever, our future work will be devoted to investigate other directions
for more improvements of the proposed approach.
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