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Superconducting vortex loops have so far avoided experimental detection despite being the focus of much
theoretical work. We here propose a method of creating controllable vortex loops in the superconducting
condensate arising in a normal metal through the proximity effect. We demonstrate both analytically and
numerically that superconducting vortex loops emerge when the junction is pierced by a current-carrying insulated
wire and give an analytical expression for their radii. The vortex loops can readily be tuned big enough to hit the
sample surface, making them directly observable through scanning tunneling microscopy.

I. INTRODUCTION

Many key properties of physical systems are determined
by topological defects such as dislocations in solids, domain
walls in ferroics, vortices in superfluids, magnetic skyrmions
in condensed matter systems and cosmic strings in quantum
field theories. In superconductors, the topological entities are
vortex lines of quantized magnetic flux. The topological nature
of these vortices makes them stable, which is important for
potential applications such as superconducting qubits [1–3],
digital memory and long-range spin transport [4]. Vortices
have non-superconducting cores and a phase winding of an
integer multiple of 2π in the superconducting order parameter,
leading to circulating supercurrents [5].
The formation of superconducting vortex loops is topolog-

ically allowed, and has theoretically been predicted to form
around strong magnetic inclusions inside the superconduc-
tor [6], in cylindrically shaped current-carrying superconduc-
tors [7–9] or through vortex cutting and recombination [10, 11].
However, no observation of vortex loops in superconducting
systems has been found to date. One challenging aspect is that
vortex loops are typically small in conventional superconduc-
tors and difficult to stabilize for an extended period of time [12].
Recently it has been shown that vortex loops can be formed in
proximity systems by inserting physical barriers, around which
the vortices can wrap [11].
In this manuscript, we present a way to create controllable

vortices in mesoscopic proximity systems in a manner which
makes them experimentally detectable through scanning tunnel-
ing microscopy. The system considered is a three-dimensional
SNS junction pierced by a current-carrying wire which creates
the inhomogeneous field responsible for the vortex loops. In
planar SNS-junctions with uniform applied magnetic field,
changing the superconducting phase difference between the
two superconductors shifts the vortex lines in the vertical direc-
tion [13]. We here show that the corresponding effect on vortex
loops in three dimensions is to change their size. Thus, these
vortex loops are easily tunable. This makes it possible to make
the vortices touch the surface, leaving distinct traces which are
directly observable by scanning tunneling spectroscopy [14].
Vortex loops in superconducting systems has previously

been predicted using the phenomenological Ginzburg-Landau
theory [6, 10, 11]. Here we use a fully microscopic framework
known as quasiclassical theory and solve the Usadel equation

FIG. 1: Sketch of three-dimensional SNS junction considered in this
manuscript. The height, width and length are H,W and L, respectively,
and the junction is pierced by an insulated current-carrying wire.
Contours of the superconducting vortex loops are shown at the location
where they are found in our numerical simulations.

relevant for diffusive systems [15]. By showing that vortex loop
formation occurs in a microscopic theory, we give valuable
support to the earlier proposedmechanisms for superconducting
vortex loops. Finally, we discuss how the proposed setup can
be realized experimentally.

II. METHODOLOGY

In this section we discuss the quasiclassical Usadel theory
and how it may be used to analyse the SNS-junction depicted
in fig. 1. We first present the mathematical tools and end with
the numerical implementation.

A. Quasiclassical Theory

In the Usadel theory, the system is described by a quasiclas-
sical Green’s function from which physical properties can be
extracted. The SNS junction depicted in fig. 1 can be treated
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in the quasiclassical formalism under the assumptions that the
Fermi wavelength is much shorter than all other relevant length
scales. If the system is diffusive, meaning that the scattering
time is small, the isotropic part dominates and solves the Usadel
equation [15–18], which in the normal metal can be written

D∇̄ ·
(
ǧ∇̄ǧ

)
+ i

[
ερ̂3 + ∆̂ , ǧ

]
= 0. (1)

Here, D is a diffusion constant, ρ̂3 = diag(1, 1,−1,−1) and ∆̂ =
antidiag(+∆,−∆,+∆∗,−∆∗)where∆ is the superconducting gap
parameter. The covariant derivative is ∇̄ǧ = ∇ǧ − ie [ρ̂3A , ǧ],
where e = −|e| is the electron charge, A is the vector potential
and

ǧ =

(
ĝr ĝk

0 ĝa

)
(2)

is the quasiclassical impurity-averaged Green’s function. Fi-
nally, (x, y, z) ∈ [−L/2, L/2] × [−W/2,W/2] × [−H/2,H/2]
in the normal metal.

ǧ is normalized such that ǧǧ = 1. We use the convention that
when two matrices of different dimensionality is multiplied,
the smaller matrix is elevated to the dimensionality of the
larger matrix by the tensor product of an identity matrix of the
appropriate size. In equilibrium, the components of the 8 × 8
Green’s function in eq. (2) are related by the identities ĝk =
(ĝr − ĝa) tanh(εβ/2) and ĝa = −ρ̂3ĝ

r† ρ̂3, which means that in
this case it is sufficient to solve for the retarded component ĝr.

The quasiclassical formalism is not applicable across bound-
aries because the associated length scale is too short. The
Usadel equation must therefore be solved in the normal metal
and superconductors separately, and the solutions must be
connected through boundary conditions. If we assume a low-
transparency interface, we may use the Kupriyanov-Lukichev
boundary condition

ζiLien · (ĝr
i ∇̄ĝr

i ) =
1
2

[
ĝr
i , ĝ

r
j

]
, (3)

where en is the outward-pointing normal vector for region i, ζi
is the ratio of the bulk and interface conductances of material i
and Li is the length of material i in the direction of en. For the
boundaries interfacing vacuum, en · ∇̄ĝr = 0.
The Usadel equation can be made dimensionless by in-

troducing the Thouless energy, εt B D/L2. The Usadel
equation then becomes dimensionless by doing the substitu-
tions (x, y, z) → (x/L, y/L, z/L), ε → ε/εt, ∆ → ∆/εt and
∇̄ → L∇̄.

B. Electromagnetic vector potential

The magnetic field should satisfy Biot-Savart’s law,

B =
µ

4π

∫
J(r ′) × (r − r ′)
|r − r ′ |3

d3r ′, (4)

where µ is the permeability and J is the electric current
density. In general, J includes the contribution the induced
currents in the normal metal and superconductors in addition
to that from the insulated current-carrying wire along the x-
axis. However, we will make some assumptions in order to
simplify the analytical and numerical calculations. Firstly,
we will assume that the width W and height H is smaller
than the Josepshon penetration depth. In this case we can
ignore the screening of the magnetic field by currents inside
the normal metal [19]. Secondly, we will neglect the magnetic
field produced by the supercurrents produced inside the normal
metal. Thirdly, we will assume that the magnetic field vanish
inside the superconductors due to the screening currents. These
last two assumptions is widely used in the context of hybrid
structures with constant applied magnetic fields [13, 20, 21],
and has in such conditions been shown to give good agreement
with experimental results [22]. Finally, we will assume that the
part of the wire which is inside the superconductors does not
contribute to the magnetic field in the normal metal.

The last two assumptions are inaccurate very close to the
wire. Close to the wire the details of screening currents will be
important for themagnetic field, but far awaywe assume that the
total contribution from the currents inside the superconductor
is zero. A more precise model could be developed by taking
into account screening currents inside the superconductors and
solving the Usadel equation self-consistently with Maxwell’s
equation and the superconducting gap-equation inside the
superconductors. However, we are here interested in the
solution far away from the wire, and the details of the magnetic
field near the wire should not significantly alter the results. For
this reason we also model the wire as being infinitely thin.

With the assumptions presented above we get a current
density which is

J = Iδ(y)δ(z) [θ(x + L/2) − θ(x − L/2)] , (5)

where θ is the Heaviside step function. Inserting eq. (5) into
eq. (4) we get

B =
µI

4πρ

(
L/2 + x√

(L/2 + x)2 + ρ2
+

L/2 − x√
(L/2 − x)2 + ρ2

)
eφ (6)

for x ∈ (−L/2, L/2), where ρ =
√
y2 + z2 and eφ = (yez −

zey)/ρ. B = 0 for x < −L/2 and x > L/2. A vector potential
which satisfies B = ∇ × A is
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A =
µI
4π

ln

(√
(L/2 − x)2 + ρ2 + L/2 − x√
(L/2 + x)2 + ρ2 − L/2 − x

) [
θ(x + L/2) − θ(x − L/2)

]
ex, (7)

as can be seen from insertion or calculated directly from Biot-
Savarts law by using that ∇ × (J(r ′)/|r − r ′ |) = J(r ′) × (r ′ −
r)/|r ′ − r |3.

C. The Ricatti Parametrization

In the Ricatti parametrization [23] of ĝr, the parameter is
the 2 × 2 matrix γ and the retarded Green’s function is written

ĝr =

(
N 0
0 −Ñ

) (
1 + γγ̃ 2γ

2γ̃ 1 + γ̃γ

)
, (8)

where N B (1 − γγ̃)−1 and tilde conjugation is γ̃(ε) = γ∗(−ε).
Since the superconducting correlations in our system are

spin-singlet, we may write γn = antidiag(a,−a) and γbcs =
antidiag(b,−b), where γn and γbcs are the Ricatti parameters
in the normal metal and superconductors, respectively. Sub-
stituting this into eqs. (1) and (3) we obtain the dimensionless
equations

∇2a =
2ã∇a · ∇a

1 + aã
+

4(1 − aã)LeA · (aLeA + i∇a)
1 + aã

+2iLe(∇ · A)a − 2iεa,
(9)

and

en · ∇a =
(1 + ab̃)(b − a)
ζ(bb̃ + 1)

+ 2iaen · AeL, (10)

where L is the length which is used to define the Thouless
energy, εt. The corresponding equations for ã and en · ∇ã is
found by tilde conjugating eqs. (9) and (10).

D. Observables

As mentioned initially, a vortex is accompanied by a non-
superconducting core and a circulating supercurrent. Both
the superconducting order parameter and the supercurrent can
be extracted from the quasiclassical Green’s function. In the
following it will be useful to write

ĝr =

(
g f
− f̃ −g̃

)
. (11)

There are only singlet correlations in the SNS system, so
f = antidiag( fs,− fs).
The local density of states for spin-band σ at energy ε and

location r can be written

Nσ(ε, r) = N0<{gσσ(ε, r)}, (12)

where N0 is the normal state density of state at the Fermi
surface. In the normal metal we can write eq. (12) in terms of
a,

N(ε, r) B
N↑(ε, r) + N↓(ε, r)

2
= N0

1 − aã
1 + aã

. (13)

In the cores of vortices we expect N = N0 for all energies,
which happens when a(ε) ≡ 0.

The current density is [16]

j =
N0eD

4

∫∞
−∞

Tr
(
ρ̂3

[
ǧ∇̄ǧ

]k
)

dε . (14)

Inserting eq. (11), using the relations ĝa = −ρ̂3ĝ
r† ρ̂3, ĝk =

(ĝr − ĝa) tanh(εβ/2), eq. (14) can be rewritten

j =
N0eD

2

∫∞
−∞

tanh
(
βε

2

)
Tr

(
Re

[
f̃ †∇ f † − f∇ f̃

]
+2eA Im

[
f f̃ − f̃ † f †

] )
dε .

(15)

Written in terms of the quasiclassical Green’s function, the
superconducting order parameter is

Ψ(r) B
〈
ψ↑(r, 0)ψ↓(r, 0)

〉
=

N0
2

∫∞
−∞

fs(r, ε) tanh(εβ/2) dε . (16)

where ψσ(r, t) is the field operator which destroys an electron
with spin σ at position r and time t, N0 is the normal state
density of states and β = 1/kbT .

E. Numerics

The Usadel equation was solved numerically using a finite
element scheme. See for instance [24] to see how to set up
solve the nonlinear Usadel equations in a finite element scheme
by the use of the Newton-Rhapson method. The program
was written in Julia [25], we used linear hexehedral elements
and JuAFEM.jl [26] was used to iterate through the cells.
Gauss-Legandre quadrature rules of fourth order was used to
integrate through the cells and Romberg integration was used
to integrate over energy. See for instance [27]. Finally, forward-
mode automatic differentiation [28] was used to calculate the
Jacobian.

III. RESULTS AND DISCUSSION

Here we present first an analytical solution of the Usadel
equation in the weak proximity effect regime, then we show
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numerically that the findings are also present also in the full
proximity effect regime. Dimensionless quantities are used
in the analytics with distances being measured relative to the
length of the half-metal, L, and energies beingmeasures relative
to the Thouless energy εt = D/L2, where D is the diffusion
constant in the half-metal.

A. Analytics

Before solving the Usadel equation we must determine the
solution in the superconducors. We will show that it suffices to
use the bulk solution

ĝbcs =


θ
(
ε2 − |∆|2

)
√
ε2 − |∆|2

sgn(ε) −
θ
(
|∆|2 − ε2

)
√
|∆|2 − ε2

i


(
ερ̂3 + ∆̂

)
,

(17)
in the superconductors when a certain condition is fulfilled.
Let λ (to be defined quantitatively below) be the length-scale
over which the Green function recovers its bulk value in the
superconductor. The criterion for neglecting the inverse prox-
imity effect in the superconductors is then that the normal-state
conductance of the superconductors for a sample of length λ is
much larger than the interface conductance and that the length
of each superconductor is not small compared to λ. We now
proceed to prove this.

The vector potential, (7), is zero inside the superconductors,
so the Usadel equation simplifies to

Dsc∇ · (ĝr∇ĝr) + i
[
ερ̂3 + ∆̂ , ĝ

r] = 0 (18)

in the superconductor at x < −1/2. To show that we can use
the bulk solution in the limit Lsc →∞, let

ĝr = ĝbcs + δĝ (19)

This gives an equation for δĝ,

Dsc∇ · ([ĝbcs + δĝ] ∇δĝ) + i
[
ερ̂3 + ∆̂ , δĝ

]
= 0, (20)

where we have used that ĝbcs solves the eq. (18) for a bulk
superconductor. Next, assume the inverse proximity effect to
be weak, such that δĝ � ĝbcs. Using that ĝbcsĝbcs = 1, this
yields

Dsc∇2δĝ + iĝbcs
[
ερ̂3 + ∆̂ , δĝ

]
= 0. (21)

ĝbcs+δĝmust also satisfy the normalization condition (ĝr)2 = 1,
so

(ĝbcs + δĝ)2 = 1 =⇒ {ĝbcs , δĝ} = 0. (22)

Hence, using that
[
ερ̂3 + ∆̂ , ĝbcs

]
= 0,

ĝbcs
[
ερ̂3 + ∆̂ , δĝ

]
= (ερ̂3 + ∆̂)ĝbcsδĝ + δĝ(ερ̂3 + ∆̂)ĝbcs

=
{
δĝ , (ερ̂3 + ∆̂)ĝbcs

}
. (23)

Finally, from (
ερ̂3 + ∆̂

)2
= ε2 − ∆2 (24)

we get that δĝ is an eigenfunction of the Laplacian,

∇2δĝ = λ−2δĝ (25)

where

λ−2 = − 2i
Dsc

[
sgn(ε)

√
ε2 − |∆|2θ

(
ε2 − |∆|2

)
+i

√
|∆|2 − ε2θ

(
|∆|2 − ε2

)]
. (26)

We can choose the sign of λ to be such that<(λ) > 0.
Let Lsc be the length of the superconductor in multiples of

the length of the normal metal. Using the boundary condition

∇δĝ
��
r ∈Ω = 0, (27)

where Ω is the boundary not interfacing the normal metal, we
get

δĝ(ε, x, y) = C
[
e−|x+1/2 |/λ + e−2Lsc/λ+ |x+1/2 |/λ

]
, (28)

where C is some a function of y and ε to be determined by
the final boundary condition. From the remaining boundary
condition, eq. (3), we get

C =
λĝbcs [ĝbcs + δĝ , ĝn]
2
(
1 − e−2Lsc/λ

)
ζscLsc

. (29)

From eq. (28) we see that<(λ) can be interpreted as the pene-
tration depth of δg. Note that<(λ) is bounded by including the
effect of inelastic scattering, which is done by the substitution
ε → ε+iδ for some positive scattering rate δ [29]. This ensures
that 1/

(
1 − e−2Lsc/λ

)
remains finite as ε → ∆. Thus, we see

from eq. (29) that C, and therefore δg, becomes negligble when

ζscLsc/<(λ) � 1, (30)

provided that the length of the superconductor Lsc is not small
compared to the maximal penetration depth, max[<(λ)].
ζsc is proportional to the conductance of the whole supercon-

ductor and therefore also with 1/Lsc. Therefore, ζscLsc/<(λ)
is the ratio of the normal-state conductance of a supercon-
ductor of length <(λ) to the interface conductance. Taking
the superconducting coherence length ξ as a measure of the
inverse proximity effect penetration depth <(λ), we see that
the criterion eq. (30) is indeed experimentally feasible. The
equation is fulfilled for a low-transparency interface and for
a superconductor that is larger than the coherence length. A
similar calculation shows that we can use ĝbcs also in the
superconductor at x > 1/2.

Solving for the Ricatti parameter in the superconductors we
get that γbcs = antidiag(b,−b) with
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b =
∆

ε + i
√
|∆|2 − ε2

θ(|∆| − |ε |) + ∆ sgn(ε)

|ε | +
√
ε2 − |∆|2

θ (|ε | − |∆|) . (31)

The non-linear Usadel equation does not have a general
analytical solution, but it can be solved analytically in an
approximate manner far away from the wire. If we assume the
proximity effect to be weak, we can keep only terms which
are linear in a, ã and their gradients. In this case the Usadel
equation (9) decouples:

∇2a = 4eLA · (aeLA + i∇a) + 2ieL(∇ · A)a − 2iεa. (32)

Equation (32) can be further simplified when we only consider
regions where ρ � 1, with ρ =

√
y2 + z2. The solution of

eq. (32) is constant in y and z when A = 0, and by assuming this
is also approximately true when |eLA| � 1, we can neglect the
terms ∂2

ya and ∂2
z a. Finally, we can simplify the calculations

further by Taylor expanding the vector potential,

LeA = −nπ
1
ρ
ex + O

(
1
ρ2

)
ex, (33)

where

n = − eLµI
4π2 . (34)

We keep only the first term in the Taylor expansion.

Equation (32) can now be solved exactly, and by applying
the linearized boundary conditions,

en · ∇a =
(b + a[bb̃ − 1])
ζ(bb̃ + 1)

+ 2iaen · AeL, (35)

the solution can be written on the form

a =
ceiφl+u(x−0.5)

(k − d)2ek − (k + d)2e−k
{
(k − d)

(
ek(x−0.5) + eiδφ−ue−k(x+0.5)

)
+ (k + d)

(
ek(0.5−x) + eiδφ−uek(x+0.5)

)}
, (36)

where

δφ = φr − φl, (37)

c =
|b|

ζ(bb̃ + 1)
, d =

(bb̃ − 1)
ζ(bb̃ + 1)

, (38)

u = −2πin
ρ

and k =
√
−2iε. (39)

From eq. (36) we see that a vanishes at x = 0 and iδφ − u =
i(2N + 1)π, where N is any integer. This happens at

ρ =
2n

1 + 2N − φr−φl

π

(40)

This means that f and hence also Ψ vanish at these points. By
Taylor expanding a to first order around a root located at (0, ρ̃)
we find

a ∼ B1 cos(θ + α1) + iB2 cos(θ + α2), (41)

where x ∼ cos θ and ρ − ρ̃ ∼ sin θ, B2
1 = 5|k |2/4 − |k |d + 2d2,

B2
2 = |k |

2/4 + d2, α1 = tan−1[(|k |/2 + d)/(|k | − d)] and α2 =

tan−1(|k |/2d). Hence, these roots have a phase winding of
2π, as is characteristic for vortices. Equation (40) is our main
analytical result as it predicts how the radius of the vortex loops

depends on the tunable parameters of the system: the current
through the wire and the applied phase difference. Although
it was obtained using approximations, we demonstrate below
that it matches the full numerical solution of the exact Usadel
equation very well.
Note that the radius, ρ, of the largest vortex loop given

eq. (40) can be made arbitrary large by letting φr − φl approach
π. Thus, for a given sample size L ×W ×H and current I, there
is a superconducting phase difference for which the vortex loop
hits the surface and can be directly detected experimentally.
It is expected that a change in the superconducting phase

difference will change the radii of vortex loops. This is because
changing the phase difference is equivalent to changing the
applied supercurrent through the junction. The applied current
will be deflected by the circulating currents associated with the
vortices and hence produce a reactionary force on the vortices.
See for instance [30]. What is more surprising, however, is that
changing the superconducting phase difference can make the
vortices arbitrarily large so that they can always be made to hit
the surface. If this feature is gerenally true for other systems
with vortex loops it could prove useful for the study of systems
containing vortex loops which are less obviously controllable
than the one considered in the present manuscript, but which are
easier to design in a lab. For instance, one possibility is to grow
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N/N0

1.008

1.006

1.004

1.002

1.000

0.998

0.996

0.994

0.991

FIG. 2: Local density of states N relative to the normal state density
of states N0 at energy ε = 0.5|∆|, where ∆ is the superconducting
gap parameter. The lower left shows a cross section at x = 0 and
the lower right shows a cross section at y = 0. Here n = 1 and the
superconducting phase difference is φr = 0.

the normal metal around a magnetic dipole. Ref. [6] found that
vortex loops can form around magnetic dipole inclusions in
superconductors if the magnetic field is strong enough, so thre
are reasons to believe that vortex loops can also form around
magnetic dipoles embedded in a SNS-junction. The magnetic
field from a dipole can, unlike the magnetic field from a wire,
not be altered in strength. Nevertheless, if the field is strong
enough to produce vortices, altering the superconducting phase
difference could be a way to increase the size of the vortex to
the point where it touches the surface and becomes directly
observable.

B. Numerics

We now proceed to show numerical results in the full (non-
linear) proximity effect regime. We have set the parameters
|∆| = 4εt, ζ = 3, W = H = 6L and φl = 0 common for all
the numerical calculations. We include the effect of inelastic
scattering by doing the substitution ε → ε + iδ where δ =
0.001|∆| in order to avoid the divergence of ĝbcs at ε = |∆| [29].

Numerically we find that vortex loops do indeed form at the
locations predicted by the analysis. There are circular paths

∣∣∣Ψ × 2
N0εt

∣∣∣
1.3

1.0

0.8

0.6

0.4

0.2

0.001

FIG. 3: Amplitude of the superconducting order parameter Ψ for
n = 1 and superconducting phase difference φr = 0. The lower left
shows a cross section at x = 0 and the lower right shows a cross
section at y = 0.

around the origin where the superconducting order parameter
vanish and the local density of states is equal to that of the
normal state. This can be seen in figs. 2 and 3 which shows
the local density of states and the amplitude of the Cooper pair
correlation function Ψ, respectively. Around these loops there
are a circulating supercurrent, as can be seen in fig. 4, and a
phase winding in the order parameter of 2π. Figure 5 shows a
contour plot of |Ψ|, which shows the location of the vortices,
together with the circulating supercurrent j as well as the phase
of Ψ, which shows that there is indeed a phase winding of 2π
around the vortices.
We find that the positions of the vortex loops match with

eq. (40) for vortices with radius that are between 2L and 3L.
Figures 6 and 7 shows how the sizes of the vortex loops depend
in superconducting phase difference φ and magnetic field
strength n, respectively. We find that increasing φ can make
the vortices arbitrary large, but does not increase the number
of vortices. Increasing n, on the other hand, also increase the
number of vortices, but the sizes grow only linearly with n.
Note that as the vortex loops hit the surface, they curve so as
to hit normally to the surface. This is consistent with previous
results [6, 31], and can be understood from the circulating
currents. There should be no current component normal to
the surface, and the only way for the current circulating the
vortices to adhere to this is if the vortices hit the surfaces at a
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ei · (j × L
N0eDεt

)
0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

FIG. 4: Plot of the three different components of the supercurrent,
ex · j (upper left), ey · j (lower left) and ez · j (lower right). The lower
half shows the value of the current on the surface in color and the
upper half shows streamlines of the current with the current strength
indicated by the same color. Here n = 1 and φr = 0.

right angle.

IV. EXPERIMENTAL REALIZATION

Normal SNS junctions are created by vertically growing first
a superconducting material such as niobium, then a normal
metal such as copper and finally the same superconducting
material. The layers are grown for instance by a sputter
deposition technique such as direct current sputtering [32] or
radio frequency sputtering [33]. The setup presented here
adds an extra complication by requiring an isolated conducting
nanowire to penetrate the system. One possible way to achieve
this could be to first grow a vertical insulated nanowire and
then grow the superconductor and normal metal around it in a
layerwise fashion.
Growing a wire is more complicated than growing a plane

because one must localize the growth to happen at the tip at the
wire, even though most of the surface area will be on the sides.
Nevertheless, growing vertical nanowires has successfully been
done by methods such as the vapor-liquid-solid method [34–36]
and template-directed synthesis [37]. The vapor-liquid-solid
method works by using droplets of, for instance, gold which
are a few angstroms in width to localize the growth [35], and
temple-directed synthesis works by having the wire grow inside
a premade template which can later be removed [37]. The
vapor-liquid-solid method has already been used to produce
vertical surround-gate field-effect transistors with a precision
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FIG. 5: Plot of the phase of the superconducting order parameter Ψ
on a the surface of a diagonally cut part of the normal metal, contour
plot of its amplitude, |Ψ|, and streamlines of the supercurrent j. Here
n = 1 and φr = 0.

exceeding what should be necessary for the system presented
here [35].
Schmidt et al. [35] made nanowires using the vapor-liquid-

solid method which were 40 nm is diameter and 400 nm in
length. This should be on the same length scale as would be nec-
essary for the system considered in this manuscript. The super-
conducting energy gap of niobium is |∆| = 30.5 × 10−4 eV [38],
which is equivalent to about 2.46 mm−1 in natural units.
The Fermi velocity and scattering time for copper are about
vF = 3.70 × 10−3 and τ = 10.8 µm, respectively [39]. The
diffusion coefficient is defined as

D B
τv2

F

3
, (42)

so the diffusion coefficient for copper is about D = 49.2 pm.
In the numerics we have used

|∆| = 4εt =
4D
L2 , (43)

so

L = 283 nm, (44)
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FIG. 7: Contour plot of the amplitude of the superconducting order parameter Ψ for superconducting phase difference φr = 0 and various values
of n.

which is on the same scale as what has been made with
the vapor-liquid-solid method. Of course, other metals and
superconductors could be used, giving different physical lengths
corresponding to the values being used in the numerics here.
Moreover, from the analysis it seems vortex loops would form
also for other values of |∆|/εt. The calculation above is merely
to show that the length scales used here is not unreasonable
compared to what has already been experimentally achieved.

V. CONCLUSION

We have used quasiclassical Usadel theory to demonstrate
that controllable superconducting vortex loops can emerge in
a Josephson junction pierced by an insulated current-carrying
wire. The size and number of vortices depend on the phase
difference between the superconducting order parameter in the
superconductors, φr −φl , as well as the strength of the magnetic
field. The radius of the vortices can be made arbitrarily large by
tuning of the superconducting phase difference, which means
that they can always be manipulated so that they intersect the
surface. This makes them directly observable by scanning
tunelling microscopy, which has already been used to detect
normal vortices in proximized metals [14]. If this ability of
the superconducting phase difference to expand vortex loops to

arbitrary sizes is a general feature of SNS-junctions, it could
be used to detect vortex loops in systems where controlling the
magnetic field strength is not an option, such as in system with
a magnetic dipole inclusion.
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