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Abstract.
The current trend for offshore wind energy is that larger turbines are placed on monopile

foundations at increasing water depth. This requires larger foundations, increasing the
importance of hydrodynamic loading. It is well established that wave loads perpendicular to
the wind direction are important for the fatigue damage in monopile foundations. However,
this is normally only taken into account considering wind-wave misalignment. In this paper,
the effect of assuming short-crested waves in design calculations is considered. The lifetime
fatigue damage may increase significantly for hydrodynamically sensitive support structures
when modelling the waves as short-crested rather than long-crested. For the turbines in this
paper, the fatigue damage increased with up to 80 %. At the same time, the changes in fatigue
damage were small for support structures that are less hydrodynamically sensitive. The work
performed in this paper shows that the typical design assumption of long-crested waves may be
both conservative and non-conservative. This fact is important to be aware of when designing
support structures for offshore wind turbines.

1. Introduction
Offshore wind turbines (OWTs) are subject to several sources of dynamic loading, including
wind and wave loads. With increasingly large turbines being installed[1], the aerodynamic loads
increase. Larger loads, in turn, lead to increased capacity requirements for the support structure.
In Europe, monopiles are the dominating foundation type, making up 66 % of all installations in
2018[1]. Increasing the structural capacity of these foundations often leads to larger dimensions,
which in turn increases the wave loading. Further, new turbines are typically installed in deeper
water, with 27 m being the average for 2018[1]. This serves to increase the importance of wave
loads relative to wind loads.

Fatigue damage is typically determining the final dimensions of monopile foundations[2].
Wave-induced responses contribute to this fatigue damage, especially when wind and waves are
misaligned[3]. For wind-wave misalignment, the lack of aerodynamic damping in the crosswind
direction gives large responses even for moderate excitation. Fischer et al.[3] have previously
shown the importance of including misalignment in design calculations for a 5 MW turbine, and
the sensitivity of the transverse response to damping levels was demonstrated by Koukoura et
al.[4]. Kim and Natarajan[5] showed the importance of deeper water, demonstrating increased
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importance of misalignment conditions when the water depth was raised from 25 to 35 meters.
The influence of soil modelling was also shown, giving increased fatigue damage for softer soil.
Smilden et al.[6] showed that misalignment angles up to 45◦ contribute significantly to the fatigue
damage of a large diameter monopile. Design standards such as [7] also require that wind-wave
misalignment is included in design calculations.

Common for the papers [3]-[6] is that the misalignment between wind and long-crested waves
is considered. However, wind-wave misalignment may also occur from short-crested waves. For a
structure with uniform properties, Vugts[8] showed that it is conservative to assume long-crested
waves. This conclusion cannot be generalized for OWTs, due to the presence of aerodynamic
damping only in-line with the wind. In a short-term perspective, the fatigue damage from short-
crested waves can be both larger or smaller than the fatigue damage from long-crested waves.
This will, amongst others, depend on the misalignment between the wind and the mean wave
direction, the level of wave spreading and which position on the structure that is considered most
critical for fatigue. Few studies exist on the effect of short-crested waves on OWTs, but Trumars,
Jonsson and Bergdal[9] investigated this using measurement data from a 500 kW turbine at 6.5 m
water depth. Horn, Krokstad and Amdahl[10] investigated several aspects of wave modelling by
considering wave excitation and aerodynamic damping. Kim and Natarajan[5] showed that the
soil stiffness is important for how wind-wave misalignment influences fatigue damage. As short-
crested waves introduce further wind-wave misalignment, it is expected that the soil stiffness
will influence also the effect of wave spreading.

This paper contributes to increasing the knowledge about the response of monopile supported
OWTs to short-crested waves, and how this differs from the response to long-crested waves. The
primary goal is to assess whether the assumption of long-crested waves in design calculations
yields conservative estimates of the lifetime fatigue damage in the support structure. Further,
the influence of varying sensitivity to wave loading is assessed by using models with different
mode shapes. Both the natural period of the first global tower modes and the corresponding
mode shapes influence the importance of wave loads. Only changes in the mode shapes are
considered here, as OWTs are typically designed with a target natural frequency[11]. The
analyses consider three similar monopile foundations in varying soil conditions. The towers are
tuned to give the desired natural frequencies. A long-term fatigue analysis is performed for each
design, to demonstrate how the different mode shapes affect the fatigue damage in long-crested
or short-crested waves.

The paper is organised as follows: Section 2 presents the wave directionality effects considered.
In Section 3 the OWT and simulation set-up used in this study is described. Following this, the
simulation results are given in Section 4; first for aligned wind and waves to determine the relative
importance of wind and wave loads, then for long-crested and short-crested waves including
wind-wave misalignment. Finally, the results are discussed in Section 5, and a conclusion is
drawn.

2. Wave directionality
Wind-wave misalignment may occur from misalignment between the wind direction and the
mean wave direction, as well as from wave spreading. Further, wind driven waves and swell
waves may behave differently with regards to misalignment. Wind generated waves will typically
travel in a direction close to the wind direction, but can have significant wave spreading. Swell
waves are generated independent of the local wind conditions, and may have more pronounced
misalignment. This will depend on the dominating wind directions and swell directions at each
individual site. At the same time, swell waves are mainly long-crested, meaning that all waves
travel in the same direction.

The difference between wind waves and swell in terms of misalignment in shown in Figure
1 for the site described in Section 3.3. The figures shows the absolute value of misalignment
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for swell waves to the left and for wind waves to the right. It is clear that the misalignment is
limited for wind-generated waves, while all misalignment angles occur for the swell waves.

Wind driven
waves:

Swell waves:

Figure 1. Scatter of absolute value of wind-
wave misalignment for swell (left) and wind
driven waves (right). The radial axis shows
Hs in metres.

Wind

Mean wave
direction

θ̄wa

θwa

Figure 2. Mean wave direction, θ̄wa, and
direction of wave components, θwa, relative
to wind direction
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Figure 3. Ratio of in-line (left) and crosswind (rigth) wave spectrum as function of mean
misalignment angle.

Several engineering models for wave spreading can be used in the analyses. These include both
frequency independent and frequency dependent models. DNV GL[12] recommends modelling
short-crested waves by multiplying the unidirectional wave spectrum, Sζζ(ω), with a directional
spreading function D(θwa). The wave spectrum for short-crested waves is then given as

Sζζ(ω, θwa) = Sζζ(ω)D(θwa) (1)

Here, θwa is the angle of each directional component relative to the mean wave direction θ̄wa as
shown in Figure 2. The formulation for D(θwa) used in this paper is

D(θwa) =
Γ(1 + n/2)√
πΓ(1/2 + n/2)

cosn(θwa − θ̄wa) (2)

with |θwa − θ̄wa| ≤ π/2[12]. The spreading exponent n is typically in the range 2-4 for wind
waves, while n > 7 is recommended for swell waves.
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For OWTs, it is interesting to consider the wave energy travelling in the same direction
as the wind and that travelling perpendicular to the wind. The energy distribution will vary
with both the mean wave direction and wave spreading. Figure 3 shows the ratio of total wave
energy travelling in-line with the wind and in the crosswind direction for different misalignment
angles. The figure shows that short-crested waves will increase the crosswind wave energy
for misalignment angles up to 45◦. For wind driven waves, conditions with less than 45◦

misalignment can be expected to dominate, and a significant increase in the crosswind response
will be seen. At the same time, the aerodynamic loads will contribute to the response in-line
with the wind. The reduction in response in the in-line direction will, therefore, be less than
the reduction in wave loading.

3. Methodology
This paper investigates the effect of wave directionality by performing time-domain simulations.
In this section, the simulation models and methodology is presented.

3.1. Model description

Figure 4. Wind turbine model in
SIMA

θ
r

N

S

EW

x

y

Figure 5. Coordinate system of
monopile and tower cross section.

The turbine model is based on the DTU 10 MW reference wind turbine [13], and is shown
in Figure 4. Compared to the reference turbine, the inner blade foils have been altered and the
tower has been stiffened by increasing the wall thickness by 20 %, both as described in [14]. The
tower is placed on a monopile foundation with a diameter of 8 m and wall thickness of 0.11 m,
standing in 30 m water depth. Below the mudline, the monopile extends for another 42 m. The
characteristics of the soil springs are based on the p − y curves computed in accordance with
ISO 19901-4[15] for a location at Dogger Bank.
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Table 1. Variation in parameters between models, given as fraction of the value for the base
model

Parameter Base model Soft model Stiff model

Relative soil stiffness 1 0.65 8

Relative tower wall thickness 1 1.65 0.725

Table 2. Natural frequencies of models, in [Hz]

Mode Base model Stiff soil Soft soil

1st fore-aft 0.2069 0.2072 0.2063

2nd fore-aft 1.0522 1.3014 0.9708

1st side-side 0.2063 0.2061 0.2060

2nd side-side 1.0100 1.3665 1.0022

Structural and soil damping is modelled as stiffness proportional Rayleigh damping. To
account for soil damping, the damping coefficient is doubled below the mudline. In [16], a
review of measured damping levels of monopile OWTs is given, and the damping is found to
vary between 1.1 % and 2.8 % of critical damping. A damping level of 1.1 % at the first tower
mode was therefore selected to ensure conservative results.

The simulations are carried out in the aero-hydro-servo-elastic computer program SIMA v.
3.2.2, developed by SINTEF Ocean. All structural members are modelled as non-linear beam
elements, while soil-structure interaction is modelled by non-linear springs. Hydrodynamic loads
are calculated using Morison’s equation based on linear wave kinematics evaluated to the mean
water level, while aerodynamic loads are calculated with the blade element momentum theory
including dynamic inflow, dynamic wake, tip loss and tower shadow effects[17].

3.2. Variations to model
In order to analyse the effect of varying sensitivity to wave loads, two additional models were
created. The model described in Section 3.1 will hereafter be referred to as the base model.
Further, one model with stiffer soil and one model with softer soil were analysed by linear scaling
of the p-y curves. These will be referred to as the stiff model and soft model, respectively.

In order to get comparable results and similar environmental loads, the natural period of the
1st global tower mode and the outer diameter of the structures were kept unchanged. Together
with the soil stiffness, this left the tower wall thickness as the parameter that could be changed
in the models. For the soft model this set a limit to how much the soil stiffness could be reduced
while still keeping the natural frequencies at the target values. The stiff model was then altered
to give a similar change in the mode shape of the first global modes. The model variations are
summarized in Table 1.

In Table 2, the natural frequencies of the first tower modes are given for all three models.
This shows similar natural frequencies for the first tower modes, while the 2nd modes have a
variation of about 30 % in the natural frequencies. As the second modes are outside the wave
frequency range, this difference is assumed negligible.

Given equal natural periods, the mode shape will determine the sensitivity of each model to
wave loads. In Figure 6 the mode shapes of the first and second fore-aft tower modes are shown,
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all scaled to give a maximal displacement of 1. As can be seen from the figures, increasing the
soil stiffness reduces the displacement in the lower part of the substructure, while the opposite
is seen for the model with reduced soil stiffness. It is also worth noticing that the second tower
modes show almost no displacement in the tower top for the stiffest soil, which indicates that
this mode will not be significantly excited by the thrust force. The excitation due to the rotor
tilt moment may still be as significant for this model as for the softer models, as the slope of
the modal displacement is approximately equal in all models.

3.3. Environmental parameters

Figure 6. 1st (left) and 2nd (right) tower
mode in fore-aft direction. The dashed lines
show the mean water level and mudline.

Figure 7. Location of metocean
data[18].

The environmental conditions are based on 60 years of hindcast data [19], for the location
54.8 ◦N, 1.92 ◦E in Dogger Bank as shown in Figure 7. The joint distribution of wind and waves
are described in [18]. In [6], the misalignment between wind and total waves was investigated.
Misalignment angles above 60◦ were found to be rare for significant wave heights above 3 m,
while misalignment above 30◦ is rare for significant wave heights above 5 m. The misalignment
bins of 0◦ and 30◦ make up more than 75 % of the registered environmental conditions.

Each environmental condition has been simulated as five 1-hour realizations, and the results
are based on the average of these realizations. The wind files are generated in TurbSim using
the Kaimal wind spectrum and turbulence class B, while the waves are realizations of the
JONSWAP spectrum, as defined in [12]. When short-crested waves are simulated, the wave
spectrum is modelled as the product of the directional spectrum in Eq. 2 and a JONSWAP
spectrum. The spreading parameter n was set to 2, and the individual wave components are
assumed uncoupled. Frequency dependency of the spreading function is not considered.

3.3.1. Simulation load cases To reduce the computational effort, the sea states have been
lumped to one equivalent sea state per wind speed, as described in [20]. The resulting
environmental parameters for aligned wind and waves are shown in Figure 8. Further, it is
assumed that the same approach is valid for misaligned wind and waves. The misaligned load
cases are found by grouping the absolute value of misalignment to bins of 30◦, as shown in Figure
9. One equivalent sea state is found for each wind speed and misalignment bin. A total of 129
load cases are simulated for the misalignment conditions.
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Wind

0◦

30◦

60◦

90◦

120◦

150◦

180◦

Figure 9. Bins for wind/wave
misalignment. The wind is always
from 0◦, while the arrows represent
the direction of waves for each bin.
Bins with the same absolute value
of misalignment, illustrated by the
same color, are merged. [6, 21].

3.4. Fatigue calculations
The fatigue calculations are performed based on the time series of the axial stress in the monopile
and tower, for locations distributed along the length of the support structure. The stress is
calculated as

σa(r, θ) =
N

A
+
My

Iy
rcos(θ)− Mz

Iz
rsin(θ) (3)

where N is the axial force and A the crossection area, while r is the radius at the calculation
point. The bending moments, My and Mz, second area moments, Iy and Iz, and angular position
are defined in accordance with the axis system showed in Figure 5.

Knowing the time series of stress, the fatigue damage is calculated using the S-N curve
approach and rainflow counting, as implemented in the WAFO package[22] with a correction for
a 2-slope S-N curve as given in [23]. The S-N curve for the monopile is assumed to be curve D
for steel in sea water with cathodic protection, given in Table 2-2 in [24]. Curve D for steel in air
is used for the tower, confer Table 2-1 in [24]. Stress concentration factors due to the presence
of e.g. welds should in principle also be considered, but these have been set to 1 for simplicity.

4. Results
4.1. Aligned wind and waves
The relative importance of the wind and wave loading to the fatigue damage can be found by
assuming long-crested waves and aligned wind and waves over the lifetime of the structure. In
Figure 10, the relative lifetime contribution to the fatigue damage for each wind speed is shown.
The values are normalized by the total fatigue damage for each of the models, so that the figure
shows the amount of the total fatigue damage caused by each wind speed.
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Figure 10. Contribution to lifetime fatigue damage per wind speed for the most critical position
on tower (left) and monopile (right). The values are normalized by the total fatigue damage for
each model.

In the tower, the largest contribution to the fatigue damage is from wind speeds close to
rated. These conditions have a high probability of occurrence and are associated with large
aerodynamic thrust. In the monopile, the same conditions give the largest contributions to the
lifetime fatigue. Still, conditions associated with high wind speeds, corresponding to high waves,
show a larger influence on the fatigue damage in the monopile.

The trend is that the model with stiff soil has a larger contribution to the lifetime fatigue
damage from conditions where the wind loads are dominating. For the model with soft soil,
environmental conditions associated with large wave loads show a larger contribution to the
fatigue damage. This indicates that the model with soft soil is more sensitive to wave loads.
The effect of modelling the waves as short-crested is expected to be largest for this model, and
smallest for the model with stiff soil.

4.2. Wave directionality
When assessing the effect of wave directionality, the wind-wave misalignment and long-term
distribution of wind direction is taken into account. The fatigue damage is calculated for various
positions around the cross section, and the maximum fatigue damage found for each elevation
at the monopile and tower. The ratio RD is used to express the effect of short-crested waves:

RD =
DSC(z)

DLC(z)
(4)

where DSC(z) is the maximum fatigue damage at height z with short-crested waves. DLC(z) is
the corresponding value with long-crested waves.

Figure 11 shows the distribution of RD over the length of the monopile and tower. From the
figure, it is seen that the effect on the fatigue damage with short-crested waves is highest on
the model with soft soil. This model was also found to be most sensitive to wave loading with
aligned wind and waves.

In the monopile, the largest effect of varying the wave directionality model is seen in the
upper part of the pile. All models show an increase in fatigue damage for short-crested waves
(RD > 1) in the upper part of the pile. The effect is largest for the model with soft soil. This
is further explained in Section 4.3.

For the tower, the effect of wave loading is primarily in the tower base, where the response is
driven by the aerodynamic thrust and the inertia forces from the rotor-nacelle assembly (RNA).
The latter is mainly influenced by the wave loading. Close to the RNA, the response is primarily
dominated by the tilting moment of the rotor. The fatigue damage in the tower top is therefore
insensitive to the choice of wave model.
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From a design perspective, it is the highest fatigue damage that is of the most interest. The
ratio RmaxD is introduced to describe the influence of wave directionality model on the largest
fatigue damage:

RmaxD =
max{DSC(z)}
max{DLC(z)}

(5)

The values are shown in Figure 12 for both the tower and the pile. For the tower, the values
are consistent with the maximum values in Figure 11. This is not the case for the monopile, as
the maximum fatigue damage in general occurs for a different depth than the maximum value
of RD.

Monopile Tower
0

0.5

1

1.5

2

R
Dm

a
x

Stiff soil

Base model

Soft soil

Figure 12. Ratio RmaxD
for monopile (left) and
tower (right)

In summary, long-crested waves only gives a conservative prediction of fatigue damage for
the tower with the stiff soil properties. In all other cases, the fatigue damage in the tower and
monopile is higher for short-crested waves. This implies that short-crested waves should be
considered for fatigue calculations of large monopile foundations.
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4.3. Selected load cases
While the lifetime fatigue damage at different locations in the support structure is of interest
from a design perspective, the long-term distribution of environmental parameters obscures the
response under different load conditions. The results from two selected load cases will be given
here, for a better understanding of how the response differs when long-crested or short-crested
waves is assumed. The key parameters are given in Table 3, and correspond to two of the load
cases for wind speed 11 m/s.

Table 3. Selected load cases for detailed analysis.

Wind speed [m/s] Hs [m] Tp [s] Misalignment [deg] Probability of occurrence [-]

11 1.8 5.6 0 4.0 %
11 2 7 60 0.4 %

For the load case with aligned wind and waves, the wave modelling gives small differences
in the fore-aft response. This is caused by the high aerodynamic loads and relatively small
waves associated with the selected load cases. The response is shown at the left in Figure 13,
where the power spectral density (psd) of the fore-aft bending moment at mudline is plotted.
The fore-aft response is here defined as the response in the mean wind direction. The difference
between the wave models is more significant in the side-side direction. As expected, the side-side
response is negligible when long-crested waves is assumed. If short-crested waves is assumed,
the peak spectral density is higher than in the fore-aft direction, although the response is very
narrow-banded.
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Figure 13. Fore-aft (left) and side-side (right) moment spectrum for wind speed 11 m/s and
aligned wind and waves

For the misaligned case, the opposite trend is seen. As shown in Figure 14, there is an increase
in the fore-aft moment when short-crested waves is assumed. This is as expected from Figure 3,
where it is shown that short-crested waves will increase the wave energy in the fore-aft direction
for large misalignment angles. The change is most significant for the model with soft soil, and
decreases with increasing soil stiffness. In the side-side direction, the change in the response
spectrum is now less sensitive to the assumption of long-crested or short-crested waves.

5. Discussion
The results show that it can be both conservative and non-conservative to assume long-crested
waves in fatigue calculations. While the soil stiffness and tower wall thickness have been altered
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Figure 14. Fore-aft (left) and side-side (right) moment spectrum for wind speed 11 m/s and
60o misalignment between wind and waves

here, other parameters may also influence the effect of wave spreading. In general, it can be
expected that short-crested waves will yield increased fatigue damage as wave loads become more
important. From a design perspective, the mode shape and 1st natural period will influence the
structure’s sensitivity to waves. A large modal displacement near the mean water level or a
natural period close to the wave period will make wave loads more important. This will again
make it more important to consider short-crested waves.

The designer can also influence the crosswind damping level, e.g. by fitting tuned mass
dampers[25] or applying active load mitigation[2]. Increasing the crosswind damping will reduce
the response from waves travelling in the crosswind direction, which can be beneficial when
considering both wind-wave misalignment and short-crested waves. Increasing the damping will
also make an OWT more similar to the structures analysed by Vugts[8], which will increase the
conservatism from assuming long-crested waves.

Several factors that are outside the designer’s control will also influence whether it is
conservative or not to assume long-crested waves. The effect of short-crested waves depends
on the wind-wave misalignment, as shown in Figure 3 and in the selected load cases. If a site
evaluated for installation of wind turbines mainly have aligned wind and wave conditions, short-
crested waves will increase the fatigue damage. Similarly, short-crested waves at a site with
pronounced wind-wave misalignment will reduce the crosswind excitation, potentially reducing
the lifetime fatigue damage.

The wave characteristics will also be important in this sense. For the site analysed in this
paper, wind-wave misalignment mainly occurs for swell waves. These waves normally have
little wave spreading. Thus the fatigue calculations with short-crested swell waves may yield
reduced fatigue damage, but the results may be non-conservative since swell waves are mainly
long-crested with significant misalignment.

The above discussion shows how complex it is to evaluate whether it is conservative or non-
conservative to assume long-crested waves in design calculations. A designer must, therefore,
take care to ensure conservative, but not overly conservative, fatigue estimations. Different
modelling approaches may be applicable for wave spreading. This will depend on the properties
of the support structure, the short-term environmental conditions analysed and the long-term
distribution of environmental parameters.

6. Conclusion
This paper has investigated the effect of modelling waves as long-crested or short-crested for
monopile supported wind turbines in varying soil conditions. Previous studies have concluded
that it is conservative to assume long-crested waves in the fatigue calculations of monopile
supported OWTs. In this paper, it is shown that this conclusion is not valid for all monopile
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designs. As monopile foundations become more sensitive to wave loads, it may be non-
conservative to assume long-crested waves. Consequently, short-crested waves should be taken
into account when designing monopile foundations for deep water, for soft soil, for harsh wave
conditions or with large dimensions.
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