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Abstract 34 

This paper reviews the life history of brown trout (Salmo trutta, Salmonidae) and factors 35 

influencing decisions to migrate. Decisions that maximize fitness appear dependent on size at 36 

age. In partly anadromous populations, individuals that attain maturity at the parr stage 37 

typically become freshwater resident. For individual fish, the life history is not genetically 38 

fixed, and can be modified by the previous growth history and energetic state in early life. 39 

This phenotypic plasticity may be influenced by epigenetic modifications of the genome. 40 

Thus, factors influencing survival and growth, determine life history decisions. These are 41 

intra- and interspecific competition, feeding and shelter opportunities in fresh and salt water, 42 

temperature in alternative habitats and flow-conditions in running water. Male trout exhibit 43 

alternative mating strategies and can spawn as a subordinate sneaker or a dominant 44 

competitor. Females do not exhibit alternative mating behaviour. The relationship between 45 

growth, size and reproductive success differs between sexes in that females exhibit a higher 46 

tendency to migrate than males. Southern populations are sensitive to global warming. In 47 

addition, fisheries, aquaculture with increased spreading of salmon lice, introduction of new 48 

species, weirs and river regulation, poor water quality and coastal developments all threaten 49 

trout populations. The paper summarizes life history data from six populations across Europe 50 

and ends by presenting new research questions and directions for future research. 51 

 52 
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Introduction 111 

Brown trout (Salmo trutta, Salmonidae) is a facultative (i.e. partly) anadromous species 112 

(Lobón-Cerviá, Rasmussen, & Mortensen, 2017). It typically spawns in freshwater, but may 113 

reproduce successfully in estuaries at salinities below 4 ppt, such as on the coast of Gotland 114 

in the Baltic Sea (Landergren & Vallin, 1998; Limburg, Landergren, Westin, Elfman, & 115 

Kristiansson, 2001). The species is partly migratory as some individuals within a population 116 

may reside in or near the spawning area all year round, whereas other individuals move out of 117 

this area for feeding. Migratory trout can be anadromous, feeding in the marine habitat. 118 

Migrants generally return to breed with high precision to their area of origin for spawning, 119 

but exceptions occur (B. Jonsson, Jonsson, & Jonsson, 2018).  120 

 121 

Brown trout are phenotypically variable. Adult body length varies from approximately 10 to 122 

100 cm (Evangelista, Boiche, Lecerf, & Cucherousset, 2014; B. Jonsson & Jonsson, 2011; 123 

Sánchez‐Hernández, Eloranta, Finstad, & Amundsen, 2017). The species exploit habitats 124 

ranging from small brooks to rivers, lakes, estuaries and coastal sea, but are seldom found in 125 

the open ocean, though recent literature indicate that some brown trout may live a more 126 

pelagic life while at sea (B. Jonsson & Jonsson, 2011; Kristensen, Righton, del Villar-Guerra, 127 

Baktoft, & Aarestrup, 2018). Populations adapt trophically to, and vary ecologically, 128 

morphologically, behaviourally and genetically with local conditions over the distribution 129 

area. This diversity complicates the systematics of the species, and makes some scientists 130 

term Salmo trutta a species complex rather than a single species (Keller, Taverna, & 131 

Seehausen, 2011; Patarnello, Bargelloni, Caldara, & Colombo, 1994; Sanz, 2017). Although 132 

the systematics of brown trout have still to be resolved, the phylogeographic and the genetic 133 

structure of the species were recently clarified (Sanz, 2017).  134 

 135 
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Freshwater resident populations are well described (Baglinière & Maisse, 2002; Frost & 136 

Brown, 1967; Gosset, Rives, & Labonne, 2006; B. Jonsson, 1989; Maisse & Baglinière, 137 

1990). More complex is the ecology of anadromous trout (Harris, 2017; Harris & Milner, 138 

2006), which occur naturally along the length of the Atlantic coast of Europe from northern 139 

Russia to Portugal, Iceland included, and occur as an introduced fish in North and South 140 

America, Australia, New Zealand and Kerguelen Islands (Baglinière, 1999; Elliott, 1994; B. 141 

Jonsson & Jonsson, 2011; Lecomte, Beall, Chat, Davaine, & Gaudin, 2013) (Figure 1). The 142 

species is present along the coast of the Black and Caspian-Aral Seas in central Europe 143 

(Baglinière, 1999; Elliott, 1994; B. Jonsson & Jonsson, 2011). Among all introduced 144 

Salmonidae species, brown trout is the species with the highest success rate of naturalisation 145 

and the largest distribution out of its original range. This is likely the result of a high adaptive 146 

capacity and tolerance for habitat change (Baglinière, 1999).  147 

 148 

Brown trout have been the focus of several books such as those by Fahy (1985), Elliott 149 

(1994), Baglinière and Maisse (1999), Harris and Milner (2006), Harris (2017), Jonsson and 150 

Jonsson (2011), and Lobón-Cerviá and Sanz (2017). However, some recent knowledge on 151 

migration, its complexity and plasticity is not included in these books (Figure 2). This work is 152 

also motivated by the desire to complement the literature review with a compilation of data 153 

from six populations across Europe. Partly anadromous means that individual populations can 154 

consist of both freshwater resident and anadromous individuals. In this review, we present 155 

information on both these life history components, and discuss drivers of anadromy, the 156 

influence of the marine environment on the migration, and effects of spawning habitat on 157 

body size and sexual size dimorphism. Furthermore, we summarize knowledge on effects of 158 

interspecific competitors and predators on abundance and behaviour of brown trout and 159 

impacts of the parasitic sea lice on local sea trout, which constitutes one of the main threats to 160 
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wild populations in some areas (Thorstad et al., 2015), and which has led to significant 161 

population collapses (e.g. Gargan, Poole, & Forde, 2006). Environmental constraints in 162 

freshwater may stimulate migration of brown trout, including constraints from competition, 163 

poor feeding and low growth opportunities. We review the effects of these, as well as 164 

negative environmental impacts at sea that may select against the propensity to migrate 165 

(Poole et al., 2006). Last, we present important questions for further research. 166 

 167 

Resident versus anadromous brown trout 168 

Historical overview 169 

Carolus Linnaeus, in his 10th edition of Systema Naturae (1758), classified anadromous (sea) 170 

trout (Salmo eriox) as a different species from river trout (Salmo trutta). The classification 171 

was based on colouration and body form, a taxonomic classification maintained into the 19th 172 

century (B. Jonsson & Jonsson, 2011). Among others, Dahl (1904) questioned the 173 

classification as he observed that river trout could move downstream to sea. Furthermore, 174 

Regan (1911) proposed that anadromous and non-anadromous trout could be freely 175 

interbreeding fractions of a single species. Nevertheless, until the development of modern 176 

genetic techniques in the 1980’s, much uncertainty remained about whether or not sea trout 177 

and river trout were the same or separate species (Frost & Brown, 1967). 178 

 179 

Two phenotypes and a single species 180 

Brown trout may have split from Atlantic salmon Salmo salar between 10 and 14 million 181 

years ago (Crête-Lafrenière, Weir, & Bernatchez, 2012) and the five major evolutionary 182 

lineages of brown trout evolved in its native Eurasian and North African range of distribution 183 

with geographic isolation occurring during the Pleistocene Ice Ages and have largely 184 

remained allopatric since then (Bernatchez, 2001). Their evolutionary histories have been 185 
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shaped by glaciations, habitat loss and varying potential for dispersal. They survived in ice-186 

free refuges during the periods of glaciation and colonized rivers as the ice cover retreated 187 

(McKeown, Hynes, Duguid, Ferguson, & Prodöhl, 2010). After the last glaciation period 188 

some 14000 years ago they entered rivers in the former glaciated northern areas and gradually 189 

acquired their natural area we see today (Ferguson, 2006). The anadromous behaviour 190 

probably existed before speciation of the salmonid family and the anadromous types, mainly 191 

of the genus Salmo, evolved from the freshwater forms (Balon, 1980).  192 

 193 

By origin, brown trout is chiefly a European species, but populations have been introduced to 194 

areas outside their natural range they were unable to reach naturally (B. Jonsson & Jonsson, 195 

2011). For instance, offspring of anadromous trout were released in some North American 196 

rivers, and from these progenitors both anadromous and non-anadromous trout developed 197 

(Rounsefell, 1958), proving that the two trout forms could develop from single gene pools. 198 

Similar evidence was obtained from releases in the Kerguelen Islands (Davaine & Beall, 199 

1997). The close connection between the two phenotypes was further highlighted by the 200 

observation that offspring of a population of resident mountain living brown trout feed and 201 

grow well at sea when transferred to a coastal river with free access to and from the sea (N. 202 

Jonsson, Jonsson, & Hansen, 1994). They also survive and grow when they are released 203 

directly into sea water as unsmoltified parr or immature brown trout (N. Jonsson, Jonsson, 204 

Hansen, & Aass, 1994), although osmoregulatory performance is favoured by a progressive 205 

transfer to seawater (Boeuf & Harache, 1982). Experimentally, Skrochowska (1969) and 206 

Ombredane et al. (1996) demonstrated that anadromous as well as non-anadromous parents 207 

produced both freshwater resident and sea-run migratory offspring. However, the proportion 208 

of anadromous offspring was higher for anadromous than non-anadromous parents, 209 

indicating a difference in gene expression between the two forms. Also, within single river 210 
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systems, anadromous and non-anadromous trout spawn together as has been observed in the 211 

field (Charles, Guyomard, Hoyheim, Ombredane, & Baglinière, 2005; Cucherousset, 212 

Ombredane, Charles, Marchand, & Baglinière, 2005; B. Jonsson, 1985; Vøllestad, 2017), but 213 

the proportions of anadromous vs resident maternal origin parr will probably differ in 214 

different sections of the stream (Rohtla et al., 2017). Population diversification through 215 

anadromous and non-anadromous individuals is not unique to brown trout, but is also found 216 

in other salmonids (e.g. rainbow trout: Oncorhynchus mykiss, Arctic charr Salvelinus alpinus) 217 

and some non-salmonid species (e.g. American shad: Alosa sapidissima) (B. Jonsson & 218 

Jonsson, 1993).  219 

 220 

Contrast in gene expression 221 

Although anadromous and non-anadromous trout are genetically similar when in sympatry 222 

(Charles et al., 2005; Cross, Mills, & Williams, 1992; Hindar, Jonsson, Ryman, & Ståhl, 223 

1991; Pettersson, Hansen, & Bohlin, 2001), around 50% of the variability in migration v. 224 

residency, among individuals within a population, may be due to genetic variance (Ferguson, 225 

Reed, Cross, McGinnity, & Prodöhl, 2019). Recent evidence suggests differences in the gene 226 

expression influencing the life history of the two trout phenotypes (Giger et al., 2006; 227 

Lemopoulos et al., 2018, 2017). For instance, Giger et al. (2006) demonstrated that the gene 228 

expression was primarily related to the migratory trait and not to genetic relatedness, whether 229 

the fish migrate to the sea or a lake. They found that migrant and freshwater resident brown 230 

trout from the same area exhibited different gene expression profiles, whereas evolutionarily 231 

or geographically distant populations sharing the same life histories showed similar gene 232 

expression, i.e. similar levels of mRNA transcripts. For example, a resident population 233 

belonging to a Mediterranean lineage that diverged more than 500 000 years ago from the 234 

Atlantic lineage, exhibited a gene expression profile like that of resident Atlantic populations. 235 
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By contrast, migratory and resident trout from the same river had very different profiles (sets 236 

of mRNAs). Migration destination (mainstream river, lake, or sea) also appears to be 237 

genetically programmed (Ferguson et al., 2019). Giger et al. (2006) suggested that the genetic 238 

difference between life history types of brown trout is the result of a few controlling genes 239 

that determine the expression of many other genes defining the life history pattern. They 240 

found that life history differences explained 45% of the total variability in gene expression 241 

levels, three times more than the variability explained by genetic diversity between 242 

populations. Thus, gene expression appears to be influenced by the environment and 243 

interactions between genes and environment that drive life history and migration decisions. 244 

 245 

Phenotypic plasticity 246 

There is considerable variation in life history strategies among individuals and populations, 247 

and in the timing and duration of marine migrations of brown trout (Aldvén & Davidsen, 248 

2017; B. Jonsson, 1989; Thorstad et al., 2016). Figure 2 illustrates this diversity: after 1 to 7 249 

years in freshwater, some individuals make a physiological transformation from parr to smolt 250 

and migrate to sea. Young parr may also make excursions into brackish water. Downstream 251 

migration usually takes place in spring and autumn (Aarestrup, Birnie Gauvin, & Larsen, 252 

2017; Poole et al., 2006; Winter, Tummers, Aarestrup, Baktoft, & Lucas, 2016). Anadromous 253 

trout spend from 1 up to 36 months at sea on their maiden sea sojourn. In the marine habitat, 254 

they feed on polychaetes, crustaceans and small fish (Knutsen, Knutsen, Gjøsæter, & 255 

Jonsson, 2001), and grow more than in freshwater. Sometimes, anadromous trout perform an 256 

early (premature) return, characterised by a brief incursion in brackish or freshwater, before 257 

heading back to the sea, this phenomenon may be exacerbated by sea louse infestation 258 

(Birkeland, 1996). In summer, autumn and even winter, mature anadromous trout return to 259 

their natal river to breed. While immature anadromous trout from northern Europe may spend 260 
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the winter in brackish or freshwater (often not in their natal river) before moving back to the 261 

sea in the following spring (Thomsen, Koed, Nielsen, & Madsen, 2007). Mature trout spawn 262 

in freshwater in the autumn/winter and return to sea immediately after spawning (B. Jonsson 263 

& Jonsson, 2009b; N. Jonsson & Jonsson, 2002) or in the subsequent spring (B. Jonsson, 264 

1985). The former is more dominating for trout spawning in small water courses with poor 265 

shelter for wintering trout (B. Jonsson, Jonsson, Brodtkorb, & Ingebrigtsen, 2001; B. Jonsson 266 

et al., 2018). Survivors typically undertake a shorter sea sojourn before heading back to 267 

freshwater as repeat spawners (B. Jonsson & Jonsson, 2009b). Some of the parr do not smolt 268 

and remain in freshwater during their entire life. Resident and anadromous trout can 269 

reproduce on sympatric spawning grounds, or spawn in separate areas of the same river 270 

(Hindar et al., 1991; Rohtla et al., 2017). 271 

 272 

Brown trout exhibit a large range of body sizes across their endemic distribution range, with 273 

resident trout being on average smaller that anadromous trout (Figure 3). Within a given 274 

catchment, resident trout rarely become as large as their anadromous counterparts of similar 275 

age. However, older resident trout may become larger than young anadromous trout and  the 276 

largest resident trout can be larger than the smallest anadromous specimen within age-classes 277 

(i.e. total age from birth). Large resident trout feeding on fish can grow equally large or larger 278 

than anadromous trout do. Ferox trout from Scottish and Irish Lochs are examples of such 279 

large resident trout (R. N. Campbell, 1979; Hughes et al., 2019). 280 

 281 

The parameters controlling juvenile growth rate play an important role and various thresholds 282 

regulate the individual’s decision of life history and migration strategy. Growth rate variation 283 

induces two antagonistic phenomena: sexual maturation or migration (Baglinière & Maisse, 284 

1985; B. Jonsson & Jonsson, 1993; Maisse & Baglinière, 1999). The higher the growth rate, 285 
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the earlier the onset of maturation or migration. Presumably, the developmental threshold for 286 

precocious sexual maturation appears earlier in the season than that for migration. In partly 287 

anadromous populations, mature parr typically become freshwater resident, although a few of 288 

them may migrate to sea in a later year (B. Jonsson & Jonsson, 2011). The characteristics of 289 

these thresholds, relative to the life stage of the fish, depend on environmental factors, the 290 

stage and sex of the trout, and its genotype (Baglinière, Guyomard, Héland, Ombredane, & 291 

Prévost, 2001). Across its European distribution area, the age of smolt varies widely, from 1-292 

3 years in France, to 5-7 years in northern Norway (Figure 4). Within each population, the 293 

size of smolts increases with age. This large-scale pattern suggests that despite phenotypic 294 

plasticity and local environmental constraints, a physiological, threshold may underlie smolt 295 

migration in brown trout. We may add, however, that smolt size is particularly small among 296 

trout spawning in small streams, with some smolts as small as 8 cm being recorded  (B. 297 

Jonsson et al., 2001). 298 

 299 

Like in the Atlantic salmon, the parr-smolt transformation takes place in the largest juvenile 300 

trout of a given population (Tanguy, Ombredane, Baglinière, & Prunet, 1994) and smolting 301 

occurs in spring. Silvering encompasses a peak of gill Na+/ K+-ATPase activity and a 302 

simultaneous decrease in plasma prolactin is observed, together with morphological changes 303 

(Aarestrup, Nielsen, & Madsen, 2000; Boeuf & Harache, 1982). But, compared to the 304 

Atlantic salmon, no surge in growth hormone is documented (Tanguy et al., 1994). Hypo-305 

osmoregulatory ability is greatest at the time of peak gill Na+/ K+-ATPase activity and it 306 

increases in spring in all trout, irrespective of smolt status (C. Nielsen, Aarestrup, & Madsen, 307 

2006). Smolting appears less stringent in brown trout than in Atlantic salmon, and does not 308 

seem to be an obligatory process for seawater adaptation in this species. The level of smolting 309 

also depends on stock origin and body size, e.g. fast-growing juveniles can migrate to sea 310 
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without smolting (Tanguy et al., 1994). Usually, juvenile trout migrate from rivers in spring 311 

(March-June in Europe) (Byrne, Poole, Dillane, Rogan, & Whelan, 2004; Flaten et al., 2016; 312 

A. J. Jensen et al., 2012), but may also migrate at other times of the year, e.g. during autumn 313 

(Aarestrup et al., 2017; B. Jonsson & Jonsson, 2009a; B. Jonsson et al., 2018; N. Jonsson & 314 

Jonsson, 2002; Poole et al., 2006; Poole, Whelan, Dillane, Cooke, & Matthews, 1996; Taal et 315 

al., 2014; Winter et al., 2016) indicating that the time of seaward migration is highly plastic. 316 

There are indications that smolt run timing may be changing with migrations occurring 317 

earlier in recent years (Byrne et al., 2004), a phenomenon also observed in Atlantic salmon 318 

(B. Jonsson, Jonsson, & Finstad, 2014; Otero et al., 2014), possibly caused by climate 319 

change.  320 

 321 

Post-smolt brown trout feed at sea and some immature fish return to estuarine or freshwater 322 

to overwinter, whereas others remain at sea (B. Jonsson et al., 2001, 2018). Evidence of 323 

unsmoltified parr making brief brackish water excursions to switch streams has also been 324 

documented (Taal et al., 2018). In northern Europe, immature trout can also return to 325 

freshwater in summer after a short stay at sea. Ionoregulation in sea water at low temperature 326 

is arduous, but anadromous trout have been observed at sea during winter and tolerate full 327 

salinity seawater at temperatures as low as 1-2°C (Eldøy et al., 2017; J. L. A. Jensen & 328 

Rikardsen, 2012; Knudsen et al., 2009; Olsen, Knutsen, Simonsen, Jonsson, & Knutsen, 329 

2006). In the brackish Baltic Sea, parr can migrate from the freshwater to the Baltic coastal 330 

zone without undergoing smolting. There, they may experience little or no physiological cost 331 

in terms of lower survival and growth from this transition (Landergren, 2005). Otoliths 332 

collected from brown trout in the Baltic Sea sometimes show no evidence of a freshwater 333 

history, raising the possibility of a contingent of the coastal population that does not depend 334 

on riverine spawning or that the fish move to sea as fry (Limburg et al., 2001). The duration 335 
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and timing of marine migrations are likely governed by trade-offs between mortality risk and 336 

growth opportunities in different habitats and the most beneficial strategy may vary among 337 

individuals and populations. Based on life table analysis, Jonsson (1981) found that the 338 

product of survival and fecundity, as a measure of fitness, was similar for freshwater resident 339 

and anadromous brown trout of the same population. Possibly, the fitness of different aged 340 

smolts are also similar as indicated from calculations of survival and fecundity of female 341 

Atlantic salmon (B. Jonsson, Jonsson, & Albretsen, 2016). 342 

 343 

Epigenetics 344 

Divergent life history phenotypes may be the result of epigenetic modifications that link 345 

environmental factors and the genome to regulate internal cues as reported from studies on 346 

steelhead trout Oncorhynchus mykiss (Baerwald et al., 2016). The most studied epigenetic 347 

effect is a consequence of DNA methylation. High methylation levels are associated with 348 

silencing of gene expression, and demethylation is linked to active gene transcription (Bird, 349 

2002). Evidence of an epigenetic effect on life history variation was reported by Moran and 350 

Pérez-Figueroa (2011). They found a link between DNA-methylation and maturation in 351 

Atlantic salmon male parr. Mature male parr exhibit reduced probability of smolting in brown 352 

trout (B. Jonsson, 1985) and Atlantic salmon (Berglund, 1995). Epigenetic effects can be 353 

mediated early, such as at the embryonic stage (B. Jonsson & Jonsson, 2019). For instance, 354 

thermal conditions during the embryogenesis may influence later growth, as found in Atlantic 355 

salmon (A. G. Finstad & Jonsson, 2012) and zebra fish (Scott & Johnston, 2012). 356 

Furthermore, there is evidence of multiple differentially methylated genes between 357 

anadromous and non-anadromous rainbow trout (Baerwald et al., 2016). They reported that 358 

smolting of steelhead trout is associated with DNA methylation pattern. Furthermore, it has 359 

been shown that salt-induced alterations in DNA methylation patterns play a role in sea water 360 
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adaptation in fishes (Artemov et al., 2017; Moran, Marco-Rius, Megías, Covelo-Soto, & 361 

Pérez-Figueroa, 2013). One may hypothesize that early environmental factors may also 362 

influence life history decisions and phenotypic plasticity in brown trout, although this has not 363 

yet been investigated. 364 

 365 

Trade-offs between growth and survival 366 

Habitat selection theory 367 

Mobile organisms are expected to select the most profitable feeding habitat. They should 368 

choose the habitat where mortality (µ) over growth (g) (µ/g) is minimized (Werner & 369 

Gilliam, 1984). These two components are main determinants of their fitness. The relative 370 

value of feeding habitats in terms of survival and growth often changes seasonally, or in 371 

relation to the developmental stage of the individual. Thus, selection should favour migration 372 

from freshwater to the sea when this reduces the value of µ/g, and habitat choices should be 373 

influenced by benefits and costs in each habitat. However, organisms only experience the 374 

situation where they currently are, and do not know the profitability of moving to distant 375 

feeding grounds unless this is innately determined through an epigenetic threshold type 376 

response or a genetically predetermined behaviour. Sea trout must therefore rely on 377 

additional cues, such as present growth or size, to bias their movements towards the 378 

appropriate feeding ground (Dodson, Aubin-Horth, Thériault, & Páez, 2013). Their response 379 

is fine-tuned through natural selection, although the response appears phenotypically plastic, 380 

allowing the fish to cope with environmental stochasticity and variation. However, the degree 381 

of plasticity is at least partly inherited and varies among populations (Fusco & Minelli, 2010). 382 

There is little knowledge on the extent of epigenetic effects on behavioural decisions 383 

(Baerwald et al., 2016), although Jonsson and Jonsson (2018) showed that the temperature 384 
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experienced by Atlantic salmon embryos influences the timing of their homing migration 385 

years later, when they as adults return from the ocean to spawn in freshwater. 386 

 387 

Migration to improve growth 388 

Growth of trout depends largely on food consumption and temperature. Young trout 389 

experiencing reduced growth because of food restrictions may either move to a more 390 

profitable feeding habitat or attain sexual maturation at an early age to make the most of a 391 

poor environment (B. Jonsson, 1985). Thus, feeding migration is a viable alternative if distant 392 

habitats provide improved growth opportunities without a disproportional decrease in 393 

survival (B. Jonsson & Jonsson, 1993). Growth is typically higher at sea than in freshwater. 394 

For instance, length increase during the second year in freshwater is typically 6 cm in 395 

Southern Norway (L’Abee-Lund et al., 1989), which is approximately half the length 396 

increase obtained by immature trout spending their second year at sea (B. Jonsson & Jonsson, 397 

2011; Poole et al., 1996), but growth decreases with age and sexual maturation. In Northern 398 

Norway, the difference between freshwater and marine growth may be even larger (Berg & 399 

Jonsson, 1990). In addition to better feeding opportunities, growth at sea may be less 400 

constrained because of reduced population density and intraspecific competition in northern 401 

temperate and sub-Arctic areas. In some systems, lakes may also offer better growing 402 

condition than the nearby mainstream river and reduced costs of migration compared to 403 

seaward migration (e.g. short migration distance, low predation). A similar pattern may hold 404 

true for brown trout moving from tributaries to the mainstream, further downstream, in large 405 

river systems. Distinct populations of adfluvial trout have been identified, such as the 406 

Dollaghan trout in Lough Neagh, Northern Ireland, and the Croneen trout in Lough Derg on 407 

the Shannon, Ireland (Ferguson, 2004). Such a trade-off may also be driving lacustrine 408 
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migration in landlocked trout populations, as observed in lake Geneva (Champigneulle, 409 

Buttiker, Durand, & Melhaoui, 1999). 410 

 411 

The aggregation of six datasets from across Europe allowed us to highlight some new 412 

patterns (Figure 5). Within our six populations, we observe a general pattern that emerges in 413 

the form of a positive correlation in body length between anadromous and resident trout. This 414 

means that rivers with large resident trout also produce large anadromous trout. Moreover, 415 

the relative growth gained by the sea migration (i.e. the deviation from the 1:1 line in Figure 416 

5) is larger in populations of large brown trout. Apparently, for anadromy to be a viable life 417 

history tactic, the growth rate of anadromous fish must be higher than that of corresponding 418 

freshwater residents. 419 

 420 

Migration can improve survival 421 

Mortality is higher during the marine migration than in freshwater, with sea trout facing high 422 

predation rates during early sea migration, i.e. when they are small and cross the estuarine 423 

zone. For instance, precise estimates from Black Brows Beck, Lake District, England showed 424 

that the instantaneous rate of survival of brown trout was about 0.88% day-1 during the 425 

second year in freshwater while the return rate of post-smolts at sea averages 0.25% day-1 426 

(Elliott, 1993). Aldvén et al. (2015) detected a significantly higher mortality rate in brown 427 

trout smolts moving from the river into a shallow estuary (mortality 26 to 51 %) than in 428 

smolts entering a deep fjord (17.5-29.2 %). Dieperink et al. (2002; 2001) studied avian 429 

predation on emigrating wild and domesticated sea trout post-smolts in fjords of the western 430 

Baltic Sea and North Sea. In total, 65% of the post-smolts were eaten by fish-eating birds, 431 

and during the first two days after entering the sea, both wild and domesticated post-smolts 432 

suffered a daily predation rate estimated at 20-34%. Thus, the trout appeared to experience a 433 
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transient period with elevated risk of predation immediately after exposure to sea water. 434 

However, in other places, the early mortality is noticeably lower. Survival of smolts 435 

migrating through Randers and Mariager Fjords in Denmark showed survivals between 76-80 436 

% 30 days after fjord entry and in Poole Harbour in England 88% of the trout smolts entering 437 

the estuary made the 12 km transition to the open sea (Aarestrup, Baktoft, Koed, del Villar-438 

Guerra, & Thorstad, 2014; del Villar-Guerra, Aarestrup, Skov, & Koed, 2013; Lauridsen et 439 

al., 2017). Predation rates appear to be influenced by the time and size at migration, and sea 440 

trout of the River Imsa, Norway exhibit highest survival if migrating in May (ca. 15% until 441 

river return) and low survival if migrating to the sea between July and December (ca. 2%) (B. 442 

Jonsson & Jonsson, 2009a). However, in Gudsø Stream, Denmark, the return rates of spring 443 

and autumn migrants were similar (Birnie Gauvin & Aarestrup, 2018). This suggests 444 

difference in autumn mortality between rivers. Also, one would expect that sea migration in 445 

the autumn would benefit other fitness components, such as growth, and compensate for this 446 

potential high initial migration cost. 447 

 448 

By migrating, sea trout can avoid adverse environmental conditions in the home stream, such 449 

as winter icing-up of streams or summer drought. For instance, in small streams regularly 450 

experiencing summer drought, sea trout can migrate to sea at a small size early in life, and in 451 

this way avoid poor growth and survival conditions (B. Jonsson et al., 2001; Landergren, 452 

2004; Titus & Mosegaard, 1992). This pattern resembles the strategy followed by some 453 

Pacific salmonids, such as pink salmon Oncorhynchus gorbuscha and chum salmon 454 

Oncorhynchus keta, which both start their seaward migration early in life. Trout from streams 455 

with low water level during winter may migrate to a neighbouring watercourse for 456 

overwintering (Aldvén & Davidsen, 2017), or stay in marine waters (Eldøy et al., 2017; B. 457 

Jonsson et al., 2018; Olsen et al., 2006). 458 
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 459 

Improved fecundity 460 

Fecundity, or number of ova per unit length, changes between stocks (Fahy, 1985; Poole, 461 

Byrne, Dillane, Whelan, & Gargan, 2002) and between stocks in different regions (N. 462 

Jonsson & Jonsson, 1999; Solomon, 1997). But, with larger body size, sea trout increase their 463 

gamete production and direct competitive ability on the spawning ground, and thus obtain 464 

augmented reproductive success (Fleming, 1996; Gross, 1987; Hutchings & Myers, 1985). 465 

For instance, mean fecundity of sea trout from Vangsvatnet Lake, Norway was 1790 eggs 466 

compared to 330 eggs for non-anadromous females of similar age (i.e. < 20%; B. Jonsson, 467 

1981, 1985). Egg size increases with the size of the mother, and with increasing egg size, 468 

early growth and viability of offspring increases (Bagenal, 1969; Segers & Taborsky, 2011). 469 

However, these relationships are dependent on the female life history, with females investing 470 

in larger ova as the fish become larger and older. It seems that anadromous females had 471 

smaller ova compared with freshwater-resident females of similar body size (i.e. older fish) 472 

and achieved higher fecundity as they grew bigger (Acolas, Roussel, & Baglinière, 2008). 473 

Another advantage for the offspring of anadromous females may come from an earlier 474 

hatching date in the season, as reported in anadromous brown trout (N. Jonsson & Jonsson, 475 

1999) and rainbow trout relative to sympatric resident trout (Zimmerman & Reeves, 2000). A 476 

longer spawning period in resident trout may buffer this phenological difference in some 477 

cases, e.g. river Oir, France (Maisse et al., 1991). Less is known about the production of male 478 

milt and spermatozoa in brown trout, although differences in sperm count were observed 479 

between stocks and the length of the spawning migration (B. Jonsson & Jonsson, 2006b) and 480 

a negative trend was linked with size and age of males, possibly indicating a lower fertilising 481 

ability of older fish within any one stock (Poole & Dillane, 1998). 482 

 483 
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 484 

The energy surplus hypothesis 485 

Several studies suggest that anadromy in brown trout is triggered by energy limitation in natal 486 

rivers (reviewed by Dobson et al. (2013)), and can be terminated if the relative advantage of 487 

migration changes (Sandlund & Jonsson, 2016). Some early studies documented an 488 

asymptotic size at one year, which is limited by the carrying capacity of the river (Baglinière 489 

& Maisse, 1990). Thus, to meet their energy requirements and grow further, individuals 490 

should change habitat and move toward a more productive habitat further downstream in the 491 

watershed or at sea (Baglinière & Maisse, 2002). Brown trout appear to favour a migration 492 

strategy when the energy surplus useable for growth becomes low (Forseth, Nesje, Jonsson, 493 

& Hårsaker, 1999; B. Jonsson & Jonsson, 1993).  494 

 495 

Experimentally, Davidsen et al. (2014) induced migration by decreasing ration size during 496 

the six months prior to smolting. Similarly, Jones et al. (2015) demonstrated that reduced 497 

winter and spring feeding increased the tendency to smoltify for lake feeding brown trout 498 

from the River Klarälven, Sweden. In contrast, another experiment reported that trout facing 499 

food restriction in late autumn exhibited lower rate of silvering, which is indicative of a delay 500 

in smolting (Näslund, Sundström, & Johnsson, 2015). Thus, winter/beginning of spring 501 

appears to be a critical period when the decision is made about whether to smolt and migrate 502 

to a better feeding area. These experimental findings contrast with Thorpe & Metcalfe’s 503 

(1998) hypothesis that autumn is the critical time in Atlantic salmon, when decisions of 504 

migration versus maturation and residency are taken. This implies that brown trout are more 505 

plastic and energy intake during winter and spring may over-rule an initial decision, 506 

depending on the energetic state of the fish  (cf. B. Jonsson, Jonsson, & Finstad, 2013). In 507 

contrast, rearing brown trout in aquaculture with optimum rations reduces the probability of 508 
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smolting, leads to early maturation and lowers the return rates from sea releases (Byrne, 509 

Poole, Dillane, & Whelan, 2002; Mills, Piggins, & Cross, 1990). 510 

 511 

Within brown trout populations, fast growers tend to migrate at a younger age, and typically 512 

smaller size than slow growers (B. Jonsson, 1985; Økland, Jonsson, Jensen, & Hansen, 1993) 513 

and  within a given cohort, larger juveniles tend to undertake longer migrations (Ombredane 514 

et al., 1996). Individuals with a high metabolic rate may migrate downstream earlier as their 515 

energy demands more rapidly exceed those available in their current habitat than in smaller 516 

trout (Ferguson, Reed, McGinnity, & Prodöhl, 2017; Forseth et al., 1999; Peiman et al., 517 

2017). Sea trout smolts have very low energy density at the time of migration (ca. 350 KJ/100 518 

g wet mass), which is similar to that of resident trout after spawning (N. Jonsson & Jonsson, 519 

1997a, 1998). This is due to a low lipid density (ca. 1.5 g/100 g wet mass), which may 520 

contribute to the compensatory growth exhibited by sea trout during the first weeks at sea 521 

(Marco-Rius, Caballero, Moran, & Leaniz, 2012). In brook trout Salvelinus fontinalis, 522 

Morinville and Rasmussen (2003) reported that in the year before migration, migrant brook 523 

trout have consumption rates 1.4 times higher than those of resident brook trout. However, 524 

migrants have lower growth efficiencies (ratio of growth to consumption) than residents, 525 

indicating that migrants have higher metabolic costs, and relatively less surplus energy 526 

available at the time the migrations commences. 527 

 528 

Individual growth rate better integrates the mechanisms underlying migration decision 529 

whereas body size is more strongly related to survival in trout (Acolas, Labonne, Baglinière, 530 

& Roussel, 2012). Intrinsic differences between individuals explain why migrants and 531 

residents differ in body size in many partial migratory species (Chapman et al., 2012). 532 
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Improved feeding opportunities and growth is thus the main benefit of anadromy for fish 533 

spawning in freshwater (Frier, 1994; Gross, Coleman, & McDowall, 1988). 534 

 535 

Size may also interact with the ability of juveniles to establish and hold territories, thus 536 

smaller and/ or younger parr may be forced to leave the stream by larger and/ or older 537 

conspecifics (Landergren, 2004). In Atlantic salmon, some populations exhibit a bimodality 538 

in size by the end of the first growing season (Baglinière & Maisse, 1985). Individuals from 539 

the upper mode, i.e. large juveniles, smolt and migrate to sea the following spring (Baglinière 540 

& Maisse, 1985; Thorpe, Talbot, & Villarreal, 1982). Atlantic salmon appear to smolt when 541 

the young have reached a critical size, although this pattern may not be detected in slower 542 

growing populations of northern Europe (Økland et al., 1993). This is probably because 543 

survival at sea is strongly size dependent (Flaten et al., 2016; B. Jonsson et al., 2016). In 544 

trout, it is unknown to what degree size influences age at smolting (Figure 4). Juvenile size 545 

bimodality has not been detected at the end of the growth season (Baglinière, Prévost, & 546 

Maisse, 1994). This suggests that the migration decision may be taken later in trout, 547 

highlighting the greater flexibility of trout life history compared to Atlantic salmon 548 

(Baglinière et al., 2001).  549 

 550 

Sex-specific response 551 

Skewed sex ratios are commonly observed within the anadromous and resident components 552 

of partially migratory brown trout populations. The skewed sex ratios results from differences 553 

in physiological constraints and life history trajectories in males and females. The fitness of 554 

females appears more closely associated with body size than in males. Although the same 555 

environmental conditions interact with threshold limits to determine individual life histories, 556 
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the mechanisms selecting for migration or residency differ between the sexes. This results in 557 

sexually divergent thresholds and rates of anadromy (B. Jonsson et al., 2001).  558 

 559 

Bias in sex ratio 560 

Although the sex ratio of parr is even in brown trout, there appears to be a female surplus 561 

among emigrating smolts (Cucherousset et al., 2005; B. Jonsson, 1985; Klemetsen et al., 562 

2003). In northern France, the percentage of females among migrating smolts varies between 563 

57% and 67% (Euzenat, Fournel, & Richard, 1999; Quéméré, le Gentil, & Launey, 2011), 564 

which fits well with what is found elsewhere (Table 1). Also, females typically outnumber 565 

males among adults entering streams for spawning (J. S. Campbell, 1977; Euzenat, Fournel, 566 

& Fagard, 2006; K. W. Jensen, 1968; B. Jonsson, 1985; Mills et al., 1990; Okumuş, 567 

Kurtoglu, & Atasaral, 2006; Poole et al., 2006). On the spawning grounds, however, the 568 

operational sex ratio may be skewed in favour of males because they stay longer and if 569 

possible, spawn with several females (Aarestrup & Jepsen, 1998). 570 

 571 

The size of the stream used for spawning may influence spawning success and therefore 572 

indirectly the sex ratio, with male surplus reported in several small streams (B. Jonsson et al., 573 

2018; Rubin, Glimsäter, & Jarvi, 2005). The highest proportion of females among the 574 

anadromous trout are found in the nutrient rich and productive streams and large rivers of the 575 

Baltic and the North Sea areas (Table 1), and this bias may be larger when the high 576 

proportion of repeat spawners, as post-spawning survival is greater in females than in males.. 577 

In small streams, males mature younger and smaller than females, and relatively more males 578 

will therefore survive to adulthood (B. Jonsson, 1985; B. Jonsson & Jonsson, 2015). Where 579 

there is a female surplus among the smolts, it may be evened out among anadromous adults 580 
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because males mature younger than females and more will therefore survive to adulthood (B. 581 

Jonsson et al., 2018). 582 

 583 

Anadromous females typically outnumber anadromous males in larger streams, and the same 584 

is reported from other species of partly migratory trout and charr, such as rainbow trout 585 

(McMillan, Katz, & Pess, 2007; Rundio, Williams, Pearse, & Lindley, 2012; Van Doornik, 586 

Berejikian, & Campbell, 2013), Arctic charr (Nordeng, 1983), whitespotted charr Salvelinus 587 

leucomaenis (Tamate & Maekawa, 2004) and some Atlantic salmon populations (N. Jonsson, 588 

Jonsson, & Hansen, 1998), although exceptions occurs (Bagliniere, personal communication). 589 

Dodson et al. (2013) noted an increase in male anadromy of brook trout towards the north. 590 

This has not yet been investigated for brown trout. 591 

 592 

Strong size dependence in females 593 

Large female size is selected by natural selection as reproductive success is more strongly 594 

associated with body size in females than males (B. Jonsson, 1985; Kendall et al., 2014). 595 

Furthermore, body size variation is smaller in females than in males. This may be because 596 

females do not exhibit alternative spawning tactics (sneaking versus fighting) as males do 597 

(McLean, Bentzen, & Quinn, 2004). Furthermore, the gonad development of females requires 598 

more energy (Baglinière et al., 2001; Fleming, 1996; Prouzet, Le Bail, & Heydorff, 1984). 599 

Thus, females are more likely to migrate to more food rich areas, and stay there for longer 600 

periods of time to grow larger before spawning (Bordeleau et al., 2018; Cucherousset et al., 601 

2005; Ferguson, 2006; Northcote, 1992). Undertaking a longer and more risky sea migration 602 

may reduce survival, resulting in relatively few anadromous female trout returning as adults. 603 

Higher marine mortality in females than males has been reported for anadromous 604 

whitespotted charr by Tamate & Maekawa (2004), but no empirical evidence is available for 605 
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sea trout. On the other hand, post-spawning survival is higher in female charr (and salmon) 606 

than in males, which may also hold for brown trout. Thus, sex-ratio of repeat spawners may 607 

be even more skewed in favour of females (Euzenat et al., 1999).  608 

 609 

An alternative strategy in males 610 

A large male size may be favoured because of both natural and sexual selection (Young, 611 

2005). Natural selection because large males have larger testes (B. Jonsson & Jonsson, 2005; 612 

N. Jonsson & Jonsson, 1997b), win spawning contests more often and therefore spawn more 613 

times than smaller males (Fleming et al. 1996). They are favoured by sexual selection 614 

because females prefer large males as partners (Petersson et al. 1999; Serbezov et al. 2010) 615 

and large males gain better access to females due to higher fighting success. On the other 616 

hand, male size is not directly associated with reproductive success (Poole & Dillane, 1998) 617 

even though large males do enjoy strong competitive advantages over smaller resident males 618 

when fighting for mates (Bohlin, Dellefors, & Faremo, 1990). Some males may adopt an 619 

alternative spawning behaviour (Dominey, 1984; Gross, 1991). While large males gain access 620 

to females through fighting, small resident males effectively employ a sneaking tactic to the 621 

same ends (Olsén, Järvi, Mayer, Petersson, & Kroon, 1998), avoiding the risks of migration, 622 

and breeding at a younger age (Foote, Brown, & Wood, 1997). However, ‘precocious’ 623 

maturation is less pronounced in brown trout than in Atlantic salmon, where males can 624 

mature before the age of 1 (Baglinière & Maisse, 1985). Since maturation and smolting may 625 

be considered competing developments in terms of energy allocation and physiology, the 626 

energy requirements for smolting after maturing may be too large to allow migration within a 627 

reasonable seasonal schedule. Indeed, maturation in brown trout correlates with delayed or 628 

reduced rates of smolting (Bohlin et al., 1990; Cucherousset et al., 2005; Dellefors & Faremo, 629 

1988; B. Jonsson, 1985), but nevertheless does happen.  630 
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 631 

Intermediate-sized individuals, in contrast to large or small individuals, may be ineffective at 632 

both fighting and sneaking mating strategies, putting them at a competitive disadvantage and 633 

maintaining the separation of two distinct male phenotypes as observed within many wild 634 

salmonid populations (Gross, 1985). It is possible that where intermediate-sized mature males 635 

are present on spawning grounds, they utilise female mimicry in order to approach females 636 

without attracting the aggression of large dominant males (Esteve, 2005). This behaviour, 637 

which is associated with altered male colouration resembling that of mature females, has been 638 

reported in Arctic charr, pink salmon, chum salmon and red-spotted masu salmon 639 

(Oncorhynchus masou ishikawae) (Kano, Shimizu, & Kondou, 2006; Keenleyside & Dupuis, 640 

1988; Sigurjónsdóttir & Gunnarsson, 1989). 641 

 642 

Environmental drivers of anadromy in juveniles 643 

Anadromy and residency in brown trout are considered alternative tactics within a single 644 

strategy (Dodson et al., 2013). The decision to migrate to sea results from a trade-off between 645 

mortality and growth in fresh and salt waters so that the overall fitness is maximized, and 646 

individuals must use proximate cues to adopt the most appropriate life history (Kendall et al., 647 

2014). Environmental factors influencing growth in early life are probably the main cues on 648 

which the decision is made (Baglinière et al., 2001; Ferguson et al., 2017; B. Jonsson & 649 

Jonsson, 1993).  650 

 651 

Food availability 652 

Both empirical and experimental studies have reported negative correlations between the 653 

proportion of migratory trout and food availability in the natal freshwater system (review in 654 

Ferguson et al. (2017)). For instance, the migration of brown trout between a tributary where 655 
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they spawned and the main river, ceased when the growth opportunities in the main river 656 

decreased because of damming and reduced flow in the main river (B. Jonsson & Sandlund, 657 

1979; Sandlund & Jonsson, 2016). Kendall et al. (2014) noted that food quality, i.e. energy 658 

value, may be as important as food quantity. Hence, resident trout appear to be abundant in 659 

the most productive areas, with a high invertebrate biomass. Where lakes are present, a 660 

lacustrine-adfluvial migration pattern often predominates (Ferguson, 2004; Ferguson et al., 661 

2017; Gresswell, Liss, & Larson, 1994), as some lakes may offer good growth condition with 662 

a lower predation cost than sea migration. This is supported by the observation that stocking 663 

well fed, juvenile hatchery trout often produces freshwater resident fish, but starving the fish 664 

before release induces a migratory behaviour (Davidsen et al., 2014; Larsson, Serrano, & 665 

Eriksson, 2011). Thus, growth opportunities in the local habitat play an important role in the 666 

decision whether to migrate (Larsson et al., 2011). Also, environmental stochasticity in the 667 

river, such as winter frost or summer drought, can seasonally constrain feeding opportunities 668 

and initiate migration. In this case, trout may opt for migration to the marine environment, 669 

which may appear more stable and protective against harsh physical conditions (Aldvén & 670 

Davidsen, 2017; Ferguson et al., 2017).  671 

 672 

Thermal condition 673 

Temperature is a key factor structuring freshwater ecosystems. It may influence migratory 674 

decisions, with both absolute temperature and variation in temperature being important 675 

(Kendall et al., 2014; Morita, Tamate, Kuroki, & Nagasawa, 2014). Optimum temperature for 676 

growth of juvenile 1g brown trout is found to be 13-14°C (Forseth et al., 2009), but it can be 677 

high if energy consumption is very high such as in piscivorous trout (Forseth & Jonsson, 678 

1994), and lower if the fish are particularly large or feeding is reduced (Morita, Fukuwaka, 679 

Tanimata, & Yamamura, 2010). Temperature is clearly linked to food availability, feeding 680 
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activity, metabolism and lipid storage (Ferguson et al., 2017). High temperature allows higher 681 

food consumption but also increases maintenance costs and may accelerate energy shortages. 682 

Furthermore, standard metabolic rate may be affected by the temperature experienced by the 683 

yolk feeding larvae (Álvarez, Cano, & Nicieza, 2006). Thus, unless food production increases 684 

by the same order of magnitude, individuals may not be able to meet their energetic 685 

requirements when temperature increases. However, this pattern may be attenuated by 686 

temperature itself, as abnormal temperature may also act as a physiological stressor and 687 

induce migration (Peiman et al., 2017). However, an increase in temperature may fuel the 688 

production of invertebrates and thereby offer improved feeding opportunities for resident 689 

trout, as explained above (Morita et al., 2014; Olsson, Greenberg, Bergman, & Wysujack, 690 

2006). But further projected increases in river water temperature above the optimal 691 

temperature for growth will likely decrease growth, body length and age at smolting, and 692 

ultimately reduce the survival of trout (Davidson, Hazlewood, & Cove, 2007; Fealy et al., 693 

2010). However, the relative contribution of temperature to trout growth compared to other 694 

environmental drivers remains difficult to quantify. In Atlantic salmon, Bal et al. (2011) 695 

reported that variation in freshwater temperature had only a small effect on the growth of 696 

juveniles compared to variation in salmonid density. 697 

 698 

Flow condition 699 

In the rivers, trout are largely ambush predators, relying on the flow to bring food to them 700 

although they are more active hunters than Atlantic salmon. In darkness, they can pick 701 

zoobenthos on the bottom. The nursery habitat may differ between resident and anadromous 702 

conspecifics as reported by Morinville and Rasmussen (2003). They studied brook trout, and 703 

found that the young of migratory trout used faster running water than young resident trout, 704 

and that they also fed on different food items. This pattern is expected to come from intrinsic 705 
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differences in metabolic requirement and is not indicative of an effect of flow condition on 706 

migration decision. High flow often correlates with high availability in food resource, which 707 

influences the opportunities for growth (Kendall et al., 2014; Morinville & Rasmussen, 708 

2003). Furthermore, flow may have an effect on anadromy in rainbow trout, at least in 709 

climate zones where summer flows are a limiting factor (Kendall et al., 2014). Flow that 710 

regularly reaches zero may represent a population bottleneck for non-migratory fishes 711 

(Courter, Justice, & Cramer, 2009), and low flow may explain the small size at first smolting 712 

of brown trout in some small streams (Borgstrøm and Heggenes 1988; Jonsson et al. 2001). 713 

More generally, unsuitable flow condition in streams is likely to drive the propensity to 714 

migrate to sea, e.g. due to low flow, or highly variable flow conditions in the home stream, or 715 

a reduction in suitable habitat and high keen competition from conspecifics (density 716 

dependence effect). 717 

 718 

So far, there is empirical evidences of a positive correlation between flow and the number of 719 

migrating smolts in brown trout. In the Danish River Lilleaa the migration speed of wild sea 720 

trout smolts was positively correlated with water discharge (Aarestrup, Nielsen, & Koed, 721 

2002). But when the flow remains low, trout may wait until the temperature comes over a 722 

certain level (Aarestrup et al., 2002). In a Swedish west coast stream, smolts remained in the 723 

rivers during years with low precipitation until the temperature reached 10°C, and migration 724 

increased thereafter irrespective of the discharge (Aldvén et al., 2015). A shift from nocturnal 725 

to diurnal migration appears to occur when the water temperature is 12-13°C and is most 726 

pronounced in large smolts (Haraldstad, Kroglund, Kristensen, Jonsson, & Haugen, 2017). 727 

Single large temperature increases can also initiate a daytime migration (Aarestrup et al., 728 

2002). Water temperature and flow influence the phenology of the sea trout smolt migrations. 729 

Temperature regulates the timing of the start and the end of the migration period whilst water 730 
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level, change in water flow and water temperature influence the number of smolts migrating 731 

each day (Byrne et al., 2004; N. Jonsson & Jonsson, 2002).  732 

 733 

Density-dependence 734 

The food availability interacts with fish density in limiting the resources available per capita. 735 

Higher competition for food and space at high density results in fewer residents, with 736 

migrants maximising growth by moving into the sea (Ferguson et al., 2017; Olsson et al., 737 

2006). During periods of drought or hydropower regulation, density will increase. Stradmeyer 738 

et al. (2008) showed how the importance of dominance status for maintaining food intake 739 

increases as the polarization between the top ranked fish and others increased. As a result, 740 

fewer fish will mature and become residents, thus migration may be an alternative (B. 741 

Jonsson & Jonsson, 1993). 742 

 743 

Inter-specific competition 744 

Similarly, competing species may also influence the proportion of brown trout that migrate, 745 

mediated through a density-dependence process (Olsson et al., 2006). Young brown trout and 746 

Atlantic salmon compete for food and space in rivers, as evidenced by the spatial segregation 747 

observed between the two species (B. Jonsson & Jonsson, 2011). Young Atlantic salmon are 748 

mainly found in shallow, fast flowing habitats of the main river while young trout colonize 749 

tributaries and headwaters (Baglinière & Arribe-Moutounet, 1985; Baglinière & 750 

Champigneulle, 1982; Kalleberg, 1958). In the Shelligan Burn (Scotland), the density of 751 

young Atlantic salmon was negatively correlated with that of young trout (Egglishaw & 752 

Shackley, 1982). Brown trout are territorial and very aggressive, and through interference, 753 

they constrain young Atlantic salmon from shallow, slow-flowing areas (Harwood, Metcalfe, 754 

Armstrong, & Griffiths, 2001; Heggenes, Baglinière, & Cunjak, 1999; Houde, Wilson, & 755 
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Neff, 2017; Kalleberg, 1958). This trend is accentuated by the early hatching of trout 756 

(Baglinière et al., 1994), which are larger and have already established a territory by the time 757 

Atlantic salmon fry emerge. Furthermore, when brown trout are removed, young Atlantic 758 

salmon expand their habitat into former trout-defended areas, i.e. competitive release (Hearn, 759 

1987; Kennedy & Strange, 1986). Experimentally, Gibson and Erkinaro (2009) showed that 760 

brown trout were four times more aggressive than corresponding Atlantic salmon. As a result 761 

of their more aggressive behaviour and larger size, brown trout have a competitive advantage 762 

in slow flowing, shallow areas along stream banks and pools where they monopolize the food 763 

resources (Gibson & Erkinaro, 2009; Höjesjö, Stradmeyer, Griffiths, & Armstrong, 2010). 764 

Atlantic salmon, on the other hand, make more use of cover, deep pools and fast-flowing 765 

riffles where food is difficult to defend. In addition, their more streamlined body shape and 766 

larger pectoral fins are assumed to give young Atlantic salmon a selective advantage in 767 

rapidly flowing rivers (Karlström, 1977), and they may outcompete trout in fast flowing 768 

streams (Montorio, Evanno, & Nevoux, 2018). The interaction between young brown trout 769 

and Atlantic salmon in rivers is adversely competitive, i.e. increased abundance of the one 770 

leads to a decrease in abundance of the other. This is exemplified in formerly acidified rivers 771 

treated with calcium carbonate (limestone powder). As the abundance of Atlantic salmon 772 

increased with time, the density of brown trout decreased (Hesthagen, Larsen, Bolstad, Fiske, 773 

& Jonsson, 2017). However, even when the abundance of Atlantic salmon increases at the 774 

expense of brown trout, the total output of salmonid smolts increases (cf. Kennedy and 775 

Strange, 1986).  776 

  777 

The aggressiveness of brown trout is energetically costly. Their high-energy use is assumed 778 

to be the main reason why brown trout are outcompeted by Arctic charr because of a much 779 

lower growth efficiency in cold, food limited habitats (A. G. Finstad et al., 2011). In shallow, 780 
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temperate localities richer in food, on the other hand, brown trout outcompete Arctic charr 781 

because of its higher aggressiveness. In sympatry, the two segregate spatially, with charrs 782 

shifting to the pelagic or the profundal zone (Heggberget, 1984; Klemetsen et al., 2003; 783 

Langeland, L’Abée-Lund, Jonsson, & Jonsson, 1991).  784 

 785 

There is also competition between grayling Thymallus thymallus and brown trout. Mäki-786 

Petäys et al. (2000) suggested that competition between these species increases in streams 787 

during winter when ice decreases the habitat availability. Competition between the two 788 

species may be a reason for their partial segregation in rivers (Greenberg, Svendsen, & 789 

Harby, 1996). However, recruitment of grayling and trout were positively associated in an 790 

English chalk stream (Bašić, Britton, Cove, Ibbotson, & Gregory, 2018). Also, Alpine 791 

bullhead (Cottus poecilopus) is a strong competitor to juvenile brown trout where these 792 

species co-occur (Hesthagen & Heggenes, 2003; Holmen, Olsen, & Vøllestad, 2003). For 793 

instance, Holmen et al. (2003) reported that brown trout density was five to 10 times higher 794 

at the upper, allopatric site than in downstream areas where it lived in sympatry with the 795 

Alpine bullhead. Diet composition suggested that brown trout in sympatry with Alpine 796 

bullhead foraged more on invertebrate drift and surface arthropods than allopatric brown trout 797 

did. 798 

 799 

In addition, novel species that invade brown trout areas, naturally or because of human-800 

mediated releases, may influence brown trout migration and habitat use. Brown trout living in 801 

sympatry with brook trout consumed more terrestrial prey, had smaller home ranges, and a 802 

stouter body shape (Závorka et al., 2017). Sympatric brown trout also had lower specific 803 

growth rates, suggesting a lower fitness. Other introduced species, such as rainbow trout 804 

affect brown trout negatively. Blanchet et al. (2007) found by use of laboratory and field 805 



35 

 

studies that rainbow trout significantly affected native brown trout habitat selection and 806 

apparent survival. In contrast, Baran et al. (1995) demonstrated a competition advantage of 807 

the brown trout in mountainous rivers when the two species live in sympatry. The more 808 

similar the ecology of the interacting species, the greater the impact of competition is.  809 

 810 

There are examples of rivers where Atlantic salmon and resident trout co-exist, but little or no 811 

sea trout run is observed, as in Ireland and Brittany (France). In the Irish systems, the 812 

presence of lakes and running river sections may promote habitat segregation and reduce 813 

inter-specific competition while in large salmon rivers, the occurrence of sea trout is often 814 

restricted to the lower stretches and to small tributaries close to or directly entering an estuary 815 

(Fahy, 1985; K. F. Whelan, 1989). Similarly, the tree-like shape of the watersheds in 816 

Brittany, characterized by many small tributaries, may maximise segregation and reduce 817 

competition between the two species (Baglinière et al., 1994).  818 

 819 

It is still unclear whether interspecific competition in freshwater influences the tendency to 820 

migrate to the sea. However, one may hypothesize that brown trout will exhibit a stronger 821 

tendency to migrate if their resource use in freshwater is constrained by competing species, as 822 

shown for increased competition from conspecifics (Olsson et al., 2006). Montorio et al. 823 

(2018) provided empirical evidence for inter-specific competition-exclusion relationship. 824 

They found a negative effect of trout density on growth and survival in juveniles, but a 825 

positive effect of Atlantic salmon density on the probability of migration in young trout. They 826 

reported that in years following a high recruitment in salmon, the propensity of trout leaving 827 

the stream was high. Atlantic salmon may be a main competitor in temperate areas and Arctic 828 

charr in sub-Arctic and Arctic areas.  829 

 830 
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Predation  831 

The role of predators in shaping patterns of partial migration has been historically neglected 832 

(Chapman et al., 2012). However, if the decision to migrate is a balance between growth 833 

opportunities and mortality risk, increased predation in freshwater should select for anadromy 834 

in trout. Predation risk may constrain habitat use and thereby reduce individual growth 835 

(Johnsson, Rydeborg, & Sundström, 2004). Alternatively, high predation in freshwater may 836 

offer more resource per capita to the remaining individuals with an opposite effect on the 837 

opportunity for growth. 838 

 839 

Predation is expected to be particularly high during the smolt run and in the first few days 840 

after the smolts reach sea water (Dieperink et al., 2002; Thorstad et al., 2016). If there are 841 

alternative prey, such as Atlantic salmon smolts migrating to sea at the same time, this may 842 

reduce the mortality and increase the fitness of sea trout (B. Jonsson & Jonsson, 2009b), or it 843 

may stimulate the aggregation of predators (Jepsen, Holthe, & Økland, 2006). Thus, although 844 

effects of predation on the life history strategy of trout is not well studied, this does not mean 845 

that predation is unimportant in this respect.  846 

  847 

Influence of the marine environment on migration outcome 848 

The decision to migrate is a trade-off between benefit and cost. Costs associated with sea 849 

migrations include energy used for swimming and increased probability of death, e.g. owing 850 

to predation, parasitism and diseases, but also the physiological adjustments for salt excretion 851 

(Gross et al., 1988a). Distance to the coast and deep sea areas may limit the distribution of 852 

sea trout. It is generally assumed that most anadromous brown trout feed in shallow waters 853 

within 100 km from the river mouth (B. Jonsson & Jonsson, 2011; Thorstad et al., 2016). 854 

Nevertheless, there are some evidences of large within and between population variations in 855 
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marine migration distance (B. Jonsson & Jonsson, 2014; Kristensen et al., 2018; Potter, 856 

Campbell, Sumner, & Marshall, 2017; Prodöhl et al., 2017).  857 

 858 

Growth potential 859 

Growth levels off with age and spawning history, but the difference in size between resident 860 

and anadromous trout increases with age (Figure 6, left panel). This suggests that the best 861 

growth strategy in brown trout would be to leave early and stay longer at sea. In the 862 

Burrishoole River (Ireland) and the River Bresle (France), fish with the combination of smolt 863 

age and sea age that results in the highest growth gain are well represented among the 864 

returning anadromous trout (Figure 6, right panel). However, some of these strategies are 865 

represented by a low proportion of trout. Data support a mismatch between the age-specific 866 

additional growth and the age-structure of the anadromous trout in River Vosso (Norway), 867 

River Tamar (England) and River Oir (France). In these populations, data show a shorter 868 

marine sojourn and/ or an older age at smolting than expected under the hypothesis of growth 869 

maximisation. We argue that strong constraints in the marine environment, in terms of 870 

mortality, may select against growth maximisation strategies. For instance, young smolts may 871 

be too small to escape length-biased predation, thus favouring late runners. Furthermore, 872 

marine survival may be too low to support long marine sojourns, i.e. very few two sea winter 873 

sea trout may survive until spawning. 874 

 875 

By driving the level of mortality and growth in trout that initiate seaward migration, the 876 

marine environment influences the balance between the cost and benefit of the time at sea. If 877 

the costs of feeding at sea exceeds the gains, selection should favour freshwater residency 878 

(Gross et al., 1988a). In only a few generations, altered environmental conditions can 879 

terminate the tendency to migrate (Olsson et al., 2006; Sandlund and Jonsson, 2016). The 880 
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marine environment acts as a selective filter on anadromy, and any increase in mortality at 881 

sea is likely to contribute to the reduction in sea trout abundance over space and time.  882 

 883 

Seascape 884 

Quéméré et al. (2016) explored effect of seascape, e.g. the marine landscape, on the 885 

connectivity of brown trout populations between rivers, and how the seascape influences the 886 

life history of brown trout across northern France. They found  two genetically distinct 887 

populations which strongly differ in terms of migratory propensity and stock characteristics. 888 

Western populations mainly produce freshwater resident trout and small sea trout (finnock, 889 

i.e. post-smolt returning in the same year as they went to sea for the first time), while eastern 890 

populations produce large sea trout that perform long sea-sojourns. They hypothesised that 891 

such a pattern may be driven by the spatial arrangement and feeding opportunities of marine 892 

habitats, which promotes a clinal variation in migratory behaviour. In the highly productive 893 

Eastern basin of the English Channel, anadromous trout can achieve very large size and long 894 

sea sojourn, which may favor dispersal and gene flow among neighbouring streams In the 895 

Western basin, marine feeding opportunities are poor and trout have evolved mainly a 896 

freshwater resident life history (Quéméré et al., 2016). The dispersal barrier may act as a 897 

forcing factor for a distinct life history (Richardson, Urban, Bolnick, & Skelly, 2014). On the 898 

other hand, the rivers appear different, and habitat characteristics may also add to the 899 

variation observed. Fahy (1985) also observed differences in trout size, growth and condition 900 

between trout returning from different regions, such as the Irish Sea compared to the Irish 901 

west coast and even from different bays along the west coast (Poole, unpublished). 902 

 903 
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Sea lice  904 

The sea lice Lepeophtheirus salmonis and Caligus elongatus are natural parasites of sea trout 905 

that can propose major threats to trout in the marine environment. During the last 30 years, 906 

salmon farming has increased the abundance of sea lice (B. Finstad & Bjørn, 2011; Fjørtoft et 907 

al., 2017; Thorstad & Finstad, 2018; Thorstad et al., 2015; Tully, Poole, & Whelan, 1993; 908 

Tully, Poole, Whelan, & Merigoux, 1993) in some areas. Sea lice induce ionoregulatory 909 

dysfunction, physiological stress, anaemia, reduced feeding and growth, changes in post-910 

smolt behaviour, increased susceptibility to secondary infections, reduced disease resistance 911 

and ultimately mortality of individual sea trout (B. Finstad & Bjørn, 2011; ICES, 1997; 912 

Poole, Nolan, & Tully, 2000). Wild adult sea trout in farm-free areas exhibit relatively low 913 

sea lice levels (Gargan, Tully, & Poole, 2003; Schram, Knutsen, Heuch, & Mo, 1998). On the 914 

other hand, in farm-intensive areas, sea lice levels on wild sea trout are typically higher 915 

(Gargan et al., 2003; I. Moore et al., 2018; Tully, Poole, Whelan, et al., 1993; Tully & 916 

Whelan, 1993). Sea lice infestations in these areas regularly exceed more than 0.35 lice per 917 

gram of fish mass, initiating physiological disturbance to the trout with weight range from 918 

16-70 gram (Wells et al., 2006, 2007). At higher lice levels mortality may occur (Taranger et 919 

al., 2015). The sea lice levels on wild sea trout are particularly high within 30 km of salmon 920 

farms, but elevated lice infestations extend beyond this distance (Gargan et al., 2003; I. 921 

Moore et al., 2018; Serra-Llinares, Bjørn, Finstad, Nilsen, & Asplin, 2016; Serra-Llinares et 922 

al., 2014; Tully, Gargan, Poole, & Whelan, 1999). Therefore, sea lice in intensively farmed 923 

areas negatively impact wild sea trout through a suite of primary and secondary impacts 924 

reducing marine growth and survival of sea run fish (Halttunen et al., 2018; S Shephard, 925 

MacIntyre, & Gargan, 2016). Quantification of these impacts remains a challenge, although 926 

population-level effects have been quantified in Atlantic salmon using field experiments 927 

(Krkošek et al., 2013; Skilbrei et al., 2013; Vollset et al., 2016), showing higher survival in 928 



40 

 

groups of anti-parasitically treated fish relative to non-treated control groups. Reduced 929 

growth and increased mortality in the marine environment decrease the benefits of marine 930 

migration for sea trout (Halttunen et al., 2018), and high sea lice levels might select against 931 

anadromy. In some populations, immature anadromous trout return frequently to rivers 932 

during the growth season. Such ‘premature returning’ may be an early warning signal of 933 

heavy salmon lice infections (Halttunen et al., 2018; Maisse et al., 1991). Sea lice-induced 934 

effects on sea trout may in extreme cases lead to local loss of anadromous trout and a 935 

transition to entirely resident trout populations (discussed in Poole et al. (2006) with 936 

reference to the Burrishoole sea trout stock). However, recent studies showed the complexity 937 

of the relationship between brown trout and sea lice infections in the wild (relationship 938 

between size of trout and distance of farm cage) and emphasised the requirement of further 939 

research to quantify these effects (I. Moore et al., 2018).  940 

 941 

Influence of the spawning habitat on reproduction outcome 942 

Marine migration is a strategy that allows brown trout to escape from, or reduce the influence 943 

of, density dependence and resource limitation in freshwater, and by that maximize 944 

reproductive output (B. Jonsson & Jonsson, 2006b; Lobón-Cerviá, 2007; Marco‐Rius, 945 

Caballero, Moran, & Leaniz, 2013). But to reproduce, trout must return to freshwater and 946 

compete for access to suitable spawning sites and mates. Intense spawning competition may 947 

introduce both density and frequency dependant pressures (Berejikian et al., 2010; Foote et 948 

al., 1997; Gross, 1985), where body size is important for determining reproductive success 949 

(Serbezov, Jorde, Bernatchez, Olsen, & Vøllestad, 2012). Interference competition generally 950 

favours large individuals (Olsén et al., 1998), however, in small shallow tributaries, small 951 

resident trout may have higher fitness because these habitats are less accessible for large 952 

individuals. In populations dominated by individuals with short sea sojourns, there is larger 953 
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spatial overlap between the spawning grounds of resident and anadromous trout than in 954 

populations dominated by longer sea sojourn. Interbreeding between the two phenotypes 955 

(Charles, Roussel, Lebel, Baglinière, & Ombredane, 2006) produces fertile offspring 956 

(Ombredane et al., 1996), but these offspring have reduced migration probability because the 957 

migratory strategy is partly inherited (Baglinière et al., 2001; B. Jonsson, 1982). Size-specific 958 

spawning success of both sexes is influenced by habitat characteristics as well as the 959 

competitive ability and density of the competitors, although contrasting selective mechanisms 960 

operate on males and females (B. Jonsson & Jonsson, 2015). Hence, the effect of each of 961 

these selective variables is sex-specific and determined by both the environment and the 962 

population structure (Young, 2005). Thus, spawning requirements play an important role in 963 

determining the frequency, abundance, and sex ratio of anadromous brown trout (B. Jonsson 964 

& Jonsson, 2015). 965 

 966 

Habitat suitability  967 

In order to breed successfully, female brown trout require a specific combination of 968 

hydrological conditions and substrate composition (Baglinière, Champigneulle, & Nihouarn, 969 

1979; Gauthey et al., 2015; Montgomery, Buffington, Peterson, Schuett-Hames, & Quinn, 970 

1996; Tappel & Bjornn, 1983). In many circumstances, the availability of habitat that 971 

adequately meets these conditions represents the primary factor limiting the size of salmonid 972 

populations (Buffington, Montgomery, & Greenberg, 2004; Kondolf & Wolman, 1993).  973 

 974 

Despite their difference in body size, the specific spawning habitat requirements of 975 

anadromous trout versus freshwater resident trout have hardly been studied (Nika, Virbickas, 976 

& Kontautas, 2011; Walker & Bayliss, 2007). It seems clear, however, that growth associated 977 
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with anadromy will represent differing reproductive advantages depending on the nature of 978 

available spawning habitat.  979 

 980 

The extra energy expenditure of migrating a longer distance is indicated by the gradual 981 

decrease in the condition factor of anadromous brown trout with increasing migratory 982 

distance inland. The gonadosomatic index of males (I=mass of gonads/somatic mass) 983 

decreases with migratory distance (B. Jonsson & Jonsson, 2006a). Bohlin et al. (2001) 984 

hypothesized that the fitness of migrants is negatively related to the altitude of the spawning 985 

area because of migratory costs, and in support of this they found that anadromous trout were 986 

replaced by non-anadromous conspecifics at an altitude of ca. 150 m in southern Sweden. 987 

More than distance itself, it is the energetic demand required to reach the spawning ground 988 

that matters. As such, the cumulative effect of barriers (natural or artificial) can greatly 989 

impede sea trout migration inland in fragmented rivers. 990 

 991 

Flow condition and scouring risk 992 

Prior to spawning, female salmonids flex their flanks and tail fin to excavate depressions 993 

(nests) in the streambed into which eggs are deposited. Due to the allometric relationship 994 

between fish length and caudal thrust, salmonid females can construct their nests in gravel 995 

where the median particle diameter does not exceed 10% of their fork length (Kondolf & 996 

Wolman, 1993). Thus, nest sizes and depths are positively correlated with body size (Crisp & 997 

Carling, 1989; Elliott, 1984; Gauthey et al., 2015). The depths of gravel mobilized during 998 

high flow events are influenced by the strength of the stream flow, stream gradient and 999 

substrate composition (Harrison, Legleiter, Wydzga, & Dunne, 2011). Within water courses 1000 

prone to such riverbed ‘scour’, individual scour events are likely to kill trout eggs located 1001 

above the maximum scour depth, thereby exerting a strong selective pressure for a locally-1002 
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determined minimum female body size (Montgomery et al., 1996). Thus, due to their ability 1003 

to dig deeper nests and move heavier gravel, large anadromous females may enjoy a distinct 1004 

advantage over small resident females as scour depth and gravel particle size increase. This 1005 

size-dependent mechanism may interfere with habitat selection in trout within a river basin, 1006 

leading to positive correlation between female body size and river size at the spawning area.  1007 

 1008 

Furthermore, female brown trout show a marked preference for spawning in previously 1009 

utilized nests containing incubating eggs (Gortázar, Alonso, & Jalón, 2012). This behaviour, 1010 

known as redd superimposition, includes a period of excavation that leads to high mortality 1011 

rates amongst eggs deposited by earlier spawners (McNeil, 1964; Nomoto et al., 2010). This 1012 

behaviour has also been reported where brown trout and Atlantic salmon share the same 1013 

spawning ground (Baglinière et al., 1979). The intensity of redd superimposition depends on 1014 

the density of spawners, the size of the spawning area, the duration of the spawning period 1015 

and the distribution of spawners within the river system. As with environmentally-based 1016 

scour, the survival of eggs depends on whether they are deposited below the depth of gravel 1017 

mobility during subsequent excavations. As a result, the ability of large (i.e. anadromous) 1018 

females to construct deeper nests than smaller freshwater resident females may represent a 1019 

distinct inter-specific and intra-specific advantage where population density is high or where 1020 

suitable spawning habitat is in short supply.  1021 

 1022 

Thermal condition and spawning phenology 1023 

In some populations, freshwater residents appear to spawn later in the spawning period than 1024 

their anadromous counterparts (N. Jonsson & Jonsson, 1999). The asynchronous spawning of 1025 

anadromous and resident females may lead to the eggs of anadromous females hatching 1026 

earlier than those of resident females, potentially conferring a competitive advantage on the 1027 
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progeny of anadromous females through early growth opportunities. But this different 1028 

temporal spawning pattern between resident and anadromous trout does not exist everywhere. 1029 

In France the spawning period of sea trout (mid-December to late January) occurs within the 1030 

larger spawning period of resident trout (late November to mid-February) (Baglinière, Pers. 1031 

com.).  1032 

 1033 

The efficiency of yolk conversion to body tissue declines as water temperature increases 1034 

(Fleming & Gross, 1990), meaning that rising water temperatures during spring are likely to 1035 

have a more pronounced negative impact on the growth performance of eggs spawned later in 1036 

the breeding period. It is possible that the higher energy density found in the eggs of resident 1037 

females relative to those of anadromous females from the same population (N. Jonsson & 1038 

Jonsson, 1997b, 1999) represents an adaptation which mitigates the competitive 1039 

disadvantages that result from late spawning. Possibly, thermal differences between eggs 1040 

fertilized early or late during the spawning period may also influence later growth and 1041 

reproductive allocations, as they appear to do in Atlantic salmon (A. G. Finstad & Jonsson, 1042 

2012; B. Jonsson & Jonsson, 2014, 2018). 1043 

 1044 

Oxygen and siltation 1045 

In addition to benefitting from increased fecundity, large anadromous females, which tend to 1046 

accumulate high somatic mass during marine feeding, are likely to produce larger eggs than 1047 

smaller resident females (Hendry & Day, 2003; N. Jonsson & Jonsson, 1999). While 1048 

increased redd depth is beneficial in protecting eggs from washout during scour events, the 1049 

threat of egg asphyxiation due to sedimentation or weakly oxygenated water increases with 1050 

burial depth (Haury, Ombredane, & Baglinière, 1999). Einum et al. (2002) found that the 1051 

fitness of brown trout eggs at differing oxygen levels is size-dependant, with larger eggs 1052 
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exhibiting significantly higher survival than small eggs when the oxygen concentration is 1053 

low, possibly as a result of their increased surface area which facilitates diffusion. Laboratory 1054 

experiments with brown trout embryos suggest that sublethal stress in the gravel nest caused 1055 

by hypoxia can alter the behaviour and survival of trout during the early juvenile period 1056 

(Roussel, 2007). It follows that the nature of local scour regimes, dissolved oxygen levels, 1057 

siltation rates and riverbed gravel composition may all influence the relative fitness and 1058 

frequency of differing adult female phenotypes. These factors should select for increased 1059 

body size and egg mass associated with anadromy where scour is deep, gravel particles are 1060 

large, and siltation or deoxygenation represent a significant threat to egg survival.  1061 

 1062 

Male mating strategies: frequency dependence, density dependence and shelter 1063 

There is strong regional and local variation in age at maturity and freshwater residency rates 1064 

of males, indicating that populations are locally adapted with regard to body size and 1065 

migratory strategy (Bohlin et al., 1990; Dellefors & Faremo, 1988). Where the habitat 1066 

permits, small males may safely remain close to spawning females by utilising crevices, 1067 

rocks, debris, or shallow areas as refuges where the aggression of large males is avoided 1068 

(Gross, 1985). Thus, the availability of appropriate refuge habitats near spawning sites may 1069 

be a factor influencing the fitness and, consequently, the proportion of male brown trout that 1070 

forego marine migration or mature at a small size (B. Jonsson & Jonsson, 2011). 1071 

 1072 

While the abiotic characteristics of spawning habitat and local hydrological regimes are likely 1073 

to influence the relative fitness of anadromous and freshwater resident phenotypes in brown 1074 

trout, direct competition on spawning grounds may exert density-dependent selection on 1075 

these phenotypes. But also, polymorphism amongst mature males appears to be maintained 1076 

by frequency-dependent selection during spawning that increases the relative fitness of the 1077 
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rarer phenotype and promotes the co-occurrence of both mating strategies (Berejikian et al., 1078 

2010; Foote et al., 1997; Gross, 1985; Hutchings & Myers, 1985). For instance, in Atlantic 1079 

salmon, aggressive competition for mates between large males occupies much of their focus, 1080 

allowing young and small males to go unnoticed and successfully employ their sneaking 1081 

tactic when courting females. As the density of large males increases, this alternative mating 1082 

behaviour may confer a greater mating success, balanced against the risk of getting killed by 1083 

a large male. Conversely, the fitness of large males is likely to be reduced by competition for 1084 

mates as the frequency of large males increases (Engqvist & Taborsky, 2016). Similarly, as 1085 

the frequency of precocious males increases, their individual genetic contribution is likely to 1086 

diminish due to increased competition from other precocious males (Hutchings & Myers, 1087 

1994). In brown trout, males do not mature as early and small as in salmon, but the contrast 1088 

between small resident and large migrant individuals provides a similar framework. 1089 

  1090 

It has been argued that the development and maintenance of an evolutionarily stable 1091 

alternative male reproductive strategy requires a strong underlying genetic basis, although the 1092 

expression of these strategies is conditional, in the sense that environmental conditions 1093 

associated with growth and survival interact with genetically based threshold responses to 1094 

determine individual strategy (Engqvist & Taborsky, 2016; Tomkins & Hazel, 2007). 1095 

However, one cannot rule out epigenetic mechanisms, which might provide a rapid response 1096 

to changing environmental conditions (Moran & Pérez-Figueroa, 2011). Hutchings and 1097 

Myers (1994) suggested that within a given trout population, an evolutionarily stable 1098 

continuum of strategy frequencies is maintained by polygenic thresholds (which are likely to 1099 

differ significantly between sexes as well as between individuals) of environmentally 1100 

controlled traits (primarily associated with growth). In this sense, the polyphenic mating 1101 

strategies employed by male brown trout may be regarded as both locally adapted and 1102 
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phenotypically plastic, resulting from the interplay between genotype, environmental 1103 

conditions and both frequency and density dependent pressures. While density dependent 1104 

pressures are likely to lead to high rates of migration and anadromy where feeding 1105 

opportunities are poor in the home river, frequency dependent pressures largely maintain 1106 

alternative mating strategies and associated polyphenism through intrasexual competition on 1107 

the spawning beds (Forseth et al., 1999; Landergren, 2001; Wysujack, Greenberg, Bergman, 1108 

& Olsson, 2009).  1109 

 1110 

Human impacts on sea trout  1111 

Climate change 1112 

Possible effects of climate change on sea trout populations have been extensively reviewed 1113 

(Elliott & Elliott, 2010; Graham & Harrod, 2009; B. Jonsson & Jonsson, 2009a; Lassalle & 1114 

Rochard, 2009). The expected climate change in the Atlantic region is for warmer, drier 1115 

spring and summer seasons, and for milder and wetter winters, with more precipitation falling 1116 

as rain and less as snow, shorter ice-covered periods, and more frequent periods of extreme 1117 

weather, including droughts, heavy rain events and strong spates. A shorter ice-covered 1118 

period may increase the activity and energy use of trout in rivers and decrease production 1119 

unless feeding opportunities increase to a similar extent (Watz et al., 2015). 1120 

 1121 

Climate change may also be responsible for increased rates of land erosion, which is 1122 

reinforced by land-use change in agriculture and forestry practices. As a result, an increase in 1123 

river sediment is likely. Suspended sediment affects trout behaviour and survival directly. 1124 

Sediment loads clog gravel beds impeding brown trout from spawning and reducing 1125 

recruitment success (Scheurer, Alewell, Bänninger, & Burkhardt-Holm, 2009). Invertebrate 1126 

communities and growth opportunities for trout are also affected by increasing sediment input 1127 
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(J. I. Jones et al., 2012). An increase in water temperature, notably during the spawning 1128 

period, is likely to impact reproductive behaviour and egg mortality as observed in 1129 

experimental conditions in Atlantic salmon (Beall & De Gaudemar, 1999), ultimately leading 1130 

to a drastic reduction in the species distribution. Overall, Jonsson and Jonsson (2009a) 1131 

predicted a north and northeastward movement of the distributional range of sea trout, with 1132 

decreased production and population extinction in the southern regions and invasion of new 1133 

spawning and nursery rivers and feeding areas in the north. 1134 

 1135 

Fisheries 1136 

Trout are exploited through fishing both in freshwater and marine habitats. Overexploitation, 1137 

i.e., when a population is exploited to the extent that the optimal recruitment cannot be 1138 

maintained due to a lack of spawners and thereby insufficient egg deposition, leads to 1139 

population declines, and/ or a shift the balance between anadromous and freshwater resident 1140 

compartments of populations. Because brown trout are iteroparous, the impact of exploitation 1141 

is cumulative on older and larger fish (Solomon & Czerwinski, 2007). Catch statistics, as 1142 

well as information on catch per unit effort and catch rates, are important for the monitoring 1143 

of sea trout and assessments of levels of exploitation. In the Burrishoole catchment, fishing 1144 

effort was found to be the most important determinant of catch with a weaker but significant 1145 

relationship between catch and stock (Mills, Mahon, & Piggins, 1986). The quality of catch 1146 

statistics for trout is adequate in some fisheries and countries, but needs improvement in 1147 

others (Milner et al., 2007). The extent of illegal sea trout fishing is unknown, but can be 1148 

significant in some countries. 1149 

 1150 
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Aquaculture 1151 

Salmon farming affects sea trout by spreading infectious diseases caused by viruses, bacteria, 1152 

fungi and parasites, as well as often functioning as a barrier to migration (Aarestrup & Koed, 1153 

2003). Such diseases may affect both the freshwater and marine stages of the sea trout life 1154 

cycle. Although numerous studies document the impact of salmon lice (see previous section 1155 

on sea lice), little knowledge and monitoring is available on other effects of fish farming on 1156 

wild brown trout populations (Bakke & Harris, 1998). However, considering the importance 1157 

of the parasitism impact on wild salmonids in Norway, an operational salmon lice model has 1158 

been developed to provide an improved monitoring system for risk assessment (Myksvoll et 1159 

al., 2018) as well as the implemented “traffic light system” for a sustainable fish farming in 1160 

Norway (Vollset et al., 2018). In Ireland, Single Bay Management (Anon, 2008) was 1161 

implemented in the early 1990s which included close monitoring and advice for to harvest or 1162 

treat lice, especially in the immediate months before and during the wild smolt runs. 1163 

 1164 

Degradation of water quality 1165 

Water acidification, pollution (e.g. from agriculture, sewage treatment works, roads and 1166 

mining), hydropower developments, flow regulation, water abstraction, migratory barriers, 1167 

and habitat alterations as diverse as high diffuse organic load or clearing riffles of stones for 1168 

passing logs through, affect trout populations negatively (reviewed by Thorstad et al., 2014; 1169 

K. F. Whelan & Poole, 1993).  1170 

 1171 

Freshwater acidification arising from industrial emissions of sulphur dioxide and nitrogen 1172 

oxides to the atmosphere, and subsequent acid precipitation wiped out trout populations in 1173 

southern Fennoscandia during the last century. Although emissions were reduced after 1990, 1174 

many rivers in this area are still affected by chronic or episodic acidification (e.g. Hesthagen 1175 
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et al., 2017; Kroglund et al., 2007; Rosseland & Kroglund, 2010). Brown trout are vulnerable 1176 

to acidification, although to a lesser degree than Atlantic salmon (Henrikson & Brodin, 1177 

1995). Hence it is likely that any liming strategy adopted specifically for Atlantic salmon 1178 

may also restore water to a quality suitable for sea trout. However, liming strategies can still 1179 

be optimised to improve conditions for sea trout in tributaries and small streams that 1180 

presently are not included in the liming programme of the main stem of rivers. Furthermore, 1181 

competition with more acid sensitive species than brown trout, such as Atlantic salmon, 1182 

seems to increase as a consequence of liming and reduce the abundance of trout in acidified 1183 

waters treated with calcium carbonate (Hesthagen et al., 2017). 1184 

 1185 

Contaminants derived from intensive agriculture, afforestation, mining and other industries 1186 

impact sea trout negatively, both as a consequence of direct and indirect effects in freshwater 1187 

(B. Jonsson, Jonsson, & Ugedal, 2011). High nitrite concentrations are lethal for embryos, 1188 

this impact being higher when dissolved oxygen concentrations are low (Massa, Baglinière, 1189 

Prunet, & Grimaldi, 2000). Livestock grazing contributes to river eutrophication due to 1190 

runoff from livestock manure. Interestingly, intensive agriculture systems relying on a large 1191 

quantity of nutrients led to an increase in productivity in river Scorff, France (Roussel et al., 1192 

2013). This coincided with an increase in growth performance in juvenile Atlantic salmon 1193 

and a decrease in mean age at smolting (Rivot et al., 2009). However, this positive effect on 1194 

fish may only hold within a reasonable level of eutrophication. In the Burrishoole, Ireland, 1195 

land use 1196 

change was found to have no significant impact on the freshwater survival of either salmon or 1197 

trout (de Eyto et al., 2016). Nevertheless, contaminants also alter the parr-smolt 1198 

transformation, and influence the run-timing and survival of smolts once they enter sea water 1199 

(S. D. McCormick, Hansen, Quinn, & Saunders, 1998; Rosseland & Kroglund, 2010). 1200 
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Contaminants may damage fish gills and thereby compromise the ionoregulatory capacity of 1201 

smolts (Kroglund et al., 2007; S. D. McCormick et al., 1998; A. Moore, Lower, Mayer, & 1202 

Greenwood, 2007). Sublethal exposure to contaminants during smolting may therefore have 1203 

implications for the survival for trout at sea and their tendency to migrate. Livestock 1204 

trampling of stream bank may induce direct destruction of eggs and fry (Gregory & Gamett, 1205 

2009), potentially leading to population decline, as illustrated in a cutthroat trout model 1206 

(Peterson, Rieman, Young, & Brammer, 2010). Stream bank trampling also increases 1207 

siltation sedimentation of salmonids redds, which limits the interchange of surface and 1208 

intragravel water and, therefore, the supply of dissolved oxygen to the embryo (Heywood & 1209 

Walling, 2007). Stock exclusion from watercourses using riparian fencing and limited pool 1210 

excavation has the potential to preserve and enhance wild trout populations in headwaters 1211 

(Summers, Giles, & Stubbing, 2008). This rehabilitation work has become a widely 1212 

recommended fisheries management practice (Summers, Giles, & Willis, 1996). 1213 

 1214 

Road and railway activities contribute to freshwater pollution, but there is little available 1215 

information on effects for trout. Meland et al. (2010) suggested that traffic-related 1216 

contaminants, especially those emanating from contaminated tunnel wash water, reduce 1217 

growth of juvenile trout. In winter, salt from the roads may also be an issue. In addition, poor 1218 

water quality in rivers may be responsible for various skin diseases. For instance, UDN-like 1219 

(Ulcerative Dermal Necrosis) disappeared from Europe in the 1970s, but in 1993, Roberts 1220 

wrote: “it seems likely that UDN is a cyclical disease (…). It can therefore be expected to 1221 

return again before the middle of the 21th century” (Roberts, 1993). Currently, a UDN-like 1222 

disease is becoming an important driver of adult mortality in Baltic salmonids, this disease 1223 

has been detected in Latvia, Poland, Germany and Sweden (ICES, 2018). 1224 

 1225 
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Threat to connectivity 1226 

Hydropower stations, dams and weirs may all comprise major obstacles to migratory trout 1227 

and cause marked alteration of riverine habitats. Building of roads, railways, bridges and 1228 

other installations may incur migratory barriers for sea trout. In some cases, migrations may 1229 

be completely blocked, whereas in others, culverts or other constructions may not be 1230 

sufficiently well-designed to enable or facilitate fish passage (Larinier, 2002). River flow 1231 

regulation for irrigation, freshwater fish hatcheries, channel modification to facilitate boat 1232 

traffic (e.g. locks) and the building of infrastructure along rivers all pose challenges to 1233 

migratory fish like those from hydropower regulation. There are numerous studies on 1234 

restoration of spawning habitats, changes in overwintering environmental conditions, fish 1235 

stranding due to rapid flow decreases, migration barriers, turbine mortality and the effects of 1236 

flow and temperature regimes on juvenile growth, behaviour and recruitment of trout (e.g. 1237 

(Aarestrup & Koed, 2003; Alonso-González, Gortázar, Sanz, & De Jalón, 2008; Pulg, 1238 

Barlaup, Sternecker, Trepl, & Unfer, 2013; Saltveit, Halleraker, Arnekleiv, & Harby, 2001). 1239 

Also, passages through hydrological barriers and temperature changes affect energy 1240 

expenditure and decrease the fitness gain of migration. Furthermore, recent studies show that 1241 

the presence of many dams negatively affect the energetic status of sea trout kelts during their 1242 

seaward migration, reducing iteroparity (Haraldstad et al., 2018). 1243 

 1244 

Coastal development 1245 

There is little information on how anthropogenic factors and increased human development 1246 

activity in coastal areas affect sea trout survival and movements. It is not known how 1247 

harbours, piers, bridges, fish farms, or industrial developments and deposits from mining 1248 

activity in coastal areas affect sea trout. This is compounded by the construction of port 1249 

facilities with piers or tethering systems that extend far offshore, as necessitated by the 1250 
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increasing size of ocean-going vessels. The construction of tidal power turbines is currently 1251 

widely debated but the indirect impact of habitat changes associated with necessary damming 1252 

and the direct impact of the spinning blades could be substantial for migratory species like 1253 

trout. An increasing portion of rivers and the ocean is also now being illuminated at night. It 1254 

is not known how such facilities impact sea trout, but negative effects of light pollution have 1255 

been demonstrated on salmon migratory behaviour (Riley, Bendall, Ives, Edmonds, & 1256 

Maxwell, 2012) and may be expected to exert the same negative effects on trout.  1257 

 1258 

Interactions among impact factors 1259 

Often, several anthropogenic factors impact trout populations simultaneously, but studies of 1260 

synergistic effects of anthropogenic disturbances on fish populations are often complicated 1261 

and expensive to conduct, and very few such studies on any species exist. Synergistic effects 1262 

of two or more impact factors are complex, non-linear and unpredictable, and certainly not 1263 

apparent from combining knowledge of the effects of single factors studied in isolation. As 1264 

one example Finstad et al. (2012, 2007) investigated effects of salmon lice and acidification 1265 

on Atlantic salmon post-smolt survival. These studies showed that smolts exposed to 1266 

freshwater acidification were subsequently more vulnerable to salmon lice than were control 1267 

groups held in good quality freshwater before migrating to sea. Vulnerability to salmon lice 1268 

was, however, reduced if there was a recovery period following the acidification episode and 1269 

prior to exposure to salmon lice. The interaction between higher temperature and reduced sea 1270 

louse generation time has been implicated in exacerbating the farm lice sea trout impact 1271 

(Tully, 1992) in a context of global warming. The interaction between run timing of sea trout 1272 

smolts and the point in time at which those smolts gain a sea louse burden has been 1273 

demonstrated to lead to additional stress on those smolts (Poole et al., 2000). Therefore, we 1274 

conclude that in years when environmental conditions are less favourable for sea trout 1275 
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transition from freshwater to saltwater and a high abundance of sea lice is present in the area, 1276 

the combined impact on trout will be greater than in more “normal” years or locations. 1277 

 1278 

Research Questions and future directions  1279 

Assessment of partial anadromy 1280 

In brown trout, partial anadromy is driven by complex interactions between intrinsic and 1281 

extrinsic factors, leading to a wide variety of life history patterns. In particular, partial 1282 

migration is influenced by juvenile growth in freshwater, largely determined by temperature 1283 

and feeding opportunities (B. Jonsson, 1981) and resulting in a continuum of life history 1284 

strategies in brown trout (Cucherousset et al., 2005). However, there are few empirical data 1285 

sets available because studies rarely consider simultaneously sea trout and resident trout from 1286 

the same population. The development of passive integrated transponder (PIT) tag monitoring 1287 

programs across Europe is promising but currently limited to small to medium coastal 1288 

streams or tributaries and do rarely encompass catchment or population level surveys. Scale 1289 

samples and the relative concentrations of strontium (Sr) and calcium (Ca) in the otoliths can 1290 

be used as proxies of movement of anadromous fish between freshwater and salt water. Also, 1291 

investigations of nutritional status which differs between freshwater resident and anadromous 1292 

fish or spawning ground surveys of types of spawners may offer alternative methods to study 1293 

partial anadromy. In parallel, future research should explicitly incorporate both resident and 1294 

anadromous individuals (and possibly all intermediate life histories), and use these in 1295 

population models to improve our understanding of the complex dynamics within partly 1296 

anadromous population. For instance, a recent meta-analysis highlighted that partial 1297 

migration may confer a selective advantage in a stochastically varying environment (Gilroy, 1298 

Gill, Butchart, Jones, & Franco, 2016). Thus, investigating whether partial anadromy under 1299 
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chronic global change may promote a greater resilience in the brown trout compared to 1300 

anadromous fish, should be an important issue for ecologists and managers. 1301 

 1302 

Responses to climate change 1303 

By influencing metabolic rate, growth and feeding opportunities, temperature is considered a 1304 

key driver of migration decisions in brown trout. With climate change, temperature tends to 1305 

increase more rapidly in rivers than in the ocean, but the effect of temperature on growth 1306 

opportunities depends on whether it is above or below some optimal temperature. If 1307 

temperature increases above the optimal temperature for growth, we hypothesize that the 1308 

degree of anadromy will increase, provided that the risk of mortality in fresh relative to 1309 

marine waters remains similar. If the temperature in freshwater is below the optimal 1310 

temperature for growth, freshwater residency should be favoured as the temperature 1311 

increases. The latter is the case in masu salmon, where the proportion of resident fish 1312 

increases with temperature increase in freshwater (Morita et al., 2014). Furthermore, flow 1313 

conditions are likely to interact with temperature, by either accentuating or attenuating the 1314 

impact of temperature on brown trout depending on the situation. But surely, expected 1315 

changes in flow regime would increase environmental stochasticity in freshwater. As a result, 1316 

we predict that the influence of climate change on anadromy rates will differ from northern to 1317 

southern populations in brown trout. The flexibility of partial anadromy is an issue for future 1318 

research. 1319 

 1320 

Climate also influences the phenology of fish species (Anderson, Gurarie, Bracis, Burke, & 1321 

Laidre, 2013; B. Jonsson, Jonsson, & Jonsson, 2017). In a warmer climate, eggs may hatch 1322 

earlier (Alp, Erer, & Kamalak, 2010), the length of the growth season may increase until a 1323 

certain point (Elliott & Hurley, 1998), smolts should migrate earlier to sea (B. Jonsson & 1324 
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Ruud-Hansen, 1985; Otero et al., 2014) and adults return later for spawning (Alm, 1950), 1325 

thereby increasing the duration of the sea-sojourn. In rivers, water flow appears to influence 1326 

time of freshwater entry and upstream migration, especially in small streams (B. Jonsson et 1327 

al., 2001, 2018). Furthermore, the tendency to spend the winter at sea may increase when the 1328 

sea water temperature increases (Olsen et al., 2006). The spawning period in southern 1329 

populations may be prolonged as observed in Spain (Larios-López, de Figueroa, Galiana-1330 

García, Gortázar, & Alonso, 2015). Investigations of latitudinal gradients in phenological and 1331 

life history traits will help anticipate how climate change will influence sea trout in the future. 1332 

However, because migratory distances to the home rivers differ, such gradient studies do not 1333 

give direct evidence of changes in traits affected by migratory costs. Therefore, experimental 1334 

research involving model species may also be helpful in studies of future phenology and life 1335 

history of sea trout. 1336 

 1337 

In a future warmer climate, age at smolting throughout much of the brown trout’s distribution 1338 

should decrease because of higher growth rate in freshwater; however, the opposite may be 1339 

the case in the southern part of their distribution, as optimum temperature for growth will be 1340 

exceeded more frequently. Whether smolt size will change or not, depends not only on 1341 

growth rate, but selection for optimal size depending on size-specific mortality at sea (B. 1342 

Jonsson et al., 2016). If mortality of small smolts increases more than that of large smolts, 1343 

selection will favour larger smolts and high survival at sea, and vice versa if mortality 1344 

increases most for large smolts. Furthermore, the ability to osmoregulate may be impaired at 1345 

higher temperatures (S. D. McCormick, Shrimpton, & Zydlewski, 1996) with possible full 1346 

loss of anadromy in southern areas, similar to Arctic charr.  1347 

 1348 
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Flow conditions in rivers will change in the future climate. With increasing flow in small 1349 

streams, the size of both residents, smolts as well as adult trout may increase, and vice versa 1350 

if the flow decreases (B. Jonsson et al., 2001). Furthermore, more water may influence the 1351 

relative size of males and females. Apparently, males need more water than similar sized 1352 

females to be reproductively successful because of their high activity. Therefore, males may 1353 

be smaller than females in small streams, and less so when stream size increases (B. Jonsson 1354 

& Jonsson, 2015). Conversely, predicted increase in the frequency of extreme summer 1355 

drought is likely to jeopardize juvenile survival and growth. 1356 

 1357 

Mean male size relative to mean female size of the anadromous trout may increase towards 1358 

the north (B. Jonsson & Jonsson, 2015). This might be because conditions in freshwater make 1359 

freshwater residency less favourable in the north. However, the mechanism determining the 1360 

sex ratio of freshwater resident versus anadromous trout is still unknown and open for 1361 

research, as the proportion of the two varies among rivers (Table 1).  1362 

 1363 

Epigenetics  1364 

Increased winter temperature might influence embryo development and in this century, 1365 

winter temperatures are expected to increase more than summer temperatures (IPCC, 2013). 1366 

Heritable variation in phenotypic plasticity suggests that although increasing temperatures are 1367 

likely to affect some populations negatively, they may have the potential to adapt to changing 1368 

temperature regimes (L. F. Jensen et al., 2008). The mechanism of this flexibility is, however, 1369 

unknown, but appears to involve a change in gene expression, possibly caused as an 1370 

epigenetic response to early thermal conditions (B. Jonsson & Jonsson, 2014, 2016). There is 1371 

still little knowledge about epigenetic influence on phenotypically plastic traits (B. Jonsson & 1372 

Jonsson, 2019).  1373 
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 1374 

Management strategies  1375 

Stock assessments for brown trout are generally lacking across Europe. Little is known about 1376 

productivity and recruitment in brown trout, as well as river specific carrying capacities. Data 1377 

are lacking to quantify the mortality induced by fisheries at sea, in freshwater and as potential 1378 

bycatch. There is also lack of information on sea trout stocks regarding human impacts (e.g. 1379 

aquaculture and spread of diseases and parasites, pollution and water quality, agriculture, 1380 

road, railway activities etc.). Estimates of straying among watercourses are sometimes large 1381 

(Quéméré et al., 2016), but variable, possibly influenced by the size of the river and presence 1382 

of lakes where trout spend the winter in a protected habitat. If straying between neighbouring 1383 

populations is high, they may be managed together as meta-populations (Meier, Hansen, 1384 

Bekkevold, Skaala, & Mensberg, 2011). However, in the future climate, autumn and winter 1385 

precipitation may increase and thereby reduce the rate of straying with effects on the size of 1386 

the management unit. As brown trout are partly anadromous, a future management program 1387 

should be coordinate with data collection programs across Europe. To aid in its 1388 

implementation, data collection suitable for supporting management of sea trout stocks 1389 

should be cheap, easy and pragmatic, such as the Length Based Indicator (LBI) system 1390 

proposed in Shephard et al. (2018). 1391 

 1392 

In many countries, sea trout management is viewed as a by-product of Atlantic salmon 1393 

management, and this is completely disconnected from resident trout management. Thus, 1394 

there is an urgent need to develop new recommendations dedicated to brown trout ecology 1395 

and plasticity to promote the conservation of this iconic species. Because trout are only partly 1396 

anadromous, more research is needed to define the relative contribution of sea trout and 1397 

resident trout to population dynamics, as well as more general data comparing sea survival 1398 
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and growth in populations across the native distribution area. Preferably, this should be done 1399 

using individual tagged fish (such as PIT tagged) in order to directly couple life history to 1400 

individual parameters (and avoid problems with straying, age reading etc.). Future research 1401 

should define relevant management units and provide recommendations for dedicated 1402 

management actions able to account for the large plasticity in individual life history 1403 

trajectories in trout. 1404 
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Table 2534 

Table 1. Sex ratio of smolts and sexually mature sea trout as reported from various rivers 2535 

across Europe. 2536 

 2537 

River Life stage Percent females Reference 

Voss, Norway Smolts 58 (B. Jonsson, 1985) 

Tweed, Scotland Smolts 59 (J. S. Campbell, 1977) 

Nybroån, Sweden Smolts 61 (Dellefors, 1996) 

Istra, Norway Smolts 61 (K. W. Jensen, 1968) 

Bresle, France Smolts 62 (Quéméré et al., 2011) 

Jutland (several 

streams), Denmark  

Smolts 75 (J. Nielsen, 1994) 

Verkeån, Sweden  Smolts 75 (Svärdson, 1966) 

Vindelälven, Sweden Smolts 73 Palm, D., personal 

communication 

Mean ± 1 SD Smolts 65.5 ± 7.4  

    

Mørfjær, Sweden Adult 44 (B. Jonsson et al., 2018) 

Själsöån, Sweden Adult 48 (Rubin et al., 2005) 

Urvold lake, Norway Adult 52 Davidsen, J.G., personal 

communication 

Bresle, France Adult 55 (Quéméré et al., 2011) 

Bottenvassdraget, 

Norway 

Adult 56 Davidsen, J.G., personal 

communication 
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Saltdalselva, Norway Adult 58 Davidsen, J.G., personal 

communication 

Vindelälven, Sweden Adult 61 Norrfors fishladder, 

Vattenfall Vattenkraft AB 

Åvaån, Sweden Adult 63 (Alm, 1950) 

Ihra, Sweden Adult 64 (Hessle, 1935) 

Voss, Norway Adult 66 (B. Jonsson, 1985) 

Verkeån, Sweden Adult 73 (Svärdson, 1966) 

Vistula, Poland Adult 76 (Svärdson, 1966) 

Oir, France Adult 79 Marchand, F., personal 

communication 

Mean ± 1 SD Adult 61.2 ± 10.6  

 2538 

  2539 
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Figure legends 2540 

 2541 

Figure 1. Endemic distribution of brown trout (Salmo trutta): dashed lines give distribution 2542 

area of anadromous populations and shaded areas give those of freshwater resident 2543 

populations. After Jonsson and Jonsson (2011). Localisation of six brown trout populations, 2544 

from north to south: River Hals 70°N (Norway), River Vosso 60°N (Norway), River 2545 

Burrishoole 54°N (Ireland), River Tamar 51°N (England), River Bresle 50°N (France) and 2546 

River Oir 48°N (France). 2547 

 2548 

Figure 2. Schematic representation of brown trout (Salmo trutta) life history, and some of the 2549 

major threats affecting its abundance (© Bengt Finstad and Kari Sivertsen, NINA). 2550 

 2551 

Figure 3. Mean length at age for resident (filled square) and anadromous (open dot) brown 2552 

trout (Salmo trutta) combined for the River Hals, River Vosso, River Tamar, River Bresle 2553 

and River Oir. The total age represents the freshwater age for resident trout and the sum of 2554 

the freshwater age and the sea age for anadromous. See Table S1 for details. 2555 

 2556 

Figure 4. Mean length at age for brown trout (Salmo trutta) smolts at River Hals (green), 2557 

River Vosso (yellow), River Burrishoole (red), River Bresle (black) and River Oir (blue). 2558 

Values are presented ± 1 SD, except for River Burrishoole. See Table S1 for details. 2559 

 2560 

Figure 5. Correlation between mean length at age for resident and anadromous brown trout 2561 

(Salmo trutta) at the River Hals (green), River Vosso (yellow), River Burrishoole (red), River 2562 

Tamar (pink), River Bresle (black) and River Oir (blue). The solid line represents the 1:1 line. 2563 

The dotted line represents the relative growth gain attributable to sea migration, with a slope 2564 
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estimated at 1.377 (SD: 0.138) and significantly different from 1 (Chi² = 318.2, df = 1, P = 2565 

0.006). Values are presented ± 1 SD, except for River Burrishoole. See Table S1 for details. 2566 

 2567 

Figure 6. Characterisation of the migration strategy in brown trout (Salmo trutta) along a 2568 

latitudinal gradient of populations: River Hals 70°N (Norway), River Vosso 60°N (Norway), 2569 

River Burrishoole 54°N (Ireland), River Tamar 51°N (England), River Bresle 50°N (France) 2570 

and River Oir 48°N (France). Left panel: relative additional growth for anadromous trout 2571 

related to sea age and smolt age, expressed as a growth difference with resident trout of 2572 

similar age. Some values are missing when no resident trout of a similar total age were 2573 

caught Right panel: age structure of returning anadromous trout, in terms of sea age and 2574 

smolt age. The darker the cell, the higher the value. 2575 


