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Abstract
1.	 Temporal and spatial variation in phenotypic selection due to changing environ-
mental conditions is of great interest to evolutionary biologists, but few existing 
methods estimating its magnitude take into account the temporal autocorrelation.

2.	 We use state‐space models (SSMs) to analyse phenotypic selection processes that 
cannot be observed directly and use Template Model builder (TMB), an R package 
for computing and maximizing the Laplace approximation of the marginal likeli-
hood for SSM and other complex, nonlinear latent variable model via automatic 
differentiation. Using a long‐term great tit (Parus major) dataset, we fit several 
SSMs and conduct model selection based on Akaike information criterion (AIC) to 
assess the support for fluctuated directional or autocorrelated stabilizing selec-
tion on breeding time of the great tit population.

3.	 Our results show that there is directional selection on the probability of breeding 
failure, and stabilizing selection on the mean number of fledglings. This selection 
for early laying date is consistent with a previous study of the same population. 
We also estimate the variation and autocorrelation in other parameters of the fit-
ness functions, including the width and height, and found the height and location 
of annual fitness function are autocorrelated with significant variation, while the 
width can be assumed to constant over time.

4.	 Using TMB to fit SSMs, we are able to estimate additional parameters compared 
to previous methods, all without requiring a substantial increase in computational 
resources. Furthermore, our specification of complex nonlinear model structure 
benefits greatly from the flexibility of model formulation with TMB. Therefore, 
our approach could be directly applied to estimating even more complicated phe-
notypic selection processes induced by environmental change for other species.

K E Y W O R D S

fluctuating selection, Gaussian fitness function, generalized linear mixed model, state‐space 
model, template model builder, zero‐inflated Poisson regression

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:yihan.cao@ntnu.no


1402  |    Methods in Ecology and Evolu
on CAO ET AL.

1  | INTRODUC TION

Fluctuating selection resulting from environmental variation has 
been of long‐lasting interest. Empirical and theoretical research have 
documented that natural populations respond to varying selection 
through various mechanism including conventional Darwinian ge-
netic evolution (Lande & Shannon, 1996), evolution of phenotypic 
plasticity (Scheiner, 1993; Van Tienderen & Koelewijn, 1994), evo-
lution of genetic polymorphism (reviewed by Hedrick, 2006; Bell, 
2010), genetic variance (Barton & Keightley, 2002), evolution of the 
phenotypic variance (Zhang & Hill, 2005) including diversifying bet‐
hedging (Bull, 1987; Cohen, 1966; Svardal, Rueffler & Hermisson, 
2011) or combinations of these response modes (Tufto, 2015). 
Importantly, the relative magnitudes of these different responses 
depend on the temporal autocorrelation in selective optima. Even 
though the phenotypic traits typically evolve through natural se-
lection to match the environmental conditions to maximize fitness 
(Futuyma, 2006), phenotypic adaptation through genetic evolution 
is limited by the amount of genetic variance in the trait under selec-
tion, which might lead to mistiming between the mean phenotype 
and the phenotypic optimum (Lande & Shannon, 1996). Adaptive 
tracking through phenotypic plasticity acting in conjunction with 
genetic evolution may also be limited by factors such as imperfect 
cue reliability (Post & Forchhammer, 2007; Gienapp, Reed & Visser, 
2014) or parental energetic costs (Visser, Marvelde & Lof, 2012; 
Visser et al., 2015).

There are few studies estimating the temporal variability and 
autocorrelation of phenotypic selection in spite of the importance. 
The variance in phenotypic selection in previous studies was usually 
estimated by computing the variance of the strength of selection 
using selection gradients estimated separately at each time point 
(reviewed by Siepielski, DiBattista & Carlson, 2009), which reflects 
both sampling error and real variation in selection (Morrissey & 
Hadfield, 2012). Among the previous empirical studies accounting 
for the sampling error of variation, Calsbeek (2011) presented a 
nonparametric analysis in exploring the variation of fitness surfaces 
over time or space, but such nonparametric estimates are difficult 
to relate to parameters appearing in theoretical models. In contrast, 
using a log‐quadratic generalized linear mixed model (GLMM) with a 
random effect on the regression slope implemented using integrated 
nested Laplace approximations (INLA) (Rue, Martino & Chopin, 
2009), Chevin, Visser and Tufto (2015) estimated yearly fluctua-
tions and autocorrelation in optima of a Gaussian fitness function. 
However, INLA and GLMMs in general are restricted to cases where 
the predictor is linear in parameters and random effects. Using in-
stead the more flexible framework of Template Model Builder (TMB) 
(Kristensen, Nielsen, Berg, Skaug & Bell, 2015), Gamelon et al. (2018) 
fitted a model of fluctuating selection via several non‐overlapping 
selection episodes with nonlinear random effects added directly 
on the location of the fitness optima and on the peak of the fitness 
function. This model form is not feasible within the framework of 
INLA or GLMMs (see Gamelon et al., 2018, Appendix A for a tech-
nical discussion).

Here, we extend the approach taken in Chevin et al. (2015) and 
Gamelon et al. (2018) in several new ways. First, instead of assuming 
a fixed zero‐inflation parameter for modelling the number of fledg-
lings as in Chevin et al. (2015), we model the zero‐inflation proba-
bility using a separate linear (or nonlinear) predictor. This leads to 
a model with selection via zero‐inflation and via the Poisson mean, 
although occurring during the same interval. As with multi‐episodic 
selection more generally (Gamelon et al., 2018), selection through 
two episodes can involve the same or different biological processes. 
Second, in addition to random effects on the peak and location of 
the fitness optimum as in Gamelon et al. (2018), we also allow the 
width of the fitness function to vary between years, with all three 
properties of the Gaussian fitness function jointly following a vector 
autoregressive process. Such variation in the width is of theoretical 
importance for the evolution of the phenotypic variance (Zhang & 
Hill, 2005) and for the evolutionary stability of the additive genetic 
variance‐covariance matrix (Revell, 2007). Third, instead of treating 
the total number of fledglings from all broods laid by a female in 
a particular year as the sample unit and estimating stabilizing se-
lection on onset of breeding via its effect on the sum of number 
of fledglings from all broods as in Chevin et al. (2015), we treat the 
number of fledglings from each brood as the sample unit and fit the 
model under the assumption that the expected number of fledglings 
depend on the laying date according to the same Gaussian fitness 
function for all broods. In addition to increased statistical power, this 
has the advantage that the parameters relate directly to theoreti-
cal models for the joint evolution of multiple brooding and onset of 
breeding (Tufto, Cao and Visser, submitted manuscript). Fourth, as 
an alternative to stabilizing selection, we allow each episode (here 
selection via zero‐inflation and via the Poisson mean) to instead in-
volve directional selection. As in Gamelon et al. (2018), we imple-
ment our method using TMB (Kristensen et al., 2015), an R package 
providing a comprehensive framework for fast fitting nonlinear, 
complex, latent variable models.

2  | MATERIAL S AND METHODS

2.1 | Study population

The data analysed come from a natural population of great tits 
(Parus major) at the Hoge Veluwe National Park in the Netherlands 
(52◦02� − 52◦07�N, 5◦51� − 5◦32� E). Female great tits usually start 
reproduction in the second calendar year of life (Perrins, 1979) 
and are capable of producing a second and very rarely, a third 
brood in a season. The analysed dataset consists of 5892 records 
of 3257 females breeding in 61 years from 1955 to 2015. Unlike 
the previous studies on the same population (e.g. Reed, Jenouvrier 
& Visser, 2013), we kept the data from the 1991 breeding season 
when a late frost led to a very late caterpillar food peak (Visser, 
Noordwijk, Tinbergen, & Lessells 1998) and we expected a very 
late optimum estimate for this breeding season. Laying dates are 
presented as the number of days after March 31 (day 1 = April 1, 
day 31 = May 1). The number of fledglings for each visited brood 
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was counted and the mother of each brood was identified (3257 
breeding mothers in our analysed data). The average number of 
breeding records per known female was 1.81. See Supporting 
Information for more details on study population and fieldwork 
procedures.

2.2 | Model formulation

We formulated a statistical model that takes into account temporally 
fluctuated stabilizing selection and used laying date as the focal trait 
that selection operates on. We also considered alternative models as-
suming fluctuated directional selection. We take the number of indi-
viduals surviving to fledglings as the measure of fecundity component 
of fitness and it is assumed to follow a zero‐inflated Poisson distribu-
tion instead of a Poisson distribution due to the high probability of 
clutch failure (around 15.7% in our analysed dataset, clutch failure in 
this study means that no single chick survived to fledgling). In addi-
tion, previous studies showed (e.g. Reed et al., 2013; Townsend et al., 
2013) that the relative contribution to fitness from each brood, at in-
dividual level, is determined by the food abundance at the time each 
brood is raised. We therefore assume that the expected number of 
fledglings and the probability of clutch failure potentially depends on 
laying dates in the same way for first, replacement (first broods failed) 
and second (first broods succeeded) broods via the same Gaussian 
fitness function. We present our approach using selection on the 
number of fledglings, but it can be applied to any selection episodes, 
such as viability, fertility selection or overall selection through lifetime 
fitness for species with non‐overlapping generations.

We assume that the number of fledglings Yi (i  =  1,2,…,n) from 
the ith brood follow a zero‐inflated Poisson (ZIP) distribution. Such 
random variables can be represented as a product Yi = IiXi where 

Here, pi is the probability of zero‐inflation (complete brood fail-
ure), wi is the Poisson mean and i is the index for all of the broods in 
our analysed dataset, i = 1,2,…,5892. Using the law of total expecta-
tion, the overall fitness contribution from brood i is then 

The decomposition of the left‐hand side into the two factors on 
the right‐hand side shows that the zero‐inflation part Ii can be inter-
preted as a separate selection episode, which we refer to as episode 
P for short in this study. Similarly, the Poisson part Xi is referred to as 
episode W in the rest of this paper.

We consider two selection modes: fluctuating stabilizing selec-
tion and fluctuating directional selection. In the fluctuating stabiliz-
ing selection model, the zero‐inflation probability pi and the Poisson 
mean wi are determined by the same process, driven by deviation 
from the optimal onset of breeding. In addition, we assume that pi 

is linked to covariates of interest via a logit link function while for wi 
via a log link function. Therefore, logit(1−pi) and lnwi are given by 
models of the same form: 

 and 

Here, �(�)
p,t
, �(�)

p,t
 and �(�)

p,t
, t = 1,2,…,61 are parameters determining 

maximum fitness (indicated by superscript α), optimal laying dates 
(indicated by θ) and widths of fitness function (indicated by ω) of 
brood i in year t respectively for logit(1−pi). Similar explanations 
apply to the equation of lnwi. The variable zi is the laying date of the 
ith brood. The term �j(i)∼N(0,1), j = 1,2,…,J (where J is total number of 
unique females) is a random effect included to model extra variation 
between the mothers and assumed to be same for the two episodes, 
but the magnitude of the effects on the two episodes are potentially 
different, subscript p,w thereby allow standard deviations of mother 
effect �m

p
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 where index s takes values from (P,W) indicating the two episodes 
respectively. Parameters 𝛼̄s, 𝜃̄s, 𝜔̄s are the means of the three pro-
cesses. More assumptions in terms of stochastic processes �t, �t, �t 
are made. They are assumed to follow a first‐order vector autore-
gressive VAR(1) process 

 where Φ is a 3 × 3 matrix of autoregressive coefficients and wt is multi-
variate normal zero‐mean white noise with variance‐covariance matrix 
Σ. Correlation between �t, �t and �t are determined through off‐diago-
nal entries in both Σ and Φ. Possible model alternatives are obtained by 
making Φ and Σ both diagonal, such that �t, �t and �t simplify to indepen-
dent AR(1) processes. If all entries of Φ are zero, �t, �t and �t are inde-
pendent and identically distributed white noise processes. Alternatively, 
we model each episode as fluctuating directional selection, which can be 
described by a GLMM with annual random intercept and slope: 
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In this model, � (0)p  and � (1)p  are fixed intercept and slope respec-
tively for episode P, random intercepts and slopes are denoted by u(0)

p,t
 

and u(1)
p,t
, which account for the variation among years. These random 

effects are assumed to be multivariate normal: 

Similar explanation applies to the alternative model for episode W 
(lnwi). As before, zi, �mp , �

m
w

 and �j(i) have same interpretations as that in 
Equations 3 and 4.

Since our statistical method relies on model selection, the candi-
date models we tested include different assumptions for �t, �t and �t, or 
different selection patterns for episode P and W, among many others.

2.3 | Model selection and inference

All model alternatives were implemented using R package TMB. 
Briefly, based on a C++ function computing the joint density of the 
observed data and unobserved random effects, TMB computes the 
Laplace approximation of the marginal likelihood of the observed 
data. This is then maximized numerically to obtain maximum likeli-
hood estimates of model parameters and approximate standard er-
rors based on information theory.

We fitted in total 43 different alternative models. Among the 
candidate models, each selection episode P and W maybe equipped 
with either directional selection or stabilizing selection. For the 
directional selection mode, we tested models with only fixed ef-
fects, with random intercepts and with both random intercepts and 
random slopes. For the stabilizing selection mode, the fitness pa-
rameters �t, �t and �t were either considered as constant, as three 
independent AR(1) processes, as jointly following a VAR(1) process, 
or combinations of them.

Our model selection relies on the measurement of data sup-
port for the different models which vary in degree of complexity. 
We use Akaike information criterion (AIC; Akaike, 1973) based on 
the observed Fisher information as a model selection criterion (see 
Burnham & Anderson, 2003 for more details about AIC). The model 
with lowest AIC value was selected as the best model and the esti-
mates of all parameters together with their approximate standard 
errors were obtained. All the source code of this study are archived 
and accessible online.

3  | C A SE STUDY RESULTS AND 
DISCUSSION

3.1 | Model selection procedure

As introduced in section 2.3, in total, 43 candidate models were 
tested. For brevity, only the selected model and its neighbour mod-
els are listed in Table 1. The model numbering is consistent with the 
model updating sequence in our R code. Updating procedure from 

model 1 to model 8b can be found in Supporting Information. Based 
on the best model selected (model 9), the differences of AIC value 
for each model from the selected model are calculated and listed in 
column ΔAIC, along with the difference in the number of parameters 
(Δp). Model 9 with directional selection in episode P and stabilizing 
selection in episode W is the best model.

Model 10 with directional selection via both episode P and W 
does not improve the model fit. To guarantee that model 9 is indeed 
the best one among all the candidate models, model 11 to model 
14i are neighbour models updated around model 9 for comparison 
purpose, but none of them improves the model fit. It is worth not-
ing that the performance of model 14g with fixed �t is only slightly 
worse than our selected model, implying a constant �t assumption 
in our study would be reasonable. The estimates of parameters from 
the selected model (model 9) and from model 14g with constant �t 
are listed in the Supporting Information for comparison.

We also carried out a simulation study (see Supporting 
Information) to explore the power of our model selection technique 
in identifying our best model especially against model 14g and 14i. 
We concluded from the simulation study that our model selection 
technique has around 80% probability to distinguish the model with 
fixed �t from the one with random �t when the variation scale of �t 
being 0.2. This further implies that model 14g might be as good as 
our selected model. The simulation study also showed that a weak 
mother effect (e.g. the standard deviation of random mother effects 
is 0.05) is hard to detect. However, since our selected model reports 
6.44 lower AIC values with the estimate of standard deviation of 
mother effects being 0.041 in episode W, we have confidence in the 
mother effects in the underlying ‘true’ model. The remaining chal-
lenge is that there is no strong evidence for model 9 outperforms 
model 13, we thus should be cautious when interpreting estimates 
of correlations between the errors for �t, �t and �t.

The selected model (model 9) has stabilizing selection via epi-
sode W, directional selection via P with annual correlated random 
intercepts and slopes given by 

Furthermore, the selected model supports VAR(1) process of �t
, �t and �t in the episode W. However, the three processes are cor-
related through errors instead of the transition matrix Φ. Mother 
effects are significant in both episodes. More details about the pa-
rameter estimates are given in next section 3.2.

3.2 | Directional selection via probability of 
clutch failure

Our selected model (Equation 8) indicates directional selection via epi-
sode P with annual random intercept (u(0)
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) and slope (u(1)
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). The estimates 
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of parameters of our interest are listed in Table 2. We estimated the 
fixed slope, the mean of the annual selection gradient to 𝛽 (1)p = −0.025 
(red dashed line on the right panel of Figure 1). Given a standard de-
viation of the random slopes estimated to 𝜎̂1,p = 0.032, corresponding 
to selection for early laying 78% of the time, the distribution of selec-
tion gradients is shown with the black line in the right panel of Figure 1, 

which implies that over 22% of the study years experienced positive 
selection, therefore, favoured late broods. The left panel of Figure 1 
shows the annual selection gradient together with error bars represent-
ing ± one standard error. The selection favoured early broods in 82% 
(note that the 78% is obtained with selection distribution while 82% 
with temporal estimated selection) of the study years, as can be seen 
from the left panel that most of the selection gradients fall below 0.

This result agrees with the finding from Reed et al. (2013) that fe-
males that breed late relative to the food peak (influenced by tempera-
ture, see Visser, Holleman and Gienapp (2006)) were more likely to fail 
to raise any fledglings. Perrins (1965) states that there is a higher pro-
portion of predation in the later part of the season and the young of 
the later broods are more vulnerable to the predators since the young 
in the later broods are more noisy and lighter. Maziarz, Wesolowski, 
Hebda, Cholewa and Broughton (2016) shows that nest losses are 
mostly due to predation (69% nest failures of a great tit population in 
Poland) and the risk of nest failure varied with nest cavity attributes. 
To explore which biotic and abiotic factors best explain the sign and 
variation in annual directional selection via the probability of suc-
cessful brooding, more data information concerning these factors are 
required and this would be one among other interesting expansions 
of this study. In this selection episode, mother effects contribute to 
explaining the variation of successful‐brooding probabilities and the 
estimate of the standard deviation �m

p
 is 0.701, as shown in Table 2.

Model ΔAIC Δp Description

Directional selection via episode P and stabilizing selection via episode W

9 0 0 The selected model formulated as Equation 8

Directional selection for both episode P and W

10 104.11 −5 The model formulated as Equation 7 with correlated ran-
dom intercepts and slopes

Model 9 is the best model so far, test neighbour models with minor changes based on model 9

11 4.075 7 Add all entries of Φ back

12 14.32 −3 Keep only significant entries in Φ and significant correla-
tions between the errors for �t, �t and �t

13 0.54 −2 Keep only significant correlations between the errors for 
�t, �t and �t

Model 9 is still the best model so far, test models with all possible specifications for �t, �t and �t, 
and remove mother effect from each episode

14 210.47 −6 Change random �t into fixed, �t and �t are random

14a 203.98 −4 Change random �t into fixed, �t and �t are AR(1)

14b 96.99 −6 Change random �t into fixed, �t and �t are random

14c 85.47 −4 Change random �t into fixed, �t and �t are AR(1)

14d 24.84 −4 Change random �t into fixed, �t and �t are AR(1)

14e 28.64 −2 Change random �t into fixed, VAR(1) �t and �t
14f 7.1 −1 Change random �t into fixed, VAR(1) �t and �t, add correla-

tion to the errors of �t and �t
14g 3.27 −3 Change random �t into fixed, VAR(1) �t and �t with signifi-

cant entries in Φ, add correlation to the errors of �t and �t
14h 21.1 −1 Remove mother effect from episode P

14i 6.44 −1 Remove mother effect from episode W

TA B L E  2  Estimates (standard errors) and corresponding 95% 
confidence intervals of model parameters from the selected model 
(i.e. model 9 of Table 1, only for selection via the probability of 
successful brooding)

Parameter Meaning Estimate (SE) 95% CI

�
(0)
p

Fixed 
intercept

2.946 (0.220) (2.515, 3.377)

�
(1)
p

Fixed slope −0.025 (0.005) (−0.035, −0.015)

�1,p SD of ran-
dom slopes

0.032 (0.004) (0.024, 0.040)

�m
p

SD of mother 
effect

0.701 (0.092) (0.520, 0.881)

�p Correlation 
between 
random 
intercepts 
and slopes

−0.827 (0.054) (−0.933, −0.720)

TA B L E  1  A part of model selection 
procedure of phenotypic selection on 
breeding time of great tits. The order of 
models listed below is accordance with 
the order of models fitting, from model 9 
to 14i. ΔAIC and Δp is the difference in 
AIC and number of parameters p between 
each model and the best model (model 
9). The column of description gives the 
details of the updated model based on 
the previous ones. For simplification, 
the probability of successful brooding 
is denoted as episode P and the mean 
number of fledglings episode as W. The 
updating procedure from model 1 to 
model 8a can be found in Supporting Info
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3.3 | Stabilizing selection via the mean 
number of fledglings

Our selected model indicates that stabilizing selection acts via 
the mean of the Poisson component. Parameter estimates of the 
Gaussian fitness function in Equation 4, and the estimates for the 
parameters involved in the VAR(1) �t, �t and �t, along with their con-
fidence intervals are shown in Table 3.

The estimates of the mean of maximum fitness (𝛼̄) and optimum 
(𝜃̄) are 2 (exponent with base e approximates to 7 fledglings) and 
18.227 (approximately 18th of April) respectively. Our estimate for 
the width of the fitness function is much wider than that from Chevin 
et al. (2015) (47.395 vs. 24.11 days), in which the sum of the fledg-
lings from multiple broods instead of the single brood was treated as 
the sample unit and the lay dates of only first broods (with a much 
narrower range) were used. We doubt that the distribution of this 
summation of multiple broods is well approximated by a Gaussian 
function and therefore we modelled the number of fledglings from 
each brood separately, and the second broods were laid in the late 
breeding season and this might be the reason of a wider fitness func-
tion being estimated with our selected model.

The estimates of the standard deviation of �t, �t and �t are 0.176, 
21.180 and 0.205 respectively. The estimate of standard deviation 

for �t is slightly larger than that from Chevin et al. (2015) (21.18 vs. 
11.3 days) and this might partly result from the different datasets we 
used. In Chevin et  al. (2015), the data before 1973 were excluded 
from their analysis and we therefore also fit the selected model with 
data only after 1973 for a fairer comparison. It turned out that the 
estimates with both full and partial datasets are quite close, while 
the estimates with full data generally have less uncertainty (narrower 
%95 confidence intervals). The detailed comparison can be found in 
Supporting information. The estimated variance in �t (0.042) trans-
lates to a coefficient of variation for e�

(�)

w,t of 
√
e0.042−1 = 0.207, that 

is, quite large fluctuation in the width of the fitness function. When 
conducting model selection we fitted a model with fixed �t (model 
14g in Table 1) over study period, however, it turned out the model 
fit did not improve much when �t is taken random as in our selected 
model. In addition, by comparing the standard deviations of parame-
ter estimates from the models with fixed and random �t reported in 
Supporting Information, we find that uncertainties of parameter esti-
mates are comparable. These imply that the whole analysis would not 
change much if in our study the constant �t assumption was made.

The autocorrelation estimates of �t (𝜙̂𝛼,𝛼) and �t (𝜙̂𝜃,𝜃) are 0.334 
and 0.524, respectively, but �t is not autocorrelated in our selected 
model. The estimate of ��,� in Chevin et al. (2015) was 0.2472 with 
a wide 95% confidence interval (−0.1745, 0.626). While our selected 

F I G U R E  1    Annual directional selection gradient (left panel, defined as the sum of the fixed slope and annual random slope) associated 
with error bars representing one standard error and the distribution of it (right panel) for episode P (selection on laying date via the 
probability of successful brooding). The red dashed line on the left plot is an indication of 0 and on the right plot is estimated fixed slope 
(−0.025)
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model reported a significant and larger estimate of ��,� with narrower 
confidence interval (0.310, 0.739). With the result from the simula-
tion study, even this larger estimate may be potentially underesti-
mated. The estimates of the standard deviations of errors of VAR(1) 
�t, �t and �t (��, ��, ��) are also listed in Table 3, along with estimates 
of correlations of the correlated noises. Even though our result indi-
cates that the VAR(1) stochastic processes �t, �t and �t are correlated 
through errors wt not through transition matrix Φ, we are conserva-
tive in interpreting the estimates of ��,� and ��,� since the candidate 
model 13 with only ��,� reported almost the same AIC value as our 
best model. The estimate of standard deviation of mother effect is 
0.041, implying that the mean of Xi from broods produced by the 
same mother are weakly correlated to each other.

The estimated optimum phenotype is shown in Figure 2 with a 
solid blue line. It fluctuates over the study period with an obvious 
downward trend. The mean within‐year laying dates (denoted with 
black dots) also show a downward trend but the advance is not as 
strong as the optimum, resulting in increasing mistiming between 
the optimal laying date and the mean within‐year laying date, which 
is in line with the finding from previous study of the same popula-
tion (e.g. Chevin et al., 2015; Reed et al., 2013; Visser & Both, 2005; 
Visser et al., 1998). Since the reproductive fitness of the great tits 
depends strongly on the mismatch with food phenology, mistim-
ing in our case therefore equals mismatch, even though the food 
resource phenology is not considered in our study (see Visser and 
Gienapp (2019) for the difference between mistiming and mismatch). 
One explanation for the mismatch is that females might be unwilling 
to breed at the optimal date in terms of the offspring fitness because 
of higher energetic cost of producing and incubating earlier in harsh 
environment where it is cold and food is scarce, mismatching by a 
few days might therefore be optimal for the sake of parental fitness 
(Te Marvelde, Webber, Meijer & Visser, 2011). Beside this optimal 
mismatch hypothesis, another leading explanation (the cues hypoth-
esis) is that the cues used for timing laying are no longer accurately 
predicting the phenology of the food peak (see Visser et al., 2012 for 
more details on these two hypotheses).

TA B L E  3  Estimates(standard errors) and corresponding 95% 
confidence intervals of model parameters with the selected model 
(only for selection via the mean number of fledglings)

Parameter Meaning Estimate (SE) 95% CI

𝛼̄ Mean of pro-
cess �(�)

w,t

2.000 (0.036) (1.929, 2.071)

𝜃̄ Mean of pro-
cess �(�)

w,t

18.227 (5.826) (6.808, 29.647)

e𝜔̄ (days) Mean of pro-
cess e�

(�)

w,t

47.395 (3.234) (41.056, 
53.734)

��,� SD of �t 0.176 (0.024) (0.129, 0.224)

��,� SD of �t 21.180 (3.422) (14.473, 
27.888)

��,� SD of �t 0.205 (0.049) (0.110, 0.300)

��,� Autocorrelation 
of �t

0.334 (0.122) (0.094, 0.574)

��,� Autocorrelation 
of �t

0.524 (0.110) (0.310, 0.739)

�� SD of errors 
of �t

0.166 (0.023) (0.120, 0.212)

�� SD of errors 
of �t

18.034 (2.808) (12.531, 
23.538)

�� SD of errors 
of �t

0.205 (0.049) (0.110, 0.300)

��,� Correlation 
between the 
errors of �t 
and �t

−0.592 (0.125) (−0.837, 
−0.346)

��,� Correlation 
between the 
errors of �t 
and �t

−0.357 (0.287) (−0.920, 0.206)

��,� Correlation 
between the 
errors of �t 
and �t

−0.307 (0.254) (−0.806, 0.191)

�m
w

SD of mother 
effect

0.041 (0.013) (0.015, 0.066)

F I G U R E  2    Position of optimal laying 
date over study period from 1955 to 
2015. The estimated movement of optimal 
laying date from the selected model is 
shown with solid blue line, along with 
its 95% confidence interval (dashed blue 
lines). The black dots are the observed 
within‐year mean laying dates Year
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3.4 | Model evaluation

The performance of our selected model is evaluated by visualizing 
the observed and predicted number of fledglings for each year. Each 
panel in Figure 3 shows the observed (dots in the panels) and pre-
dicted number of fledglings (dark solid line) against laying date for 

a specified year (from 1955 to 2015). Our analysed data includes 
three brood types represented by three colours in the plots. The 
red, green and blue dots correspond to first, replacement and sec-
ond broods respectively. The solid grey curve represents nonpara-
metric loess regression through the points with the dashed grey lines 
being associated 95% confidence band. With our selected model, 

F I G U R E  3    Observed and predicted number of fledglings (E(Yi|pi,wi)) against the laying date for each year. The blue, red and green dots 
represent the observed number of fledglings from first, replacement and second broods respectively. The grey curve is loess regression 
(with default degree of smoothing  =  0.75) through the scatter points with 95% confidence band (dashed grey lines). The black line indicates 
the number of fledglings predicted with our selected model conditional on zero mother random effects with dashed black lines representing 
its 95% confidence band. The 95% confidence band was calculated by multiplying the standard errors reported with TMB by the 2.5 and 
97.5th percentiles of the normal distribution
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the dark curve shows the predicted number of fledglings at laying 
dates conditional on zero mother effect over the whole breeding 
season, with the dashed dark lines representing associated 95% con-
fidence band again. The figure indicates a good fit of our selected 
model to the data as we can see that the dark lines lie within the 
loess confidence bands for all the years. For most of the years, the 
prediction of number of fledglings peaked at early breeding season 
when the first broods were laid except year 1991, when a late frost 
hit the population and the plot validates our expectation of a very 
late optimum estimate.

4  | CONCLUSION AND POSSIBLE 
E X TENSIONS

Thanks to the new techniques such as TMB for fast likelihood 
computation for non‐Gaussian and nonlinear models, the use of 
state‐space models for analysing ecological systems is increasing 
(for example Cadigan, 2015; Albertsen, Nielsen & Thygesen, 2016; 
Auger‐Méthé et al., 2017). The conditional independence structure 
in state‐space models yield a sparse precision matrix for the joint 
distribution of the data and the random effects (Kristensen et  al., 
2015) and TMB takes maximal advantage of this sparseness struc-
ture (through automatic sparsity detection) in its computation of the 
Laplace approximation. Therefore, using state‐spaces models cou-
pled with TMB makes estimating a large number of parameters and 
random effects which is usually the case in modelling complicated 
biological processes or ecological systems, possible. Compared with 
the models and approaches adopted by previous studies on fluc-
tuating selection, our method based on SSM, GLMM and TMB has 
several advantages. First, state‐space models allow us to explore 
two correlated fitness components simultaneously, instead of meas-
uring different fitness components independently. Second, due to 
the flexibility of SSMs, parameters can be estimated efficiently with 
little computational effort. Third, the formulation of our theoreti-
cal models turns out to be more realistic to account for directional 
selection and non‐Gaussian fitness residual, as GLMMs. Our results 
from the great tit case study partly agree with the findings from pre-
vious studies on the same population, and due to the VAR(1) formu-
lation for the fitness parameters we could gain more in terms of the 
underlying patterns of the fluctuating selection. For the researchers 
who are interested in applying our method to their data either for 
modelling fluctuating selection or general ecological systems with 
VAR(1) stochastic processes, it is worth to mention that TMB has 
no built‐in probability function for modelling VAR(1). Our study can 
serve as a template for this as well as for conducting model selection 
with TMB.

In our study, we treated fluctuations in properties of the Gaussian 
fitness function as a vector autoregressive process. In principle, our 
approach can also accommodate other autocovariance structures, 
such as vector autoregressive moving‐average (ARMA) models (see 
Wei, 2006 for the definition). Besides, in our statistical model, the 
random mother effect �j(i) is assumed to be same for the two episodes 

but vary in magnitude, which implies that a mother that is likely to 
have complete brood failure will be more likely to have a low num-
ber of fledglings (with correlation 1). To relax this assumption, the 
mother effects can be treated differently for the two episodes and 
assumed to be multivariate Gaussian distributed (�p,j(i), �w,j(i))T∼N(0,Σ) 
with Σ being a covariance matrix. Furthermore, the number of fledg-
lings is chosen as the selection component so that the estimates 
could be compared to those from Chevin et al. (2015), which claims 
that using the number of recruits may cause more uncertainty in es-
timates of parameters due to the much larger coefficient of variation 
in the number of recruits. However, in some previous studies (e.g. 
Reed et al., 2013), the fecundity component of fitness is measured 
as the number of recruits surviving to the next breeding season in-
stead of the number of individuals surviving to become fledglings. 
As claimed by Naef‐Daenzer and Grüebler (2016), using the number 
of fledglings as a proxy for fitness may be misleading in inference 
of evolutionary significance since reproductive success can be com-
pletely altered by many causal factors driving the adaptations which 
operate during the post‐fledgling period, and thereby change the ju-
veniles’ fate from fledgling to independence. Therefore, it would be 
interesting to expand our model to incorporate both pre‐ and post‐
fledgling period, such as chicks’ survival and recruitment probabil-
ity, as well as a female’s survival, into a comprehensive life‐history 
framework for the lifetime selection exploration.

Our study demonstrates a technique of estimating fluctuating se-
lection in cases where ecological covariates are not available. To under-
stand whether observed shift in selection are biologically meaningful, 
however, it is important to elucidate the ecological drivers of fluctu-
ations in selection. Empirical investigations of the causal mechanisms 
driving such selection dynamism are needed before the development 
of novel analytical and statistical techniques. In our great tit case, for 
example, the peak movement might be affected by the height of the 
caterpillar peak, the mean breeding timing relative to the caterpillar 
peak and the breeding density. The width of the fitness function is 
likely being affected by the height and probably the width of the cat-
erpillar peak (Visser et al., 2006). The location of optimum might be 
influenced by environmental variables (e.g. Chevin et al., 2015; Gienapp 
et al., 2013). However, the biotic interactions coupled with other abiotic 
factors playing a direct or indirect role in the selective process could 
likely make analysis much more complicated. Other extensions include 
analysis of correlational selection on multivariate traits and estimating 
the temporal‐spatial variation and correlation in fluctuating selection.
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