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Abstract  

Failure modelling and reliability assessment of repairable systems has been receiving a great deal 

of attention due to its pivotal role in risk and safety management of process industries. Meanwhile, 

the level of uncertainty that comes with characterizing the parameters of reliability models require 

a sound parameter estimator tool. For the purpose of comparison and cross-verification, this paper 

aims at identifying the most efficient and minimal variance parameter estimator. Hierarchical 

Bayesian modelling (HBM) and Maximum Likelihood Estimation (MLE) approaches are applied 

to investigate the effect of utilizing observed data on inter-arrival failure time modelling. A case 

study of Natural Gas Regulating and Metering Stations in Italy has been considered to illustrate 

the application of proposed framework. The results highlight that relaxing the renewal process 

assumption and taking the time dependency of the observed data into account will result in more 
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precise failure models. The outcomes of this study can help asset managers to find the optimum 

approach to reliability assessment of repairable systems. 

Keywords: Repairable system, Failure modelling, Time dependency, Hierarchical Bayesian 

Analysis, Maximum Likelihood Estimation 

Nomenclature    

Subscripts   

𝛼𝛼 shape parameter 𝑇𝑇 successive failure times 

𝛽𝛽 scale parameter 𝑛𝑛 total number of failures 

𝑓𝑓(𝑡𝑡) probability density function 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀 Mean Time To Failure 

𝑀𝑀(𝑡𝑡) cumulative distribution function  𝐸𝐸[𝑁𝑁(𝑡𝑡)] expected number of failures 

t time (sec) 𝜆𝜆(𝑡𝑡) rate of failure limit 

MLE Maximum Likelihood Estimation  HBM Hierarchical Bayesian modelling 

𝑇𝑇� mean of the inter-arrival times 𝑃𝑃 pressure (kPa) 

PR Perfect Repair MR Minimal Repair 

 

1. Introduction 

1.1.Background and literature review 

Failure time modelling of repairable components has attracted a great deal of attention owing to 

the high level of risk associated with the failure events occurring within process industries. Using 
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statistical inference, different probability distributions are adopted to model the rate of occurrence 

of failures (ROCOF). These probability distributions are characterized by one or more parameters. 

The parameter estimation process may be implemented based on different assumptions regarding 

maintenance strategies including Perfect Repair (PR) or Minimal Repair (MR).  

PR represents an ideal model in which the time between successive failures of a given system are 

independent and identically distributed (iid) random variables. Although PR is recognized as the 

most applied assumption by a number of researches (Nandi, Toliyat et al. (2005), Quy, Vrijling et 

al. (2006), Toroody, Abaiee et al. (2016a), Quy, Vrijling et al. (2008), Louit, Pascual et al. (2009) 

Toroody, Abaiee et al. (2016b) and Barabadi, Barabady et al. (2014)), neither of these have 

accounted for the system to be “as bad as old” after repair. In the present paper, it is illustrated that 

analyzing failure times given PR (also known as renewal process) often yields improper results 

and subjects to a significant level of uncertainty.  

A comprehensive reliability analysis must include a time dependent study, if the system is 

degrading or improving. Therefore, an ongoing effort on reliability assessment based on MR are 

carried out (Majeske 2007, Slimacek and Lindqvist 2016, Antonov and Chepurko 2017, Peng, 

Shen et al. 2018, Sheu, Liu et al. 2018). Li et al. (2017) used two recurrent-event change-point 

models arisen from a non-homogeneous Poisson process (NHPP) to find the time of change in 

driving risk. In another recent study, Pesinis and Tee (2017) presented a model for reliability 

analysis of failure data based on NHPP incorporated with a robust structural reliability model. 

Furthermore, an extensive review of PR, MR and probabilistic knowledge elicitation made with a 

wide range of engineering applications is presented by Crow (1975), Asher and Feingold (1984) 

and most recently by Ross (2014) and Modarres, Kaminskiy et al. (2016). 
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In the present paper, two mathematically robust and efficient approaches are implemented to 

represent the state of system after repair. Maximum Likelihood Estimation (MLE) and 

Hierarchical Bayesian Modelling (HBM) are established based on actual data in order to predict 

the likelihood of studied failures, given PR and MR assumptions. The capability of HBM in 

modelling the variability of non-stationary data and the correlation between nonlinear data via 

open source Markov Chain Monte Carlo (MCMC) sampling software packages, i.e., OpenBUGS 

(Spiegelhalter et al. 2007), have resulted in its widespread use in engineering applications, e.g. 

probabilistic risk assessment and condition monitoring (Behmanesh, Moaveni et al. 2015, 

Chitsazan, Nadiri et al. 2015, Yu, Khan et al. 2017, Mishra, Martinsson et al. 2018). Recently, 

Abaei et al. (2018) developed an HBM for safety assessment of vessels crossing shallow-waters 

based on time-domain hydrodynamic simulations. There is also a great deal of methods developed 

based on MLE that show the applicability of this method in risk and reliability assessment of 

complex engineering systems, examples of which are structural degradation modeling, risk-based 

maintenance planning, geotechnical risk assessment, etc. (Straub 2009, Arzaghi et al. 2017, Abaei 

et al. 2018, Leoni et al. 2018, BahooToroody et al. 2019). Nielsen and Sørensen (2017) estimated 

the remaining useful lifetime (RUL) of a wind turbine to calibrate a Markovian deterioration model 

based on MLE approach.  

1.2.Objective and organization 

Different assumptions (e.g. MR, PR) and tools (e.g. MLE, HBM) lead to distinct results which are 

discussed here for the purpose of comparison and cross-verification. Accordingly, this paper aimed 

at presenting a comparison model for enabling industry on indicating the possible differentiation 

in failure assessment of random process under the assumption constraint. Consequently, the 

magnitude of the deviation value in different failure modelling approaches is highlighted. This 
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would lead to identify the most efficient and minimal variance parameter estimator of failure 

modelling process. The developed framework in this study opens the door for the use of 

engineering researchers in risk analysis and reduction plan throughout the industries.  

The remainder of present paper is structured as follows: the procedure of models specification and 

overview is presented in Section 2. Section 3 provides the application of the developed 

methodology in a Natural Gas Regulating and Metering Stations (NGRMS) in Florence, Italy. In 

Section 4, the results and discussions including a comparison of the investigated methods are 

presented, while Section 5 provides the concluding remarks of this research.    

1.3.Assumptions 

The outcomes of a maintenance plan, which is the condition of repaired systems, can be modelled 

stochastically throughout the operation. The division of repair categories is made based on a 

number of factors including whether the failure interarrival times are dependent over the asset 

operational time or not. The differentiation formed based on such factor is explained through the 

following assumptions:   

1.3.1. Perfect Repair 

The renewal process belongs to the class of stochastic point processes where inter-arrival times 

are assumed to be iid random variables. In this category, any repair originated by a failure in the 

system is assumed to be perfect and subsequently the system is said to be “as good as new”. The 

expected number of failures, 𝐸𝐸[𝑁𝑁(𝑡𝑡)], in time, 𝑡𝑡, is defined as renewal function given by Equation 

1: 

 𝐸𝐸[𝑁𝑁(𝑡𝑡)] = 𝑚𝑚(𝑡𝑡), 𝑚𝑚(𝑡𝑡) = 𝑀𝑀(𝑡𝑡) + �𝑀𝑀(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑚𝑚(𝑇𝑇) (1) 
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where 𝑇𝑇 is successive failure times, 𝑁𝑁(𝑡𝑡) is the number of failure and 𝑀𝑀(𝑡𝑡) is the cumulative 

distribution function (CDF) of 𝑇𝑇. Measuring the changes of variables in both sides of Equation 1 

with respect to the change of time results in Equation 2: 

 
𝑚𝑚′(𝑡𝑡) = 𝜆𝜆(𝑡𝑡), 𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) + � 𝑓𝑓(𝑡𝑡 − 𝑇𝑇)𝜆𝜆(𝑇𝑇)𝑑𝑑𝑇𝑇

𝑡𝑡

0
 

(2) 

where 𝑓𝑓(𝑡𝑡) is the corresponding probability density function (PDF) of successive inter-arrival 

times, 𝑇𝑇 . One of the most celebrated renewal processes including iid assumption is the 

Homogeneous Poisson Process (HPP) (Louit, Pascual et al. 2009, Barabadi, Barabady et al. 2014, 

Hajati, Langenbruch et al. 2015) which is recognized by the method presented in this paper.  

1.3.2. Minimal Repair  

Based on the HPP assumption, the failure rate will be independent of time. However, in reality the 

system condition in ith time-step is dependent on its condition in time-step ti-1. Relaxing the iid 

assumption leads to the Nonhomogeneous Poisson Process (NHPP) in which the system retains 

the “as bad as old” condition following a relatively instant repair action. Implementing MR, the 

observation process can be carried out either failure-truncated or stopped in a fix time. The 

calculation methods are similar in both mentioned approaches and here the failure-truncated case 

will be adopted as recommended by Kelly and Smith (2009). The expected number of failures 

through the specific time interval, [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1], 𝐸𝐸[𝑁𝑁(𝑡𝑡)], is given using Equation 3.    

 
𝐸𝐸[𝑁𝑁(𝑡𝑡)] = � 𝜆𝜆(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

(3) 

where an appropriate functional form for ROCOF, 𝜆𝜆(𝑡𝑡), must be determined to represent the 

expected number of failures, accordingly. For this purpose, power-law, log-linear and linear 

models are suggested in the literature (Kelly and Smith 2009, El-Gheriani, Khan et al. 2017). 
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Power-law model is one of the most common forms of ROCOF in reliability assessment (Abaei, 

Arzaghi et al. 2018) as it can predict the nonlinearity of the stochastic process with reasonable 

precision. The relationship for power law is given by Eq. (4). 

 
𝜆𝜆(𝑡𝑡) =

𝛼𝛼
𝛽𝛽 �

𝑇𝑇
𝛽𝛽�

𝛼𝛼−1

 
(4) 

According to Arzaghi et al. (2018), the inter-arrival of times between successive failures, 𝑇𝑇, in the 

power-law process follows a Weibull distribution, 𝑓𝑓(𝑡𝑡,𝛽𝛽,𝛼𝛼), with shape parameter, 𝛼𝛼, and scale 

parameter, 𝛽𝛽, given by:  

 
𝑓𝑓(𝑡𝑡,𝛽𝛽,𝛼𝛼) =

𝛼𝛼
𝛽𝛽 �

𝑇𝑇
𝛽𝛽�

𝛼𝛼−1

exp [−(𝑇𝑇 𝛽𝛽⁄ )𝛼𝛼] 
(5) 

1.4. Parameter estimation methods 

Observed data, manipulated information, and gathered knowledge are three consecutive steps of 

making inference. The effectiveness of a specific model must be examined, that is, how well the 

model fits the collected data. This question is answered through the process of parameter 

estimation. In case of reliability analysis, not only the assumptions but also the methods of 

parameter estimations are of high importance affecting the accuracy level of final results. Once the 

assumption is specified, and the data is observed, the mathematical method for estimating the 

parameter of interest should be established. In the present study, MLE and HBM as the most 

popular choices of model fitting in reliability assessment are utilized, as recommended by previous 

researchers (Mahadevan and Rebba 2005, Neil, Tailor et al. 2008, Rebba and Mahadevan 2008, 

Peng, Huang et al. 2013). A brief introduction to these methods can be found in the following 

sections.  

1.4.1. Maximum Likelihood Estimation (MLE) 
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Assuming that vector 𝑔𝑔 = (𝑔𝑔1, … ,𝑔𝑔𝑛𝑛) is a random sample of an available data source, MLE is 

performed to predict the most likely data source that would yield the random sample, 𝑔𝑔. For this 

purpose, it is necessary to identify both the appropriate distribution of data source and its 

corresponding parameters. Consider that 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is a vector specified within the parameter 

space, therefore the PDF of the data vector, 𝑔𝑔, would be achieved by Equation 6, given by:  

 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝑔𝑔) = 𝑓𝑓1(𝑥𝑥1|𝑔𝑔)𝑓𝑓2(𝑥𝑥2|𝑔𝑔) … 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛|𝑔𝑔) (6) 

1.4.2. Hierarchical Bayesian Model (HBM) 

A summary of the process for performing inference using data and a probabilistic model is 

presented in Figure 1. As shown in this figure, the raw data are the collected values from a process. 

Evaluation of the data results in information and knowledge is obtained by gathering information. 

The process of making conclusion based on what once knows is referred to as inference. There is 

a need for models for obtaining information based on raw data. The models available for this 

purpose can be categorized into deterministic or probabilistic approaches (Kelly and Smith 2009). 

In this regard, probabilistic models are able to represent the uncertainty associated with available 

data where a HBM approach will assist in achieving the posterior distribution of the parameters of 

interest. HBM is carried out based on the Baye’s theorem, given by Equation 7 (El-Gheriani, Khan 

et al. 2017): 

 
𝜋𝜋1(𝜃𝜃|𝑥𝑥) =  

𝑓𝑓(𝑥𝑥|𝜃𝜃)𝜋𝜋0(𝜃𝜃)
∫ 𝑓𝑓(𝑥𝑥|𝜃𝜃)𝜋𝜋0(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃

 
(7) 

where 𝜃𝜃 denotes the unknown parameter of interest, 𝜋𝜋1(𝜃𝜃|𝑥𝑥) is the posterior distribution, and 

𝑓𝑓(𝑥𝑥|𝜃𝜃) is the likelihood function. HBM utilizes multistage prior distributions for the parameter of 

interest indicated by 𝜋𝜋0(𝜃𝜃) (Abaei, Arzaghi et al. 2018) as follow:  
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 𝜋𝜋0(𝜃𝜃) =  �𝜋𝜋1(𝜃𝜃|𝜑𝜑) 𝜋𝜋2(𝜑𝜑)𝑑𝑑𝜑𝜑
∅

 (8) 

where, 𝜋𝜋1(𝜃𝜃|𝜑𝜑) is the first-stage prior as the population variability in 𝜃𝜃; 𝜑𝜑 denotes a vector of 

hyper-parameters, (e.g. 𝜑𝜑 = (𝛼𝛼,𝛽𝛽)) , while 𝛼𝛼  and 𝛽𝛽  are the shape and scale parameters of a 

Weibull distribution, respectively. The uncertainty in 𝜑𝜑 is represented by 𝜋𝜋2(𝜑𝜑) as the hyper-prior 

distribution. The prior distribution, 𝜋𝜋0(𝜃𝜃) is specified using generic data collected from different 

sources (numerical simulations, experiments or collected from industrial operations ) to estimate 

the posterior distribution (Abaei, Arzaghi et al. 2018).  

 

Figure 1. An overview of inference process and its key elements. 

2. Model specification  

In order to predict the condition of a system after it has undergone a repair, the precise and powerful 

mathematical approaches are established. A well-known parameter estimator (MLE) and the recent 

advances in Bayesian statistical methods (HBM) are accounted for revealing the gap between PR 

and MR.  Based on the numbers of parameter required for characterization of distribution of failure 

time, Weibull and Exponential distributions are used to perform the analysis. Particularly, with a 

NHPP assumption, the time to failure cannot be characterized by an exponential distribution where 

𝛼𝛼 = 1. So, a two-parameter Weibull distribution is required (Dar, Gowsami et al. 2015, Pesinis 
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and Tee 2017). This is while for a HPP, Exponential distributions can be employed, as 

recommended by Hajati, Langenbruch et al. (2015) and Kumar and Chakraborti (2015).  

 

Figure 2. Developed framework for failure modelling based on different repair categories and 

parameter estimator tools. 

2.1. Homogenous Poisson Process 

2.1.1. Maximum Likelihood Estimation (MLE) 

As discussed in Section 1.1.1, given a perfect repair condition, the probability distributions of 

failure inter-arrival times, denoted by 𝑇𝑇, are expressed by Eqs. (9) and (10): 

 𝑀𝑀(𝑡𝑡) =  1 − 𝑒𝑒−𝜆𝜆𝑡𝑡 (9) 

 𝑓𝑓(𝑡𝑡) = 𝜆𝜆 𝑒𝑒−𝜆𝜆𝑡𝑡 (10) 

where 𝜆𝜆 is defined as the rate parameter with a likelihood function expressed by Eq. (11): 
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𝐿𝐿(𝜆𝜆) = �𝜆𝜆 𝑒𝑒−𝜆𝜆𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝜆𝜆𝑛𝑛𝑒𝑒�−𝜆𝜆∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1 � = 𝜆𝜆𝑛𝑛 𝑒𝑒(−𝜆𝜆𝑛𝑛𝑇𝑇�) 

(11) 

where 𝑇𝑇� is the mean of the inter-arrival times and n is the total number of failures observed. Thus, 

the maximum likelihood of rate parameter 𝜆𝜆, is given by Eq. (12) (Ross 2014): 

 �̂�𝜆 =
1
𝑇𝑇�

=
𝑛𝑛

∑ 𝑇𝑇𝑖𝑖𝑖𝑖
 (12) 

It is anticipated that by using this approach to uncertainty modelling, the obtained exponential 

distribution would be a representative of the failure inter-arrival times during the future operations 

of studied system.  

2.1.2. Hierarchical Bayesian Model (HBM) 

For a system with failure events that follow a Poisson distribution, the number of failures, 𝑥𝑥, can 

be modelled by Eq. (13):  

 
𝑓𝑓(𝑥𝑥|𝜆𝜆) =

(𝜆𝜆𝑡𝑡)𝑥𝑥𝑒𝑒−𝜆𝜆𝑡𝑡

𝑥𝑥!
 ,     𝑥𝑥 = 0,1, … 

(13) 

where 𝑡𝑡 is the exposure time and 𝜆𝜆 is the intensity of the Poisson distribution. For a HPP, a gamma 

distribution can be utilized to describe the variability of 𝜆𝜆  among the observed failure times. 

Therefore, given the hyper-parameters 𝛼𝛼 and 𝛽𝛽, the first-stage prior distribution can be achieved 

by the Gamma distribution, as expressed by Eq. (14) (Siu and Kelly 1998):  

 
𝜋𝜋1(𝜆𝜆|𝛼𝛼,𝛽𝛽) =

𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆

Γ(𝛼𝛼)
 

(14) 

Diffusive Gamma distribution is applied independently to model the prior distribution of hyper-

parameters, as suggested by El-Gheriani, Khan et al. (2017).  
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It should be noted that although the hyper-parameters are considered as independent random 

variables prior to any observations, they become dependent as soon as observations are introduced. 

According to Kelly and Smith (2009), this dependency is accounted for by the joint posterior 

distribution.  

Once the model, including the prior distribution and likelihood functions, are developed, MCMC 

simulations are carried to predict the posterior distribution of the Gamma parameters, 𝛼𝛼 , 𝛽𝛽.  This 

results in the estimation of Exponential distribution with a rate parameter of 𝜆𝜆, and its associated 

uncertainty. 

2.2. Non-Homogenous Poisson Process 

2.2.1. Maximum Likelihood Estimation (MLE) 

The method of estimating the probability distribution of failure inter-arrival times, based on a MR 

assumption, is explained earlier in section 1.1.2. In order to obtain the ML of Weibull parameters, 

the recommended likelihood function is given by Eq. (15) (Asher and Feingold 1984): 

 
𝐿𝐿 = �𝑓𝑓(𝑇𝑇𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 
(15) 

where 𝑇𝑇𝑖𝑖 is the time at which the 𝑖𝑖th failure has occurred and 𝑛𝑛 is the total number of failures. The 

ML of shape and scale parameters 𝛼𝛼, 𝛽𝛽 are given by Eqs. (16) and (17) (Crow 1975): 

 𝛼𝛼� =
𝑇𝑇𝑛𝑛

𝑛𝑛
1
𝛽𝛽�

 (16) 

 �̂�𝛽 =
𝑛𝑛 − 1

� ln �𝑇𝑇𝑛𝑛 𝑇𝑇𝑖𝑖� �
𝑛𝑛−1

𝑖𝑖=1

 (17) 

where 𝑇𝑇𝑛𝑛 is the time at which last failure, 𝑛𝑛, has occurred.  
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2.2.2. Hierarchical Bayesian Model (HBM) 

In order to reflect on the dependency of the inter-arrival times, 𝑇𝑇𝑖𝑖, a conditional probability must 

be established. This probability for the time interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖] can be expressed by Eq. 18 (El-

Gheriani, Khan et al. 2017). 

 
𝑓𝑓(𝑡𝑡𝑖𝑖|𝑡𝑡𝑖𝑖−1) = 𝑓𝑓(𝑡𝑡𝑖𝑖|𝑇𝑇𝑖𝑖 > 𝑡𝑡𝑖𝑖−1) =

𝑓𝑓(𝑡𝑡𝑖𝑖)
Pr (𝑇𝑇𝑖𝑖 > 𝑡𝑡𝑖𝑖−1)

 
(18) 

Consequently, the Weibull distribution and the corresponding likelihood function are given by 

Eqs. (19) and (20), respectively.  

 
𝑓𝑓(𝑡𝑡𝑖𝑖|𝑡𝑡𝑖𝑖−1) =

𝛼𝛼
𝛽𝛽𝛼𝛼

(𝑡𝑡𝑖𝑖)𝛼𝛼−1𝑒𝑒
��𝑡𝑡𝑖𝑖−1𝛽𝛽 �

𝛼𝛼
−�𝑡𝑡𝑖𝑖𝛽𝛽�

𝛼𝛼
� 

(19) 

where 𝑖𝑖 =  2, … ,𝑛𝑛.  

 
𝑓𝑓(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛|𝛼𝛼,𝛽𝛽) = 𝑓𝑓(𝑇𝑇1)�𝑓𝑓(𝑡𝑡𝑖𝑖|𝑡𝑡𝑖𝑖−1)

𝑛𝑛

𝑖𝑖−2

 
(20) 

where 𝑇𝑇1and 𝑇𝑇𝑛𝑛  are the times of first and nth failure events. Furthermore, the uncertainty of 

parameters 𝛼𝛼 and 𝛽𝛽 are modelled by HBM representing the variability of failure inter-occurrence 

times. Similar to the HPP case, these parameters will become inter-dependent once observations 

are made. The likelihood function is not pre-programmed into MCMC sampling software 

packages, OpenBUGS. Based on the suggestions provided by Kelly and Smith (2009), the 

likelihood function, 𝜑𝜑, which is a vector of 𝑛𝑛 array can be assigned to the model. This function 

𝜑𝜑 = 𝑙𝑙𝑙𝑙𝑔𝑔(𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑙𝑙𝑖𝑖ℎ𝑙𝑙𝑙𝑙𝑑𝑑)  as defined by Equation 21 adopts samples of 𝛼𝛼  and 𝛽𝛽  from the prior 

distribution in Equation 22 (Abaei, Arzaghi et al. 2018). 
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 𝜑𝜑 = log(𝛼𝛼) − 𝛼𝛼 × log(𝛽𝛽) + (𝛼𝛼 − 1) log(𝑇𝑇𝑖𝑖) − (𝑇𝑇𝑛𝑛 𝛽𝛽)⁄ 𝛼𝛼 𝑛𝑛⁄  (21) 

 �𝛼𝛼~𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(0.0001,0.0001)
𝛽𝛽~𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(0.0001,0.0001) (22) 

where 𝑇𝑇𝑛𝑛 and 𝑇𝑇𝑖𝑖 are the last and 𝑖𝑖th observation of the failure times in the simulation, and 𝑛𝑛 is the 

vector size. As similar to HPP, an independent diffuse is assumed for the prior distribution of 

hyper-parameters (El-Gheriani, Khan et al. 2017). The updated posterior distribution of the hyper-

parameters obtained from the MCMC sampling using the observed data are inserted into the 

Weibull distribution,  𝑓𝑓(𝑡𝑡,𝛽𝛽,𝛼𝛼), in order to estimate the PDF of failure under MR assumption.   

3. Application of methodology  

In order to demonstrate the application of the developed method and establish a comparison among 

the employed models, a practical example from the degradation process of Natural Gas Regulating 

and Metering Stations (NGRMS) operating in Italy is considered as the case study.  

3.1. Scenario development 

NGRMS is installed in a distribution network and supplied with natural gas flow through a 

(number of) transmission pipeline(s). Pressure reduction and gas flow measurements are the 

fundamental duties of these facilities that consist of five main sections including the inlet, filter, 

metering, regulator and outlet. In order to prevent any interruptions in the process caused by 

failures events, the redundant line is set up. A schematic of NGRMS is illustrated in Figure 3. 
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Figure 3. A schematic of Natural Gas Regulating and Metering Stations (Gonzalez-Bustamante, 

Sala et al. 2007) 

A range of process variables characterize the health condition of the process in NGRMS, e.g. 

pressure, temperature and vibration. In this study pressure is considered as the variable of interest 

for the analysis of the degradation process. The failure of system is defined as an event where the 

value of pressure exceeds the desired safety limit of the operation. The recorded time series of 

operational, are illustrated in Figure 4. This figure also shows the observed failure times of system. 

It is worthwhile to mention that the random noise in operational pressure data is filtered from 

nonstationary and nonlinear raw data by adopting Empirical Mode Decomposition (EMD) method. 

The explanation of EMD is beyond the scope of this paper and readers are referred to the following 

researches for detailed discussions on this topic (Huang, Shen et al. 1998, Wu and Huang 2004, 

Wu, Huang et al. 2007, Li and Pandey 2017, BahooToroody, Abaei et al. 2019). 
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(a) 

 

(b) 

Figure 4. (a) Time series of pressure data collected from NGRMS (b) Time to failure for given 

pressure values. 

As depicted in Figure 4, pressure values are recorded during a 631-days operation where 15 failure 

events have occurred. These data have been utilized in the analysis process. 

3.2.Homogenous Poisson Process modelling 

3.2.1. Maximum Likelihood Estimation (MLE) 
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The presented method in section 2.1.1 is applied on the pressure data based on an HPP assumption. 

The ML of rate parameter is estimated as 𝜆𝜆 = 0.0246 (per day) resulting in an exponential PDF 

of failure inter-arrival time illustrated in Figure 5. The specifications of this exponential 

distribution including its Mean Time To Failure (MTTF) are provided later in the summary of 

statistical analyses (see Table 2).  

 

Figure 5. assigned Exponential probability distributions fitted on operational data given a perfect 

repair assumption. 

3.2.2. Hierarchical Bayesian Model (HBM) 

The failure rates of considered operation in Table 1, have been extracted from the pressure time-

series. Three chains with over-dispersed initial values of 𝛼𝛼  and 𝛽𝛽  were used to ensure the 

convergence of simulations. In order to calculate the parameters of interest, the HBM was 

performed in OpenBUGS with 1000 burn-in iterations, followed by 300,000 iterations through 

each chain. The caterpillar plot of credible intervals of failure rate, 𝜆𝜆 , for all 12 interval is 
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illustrated in Figure 6. The mean value of posterior predictive distribution of 𝜆𝜆 is 0.0243 per day 

(see Table 2). This average value of failure rate also incorporates an estimate of the interval-to-

interval variability.  

Table 1. Failure (pressure exceedance) rate data during NGRMS operation 

Region No. of Failures Exposure time (day) 
1 2 52 
2 0 57 
3 1 50 
4 0 53 
5 1 56 
6 5 55 
7 0 54 
8 3 45 
9 1 50 
10 0 54 
11 0 53 
12 2 49 

  

caterpillar plot: lambda
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Figure 6. The posterior mean and 95% credible interval for pressure exceedance from safety 

limits over time given a PR assumption. Note: black dots are posterior means for each interval, 

the red line is average of posterior means. 

3.3. Non-Homogenous Poisson Process modelling 

3.3.1. Maximum Likelihood Estimation (MLE) 

Given a NHPP, the failure inter-occurrence times, 𝑇𝑇, in the power-law process generate a Weibull 

distribution, 𝑓𝑓(𝑡𝑡,𝛽𝛽,𝛼𝛼) , with shape parameter, 𝛼𝛼, and scale parameter, 𝛽𝛽, which can be estimated 

using Equations (15-17) through the application of MLE. The maximum likely 𝛼𝛼  and 𝛽𝛽  are 

computed as 52.83 and 1.1069, respectively (for more details see Table 2). Figure 7 shows the 

resultant Weibull distributions of MLE on the available data. 

 

Figure 7. Obtained Weibull distribution of failure inter-arrival times considering a MR 

assumption. 

3.3.2. Hierarchical Bayesian Model (HBM) 
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In order to estimate the likelihood function and posterior probability of Weibull parameters, 𝛼𝛼 and 

𝛽𝛽, the recorded failures were entered into the HBM. Similar to the HPP application, using MCMC 

simulations, three chains from separate points were assigned with 1000 burn-in iterations, followed 

by 300,000 iterations at each chain in order to ensure the convergence of the simulation and 

accurately predict the posterior probabilities of the parameters of interest. Figure 8 shows the 

predicted posterior distribution of  𝛼𝛼 and 𝛽𝛽. The dynamic trace of Weibull parameters is depicted 

in Figure 9 confirming the convergence. A summary of the estimated marginal posterior 

distributions for  𝛼𝛼, 𝛽𝛽 as well as their corresponding MTTFs are listed in Table 2. 

 

Figure 8. Posterior distributions of Weibull (a) shape parameter (b) and scale parameter. 

 

Figure 9. Dynamic trace of Weibull shape parameters (a) and scale parameter (b) in MCMC 

simulation. 
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4. Comparison, results and discussion 

4.1.comparison  

According to the presented models, a range of comparisons are drawn to illustrate the deviation of 

uncertainty quantifications throughout the characterized failure functions. To this end, Cumulative 

Distribution Functions (CDFs) of each failure modelling approach were developed, as illustrated 

in Figure 10. The estimated MTTF for each approach is also shown in their CDFs in this Figure. 

Table 2 summarizes the details of obtained results. An assumption-based approach covers the 

comparison between the two assumptions made regarding the distribution of inter-arrival times of 

failure events during the studied operation i.e. those with the 𝑖𝑖𝑖𝑖𝑑𝑑 assumption, represented by a HPP 

and those without this assumption which are modelled as a NHPP. The comparison of HBM and 

MLE reveals a difference in the estimated posterior distribution of parameters, which is attributed 

to the impact of correlation between the observed data. The results of these analyses are discussed 

in more details in the following sections.  

4.1.1.  Assumption-based comparison 

The MTTF values, estimated by the MLE approach, are 40.67 and 50.87 days for PR and MR, 

respectively. The significant difference between the obtained MTTF is due to the fact that the PR 

assumption neglects the dependency amongst failure interarrival while MR accounts for this. As 

shown in Figure 10, a similar difference level is observable between the MTTF values estimated 

by using a HBM approach. The MTTF of HPP and NHPP are found to be 41.15 and 55.57 days, 

respectively. These results confirm that discounting the time dependency of failure events may 

lead to between 25% to 35% difference in MTTF, regardless of the modelling approach (HBM or 

MLE). 
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4.1.2.  Parameter estimator-based comparison 

Regarding the HBM, to allow the results to be compared with MLE, independent and diffuse 

priories were adopted for 𝛼𝛼 and 𝛽𝛽. A gamma distribution prior was used for both shape and scale 

parameters, as suggested by Kelly and Smith (2009).   

Based on PR, the MLE yields a failure rate of 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 = 0.0246 with a 95% confidence interval of 

(0.0137,0.0385) while the posterior mean of this parameter is estimated by HBM as 𝜆𝜆𝐻𝐻𝐻𝐻𝑀𝑀 =

0.0243, having a 95%  confidence interval of (0.0044,0.0631). In the light of estimated value for 

parameter of interest, lambda, given HPP, it is interpreted that the source to source variability of 

data carrying out by MCMC simulation in the HBM is less reflected. Subsequently, the MLE and 

HBM of MTTF are estimated at 40.67 and 41.15, respectively, suggesting a minimal difference 

(see Figure 10).  

For a MR assumption, HBM yields a posterior mean for the shape parameter 𝛼𝛼 = 1.107 with a 

95% credible interval of (0.605, 1.757) while the MLE model resulted in 𝛼𝛼 = 1.106, highlighting 

a good agreement between the employed approaches. Bayesian inference 𝛽𝛽, yields a posterior 

mean of 57.71. However, the MLE, which disregards the correlation between observed data, 

results in a smaller shape parameter of 52.83 (8% deviation). Finally, this deviation in the posterior 

mean of 𝛽𝛽 in HBM and MLE is appeared again in the MTTF (see Table 2).  

Table 2. Summary of statistical analyses results of different failure modelling approaches.  

Assumption Distribution Estimation method Parameter value MTTF SD* 

Perfect repair Exponential MLE 𝜆𝜆= 0.0246 40.666 1.6538e+03 

Perfect repair Exponential HBM 𝜆𝜆= 0.0243 41.152 1.6935e+03 
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Minimal repair Weibull MLE 𝛼𝛼= 1.106 
𝛽𝛽= 52.83 

50.872 2.1179e+03 

Minimal repair Weibull  HBM 𝛼𝛼= 1.107 
𝛽𝛽= 57.71 

55.569 2.5270e+03 

*Standard Deviation 

 

Figure 10. Cumulative distribution function and corresponding MTTF values for different repair 

categories estimated by MLE and HBM methods. 

4.2.Discussion: the unbiased and minimal variance category of failure modelling approaches 

The results listed in Table 2 reveal that the value of the Weibull shape parameter, estimated using 

both parameter estimation approaches (HBM, MLE), are higher than 1, confirming that the number 

of failure events are dependent upon time. This is in contrary to the PR assumption, where the 

failure rate is assumed to be constant with time. That is, a MR assumption is appearing to be more 

credible for the failure modelling of NGRMS. In order to categorized the efficient approach among 

the presented models given MR assumption, the probability plot for Weibull distribution was 

developed, as depicted in Figure 11. As shown in the figure, the ML of shape and scale parameters 
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of Weibull distribution include higher uncertainty than their estimation through the HBM 

approach. Therefore, the HB model given an MR assumption seems to be the most reliable 

approach amongst the reviewed methods. That is, the Bayesian method can efficiently take 

advantage of the available data to predict the parameters of failure model hence providing an 

opportunity for improvements of asset management plans.  

 

 

Figure 11. Weibull probability plot for time-dependent failure modelling approaches. 

5. Conclusion 

A major challenge in failure modelling of repairable systems is choosing applicable tools and 

making valid assumptions. This will also help in reducing the uncertainty associated with the 

obtained results. The differences between application of two mostly utilized assumptions in failure 

modelling, MR and PR, have been addressed in this paper. This was carried out in a case study of 
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natural gas regulation and measurement plant by MLE and Bayesian inference method. The final 

results highlighted that relaxing the renewal process assumption (constant failure rate) and taking 

the time dependency between the observed failure times into account, results in a more precision 

of failure modelling where the shape parameter value of Weibull distribution in both parameter 

estimation approaches (HBM, MLE) are higher than 1, confirming that the number of failure 

events are dependent upon time. On the other hand, HBM is able to model the correlation between 

the failure data through an MCMC simulation, leading to less uncertainty in MTTF calculations. 

This is approved through the developed probability plot for Weibull distribution where the 

estimated shape and scale parameters of HB model has better precisions than ML estimation. The 

results also suggest that a minimal repair assumption for an HBM failure analysis estimates longer 

MTTF which avoid the conduct of premature maintenance or compromise operational safety.  As 

a further investigation, it is recommended to model generalized perfect repair assumption with 

hierarchical Bayesian inference.   
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