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a b s t r a c t

Energy systems for buildings and neighborhoods are expected to become more complex and flexible.
Advanced control strategies are required to exploit the full potential of this flexibility and are especially
important for systems with storages. In this study, the control of an integrated heating and cooling
system for a building complex in Oslo, Norway, was analyzed. Focus was on the control setpoints for the
main heat pumps, which had a total heating capacity of about 1 MW and were connected to thermal
storage tanks. Previously developed simulation models of the system and its main components were
made suitable for dynamic optimization with long time horizons. JModelica.org was used to find optimal
control trajectories for the system with two different objectives. The first objective was to reduce the
electricity use of the system and the second objective was to reduce the electricity costs of the system.
The results showed that the electricity use of the system could be reduced by about 5% for the analyzed
year. The electricity costs could be reduced by about 5e11% for the three analyzed winter months,
depending on the variability of the electricity price and the size of the storage tanks.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Heating and cooling demands of buildings account for a large
share of the world’s energy use [1,2]. The development of new
buildings and integrated energy systems aims at reducing the
environmental impact of these energy demands. Such future sys-
tems are expected to be more complex and flexible due to the in-
clusion of fluctuating energy sources [3] and thermal energy
storage (TES) [4]. Simulation and optimization are key methods for
the analysis of these complex systems and their operation [5,6]. In
particular, optimized control is essential to unlock the full potential
of TES [7,8]. However, TES increases the optimization problem
complexity, especially when short- and long-term thermal storage
are combined [9,10].

Several studies on the optimization of TES operation can be
found. Liu et al. optimized the charging of a hot and a cold storage
tank with a dual-mode transcritical CO2 heat pump using Dymola
and a genetic algorithm (GA) and report energy savings of almost
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20% [11]. Kamal et al. optimized TES control in a large office
building using EnergyPlus and a GA and report cost savings of
10e17% [12]. Urbanucci et al. optimized the component sizes and
the operation of a cogeneration system with TES by coupling a
mixed integer linear programming formulation with a GA [13]. Li
et al. optimized the thermal management for industrial waste heat
recovery with phase change material TES using a biogeography-
based optimization algorithm and report daily fuel savings of
6.9% [14]. All of these studies used derivative-free optimization
algorithms, which are not the best choice for the optimization of
TES system operation [15]. On the contrary, Knudsen et al. opti-
mized TES operation for surplus-heat exchange in an industry
cluster using a gradient-based optimization algorithm and report
an increase in surplus-heat utilization from 77% to 98% [16].

In a previous study, an integrated heating and cooling system
(IHCS) with TES for a small neighborhood in Oslo, Norway has been
analyzed by means of dynamic simulations with Modelica models
[17]. It was shown that the control setpoints influenced the system
performance. Therefore, the aim of this study was to optimize these
setpoints with two main objectives. The first objective was to
analyze the potential reduction of the system’s electricity use with
the currently installed components. The second objective was to
analyze if the installation of larger storage tanks could lead to a
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviations
BAU Business as usual
BTES Borehole thermal energy storage
COP Coefficient of performance
DH District heating
DHW Domestic hot water
GA Genetic algorithm
HP Heat pump
IHCS Integrated heating and cooling system
ITES Ice thermal energy storage
NLP Nonlinear program
SC Space cooling
SH Space heating
SM Snow melting
TES Thermal energy storage

Symbols
e Electricity price (NOK/MWh)
ε Slack parameter (�)
_m Mass flow rate (kg/s)
P Power (W)
_Q Heat flow rate (W)
t Time (s)
T Temperature (K)
v Variability (�)
V Volume (m3)

Subscripts
avg Average
Cond Condenser
Evap Evaporator
in Inlet
L Lorentz
out Outlet
sec Secondary
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Fig. 1. Simplified schematic of the integrated heating and cooling system.
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reduction of the system’s electricity costs. To this end, dynamic
optimizations with JModelica.org were performed. JModelica.org is
a Modelica-based open-source optimization platform, which
essentially uses a gradient-based algorithm to solve a nonlinear
programming (NLP) problem [18]. The optimization models in this
study contained both short- and long-term TES and a heat pump
model. This led to a challenging optimization problem due to the
different time-scales of the storages and the part-load operation of
the heat pump. In addition, relatively long time horizons were
necessary to avoid suboptimal usage of the long-term storage
during optimization. This led to relatively large optimization
problem sizes. The resulting NLP sizes in this studywere larger than
the reported sizes in other studies using JModelica.org, e.g.
Refs. [16,19e24].

The remainder of this paper is structured as follows: a short
description of the IHCS and brief results from the previous study are
given in Section 2. In Section 3, the optimization approach is
described in detail. Results from the optimizations are presented in
Section 4, followed by a discussion in Section 5 and concluding
remarks in Section 6.

2. Case study

2.1. System description

The IHCS was located in the Norwegian capital Oslo and sup-
plied thermal energy for space heating (SH), domestic hot water
(DHW) heating, snowmelting (SM), space cooling (SC), and product
cooling to several different building types. Snow melting was
applied to the walkways between the buildings and product cool-
ing was supplied to a food court. A simplified schematic of the IHCS
is shown in Fig. 1

The main components of the IHCS were heat pumps (HPs), heat
exchangers, solar collectors, storage tanks, ice thermal energy
storage (ITES), and borehole thermal energy storage (BTES). The
ITES was used to reduce space cooling peak demands during
summer days and was charged during the night. The BTES was used
as heat source during heating season and as heat sink during
cooling season. The IHCS was designed to supply heat at 50e55 �C
and was also connected to the city’s district heating (DH) system.
This DH system supplied heat at a temperature of 85e120 �C and
was used as backup (in case of system failure), for peak demand
coverage, and as temperature lift for DHW heating, which had a
supply temperature setpoint of 70 �C. A more detailed description
of the IHCS can be found in Refs. [17,25].

The IHCS was equipped with a control and monitoring platform.
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Energy meters were installed to measure the supplied energy for
heating and cooling in each connected building. Hourly values of
these demands were retrieved and used as input data for all the
simulations and optimizations. Aggregated daily demand data for
the year 2015 are shown in Fig. 2.

2.2. Results from the previous study

The IHCS was analyzed in a previous study bymeans of dynamic
simulations [17]. Modelica models were developed for the main
components with focus on a good trade-off between accuracy and
simulation time. The system model was calibrated with one-year
measurement data and the results showed good agreement be-
tween simulated and measured values for electricity use and DH
import.

The simulation results showed that more heat was extracted
from the BTES during winter than was injected during summer.
This can be seen in Fig. 3, which shows the daily heat balances for
the BTES and the solar collectors. This imbalance was shown to
reduce the system’s long-term performance.

A sensitivity study was performed and the results showed that
the supply temperature setpoints for heating, Tsupply_heat, and space
cooling, Tsupply_cold, were important for the system performance.
These setpoints were used for the control of the main heat pumps
as well as the BTES circulation pumps, which were responsible for
62% and 5% of the total electricity use, respectively. The IHCS had
two operation modes: heating mode and cooling mode. Tsupply_heat
was set to 55 �C during heating mode and 51 �C during cooling
mode. Tsupply_cold was set to 6 �C during both operation modes. This
control approach is called business as usual (BAU) throughout this
paper.

3. Methodology

The IHCS was modeled in Modelica and simulated with Dymola
as described in the previous section. The aim of this study was to
optimize the operation of the IHCS, in particular the setpoint
temperatures for heating and cooling supply, Tsupply_heat and
Tsupply_cold, respectively. To this end, dynamic optimizations were
performed with JModelica.org. The resulting setpoints from the
optimizations were implemented into the system simulations in
Dymola. The workflow of the entire analysis is shown in Fig. 4.

All elements of the optimization procedure (Part 2 in Fig. 4) are
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explained in detail in the next subsections. First, the optimization
platform JModelica.org is described in Section 3.1. The development
of seasonal models, which were suitable for numerical optimiza-
tion, is described in Section 3.2. Finally, in Section 3.3, the control
variables, constraints, and objective functions of the optimization
problems are explained.
3.1. Optimization platform

JModelica.org is an open-source platform for simulation and
optimization of complex dynamic systems [18]. JModelica.org is
based on the modeling language Modelica and the Functional
Mock-up Interface standard which enables coupling to different
software packages. It uses the language extension Optimica, which
enables high-level formulation of optimization problems [26]. All
the optimizations in this work were performed with JModelica.org
version 2.2 via 64-bit Python scripting. The main steps of the
optimization procedure are described in this section and are shown
in Fig. 5.

Step 1: An initial simulation was required to obtain variable
trajectory data for initialization and scaling of the NLP variables in
Step 5, see Fig. 5. To this end, the Modelica model for initialization
was compiled into a Functional Mock-Up Unit and simulated using
the CVode solver from the SUNDIALS suite [27], which is included
in JModelica.org.

Step 2: The Modelica model for optimization and the problem
formulation (Optimica code) were compiled and transferred to the
CasADi interface of JModelica.org. CasADi was used for the
computation of derivatives using algorithmic differentiation [28].

Step 3: Symbolic elimination based on block-triangular ordering
was applied to reduce the number of algebraic variables as
explained in Ref. [29]. This step was found to be crucial for suc-
cessful converge as it significantly reduced the size of the resulting
NLP.

Step 4: Code for orthogonal collocation on finite elements [30] is
included in JModelica.org and was used to transform the infinite-
dimensional dynamic optimization problem into a finite-
dimensional NLP. The number of collocation elements and the
number of collocation points in each element has a strong influence
on the size of the resulting NLP. Initial testing with a prediction
horizon of one-week was performed to compare the resulting
setpoint temperatures with two different collocation configura-
tions. The fine discretization had an element length of 15 min and
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two collocation points per element. The coarse discretization had
an element length of 30min and one collocation point per element.
Applying the coarse discretization led to a reduction of the NLP
variables from 598∙103 to 178∙103 and a reduction of the solution
time from 103.2 s to 30.4 s for the one-week prediction horizon.
However, the average absolute difference between the optimized
setpoints for the fine and coarse discretization was less than 0.1 K,
which was regarded as insignificant. Therefore, the coarse collo-
cation discretization was used for all the optimization cases in this
study.

Step 5: Variable trajectory data obtained during the initial
simulation (Step 1) was used for automatic initialization and
scaling of the NLP variables.

Step 6: The resulting NLP was solved using version 3.12.4 of the
primal-dual interior-point solver IPOPT [31] with linear solver
MA57 from HSL [32]. All optimizations were performed with an
Intel® Core™ i7-6700 K processor (4 GHz) and 64 GB RAM.

3.2. Optimization models

Initial testing showed that the complexity of the full system
model developed in Ref. [17] impeded its applicability for dynamic
optimization. To enable optimization of the system model over
relevant prediction horizons, seasonal models were developed as a
means of reducing model complexity. This section describes the
reduction of the full system model and its decomposition into
seasonal models.

3.2.1. Reduction of the full system model
The full system model could not be used for dynamic optimi-

zation due to the large number of components and their in-
terconnections as mentioned above. Therefore, certain parts of the
system had to be removed to reduce the complexity and the size of
the resulting NLP. The full system model and the removed parts
(covered with gray) are shown in Fig. 6.

It can be seen in Fig. 6 that the solar collector loop, the DHW
heating substation, the product cooling and ITES charging loop, and
the recovery loop were removed. The solar collector loop was
removed because it played a minor role for the system perfor-
mance, see Fig. 3. The DHWheating substation, the product cooling,
and the ITES charging loop were removed because the recovered
heat fromHP3 was similar to the supplied heat in the DHW heating
substation (620MWh and 682MWh, respectively). Removing these
parts therefore caused insignificant mismatch in the total heat
balance. The simulated electricity use of the removed parts
accounted for 18% of the total electricity use in the previous study,
which showed that the key components of the system were kept.
For clarity, the reduced system model is shown in Fig. 7.

3.2.2. Modifications of the component models
The component models described in Ref. [17] were developed

for stable and fast dynamic simulations. However, due to the
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different numerical use of the model equations during simulation
and optimization, some modifications were required to make all
the component models suitable for optimization. These modifica-
tions are described in this section. To recall, the simulation models
are shown in Fig. 6 while the optimization model is shown in Fig. 7.

The substation model for simulation, see Fig. 6, received a
demanded heat flow rate as input signal, which was based on the
corresponding demand type. This input signal was used to control
the mass flow rate of the circulation pumps within the substation
model. Initial testing showed that the implemented PI-controller
model led to convergence issues. Therefore, a different approach
was chosen for the optimization model. The mass flow rate of the
circulation pumps was used as input signal, see the yellow boxes in
Fig. 7, and the required heat flow rate was formulated as a
constraint in the optimization problem, see Section 3.3.

Similar to the substation model, a new approach was also cho-
sen for the HP model. The HP model for simulation received one of
the outlet temperatures on the secondary side as input signal (not
shown in Fig. 6). The HP model for optimization received the heat
pump power (PHP) as input signal, see the yellow box in Fig. 7. Initial
testing showed that this modification increased the convergence
rate significantly.

The calculation of the Lorentz temperature in the heat pump
model in Ref. [17] impeded successful convergence and was
therefore approximated in the optimization model as:

TL cond=evap ¼ Tin sec cond=evap þ Tout sec cond=evap

2
(1)

The difference in Lorentz temperature due to this modification
was less than 0.1 K for all relevant operating conditions, which was
regarded as insignificant.
The numerical discretization of the BTES and the storage tanks
had strong influence on the number of NLP variables. A one-week
test optimization was performed to compare the resulting set-
point temperatures with high and low discretization values. The
horizontal and vertical discretization of the BTES was set to 30 and
4 for the high discretization case and 10 and 2 for the low dis-
cretization case, respectively. The discretization of the heating and
cooling tanks was set to 15 and 5 for the high discretization case
and 5 and 2 for the low discretization case, respectively. Reducing
the discretization led to a reduction of the NLP variables from
178∙103 to 53∙103 and a reduction of the solution time from 30.4 s
to 2.8 s. However, the average absolute difference between the
optimized setpoints for the high and low discretization case was
less than 0.1 K, which was regarded as insignificant. Therefore, the
low discretization values were used for all the optimizations in this
study.
3.2.3. Seasonal models
Some parts of the IHCS were only used during certain periods of

the year, because the heating and cooling demands varied from
season to season, see Fig. 2. Optimizing unused parts would un-
necessarily increase the optimization problem size. Therefore, three
seasonal models were created based on the reduced system model
shown in Fig. 7 and the unused parts of each model were removed.

For the winter model, the BTES charging heat exchanger and
respective circulation pumps could be removed because no heat
was sent to the BTES during winter, see Fig. 3. For the transition
model used for spring and fall season, the snowmelting substation
could be removed since there was no snow melting demand, see
Fig. 2. For the summer model, the snow melting substation and the
BTES discharging pump could be removed because there was no
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snowmelting demand and no heat was taken from the BTES during
summer, see Figs. 2 and 3. The three seasonal models are listed in
Table 1 together with the unused parts.

Two versions of each seasonal model were required: one for the
initial simulation and one for the optimization, see Fig. 5. In the
initialization models, the component models for simulation were
used. The component models for optimization, explained in Sec-
tion 3.2.2, were used during the optimizations.
3.3. Optimal control problem formulation

The seasonal models described in the previous section were
used to find optimal heating and cooling supply temperature set-
points for simulations with the full systemmodel as shown in Fig. 4.
The optimization problems for the different models were formu-
lated as continuous-time optimal control problems. The control
variables, constraints, and objective functions of the optimization
problems are explained in the following subsections.
3.4. Control variables

The control variables in the optimal-control problems were the
heat pump power, PHP, and the mass flow rates for the circulation
pumps. These are marked yellow in Fig. 7 and are written as a
vector:
uðtÞ∶ ¼
�
PHPðtÞ; _miðtÞ

�’
;

i2fSH; SM; SC; BTES_Evap; Cond_BTESg
(2)

The temperatures Tsupply_heat and Tsupply_cold were not included
in the vector u(t). This was due to the fact that the optimization
models did not contain PI-controllers, as explained in Section 3.2.2,
and thus could not receive a setpoint temperature. The tempera-
tures Tsupply_heat and Tsupply_cold depended on the control variables
and were calculated during the optimizations. The resulting values
were then used as input for the new simulations (Part 3 in Fig. 4).
3.5. Constraints

Lower and upper bounds were defined for the control variables
based on their operational limits, yielding the following linear
inequality constraints:

0 � PHPðtÞ � 300 kW (3)

0 � _miðtÞ � _mi max;

i2fSH; SM; SC; BTES_Evap; Cond_BTESg (4)

Themaximummass flow rates in Equation (4) were set based on
manufacturer specifications as follows: _mSH_max¼11 kg/s,
_mSM_max¼7.5 kg/s, _mSC_max¼33 kg/s, _mBTES_Evap_max¼62 kg/s,
_mCond_BTES_max¼62 kg/s. To ensure practically feasible operation,
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the supply temperatures for heating and cooling were constrained
by:

Tsupply heatðtÞ � 65 �C (5)

Tsupply coldðtÞ � � 5 �C (6)

Constraints were also added to ensure that the correct amount
of energy was supplied from the IHCS to the connected buildings.
Enforcing this demand satisfaction as an equality constraint led to
convergence issues. Therefore, the following upper and lower
bounds were defined for the heat flow rates in the substations
based on the heating and cooling demands:
Table 1
Seasonal models used for optimization.

Seasonal model Unused parts

Winter BTES charging heat exchanger and pumps
Transition Snow melting substation
Summer Snow melting substation and BTES discharging pump
_Qi supplyðtÞ � _Qi demandðtÞ;
i2fSH; SM; SCg

(7)

_Qi supplyðtÞ � ε, _Qi demandðtÞ;
i2fSH; SM; SCg

(8)

This formulation improved the numerical performance. The
parameter ε was set to 1.005 so that only a small slack in energy
supply was allowed.
3.5.1. Definition of the objective function for reduction of electricity
use

The calculated electricity use of the system consisted of three
parts: the electricity use of the heat pumps, the electricity use of
the circulation pumps, and a constant term from auxiliary systems
[17]. The first aim of this study was to analyze how much this
electricity use could be reduced. Therefore, the following objective
function was defined in order to minimize total electricity use:



Table 2
Optimization periods and problem size.

Days Seasonal model Number of finite elements Number of NLP variables Number of NLP Constraints

1e95 Winter 4562 7.2∙105 7.8∙105

96e155 Transition 2883 4.2∙105 4.6∙105

156e260 Summer 5043 6.7∙105 7.3∙105

261e290 Transition 1443 2.0∙105 2.2∙105

291e365 Winter 3602 5.7∙105 6.2∙105
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min
uðtÞ

Ztfinal
tstart

 
PHPðtÞ þ

X
i

Pi pumpðtÞ
!
dt;

i2fSH; SM; SC; BTES_Evap; Cond_BTESg
(9)

Note that the constant term of the electricity use had no influ-
ence on the optimal solution and was therefore removed from the
objective function. The year was divided into seasonal periods and
each period was optimized separately with the corresponding
values for the period’s beginning (tstart) and end (tfinal). The length
of each season and the resulting NLP problem size of the respective
optimization are shown in Table 2.

The initial state of the BTES and storage tank models for each
season were chosen based on the result of the previous season.
3.5.2. Definition of the objective function for reduction of electricity
costs

The second aim of this study was to analyze if the electricity
costs of the system could be reduced with improved control set-
points. In Norway, electricity prices are much higher during winter
than during summer due to the market based electricity price
model and the high amount of electricity used for space heating.
The first three months of the year accounted for 44% of the total
electricity costs for the simulated year. Therefore, these three
months were chosen for the cost-reduction analysis to limit the
number of required optimization runs. This way, all the optimiza-
tions could be performed with the winter model. The following
objective function, including the time-varying electricity price e(t),
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was defined in order to minimize electricity costs:

min
uðtÞ

Ztfinal
tstart

eðtÞ,
 
PHPðtÞ þ

X
i

Pi pumpðtÞ
!
dt;

i2fSH; SM; SC; BTES_Evapg
(10)

The electricity spot prices for the location of the IHCS for the first
three months of the previous four years are shown in Fig. 8. At the
time of writing, the exchange rate from Norwegian Krone to Euro is
1 NOK ¼ 0.0982 EUR (XE [34]. Note that the prices in Fig. 8 are
market spot prices. Customers also have to pay electricity grid
prices and additional fees, which were not considered in this study.

It can be seen from Fig. 8 that the electricity price showed
relatively little variation in 2015. Therefore, additional price signals
were defined with different fluctuations to analyze the influence of
the variability of the electricity price, v, on the cost saving potential.
The price signals were based on the average price of the first three
months of 2015 (239 NOK/MWh) and the original price signal
(eOslo2015). Values of 0, 1, 2, and 3 were chosen for v and the price
signals were calculated as follows:

evðtÞ ¼ 239þ v,ðeOslo2015ðtÞ � 239 Þ (11)

The four resulting price signals were used for the optimizations
and are shown in Fig. 9.

This approach, similar to the one presented in Ref. [35], was
chosen instead of using electricity prices from other years to
maintain the correlation between the electricity price and the
climate conditions. Note that this correlation is not kept for v ¼ 0,
2015
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itted for better readability (max value ¼ 2454 NOK/MWh).



Table 3
Case IDs of optimizations for electricity cost reduction.

Vtank_heating Vtank_cooling Electricity price signal

(m3) (m3) e0 e1 e2 e3

10 2 10-2_e0 10-2_e1 10-2_e2 10-2_e3
100 100 100-100_e0 100-100_e1 100-100_e2 100-100_e3
500 500 500-500_e0 500-500_e1 500-500_e2 500-500_e3

0

3

6

9

12

15

18

0 3 6 9 12 15 18

)h
W

M( ylppus ygrenE

Energy demand (MWh)

Space heating

Space cooling

Snow melting

Fig. 10. Daily values of demanded and supplied energy for the substations of the IHCS.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90

)h
W

M/K
O

N( ecirp y tic ir tcelE

Day of the year

e3

e2

e1

e0

Fig. 9. Electricity prices used for the optimizations (e1 ¼ eOslo2015).

D. Rohde et al. / Energy 193 (2020) 116771 9
which corresponds to a constant and thus unrealistic electricity
price.

The storage tanks of the IHCS were relatively small and only
used as buffer to even out the supply temperatures of the heating
and cooling loop. Storage tanks are a relatively cheap component,
so the installation of larger tanks may be considered as a realistic
retrofitting option. To investigate the effect of larger storage tanks
on the cost saving potential, three different tank size combinations
were chosen: the installed 10 m3 and 2 m3 for the heating and
cooling tank, respectively, as well as 100 m3 and 500 m3 for both
tanks.

The four different price signals and the three different tank size
combinations led to the twelve optimization cases listed in Table 3.

All the cases listed in Table 3 were optimized separately with the
winter model. According to the prediction horizon of three months,
tstart and tfinal were set to 0 and 7.776∙106 in the objective function,
Equation 10, respectively. Optimal operation over this prediction
horizon would lead to emptied short-term storages at tfinal, i.e. the
average temperature (Tavg) in the hot storage tank would be as low
as possible and the average temperature in the cold storage tank
would be as high as possible. This would lead to an unfair com-
parison, especially when different tank sizes were compared.
Therefore, the following constraints were added for these twelve
optimizations to avoid this effect and thus ensure a fair
comparison:

Ttank_heating_avg
�
tfinal

�
� Ttank_heating_avg

�
tstart

�
(12)

Ttank_cooling_avg
�
tfinal

�
� Ttank_cooling_avg

�
tstart

�
(13)

4. Results

In this section, the results from the simulations and the opti-
mizations are presented. First, the results leading to reduced
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electricity use of the system are shown. For these results, the five
optimizations listed in Table 2 were performed, which included all
the seasonal models and an analyzed period of one year. After-
wards, the results leading to reduced electricity costs of the system
are presented. For these, the twelve optimizations listed in Table 3
were performed with the winter model and an analyzed period of
three months. Note that perfect prediction of the heating and
cooling demands as well as the electricity price was assumed for all
the simulations and optimizations.
4.1. Reduction of annual electricity use with optimization-based
control

A validation was performed to confirm that the energy demand
constraints, Equations (7) and (8), were not violated during the
optimizations. To this end, a one-year simulation with the reduced
systemmodel shown in Fig. 7 was performed. The optimized values
for the control variables were used as input and the resulting heat
flow rates in the substations’ heat exchangers were compared to
the demanded heat flow rates. Daily values for demanded and
supplied energy are shown in Fig. 10.

It can be seen from Fig. 10 that there was no mismatch between
the demanded and the supplied energy. Slight deviations were
observed on hourly basis. This was due to the slack formulation in
Equation (8) and the fact that the constraints were only enforced at
the collocation points and not during the entire width of the
collocation element. However, the R2-values for all three demand
types were above 0.99 on hourly basis, showing that the deviations
were insignificant.

The optimized values for heating and cooling supply tempera-
ture are shown in Fig. 11 and Fig. 12, respectively. The former set-
points from the previous study, used during Part 1 in Fig. 4, are also
shown for comparison.

It can be seen from Fig. 11 that the optimal heating supply
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temperature was lower than the BAU setpoint for most of the year,
except for a few winter days. It can also be seen that the optimal
temperature was lower during summer than during winter, so the
reduction of the setpoint during cooling mode was a good choice
for the BAU case. Fig. 12 shows that the optimal cooling supply
temperature varied around the BAU setpoint throughout the year. It
was higher during summer than during winter except for a short
period in the beginning of the year. This periodmight be affected by
the initialization of the BTES. In general, the optimal cooling supply
temperature showed larger variations than the optimal heating
supply temperature.

The optimized values for Tsupply_heat and Tsupply_cold were
implemented into the full system model, where they were used as
replacement for the mode-based setpoints of the BAU case (Part 3
in Fig. 4). The resulting energy amounts for the simulated year are
shown in Fig. 13.

It can be seen from Fig. 13 that the electricity use for the heat
pumps and the circulation pumps decreased by 5 and 14%,
respectively, with the optimized setpoints compared to the BAU
case. Due to the circulation pump’s low share of electricity use, this
corresponded to a minor total reduction of electricity use. The
amount of heat imported from DH increased by 12% for the simu-
lated year. The amount of heat taken from the long-term storage
decreased by 7%.
4.2. Reduction of electricity costs during winter with optimization-
based control

Selected result values from the optimizations leading to mini-
mized electricity costs are shown in this section. February 14th and
February 3rd were days with very different variations in electricity
spot price. The price signals for these two days are shown in Figs. 14
and 15, respectively.

It can be seen from Fig. 14 that the electricity price was almost
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constant on February 14th. On the contrary, the electricity price
varied significantly on February 3rd as shown in Fig. 15. Peak hours
were in the morning and afternoon, which is typical for Norway
[36]. Detailed results for the optimal heat pump power and tem-
perature setpoints are presented for these two days for selected
cases from Table 3. The results for February 14th for the cases with
the original electricity price and different tank size combinations
are shown in Fig. 16.

It can be seen from Fig. 16 that the different tank size combi-
nations yielded very similar results for February 14th. This was
expected due to the relatively constant electricity price during that
day. The results for February 3rd for the same cases are shown in
Fig. 17.

It can be seen from Fig. 17 that the optimal control trajectories
for February 3rd depended highly on the size of the storage tanks.
Larger tanks led to larger variations, due to the possibility to shift
electricity use from peak hours (with high prices) to off-peak hours
(with low prices) and thus decrease the total electricity costs.

Fig. 17 clearly shows that the installed tanks (Case 10e2_e1)
were too small to take advantage of the electricity price variations.
The heat pump power only varied between 150 kWand 270 kW for
this case and the temperatures setpoints were relatively constant as
well, expect for two short peaks of Tsupply_heat. For Case 100-100_e1,
the heat pump power varied across nearly the entire allowed range
from 0 to 300 kW. It was higher during off-peak hours to charge the
storage tanks, corresponding to high values for Tsupply_heat and low
values for Tsupply_cold. On the contrary, the heat pump power was
low during peak hours and the energy demands of the buildings
were to a large extent covered by discharging the tanks. For Case
500-500_e1, this effect was even more pronounced, leading to the
largest variations in the optimal values for Tsupply_heat and
Tsupply_cold.

The results for February 3rd for the cases with the largest tanks
and different variability of the electricity price are shown in Fig. 18.

It can be seen from Fig. 18 that there were large differences
between the results with a constant electricity price, Case 500-
500_e0, and the cases with price variations. Although the costs
were optimized for all the cases, the constant price led to a mini-
mization of the total electricity use for Case 500-500_e0 (i.e.
Equations (9) and (10) yielded equal results). The control of the heat
pump and the circulation pumps were therefore optimized
depending on the energy demands of the buildings. For the other
three cases, the electricity use was significantly higher during off-
peak hours. The cases with different variability showed very
similar results for February 3rd. The optimal control trajectories
became slightly more pronounced for larger values of variability,
but only Tsupply_cold showed significant differences. This showed
that even larger tanks would be required to take advantage of the
variations during that day. However, other days showed larger
differences between these cases.

The optimized setpoints were implemented into the full system
model and a simulation for the first three months was performed
for all the cases listed in Table 3. The simulated total electricity costs
for this period are shown in Fig. 19. The simulated costs with BAU
control were included to show the potential savings. All the results
are shown relative to the BAU case, because the different price
signals led to different costs for the BAU case.

It can be seen from Fig. 19 that all the optimized cases led to
lower electricity costs compared to the BAU case. The relative
savings were in the range of 5e11%. The relative savings increased
with larger variability of the electricity price signal. Larger tanks
also led increased relative savings, except for the cases with con-
stant electricity price (e0).

Peak hours and off-peak hours were defined to quantify how
much of the total electricity use was shifted from the former to the
latter. For each day, the minimum and maximum electricity price
were used to define the daily price range. Hours with a price in the
top 25% of this range were defined as peak hours. Similarly, hours
with a price in the bottom 25% were defined as off-peak hours.
Fig. 20 shows the electricity use during different pricing hours for
the BAU case and the optimized cases.

It can be seen from Fig. 20 that the installed tanks (10/2) were
too small to shift electricity use from peak hours to off-peak hours.
On the contrary, the percentage of electricity use during off-peak
hours was increased for the cases with larger tanks. This load
shift was more pronounced for the cases with higher variability of
the electricity price.

5. Discussion

In this section, general matters regarding the applied method-
ology are discussed first. Afterwards, the reduction of electricity use
and electricity costs are discussed in detail.

All the optimizations were performed with reduced system
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models. Minor components, responsible for 18% of the annual
electricity use, were removed from the full system model to avoid
convergence issues of the NLP solver. In addition, the year was
divided into five seasons and each seasonwas optimized separately.
From this point of view, the results can be seen as a lower bound,
since the control of the removed parts were not optimized. This
means that potential improvements were disregarded and a one-
year optimization of the full system model would be desirable.
However, numerical optimization is significantly more challenging
than simulation for this type of integrated systems and the
complexity of the full system model impeded a one-year optimi-
zation. The authors find it worth noting that JModelica.org version
2.0 was used initially, which only supported 32-bit Python. The
memory usage of a 32-bit Python process is limited to about 2 GB,
which was insufficient for the optimizations in this study and led to
frequent memory allocation errors. JModelica.org version 2.2 was
released in March 2018 and was the first version to support 64-bit
Python. The upgrade to version 2.2 was crucial for this study and
the same results could therefore not have been produced before
March 2018.

The input data for the whole year were used as input in this
study. The optimizations were thus performed with perfect pre-
diction. From this point of view, the results can be seen as an upper
bound, since perfect prediction is not a realistic scenario. The en-
ergy demands of buildings and the electricity price in Norway both
depend on ambient conditions. In practice, the uncertainty of the
weather forecast thus makes detailed optimizations over a long
prediction horizon obsolete. Shorter periods are therefore chosen
in practical applications such as Model Predictive Control [37]. An
advantage of shorter prediction horizons are that more detailed
models can be optimized. A disadvantage is that the use of long-
term storages needs special attention. For a short prediction
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horizon, the optimization of a long-term storage is fundamentally
difficult. Unsustainable usage may result unless a sufficiently high
cost is put in the objective function or constraints are imposed. The
implementation of such measures was outside the scope of this
study and long prediction horizons were chosen to ensure optimal
operation of the BTES.

The simulated electricity use of the IHCS was reduced by
improving the control setpoints Tsupply_heat and Tsupply_cold. The co-
efficient of performance (COP) of the heat pump model was
calculated based on a constant Lorentz efficiency, see Ref. [17].
Thus, the COP depended on the temperature lift of the heat pump,
which varied significantly with the optimized setpoint trajectories.
Part-load operation was therefore included in the model, but
depended only on the temperature levels and not on the heat flow
rates. The optimized setpoints led to reduced electricity use of the
heat pumps and the circulation pumps as shown in Fig. 13. How-
ever, the electricity used by the heat pumpswas converted to useful
heat and thus partly covered the heating demands of the buildings.
Reducing this electricity use thus led to more heat being imported
from DH. The increase in DH import depended on the amount of
heat taken from the BTES. Too high heat extraction from the BTES
can lead to unsustainable operation as shown in the previous study
[17]. However, importing heat from DH is more expensive in the
short run. An economic analysis is therefore required to find the
optimal operation strategy that balances short- and long-term cost
considerations. This was outside the scope of this article, because
the DH import was not included in the optimization models. This
should be added in future studies, but as DH is an essential tech-
nology for decarbonization, its use should generally be preferred
over electricity use [38]. Charging the BTES with low-grade heat
from the DH return line could thus also be an interesting option to
investigate in future work.

The electricity costs shown in Fig. 19 were calculated by multi-
plying the electricity use of the system by the local electricity spot
price, the 25% taxes that have to be paid were neglected. However,
this is only a part of the actual costs that large customers have to
pay in Norway. The electricity grid in Norway is stressed signifi-
cantly more during the winter than during the rest of the year due
to the high use of electricity for space heating. Therefore, the
electricity grid prices include additional costs to consider the
electricity grid stress. For business customers, this may induce
peak-load tariffs and charging for their peak electricity use of each
calendarmonth. This was not taken into account in this study as the
measurement data showed that the peak use of the IHCS was
almost the same for all the winter months. This cost was therefore
assumed fixed and not included in the optimizations. The trend
towards more flexible systems and higher incentives for peak load
reduction may require including peak-load tariffs in future
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optimization studies. Such studies could also influence the sizing of
the heat pump and the storages during the design phase by taking
flexible operation into account. However, it is important to ensure
that the heat pump can handle the large variations in operation.

The relative savings shown in Fig. 19 were obtained by
comparing three-month simulations with different tank size
combinations and different temperature control setpoints. Larger
tanks were shown to lead to reduced electricity costs. However, the
difference between the BAU case (10/2 - BAU) and the case with the
currently installed tanks and optimized setpoints (10/2 - Opti-
mized) was larger than the difference between the cases with
different tank sizes and optimized setpoints (10/2 e Optimized vs.
500/500 - Optimized). This means that the optimized control led to
higher relative savings than the installation of larger tanks. How-
ever, these savings only included the electricity costs and not the
costs for DH import. Since the DH import increased for the cases
with the optimized setpoints compared to the BAU case, an eco-
nomic analysis including the calculation of the total operating costs
is required to decide if larger storage tanks should be installed. The
costs for the advanced control system should be taken into account
in such an analysis since the installation of larger tanks would not
lead to savings with the current control strategy.
6. Conclusions

The simulated performance of an integrated heating and cooling
system with thermal energy storages was analyzed in this study.
Dynamic optimizations were applied to find optimal control tra-
jectories for operation leading to reduced electricity use and
reduced electricity costs. The results showed that the electricity use
of the system could be reduced by about 5%. However, this led to
increased import of heat from the district heating grid. Possible
savings therefore depended on the electricity and district heating
prices.

The installation of larger storage tanks was shown to decrease
electricity costs when the optimized control setpoints were
implemented. However, the savings depended on the variability of
the electricity price and could only be achieved with a more
advanced control system than the one currently implemented.
During the analyzed period, the variability of the electricity price
was too low to make the installation of larger storage tanks seem
profitable in practice. Higher peak-load tariffs and/or an increased
variability of the electricity price might change this conclusion in
the near future. Further work should therefore include more
detailed optimization models and more advanced cost calculations.
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