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ABSTRACT It is non-trivial to predict the prices of precious metals since a number of factors can affect the
fluctuations of precious metal prices. Either parametric models or machine learning models cannot accurately
forecast the precious metal prices. Though deep learning approaches show their strengths in extracting key
features from complicated data, they have the limitations of learning localization and losing some temporal
and spatial features. The recent advances in attention mechanisms bring the opportunities to overcome the
limitation of deep learning models. In this paper, we originally propose a Regularization Self-Attention
Regression Model for precious metal price prediction. In particular, the proposed RSAR model consists of
convolutional neural network (CNN) component and Long Short-Term Memory Neural Networks (LSTM)
component. Integrating with self-attention mechanism, this model can extract both spatial and temporal
features from precious metal price data. Meanwhile, the proper configuration of regularization functions can
also lead to the further performance improvement. Extensive experiments on realistic precious metal price
dataset show that our proposed approach outperforms other conventional machine learning and deep learning
methods.

INDEX TERMS Long short-term memory, convolutional neural network, attention mechanism, financial
data analysis, deep learning.

I. INTRODUCTION (a.k.a. forecast) the increment and decline trends of various

Precious metals typically have higher economic values while
they are rare or difficult to be acquired. Historically, precious
metals such as Silver and Gold have been used as currency
equivalents (or money) while they have been mainly lever-
aged as financial and industrial commodities recently. It is
non-trivial to predict their prices based on historical data since
they are often influenced by a number of social-economic
factors including production, circulation, industrial demands,
sentiment of market.

We have also witnessed the rapid advances in machine
learning and artificial intelligence. Meanwhile, the massive
financial data becomes available. Consequently, economists
and investors begin to employ machine learning (ML)
methods to analyze the massive financial data and predict
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financial factors. For example, Naive Bayes algorithm [1] is
one of the traditional statistic tools to help the financial indus-
tries to predict the tendency of financial products. In addition,
the Capital Asset Pricing Model (CAPM) [2] describes the
relationship between the expected return and risk of investing
in a security. The Fama-French Three-factor Model [3] is
an extension of CAPM via adding size risk and value risk
factors in the market risk factor of CAPM. However, conven-
tion ML algorithms are struggling to process a large scale
finance data with continuous features (e.g., historical gold
prices). Even though many quantitative factor models have
developed, these models cannot work especially considering
some special events such as financial crises.

The recent advances in deep learning bring opportunities
in extracting valuable information from massive financial and
social-economic data. Deep learning (DL) is a broader family
of machine learning methods based on multi-layer artificial
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neural networks. Among incumbent DL models, convolu-
tional neural network (CNN) models show the advantages
in learning complicated and hierarchical features of massive
data [4]. Meanwhile, variants of deep learning models such as
recurrent neural network (RNN) and Long Short-Term Mem-
ory Neural Networks (LSTM) also demonstrate the outstand-
ing performance in dealing with time series data. Moreover,
composite models consisting of two or more DL models show
the superior performance than pure DL models. However,
composite DL models also have their limitations like learning
localization and losing temporal and spatial features (details
to be explained in Section II).

The attention mechanism is essentially the best remedy
to the limitations of composite DL. models. The attention
mechanisms can adaptively select learning regions from input
data after calculating the attention probability distributions
so as to highlight key features, consequently reducing distur-
bances from redundant information. As a result, the learning
capability of DL models is greatly improved. Motivated by
the advances in composite DL models and attention mecha-
nisms, we propose and develop Regularization Self-Attention
Regression Model (RSAR model) to predict daily precious
metal prices.

In contrast to existing methods, the proposed RSAR model
consists of both CNN component and LSTM component with
regularization self-attention mechanism. LSTM component
can extract the time series features from historical precious
metal price data while CNN component is beneficial to learn
the complex and hierarchical features. Moreover, Regulariza-
tion Self-Attention mechanism can help to improve the learn-
ing performance through leveraging regularization functions.
Our contributions of this paper are summarized as follows.

« We propose a novel deep learning model (RSAR model)
to predict daily precious metal prices. In particular,
we optimize the self-attention mechanism using regular-
ization methods.

« We conduct extensive experiments for price forecasting
on top of different realistic precious metal price datasets
(including gold-price dataset and palladium-price
dataset). The experimental results show that the pro-
posed model outperforms other conventional ML and
DL models.

o We also evaluate the impact of different parameters on
our RSAR model. The major parameters include the size
of window length, the number of LSTM layers and the
number of CNN filters. We further show that there exists
a trade-off between the number of CNN filters and the
performance.

The remainder of this paper is organized as follows.
Section II reviews related works on convention machine
learning models and deep learning models. In Section III,
we describe the overview of our architecture and the main
proposed approaches in details. Then, the experiments evalu-
ation and results are discussed in Section I'V. Finally, we con-
clude our work and outline future research directions in
Section V.
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Il. RELATED WORK

This section reviews recent advances on financial analysis,
especially on precious metal price prediction. We roughly
divide recent studies into two categories: machine learning
approaches and deep learning approaches.

A. MACHINE LEARNING APPROACHES

Convention machine learning methods have been widely
used in econometrics or statistics. Parametric models, such
as Autoregressive Integrated Moving Average (ARIMA)
and Autoregressive Conditional Heteroskedasticity (ARCH),
have been used in various financial sectors. In particular, both
the work of [5] and [6] applied ARIMA model in making pre-
diction on banking stock market data and Chinese manufac-
turing industry. Yunus et al. [7] use ARIMA model to capture
time correlation and offer possibility distribution of collection
records for determined wind-pace time. Vaccaro et al. [8] sug-
gest ARIMA model in hybrid architecture for electricity price
forecasting. The work of [9] adopts ARIMA model for fore-
casting in Amman Stock Exchange. Moreover, ARIMA was
used in daily gold-price prediction analysis in [10]. However,
ARIMA and its alternatives have the following limitations:
1) it is extremely time-consuming to make prediction due to
the huge time consumption in reading and processing input
data; 2) it cannot achieve reasonable convergence in the long
term forecasting task, consequently resulting in processing
slow processing speed.

Besides ARIMA, ARCH and their alternatives, other
machine learning (ML) based approaches, such as Support
Vector Regression (SVR), Deep Regression (DR) and Logis-
tic Regression (LR) have been applied in the finance field.
For example, the work of [11] is based on Back Propaga-
tion Neural Network (BPN) to analyse stock market data.
Zaidi and Amirat [12] adopted logistic regression in machine
learning models. The work of [13] was conducted on support
vector-machines (SVM). The core of SVM [14] methods is
to use linear model to implement non-linear class boundaries
and make classification in selecting stocks. However, most of
ML approaches are suffering from low prediction accuracy
and substantial efforts in data preprocessing.

B. DEEP LEARNING APPROACHES

In contrast to conventional ML approaches, deep learn-
ing (DL) approaches have the merits in capturing the
complicated features from massive data [15]. For exam-
ple, DL approaches have been used in sentimental analy-
sis [16], electricity-theft detection [17] and traffic flow pre-
diction [18].

Instead of a single DL model, which can only capture
partial features from data, a composite model consisting
of two or more DL models has the advantages in extract-
ing various features from data. Therefore, composite DL
approaches have recent extensive attention recently. Gener-
ally, composite DL models can be categorized into two types:
parallel-composite models and serially-composite models.
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For example, the work of [19] designed a parallel-composite
model (namely LSTM-CNN), which is a concatenation of
the output of CNN and the input of LSTM. The work
of [17] proposed a wide and deep model to learn from
the time-series electricity consumption data to predict the
electricity theft. However, both parallel-composite models
and serially-composite models suffer have the limitations
like learning localization (i.e., failing to prioritize each sub
model when learning different features of data) [20], [21].
The main reason lies the decreased learning capability of
each neuron (i.e., a basic unit in neural networks) when
massive time-series data are fed into composite DL models
persistently. Meanwhile, both temporal and spatial features
in composite DL models are also lost.

To tackle this deficiency, attention mechanisms have been
proposed [22]. Attention mechanisms can essentially over-
come the limitations of composite DL models through
adaptively selecting regions from input data after calculat-
ing the attention probability distribution. Since this mech-
anism can focus on the main features, redundant informa-
tion can be greatly reduced. The attention mechanisms have
demonstrated their effectiveness in composite DL models.
Asin [23], the authors use the attention mechanism for textual
entity extraction. Furthermore, the work of [24] combines the
attention mechanism with Bidirectional-LSTM (Bi-LSTM)
to establish a Chinese part-of-speech tagging model, which
achieves much higher accuracy than the traditional RNN
methods.

Motivated by recent advances in composite DL models
and attention mechanisms, we propose a RSAR combination
model to conduct the prediction analysis for precious metal
price. Compared with convention machine learning methods,
our proposed framework has advantage in capturing the vari-
ous features from the massive financial data via the LSTM
and CNN components. Moreover, we optimize the regu-
larization methods for the self-attention mechanism in the
proposed model. Therefore, compared with convention DL
models, our RSAR model can improve the learning efficiency
via the regularization self-attention mechanism. Finally, our
RSAR model is efficient to reduce the prediction error by
concentrating on key weights and extracting the local features
from the new generating sequence.

Iil. OUR APPROACH
This section presents the main approach for precious metal
price prediction.

A. OVERVIEW OF ARCHITECTURE

In this paper, we propose a deep Regularization Self-Attention
Regression (namely RSAR) model to predict daily precious
metal price. Fig. 1 shows an overview of RSAR model, which
consists of the following components:

1) Data Preprocessing. In this phase, we conduct a pre-
liminary analysis and perform data preprocessing for
massive daily precious metal price datasets.
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FIGURE 1. Regularization self-attention regression framework.

2)

3)

LSTM layer. Long short-term memory (LSTM) is
essentially a modified version of recurrent neural net-
work (RNN) proposed by [25] and improved by [26].
As shown in Fig. 1, the LSTM layer consists of three
LSTM units with end-to-end training. We adopt LSTM
layer to extract the time-series features from daily pre-
cious metal price datasets.

Regularization Self-Attention Mechanism. In order
to better capture the effective information from the
encoding data after LSTM layer, we propose a Reg-
ularization Self-Attention mechanism. In particular,
we adopt three types of regularization functions and
evaluate the performance. Details can be referred to
Section III-C.
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4) Convolution Layer. The convolution layer can extract
the global spatial features from the daily precious
metal price data. We exploit convolution neural net-
work (CNN) structure here mainly motivated by pre-
vious studies [17], [27]-[29] because CNN component
can extract the global spatial features as there exists the
spatial dependency of daily precious metal price.

5) Fully-Connected layer. Finally, we adopt a fully-
connected layer which consists a number of neurons to
extract the key features.

Our goal is to design a robust model for precious metal
price prediction. To achieve this goal, we first normalize the
raw price data during data preprocessing. Then, we employ an
LSTM layer to capture the temporal features from daily pre-
cious metal price data due to the temporal sequential depen-
dency of the data. In particular, the incarnation of RSAR
model in this paper is based on regularization self-attention
mechanism, which can reduce the computational cost in the
model. Moreover, in order to further improve the prediction
precision, we exploit a CNN layer to extract the spatial fea-
tures for the precious metal price data. Finally, we utilize
a fully-connected layer to reduce the dimension of spatial
representations for prediction.

B. DATA PREPROCESSING

We obtain precious metal price datasets formally released by
Macrotrends,! which is a premier research platform for both
investors and researchers. We select Gold prices and Palla-
dium prices from a number of precious metals. Specifically,
the datasets contain 10,471 records of daily gold prices (from
Dec. 29, 1978 to Feb. 15, 2019) and 10,645 records of daily
palladium prices (from Jan. 5, 1977 to May. 10, 2019), where
the records only exist on trading days. Since neural networks
are sensitive to the diversity of input datasets, we need to
normalize data via the standard scaling method. Motivated by
the strength of normalizing the mean and standard deviation
of the features, we adopt scikit-learn [30] tool to normalize
the row datasets. In particular, calculations of standard scalar
of precious metal price values can be expressed as follows,

ﬂm=ﬁ;“, 1)

where x; denotes the value of precious metal price of a day,
S(x;) is the scalar of x;, mean denoted by u can be calculated
by u = ]l\, Zfi 1(x;), standard deviation denoted by o can

be calculated by o =,/ % Zﬁvzl(x,' — )% and N denotes the
number of input data for trading days.

In order to process the input data, it is necessary to
choose an appropriate sliding window length, which is
denoted by «. Specifically, the dimension of the input data
is o + 1. Take Fig. 2 as an example, where we set o = 7
because each week is composed of 7 days. According to
window length «, we transform x;_1, x;, ---, X;45 into
S(xr—1), S(x¢), -+, S(xt45). The corresponding values of

1 https://www.macrotrends.net/
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FIGURE 2. Data preprocessing.

output are S(x;_1). Fig. 2 shows the detailed process of the
transformation.

C. REGULARIZATION SELF-ATTENTION MECHANISM

In this section, we introduce Regularization Self-Attention
(RSA) mechanism which is a core building block in our
proposed Model. It is challenging to extract both the temporal
and spatial features from the precious metal price data. Moti-
vated by recent work [31], we adopt self-attention mechanism
to enhance the learning procedure of precious metal price
data. Moreover, we also further improve the effectiveness of
self-attention mechanism via different regularization meth-
ods. We describe details as follows.

1) SELF-ATTENTION MECHANISM

Self-attention mechanism exhibits a better balance between
the ability of modelling long-range dependencies and com-
putational efficiency. In particular, the self-attention module
calculates the response at one position in the feature map as a
weighted sum of the features from all positions. As a result,
the weights are calculated with only small computational
cost.

Fig. 3 shows the working flow of RSA mechanism. In order
to calculate the weighted attention value, the input features
denoted by x € RE*N are transformed into three feature
spaces f, g and h via passing through 1 x 1 convolution.
Therefore, the first step is to calculate matrices f, g and
h. The embedding features were packed into a matrix, and
then multiplied by the trained weight matrices, which can be
calculated by the following equations,

f@xi) = Wxi + b, )
g(xj) = Wx; + b, 3)
h(x;)) = Wx; + b, “4)

where W denotes the weights and b denotes the bias
parameters. Meanwhile, we adopt regularizers to normal-
ize the weights and bias. The details of regularizers will
be introduced in section III-C.2. The next step is to multi-
ply matrices f(x;)T and matrices g(x;) by softrmax function
and to sum up the weighted value vectors, where f(x;)T
denotes the transposed matrices of f(x;). After obtaining
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FIGURE 3. Regularization Self-Attention Mechanism.

the attention map through above steps, we can calculate reg-
ularization self-attention feature maps by multiplying atten-
tion map and matrix h(x;). It is worth mentioning that Eq.(5)
to Eq.(7) describe the operations of RSA Mechanism. The
self-attention mechanism calculations are represented as fol-
lows.

o) gy)
ej = —\/d_k , )
exp(eij)
;i = softmax(e;) = =—————, 6)
i € > jexplei))
o = ajjh(x;) = softmax(e;)h(x;), @)

where ¢;; represents the relation between the i value and j"
value. In particular, in Eq. (5), attention map is divided by
A/d), which is the square root of the dimension of the matrix
f(x;) vectors. Consequently, it leads to a faster convergence
than previous methods. We denote the attention weight of
the i value versus j* value by a;; via the softmax function.
Meanwhile, o represents regularization self-attention feature
maps.

2) REGULARIZATION MECHANISM FOR SELF-ATTENTION
In general, the embedding matrices f, g and h suffer from
the redundancy if the attention mechanism always provides
approximated summation weights every time. Therefore,
we need regularization processing to improve the diversity
of summation weight vectors across different attention-hops.
We adopt two different regularizers [32] to improve the diver-
sity of attention mechanisms.
o Ly Regularization for Kernel Regularization. We use
Ly Regularization to regularize the weight matrices of
a number of kernels [33]. The main idea of L, Regu-
larization is to minimize the sum of the square of the
differences D between the target for weight value W and
the estimated weight value W;:

N
D=3 (W-W) @®)

i=1
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o Ly Regularization for Bias Regularization. In addition,
we employ L; Regularization to regularize the bias val-
ues. The L; Regularization is basically minimizing the
sum of the absolute differences D between the target for
bias value b and the estimated bias value b;:

N
D=Z|b—b,~|. )
=1

D. AUXILIARY MODULES

In order to control the sequential order and capture the spatial
features of the daily precious metal price. In this paper,
we also employ an LSTM layer and a CNN layer as the
auxiliary modules in RSAR model. We present more details
about them as follows.

1) LSTM LAYER

We choose an LSTM component to process the time sequence
T which consists of the input sequence S(x7+1), S(x7+2),
-+, S(x747). We select 8 as an adjustable parameter in the
experiment, where 8 denotes the number of LSTM layers.

2) CONVOLUTION LAYER

We employ a convolution layer to capture the spatial features
of daily precious metal price for our proposed RSAR model.
We also select y as an adjustable parameter in the CNN
component, where y denotes the number of filters in one
convolutional layer, as shown in Fig. 1. The convolution layer,
which essentially consists of a CNN component, can extract
the global spatial features. Following the convolution layer,
we also leverage a max pooling layer, which can be used to
reduce the number of parameters and features and avoid over-
fitting.

IV. EXPERIMENTAL RESULTS

In this section, we conduct a number of experiments to
evaluate the performance of the proposed RSAR approach.
In particular, we give the experiment settings as well as
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performance metrics in Section IV-A. We then present the
comparison results of the proposed RSAR approach with
other baseline models in Section IV-B. We next further inves-
tigate the impacts of parameters on the performance of the
proposed approach in Section IV-C.

A. EXPERIMENT SETTINGS

1) DATASET DESCRIPTION

We obtain the precious metal prices from Macrotrends.
In particular, we select Gold prices and Palladium prices
for the analysis. Therefore, the experimental datasets contain
(i) daily gold-price dataset, (ii) daily palladium-price dataset.
The daily price is essentially represented in different curren-
cies (e.g. US dollar, EUR, RMB, HK dollar) per ounce (i.e.,
0z). To unify the analysis, we choose the price in US dollar
per ounce on trading days to perform prediction analysis.

2) MODEL SETTING

In our experiment, we fix the window length to be ¢ = 7
in the data preprocessing. Therefore, there are 7 price values
in each input matrix. In addition, the network weights are
shuffled for initialization via a truncated normal distribution
(u = 0 and standard deviation o = 1.0). Moreover, in order
to improve the training efficiency, we fix the batch size in
training set at 80 and number of training epochs at 100.

3) PERFORMANCE METRICS

In order to compare the proposed approach with other base-
line models, we adopt four performance metrics: root mean
square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) and loss. RMSE of a
model is the standard deviation of the residuals between
predicted values and observed values [34]. MAE represents a
measure of difference between two continuous variables and
calculate the average of all absolute errors. MAPE represents
a measure of prediction accuracy of a predictive method in
statistics and usually expresses the accuracy as a percentage
especially when MAE is too small. These three metrics have
been widely used in predication tasks. These three perfor-
mance metrics can be computed as follows,

N
1
RMSE = N Z(X],i —x2.)?, (10)
i=1
1 N
MAE = 21: 1 — x2.] (1D
P
N
100 — X1
MAPE = —— $ |22 T XLi} (12)
N X1,i

i=1

Furthermore, we also evaluate the impacts of different
parameters of our RSAR model by comparing the loss of
training set of each epoch. The loss is evaluated by mean
square error (MSE), which is essentially the square of RMSE
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(i.e., Eq. (10)). The loss is presented as follows,

N
1
2
Loss = N Z(xl,i —x2,1)°, (13)
i=1
where x1 ; and x; ; represent the forecast value and the actual
value, respectively. In particular, the lower values of these
metrics imply higher performance of models.

B. PERFORMANCE COMPARISON
Baseline models: We compare the proposed method with six
representative baseline models as follows:

o Deep Regression: It is a basic Machine Learning model
with various activation functions applied in computer
vision [35]. This method consists of two layers of neural
networks with tanh activation function in our experi-
ment.

« Support Vector Regression (SVR): SVR is an alterna-
tive to Support Vector Machine (SVM) which is a basic
support vector classifier (SVC) with radial basis func-
tion (RBF) kernel. It is also a typical Machine Learning
model to support stock price prediction [13].

o Autoregressive Integrated Moving Average model
(ARIMA): This model can capture a variety of standard
temporal structures from time series data. ARIMA as a
financial prediction and analysis tool has been widely
applied in finance analysis [7], [8].

o Convolutional Neural Network (CNN): CNN consists
of several convolutional layers, pooling layers and a
fully-connected layer. This model has the advantages in
learning complicated data. In this paper, we implement
CNN model with 2 convolutional layers to conduct the
precious metal price prediction experiment.

e Long Short-Term Memory Neural Net-
works (LSTM): LSTM is well-suited to predictions
based on time series data. We implement LSTM model
with 2 layers to conduct the prediction experiment.

e LSTM-CNN: This scheme consists of a LSTM
layer alternating with a CNN layer. We implement
LSTM-CNN model with 1 LSTM layer and 1 convolu-
tional layer to conduct the prediction experiment.

We conducted experiments with the training ratio equal to
80% in both palladium-price dataset and gold-price datasets.
Meanwhile, we let the number of LSTM layers be g = 1
and the number of CNN filters be y = 64 in our RSAR
model. In each dataset, we evaluate the proposed RSAR
model and baseline models in terms of RMSE, MAE and
MAPE.

Table 1 presents the performance comparison of our RSAR
model with other baseline methods. First, we compare con-
ventional ML models including SVR, ARIMA and Deep
Regression model for the precious metal price prediction.
Compared with other DL methods, SVR, ARIMA and deep
regression have much higher values of RMSE, MAE and
MAPE, implying the poorer performance. For example,
as shown in Table 1, SVR achieved 1.28E + 03, 1.069E + 03
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TABLE 1. Performance comparison with baseline approaches.

Models Palladium-price dataset Gold-price dataset
RMSE MAE MAPE RMSE MAE MAPE

SVR 1.28E+03 | 1.069E+03 | 1.26E+02 | 1.04E+03 | 1.011E+03 | 7.77E+01
ARIMA 1.66E+03 | 1.018E+03 | 1.74E+02 | 8.84E+02 | 7.896E+02 | 5.81E+01
Deep Regression 1.52E+02 | 1.061E+02 | 1.17E+01 | 1.63E+02 | 1.346E+02 | 9.37E+00
CNN 1.86E+02 | 1.742E+02 | 2.16E+01 | 6.67E+01 | 6.037E+01 | 4.33E+00
LSTM 5.60E+01 | 3.158E+01 | 3.65E+00 | 6.04E+01 | 5.402E+01 | 3.23E+00
LSTM-CNN 495E+01 | 4.02E+01 | 5.03E+00 | 4.25E+01 | 3.047E+01 | 2.12E+00
RSAR (w/o regularization) | 4.84E+01 | 3.292E+01 | 3.99E+00 | 3.13E+01 | 2.209E+01 | 1.56E+00
RSAR Model (R1) 4.87E+01 | 3.283E+01 | 3.96E+00 | 3.05SE+01 | 2.228E+01 | 1.61E+00
RSAR Model (R2) 4.88E+01 | 3.181E+01 | 3.81E+00 | 3.01E+01 | 2.162E+01 | 1.55E+00
RSAR Model (R3) 4.86E+01 | 3.136E+01 | 3.75E+00 | 2.85E+01 | 2.034E+01 | 1.46E+00

and 1.26E + 02 in RMSE, MAE and MAPE, respectively,
in Palladium-price prediction; these values are the largest
among all the methods.

Second, we analyze the conventional DL models includ-
ing CNN, LSTM and LSTM-CNN. Compared with ML
models, DL models (such as CNN, LSTM and LSTM-
CNN) achieved the better performance (in terms of lower
values of RMSE, MAE and MAPE). The reason may
lie in the strength of DL models in generalization espe-
cially after learning massive palladium-price and gold-price
data.

Third, we propose four RSAR models to evaluate the
performance of these models with different regularization:
a) RSAR Model without (w/0) regularization is a simplified
version of our proposed RSAR models with the removal of
regularization module, b) RSAR Model (R1) is the proposed
RSAR model with Ly-Regularization only for kernel regular-
ization, ¢) RSAR Model (R2) is the RSAR model with both L;
and L, regularizations, d) RSAR Model (R3) is an improved
version of RSAR Model (R2) with the weight optimization
via the attention regularizer. It is shown Table 1 that all of our
proposed RSAR models, such as RSAR (w/o regularization),
RSAR (R1), RSAR (R2) and RSAR (R3) outperform con-
ventional ML and DL models in both Palladium-price and
Gold-price datasets. Moreover, compared with RSAR (w/o
regularization), RSAR (R1), RSAR (R2) and RSAR (R3)
can achieve even better performance due to the regulariza-
tion in kernel and bias parameters via Ly-regularization and
Li-regularization except for RMSE in Palladium-price
dataset where RSAR (w/o regularization) performs slightly
better than other three models. Furthermore, RSAR Model
(R3) even outperforms RSAR (R1) and RSAR (R2) in terms
of RMSE, MAE and MAPE due to the optimized weights in
L1-regularization and Lp-regularization.
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FIGURE 4. Prediction of RSAR Model in Palladium-price dataset .

C. PARAMETER STUDY

We investigate the impacts of various parameters on the
performance of the proposed RSAR model. In particular,
we first analyze the forecasting tendency of both Palladium
and Gold price datasets. The results are shown in Fig. 4
and Fig. 5, in which Insample Prediction (a.k.a. in-sample
forecast) implies the training dataset fitting the model and
Outsample Prediction (a.k.a. out-of-sample forecast) means
the test dataset fitting the model. It is worth mentioning that
Insample Prediction and Outsample Prediction are repre-
sented in orange curves and green curves, respectively. More-
over, the blue curves represents the real prices of precious
metals in USD/oz. It is shown in both Fig. 4 and Fig. 5 that
the prediction (forecast) results fit well with the real prices in
both Palladium-price and Gold-price datasets.

We then investigate the impacts of parameters on our
proposed RSAR model. As indicated in Table 1, the dif-
ferent datasets have the little effect on performance.
Thus, we conduct the following experiments mainly based
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TABLE 2. Impact of Various Parameters.

Investigation Parameters Loss
7 0.0056
Window Length (a) 10 0.0070
13 0.0076
Number of LSTM Layers (5) : 00054
2 0.0075
32 0.0077
Number of CNN Filters () 64 0.0047
128 0.0068

on Gold-price dataset. In particular, we take the following
parameters into account: 1) the window length denoted by «;
2) the number of LSTM layers denoted by $; 3) the number
of CNN filters denoted by y .

1) IMPACT OF WINDOW LENGTH (c)

We first investigate the impact of the window length for data
preprocessing. In particular, we fix the number of LSTM
layers (8) to 1 and the number of CNN filters (y) to 64,
then we vary the size of window length « from 7, 10 and 13,
representing a week and nearly one third a month and half
a month, respectively. Table 2 shows the loss results after
training 1200 iterations. We observe from Table 2 that the
prediction loss increases with the increased size of window
length. Therefore, we can learn that window length being
equal to 7 can result in a slightly better performance than
other two window lengths.

Moreover, Fig. 6 shows the performance comparison for
different values of window length. We can observe that loss
values decline dramatically after 50 iterations. In particular,
Fig. 6 also shows that the model with window length o = 7
achieves faster convergence than others in 200 training itera-
tions. Moreover, Fig. 6 indicates that the loss keep relatively
stable after training converges.
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2) IMPACT OF NUMBER OF LSTM LAYERS (8)

We next investigate the impact of number of LSTM
layers in LSTM component. We vary the number of
LSTM layers from 1 to 2 in LSTM component (the
number of LSTM layers denoted by ). Meanwhile,
we fix o to be 7 and the number of CNN filters
(y) to be 64. Similarly, we conduct the experiments on
Gold-price dataset after 1200 iterations. Table 2 shows the
results.

It is shown in Table 2 that the loss increases with the
increased number of LSTM layers, implying that the larger
number of LSTM layers may not contribute to the perfor-
mance improvement. Fig. 7 further investigates the impacts
of number of LSTM layers. In particular, as shown in Fig. 7,
the loss of the proposed model with 2 LSTM layers is very
close to that with 1 LSTM layer. The reason behind the results
may lie in the fact that the increment of number of LSTM
layers may not be helpful in reducing loss especially in sparse
dataset.
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3) IMPACT OF NUMBER OF CNN FILTERS (y)

We also investigate the impact of number of CNN filters in
CNN component. To investigate the impact of number of
CNN filters (the number of CNN filters denoted by y), we set
the number of filters to 32, 64 and 128. At the same time,
we fix o at 7 and B at 1. Table 2 shows the loss values
in different numbers of CNN filters. We observe that the
loss value with 64 CNN filters are lower than others. Fig. 8
shows that the loss value with 32 CNN filters still fluctu-
ates after training 400 iterations, implying no convergence.
In contrast, the models with 64 CNN filters and 128 CNN
filters converge much faster than that with 32 CNN filters.
Therefore, the increased number of CNN filters can lead to
the fast convergence of the model while the larger number
of CNN filters may take a longer training time, thereby there
existing a trade-off between the number of CNN filters and
performance.

V. CONCLUSION

In this paper, we propose Regularization Self-Attention
Regression Model (RSAR model) for daily precious metal
price forecasting. Our proposed model mainly consists of
LSTM component, CNN component and Regularization Self-
Attention. In particular, RSA mechanism can improve the
performance via employing regularization functions (i.e., L;
and Lp). Meanwhile, both LSTM and CNN modules can help
to extract both spatial and time series features from precious
metal price dataset. We also conduct extensive experiments
to evaluate the performance of the proposed model with
comparison with other existing ML and DL methods. The
results show that our proposed model outperforms conven-
tional ML and DL methods such as ARIMA, SVR, CNN
and LSTM. Regarding future directions, we will investigate
the performance improvement of the proposed model via
adjusting different numbers of LSTM and CNN layers when
considering different types of financial data.
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