
Security Knowledge Management in Open Source

Software Communities

Shao-Fang Wen, Mazaher Kianpour and Basel Katt

Norwegian University of Science and Technology, 2815 Gjøvik, Norway

{shao-fang.wen, mazaher.kianpour, basel.katt}@ntnu.no

Abstract. Open source software (OSS) communities are groups of individuals,

technical or non-technical, interacting with collaborating peers in online commu-

nities of practices to develop OSS, solve particular software problems and ex-

change ideas. People join OSS communities with a different level of program-

ming skills and experience and might lack formal, college-level software security

training. There remains a lot of confusion in participants’ mind as to what is se-

cured code and what the project wants. Another problem is that the huge amount

of available software security information nowadays has resulted in a form of

information overload to software engineers, who usually finish studying it with

no clue about how to apply those principles properly to their own applications.

This leads to a knowledge gap between knowledge available and knowledge re-

quired to build secure applications in the context of software projects. Given the

increased importance and complexity of OSS in today’s world, lacking proper

security knowledge to handle vulnerabilities in OSS development will result in

breaches that are more serious in the future. The goal of this research work is to

fill the knowledge gap by providing an artifact that would facilitate the effective

security-knowledge transferring and learning in the context of OSS development.

In this work-in-progress paper, we present our ongoing research work following

design science research methodology on the domain problem identification and

the development of the artifact.

Keywords: Software security; open source software; knowledge management

1 Introduction

Open source software (OSS) is based on the principle that software programs should

be shared freely among users, giving them the possibility of introducing implementa-

tions and modifications [1]. To develop OSS, solve particular software problems and

exchange ideas, numbers of technical and non-technical individuals interact with col-

laborating peers in online communities of practices [2-4]. The activities that these com-

munities perform are usually called OSS projects. Because of its low-cost software so-

lutions, and the openness and real collaboration of the software development process,

OSS has become increasingly popular choice instead of closed source (proprietary)

software: about 80% of companies run their operations on OSS [5] and 96% of appli-

cations utilize OSS as the software components [6].

2

As OSS becomes an increasingly important part of our lives, researchers and secu-

rity communities have spent numerous efforts on providing mechanisms of building

security in OSS development [7]. However, the number of new vulnerabilities keeps

increasing in today’s OSS applications. The Blackduck 2017 Open Source Security and

Risk Analysis report announced that 3623 new OSS vulnerabilities occurred in 2016 –

almost 10 per day on average and a 10% increase from 2015 [6]. These known vulner-

abilities open some of the most critical OSS projects to potential exploitation such as

Heartbleed and Logjam (in OpenSSL); Quadrooter (in Android); Glibc Vulnerability

(in Linux servers and web frameworks); NetUSB (in Linux kernel), and many others

[8, 9]. The increasing quantity and severity of vulnerabilities in OSS have exposed the

unique management and software security challenges in OSS communities.

People join OSS communities at different ages and have different backgrounds, ca-

pacities, and resources, as well as different objectives. They come from many disci-

plines and have different levels of programming skills and experience [10], and might

lack formal, college-level software security training. When performing contribution,

most project participants primarily focus on their immediate goals that usually involve

functional requirements and performance [11], and then patch whatever bugs there may

be when it’s time for the next release or hotfix [12]. There remains a lot of confusion

in participants’ mind as to what is secured code and what the project wants. Another

problem is that the domain knowledge of software security is quite vast and extensive

[13]. The huge amount of software security information has resulted in a form of infor-

mation overload to software engineers who usually finish studying it with no clue about

how to apply those principles to their own applications, or with the feeling that security

is so difficult to achieve, that they simply cast it aside [14]. Even be educated with

software security practices before joining OSS projects these participants may fail to

correlate the security knowledge with their projects and fix vulnerabilities in the code

when given a chance. It especially relates to what is known as a knowledge gap between

knowledge available and knowledge required to build secure applications in the context

of software projects [15].

Given the increased importance and complexity of OSS in today’s world, lacking

proper security knowledge to handle vulnerabilities in OSS development will result in

breaches that are more serious in the future. Our position is that there is a need by

forging a solution to adaptively place the security knowledge in the appropriate context

of the OSS development, i.e., to transfer the necessary security knowledge within the

OSS community, meanwhile, to offer opportunities for learning security knowledge

and skills to secure OSS products, which are developed, delivered and maintained by

the community. The goal of this research work is to propose an artifact that would fa-

cilitate the effective security-knowledge transferring and learning in the context of OSS

development. In this work-in-progress paper, we present our ongoing work on the do-

main problem investigation and the conceptual design of the artifact.

The rest of the paper is structured as follows: In section 2, we present an overview

of security knowledge management in software development. The research design is

presented in section 3. In section 4, we present our initial study of security knowledge

3

sharing and learning in OSS communities. Our proposed knowledge management ap-

plication and the corresponding research steps are described in section 5 and section 6.

Conclusions and future works are presented in section 7.

2 Security Knowledge Management in the Software

Development

Software security is more than just a security feature. Security features, such as pass-

word encryption and SSL (Secure Socket Layer) between the web server and a browser,

are functions of an application to prevent malicious attacks. Security is an emergent,

system-wide property of a software system, which means that one cannot presume to

achieve a high level of security by simply introducing security-related features into the

software [13, 16]. This is because most security problems arise from bugs during the

development process [17-19]. Software security aims to avoid security errors in soft-

ware by considering security aspects throughout the software development lifecycle

(SDLC). To train software engineers on critical software security issues, security

knowledge should be spread in an effective manner.

Knowledge Management has been defined as “the capability by which communities

capture the knowledge that is critical to their success, constantly improve it, and make

it available in the most effective manner to those who need it” [20]. Managing

knowledge in software development is crucial to allow developers capturing, locating

and sharing the knowledge of codes and methods throughout the project to leverage the

competitive advantage. In order to increase development staffs’ security knowledge,

software project management needs to employ knowledge management mechanisms in

encapsulating and spreading the emerging security discipline more efficiently in the

software development process. As the software lifecycle unfolds, security-related

knowledge could be directly applied with a knowledge-intensive best practice that can

support software engineers prevent, spot and mitigate these security errors.

Despite this, our systematic literature review work [7] revealed that no research has

been conducted focusing on the aspects of security knowledge management in OSS

development. Studies in the areas of software construction and verification (Secure Ar-

chitecture, Code Review, and Security Testing) are followed by researchers with more

interests than governance, where education and training are the major activities. Secure

architecture, code review, and security testing can help secure OSS products. However,

due to the lack of research and other activities related to security knowledge manage-

ment for OSS development, software security knowledge cannot be effectively spread

within open source communities. Our research intends to fill this research gap by a)

empirically investigating the current situation and problems in the knowledge manage-

ment of software security, b) proposing and developing an application for adaptive se-

curity knowledge transferring and learning in OSS communities.

4

3 Research Design

In developing the security knowledge sharing and learning system adaptive in the

context of OSS development, we applied the general methodology of Design Science

Research (DSR) framework [21] (Fig. 1) to show how our research is both relevant and

rigorous and contribute to the information system (IS) knowledge base by solving a

rising security problem in OSS. DSR can be conducted when creating innovations and

ideas that define technical capabilities and products through which the development

process of artifacts can be accomplished effectively and efficiently [21, 22].

Fig. 1. Design research methodology [21]

4 A Study of the Research Domain Problem

At first, it is important to identify and establish the magnitude of the real-world prob-

lem, including technical and non-technical practices in our interests. In contrast to ear-

lier researchers, which have focused on generic learning in OSS communities, our study

aimed to observe OSS participants’ perception of learning about software security

knowledge. Our motivation for this study is not only to evaluate the knowledge sharing

and learning mechanisms and the extent to which they may be viable and successful

but also to gain insight into the security culture and project factors that affect software-

security learning processes in OSS communities.

4.1 Study Method

To get an in-depth understanding of security knowledge sharing and learning behav-

iors surrounding everyday OSS development, an ethnographic approach was adopted.

The ethnographic research can be classified as a qualitative research method that aims

to study the cultural patterns and perspectives of participants in their natural settings

5

[23, 24]. In empirical software engineering, ethnography provides an in-depth under-

standing of the socio-technical realities surrounding everyday software development

practice [23] and highlights the significance of socio-technical issues in the design of

software-intensive systems [24]. The knowledge gained can be used to improve pro-

cesses, methods, and tools as well as to advance the observed security practices

4.1.1 Case Selection.

To get a broader understanding of the phenomena of interests, we set up the follow-

ing criteria for the case selection: 1) the selected projects should be community driven;

2) the selected projects should be as diverse as possible; 3) the projects use a wide range

of communication tools within the communities. Table 1 gives an overview of the se-

lected OSS projects. Having the selected sample cases that cover the range of the di-

versity of OSS communities is important to refine the phenomena being studied and

improve the outcomes of this research endeavor.

Table 1. Overview of the selected projects

Project Age Software Category Programming Language

A 3 Collaborative Text Editor JavaScript

B 8 Content Management System PHP

C 5 Multimedia playback engine C/C++

4.2 Data Collection

Since programming errors have been a major part of security vulnerabilities in software

development [25], we dedicated our investigation in the knowledge sharing and learn-

ing about secure programming domain knowledge. Two data collection schemes were

applied: observation and a semi-structured interview.

4.2.1 Observations

We participated in the selected projects as an observer to gain a close and intension

familiar with the project members and understand the details and processes of the pro-

jects. The main idea of this approach is to observe developers performing the activities

that they usually do in their daily jobs. To be more specific, observation consists of

writing notes about developers’ activities, events, interactions, tool usage, and any other

phenomena. The digital objects (including source code repository, project documenta-

tion, mailing list, code review records, bug reports, and forum) were screened to collect

any information related to secure programming. Information collected during the ob-

servation was recorded without distracting participants of communities. Observation is

an important method to be used in this research because it allowed us to collect infor-

mation about what learning tools the OSS participants used and how they used them.

Moreover, it was a source of valuable insights to assist in a comprehensive understand-

ing of the nature of the case data.

4.2.2. Semi-Structure Interviews

6

As we wanted to get input from the OSS participants, while still allowing them to

think freely to some extent, we chose to use a semi-structured interview as described

by May [26]. Individual interviews were conducted with 13 participants in the selected

three projects during the observation period. Participants with short (less than one year),

medium (between 1 to 3 years) or long (more than 3 years) experience in the open

source development were interviewed. Most of the interviewees did not want to dis-

close their identity and project name, thus, we did not represent their names in the find-

ing. Due to the geographical distribution of the interviewees, all interviews were carried

out via online communication software (Skype and Google Hangout). We had to ac-

commodate all the interviewees’ constraints in the setting of interviews.

All interviews were recorded and lasted approximately one hour. The questions were

used to understand their experiences in OSS development and examine their perception

of learning processes about secure programming in their OSS communities. In order to

facilitate elaboration, certain possible follow up questions were prepared beforehand.

As we suspected that the subjects would be unwilling to consider themselves behaving

insecurely, we also asked about what other members would do. This also has the benefit

of covering more subjects.

4.3 Data Analysis

Because this study deals with security issues in OSS development phenomenon, in-

cluding both social and technical aspects, it is important to analyze and model the re-

search context using system-holistic and socio-technical approaches. As Scacchi [27]

points out, the meaning of OSS in the socio-technical context is broader than its tech-

nical definition and includes communities of practice, social culture, technical prac-

tices, processes, and organizational structures. In this study, we adopt a socio-technical

system (STS) developed by Kowalski [28] to summarize and classify our findings. The

STS model is depicted in Fig. 2. STS provides a structural analysis of the relationship

between the social (cultural/ethical, structural/ managerial) and technical elements

(method/process and machine /technique) to give a complete overview of the status.

Furthermore, the STS model allows the results to be categorized and presented in such

a way that they are easy to understand by non-specialists.

(a) (b)

Fig. 2. (a) Socio-technical system [18], and (b) socio-technical analysis of research findings

7

4.3.1. Method category

Method category of STS presents our findings regarding the learning process about

secure programming knowledge. Our study firstly found that learning processes of se-

cure programming for OSS developers are centered on informal-based and self-directed

learning experiences. The openness and transparency of OSS projects provide an inter-

esting setting for participants to exercise self-directed learning. In OSS development,

participants usually first try to solve their problems themselves by the mean of available

materials and if required by exploring the web: browsing documentations (guideline,

wiki, FAQ, etc.), studying the source code and engaging in discussion threads. These

internet resources have the advantage to provide the community with an information

infrastructure for publishing and sharing description of software development in the

form of hypertext, video, and a software artifact content indexes or directories.

Another learning process about secure programming in OSS communities is learning

from mistakes. Our study found that OSS developers care more about making the soft-

ware work eventually rather than trying to make it work at the very first time. When

contributing to the projects, they mostly focus on their immediate goals that usually

involve functional requirements and system performances and then patch whatever

bugs there may be when it is time for the next release or hotfix. They have not consid-

ered the importance of a given function might have to the overall security of their ap-

plication until they made mistakes and understand the consequence of the flaw. The

learning ability from the mistakes become essential in this context. The process of code

review is an important enabler for a developer to reflect their code, take corrective ac-

tions and build concrete coding experience. Not only members are opened about their

mistakes, but they also share their experience as learning opportunities for others.

4.3.2. Structure category

Structure category of STS presents the social elements is managerial and adminis-

trative perspectives. Security expertise coordination is the key element that fell into this

category. Security expertise coordination is to combine explicit and tacit knowledge in

all management and security expert decisions, and to get knowledge moved from indi-

viduals within the whole organization between different actors, and from tacit domain

to explicit domain and also vice versa [33]. In this study, expertise coordination is man-

ifested in the following two strategies: coordinating organizational structure and secu-

rity infostructure.

Every member involves in OSS development should be concerned with software

security, but it is inefficient to demand each participant taking care of all security as-

pects. The coordinating organizational structure serves as subject matter experts to en-

sure that security-related issues receive necessary attention in the community. Some

OSS communities utilize security experts to define security requirements and best prac-

tices, help perform code reviews, and provides the necessary education for the software

development staff. Through this structural mechanism, the security knowledge is able

to gain valuable insights from the organization to facilitate strategic decision-making.

In the knowledge sharing process, infostructure serves as a role to provide rules,

which govern the exchange between the actors on the network providing a set of cog-

nitive resources (metaphors, common language) whereby people make sense of events

8

on the network [34]. In the context of OSS development, developers meet face-to-face

infrequently if at all, and coordinate their activity primarily by means of digital channels

on the internet. A proper infostructure can help learners identify the location of the

security information, knowing where an answer to a problem, and acquiring as much

knowledge as possible

4.3.3. Machine category

A major problem we found is a lack of sufficient as well as efficient knowledge

sharing mechanisms for secure programming in OSS communities. Based on the study,

the security information is scattered over the community websites (source code, docu-

mentation, wiki, forum, conference pages, etc.), and the quantity of transferred

knowledge is varied by projects. Finding and learning knowledge about secure pro-

gramming becomes a key challenge that is highly dependent on the resources the com-

munity provides. However, they rarely address the security requirements in documen-

tation to help drive the team to understand the prioritized security needs of the entire

project. Newcomers feel that comprehending systems from exploring the website is

hopeless, so they as well prefer to start with programming. They lose the learning op-

portunity about the security requirements of the project and being aware of the possible

mistakes they may make in their code.

4.3.4. Culture category

Security culture is the way our minds are programmed that will create different pat-

terns of thinking, feeling, and actions for the security process [35]. As indicated in the

Method category of STS, in the context of OSS development, developers enjoy con-

tributing their code to the project for the fulfillment of functional requirements and

performances. Secure software development is often left out from developer’s heuris-

tics. Subsequently, we observed that security culture and security knowledge sharing

interact with each other in the OSS communities. Security culture decides how much

security knowledge is disseminated within the community and what knowledge learn-

ers can learn; likewise, with more security knowledge sharing, it can help instill the

value of security in the community, and the particular learning behaviors and actions

can be expected among participants. The security culture backgrounds either at organ-

izational or at the individual level have impacts on the amount of security knowledge

transferred within the community, further, affecting participants’ learning processes.

4.4 Suggestions from the Study of the Research Domain Problem

Based on the finding of our ethnographic observation in OSS projects, we have come

to an outlook of an artifact that can address the explicated problems about security

knowledge sharing and learning in OSS communities.

 The artifact should have the possibility to achieve the effectiveness of the learning

process about software security in the open source software community by consid-

ering different socio-technical perspectives. (Fig. 3).

9

 The artifact should be as a role of security expertise coordination, organizing and

transferring useful security information, establishing rules and norms adaptive to

the context of the OSS project.

 The artifact should offer opportunities for learning and self-development of soft-

ware security knowledge with limited support from security experts or other peers.

Fig. 3. Improving security learning process by considering different perspectives

5 A Proposed Security Knowledge Sharing and Learning

Application

In this section, we present our proposed security knowledge sharing and learning

application based on the observations and suggestions from the empirical study. The

conceptual design depicted in Fig. 4 defines an abstract view of the application, which

deals with the development of an ontology-driven web application for presenting soft-

ware security knowledge in multiple formats. This application will provide a web-based

environment that allows OSS participants or learners adaptively retrieve and present

security knowledge content according to the context of the application developed by

the project. In the following section, we describe three aspects of the application design:

Context-sensitive ontology-based knowledge model, functional architecture, and sys-

tem architecture of the application.

Fig. 4. Conceptual design of the application

10

5.1 The context-sensitive ontology-based knowledge model

Ontology facilitates capture and construction of domain knowledge and enables rep-

resentation of skeletal knowledge to facilitate the integration of knowledge bases irre-

spective of the heterogeneity of knowledge sources [38]. The basic concept of our on-

tology design is to provide a vocabulary for representing knowledge about software

security domain and for providing linkages with specific situations in the application

context. Fig. 5 illustrates a simplified view of the tentative design of the context-sensi-

tive ontology-based model.

In order to effectively regulate the operation of security knowledge and be an essen-

tial part of the project knowledge, security knowledge must incorporate additional fea-

tures. First, there is the requirement of a security domain model, which identifies fun-

damental entity types and relationship between them. With this model, all concepts of

security domain knowledge are described at a level of abstractions, which enables co-

hesively treating entitles falling under the same conceptualization. Second and most

important, knowledge, security knowledge must incorporate context, that is, to be mod-

eled with certain characteristics of applications, such as software paradigms, program-

ming languages and used technologies. The contextual information acts as a filter that

defines, in a given context, what security knowledge pieces must be taken into account.

The main advantage of this ontology model is to share a common understanding of

the structure of security knowledge along different SDLC activities and among differ-

ent software development context to enable semantic interoperability. With this design,

software engineers are allowed to find solutions to exceptional situations by searching

for similar context. For example, a PHP web application designer can refer to other

projects’ security setup by looking for the same domain (subject area) and software

technologies. The major terms used in the security domain ontology are explained in

Table 1 while Table 2 lists the characteristics in the application context model.

Fig. 5. A tentative design of the ontology-based context model

11

Table 2. The definition of major terms in security domain ontology

Class Definition

Security Requirement

A software security requirement can be defined as a software requirement

needed to avoid a specific software security error during the development

[43].

Construction Practice
Construction practices focus on proactive activities for an organization to

design and build secure software by default [44].

Verification Practice

Software verification is to assure that software fully satisfies all the expec-

ted requirements [44], which typically include code review practices and

security testing practices. Knowledge elements in verification practices

are organized in two catalogs: Technique and Approach.

Security Error

A software security error is a tangible manifestation of a mistake in the

software development artifacts of a piece of software that causes a soft-

ware weakness [43, 45].

Software Weakness

Software weaknesses are flaws, faults, bugs, vulnerabilities, and other er-

rors in software implementation, code, design, or architecture that if left

unaddressed could result in systems and networks being vulnerable to at-

tack [46].

Table 3. Identified characteristics (classes) in the application context

Class Definition Example

Software paradigm

It represents the categories of software

applications that share common develo-

pment characteristics.

Web application, desktop applica-

tion, mobile application

Subject area
It represents domains that an applica-

tion belongs.
Banking, health, Travel

Software feature

It represents the essential elements of

software with security concerns. The

software feature is associated with the

software paradigm and the subject area

of the application.

User authentication, credit card pro-

cessing, file upload.

Language
It represents programming language

used to develop an application.
C, C++, Java, JavaScript, PHP

Technology

It represents the combination of frame-

works or tools used to create an appli-

cation. Technologies are built based on

programming languages.

Web framework (Symphony for

PHP, Angular for JavaScript, etc.)

toolkit, SDK

System structure
It represents the fundamental structure

to operate the application.

Database management system, run-

time platform (MS Windows, And-

roid)

Security Tool

It represents a concrete solution to im-

plement construction mechanisms or

verification techniques.

HTML Purifier, PHPUnit for PHP

testing

12

5.2 Functional Architecture

The functional architecture (Fig. 6) illustrates the functionalities supported in the

application, which are divided into two categories: knowledge presentation modules

and system management modules. The knowledge representation module is to provide

learners with learning materials. By making better use of the domain knowledge and

contextual information, it is planned that the optimal materials are provided. The system

management module is responsible for maintaining the ontology repository and loading

knowledge content for the needs of the knowledge presentation. We give a brief for

each module in below sections

5.2.1 Query Module

Users can access the security knowledge through a query interface passing requests

to a search engine. The input criteria can be constructed dynamically or use pre-config-

ured question patterns.

Fig. 6. The functional architecture of the proposed application.

5.2.2 Presentation scheme module

Regarding the knowledge presentation, two knowledge representation schemes are

suggested in order to provide a navigation view and integrated information view of the

knowledge items: concept maps and tutorials. Concept maps are the graphical repre-

sentation of the knowledge items and their relationship. Concept maps can be used as

primary sources for knowledge acquisition, adjunct aids to text processing, communi-

cation tools for organizing ideas, or retrieval cues [47]. In tutorials, knowledge content

is presented as a form of static web pages, which are allowed users to browse the de-

tailed information and relevant resources, such as sample code or URL links.

13

Ontology management module.

Ontology management module is responsible for maintaining and loading data from

the ontology, including specific individuals of classes, object properties, and data prop-

erties.

Content management function.

Content management module acts as services to receive requests from users, to in-

teract with ontology management functions, and to process and display the result set

according to the requested knowledge presentation format.

5.3 Technical Architecture

Fig. 7 provides an overview of our proposed architecture implementing the main

feature of the application outlined above. The front-end has been designed as JSP pages

and through them, the users can access the various modules and functions of the appli-

cation. Clients can interact with the server (Apache Tomcat) using an HTTP request to

a Java Servlet. The backend is implemented in Java and access to the ontology reposi-

tory is provided through the Jena API1, a Java framework for building semantic web

applications. Jena provides extensive Java libraries for helping developers develop code

that handles RDF, OWL, and SPARQL in line with published W3C recommendations2.

Pellet3 is an open source OWL DL (descriptive logic) for Java, which is used to infer

relevant knowledge from the ontology defined in the OWL. Pellet can also be integrated

with Jena or OWL API libraries.

Fig. 7. The system architecture of the ontology-based web application.

6 Research Steps

Our research adopts Design Science Research (DSR) methodology, presented in sec-

tion 3, to form a development framework for our proposed artifact, a web-based secu-

rity knowledge sharing and learning system in the OSS community. As the future work,

we intend to carry out activities to facilitate the artifact development works using three

DSR iterations (See Fig. 8). The detailed research steps are described in the following.

1 https://jena.apache.org/
2 https://www.w3.org/2001/sw/
3 https://www.w3.org/2001/sw/wiki/Pellet

14

Fig. 8. Design science research iterations.

Iteration 1: Create a context-sensitive ontology for software security knowledge

management.

 Awareness of the problem (Proposal): There is a gap between knowledge

available and knowledge required to build secure software system in the con-

text of OSS development.

 Suggestion (Tentative design): Software security knowledge should be mod-

eled and managed in a context-sensitive manner where the software security

knowledge can be retrieved taking the context of the OSS application in hand

into consideration.

 Development (Artifact): Design of the new ontological knowledge model for

software security knowledge management using Protégé OWL tool [48].

 Evaluation: To demonstrate the results and possibility from the development

of the ontology, three web application vulnerabilities data will be modeled

(Cross-site scripting, SQL injection and Cross-site request forgery). A com-

patible tool, SPARQL, to infer and to query on the ontology in OWL standard

will be adopted.

Iteration 2: To create an ontology-based web application for security knowledge

sharing in OSS communities.

 Awareness of the problem (Proposal): There lacks a unified security

knowledge sharing tool in OSS communities.

 Suggestion (Tentative design): Design a web application with the proposed

context-sensitive ontology, which supports distributing the necessary security

knowledge within the OSS community.

 Development (Artifact): To implement the web application with the proposed

application architecture presented in Figure 6.

15

 Evaluation: Two experiments will be taken in this iteration:

o The artifact will be tested with a number of individuals/students in

academic settings in order to get feedback about system usability. The

questionnaire will be designed to get the conception of the experiment

subjects about the artifact.

o The artifact will be tested in practices with members in 2 selected OSS

communities. This experiment aims to testify the feasibility of security

knowledge sharing using the artifact.

Iteration 3: To enhance the artifact from iteration 2 and provide features of self-

directed learning for members in OSS communities.

 Awareness of the problem (Proposal): There exist different levels of security

skills and experience among participants in the OSS community. The trans-

ferred security knowledge should be adaptive to the level of security

knowledge of learners.

 Suggestion (Tentative design): The learning content should also be applicable

to management and security readership more generally and should be appeal-

ing to all those who are concerned about software security in OSS communi-

ties.

 Development (Artifact): To adopt Concept Map in scaffold learning of soft-

ware security knowledge.

 Evaluation: The artifact will be tested in practices with members in 3 selected

OSS communities. The level of security knowledge is the independent varia-

ble. Questionnaires will be designed to test the level of security knowledge

before and after using the artifact.

7 Conclusion and Future Works

In this paper, we present our ongoing research work in the field of security

knowledge management in OSS communities. Learning software security is a difficult

and challenging task since the domain is quite context-specific and the real project sit-

uation is necessary to apply the security concepts within the specific system. Identifying

security knowledge that is applicable in a given context can become a major challenge

for OSS participants. OSS communities cannot expect all its participants to be educated

in software security before joining the project, and therefore must take some responsi-

bility for educating both developers and users on potential security errors and the rele-

vant mitigations. Although some OSS communities do have security experts and built-

in security practices, many others do not. As a result, the issue of how to support de-

velopers or other learners reaching the required level of security knowledge to secure

OSS development becomes an important topic.

As the future work, we intend to implement the proposed intelligent application and

to evaluate its usability in educational paradigms and software development projects.

Our ultimate goal is to provide open source software communities, a set of advanced

services for efficiently handling and disseminating software security knowledge within

the community.

16

References

[1] Humes, L.L. (2007), "Communities of Practice for Open Source Software", in Handbook

of Research on Open Source Software: Technological, Economic, and Social Perspectives,

IGI Global. pages 610-623.

[2] Scacchi, W., et al. (2006), "Understanding free/open source software development

processes". Software Process: Improvement and Practice, volume 11, issue 2, pages 95-

105.

[3] Feller, J. and B. Fitzgerald (2002), "Understanding open source software development".

volume: Addison-Wesley London.

[4] Feller, J., et al. (2006), "Developing open source software: a community-based analysis of

research", in Social Inclusion: Societal and Organizational Implications for Information

Systems, Springer. pages 261-278.

[5] NorthBridge, B., "2016 Future of Open Source Survey", Electronic document.

http://www.northbridge.com/2016-future-open-source-survey-results.

[6] BlackDuck Software, "2017 Open Source Security and Risk Analysis", Web:

https://www.blackducksoftware.com/open-source-security-risk-analysis-2017.

[7] Wen, S.-F. (2017), "Software Security in Open Source Development: A Systematic

Literature Review". in Proceedings of the 21st Conference of Open Innovations

Association FRUCT. Helsinki, Finland.

[8] Pittenger, M. (2016), "Know your open source code". Network Security, volume 2016,

issue 5, pages 11-15.

[9] Levy, J., "Top Open Source Security Vulnerabilities", WhiteSource Blog. Accessed 22 Jun

2018. https://www.whitesourcesoftware.com/whitesource-blog/open-source-security-

vulnerability/.

[10] Agrawal, A., et al. (2017), "We Don't Need Another Hero? The Impact of" Heroes" on

Software Development". arXiv preprint arXiv:1710.09055.

[11] Benbya, H. and N. Belbaly (2010), "Understanding developers’ motives in open source

projects: a multi-theoretical framework".

[12] Jaatun, M.G., et al. (2011), "A Lightweight Approach to Secure Software Engineering". A

Multidisciplinary Introduction to Information Security, volume, issue, pages 183.

[13] McGraw, G. (2006), "Software security: building security in". volume 1. Addison-Wesley

Professional.

[14] Apvrille, A. and M. Pourzandi (2005), "Secure software development by example". IEEE

Security & Privacy, volume 3, issue 4, pages 10-17.

[15] Wen, S.-F. (2016), "Hyper Contextual Software Security Management for Open Source

Software". in STPIS@ CAiSE.

[16] Mead, N.R., et al. (2004), "Software security engineering: a guide for project managers".

volume: Addison-Wesley Professional.

[17] Viega, J. and G.R. McGraw (2001), "Building secure software: how to avoid security

problems the right way".

[18] Xie, J., H.R. Lipford, and B. Chu (2011), "Why do programmers make security errors?".

in Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium

on. IEEE.

http://www.northbridge.com/2016-future-open-source-survey-results
https://www.blackducksoftware.com/open-source-security-risk-analysis-2017
https://www.whitesourcesoftware.com/whitesource-blog/open-source-security-vulnerability/
https://www.whitesourcesoftware.com/whitesource-blog/open-source-security-vulnerability/

17

[19] Graff, M. and K.R. Van Wyk (2003), "Secure coding: principles and practices". volume: "

O'Reilly Media, Inc.".

[20] Birkenkrahe, M. (2002), "How large multi-nationals manage their knowledge". Business

Review, volume 4, issue 2, pages 2-12.

[21] Vaishnavi, V. and W. Kuechler (2004), "Design research in information systems".

[22] Von Alan, R.H., et al. (2004), "Design science in information systems research". MIS

quarterly, volume 28, issue 1, pages 75-105.

[23] Sharp, H., Y. Dittrich, and C.R. de Souza (2016), "The role of ethnographic studies in

empirical software engineering". IEEE Transactions on Software Engineering, volume 42,

issue 8, pages 786-804.

[24] Baxter, G. and I. Sommerville (2011), "Socio-technical systems: From design methods to

systems engineering". Interacting with computers, volume 23, issue 1, pages 4-17.

[25] Kuhn, D.R., M. Raunak, and R. Kacker (2017), "An Analysis of Vulnerability Trends,

2008-2016". in Software Quality, Reliability and Security Companion (QRS-C), 2017

IEEE International Conference on. IEEE.

[26] May, T. (2011), "Social research". volume: McGraw-Hill Education (UK).

[27] Scacchi, W. (2002), "Understanding the requirements for developing open source software

systems". in IEE Proceedings--Software. IET.

[28] Kowalski, S. (1994), "IT insecurity: a multi-discipline inquiry", PhD Thesis, Department

of Computer and System Sciences, University of Stockholm and Royal Institute of

Technology, Sweden. ISBN: 91-7153-207-2.

[29] Al Sabbagh, B. and S. Kowalski (2013), "A socio-technical framework for threat modeling

a software supply chain". in The 2013 Dewald Roode Workshop on Information Systems

Security Research, October 4-5, 2013, Niagara Falls, New York, USA. International

Federation for Information Processing.

[30] Bider, I. and S. Kowalski (2014), "A framework for synchronizing human behavior,

processes and support systems using a socio-technical approach", in Enterprise, Business-

Process and Information Systems Modeling, Springer. pages 109-123.

[31] Karokola, G., L. Yngström, and S. Kowalski (2012), "Secure e-government services: A

comparative analysis of e-government maturity models for the developing regions–The

need for security services". International Journal of Electronic Government Research

(IJEGR), volume 8, issue 1, pages 1-25.

[32] Wahlgren, G. and S. Kowalski (2014), "Evaluation of Escalation Maturity Model for IT

security risk management: A design science work in progress". in The 2014 Dewald Roode

Workshop on Information Systems Security Research, IFIP WG8. 11/WG11. 13. IFIP.

[33] Anttila, J., et al. (2007), "Fulfilling the needs for information security awareness and

learning in information society". in The 6th annual security conference, Las Vegas.

[34] Pan, S.L. and H. Scarbrough (1999), "Knowledge management in practice: An exploratory

case study". Technology Analysis & Strategic Management, volume 11, issue 3, pages 359-

374.

[35] Al Sabbagh, B. and S. Kowalski (2012), "Developing social metrics for security modeling

the security culture of it workers individuals (case study)". in Communications, Computers

and Applications (MIC-CCA), 2012 Mosharaka International Conference on. IEEE.

[36] Gruber, T.R. (1993), "A translation approach to portable ontology specifications".

Knowledge acquisition, volume 5, issue 2, pages 199-220.

18

[37] Wand, Y., V.C. Storey, and R. Weber (1999), "An ontological analysis of the relationship

construct in conceptual modeling". ACM Transactions on Database Systems (TODS),

volume 24, issue 4, pages 494-528.

[38] Gruber, T.R. (1995), "Toward principles for the design of ontologies used for knowledge

sharing?". International journal of human-computer studies, volume 43, issue 5-6, pages

907-928.

[39] Uschold, M. and M. Gruninger (1996), "Ontologies: Principles, methods and applications".

The knowledge engineering review, volume 11, issue 2, pages 93-136.

[40] Noy, N.F. and D.L. McGuinness (2001), "Ontology development 101: A guide to creating

your first ontology", Stanford knowledge systems laboratory technical report KSL-01-05

and Stanford medical informatics technical report SMI-2001-0880, Stanford, CA.

[41] Wang, X., et al. (2004), "Semantic space: An infrastructure for smart spaces". IEEE

Pervasive computing, volume 3, issue 3, pages 32-39.

[42] Gruninger, M. (2002), "Ontology: applications and design". Commun. ACM, volume 45,

issue 2.

[43] Khan, M.U.A. and M. Zulkernine (2008), "Quantifying security in secure software

development phases". in Computer Software and Applications, 2008. COMPSAC'08. 32nd

Annual IEEE International. IEEE.

[44] Chandra, P. (2009), "The Software Assurance Maturity Model-A guide to building security

into software development".

[45] Landwehr, C.E., et al. (1994), "A taxonomy of computer program security flaws". ACM

Computing Surveys (CSUR), volume 26, issue 3, pages 211-254.

[46] MITRE, "Common Weakness Enumeration, Frequently Asked Questions"; Available

from: https://cwe.mitre.org/about/faq.html#A.1.

[47] O'donnell, A.M., D.F. Dansereau, and R.H. Hall (2002), "Knowledge maps as scaffolds for

cognitive processing". Educational psychology review, volume 14, issue 1, pages 71-86.

[48] Tudorache, T., et al. (2013), "WebProtégé: A collaborative ontology editor and knowledge

acquisition tool for the web". Semantic web, volume 4, issue 1, pages 89-99.

https://cwe.mitre.org/about/faq.html#A.1

