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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
DET MEDISINSKE FAKULTET

Sammendrag

Effekter av enkeltnukleotidpolymorfismer p̊a mikroRNA-basert
genregulering og deres assosiasjon med sykdom

DNA-et inneholder variasjoner mellom individer, og DNA-varianter slik som enkelt-
nukleotidpolymorfismer (SNP) kan p̊avirke genfunksjon, men ogs̊a fenotyper. I løpet
av de siste årene, har helgenom assosiasjonsstudier (GWAS) forsøkt å identifisere
vanlige SNP-er som er assosiert med vanlige sykdommer, slik som kreft. Mange
assosierte SNP-er har blitt funnet utenfor protein-kodende regioner og har vært
vanskelig å tolke ettersom de ikke endrer proteinstrukturer og funksjoner, men er
antatt å ligge i eller i nærheten av genregulatoriske regioner.

For å bedre forst̊a mekanismene bak slike uforklarte sykdomsassosierte varianter,
har vi studert SNP-er involvert i dysregulering av gener, og spesielt de som p̊avirker
genregulering via microRNA (miRNA).

Først identifiserte vi SNP-er som potensielt forstyrrer eller skaper miRNA bind-
ingsseter (miRSNP), og kvantifiserte disse miRSNP-enes effekt p̊a genregulering.
Dessuten utviklet vi en metode for å koble miRSNP-ene til sykdomsassosierte SNP-
er fra GWAS, for å identifisere sykdom-disposisjon eller kausale miRSNP-er. Ved
hjelp av denne metoden, identifiserte vi en miRSNP (rs1434536) som p̊avirker regu-
leringen av miRNA mir-125b p̊a genet Bone Morphogenetic Protein Receptor type-
1B (BMPR1b). Denne SNP-en har vært assosiert til brystkreft, og dens effekt p̊a
BMPR1b uttrykksniv̊a ble verifisert eksperimentelt, noe som tyder p̊a at denne SNP-
en resulterer i økt disposisjon for brystkreft ved å p̊avirke miRNA-basert regulering.

Dernest studerte vi regulatoriske varianter (SNP-er) som kan forkorte messenger
RNA (mRNA) gjennom alternativ polyadenylering (APA), og spesielt de SNP-ene
som kan danne slike APA-signaler. Forkorting kan resultere i tap av regulatoriske
regioner som miRNA bindingsseter og dermed p̊avirke genuttrykk. Vi identifiserte
potensielle APA-SNP-er og testet v̊ar hypotese om at APA-SNP-er kan oppregulere
genuttrykk gjennom forkorting av mRNA og tap av miRNA bindingsseter.
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NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF MEDICINE

Abstract

Effects of single-nucleotide polymorphisms on microRNA-
based gene regulation and their association with disease

The DNA contains variations between individuals, and DNA variants such as single
nucleotide polymorphisms (SNPs) may affect gene functions, but also phenotypes.
Over the past few years, genome-wide association studies (GWAS) tried to identify
common SNPs that are associated with common diseases, such as cancer. However,
many associated SNPs were found outside protein-coding regions and have been
difficult to interpret as they do not change protein structures and functions, but are
thought to lie in or near gene regulatory regions.

To better understand the mechanisms behind unexplained disease-associated vari-
ants, we studied SNPs involved in gene dysregulation, and particularly those affect-
ing gene regulation by microRNAs (miRNAs).

First, we identified SNPs potentially disrupting or creating miRNA binding sites
(miRSNPs), and tried to quantify miRSNP effects on gene regulation. Furthermore,
we described a method to relate miRSNPs to disease-associated SNPs from GWAS,
to help identify disease-susceptibility or causal miRSNPs. Using this method, we
identified a miRSNP (rs1434536) that affects the regulation of the miRNA miR-
125b on the gene Bone Morphogenetic Protein Receptor type 1B (BMPR1b). This
SNP has been associated with breast cancer and its effect on BMPR1b expression
level has been verified experimentally, suggesting that this SNP results in increased
breast cancer susceptibility by affecting miRNA-based regulation.

Second, we were interested in another type of regulatory variants; SNPs that can
shorten messenger RNAs (mRNAs), through alternative polyadenylation (APA),
and particularly SNPs that create APA signals. The shortening can result in loss
of regulatory regions such as those where miRNAs bind, and thereby affect gene
expression. We identified potential APA-SNPs and tested our hypothesis that APA-
SNPs can upregulate gene expression through shortening of mRNAs and loss of
miRNA binding sites.
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UNIVERSITÉ NORVÉGIENNE DE SCIENCES ET DE
TECHNOLOGIE, FACULTÉ DE MÉDECINE

Résumé

Effets des polymorphismes nucléotidiques simples sur la régu-
lation des gènes par microARNs et leur association aux mal-
adies

L’ADN diffère entre les individus. Ces variations génétiques, et en particuliers
les polymorphismes nucléotidiques simples (SNP), peuvent affecter les fonctions
des gènes, mais aussi les phénotypes. Au cours des dernières années, des études
d’association pangénomique (GWAS) ont tenté d’identifier parmi les SNPs relative-
ment fréquents, ceux qui sont associés à des maladies génétiques multifactorielles
telles que le cancer. Cependant, de nombreux SNPs associés à ces pathologies se
trouvent à l’extérieur des régions codant pour des protéines et ont été difficiles à
interpréter car ils ne changent pas la structure et la fonction des protéines, mais on
pense qu’ils se situent dans, ou à proximité, de régions régulatrices des gènes.

Pour mieux comprendre les mécanismes derrière ces prédispositions encore incom-
prises, nous avons étudié les SNPs impliqués dans la dérégulation des gènes, en
particulier ceux qui affectent la régulation des gènes par des transcrits tels que les
microARNs (miARN).

Tout d’abord, nous avons identifié des SNPs qui potentiellement perturbent ou créent
des sites où se fixent les miARNs (miRSNPs), et nous avons essayé de quantifier leur
effets sur la régulation des gènes. En outre, nous avons décrit une méthode pour
relater les miRSNPs aux SNPs déjà associés à des pathologies lors de GWAS, afin
d’aider à identifier les miRSNPs qui prédisposent ou causent des maladies. En
utilisant cette méthode, nous avons identifié un miRSNP (rs1434536) qui influe
sur la régulation du gène du récepteur type IB de la protéine morphogénétique
osseuse (BMPR1b) par le biais du miARN miR-125b. Ce SNP a été associée au
cancer du sein et son effet sur le niveau d’expression de BMPR1b a été vérifié
expérimentalement, ce qui suggère que ce SNP prédispose au cancer du sein en
affectant les miARNs.

Deuxièmement, nous nous sommes intéressés à un autre type de variantes régula-
trices : les SNPs qui peuvent raccourcir les ARN messagers (ARNm), par le biais
d’une polyadénylation alternative (APA), et en particulier les SNPs qui créent des
signaux alternatifs de polyadenylation. Ce raccourcissement peut entrâıner la perte
de régions régulatrices telles que celles où les miARNs se fixent, et donc affecter
l’expression des gènes. Nous avons identifié des APA-SNPs potentiellement fonc-
tionnels et testé notre hypothèse où l’APA-SNP peut crôıtre l’expression des gènes
par le raccourcissement des ARNm et la perte des sites de fixation des miARNs.
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Chapter 1

Introduction

The study of DNA variants and mutations aims at understanding genetic mecha-
nisms involved in diseases. Variants can play a role in pathogenesis, in prognosis, or
in treatment response and efficiency. Those that affect protein sequences and there-
fore gene functions are supposed to be less likely viable and more common among
rare diseases. However, since regulatory variants affect gene expression instead of
gene function, the proteins produced by the cell are viable, but deregulated. That is
why regulatory variants are thought to play an important role in common diseases.
Furthermore, a small change in gene expression can have important phenotypical
consequences.

In this thesis, I looked at two kinds of regulatory variants. The first directly affects
a type of regulatory elements where non-coding RNAs can bind, resulting in gene
dysregulation and potentially in disease. The second affects the length of the mes-
senger RNA sequence, which carry the information needed to build its corresponding
protein. Shorter messenger RNAs can lose regulatory elements often found at the
end of their sequence. This mechanism can also result in gene dysregulation and
disease.

First, I will describe the biological background of my thesis, focusing on protein-
coding and non-coding genes, as well as DNA variants in general and particularly
the regulatory variants. Second, I will describe common technologies involved in
genetics and the strategies in disease-association. Third, I will describe relevant
algorithms that integrate the data produced by these technologies and these associ-
ation strategies. Finally, I will detail the aim of my project, sum up my results, and
mention some future perspectives.
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Chapter 2

Biology

Genes are important parts of cells and therefore of living organisms. Some of those
genes, termed coding genes, are the recipes specifying how to make proteins, through
the formation of important intermediate molecules called messenger RNAs (mR-
NAs). Other types of genes do not produce proteins (non-coding genes) and may
have less obvious functions than coding ones. However, one type of non-coding genes
called microRNAs is now quite well understood, as it plays a role in the regulation of
mRNAs. Finally, polymorphisms are DNA variants occurring in the DNA sequence,
that can affect gene sequences and their resulting protein, as well as gene expression,
in which case they are called regulatory variants. I shall focus in this chapter on
how coding genes lead to proteins, the regulatory role of non-coding genes like miR-
NAs, and the characteristics of DNA polymorphisms, particularly those of single
nucleotide polymorphisms and their effects on the two gene types above.

2.1 Coding genes

Coding genes are genes that code for proteins. Those genes are first transcribed
into a molecule called messenger RNA (mRNA), through several processes known
as mRNA biogenesis. Depending on many factors, this biogenesis can occur in
different ways resulting in different mRNAs (mRNA isoforms). Finally, mRNAs are
translated into proteins.

2.1.1 Definition of Messenger RNA

Messenger RNA is a ribonucleic acid (RNA) molecule that is built inside the nucleus
and transported into the cytoplasm to be translated into protein. Here, I briefly
describe the general role of mRNAs and how they are structured.

3



2.1.1.1 Role

The genetic information is safely stored inside the nucleus as deoxyribonucleic acid
(DNA), and can be used by the cell to build proteins. However, protein synthesis
occurs in the cytoplasm. The role of mRNA is to work as an intermediate between
DNA and proteins, by carrying into the cytoplasm the information needed to build
its corresponding protein.

2.1.1.2 Structure

Coding genes consists of successive regions called exons and introns, where only
exons are kept in the mature mRNA. Depending on the circumstances, some exons
can be either kept or not in the mature mRNA, and are called pseudoexons [1].
Annotations of human mRNAs such as exon positions are available in the RefSeq
database [2].

To be able to carry information through its structure, mature mRNAs seem to have
evolved into a molecule consisting of five main parts: a modified base at its 5’ end
called the 5’ cap, followed by a noncoding region called the 5’ untranslated region
(UTR), the coding sequence (CDS) containing the information required to build the
protein and delimited by a start codon and a stop codon, then another noncoding
region called the 3’UTR harbouring regulatory sequence elements, and finally a
sequence of adenine bases at its 3’ end called the polyA-tail [3].

The mRNA structure contains several level of information: first, the primary struc-
ture is the nucleotide sequence, which defines critical sequence elements such as
the coding sequence and therefore the protein to build, and also some regulatory
sequence elements where other molecules can bind. Second, the secondary struc-
ture is a two dimensional structure of the folded RNA, after pairing of neighbouring
nucleotides, creating hairpins and stem-loops. Third, in a similar way, the ter-
tiary structures can be defined as pairing of more distantly separated nucleotides
of the RNA creating a three-dimensional structure [4]. The main function of RNA
secondary and tertiary structures is the accessibility of sequence elements where pro-
teins and other RNAs can bind, which can have an impact on both gene expression
and function [4].

2.1.2 Biogenesis

Mature mRNAs are generated from DNA through several processing events that the
molecule must go through to become functional and stable: transcription, 5’capping,
splicing, polyadenylation, and export to the cytoplasm [5].

4



2.1.2.1 Transcription

The transcription consists in copying a DNA sequence into a complementary RNA
sequence, called precursor mRNA (pre-mRNA). This process starts by a step called
pre-initiation, which happens on the DNA molecule a few base-pairs upstream of a
protein coding gene at its promoter region. Specifically, transcriptional activators
bind to the promoter and recruit chromatin-modifying factors to open the chromatin
(DNA and its histones) and make the DNA region available for transcription [6].
Activators also recruit an enzyme called RNA polymerase II (RNAP) and some
proteins to form the transcription machinery [6]. Then, RNAP creates an initiation
bubble (initiation step) and starts the synthesis of the pre-mRNA. The 5’ capping
step (described below) happens, and RNAP can enter the elongation step where the
RNA sequence is synthesised while recruiting factors for splicing and polyadenylation
events (also described below) [6]. The last step called termination is the release of
the RNA molecule.

2.1.2.2 5’ capping

The first event in mRNA processing is 5’-end capping, occurring when the first 25-
30 nucleotides of the pre-mRNA have been transcribed [5]. It consists in adding
a 5’ cap structure at the 5’ end of the precursor mRNA. This structure enables
nuclear export, translation into protein by the ribosomes, increases splicing efficiency
and protects from cleavage by enzymes like exonucleases [5]. After capping, the
polymerase can continue the transcription of the rest of the pre-mRNA [5].

2.1.2.3 Splicing

RNA splicing consists in removing introns from the pre-mRNA and in joining ex-
ons together to produce a mature mRNA [5]. This mechanism is achieved by the
spliceosome, a complex of hundreds of small RNAs and proteins [1]. Introns should
be removed at very precise positions to avoid shifting the reading frame of the mRNA
which would result in completely different proteins [7]. Therefore introns’ bound-
aries are well defined by sequence elements at 5’ and 3’ splicing sites, whereas other
sequence elements within the intron are also involved in the splicing [8].

2.1.2.4 Polyadenylation

The polyadenylation process consists in cleaving the 3’ end of a pre-mRNA and
synthesising a sequence of multiple adenosine bases (called the polyA tail) onto
the upstream cleavage product [9]. This process occurs for all human mRNAs ex-
cept replication-dependent histone mRNAs [10]. Polyadenylation cleavage sites are
generally indicated by a polyadenylation signal (PAS), usually the canonical RNA
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sequence AAUAAA [9], but a few other hexamers can be used [11]. Cleavage sites
can be found 10 to 30 nucleotides downstream of the signal [12] and a downstream
sequence element (DSE) rich in GU nucleotides can be found 20 to 40 nucleotides
downstream of the cleavage site [12]. Similarly, an upstream sequence element (USE)
upstream of the PAS can contribute to the polyadenylation efficiency, particularly
for weak signals [13]. Therefore, the mammalian sequence pattern for polyadeny-
lation can be summarised as USE-AAUAAA-DSE [7]. Furthermore, non-canonical
sites do not necessarily need a polyadenylation signal, as the GU-rich region can be
sufficient [14].

The role of polyadenylation of mRNA is to enable nuclear export, to increase the
mRNA stability in the cytoplasm and the translation efficiency [3]. The polyadenyla-
tion machinery involves several protein complexes: the cleavage and polyadenylation
specificity factor (CPSF) which recognizes the PAS, and the cleavage stimulatory
factor (CstF) which binds to the GU-rich region [9], and also two cleavage factors
(CFIm and CFIIm) [5]). After the cleavage of pre-mRNA at the polyA site, the
polyA polymerase adds the polyA tail to finalise the mature mRNA [7].

2.1.2.5 Export

The mature mRNA is transported from the nucleus to the cytoplasm during a step
called export. This process starts during transcription by assembling onto the pre-
mRNA different proteins forming a complex called transcription and export (TREX)
complex [15]. Together with the mRNA, the TREX results in an mRNA ribonu-
cleoprotein (mRNP) complex and is transported to the cytoplasm through protein
complexes which can cross the nuclear envelope: the nuclear pore complexes (NPCs)
[16].

2.1.3 Alternative processing: mRNA isoforms

Messenger RNA variants encoded by the same gene are called mRNA isoforms.
They can arise from several kinds of alternative processing: alternative transcription
initiation, alternative splicing, alternative polyadenylation, RNA editing, and post-
transcriptional modification [8]. In human, there are about ten times more mRNA
isoforms than genes [17], which suggests that this is a way of generating complexity
among RNAs [8]. But those mRNA isoforms can cause disease [18], for instance
by influencing mRNA transport, localization or stability [3]. I will focus here on
alternative splicing and alternative polyadenylation.
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2.1.3.1 Alternative splicing

Alternative splicing consists in splicing a gene in different ways to produce different
mature mRNAs from the same DNA sequence [1]. More than 90% of human genes
encounter alternative splicing events [19, 20]. It can happen by selecting different
combinations of exons, but also different splice sites which changes exon lengths [1].
Some introns can also be kept in the mature mRNA: those are known as pseudoexons
[1]. This mechanism can produce many different mRNA and protein isoforms with
different functions [1]. Several factors can affect the choice of a particular splicing
site: the site strength depends on cis-acting elements, where the splicing machinery
binds [1], chromatin and histone modifications [21] and the transcription rate [22].

Abnormal splicing creating coding frameshifts can happen and may create a too
early stop codon, also known as premature termination codon (PTC) [8], which
results in truncated proteins and in triggering of quality control processes such as
nonsense-mediated decay (NMD) pathways to avoid erroneous proteins [23]. Abnor-
mal splicing can cause diseases [1] and affect drug response [24], and can be used
as cancer biomarkers [24]. Since abnormal splicing can generate dangerous pro-
tein variants, the cell uses quality processes to avoid export of those mRNAs into
the cytoplasm [5]. Furthermore, several methods have been investigated to correct
wrongly spliced transcripts in disease: the use of antisense oligonucleotides comple-
mentary to a particular splicing element enables to skip an unwanted exon [25], and
trans-splicing, which is splicing between two pre-mRNA transcripts, can be used to
correct one mutated exon by a normal one [26].

2.1.3.2 Alternative polyadenylation

Similarly to alternative splice sites, pre-mRNAs can have several polyadenylation
signals and therefore cleavage sites [3]. This concept of multiple sites is known
as alternative polyadenylation (APA), resulting in mature mRNAs with different
3’UTRs [3] and occurring in about 54% of human protein-coding genes [11]. Also,
APA can affect stability, localization, transport and translation of the mRNA. For
instance, it plays a regulatory role, since mRNAs with shorter 3’UTRs might lack
regulatory elements often found along the 3’UTR, resulting in differentially regulated
transcripts and proteins [9].

The choice of polyA site is tissue- and development-specific: some tissues are more
likely to use proximal polyA sites, while others use the distal ones [9]. Specifically,
proliferating cells, cancer cells and less differentiated cells preferably use proximal
polyA sites [27, 28, 29], while non-proliferative tissues might use distal sites [8].
Interestingly, strong canonical polyA sites are often distally located, while weaker
polyA sites are often more proximal [9]. Generally, the site selection depends on it
strength (signal, USE and DSE) and on physiological conditions such as concentra-
tion of polyA factors [9], and is thought to be also regulated by epigenetic marks
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[9]. Furthermore, APA is found deregulated in an increasing number of diseases [30],
therefore a high coordination between polyadenylation and splicing is necessary to
avoid selection of intronic PAS, which could result in truncated proteins [7].

2.1.4 Translation to protein

The translation into proteins consists in translating the nucleotide sequence of an
mRNA into a chain of amino acids called protein. It happens in three steps: initia-
tion, elongation and termination [31].

Translational initiation takes place at the 5’ cap: the small ribosomal subunit
(40S) and initiation factors form a complex and bind to the 5’ cap [31]. One protein
of this complex, the polyA-binding protein (PABP), binds to the polyA, putting
the mRNA in a circle shape to maintain its stability during translation [32]. The
complex then scans the mRNA, to look for the translation start codon (usually AUG)
[31]. Some initiation factors are then released and the large ribosomal subunit (60S)
is recruited to form the ribosome complex (80S), which is the main actor of the
translation [31].

Elongation starts when the ribosome (80S) reads the mRNA sequence by triplets
called codons and uses Transfer RNAs (tRNA), which are molecules that associate
a codon to an amino acid, as described by the genetic code (64 possible codons map
to 20 amino acids), to produce an amino acid sequence until it reads the stop codon,
indicating the end of the protein sequence.

Termination consists in releasing the new protein and the mRNA from the ribo-
some [31].

2.2 Non-coding genes

Genes do not necessarily encode for a protein, but are also functional as RNA
transcript. Those are called non-coding genes. Several types of non-coding genes
exist, like for instance microRNAs, piRNAs and lncRNAs. Those three non-coding
RNA classes have in common to guide RNA-binding proteins (RNABPs) to a specific
target nucleotidic molecule, to achieve a specific function.

MicroRNAs (miRNAs) are small non-coding RNAs of about 22 nucleotides that
bind to mRNAs to inhibit translation. Piwi-interacting RNAs (piRNAs) are small
non-coding RNAs of 24-32 nucleotides which are thought to play a role in germline
development and gene regulation, particularly silencing of transposons [33]. Long
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non-coding RNAs (lncRNAs) are non-protein coding RNAs longer than 200 nu-
cleotides, which play a role in epigenetic, splicing, transcription, translation apop-
tosis, cell cycle, imprinting and differentiation [34]. In this section, I shall focus
on miRNAs, their biogenesis, their binding to mRNAs, and their involvement in
diseases.

2.2.1 MicroRNA

MicroRNAs (miRNAs) are abundant small endogenous single-stranded non-coding
RNAs (ncRNA) of about 22 nucleotides, which inhibit gene expression mostly by
binding to 3’ UTR of target mRNAs [35]. It is estimated that at least 60% of
coding genes are repressed by miRNAs in humans [36]. Since they are expressed
differently in each tissue, resulting in a tissue-specific gene regulation [37], they
regulate developmental and physiological processes such as differentiation, growth,
and apoptosis [38]. In arrested cells, miRNAs are thought to activate translation
[39]. Furthermore, they also have been reported to stimulate translation by binding
to 5’UTR during amino acid starvation [40].

2.2.2 Biogenesis

MiRNAs can be generated through several types of biogenesis: a canonical one, and
alternative biogeneses.

2.2.2.1 Canonical biogenesis

Similarly to mRNAs, the biogenesis of miRNAs consists of several processing events
resulting in a mature miRNA: transcription and formation of the hairpin structure,
different kinds of cleavage of that structure, export to the cytoplasm, and loading
into the silencing complex. All known miRNA genes, their hairpin structure and
their mature form are annotated in the MirBase database [41].

Transcription: In the nucleus, at a miRNA gene locus, RNA Polymerase II syn-
thesises a primary miRNA (pri-miRNA) transcript containing a 5’ cap, splicing
events and a polyA tail like mRNAs [42]. Pri-miRNA can also be transcribed by
RNA Polymerase III [43]. The pri-miRNA typically contains one or several hairpin
structures, each of them having a hairpin stem, a terminal loop and single-stranded
regions up- and down-stream of the hairpin [44]. Several mature miRNAs can cluster
on the same miRNA gene and therefore share similar expression patterns [45].
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Cleavage by microprocessor: The pri-miRNA is cleaved by a complex called
microprocessor (a dimer of the Drosha enzyme and the DGCR8 protein) at the
base of the pri-miRNA hairpin and results in a precursor-miRNA (pre-miRNA)
of about 60 nucleotides, only consisting of the hairpin stem and loop [46]. The
Drosha enzyme accomplishes the cleavage [47], while the DGCR8 protein recognises
the single-stranded RNA/double-stranded RNA junction of the hairpin to have the
correct cleavage site [48].

Cleavage by Dicer: The pre-miRNA is exported from the nucleus to the cyto-
plasm by the Exportin-5 (XPO5) protein [44]. In the cytoplasm, the enzyme Dicer
cleaves the pre-mRNA’s terminal loop to result in an imperfect miRNA:miRNA*
duplex of ∼22-nucleotide length [44].

Loading into Argonaute: The miRNA:miRNA* duplex is split into two sep-
arated strands after the cleavage by Dicer: the functional one is loaded into an
Argonaute (Ago) protein (Ago1-4) from a complex performing gene silencing, called
the RNA-induced silencing complex (RISC), while the non-functional strand (often
denoted miRNA*) is degraded [44]. In the cytoplasm, the Ago protein protects the
mature miRNA from degradation [44].

2.2.2.2 Alternative biogenesis

MicroRNAs can be generated by alternative processing, independent of either Drosha
or Dicer [49]. One example of Drosha-independent biogenesis is the Mirtron path-
way, where miRNAs are hosted in introns of mRNAs [50]. During splicing of the
pre-mRNA, introns are cleaved and some of them resemble pre-miRNA hairpins and
can be processed by Dicer [51]. Splicing is thought to replace cleavage by micro-
processor [51], and the expression of miRNAs from introns is often correlated with
host gene expression level [52]. One example of Dicer-independent biogenesis is the
slicing of the pri-miRNA by Ago2, which is the unique Ago protein with slicing
abilities [49]. It results in a functional mature miRNA loaded into Ago.

Similarly to mRNAs, miRNAs have isoforms as well, which are called isomiR. An
isomiR is a variation of a mature miRNA and comes from the same pre-miRNA, but
has either 5’-, 3’-trimming or nucleotide substitutions or additions [53]. IsomiRs are
generally less expressed than their corresponding canonical mature sequence.

2.2.3 Targeting

After the miRNA has been processed, it becomes functional. The role of the mature
miRNA is to recognise the target mRNA and to guide the RISC to it, to achieve
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gene silencing [44]. The miRNA possesses at its 5’end a region called seed sequence,
which can detect its target mRNA by binding to a partially complementary sequence
known as seed site, generally located in the 3’ UTR of the mRNA [54].

2.2.3.1 Silencing

MicroRNAs bring RISC to the target mRNA to inhibit protein synthesis in several
ways [31]. The first is translation repression: RISC inhibits the process of transla-
tion, either at the translation initiation step, by interfering with the cap recognition
process and the ribosomal subunits, or at the elongation step by inhibiting ribosome
elongation and inducing ribosome drop-off [31]. The second way of inhibiting protein
level is transcript decay: RISC recruits a deadenylase complex to induce shortening
of the polyA tail (deadenylation) or a decapping complex to remove the 5’ cap, both
leading to degradation of the transcript [31]. Another miRNA-mediated transcript
decay is cleavage, which is rare in animals and more common in plants [55]. Cleav-
age requires perfect complementarity between the miRNA and mRNA, but animal
miRNAs often have mismatches and bulges preventing cleavage [31].

2.2.3.2 Seed sites

The recognition of the target to silence is made by Watson-Crick base-pairing of the
2nd to 7th first nucleotides of 5’ end of the miRNA (called seed sequence), which is
generally perfectly complementary to the mRNA [54].

Several stringent seed types exist; from the most efficient to the less efficient, these
are 8mer, 7mer-m8, 7mer-A1 and 6mer [56]. The 8mer has perfect nucleotide match
between the 2nd and 8th nucleotides of the 5’ end of the miRNA and has an adeno-
sine base at position 1 of the target site on the mRNA. The 7mer-m8 is like the 8mer
but without the adenosine at position 1. The 7mer-A1 is like an 8mer but without
the base match position 8 and the 6mer is like a 7mer-A1 without the adenosine
base at position 1 [56]. Furthermore, an adenosine at position 1, and a uracil or an
adenosine at position 9 can enhance target recognition without particular base-pairs
[31]. There are also several moderately stringent seed types, defined by one G:U
pairing, or one bulged nucleotide or one loop [57].

Pairing of 3’ end of miRNA can improve the targeting recognition [56] but this
pairing is estimated to happen for less than 10% [54]. Stringent seed sites that
show 3 or 4 base pairings at positions 13-16 are called 3’-supplementary sites, and
moderately stringent sites with 4 or 5 base pairings at positions 13 to 19 are called
3’-compensatory sites as they compensate their weak seed with an additional pairing
[54]. Finally, centred sites are miRNA target sites which do not have canonical seed
sites and 3’ compensatory pairing, but have 11 to 12 contiguous base-pairing from
position 4 to 15 [58].
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2.2.3.3 Target sites

The seed sequences are used by Ago proteins to find the target sites on target
mRNAs. Functional target sites downregulating gene expression are mostly found
in 3’UTRs and less frequently in 5’UTRs and coding regions [31]. It has been shown
that multiple target sites at optimal distances between each other can act in synergy
[59], and that a lot of target sites are conserved among species, particularly at the
region matching the miRNA seed [36]. Target sites in the coding region are not as
efficient as those in the 3’UTR, unless they are preceded by rare codons upstream
which slow down the translation rate and enable miRNAs to bind in a more efficient
way [60].

2.2.4 Disease

MicroRNAs do not only regulate physiological processes, they are involved in dis-
eases such as for instance cancer [61] and neurodegenerative diseases [62]. This can
happen by dysregulation of mature miRNAs, generally through the disruption of
miRNA biogenesis, but miRNAs can also be involved in disease if their target site
is disrupted, for instance by a mutation.

Dysregulation: MicroRNAs are generally downregulated in tumour tissues com-
pared to normal [37]. Consequently, miRNA profile can be used as a biomarker to
subclassify tumour tissues [37], and miRNA signatures are important information
for disease diagnosis, progression, prognosis, and treatment response [63]. Further-
more, miRNA signature correction is a potential therapeutic approach [64], but still
raises challenges for delivering miRNAs.

MicroRNA biogenesis disruption: Each step of the miRNA biogenesis can be
disrupted and associated with disease. For instance, Drosha can be upregulated in
some cancers, resulting in processing more pri-miRNAs, and a global over-expression
of miRNAs [65]. Drosha has also been shown to malfunction in primary tumours,
resulting in accumulation of unprocessed pri-miRNAs [66]. In several cancer cell
lines, an important number of pre-miRNAs are kept inside the nucleus, suggesting
dysfunction in the export process [67] and could explain the global downregulation
of mature miRNAs.

MicroRNA targeting disruption: Target sites can also be altered by changes
in accessibility or by polymorphisms and mutations. Target genes become then dys-
regulated and can be implicated in tumourigenesis if they are oncogenes or tumour
suppressor genes [68]. The following section will describe polymorphisms in detail.
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2.3 Polymorphisms

Polymorphisms are DNA sequence variations that encompass several types, such as
single-nucleotide polymorphism (SNP) and structural variants. A SNP is a variant
of one nucleotide change, commonly used to analyse heritable DNA diseases. Other
variants are called structural variants and encompass insertions/deletions (indels),
block substitutions, inversions or copy number variants (CNV) and are estimated
to account for 20% of human polymorphisms and 1% of the genome bases [69].
Furthermore, a CNV is defined as a sequence that is repeated several times, the
number of copies changing from one individual to another [69]. Other polymorphisms
exist such as microsatellite, also known as simple sequence repeat (SSR) or short
tandem repeat (STR), which is a DNA sequence that consists of a motif long of two to
six nucleotides and is repeated several times [70]. Similarly to SNPs, microsatellites
are also used in disease analyses, but here I shall focus in SNPs and their effects on
diseases.

2.3.1 Single nucleotide polymorphisms

A single-nucleotide polymorphism (SNP) is a change of one single nucleotide in the
DNA sequence [69]. Each form the variant can take is called allele and the majority
of SNPs are diallelic, which means they have two possible alleles in a population
[71]. SNPs are the most common kind of DNA variants in humans [69] and millions
of them are annotated in the dbSNP database [72].

An important characteristic of a SNP is the allele frequency in a given population;
i.e. how frequent each allele occurs. The major and minor alleles are respectively
defined as the most and least common alleles [73]. However, people generally only
refer to the minor allele frequency (MAF), since the major allele frequency can be
deducted from the MAF. For most diallelic variants, the MAF is used to distinguish
between SNPs and rarer variants: diallelic variants require a MAF greater than 1%
in a population to be termed as SNPs [73]. The ones with lower MAF are termed
rare variants.

Other characteristics of SNPs are the combination of parental alleles (genotype),
the combination of neighbouring alleles along the chromosome (haplotype), and the
allele correlation between SNPs (linkage disequilibrium).

2.3.1.1 Genotype

Humans are diploid, which means their cells contain two versions of each autosomal
chromosome, and there is therefore a combination of two alleles at each SNP: one
from the father and one from the mother. This combination of alleles is called
genotype and each diallelic SNP harbours one of the three possible genotypes: either
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homozygous for the major allele (twice the major allele), heterozygous (both major
and minor alleles) or homozygous for the minor allele (twice the minor allele) [74].

Hardy-Weinberg equilibrium (HWE) is a principle stating that the genotype
frequency of an autosomal variant stays constant from one generation to the next
one, assuming random mating [71]. The two alleles A and a of a variant with
respective frequencies p and q = 1 − p in a population, are expected to result by
random mating in the genotypes AA, Aa and aa, with the respective frequencies
p2, 2pq and q2 in the next generation [71]. Departure from HWE can happen by
inbreeding, mutation, and natural or artificial selection and can be tested using
Pearson’s χ2-test by comparing the observed genotype counts and the expected
ones under HWE based on allele counts [71].

Dominance and recessiveness: A genotype can be responsible for a simple trait.
A trait is defined as dominant if the trait allele is stronger than the other allele, which
means that each person having the trait allele (heterozygous or homozygous for the
trait allele) harbours the trait. In contrast, a trait is recessive if a person needs both
trait alleles to harbour the trait (only homozygous for the trait allele).

2.3.1.2 Haplotype

In contrast to genotype which is a combination of two alleles at one position on
the chromosome pair, a haplotype is a combination of alleles occurring at different
positions on the same chromosome [73]. For each chromosome pair, each human
inherit one haplotype from the father and one from the mother. During the formation
of gametes (meiosis), chromosome pairs can cross over, resulting in new combinations
(recombination) of alleles along each chromosome, and therefore new haplotypes [74].

Recombination events between two markers are studied within family pedigrees by
analysing the recombination fraction (θ = r

n
; for r recombinant among n offspring,

by computing directly θ in case of phased markers, or by estimating it). It enables
to quantify the genetic linkage (loci inherited together; linked) as the logarithm of
the odds (LOD) score, which is the log ratio between the likelihood of linkage for
a given recombination fraction (θ < 0.5) and the likelihood of no linkage (θ = 0.5):

LOD(θ) = log10
(

L(θ)
L(θ=0.5)

)
[75]. The most likely genetic distance between the markers

is given by the maximum likelihood estimate of θ; the θ that gives the highest LOD
score [75]. Scores greater than 3 are generally seen as evidence for linkage, while
scores lower than −2 are evidence for independence of the markers [75].

Some DNA regions harbour a high density of recombination events and are known
as recombination hotspots, while regions with low density of recombination are in-
herited as blocks (Figure 2.1) through generations where variants inside the blocks
are linked together [73]. Furthermore, the block structure of the genome has also
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been shaped by historical events reducing the population size, such as migration of
a subpopulation, and high mortality rate.

2.3.1.3 Linkage disequilibrium

Alleles of SNPs that are closely located are often correlated to each other, because
the closer they are, the less likely a recombination event can happen between them
[69]. This non-random association of alleles in a haplotype is called linkage dise-
quilibrium (LD) [69]. While linkage equilibrium describes a situation where alleles
of two variants occur in an independent way, LD describes the dependence between
the alleles, i.e. some haplotypes occur more often in a population than expected by
chance. Interestingly, LD decreases with space (genomic distance) and time (number
of generations) because of recombination events between loci [74].

This correlation between variants can be measured in several ways: the most im-
portant ones are D′ and r2 [69]. For example, two loci with the alleles A/a and B/b
respectively, have pA, pB and pAB the probabilities of allele A, allele B and haplotype
AB. Then D = pAB −pApB is the difference between the actual haplotype frequency
and the expected one for independent loci [76]. D′ is the normalised measure of D:
D is divided by its theoretical maximum for the observed allele frequencies [77], and
ranges between 0 and 1, where 0 means no LD and 1 means LD.

Another measure of LD is r2, which is the square of the correlation coefficient be-
tween allele frequencies, or the percentage of variance at one SNP that can be
explained by the other one. r2 is given by r2 = D2

pA(1−pA)pB(1−pB)
and ranges between

0 and 1 [78]. The main difference between r2 and D′ is that r2 contains allele fre-

chr16
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Figure 2.1: The block structure of a DNA region. The SNPs are shown on the hori-
zontal axis, and the colours show linkage disequilibrium (LD) between pairs of SNPs:
red is high LD, and white is low LD. Blocks are regions with low recombination rate,
and appear as red triangles.
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quency information and therefore rapidly decreases with low MAF [76]. In high LD
regions, such as haplotype blocks, LD can be used to predict the allele at one SNP
knowing the allele at another SNP [73]. The Haplotype Map (Hapmap) database
provides haplotype and LD data for 3.1 million SNPs from different populations
(European, African, and Asian populations) [79].

2.3.2 Effects of DNA variants

DNA variants, such as SNPs, are called functional when they perturb functional
elements within the cell. I will first describe the effects of variants within coding
regions, and then those within non-coding regions.

2.3.2.1 Coding variants

Coding variants are variants within the coding region of mRNAs, and there are two
different types: the ones that change the amino-acid (non-synonymous) and those
that do not (synonymous).

Synonymous variants are variants in mRNA coding regions that do not change
the amino acid in the resulting protein [80]. Specifically, synonymous variants of
one nucleotide change are called synonymous SNPs (sSNPs). For a long time, sS-
NPs have been thought to be silent, but it is now known that they can affect protein
expression, structure and function and that they can play a role in disease [80]. Syn-
onymous SNPs can cause disease through several ways. By disrupting or creating
exonic sequence elements involved in mRNA splicing, they can result in aberrant
splicing and disease [81, 1]. Similarly, by disrupting miRNA target sites in coding
regions, they can result in change of mRNA stability, protein expression and pos-
sibly disease [82]. Furthermore, by changing mRNA structure and protein folding,
they can affect transcript stability [80]. Finally, by switching between a rare and a
frequent codon, and affecting translation rate and space between translating ribo-
somes, they can result in protein misfolding, or ribosome blockage and translation
abortion [80].

Non-synonymous variants (nsSNP) are SNPs in a coding region that change the
amino acid sequence, resulting in protein isoforms (missense mutations) or truncated
proteins when they change into a stop codon (nonsense mutations) [80]. Changes in
proteins due to nsSNPs can affect protein function and cause disease, particularly
single-gene disorders [73].
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Figure 2.2: A SNP in a miRNA target site affects gene expression of an mRNA
and its protein. (A) Allele 1 of the SNP makes the target site complementary to
the miRNA, which can bind to it with the silencing machinery illustrated by the
Argonaute (AGO) protein. The silencing machinery inhibits protein translation
by either disrupting the translation initiation of the ribosome, the elongation of
the protein sequence, or affects mRNA expression by deadenylation. (B) Allele 2
disrupts the target site. The miRNA and the silencing machinery cannot bind to
downregulate gene expression.

2.3.2.2 Non-coding variants

Variants do not necessarily occur in coding regions, but also in non-coding regions
such as non-coding RNAs, but also 5’ UTRs, 3’ UTRs, introns and promoter re-
gions. Several variants in those regions have been associated with diseases, however
the mechanisms that those polymorphisms affect is less clear than for nsSNPs. Nev-
ertheless, polymorphisms in 5’ and 3’ UTRs can alter the mRNA structure and have
been associated with diseases [83].

Variants affecting microRNAs (called miRSNPs), can impact gene expression,
disease risk, treatment, and prognosis in several ways. First, SNPs within miRNA
target sites (Figure 2.2) can increase or decrease affinity between miRNAs and their
targets, disrupting or creating new sites on the target mRNAs, possibly affecting
mRNA transcript and protein expression levels [84]. This kind of variant has been
associated with risk for several different diseases, such as cancer and Parkinson’s
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disease [85]. Seed-complementary sequence regions of target sites conserved between
species harbour a lower polymorphism density possibly due to negative selection
[86]. Second, miRNA genes have a low density of polymorphisms and particularly
the seed region [87], because variation in those sequences would have a strong impact
on miRNA expression and function, gene expression, and phenotype [84]. However,
there are a few SNPs in miRNA genes, and they can disrupt miRNA function by
affecting the pre-miRNA hairpin pairing, resulting in a different mature miRNA, or
by affecting the binding to target mRNAs, and have been associated with increased
cancer risk [84]. Third, several variants in the miRNA machinery proteins, such as
Drosha, DGCR8, XPO5, Dicer and AGO, affecting either the function or expression
of those proteins, have been identified as non-synonymous, or potentially affecting
splicing, or causing frameshift [88], and some have been associated with diseases
[89, 90].

Variant affecting polyadenylation are variants in 3’UTR that can deregulate
polyadenylation by affecting sequence elements where the polyadenylation machin-
ery can bind [30]. By creating new sequence elements, those variants can result in
polyadenylation stimulation upstream of the normal site, or disrupt normal sequence
elements and postpone polyadenylation further downstream. Those mutation-caused
APAs may result in miRNA dysregulation and be associated with diseases [30]. One
particular sequence element that can be subject to mutation is the polyA signal
(Figure 2.3). A variant can change a canonical signal into a non-canonical signal,
which is weaker, and which often requires USE and DSE to compensate the sig-
nal weakness [14]. Also mutations in GU-rich DSE can affect the polyadenylation
process [91].

Variant in lncRNAs are also important because lncRNAs have sequence ele-
ments that can bind to DNA, RNA or protein, and affect primary and secondary
structures, function and expression level. Those variants have been strongly associ-
ated with diseases such as cancer and neurodegenerative diseases [34].
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Figure 2.3: A SNP creates an alternative polyadenylation signal and affects gene
expression. (A) A DNA region harbours a gene, here illustrated by its transcription
start site (TSS), its coding region in grey, and two polyadenylation sites shown by
polyadenylation signals (PAS), cleavage sites (CS), and GU-rich regions. A SNP lies
in the first PAS. (B) Allele 1 makes the first polyA site functional, resulting in a
short 3’UTR. (C) Allele 2 makes the first PAS non-functional, resulting in cleavage
at the second polyA site and a long 3’UTR, which contains a miRNA target site.
The miRNA machinery binds to the mRNA and downregulates gene expression,
through translation inhibition or deadenylation.
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Chapter 3

Technologies and strategies

To analyse polymorphisms and their effects on RNA sequences and expression levels,
several technologies, such as microarray and sequencing technologies, have been
developed. Furthermore, those technologies can be involved in several strategies to
analyse the effects of polymorphisms on a trait such as a genetic disorder: linkage
studies, genome-wide association studies and exome sequencing studies. Here, I
shall first describe the technologies’ principles, advantages and limitations, before
explaining the different strategies.

3.1 Technologies in genetics

Genetics involves several important processes, such as identifying the genotype of
an individual at a polymorphic site (genotyping), quantifying the expression lev-
els of mRNAs and non-coding RNAs in a sample (expression quantification) and
identifying the DNA/RNA sequences in a sample (sequencing). Several technologies
have been developed to achieve these processes. Here, I am going to talk about
microarrays and RNA-seq technologies.

3.1.1 Microarrays

A microarray contains target-specific DNA probes and uses hybridisation to those
probes to catch single stranded DNA fragments of interest that are complementary
to those probes [92]. By using different DNA probes, they can genotype SNPs and
quantify transcript expression levels. One limitation is that they cannot measure
unknown targets: they require prior knowledge of the target to design its probe [92].
Also, hybridisation errors can occur when probes bind to molecules that are similar
to their target [92]. Nevertheless, quality control standards have been developed to
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reduce biases [93]. In this section, I shall describe how microarrays can be used for
SNP genotyping and RNA expression level quantification.

3.1.1.1 SNP genotyping

Microarrays can be used to genotype SNPs anywhere in the DNA as long as the
flanking sequences are known. Microarrays, such as Illumina’s Infinium Beadchips,
Affymetrix GeneChip Human Mapping arrays, Invader or Perlegen, are commonly
used to genotype SNPs genome-wide and can analyse from 10 thousand to 2 million
SNP assays in parallel with high accuracy [94].

Principle: Each technology either hybridises a single stranded DNA sequence
consisting of the target SNP and its flanking regions to allele-specific probes, or
hybridises the 5’ flanking region to a primer and extends the primer with the nu-
cleotide that is complementary to the allele (single-base extension or SBE). Those
probes can be coupled with fluorescent labelling specific to each allele, whose inten-
sities can then be measured [94], but other labelling methods exist. Then, genotypes
are statistically estimated based on those signal intensities. Furthermore, microarray
genotyping technologies can be customised, generally for replication and validation
studies, to analyse a smaller amount of SNPs in a high number of samples with high
accuracy [94].

Limitations: SNP arrays enable to genotype only known SNPs and genome-wide
arrays provide limited customisation [94].

3.1.1.2 RNA expression

Transcript expression microarrays were the first technology to enable transcriptome-
wide expression analyses in many different cell types, differentiation states and dis-
eases [95]. Many of these experiments generated expression results that are archived
within the Gene Expression Omnibus (GEO) database [96].

Principle: Similarly to SNP arrays that use probes based on sequences that flank
the SNP of interest, mRNA expression arrays use probes based on gene comple-
mentary sequences [95]. Probes are based on exonic sequences from mRNAs, or
mature sequences from small RNAs, such as miRNAs. Fluorescent labelled RNAs
hybridise to their respective probes and light intensities are measured and corre-
spond to gene expressions [95]. Expression microarrays can be used to measure
expression of mRNA isoforms such as alternatively spliced mRNAs, by designing
probes that target exon junctions, to measure the expression of that particular exon
combination [97].

22



Limitations: Expression microarrays can quantify transcript expression of anno-
tated genes, but cannot detect unknown expressed transcripts, unknown exon junc-
tions (alternative splicing) or unknown poly(A) sites (alternative polyadenylation).
Furthermore, isoforms disrupting the matching to the probe [3] and noise from hy-
bridisation signal (cross-hybridization) [8] may affect the resulting expression data.
Also, microarrays cannot provide good sensitivity for low and high gene expression
levels when looking at differential expression [98]. Finally, allele-specific expression
quantification is possible but quite limited compared to RNA-seq approaches.

3.1.2 RNA-seq

RNA-seq is a next-generation sequencing (NGS) technology that aims at sequencing
the whole transcriptome profile and at addressing microarray limitations [8], such
as measuring unknown transcripts. This high-throughput technology is also known
as whole transcriptome shotgun sequencing (sequencing of small fragments). Like
microarrays, it can be used for quantifying RNA expression level, SNP genotyping
and identifying any exon junctions, but also allele-specific expression levels and
polymorphism detection (variant calling). In this section, I shall describe RNA
sequencing, SNP genotyping, and quantification of RNA expression levels.

3.1.2.1 Sequencing

Sequencing consists in extracting the RNA, and breaking it in small fragments that
are then sequenced. Once sequenced, those fragments, called reads, are then mapped
to reference genomes (Figure 3.1A,B) such as the human reference genome to identify
expressed regions [99].

Principle: RNAs are digested into small fragments (RNA fragmentation) which
are converted into complementary DNA (cDNA) fragments and repeatedly sequenced
in a massively parallel way and in a short time. Alternatively, fragmentation can
occur after cDNA synthesis (cDNA fragmentation). Sequencing in itself consists in
reading a lot of single stranded DNA fragments simultaneously by generating their
complement strand one nucleotide after the other by a DNA polymerase (sequencing
by synthesis; i.e. Illumina Genome Analyzer), or all consecutive identical nucleotides
at a time (sequencing by synthesis pyrosequencing; i.e. Roche 454 Life Science), or
with oligonucleotide fragments one after the other by a DNA ligase (sequencing by
ligation; i.e. Applied Biosystems SOLiD), each method having fluorescent labelling
[100]. Those are the current high-throughput sequencing methods, but new ones
are emerging as well. The sequence of fluorescent intensities enables to identify the
RNA sequence fragment, called the read, and to estimate uncertainty of each base
(probability of wrong base) [100]. That information is stored in a FASTQ file [101],
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Figure 3.1: RNA-sequencing. (A) A gene is shown on a DNA strand, from its
transcription start site (TSS) to its transcription end (TXE); the exons are shown
in grey and one of them contains a SNP. (B) Sequenced reads are aligned against
the gene, showing where exons are expressed as they come from RNA. The reads
can be used to estimate transcript expressions. (C) A zoom at the SNP locus shows
the mapped reads, and the nucleotides at the SNP position are A and G with equal
proportions, suggesting that this SNP is heterozygous.

where the uncertainty is converted into a quality scores Qphred = −10 log10 P (error)

and mapped to an ASCII character, resulting in a quality sequence.

Reads are sequence fragments and each experiment generates millions of them.
The read length ranges from 30 to 400 nucleotides according to the sequencing
method used [98]. Sequencing from one end of the fragment (respectively both ends)
generates single-end (respectively paired-end) reads [98]. Therefore paired-end reads
correspond to sequences of both 5’ and 3’ ends of the DNA fragment, which may be
separated by an unsequenced gap [98]. Depending on the fragment size, those read
pairs are located more or less distantly on the original RNA molecule. The short
reads resulting from sequencing can then be aligned to the human reference genome
[100].

Read mapping consists in aligning millions of reads against the reference genome,
to know from which transcripts those fragments came from. The mapping process
can take into account polymorphisms or sequencing errors, by using base quality
scores and allowing a few mismatches, insertions, or deletions between the read and
the reference sequence [92]. However, since the mapping process can make mistakes
as reads may map ambiguously to different loci, discarding those reads is a way to
reduce mapping errors. Furthermore, paired-end reads contain more information

24



than single reads, and can therefore increase alignment accuracy [100].

Advantages: RNA-seq can identify new transcripts and isoforms in a high-throughput
way with a single base resolution, while requiring a low amount of RNA. Such high
resolution maps have improved the annotation of gene boundaries (reads showing
transition between UTRs and polyA/polyT tails), exon junctions (reads containing
splice site motif and mapping the two flanking sequences to different exons), introns
(showing low expression compared to exons), and RNA editing events [98, 95].

Limitations: RNA-seq can have some limitations in sequencing. For example,
the pyrosequencing method adds one type of nucleotide at a time (either A, C, G or
T) and measures the signal intensity to identify the number of consecutive identical
nucleotides that have been added by the DNA polymerase. This method can have
problems to estimate the precise number of consecutive identical nucleotides the
higher it gets, particularly with homopolymeric sequences, resulting in false positive
insertion or deletion and mapping problems [92]. Also, methods that read one base
at a time can address that issue, but they usually provide lower quality at the 3’
end of the read [92], because of asynchrony in the sequencing cycles [100]. Also it
is not always easy to map reads back to the genome, because some reads may come
from several potential locations. Finally, RNA-seq produces much more data than
microarrays, which raises storage and computer processing problems [98].

3.1.2.2 SNP genotyping

Once the reads have been aligned to the reference genome, RNA-seq can be used to
genotype SNPs in exons [98] and to compute allele-specific expression .

Principle: Genotype calling consists in estimating the genotype of an individual
at one known polymorphic site [100]. With RNA-seq data, this is based on read
counts of the alleles (Figure 3.1C) and their base quality scores, by counting only
high quality bases (base accuracy ≥ 0.99) and then determining the proportions of
the two alleles [100]. A simple threshold rule can be used to infer genotypes: for
instance, both allelic proportions greater than 0.15 classifies the site as heterozygous,
and otherwise homozygous to the allele with highest proportion.

Limitations: This genotyping procedure on RNA-seq data can only work on ex-
onic variants from expressed genes. It can be affected by several kinds of errors,
such as sequencing and mapping errors [100]. Also low read depth can result in
only one chromosome sequenced from the chromosome pair and increase the num-
ber of heterozygotes wrongly classified as homozygous [100]. Therefore high coverage
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sequencing as well as focusing on highly expressed loci can reduce uncertainty. Al-
ternatively, computing genotype likelihood (as described in Chapter 4) can reduce
and quantify uncertainty, based on sequencing and mapping errors, allele or geno-
type frequencies and LD [100]. The genotype with the highest likelihood is chosen
and this value provides a measure of confidence that can be used in downstream
analyses such as association tests [100].

Allelic expression: Genotyping a SNP with RNA-seq data involves computing
allele-specific expression [95]. At heterozygous loci, the expression of both alleles is in
general thought to be the same for autosomal chromosomes, and any deviation from
that equilibrium (allelic imbalance) can be of interest, because it can for instance
mean that the two gene copies are regulated differentially. Allelic imbalance can
be measured by either the proportion of alleles, their ratio or their log ratio, and
similarly to the genotyping method, it can be affected by sequencing and mapping
errors, but also by bias towards the allele in the reference genome (reference allele)
if the mapping method was carried out without the SNP information.

3.1.2.3 RNA expression

In a similar way to allelic expression, RNA-seq data can be used to estimate ex-
pression of mRNAs and non-coding RNAs, by counting reads mapped to the gene
region (Figure 3.1B).

Principle: The read distribution across a gene shows the different exons. Using
RNA fragmentation gives a more uniform expression distribution in the coding re-
gion, but less coverage at both ends, therefore each exon expression level can be
estimated by the number of reads mapped divided by the exon length [98]. In con-
trast, using cDNA fragmentation tends to give a biased distribution towards the 3’
end, therefore the expression level is estimated by counting reads in a window near
the 3’ end [98].

Advantages: RNA-seq can clearly identify gene boundaries and exon inclusion
and junction and therefore quantify mRNA isoforms without any prior knowledge
about the existence of any particular isoform, in contrast to microarrays [95]. Also,
sequencing can discover miRNA isoforms, new miRNAs and classes of non-coding
RNAs [92]. Furthermore, mapping reads to previously unannotated regions may sug-
gest the existence of unknown genes, in contrast to exon tiling microarrays which
require annotation. Transcript expression is more precise with RNA-seq than mi-
croarrays and correlates with traditional quantification methods like quantitative
polymerase chain reaction (qPCR) [98]. Finally, RNA-seq has a lower noise, no up-
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per limit of expression level and high levels of biological and technical reproducibility
[98].

Limitations: Bias in expression levels can arise from several sources: the frag-
mentation bias which produces non-uniform read distribution over a gene and can
affect the final expression level [98], and the sequencing bias which gives to RNA
fragments a non-uniform chance to get sequenced according to their motifs [92]. Like
microarrays, RNA-seq is limited for the quantification of rare transcripts [95].

3.2 Trait-locus association strategies

The preferred strategy to identify an association between a trait with one or sev-
eral genetic causes depends on many factors, such as the expected frequencies of
the genetic variants, the probability of having the trait given the trait genotype
(penetrance). Here, I first define special types of traits that are genetic disorders,
particularly complex diseases, and their aetiology, before detailing several strategies
to identify causal variants.

3.2.1 Traits and aetiology

Traits may be any phenotypical features, but here I shall focus on genetic disorders
and their aetiology.

3.2.1.1 Genetic disorders

There are two main types of genetic disorders: Mendelian diseases and complex
diseases.

Mendelian diseases are single gene disorders that follow Mendel’s law of inheri-
tance. They are caused by one single variant and often cluster in families [74]. More
than 1500 genes involved in rare Mendelian disorders have been identified [94].

Complex diseases are disorders that do not follow Mendelian inheritance but
that can combine multiple genetic and nongenetic causes with small contributions
each [74]. This term encompasses most of the heritable diseases.
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3.2.1.2 Aetiology of complex diseases

Studying the cause of complex diseases consists in identifying the causes of complex
phenotypic disorders as well as their mechanisms to improve diagnostics and treat-
ments, but also in cataloguing their risk factors for prevention purpose [74]. Risks
factors affecting such phenotypes can be genetic and environmental, and the pheno-
typic variance depends on the genetic and environmental variances and covariance.
Estimating heritability of a complex disease consists in separating the phenotypic
variance into the genetic and environmental components. Once the two components
have been separated, candidate risk factors can be analysed to try to identify those
that can partly explain each component variance.

Genetic component , also called heritability, is the proportion of phenotypic
variance that the genetic variance can explain [74]. Estimating heritability is usu-
ally done by studying monozygotic (identical) twin pairs and comparing their phe-
notypic concordance with non-identical sibling pairs or closely related pairs. It is
because diseases with a genetic component are more likely to co-occur in a group
of related people than in a group of unrelated ones [74]. Heritability includes all
the genetic risk variants, ranging from rare to common variants with high or low
penetrance: multiple risk variants can affect the phenotype independently of each
other, or epistatically (synergistic or antagonistic epistasis) [69].

Environmental component: Studying adopted children enable the estimation of
the environmental component proportion, which includes environmental factors that
the patients have been exposed to. Their measurements are generally less accurate
than genetic factors, because they are often based on patients’ recollection [74].

3.2.2 Strategies

The different strategies to identify DNA variants that contribute to common com-
plex disease susceptibility are based on assumptions regarding allele frequencies
and disease penetrance. Two main hypotheses have emerged: the common-disease
common-variant (CDCV) hypothesis focuses on multiple common variants with low
penetrance while the common-disease rare-variant (CDRV) hypothesis focuses on
multiple rare variants with higher penetrance [102].

The CDCV hypothesis states that multiple common variants with small effects
result in susceptibility to common complex diseases [69]. Common variants are
generally defined as having a MAF greater than 5% in the studied population.
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The CDRV hypothesis states that multiple rare variants with high penetrance
result in susceptibility to common complex diseases [69]. Rare variants are generally
defined as having a MAF from 0.1% or 1% and up to 5% in the studied population.
The idea behind the CDRV hypothesis is that several individuals can have differ-
ent variants affecting the same DNA region, resulting in the same disease (allelic
heterogeneity).

The first step of genetic disorder analyses has been for a long time to identify broad
genomic regions through linkage studies, with a follow-up inside those regions by
candidate gene association studies. With the formulation of the CDCV hypothesis,
genome-wide association study has become the strategy that has mainly been used
to identify common variants associated with common complex diseases. Then, since
the CDCV hypothesis could not explain an important part of heritability, the CDRV
has been formulated and exome sequencing has now become a promising strategy
to identify multiple rare variants in common complex diseases.

3.2.2.1 Linkage analysis

Linkage analysis consists in analysing a population whose relatedness is known (such
as a family pedigree) and which contains many cases of a particular genetic disease,
to identify the DNA region responsible for that trait. It can be used for Mendelian
diseases (model-based analysis) or complex disease (allele-sharing analysis) [75], and
their family-based approach has been able to identify rare mutations with high
penetrance [103]. However, gathering genotypes and pedigrees from many affected
families takes time and is not easy [74].

Model-based linkage analysis consists in analysing recombination events within
a pedigree, to identify genetic regions that are associated with a trait or a disease
[75]. The analysis is based on a heredity model of the trait (dominant/recessive,
autosomal/sex-linked, and penetrance) and a set of genetic markers through the
whole genome [75]. Given a trait model, a pedigree with affected individuals and
their genotypes, a two-point mapping is carried out between each marker and the
disease, by computing LOD scores. The region that shows the less recombination
with the disease locus can then be further analysed in detail by a multipoint map-
ping. This mapping is based on a set of markers and a linkage map, which shows
the recombination between the markers (in terms of centimorgan (cM)). The multi-
point mapping computes LOD scores based on multiple markers simultaneously by
calculating the likelihood of the pedigree given the disease variant is lying within
an interval of the linkage map. This method requires the knowledge of the true
model of inheritance, which is possible only for simple Mendelian diseases. Also
multiple models of inheritance of one unique disease (model heterogeneity) reduce
the power of that method. Generally, for complex diseases, this method cannot be
used because it is not possible to identify the model [75].
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Allele sharing analysis is a model-free linkage analysis that can be used for
complex diseases. It consists in analysing the proportions of allele-sharing between
related individuals, such as affected sibling pairs. Allele-sharing is generally defined
as Identical By Descent (IBD), which means the alleles of two relatives are the
same and inherited from a common ancestor [104], in contrast with Identical By
State (IBS) where the alleles are the same but not necessarily inherited from the
same ancestor. At a locus the number of alleles that are IBD between an affected
sibling pair can be 0, 1 or 2. Based on many sib-pairs, it is possible to estimate the
proportions of 0 IBD allele, 1 IBD allele, and 2 IBD alleles. Those proportions can
be compared to the expected IBD proportions under the null hypothesis that there
is no linkage between the tested locus and the disease locus. A significant deviation
from the expected proportions would be a sign of linkage between the locus and the
disease locus, while not assuming any inheritance model of the disease [75]. Several
statistics can be computed to test the significance, such as the goodness of fit or the
mean number of IBD alleles, but those require known IBD status [105]. Otherwise,
IBD can be estimated by maximum likelihood methods to compute a LOD score [75].
In case of analysing a continuous trait, quantitative trait loci (QTL) analysis can
be achieved by linear regression of IBD on the trait value (or on the trait difference
between relatives). Since the inheritance models of complex diseases are unknown,
those model-free methods only have enough power to detect large regions of linkage,
and can therefore be a first step in the genetic analysis of one disease [75].

3.2.2.2 Candidate gene analysis

The candidate gene association study (CGAS) consists in analysing a candidate gene
for association with a disease. It requires choosing a gene, often one that lies within
a DNA region formerly identified by linkage studies [73]. Within the selected gene,
a set of independent markers is chosen through SNP tagging methods, so that the
markers are not in LD with each other, to avoid redundancy, which would reduce
the power of detecting association [73]. Parts of the gene like the coding region
or the promoter region can be prioritised in the selection of markers [74], because
in case of association, their effect would be easier to interpret than in non-coding
regions or introns. The selected set of SNPs is then genotyped among patients
and healthy people, and their genotypes or alleles are tested for association with a
disease. In case of a case-control study design, the frequencies of each genotype (or
allele) are compared between the case and the control groups, using for example the
χ2 test, to identify the genotypes (or alleles) that are significantly found more often
among cases [73]. It results in a set of SNPs associated with the disease. Those
SNPs can be disease-causative, partly contributing to the disease, or in LD with
causative variants, in which case they are proxies for the real causative variants [73].
Haplotypes may also be tested when assuming the trait comes from a combination
of variants [73].

The advantage of association studies over linkage studies is that they can identify
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smaller regions of association, and that they provide more power, particularly for
common variants with low-penetrance (small effects) [74]. However, they are based
on choosing a candidate gene [73], and a large sample size is needed to detect small
effect variants [74]. Furthermore, CGASs could identify many variants associated
with diseases, but most of them lack reproducibility [106], possibly because of hetero-
geneous populations (population stratification) that contain several subpopulations
which have different allele frequencies.

3.2.2.3 Genome-wide association study

A genome-wide association study (GWAS) or whole-genome association study (WGAS)
is a type of association study based on the CDCV hypothesis. The CDCV-based
strategies like GWASs have been the main focus of genetic epidemiology during
the last few years for identifying the heritability of complex diseases, by analysing
common SNPs for association with common diseases and identifying and replicating
significant associations [69].

Principles: GWAS consists in genotyping hundreds of thousands of common mark-
ers that cover most of the genome for hundreds to thousands of cases and con-
trols, which has become possible with high-throughput genotyping platforms. As
for CGAS, genotypes or alleles of each marker are tested among the case and control
groups, to identify associated markers that are correlated (in LD) with the suscep-
tibility one [74]. Because many SNPs are tested in a GWAS, the chance that they
appear significant just by chance is high. Therefore, to avoid many false-positive as-
sociations, p-values need to be corrected for multiple testing such as the Bonferroni
approach [74] and associations need to be replicated in independent studies [107].

Markers (or tagSNPs) are variants selected to capture the association signals at
particular loci. As all the SNPs cannot be tested, because they are too many, and
because they are not independent, markers are tested as proxies for all the variants
that are in LD with them. Those tagSNPs are selected to cover most of the com-
mon variants genome-wide with the optimal and smallest subset [103]. Methods to
select tagSNPs are either based on haplotype data (a SNP that identify a common
haplotype) or based on LD statistics (LD block identification); the latter one giving
better results for complex haplotype structures [73]. To know which SNP to geno-
type in a study, the tagSNP selection requires haplotype and LD data of common
SNPs that covers the whole genome. This is provided by the Hapmap database
for several different populations [79]. Other SNPs of interest can be included as
marker: synonymous and non-synonymous SNPs (nsSNPs), miRSNPs and CNVs.
For instance, Illumina’s Infinium Beadchips provide genotyping of tagSNPs, genic
nsSNP and CNVs with genome coverage at LD r2 = 0.8 [94].
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Applications: The aim of GWAS is to identify common risk variants with low
effect, for a better understanding of complex disease and also to identify risk pop-
ulations for prevention purposes. Many SNPs have been identified as associated
with traits and highly significant ones have been gathered in a catalogue which con-
tains 1260 publications and about 6400 SNPs in May 2012 [108]. Most of disease-
associations of common SNPs with low effects identified by GWASs link to non-
coding regions rather than coding ones, suggesting that an important part of the
genetic heritability of complex diseases may be related to changes in gene regulation
[85].

Advantages: GWAS is hypothesis-free in that there is no prior assumption about
which gene, variant or pathway to test, except that it has to involve common vari-
ants. Particularly it can identify new loci or pathways that were not previously
related to the disease, and improve knowledge about disease aetiologies. Another
important aspect of GWAS is that it provides high coverage of the genome with a
minimum set of SNPs (tagSNPs). Also GWAS has a high power for common alleles,
and free controls from many databases can be used [109]. Furthermore, in contrast
to linkage studies that focus on families, GWAS uses unrelated individuals, whose
recombination events are much older than in families, providing a high mapping
resolution [110].

Limitations: Once a variant has been associated with a trait through GWAS, it
is difficult to identify the actual functional variant that can explain the mechanism
behind the association signal measured within the LD block, particularly when the
associated markers lie in non-coding regions or intergenic regions [69]. Furthermore,
association results from GWAS can be difficult to replicate in independent popu-
lations because of the difference of LD patterns [69]. Also, undetected population
stratification can result in false positive associations, as the statistics remain unad-
justed. The biggest issues with GWASs are that they currently can explain only a
small fraction (less than 10%) of genetic heritability of complex traits and that the
effect sizes of associated SNPs are much smaller than expected (odd ratios typically
around 1.2) [69]. This suggests that the CDCV hypothesis has reached its limits
and that the missing heritability should be sought through alternative hypotheses,
such as rare variants, epigenetics, CNV, and gene-gene interactions [111]. Recently,
most research has been focused on multiple rare variants (MAF between 1 and 5%),
since GWASs and linkage studies have low power to detect them [69].

3.2.2.4 Exome sequencing

As we saw, GWAS focuses on common variants genome-wide and provides a lot of
intergenic and intronic association signals that are difficult to interpret. In contrast,
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exome sequencing focuses on DNA regions, containing exonic variants, that can af-
fect mRNA processing and regulation, protein translation and protein sequence and
structure, but also DNA regions containing regulatory variants [112]. By focusing
on coding regions, the exome sequencing strategy enables to analyse rarer variants
than the ones from whole-genome analyses like whole-genome sequencing or GWAS.
Furthermore exome sequencing tries to answer the missing heritability issue from
GWASs, by shifting from the CDCV to the CDRV hypothesis: allelic heterogeneity
of rare variants with moderate to large effect sizes.

Principles: Exome sequencing consists in analysing a DNA sample, by using
probes to select exonic DNA regions, and then sequencing those exonic fragments
using high-throughput sequencing methods, resulting in hundreds of millions short
DNA reads, in a similar way as RNA-seq [112]. Once the protein-coding genes have
been sequenced, variant calling and genotype calling are achieved, to identify the
genotypes of new or known coding variants. Then, since rare variant associations
are difficult to detect, those affecting the same locus can be aggregated together to
test them in a case-control setting [69]. Similar to the Hapmap database [79] which
provided to GWASs a control resource of common variants, their haplotypes and
LD data, the exome sequencing approach can use the rare variants catalogued by
the 1000 Genomes Project [113].

Advantages: By focusing on coding variants, exon sequencing makes the identi-
fication of functional variants such as nsSNPs easier, and is cheaper compared to
whole-genome sequencing [109]. It does not need multiple affected relatives like
linkage studies to identify rare disease-causing variants, but can aggregate rare vari-
ants to compare unrelated affected individuals with controls from the 1000 genomes
project. Furthermore, sequencing-based genotyping enables to compute genotyping
uncertainty and to integrate it in association tests to limit false positive associations
due to genotyping errors [100].

Limitations: Detecting rare variant association with exome sequencing is limited
to those with large effects and that lie in or near coding regions [109]. Also risk pre-
diction of rare variants is much less precise than of common variants [109]. Further-
more, not all the regions of interest are selected for deep-sequencing yet (incomplete
coverage) and it is difficult to identify CNV by exome sequencing [112]. Also, since
rarer variants are more population-specific than common ones, replication studies in
other populations may be even more difficult than for GWASs. Finally, rare variants
may require a larger sample size than GWAS depending on the effect size [107].

33



34



Chapter 4

Algorithms and software

As we saw in Chapter 3, SNPs can be genotyped through hybridisation reactions
of DNA or cDNA fragments. However during an experiment, not all the known
variants are genotyped, generally for cost reasons, and because common SNPs close
to each other are not independent, providing redundant information. Furthermore,
during an analysis, the DNA or RNA materials are not necessarily available for
experimental typing of SNPs that miss genotype information (referred as missing
genotypes). For those reasons, it is important to be able to estimate genotypes with
the available information, as we shall see in the first section.

Once genotypes are known, they can be used to analyse the effects of SNPs, such as
those affecting functional parts of mRNAs and non-coding RNAs, as described in
Chapter 1. One functional part described earlier is miRNA target site; the mRNA
region where a miRNA binds to its target mRNA. In the second section, I shall
describe the existing databases and software that analyse SNPs in miRNA target
sites.

4.1 Genotype imputation

In a study, missing genotypes of SNPs can be imputed through several ways, de-
pending on the type of data available. If reference haplotypes and study genotypes
from neighbouring SNPs are available, it is possible to estimate missing genotypes
through linkage disequilibrium, and more precisely through haplotype phasing of the
neighbouring SNPs. Also, if sequencing data are available and mapped to a SNP
that misses genotype, it can be estimated by analysing the reads mapped to the
locus.
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Figure 4.1: Basic example of genotype imputation using Clark’s algorithm. Among
four neighbouring SNPs, two of them are homozygous (0 and 2), one is heterozy-
gous (1) and one misses genotype (?). As there is only one heterozygous SNP, the
genotype sequence can be phased unambiguously into two haplotypes (0-?-1-0 and
0-?-1-1), where 0 and 1 represent alleles of each SNP. A set of reference haplotypes
can be compared to our two phased haplotypes to infer the two missing alleles. Fi-
nally, combining the two haplotypes into a diplotype gives the resulting genotype
sequence (0-2-2-1), where the missing SNP has been imputed as homozygous (2).

4.1.1 Genotype estimation from linkage disequilibrium

Genotypes of SNPs that are located within high LD regions can be estimated through
genotypes of neighbouring SNPs. However, genotype imputation depends on haplo-
type phasing: given the genotypes of some SNPs of studied individuals and reference
haplotypes from a similar population, the known genotypes must be phased to relate
them to reference haplotypes and infer missing genotypes. I shall quickly describe
here the naive phasing algorithm of Clark, the Expectation Maximization algorithm
for phasing, and more complex methods using Hidden Markov models, such as the
Impute and FastPhase tools.

Clark’s algorithm [114] can achieve simple haplotype phasing, by first identifying
multilocus genotypes that do not have more than one heterozygous site, because they
can be phased unambiguously (Figure 4.1). Those new haplotypes are added to the
set of known haplotypes, which then enables to phase other remaining multilocus
genotypes unambiguously. After several iterations, the algorithm stops when all the
haplotypes have been phased or when no more haplotypes can be resolved. Then
from the phased haplotypes, missing genotypes can be inferred thanks to reference
haplotypes that include the missing SNPs. Problems with this phasing method is
that it may leave unresolved diplotypes, the results depend on processing order, and
the method is limited to a small amount of SNPs.

Likelihood-based Expectation Maximization algorithm [115] computes through
the expectation step the diplotype probabilities of an individual given the studied
genotypes and haplotype frequencies assuming HWE. During the maximisation step,
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it updates the haplotype probabilities based on the diplotype probabilities from the
expectation step of all individuals. Those two steps iterate until convergence and
missing genotypes are inferred as for Clark’s algorithm. This algorithm is more ro-
bust than Clark’s algorithm, but is still limited in the amount of SNPs and assumes
HWE.

IMPUTE tool [116] is a more computationally intensive tool, as it uses hidden
Markov models (HMM). For a given individual, the model is based on an observed
sequence (sequence of genotypes) and a set of hidden states (known haplotype pairs,
for example from Hapmap). For N haplotypes, there are N2 ordered pairs, which
are all the possible states. Therefore, the sequence of hidden states represents the
phased diplotype. In the model, the initial state probability is uniform

(
1
N2

)
, and

the transition probabilities between states (probabilities of changing from a refer-
ence haplotype pair to another between two loci) depends on the genetic distance
between the current SNP and the previous one: a small genetic distance gives a high
probability that it is the same state, whereas a large one gives a low probability.
Furthermore, the output probabilities of the model are the probabilities of observ-
ing the genotype given the current state (the current haplotype pair) and include
mutation rate. Finally, the probability distribution of the genotype at a locus is
estimated by the forward-backward algorithm.

An improved version of IMPUTE [117] divides the SNPs into two groups: those
that are typed (T) in both the reference haplotype data and in the study genotype
data, and those that are only typed (U) in the reference haplotype data. Then it
estimates the phase of haplotypes consisting of SNPs from the T group in the study
population based on all data except data from the individual being phased, by using
the previous HMM model of diploid states. After phasing, it uses an HMM model
of haplotype states to impute alleles at SNPs from the U group, to then estimate
genotypes. Separating the phasing from the imputation enables to reduce processing
time, as the diplotype-based phasing is quadratic on a reduced number of haplotypes
(in T) and the haplotype-based imputation is linear on the number of all haplotypes,
while the first version is quadratic on the number of all haplotypes.

FastPhase [118] uses a reduced amount of states compared to IMPUTE, by clus-
tering similar haplotypes to improve computational efficiency. The clustering is
based on different parameters that are estimated, as well as the recombination rate
between each marker pair, by the Expectation Maximization (EM) algorithm (max-
imum likelihood estimates that give the known genotypes). Since the likelihood
surface can have local maximums depending on the initialisation, parameters are
estimated several times with several starting points. Again, for a given SNP, the
genotype distribution is computed based on an HMM model for each set of param-
eters using the forward backward algorithm. For each possible genotype the mean
probability of several sets of parameters (several starting points in the EM) gives
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the estimate of the genotype probability, whose maximum estimates the genotype.
This method has a reduced amount of states, which makes it more efficient, but it
requires parameter estimations.

4.1.2 Genotype estimation from sequencing data

In low LD regions or for rarer variants, LD imputation is more difficult. However,
as briefly seen, in Chapter 3, genotypes can be estimated from sequencing data.
Different methods such as threshold and probabilistic methods are based on counts
of reads of each allele.

Threshold-based genotyping uses a threshold on allelic proportion to distin-
guish between the genotypes of a biallelic SNP: heterozygous when both allelic pro-
portions are greater than the threshold, otherwise homozygous for the allele with
higher proportion. An empirical study suggests that the threshold should belong to
the interval [0.12; 0.22] depending on the coverage depth [119]. The threshold ap-
proach is a simple method that enables to genotype biallelic SNPs from sequencing
data. However, it does not provide any uncertainty of genotype estimates, which
could be used for downstream analyses like association testing.

Binomial distribution can be used to compute the likelihood of each genotype
given the observed allelic counts. For a biallelic A/B SNP, sequenced with a base-call
error p, the number X of B alleles among N reads follows a binomial distribution:
B(N, p) for AA homozygous, B(N, 1

2
) for AB heterozygous and B(N, 1 − p) for

BB homozygous. Assuming equal prior probabilities of genotype, as they may be
unknown, the genotype estimate is the one with the highest likelihood:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (X|G = BB,N, p) =
(
N
X

)
(1− p)XpN−X

P (X|G = AB,N, p) =
(
N
X

) (
1
2

)N

P (X|G = AA,N, p) =
(
N
X

)
pX(1− p)N−X

The probabilistic approach gives better estimates than the threshold one. However,
since genotypes cannot have the same prior probability under HWE, it can result in
overestimation of rarer genotypes.

Bayes’ theorem can be used to classify genotypes as previously, but with prior
probabilities of genotypes (the pBB, pAB, pAA frequencies). The highest joint prob-
ability of allele counts and genotypes determines the genotype estimate:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (X ∧ (G = BB)|N, p) = pBB

(
N
X

)
(1− p)XpN−X

P (X ∧ (G = AB)|N, p) = pAB

(
N
X

) (
1
2

)N

P (X ∧ (G = AA)|N, p) = pAA

(
N
X

)
pX(1− p)N−X
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Including prior knowledge of genotype frequency gives a higher accuracy [100], but
this information is not necessarily known.

Parameter estimation may be needed in case of unknown base-call error prob-
ability and unknown genotype frequencies. Those parameters can be estimated by
maximising their likelihood with the EM algorithm, as implemented in the SeqEM
tool [120]. Alternatively the base error can be estimated by the quality scores from
the sequencing and mapping processes.

4.2 Prediction of SNP effects in miRNA target

sites

Once genotypes are known or imputed, it may be interesting to predict their effects,
if they lie in regulatory regions such as miRNA target sites. The identification
of SNPs that affect miRNA target sites is mostly based on the identification of
functional miRNA target sites. Lists of validated miRNA target sites (such as the
TarBase database [121]) are available, but few of them overlap with SNPs. Therefore,
most of the methods that try to identify SNPs in miRNA target sites are based on
target site prediction tools, such as TargetScan [122] or miRanda [123]. Details on
the many different target prediction tools and the features they are based on are
described elsewhere [124]. The main features generally used for target predictions
are perfect matching at the seed region, the site accessibility for miRNAs, and site
conservation between species. Several databases have tried to gather miRSNPs and
their effect on gene expression.

PolymiRTS database [125] provides 3’UTR SNPs that create or disrupt seed re-
gions of predicted miRNA target sites from TargetScan [122]. The association of
those SNPs with host gene expression, also known as cis-acting expression quanti-
tative trait locus (eQTL), have been computed in mice and humans and the high
score SNPs were mapped to QTL of physiological and behavioural traits in mice,
to try to identify the miRSNPs that could be responsible for the traits. However,
this approach does not take expression levels of miRNA into accounts. Further-
more, phenotypes studied are only mice physiological and behavioural traits and
the database lacks analyses of human traits, and particularly human diseases. This
issue has been considered in the new version PolymiRTS 2.0 [126], where human
SNPs from the GWAS catalogue [108] have been mapped to their nearby gene, if
containing miRNA SNPs. However, this approach does not take LD into account to
assume a link between the GWAS SNPs and the miRNA SNP. Furthermore, SNPs
affecting experimentally validated miRNA target sites, or that lie in miRNA seed
sequence have been added.
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Patrocles database [88] provides SNPs affecting regulatory regions identified by
Xie et al. [127] and sites from TargetScan predictions [122]. As for PolymiRTS,
they computed mRNA eQTL from microarray data, but also included miRNA ex-
pression from sequencing in order to provide coexpression between mRNA targets
and miRNAs. Furthermore, SNPs in miRNA genes and miRNA machinery were
also provided. However, those miRSNPs have not been analysed for phenotype
association except on SNP in sheep.

MicroSNiPer [128] is a web-tool that can identify miRSNPs on the fly, given a
sequence or a gene. It can consider haplotypes of maximum six SNPs and one gene
at a time. However, it is based on sequence search only; i.e. it looks for sequences
complementary to miRNA seed region, resulting in probably many false positive
target sites. Furthermore, it does not quantify SNP effect, and its flexible approach
does not enable eQTL analysis.

The above databases can provide many SNPs and miRNAs for one gene search
and may require additional filtering before testing candidate miRSNPs. Expression
QTL and miRNA expression can be a way of filtering, but those expression data are
not necessarily available for a tissue of interest. Filtering can also be done through
LD mapping of significant SNPs from GWAS. In any case, without prior knowledge
of gene expression- or phenotype-associated variants, filtering can be done after
quantifying SNP effects on miRNA regulation. None of those database provides this
type of quantification. However, Nicoloso et al. [129] also predicted miRNA target
sites for each allele of 3’UTR SNPs with the miRanda target prediction tool, and
calculated minimum free energy (MFE) for each allele. They used the difference
of MFE to quantify SNP effects, which can be used for example for rank filtering,
and tested experimentally the effects of miRSNPs that overlap known breast cancer
associated SNPs and genes. However, this approach may miss many interesting
results as it does not take linkage disequilibrium (LD) into account to map miRSNPs
to phenotype-associated SNPs. In general, miRSNP databases do not provide SNP
effect quantification and LD mapping to GWASs, as a way to analyse GWAS results.
But this will be covered in Chapter 5.
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Chapter 5

Project

The project is meant to follow up on the results generated by GWASs, to try to
identify SNPs that are the cause or susceptibility for diseases, by affecting gene
regulation. I shall describe its aim more in detail, the three publications it resulted
in, and the potential directions it can evolve into in the near future.

5.1 Aim of the study

The increased use of GWASs has identified many disease-associated variants that
are generally in linkage disequilibrium with the susceptibility variants. Associated
variants were generally found outside coding regions, suggesting that they may af-
fect gene regulation rather than protein structures. The aim of this project was
to study DNA variants affecting gene regulation, particularly those lying within
regions associated with genetic disorders from GWASs, to try to understand unex-
plained association signals. The study focused on SNPs affecting gene regulation
by microRNAs (miRNAs) through two types of mechanisms. First, SNPs disrupt-
ing or creating miRNA target sites may affect the stability of the target mRNAs
and change gene expression. Second, SNPs in polyadenylation signals may shorten
3’ end of mRNAs, possibly removing miRNA target sites and making the mRNAs
more stable and therefore upregulated.

5.2 Summary of results

Paper I: Inferring causative variants in microRNA target sites [130]. This
paper describes a method to identify SNPs that may affect mRNA regulation by
miRNAs. Based on miRNA target prediction tools, the paper identifies and anal-
yses SNPs lying in mRNA regions complementary to miRNA seeds (miRSNPs),
to try to quantify their effects on mRNA expression levels. Predicted effects were
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compared to mRNA allele-specific expressions from sequencing, and the two values
correlated well when using the SVM target prediction tool, while predicted effects
based on TargetScan scores or minimum free energy gave lower or no correlations.
Furthermore, the paper describes a way to map interesting miRSNPs to disease-
associated SNPs from GWASs, and shows examples of analyses on several published
GWAS data. Specifically, the paper shows that SNPs in miRNA target sites that
are in linkage disequilibrium with top-ranking SNPs from GWASs have a higher pre-
dicted effect, suggesting that those miRSNPs may explain some of the association
signals from GWASs. Finally, the paper provides a database of miRSNPs and their
predicted effects on mRNA expression levels.

Paper II: A Risk Variant in an miR-125b Binding Site in BMPR1B Is
Associated with Breast Cancer Pathogenesis [131]. This paper is a practical
use of the mapping method described in paper I. The study was based on genes dys-
regulated in estrogen receptor-stratified breast tumours, particularly the genes that
contains SNPs affecting predicted miRNA target sites. Those miRSNPs were then
mapped to top-ranking SNPs from a breast cancer GWAS study, using the method
from paper I. One miRSNP (rs1434536) affecting the miR-125b miRNA regulation
of the Bone Morphogenetic Receptor type 1B (BMPR1b) gene has been identi-
fied as being in strong linkage disequilibrium (LD) with two SNPs (rs1970801 and
rs11097457) from the 100 top-ranking markers in the GWAS. The disease-association
of that miRSNP was independently validated and it was shown that the two alleles
of the miRSNP differently regulate the expression level of BMPR1b, suggesting that
the miRSNP could be responsible for the disease-increased risk. Furthermore, after
our study, this miRSNP has been associated with prostate cancer in Chinese men
[132]. This association in another population and disease strengthens confidence
about the causative role of this variant.

Paper III: Single Nucleotide Polymorphisms Can Create Alternative
Polyadenylation Signals and Affect Gene Expression through Loss of
MicroRNA-Regulation [133]. This manuscript presents how SNPs may upregu-
late mRNA expression levels by triggering alternative polyadenylation (APA), which
results in shortening of 3’ UTRs and loss of miRNA target sites. It is known that so-
matic mutations may trigger this mechanism and result in diseases. This manuscript
shows that SNPs can also result in increased disease risk through that mechanism.
The identification of candidate SNPs in APA elements such as polyA signals enabled
us to show with EST and RNA-seq that such SNPs can shorten 3’UTRs, and with
RNA-seq and microarray data that they can upregulate mRNA expression, par-
ticularly mRNAs losing miRNA target sites through alternative polyadenylation.
Finally, through linkage disequilibrium, alleles giving APA were associated with risk
alleles from GWASs.
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5.3 Future perspectives

Those three publications focused on SNPs that affect microRNA-based regulation,
through two different mechanisms: SNPs creating or disrupting miRNA target sites
and SNPs creating alternative polyadenylation signal, which shortens the UTR and
suppresses miRNA target sites downstream.

It would be interesting to analyse SNPs disrupting polyadenylation sites, making 3’
UTRs longer and destabilising mRNAs by miRNA targeting, which would results in
decreased gene expression. RNA-seq will provide precious data to try to estimate 3’
end of longer transcripts. However, longer transcripts may be challenging to validate
in vitro.

Also, integrating miRSNPs, APA-SNPs and alternative polyadenylation through a
haplotype-based analysis that involves miRNA target prediction and quantification
of haplotype effects on gene expression could be a way to follow up on article I and
III. Furthermore, data from the 1000 genomes project will be very helpful for looking
at rarer SNPs.

Finally, other regulatory elements than miRNA target sites can be affected by SNPs.
Particularly, regulatory regions involved in mRNA transcription such as transcrip-
tion factor binding sites may be strongly affected by SNPs. Analyses of these SNPs
will be mostly based on emerging sequencing methods such as ChIP-seq, that pro-
vides better transcription factor binding site predictions than the previously used
position weight matrix algorithms.
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ABSTRACT

MicroRNAs (miRNAs) regulate genes post tran-
scription by pairing with messenger RNA (mRNA).
Variants such as single nucleotide polymorphisms
(SNPs) in miRNA regulatory regions might result in
altered protein levels and disease. Genome-wide
association studies (GWAS) aim at identifying
genomic regions that contain variants associated
with disease, but lack tools for finding causative
variants. We present a computational tool that can
help identifying SNPs associated with diseases, by
focusing on SNPs affecting miRNA-regulation of
genes. The tool predicts the effects of SNPs in
miRNA target sites and uses linkage disequilibrium
to map these miRNA-related variants to SNPs of
interest in GWAS. We compared our predicted SNP
effects in miRNA target sites with measured SNP
effects from allelic imbalance sequencing. Our pre-
dictions fit measured effects better than effects
based on differences in free energy or differences
of TargetScan context scores. We also used our
tool to analyse data from published breast cancer
and Parkinson’s disease GWAS and significant
trait-associated SNPs from the NHGRI GWAS
Catalog. A database of predicted SNP effects
is available at http://www.bigr.medisin.ntnu.no/
mirsnpscore/. The database is based on haplotype
data from the CEU HapMap population and miRNAs
from miRBase 16.0.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding single
stranded RNAs of about 22 nucleotides length that
regulate genes post transcription by partially pairing
with 30-untranslated regions (30-UTR) of messenger

RNA (mRNA) (1). Watson–Crick pairing to nucleotides
2–7 of the 50-end of microRNAs (seed sites) is known to
be important in mRNA targeting. Specifically, miRNAs
require almost perfect complementarity at seed sites for
binding and reducing the protein levels of targets (2).
However, mRNA sites with perfect complementarity to
the seed nucleotides are not necessarily functional (3)
and those with imperfect seed complementarity can also
be functional (2). Consequently, considering seed sites
alone gives many false positive miRNA target sites.
Predictions can be improved, however, by using informa-
tion about the target sites’ context, such as their position
within the 30-UTR (4) and the distance to neighbouring
sites (5), as such context is critical for target site function-
ality and efficacy.
Genome-wide association studies (GWAS) can identify

genomic regions that contain genomic alterations, such as
single nucleotide polymorphisms (SNPs), associated with
common disease (6). The biological effects of identified
alterations are usually not known, however, as few of
the functional variants that show association in GWAS
change the amino acid sequence. Moreover, a sizeable
proportion is thought to reside in regulatory regions,
since several associated regions found in GWAS lack
known genes (7). Variants in regulatory regions can, for
example, result in altered protein levels, so identifying and
understanding their effects can improve diagnostics and
treatments for diseases (8). Specifically, SNPs in regula-
tory elements such as miRNA target sites can affect
phenotype (9) and have been associated with increased
cancer risk (10) and other diseases (11). The increased
use of GWAS to study genetic factors in common
disease necessitates a tool that can identify and interpret
effects of regulatory variants.
Several research groups have tried to look at regulatory

variant effects. Bao et al. (12) looked for SNPs in putative
conserved miRNA target sites [from the target site predic-
tion tool TargetScan (13)], and integrated such SNP sites
with phenotype (physiological and behavioural traits
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of mice as quantitative trait loci) and expression data
(of mice and human transcripts) into a database.
However, the studied phenotypes only concern physiology
of mice instead of human diseases. Georges et al. (14) also
made a database with SNPs in putative miRNA target
sites [regulatory motifs identified in (15) and predicted
sites from (13)], but Georges et al. (14) did not map
their site SNPs to phenotypes, except for one SNP in
sheep. Barenboim et al. (16) developed an online tool
that finds SNPs in microRNA target sites on the fly.
The tool takes haplotype into account, but is limited to
one single gene and six SNPs per run and does not
quantify SNP effects. Nicoloso et al. (17) used the
miRanda tool (18) to identify breast cancer-associated
SNPs that disrupt miRNA target sites. The authors
filtered SNPs based on minimum free energy (MFE) and
tested the remaining ones in a case-control study.
A basic way of detecting SNPs in microRNA target

sites (mirSNPs) in a gene g, starts by looking at SNPs
lying in a region of interest, such as 30-UTR, 50-UTR,
coding or promoter region (Figure 1). Here, we will use
the 30-UTR as an example, since SNPs affecting miRNA
target sites are more likely to reside in the 30-UTR (19,20).
Let us consider a SNP s in this region of interest. The SNP
s has several alleles, usually two, that we want to evaluate

for targeting by a microRNA seed motif m. Specifically,
for each allele ai, we determine whether there is a
microRNA target site in a sequence alsi consisting of the
allele ai and its flanking sequences. Target sites are
detected by using any miRNA target site prediction tool
based on sequence search. It is convenient to disregard
target sites with mismatches in the seed region and only
consider 6-mer, 7-mer and 8-mer seed sites. For each
allelic sequence alsi, we get a list li of target sites for
microRNA m. We can then compare these lists to deter-
mine if a target site is created, deleted, or changed between
the alleles (Figure 1).

All existing tools use variants of the approach above
of evaluating candidate sites individually (Figure 1), but
this approach ignores that 30-UTRs can contain multiple
linked SNPs that can affect miRNA targeting by altering
site context. Instead, we propose to analyse all the SNPs
of the 30-UTR at the same time, to have a general overview
of the SNPs’ regulatory effect on the considered mRNA.

In this article, we present a computational tool that
can help identifying SNPs causative to diseases, such as
cancer. The tool focuses on SNPs that may affect miRNA
targeting and thereby cause gene dysregulation. More pre-
cisely, the tool predicts the effects of SNPs in miRNA
target sites and uses linkage disequilibrium to map those
mirSNPs to SNPs of interest in GWAS. We show that the
tool’s predictions correspond well to the SNP’s measured
effects on miRNA regulation, and that the predictions
correlate better to those effects than do the predictions
of other existing tools. We further demonstrate the
tool’s utility by analysing two published GWAS data
sets and specific SNPs reported to affect miRNA
targeting.

MATERIALS AND METHODS

The following sections will present a method that uses
context-based miRNA target prediction to quantify the
effects of SNPs in miRNA target sites (mirSNPs) and
uses linkage disequilibrium to map candidate mirSNPs
to disease data from GWAS. The tool allows additional
filtering of candidate genes and candidate miRNAs.
The tool’s mapping method is general and can therefore
be applied to SNPs independent of the scoring method
used.

Data

We used the SNP data from the human haplotype map
project [HapMap, (21)]; particularly, SNP data from the
CEU population (CEPH - Utah residents with ancestry
from northern and western Europe), release 22 for haplo-
type data, and release 27 for linkage disequilibrium data.
We used DNA sequences from the human and mouse
genome assemblies hg18 and mm9 (22,23). SNPs and
Gene annotations (hg18,mm9) came from UCSC
Genome browser (24). MicroRNA sequences came from
miRBase, release 13.0 and 16.0 (25). GWAS data were
from a breast cancer study from Cancer Genetic
Markers of Susceptibility (CGEMS) (26), from a
Parkinson disease study (P-values from tier 1) (27), and
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Figure 1. Identifying SNPs in miRNA target sites. The illustration
shows an mRNA region that contains SNPs represented by small
vertical lines. The considered SNP has two alleles: A and G. We
make one subsequence for each allele by using the flanking regions
of the SNP (7 nucleotides on each side). Given miRNA seed motifs
(nucleotides 2–8 from the 50-end of miRNA sequences), we look for
target sites in each allele sequence and then compare results to charac-
terise the effect of the SNP (create/delete (CRT/DEL) target sites, or
change (CHG) site type).
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from the NHGRI GWAS catalog (28) (http://www
.genome.gov/gwastudies).

MicroRNA regulation score of haplotypes

To analyse all the SNPs of the 30-UTR at the same time,
we use population haplotype data for the 30-UTR
(Figure 2 and Supplementary Figure S1). Specifically, we
first use haplotype data to build haplotype sequences hsi;
i.e. 30-UTR sequences containing the combinations of
alleles found in the considered population. Second, for a
given miRNA m, we use a miRNA target prediction tool
(29) to score each haplotype sequence hsi. The prediction
tool uses a two-step SVM classifier, where one SVM step
classifies individual target sites and a subsequent SVM
step classifies overall mRNA targeting potential.
Features the SVM uses at the first step include seed

pairing, 30 supplementary pairing, the site’s AU context
and relative position in the 30-UTR, and distance to neigh-
bouring sites, whereas features at the second step include
30-UTR length, the number and predicted strength of
target sites, and the number of optimally spaced sites in
the 30-UTR (29). As output, the SVM-based prediction
tool gives a score such that a high output score indicates
that the miRNA m is likely to down-regulate this mRNA.
Third, we compare the score-haplotype pairs to find the
differences of haplotypes that can explain any differences
of SVM scores. From the differences of haplotypes, we
can make a list of candidate SNPs and predict their
impact on gene regulation.
The haplotype score comparison works as follows. First

we group haplotypes Hi by scores, since we are interested
in score differences:

Gs ¼ fHi 2 H jScoreðHiÞ ¼ sg:
Second, we look at the difference of haplotypes between
groups, to identify which SNPs differ between two score
groups: 8(Gm, Gn), m 6¼ n, 8Hi2Gm, 8Hj2Gn,

�Haploij ¼ fsnpjHiðsnpÞ 6¼ HjðsnpÞg:
Third, we cluster the �Haplo SNP sets, to handle par-
ticular cases such as two SNPs in one target site
(Supplementary Figure S2). Specifically, we cluster
�Haplo sets such that in each cluster, the intersection of
all the �Haploij of the cluster is not empty:

Clustk ¼
�
�Haploijj

\
�Haploij 6¼ ;�:

Fourth, we take the intersection of the �Haplo SNP sets
in each cluster, to identify which SNP is responsible for
the score difference in each cluster:

Intersk ¼
\

Clustk ¼
\

�Haploij 2Clustk

�Haploij:

Finally, we merge all the clusters to create a list of SNPs
responsible for the score difference for the clusters:

Candidatemn ¼
[
k

Intersk:

Candidatemn are candidate SNPs that might explain the
difference between the scores m and n.

Normalization of target site scores

The miRNA target site prediction tool (29) predicts both
the targeting potential of individual candidate sites and
the total regulatory potential of candidate 30-UTRs; i.e.
if a gene’s 30-UTR sequence contains one or more candi-
date miRNA target sites, the tool scores the miRNA’s
regulatory effect on the target gene. However, the tool
does not score mRNAs without target site candidates.
Consequently, to score and compare scores for sequences
with and without candidate sites, we needed to create a
normalized score. The desired distribution should be
mainly uniform, because the difference between two trans-
formed scores should reflect a difference in percentiles in
the original distribution. Since we only get scores for
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Figure 2. Scoring SNPs in miRNA target sites. rs3019 and rs2281627
are SNPs in the 30-UTR of TRIM32. There are 3 different haplotypes
in the CEU population: UC/UU/CU. TRIM32 is targeted by miR-511,
but the U allele of rs2281627 disrupts one seed site, which results in a
lower score S2 for the UU/CU haplotypes. To identify rs2281627 as the
effect SNP, first the 3 haplotypes H1, H2 and H3 are grouped by scores
into G1 and G2. Second, we identify the differences between haplotypes
from groups G1 and G2; i.e. differences between H1 and H2 and
between H1 and H3. Third, we cluster those haplotype differences, so
that the intersection within the cluster is not empty; here, there is only
one cluster. Finally, we take the intersection of haplotype differences
within this cluster, which gives the SNP rs2281627. Similarly, rs6114999
and rs6132784 lie in the 30-UTR of ACSS1. There are 3 haplotypes:
GC/GU/AU. Both SNPs lie outside of any seed sites of miR-452, but
rs6132784 lies in a 30-supplementary site and has a small effect on the
scores.
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sequences with target sites, we had to find a way to score
sequences that do not have target sites and to com-
pare sequences with and without target sites. Our
solution consisted of normalizing the scores in the
interval [0, 1]. As there are more sequences without
target sites than with target sites, we normalized scores
so that the codomain of the normalization has an expo-
nential distribution in [0, 0.01] and a uniform distribution
in [0.01, 1], according to the following probability density
function:

dfðyÞ ¼ �e���y y 2 ½0; ��
PUnif

1�� y 2 ½�; 1�:
�

Here, t is the threshold that separates the two distribu-
tions in the codomain. To jointly score sequences with and
without target sites, we considered sequences with only
one target site as an intermediate. Since we needed to
put the worst target site scores in the exponential part,
we used the score distribution of mRNAs that have only
one target site, which is a 6-mer. Specifically, we used
the fifth percentile of the 6-mer distribution to define
the threshold T: P(X6m<T )=0.05. This threshold then
separated the exponential distribution from the uniform
distribution in the domain of the normalization
morphism. As a result, the exponential part contained
scores for sequences that have no target site (TS)
(including those with mismatch target sites) or canonical
target sites with a score lower than T. The proportion of
scores that will be in the uniform part is PUnif=
P[X�T]PTS, where PTS is the probability of having a
target site and P[X�T ] is the proportion of scores
greater than T. The proportion of scores in the expo-
nential part is PExp=1�PUnif. The parameter
� ¼ � 1

�� logð1� �PExpÞ makes the cumulative distribu-
tion of the exponential part fit PExp. The parameter
� 2 �0; 1

PExp

�
makes the two distributions continuous in t

and minimizes

fð�Þ ¼ � 1� �PExp

��
logð1� �PExpÞ � PUnif

1� �

� �2

:

We chose t=0.01 as a trade-off between t being so small
that all the scores from the exponential part had the same
tendency, and being so large that we could find the a that
minimized f(a).

Mapping candidate SNPs to disease

We can map candidate mirSNPs to disease by filtering on
genes that are dysregulated in a given disease, filtering
on miRNAs that are dysregulated in a given disease,
and filtering on disease-associated SNPs from the same
genomic region as the candidate. As filtering on genes or
miRNAs simply involves focusing on subsets of the UTRs
or miRNAs, we detail the filtering on disease-associated
SNPs.
Association studies can show association of marker

SNPs with a disease, but not necessarily association of a
causal SNP with the disease. Consequently, if we want to
know whether a candidate mirSNP may be causal, we first
have to map it to associated marker SNPs.

Mapping candidate SNPs to association studies consists
in looking for GWAS top ranking SNPs that have been
inherited together with our candidate SNPs; i.e. looking
for candidate SNPs that have alleles that correlate with
alleles of associated marker SNPs. This can be achieved by
computing inheritance blocks.

Inheritance blocks are DNA regions with highly
correlated alleles. Consequently, by knowing the alleles
of one SNP of the block one can predict the alleles at
another SNP of the block. This measure of inheritance
is called linkage disequilibrium (LD). Given a candidate
SNP, we can compute its inheritance block, according to
HapMap data. The block is an area of strong linkage
disequilibrium and shows SNPs that have high correlation
between themselves and with the candidate SNP.

We can define a block as a set of successive SNPs:

Block ¼ fsl; : : ; srg;
where sl and sr are the left and right bound SNPs of the
block.

A block spine is a set of LD values:

Spine ¼ fD0
ljg [ fD0

irg;
such that l< j� r and l< i< r and where D0

xy is the linkage
disequilibrium between the SNPs sx and sy. In short, the
spine consists of the borders of the block (the two borders
of the triangle block).

A solid spine is a spine where a relative amount a of
the spine’s LD values is below a threshold T. For example,
we can use a=10% and T=0.8, to detect blocks with
strong LD.

The block detection method (Figure 3) is called
Solid Spine by Expansion and is an adaptation of the
Solid Spine algorithm developed within the Haploview
software (30). This expansion algorithm uses a candidate
SNP as input. It starts the expansion from this SNP and
then tries to expand the block successively in the down-
stream and upstream directions. An expansion occurs if
the spine of the expanded block fits a rule depending on a
and T. This algorithm needs an area of high LD to
expand, which ensures that the algorithm returns few
false positive blocks. The expansion can start on the left
side as well as on the right side and the two directions can
give different results. As we are interested in finding all
SNPs that reside in blocks that have high LD with of the
input SNP, we consider both resulting blocks.

Given a block of SNPs identified by the Solid Spine by
Expansion algorithm above, we then extract GWAS top
ranking SNPs from the block, to identify if the candidate
SNP is correlated with any associated SNPs. We consider
a SNP to be top-ranking when its rank is less than a given
threshold.

We define three scores to assess the level of LD of the
block defined by the candidate SNP and a top ranking
SNP. The spine score is the mean of all LD values of
the spine between the SNPs sx and sy:

Scspine ¼ 1

2ðy� xÞ � 1

Xy
j¼xþ 1

D0
xj þ

Xy�1

i¼xþ1

D0
iy

 !
:
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The triangle score is the mean of all LD values of the inner
triangle between the SNPs sx and sy:

Sctriangle ¼ 2

ðy� xÞðy� xþ 1Þ
Xy�2

i¼xþ1

Xy�1

j¼iþ1

D0
ij

 !
:

A block score is the sum of the spine score and the
triangle score:

Scblock ¼ Scspine þ Sctriangle:

RESULTS

We first use data from allelic imbalance sequencing (31) to
test our SNP scoring method and to compare our method
with existing ones. Then we use two different GWAS data
sets to evaluate the mapping method. Finally, we show
that the method can find known altered miRNA targets
associated with disease.

Scoring method predicts effects of mirSNPs

Kim and Bartel (31) used allelic imbalance sequencing
to measure for three miRNAs, in vivo miRNA-directed
repression at polymorphic target sites in mice. They
provide allelic ratios (target versus non-target allele)

AR ¼ jtarget allelej
jnon target allelej for 65 SNPs in 30-UTRs that create

or disrupt miRNA target sites in tissues expressing
(ARE) and not expressing (ARNE) the considered
miRNA. We used 47 of these SNPs (those that have
both allelic ratios ARE and ARNE) to test our method.
For each of these 47 SNPs, we computed miRNA regula-
tion scores for the target allele ST and non-target allele
SNT. We compared the difference of our scores between
the two alleles �S=ST�SNT with the difference of loga-
rithms of allelic ratios �AR=log2(ARNE)� log2(ARE)
(Figure 4) and found a clear and significant correlation
(Pearson’s correlation P-value 0.0025, Spearman’s rank
correlation P-value 0.00019).

In comparison, using MFE given by RNAhybrid 2.1
(32) to predict SNP effects gave insignificant correlations,
whereas using TargetScan 5.0 context scores (13) (com-
puted without taking conservation into account) gave

significant but lower correlation (Table 1). Furthermore,
our normalization method could improve the correlation
based on TargetScan scores.
This result suggests that our scoring method for SNP

effects fits data from allelic imbalance sequencing better
than TargetScan context scores (13) or changes in MFE
[for example, used in (17)]. Our method therefore appears
to be the best choice for predicting effects of SNPs in
microRNA target sites.

ANALYSIS OF GWAS DATA

To generate a list of candidate SNPs involved in
miRNA-based regulation, we computed differences of
scores for all 30-UTR haplotypes for all coding genes
(UCSC RefSeq Genes hg18) and all miRNAs (from
miRBase 13.0). Specifically, we analysed mRNAs that
had more than 1 haplotype in their 30-UTR (12 808 of
the 26 963 coding transcripts) according to the CEU popu-
lation from HapMap. Of the 12 808*698=89 39 984
mRNA/miRNA pairs, 396 851 had at least one haplotype
score that differed from the other haplotype scores of the
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Figure 4. Predicted SNP effects correspond with observed effects.
Correlation between the measured allelic ratio �AR and (A) the differ-
ence of our predicted allelic scores �S (with transformation), (B) MFE
differences, and (C) TargetScan score differences (without transform-
ation, but where the minimum TargetScan value represents the score
for sequences without predicted target sites). See Table 1 for correl-
ations and P-values.
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Figure 3. Example of a linkage disequilibrium block. Given an input
SNP, we compute its linkage disequilibrium block (delimited by dark
lines), and then look for top ranking SNPs in the block (here a SNP
ranking as 351).
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same mRNA/miRNA pair. As explained in the methods,
the haplotype score distribution has an exponential and a
uniform part. Consequently, differences of scores also
have a distribution with an exponential part, describing
small differences in miRNA targeting. We used a thresh-
old of 0.15 to filter out the exponential part. Of the
396 851 mRNA/miRNA pairs (which correspond to
401 983 �S values, as several mRNAs had several haplo-
type score differences), 55 707 pairs (60 751 �S values)
had at least one �S> 0.15. We selected the SNPs that
generated a difference in score �S> 0.15 as candidate
SNPs (18 325 SNPs).
To further analyse the candidate mirSNPs, we mapped

the mirSNPs to the breast cancer GWAS from CGEMS,
as described in the methods. One would usually choose a
high T threshold as parameter for the mapping method to
identify blocks with high LD. We chose T=0, however,
to have data with low LD to analyse the block score vari-
ation in relation to the SNP and GWAS scores, as the
block scores quantify the link between the candidate
mirSNPs and the GWAS SNPs. We computed block
scores for each pair of candidate SNP and top ranking
SNP detected by the mapping method.
Top-ranking SNPs are likely in strong LD with their

causative SNP. Consequently, we would expect that if
mirSNPs are a significant factor behind the top-ranking
CGEMS SNPs, high �S scores would be enriched among
the highest scoring blocks. Since a candidate SNP can
have several corresponding �S due to several miRNAs
and transcripts, we assigned to each SNP its maximum
�S value: �SM. To test whether an increase in block
score threshold between top-ranking SNPs and candidate
SNPs causes any shift in the �SM distribution, we
computed the probability density of �SM for different
subsets of SNPs. These subsets were defined by a block
score greater than a threshold, starting from all block
scores and gradually reducing to only the best ones.
Figure 5 shows for SNPs mapped to the 2112 top-

ranking CGEMS SNPs, the distributions of �SM (from
0.15 to 1) for several subsets of SNPs based on different
block score thresholds. The distributions show a shift
of the main peak at �S=0.33 to �S=0.53 as the
block score threshold increases. This shift is consistent
with mirSNPs being significant causative factors behind
the top-ranking CGEMS SNPs.

We would also expect that the shift will be less
pronounced if we consider more candidate SNPs (by
using a higher rank threshold on GWAS SNPs), as these
SNPs will likely have a higher proportion of false posi-
tives. We therefore looked at different top-ranking thresh-
olds to check that as the top-ranking threshold increases,
the shift occurs later and later in terms of block score
threshold. Figure 6A–D show 3D plots for top-ranking
thresholds 528, 1056, 2112, and 4224. As in Figure 5,
the plots show a shift of the main peak at �S=0.33 to
�S=0.53 as the block score threshold increases.

The lower part of the plots shows all �SM for all
block scores—the background distribution of �SM

scores without taking LD into account. Increasing the
block score threshold removes mirSNPs that are not
linked to breast cancer-associated GWAS marker SNPs,
thereby increasing the proportion of candidate mirSNPs
that are associated with breast cancer. The shift in �SM

towards the right for high block score thresholds therefore
shows that mirSNPs associated with breast cancer have a
stronger effect on miRNA targeting than have the back-
ground of all mirSNPs.

As expected, increasing the threshold on top-ranking
GWAS SNPs results in the shift occurring later and
later on the y-axis. Using a higher top-ranking threshold
gives a bigger proportion of false positive SNPs, whereas
in contrast, a higher block score threshold gives a smaller
proportion of false positives. Consequently, to compen-
sate for the additional false positive SNPs that were
added when increasing the rank threshold, a higher
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Figure 5. Distribution of mirSNP scores �SM for SNPs mapped to
high-ranking SNPs from the CGEMS breast cancer GWAS. �SM is
the maximum difference of scores for each SNP, where the scores are
normalized scores from the SVM. Each curve shows the distribution for
SNPs that have a block score greater than a given threshold. ‘All’ refers
to �SM of all SNPs. ‘>0.9’ refers to �SM of SNPs that have a block
score >0.9 with one of the 2112 top-ranking CGEMS SNPs. The peak
at 0.33 is decreasing as the block score threshold increases, whereas the
peak at 0.53 is increasing with the block score threshold.

Table 1. Correlations between the measured allelic ratio �AR

and predicted SNP effects from several methods

Method Pearson’s corr. Spearman’s corr.

coeff. P-value coeff. P-value

SVM (raw scores) 0.383 0.0079 0.507 0.00033
SVM (w/ transformation) 0.431 0.0025 0.524 0.00019
SVM (w/ transf, w/o 1 outlier) 0.562 4.8*10�5 0.548 0.00010
MFE (no helix constraint) 0.223 0.1324 0.177 0.2345
MFE (helix constraint 2–7) 0.124 0.405 0.084 0.5736
TargetScan (raw scores) 0.168 0.2582 0.394 0.0062
TargetScan (w/ transformation) 0.299 0.0409 0.413 0.0039
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block score threshold is needed to observe the shift in �S.
These results indicate a link between high �S and
high-block score top-ranking SNPs. Furthermore, the
analyses give a good overview of how our predicted
scores �S fit some GWAS data and show that our
approach can identify SNPs in regulatory elements that
may be causal in disease.

Using TargetScan’s context scores (13) computed for all
30-UTR haplotypes (without considering conservation),
gave similar results indicating that the analysis is robust
to the choice of prediction method (Supplementary
Figures S3 and S4).

We also repeated the analysis on a GWAS for
Parkinson’s disease. This analysis gave similar results,
indicating that the method works with other data sets
and diseases (Supplementary Figures S5 and S6).
Finally, we analysed the significant trait-associated SNPs
from the NHGRI GWAS Catalog (28) and found a
similar shift in the �S distribution at very high-block

scores between miRSNPs and associated SNPs from
caucasian-based studies (Supplementary Figure S7; see
Supplementary Table S1 for the list of the best-scoring
miRSNPs strongly linked to caucasian-based trait-
associated SNPs). This result is consistent with us using
Hapmap CEU haplotypes and linkage disequilibrium
data for the analysis and indicates that miRSNPs
explain some of the trait-associations in the NHGRI
GWAS Catalog.

Disease-related examples

To further evaluate our methodology, we used it to
analyse three miRNA/SNPs involved in breast cancer,
asthma and Parkinson’s disease.
Saetrom et al. (33) found that the SNP rs1434536 lies in

the target site of the microRNA miR-125b within the gene
BMPR1b, and is associated with breast cancer. In that
study, we used the disease mapping method presented
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Figure 6. Distributions of �SM for SNPs mapped to different numbers of high-ranking SNPs from the CGEMS breast cancer GWAS.
The distributions vary with the number of candidate SNPs and block score thresholds. The graphs show �SM on the x-axis (range [0.15, 1]),
complementary cumulative distribution of block scores (from all block scores on the bottom, to gradually filtering to the best block scores on the
top) on the y-axis, and density of �SM for a given block score threshold (specifically, the distribution of �SM for SNPs that have a block score > the
value on the y-axis) on the z-axis (in grayscale). Dark grey, light grey and white are respectively low, intermediate, and high-density values. Panels
(A), (B), (C) and (D) show 3D plots for top-ranking thresholds 528, 1056, 2112 and 4224, respectively. The plots show a shift of the main peak at
�SM=0.33 to �SM=0.53, as the block score threshold increases.
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above to map the candidate SNP rs1434536 to the breast
cancer GWAS from CGEMS. We computed the LD block
of rs1434536, in which we found 5 SNPs that rank within
the 500 best in the association study (ranks 67, 79, 291,
409 and 424) out of 528.000 SNPs; the candidate SNP lay
in between the SNPs ranked 67 and 79 (Figure 7). The
difference of scores for rs1434536 is 0.39. Saetrom et al.
(33) verified that the SNP affects miR-125b’s regulation of
BMPR1b and verified the SNP’s breast cancer association
in an independent cohort.
Tan et al. (34) found that the SNP rs1063320 is

associated with asthma, depending on the mother’s
disease status. rs1063320 lies in the 30-UTR of HLA-G,
and the authors showed that this SNP affects miR-148a,
miR-148b and miR-152 targeting of the HLA-G gene.
They suggested that this altered miRNA targeting in-
creases the risk of asthma.
With our haplotype scoring method run genome-wide,

we found 3 SNPs (rs1063320, rs1610696 and rs1707)
in the 30-UTR of HLA-G that can affect 28 miRNAs
(data not shown). rs1063320 affects 10 miRNAs (data
not shown), and its three largest differences of scores
are given by the same three miRNAs reported by Tan
et al. (34): 0.76, 0.78 and 0.81, respectively for
miR-148b, miR-148a and miR-152. The other scores
range from 0.33 to 0.55, indicating that the three
miRNAs are clear candidates.
Wang et al. (35) found that the SNP rs12720208 is

associated with Parkinson’s disease. rs12720208 lies in
the 30-UTR of FGF20. They also showed that this SNP
has an effect on miR-433 targeting of FGF20. They sug-
gested that this altered targeting increases the risk of
Parkinson’s disease.
We identified two SNPs (rs1721100 and rs12720208) in

the 30-UTR of FGF20 that can affect four miRNAs (data

not shown). The largest difference of scores for this gene is

0.88 and is given by miR-433 at rs12720208—the same

miRNA/SNP pair reported by Wang et al. (35). One

other miRNA scores 0.44 with rs12720208, whereas SNP

rs1721100 scores 0.24 and 0.43 with two miRNAs.

Consequently, the pair rs12720208/miR-433 seems to be

a clear candidate.

DISCUSSION

By evaluating our proposed method on allelic imbalance
sequencing data, two different GWAS data sets, and
validated mirSNPs, we have demonstrated that our
method is useful for identifying potential causative SNPs
in miRNA target sites. Specifically, our analyses of the
allelic imbalance sequencing data show that our proposed
method outperforms existing methods. Although the
data set is limited as it contains only 47 SNPs, the data
set should be of high quality as it was generated in vivo
without artificially altering miRNA or target expression
(31). Indeed, our results revealed clear differences
between the methods. Especially, the method based on
changes in predicted miRNA–mRNA hybridization
MFE showed poor performance and could not predict
the SNPs’ effect on miRNA targeting. This result is con-
sistent with overall miRNA–mRNA hybridization in itself
being a poor predictor of miRNA targeting and support
the model of target site context being essential for miRNA
regulation (1).

The basic approach used by many existing tools for
detecting SNPs in miRNA target sites looks for SNPs
in seed regions of predicted target sites. Seed regions
are known to be the most important regions for miRNA
targeting efficacy (1). Focusing on seed regions reduces
the amount of false positive SNPs predicted to alter
miRNA-targeting, but will miss SNPs affecting
non-canonical miRNA targeting such as 30 supplementary
sites. This basic method can however be used to filter the
mRNA/miRNA pairs that are most likely affected by
SNPs. Such filtered SNPs can then subsequently be
analysed with our haplotype method.

SNPs outside the seed region can affect miRNA target-
ing, however, and some existing approaches based on
computational RNA–RNA hybridization or thermo-
dynamic calculations consider such SNPs. Our method
can also detect SNPs in 30 supplementary sites, but accord-
ing to our analyses, such SNPs have a small
predicted effect (Supplementary Figure S8). This result
is consistent with the observation that conserved 30 sup-
plementary sites constitute 4.9% of all conserved pairing
sites (36). As SNPs affecting seed site pairing have a bigger
predicted effect than those affecting other miRNA
features, our online database provide allelic sequences
for SNPs in target seed sites.

A transcriptome-wide study of interactions between
miRNAs and mRNAs estimated that sites with seed
mismatches constitute <6.6% of all miRNA target sites
(19). By excluding SNPs in mismatch sites, we only miss
SNPs that change a mismatch target site (weak) into
another mismatch site. Moreover, non-canonical sites
appear to have a smaller regulatory effect than canonical
target sites have (19). Thus, our method focuses on iden-
tifying the SNPs that are most likely to affect and to have
the largest effect on miRNA targeting.

Our haplotype scoring method is based on HapMap
haplotype data, and only 66% of the SNPs from
HapMap have haplotype data. The 34% HapMap SNPs
that do not have haplotype data have a very low minimum
allele frequency (MAF), usually 0 in the considered

424
291

79
Input

67
409

Figure 7. SNP rs1434536 (input) has an LD block (delimited by the
dark lines) which contains top ranking SNPs (ranks 67, 79, 291, 409
and 424) from CGEMS’s breast cancer GWAS.
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hapmap population. Removing low MAF SNPs is an ad-
vantage in mapping SNPs to common diseases, resulting
in less false positives (false causal SNPs), in a common
variant common disease model.

Our haplotype approach also currently only focuses on
analysing 30-UTRs. Although miRNAs can target
50-UTRs and coding regions, these sites have a limited
effect compared to 30-UTR sites (19,20).

The main advantage of our method compared to
existing methods is that we analyse the regulatory effects
of all linked genetic variations within regulatory regions,
such as 30-UTRs. Consequently, our method can be used
to analyse how SNPs in multiple target sites together con-
tribute to upregulate, downregulate, or compensate each
other, through haplotype patterns.

CONCLUSION

We have presented a tool that aims at identifying
the causative variation within regions associated with
diseases. Specifically, the tool identifies 30-UTR SNPs
that can affect miRNA targeting and predicts the SNPs’
effect on miRNA regulation. Our main result is the
SNP effect prediction method. The results suggest that
the effect predictions are reliable, compare favourably to
existing methods, and can be used to filter and identify
causative SNPs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Supplementary Data:
Inferring causative variants in microRNA target sites
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Table 1: miRSNPs linked to trait-associated SNPs from the NHGRI GWAS catalog. The
file “GWAScatMiRSNPs.xls“ provides miRSNPs that have a maximum ΔS score greater than
0.45 (middle of the shift; see Supplementary Figure 7) and that have a block score greater
than 1.988 (10% best percentile) with trait-associated SNPs from the NHGRI GWAS catalog
(http://www.genome.gov/gwastudies; accessed Apr. 18, 2011). The trait-associated SNPs are
strictly based on caucasian populations with Northern and Western European ancestry. For
each miRSNP, we only provide the miRNA and the target site information for the miRNA
that gives the maximum ΔS score. Other potentially affected miRNAs can be found online
in our database (http://www.bigr.medisin.ntnu.no/mirsnpscore/). Within the file, columns A-
H describe the following miRSNP information: chromosome, SNP ID, chromosome position
in hg18, minimum allele frequency within the CEU Hapmap population, host gene, affected
miRNA, ΔS score quantifying how the SNP can affect the miRNA, and the alleles and their
respective target sites. Column I shows the block score between the miRSNP and the associated
SNP. Columns J-M describe the following information for the associated SNP reported in the
GWAS catalog: SNP ID, chromosome position in hg18, minimum allele frequency within the
CEU Hapmap population, and the PubMed IDs that report the SNP as significantly associated
with some trait.
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Figure 1: Flowchart: from haplotypes to candidate SNPs in three steps. The example shows
a 3′UTR that contains three SNPs that form four haplotypes (in red). Given a miRNA, we
first use a miRNA target prediction tool to analyse and score each of the four complete 3′UTR
haplotype sequences. Second, we normalise the scores to compare them to each other. Third, we
compare the pairs score/haplotypes to infer candidate SNPs (see Methods and Supplementary
Figure 2).
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Figure 2: Scoring SNPs in miRNA target sites. The two SNPs rs2303824 and rs17286886 lie
in one target site of miR-524-3p in the 3′UTR of the gene C15ORF37. There are two other
SNPs in this 3′UTR: rs3803540 and rs12442408. Those four SNPs make six haplotypes in the
CEU HapMap population. Haplotype H1 has one target site and a score S1. The five other
haplotypes do not have any target sites for this miRNA and have identical scores S2. We
group haplotypes by score into two groups, where G1 only consists of haplotype H1. Then, we
look at the differences between haplotypes from groups G1 and G2; i.e. differences between
H1 and H2, H1 and H3, H1 and H4, H1 and H5, and H1 and H6. We cluster these haplotype
differences into two clusters, because the intersection of all the haplotype differences is empty.
The clusters are made so that the intersection within each cluster is not empty. Finally, we
take the intersection within each cluster and merge the two resulting clusters, which gives the
two SNPs that lie within the target site. These two SNPs are the candidates that explain the
predicted miRNA-targeting differences between the haplotypes.
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Figure 3: Distribution of TargetScan-based mirSNP scores ΔSM for SNPs mapped to high-
ranking SNPs from the CGEMS breast cancer GWAS. ΔSM is the maximum difference of
scores for each SNP, where the scores are normalised context scores from TargetScan. Each
curve shows the distribution for SNPs that have a block score greater than a given threshold.
’All’ refers to ΔSM of all SNPs. ’> 0.9’ refers to ΔSM of SNPs that have a block score > 0.9
with one of the 2112 top-ranking CGEMS SNPs. As with the SVM prediction tool, we see a
shift from lower scores (ΔS = 0.25) to higher scores (ΔS = 0.46) as the block score threshold
increases.
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Figure 4: Distributions of TargetScan-based ΔSM for SNPs mapped to different numbers of
high-ranking SNPs from the CGEMS breast cancer GWAS. The distributions vary with the
number of candidate SNPs and block score thresholds. The graphs show ΔSM on the x-axis
(range [0.15, 1]), complementary cumulative distribution of block scores (from all block scores
on the bottom, to gradually filtering to the best block scores on the top) on the y-axis, and
density of ΔSM for a given block score threshold (specifically, the distribution of ΔSM for SNPs
that have a block score > the value on the y-axis) on the z-axis (in grayscale). Dark gray, light
gray, and white are respectively low, intermediate, and high density values. Panels (A), (B),
(C), and (D) show 3-dimensional plots for top-ranking thresholds 528, 1056, 2112, and 4224,
respectively. As with the SVM prediction tool, these plots based on TargetScan scores show a
shift from lower scores (ΔS = 0.25) to higher scores (ΔS = 0.46) as the block score threshold
increases.
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Figure 5: Distribution of SVM-based mirSNP scores ΔSM for SNPs mapped to one of the 217
top-ranking SNPs from a Parkinson’s disease GWAS (p-values < 0.001); see Supplementary
Figure 3 for details. As with the CGEMS GWAS, we see a shift from lower scores (ΔS = 0.34)
to higher scores (ΔS = 0.60), as the block score threshold increases.
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Figure 6: Distribution of SVM-based ΔSM for SNPs mapped to different numbers of high-
ranking SNPs from a Parkinson’s disease GWAS; see Supplementary Figure 4 for details. Panels
(A), (B), (C), and (D) show 3-dimensional plots for top-ranking thresholds 217, 413, 755,
and 1517, respectively (corresponding to p-values < 0.001, 0.002, 0.004, and 0.008 from a
Parkinson’s disease GWAS). As with the CGEMS GWAS, these plots show a shift from lower
scores (ΔS = 0.34) to higher scores (ΔS = 0.60), as the block score threshold increases.
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Figure 7: Distribution of SVM-based ΔSM for SNPs mapped to 4304 trait-associated SNPs
from the NHGRI GWAS Catalog; see Supplementary Figure 4 for details. Panels (A), (B), (C),
(D), (E), and (F) show 3-dimensional plots for, respectively, all associated SNPs, associated
SNPs based on caucasian populations, associated SNPs based on non-caucasian populations,
associated SNPs strictly based on caucasian populations (study used only a caucasian popula-
tion), associated SNPs based on caucasian populations with Northern and Western European
ancestry (NWE), and associated SNPs strictly based on NWE (study used only a NWE pop-
ulation). As with the CGEMS GWAS, these plots show a shift from lower scores (ΔS = 0.35)
to higher scores (ΔS = 0.55), with caucasian-based studies (panels A, B, D, E, and F). In
the panel C, the distribution stays similar to background. This is because both block scores
and miRSNPs are based on the CEU Hapmap population (Utah residents with Northern and
Western European ancestry).
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Figure 8: Distribution of score differences for mRNA/miRNA pairs that have no SNP in their
seed sites, but one SNP in the 3′supplementary region of the target site. The distribution
is completely shifted to the left, showing that SNPs in 3′-supplementary sites have a small
predicted effect on miRNA-based regulation. The distribution is based on normalised scores
from the SVM prediction tool.
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Abstract

MicroRNAs regulate diverse cellular processes and play an
integral role in cancer pathogenesis. Genomic variation within
miRNA target sites may therefore be important sources for
genetic differences in cancer risk. To investigate this possibil-
ity, we mapped HapMap single nucleotide polymorphisms
(SNP) to putative miRNA recognition sites within genes
dysregulated in estrogen receptor–stratified breast tumors
and used local linkage disequilibirum patterns to identify
high-ranking SNPs in the Cancer Genetic Markers of Suscep-
tibility (CGEMS) breast cancer genome-wide association study
for further testing. Two SNPs, rs1970801 and rs11097457,
scoring in the top 100 from the CGEMS study, were in strong
linkage disequilibrium with rs1434536, an SNP that resides
within a miR-125b target site in the 3¶ untranslated region of
the bone morphogenic receptor type 1B (BMPR1B) gene
encoding a transmembrane serine/threonine kinase. We
validated the CGEMS association findings for rs1970801 in
an independent cohort of admixture-corrected cases identi-
fied from families with multiple case histories. Subsequent
association testing of rs1434536 for these cases and CGEMS
controls with imputed genotypes supported the association.
Furthermore, luciferase reporter assays and overexpression of
miR-125b–mimics combined with quantitative reverse tran-
scription-PCR showed that BMPR1B transcript is a direct
target of miR-125b and that miR-125b differentially regulates
the C and T alleles of rs1434536. These results suggest that

allele-specific regulation of BMPR1B by miR-125b explains the
observed disease risk. Our approach is general and can help
identify and explain the mechanisms behind disease associa-
tion for alleles that affect miRNA regulation. [Cancer Res
2009;69(18):7459–65]

Introduction

MicroRNAs (miRNA) are a recently discovered class of short
noncoding RNA genes that act posttranscriptionally as negative
regulators of gene expression and play fundamental roles in cell
growth, apoptosis, hematopoietic lineage differentiation, and
differentiation (1, 2). Functional studies indicate that changes in
miRNA expression patterns might underlie human pathologies,
including malignancies (3, 4). In addition, variations in miRNA
target sites mediated by single nucleotide polymorphisms (SNP)
may be associated with human cancers (5, 6).
Gene expression profiling studies have identified specific

signatures for breast cancer and are used to guide patient treatment
with both the Oncotype Dx and Mammaprint tests in use clinically
(7, 8). We previously described a meta-analysis of multiple
independent breast cancer RNA expression studies whereby a
unified set of dysregulated genes was identified in estrogen receptor
(ER)+ and ER� tumors. The identification of germline variations in
elements controlling RNA expression (i.e., transcription factor or
miRNA recognition sites) may provide clues as to the mechanistic
basis for the observed variations in gene expression patterns.
Genome-wide association studies (GWAS) have been used in

many common diseases to identify SNPs associated with disease
(9, 10). To date, four independent studies examining breast cancer
patients have identified multiple SNPs associated with disease
(10–13). Although some association signals seem universal in
multiple studies (i.e., several SNPs within FGFR2), often these
studies also yield vastly differing collections of SNPs associated
with disease perhaps owing to differences in study design.
Although many disease-associated SNPs are nongenic, and thus
their contribution to disease pathogenesis is unclear, many are
likely to reside in gene regulatory elements that may influence gene
expression patterns observed in tumors.
We describe an integrative genomic approach leveraging gene

expression patterns, miRNA targeting, breast cancer GWAS data,
and biological testing to identify a disease-associated SNP in the

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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3¶ untranslated region (UTR) of BMPR1B gene. To identify this SNP,
we mapped a set of reference SNPs from the HapMap project to
prospective miRNA target sites located in the 3¶UTRs of a
previously identified set of dysregulated ER+ and ER� genes (14).
An analysis of local linkage disequilibrium (LD) patterns surround-
ing these SNPs identified one SNP (rs1434536) in strong LD with
two SNPs showing a high degree of association in the Cancer
Genetic Markers of Susceptibility (CGEMS) study. We replicated
this association in an independent set of cases identified from
families with multiple case histories and common CGEMS controls
after controlling for population stratification with ancestry
informative markers (AIM). We provide strong support that allelic
variation at rs1434536 influences interactions with miR-125b
leading to differences in BMPR1B expression levels. The approach
described is generally applicable and provides clues to the role cis-
acting allelic variation plays in tumor gene expression patterns via
interactions with the miRNA machinery in disease pathogenesis.

Materials and Methods

Mapping SNPs to miRNA targets. Our input data consisted of 275
candidate genes previously identified as constituting the top 1% of genes

dysregulated in ER+ and ER� (130 and 145 genes, respectively) breast

cancer tumors (14) and their annotated 3¶UTR sequences from the

University of California at Santa Cruz Table Browser (National Center for
Biotechnology Information Build 36.1), mature human miRNA sequences

from miRBase16, and SNPs from HapMap.17 Using custom python scripts,

we (a) identified all unique 7mer seeds (nucleotides 2–8) within the mature

miRNA sequences, (b) identified all seed sites—that is, locations with
perfect reverse complementarity to a 7mer seed—within the candidate

genes’ 3¶UTRs, (c) identified all HapMap SNPs that mapped to one of the
seed site locations, and (d) removed all SNPs that had no reported minor
allele in any HapMap population.

Description of study populations. Four hundred fifty-nine probands
from a breast cancer–affected sibling pair cohort were recruited from a

multi-institutional study [Eastern Cooperative Oncology Group (ECOG)
Cancer in Sibling Study, E1Y97] under protocols approved by the respective

Institutional Review Boards at each institution. The mean age of diagnosis

for probands was 55 y (range, 16–87 y) and disease status was verified by

pathology reports for 96.5% of cases (443 of 459; Supplementary Materials
and Methods). We collected self-reported ethnicity data for both maternal

and paternal grandparents from 78% (356) of our cases. CGEMS patients

consisted of 1,142 controls and 1,145 cases of postmenopausal breast cancer

and were gathered from the Nurses Health Study as described previously (10,
15). Self-reported ethnicity information was unavailable for these individuals.

Genotyping and quality control. DNA samples were prepared as

previously described from peripheral leukocytes (16). SNP genotyping was
performed using Sequenom MassARRAY genotyping technology and iPLEX

chemistry according to manufacturer’s instructions (17). AIMs were

developed into two multiplex assays (Supplementary Table S1) as defined

by the 64 In4 AIMs described by Kosoy and colleagues (18). Genotyping
success ranged from 95.9% to 97.8% for the three association SNP in our

cases. Patient samples were genotyped and samples demonstrating <80%

completion rate (46 of 459) were subjected to a second round of genotyping.

Quality control metrics for our cases included a minimum of 80%
genotyping success, whereas SNPs with completion rates <90% were

discarded. After two rounds of genotyping, four cases and nine AIMs were

discarded from further analysis, having not met quality control metrics.
Population structure analysis and association testing. For admixture

analysis, we used 45 AIMs and combined our cases (455), the CGEMS controls

(1, 142) and seeded the analysis with a training set of 270 HapMap reference

samples (CEU, YRI, and CHB+JTP) to perform STRUCTURE analysis with k = 3
populations (Supplementary Fig. S1). We observed general agreement

between our patient’s self-reported ethnicity and genetic ancestry as

determined by our AIMs, although rarely a patient’s self-identified ancestry

was at odds with the calculated CEUancestral component. In these instances,
we relied on STRUCTURE results to determine genetic ancestry. For

association testing, each SNP was analyzed using a logistic regression model

where odds ratios (OR) are estimated for homozygous and heterozygous

states of the indicated cases and CGEMS controls. For the causative SNP
rs1434536, we directly genotyped our cases and imputed genotypes from

CGEMS controls using HapMap CEU reference individuals (Supplementary

Materials and Methods). IMPUTE and SNPTEST were used for genotype

determination and association testing of rs1434536 as described (19).
Cell lines, cloning, and dual luciferase reporter assays. Cell lines were

maintained in F12/DMEM, respectively, supplemented with 10% fetal bovine

serum, and 1% Pen/Strep. Luciferase reporter targets were generated for the
miR-125b target region of BMPR1B by cloning PCR products from HapMap

NA18505 (rs1434536-C/T) into the 3¶-UTR of the Renilla luciferase gene in
the psiCheck2.2 dual reporter vector (Promega). Clones containing Tor the C

alleles at rs1434536 were verified by ABI fluorescent dideoxy sequencing and
transiently transfected into MCF-7 and MD-MBA-231 cell lines. Renilla

luciferase (hRluc) activity was measured 48 h after transfection. Cells were

lysed with 120 AL Passive Lysis Buffer (Promega), and luciferase levels were
analyzed from 10 AL lysates using the dual luciferase reporter assay (50 AL of
each substrate reagent; Promega) on a Veritas Microplate Luminometer

(Turner Biosystems). Changes in expression of Renilla luciferase (target)

were normalized relative to Firefly luciferase.
Transfection of miR-125b duplexes and qRT-PCR of BMPR1B.

siRNAs (IDT) were transfected into MCF-7 or MDA-MB-231 cells using

RNAiMax (Invitrogen) using the manufacturers recommendations. Twenty-

five pmol of each strand of the siRNA target were annealed by heating to
94jC for 2 min to form duplexes in buffer supplied by the manufacturer

then allowed to cool to room temperature. Transfection efficiencies were

monitored by transfecting in parallel a Cy3-labeled DS scrambled control

siRNA duplex (IDT). Cells were harvested 24 h after transfection and RNAs
were purified. cDNA was synthesized from 25 ng RNA using random

hexamers and M-MLV reverse transcriptase, and was subsequently

amplified with BMPR1B specific primers (Supplementary Materials and
Methods). We calculated the SQ values and normalized BMPR1B transcript

to GAPDH . RNA quantitation experiments were performed in triplicate

from two independent transfection experiments.

Results

Multiple HapMap SNPs map to putative miRNA target sites
in ER+ and ER� dysregulated genes. Because allelic variations in
miRNA binding sites have been shown to influence transcript levels
(20), we examined if commonly occurring SNPs present in miRNA
binding sites could be identified from the HapMap Consortium.
Using a previously described set of genes dysregulated in ER+ and
ER� breast tumors (14), we identified all HapMap SNPs residing
within putative miRNA target sites in the genes’ 3¶UTRs (see
Materials and Methods). We focused our search on the miRNA seed
region, as the seed nucleates the miRNA to the complementary
mRNA target region and is the main determinant for miRNA
targeting (21). More specifically, we based our miRNA target site
predictions on 7mer seed sites as we expected these would give an
acceptable tradeoff between the number of false-negative and
false-positive predictions (21). Our search identified 63 unique
SNPs. Thirty-seven and 26 SNPs mapped to genes dysregulated in
ER+ and ER� tumors, respectively (Supplementary Table S2). This
collection of SNPs was considered for further analysis.
A miR-125b target site SNP in BMPR1B is in strong LD with

breast cancer–associated SNPs. To prioritize the 63 SNPs for
further biological testing, we mapped each to the publicly available

16 http://microrna.sanger.ac.uk/; Release 9.1.
17 http://www.hapmap.org/; Release #21.
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CGEMS breast cancer GWAS18 data set looking for SNPs that had
signals of association. However, only seven mapped directly to this
data set—none of which showed a statistically significant
association. Twenty of the 63 target SNPs were either monomor-
phic (14 SNPs) in CEU samples or exhibited minor allele
frequencies of <0.05 (6 SNPs) and were therefore not expected to
be represented on the GWAS array, as rare SNPs (typically <5%minor
allele frequency in CEU samples) are often excluded from these
arrays. Moreover, the arrays typically contain only subsets of SNPs
within haplotype blocks, but these SNPs can be used as proxies for
the missing SNPs within blocks. To prioritize the remaining 43 SNPs,
we therefore first used local LD structure from HapMap to identify
proxy SNPs in the CGEMS data set and second observed such
proxies’ genome-wide association rank in the CGEMS set.
One SNP, rs1434536, showed high LD to rs1970801 and

rs11097457 (r2 = 0.81) in the HapMap CEU reference samples
(Fig. 1). rs1970801 and rs11097457 ranked 79th and 67th in the
CGEMS GWAS association data (P = 0.00017 and P = 0.00014,
respectively, unadjusted score test). These SNPs exhibit extensive
pairwise LD (r2 = 0.93) in the CEU HapMap reference samples. We
conclude that they likely represent the same association signal. The
target site SNP rs1434536 lies 5.4 kb downstream of rs1970801 and
0.85 kb upstream of rs11097457 in the 3¶UTR of the Bone

Morphogenetic Protein Receptor 1B (BMPR1B) gene. The SNP’s
C!T change alters a 7mer seed site for miR-125b to a 6mer site—a
change expected to reduce miR-125b’s binding affinity to the site
(Fig. 2). Moreover, miR-125b is differentially expressed in normal
versus breast cancer in general, and in ER+ versus ER� tumors in
particular (22–24). The combined observations that miR-125b and
BMPR1B are differentially expressed in breast cancer, that allelic
variation of rs1434536 likely disrupts miR-125b’s regulation of
BMPR1B , and that the SNP is in LD with two breast cancer–
associated SNPs, suggest that rs1434536 has a pathogenic role in
breast cancer.
Independent cohort confirms the association of BMPR1B

SNP with breast cancer. Although the CGEMS results did not
reach genome-wide significance for either rs1970801 or rs11097457,
we elected to replicate the CGEMS results by screening rs1970801
in an independent cohort of genetically enriched breast cancer
cases. In parallel, we screened two additional SNPs for association
with disease: rs1219648 and rs6831418, which ranked 2 and 52,
respectively, in the unadjusted CGEMS genomewide rankings
(Supplementary Table S3). SNP rs6831418 resides within an intron
of BMPR1B , f320 kb upstream of rs1970801 (r2 = 0.118
with rs1970801), and a regional association plot of the CGEMS
data (Fig. 1A) also indicated potential disease association. SNP
rs1219648, present in intron 2 of FGFR2, was previously shown to
be the most strongly associated SNP with breast cancer in multiple
GWAS studies including the CGEMS, Wellcome Trust (rs2981582,

Figure 1. Regional CGEMS association data and LD structure in BMPR1B region. A, localized association data for CGEMS breast cancer data set (Chr 4,
95.3–96.8 Mb). Transcripts from the RefSeq database are shown in the top third part of the graph; black, selected SNPs. B, LD structure of BMPR1B (NM_001203)
3¶UTR region. An f19-kb interval of the BMPR1B gene (black boxes and white arrow-box, coding sequence and 3¶ UTR exons) and the surrounding region is
depicted with select SNPs shown across the top. rs1434536 (solid box ), located in 3¶UTR of BMPR1B , is flanked by rs1970801 centromerically and rs11097457
telomerically (dashed boxes ). Shaded boxes, pairwise LD values measured as r2 with values listed; black boxes, perfect correlations (r2 = 1). The direction
of BMPR1B transcription, relative to the genome assembly, is from left to right. Panel adapted from Haploview (http://www.broad.mit.edu/mpg/haploview/).
C, haplotype structure of three selected SNPs (boxed in B ) with frequencies from HapMap CEU population where rs1970801 has been converted to + strand of
University of California at Santa Cruz assembly.

18 http://caintegrator.nci.nih.gov/cgems/
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r2 = 1.0 with rs1219648), and Memorial Sloan-Kettering Cancer
Center Ashkenazi Jewish (rs1078806, r2 = 0.96 with rs1219648)
studies (10, 11, 13). We used rs1219648/FGFR2 as a positive control
for association in our cases, as the three previous studies indicated
this SNP is a universal marker for disease. Our breast cancer cases
consisted of probands ascertained by virtue of a living, affected full
sibling with disease, whereas we used admixture-corrected, shared
disease-free controls from the CGEMS study. The use of cases
ascertained by virtue of family history served to enrich for alleles
with a strong genetic etiology. In addition, the use of shared
controls has recently been described for multiple common disease
scenarios (9, 25, 26).
Before comparing allele frequencies between our cases and

CGEMS controls for the three SNPs, we sought to eliminate two
potential biases: population differences between cases and controls
and technical artifacts (e.g., errors in genotype scoring). To reduce

the likelihood that any observed associations could be mediated by
differences in the genetic ancestry of our cases and the controls, we
elected to use AIMs and only analyze cases and controls with a
high percentage (>90%) of Caucasian ancestry as defined by
HapMap CEU reference samples. Recently, AIMs useful for
determining intercontinental admixture have been described to
facilitate structured association testing in case-control studies (27).
We selected 59 AIMs (Supplementary Table S2) based on the 64
most informative In4 markers as described by Kosoy and colleagues
(18) for population structure analysis. These markers have a high
discriminatory power to distinguish CEU, YRI, CHB+JPT, and AMI
(American Indian) continental populations. After STRUCTURE
analysis (Supplementary Materials and Methods), we observed
94.1% (428 of 455) of our cases exhibited >90% CEU ancestry,
whereas CGEMS controls showed 93.3% (1,064 of 1,142) CEU
ancestry (Supplementary Fig. S1).

Figure 2. Predicted effect of allelic variation at rs1434536 on
miR-125b recognition. Top, BMPR1B gene as described in
Fig. 1 (white box, 3¶UTR). Bottom, partial sequence of
BMPR1B 3¶UTR and SNP rs1434536 (boxed). Bottom, seed
pairing of miR125-b (nucleotides 2–8 at 5¶ end) with C
(top sequence ) and T(U) (bottom sequence) alleles of
rs1434536.

Table 1. Association testing in ECOG breast cancer cases and common CGEMS controls

SNP GT ECOG cases

(n = 428; admixture adjusted)

CGEMS controls

(n = 1064; admixture adjusted)

ECOG cases +

CGEMS controls

Count Prop HWE Count Prop HWE OR 95% C.I P*

rs1219648 A/A 129 0.31 0.694 405 0.38 0.698 1.00 5.2E-3
Het A/G 204 0.48 497 0.47 1.29 1.00–1.67

Minor G/G 88 0.21 161 0.15 1.72 1.24–2.38

rs1970801 G/G 58 0.14 0.834 203 0.19 0.292 1.00
Het T/G 192 0.46 543 0.51 1.24 0.88–1.73 4.8E-4

Major T/T 167 0.40 317 0.30 1.84 1.30–2.61

rs6831418 C/C 121 0.29 0.427 349 0.33 0.037 1.00 1.8E-1

Het C/T 213 0.52 549 0.52 1.12 0.86–1.45
Minor T/T 79 0.19 165 0.16 1.38 0.98–1.94

rs1434536
c

C/C 67 0.16 1.000 203 0.19 0.320 1.00 1.6E-4
b

Het T/C 200 0.48 543 0.51 1.29 0.95–1.74

Major T/T 148 0.36 318 0.30 1.94 1.40–2.71

NOTE: Association testing with ECOG breast cancer cases (n = 428) and common CGEMS controls (n = 1064), which have been corrected for genetic

admixture with ancestry informative markers (see Materials and Methods).

*Unadjusted P value from the score test with degrees of freedom (df) of 2 in logistic regression.
cGenotypes in CGEMS controls imputed by IMPUTE.
bScore test with df of 2 (performed by SNPTEST) and considering imputation uncertainty.
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We next used logistic regression and calculated ORs testing
independently for both heterozygotes and homozygotes carrier
states omitting both ECOG cases and CGEMS controls not
exhibiting >90% CEU class membership (Table 1). rs1219648/
FGFR2 showed association in the ECOG cases exhibiting a
heterozygote and homozygote OR of 1.29 and 1.72 (P = 0.0052)
for the minor allele (G). These ORs are similar to those observed for
the original CGEMS findings of 1.25 and 1.81 for heterozygotes and
homozygotes. rs1970801-T also exhibited association in the ECOG
cases with an OR of 1.24 and 1.84 for heterozygotes and
homozygotes (P = 0.00048). These ORs are comparable with those
previously observed in the CGEMS study (1.21 for T/G and 1.65 for
T/T). In contrast, rs6831418 did not exhibit significant association
(P = 0.177) in our cases. One explanation for the lack of
confirmatory association with rs6831418 may stem from departure
from Hardy Weinberg equilibrium (HWE) in both CGEMS cases
and controls, whereas all three SNPs were in HWE for our ECOG
cases (Supplementary Table S3). As final verification of association,
we genotyped rs1434536 in our cases and, using the CEU HapMap
LD structure, imputed genotypes for rs1434536 in admixture-
corrected CGEMS controls. We observed association in our cases
with an OR of 1.29 for T/C heterozygotes and an OR of 1.94 for
major allele homozygote T/T (Table 1). Based on the replication of
association in our breast cancer cases for rs1219648/FGFR2 ,
rs1970801-T and rs1434536-T we concluded that rs1434536 was
indeed associated with disease risk.

miR-125b differentially regulates the allelic variants of
rs1434536. Next, we tested a biological model where miR-125b
differentially regulates the C/T allelic variants of rs1434536 in
BMPR1B . In this model, rs1434536-T results in increased BMPR1B
transcript levels, which gives an increased breast cancer risk as
shown by the association testing. Computational models of miRNA
target interactions predicted that miR-125b would down-regulate
the C allele more strongly than the T allele, as the T allele forms a
weaker 6mer seed site for miR-125b binding (Fig. 2; ref. 21). The
PITA thermodynamic model of miRNA binding supports this allelic
difference. The algorithm models miRNA targeting as a competi-
tion between the free energy gained by miRNA binding and the
energetic cost of displacing existing RNA secondary structure at the
target site (28). PITA summarizes this model in the DDG score,
where smaller values indicate stronger miRNA binding. Inputting
the 200 nucleotides centered on rs1434536-C/T alleles to PITA gave
DDG values of �0.53 and 3.09, which suggested reduced binding of
miR-125b to BMPR1B for the T allele.
To test our model, we cloned partial BMPR1B 3¶UTR fragments

from a rs1434536 heterozygote into the luciferase 3¶UTR reporter
vector psiCHECK-2 to compare the luciferase activities between the
two alleles at rs1434536. Vectors containing either C or T alleles
were transiently transfected into ER+ and ER� cell lines and
Renilla luciferase activity was measured. When transfected into
MCF-7 (ER+) cells the C-allele gave a 38% reduced luciferase
activity relative to the T allele consistent with our model (Fig. 3B).
However, when we tested luciferase activity in MD-MBA-231 (ER�)
cells, we observed no difference between the C and T alleles.
Additionally, the overall luciferase activities observed were lower in
MDA-MB-231 cells relative to MCF-7 cells, which may reflect the
higher levels of miR-125b in this cell line (22).
As an additional test of our model, we transiently transfected

synthetic miR-125b oligos into MCF-7 and MDA-MB-231 cells,
and quantitated endogenous BMPR1B transcript levels by qRT-
PCR. Prior genotyping MCF-7 and MDA-MB-231 cells revealed
homozygous T and C genotypes at rs1434536, respectively. The
oligonucleotides, which mimicked the annotated hsa-miR-
125b:hsa-miR-125b-1* duplex, only weakly down-regulated
BMPR1B in MCF-7 (Fig. 3C), which is consistent with our model.
In contrast, transfection with a miRNA mimic (siR), not targeting
the miR-125b site, resulted in an 80% reduction in BMPR1B
transcript levels. When we tested these duplexes in MDA-MB-231
cells, BMPR1B levels were <1/50 of the levels in MCF-7 and below
the assay’s detection limit (data not shown). The low levels of
BMPR1B levels in ER� MDA-MB-231 cells were consistent with our
prior meta-analysis from ER+ and ER� tumors and with increased
levels of endogenous miR-125b in 231 cells (22).

Discussion

Both rs1434536-T and rs1970801-T were shown to be associated
with increased risk in an independent cohort of admixture-
corrected cases and controls. We have shown that miR-125b
negatively regulates BMPR1B and that C/T allelic variation
(rs1434536) within the target site disrupts the regulation of miR-
125b. The presence of rs1434536-T leads to loss of miR-125b
regulation, increased BMPR1B expression, and ultimately elevated
disease risk. Consistent with this, increased BMPRIB expression is
associated with high tumor grade, proliferation, cytogenetic
instability, and a poor prognosis in ER+ breast carcinomas (29).
Moreover, breast cancers in general and ER+ tumors in particular

Figure 3. Allelic variation of rs1434536 influences luciferase reporter activity
and miR-125b targeting. A , structure of luc allelic reporter constructs depicting
psiCheck-2.2 (Promega) dual luciferase reporter constructs. B , luciferase
reporter assays to measure C!T allele differences at rs1434536. Cells
were transiently transfected with C- or T-bearing reporters into MCF-7 or
MDA-MB-213 cells, which is predicted to influence the recognition of the
miR-125b seed sequence in the BMPR1B 3¶UTR. After 48 h, Renilla luciferase
(hRluc) activity was measured and normalized to Firefly luciferase. Results
are shown as percentage relative to luciferase activity. Data are from four
independent transfection experiments with assays performed in triplicate (n = 4).
*, P < 0.05; **, P > 0.05. C , miR-125b weakly down-regulates BMPR1B . MCF-7
cells were transfected with siRNA duplexes and RNAs were harvested 24 h
after transfection. cDNA was synthesized and used for real-time qRT-PCR
analysis of BMPR1B expression normalized to a GAPDH standard. CY3,
scrambled negative control siRNA; siR, siRNA duplex targeting position 867 in
BRPR1B ; miR-125b, duplex mimicking hsa-miR-125b and targeting the C
allele at rs1434536. Expression levels are relative to the CY3 control (n = 3).
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seem to have reduced levels of miR-125b (22–24), which in light of
these results, at least partly explain why ER+ tumors have increased
BMPR1B expression (14).
BMPR1B binds bone morphogenetic proteins (BMP) and are

multifunctional signaling molecules that belong to the trans-
forming growth factor h superfamily and were first identified based
on their ability to form bone at extraskeletal sites (30). Once
activated, BMP/receptor complexes phosphorylate cytosolic SMAD
proteins that translocate to nucleus and regulate target genes (31).
Our findings indicate that ER+ patients harboring elevated
BMPR1B transcript levels may have poorer outcomes when
carrying the risk-associated rs1434536-T allele. Whereas not only
identifying a new target for further study, these results show the
importance of combining tumor expression profiles and genotype
data in determining a patients’ clinical prognosis.
More generally, our methodology has identified a set of allelic

variants present in miRNA recognition sites within a set of
dysregulated ER responsive genes. Independent of our efforts,
Adams and colleagues (20) identified rs9341070 in a miR-206 site in
the ESR 3¶UTR. Allelic variation at this SNP was shown to influence
ESR expression over 3-fold in HeLa cells. This SNP resides in a
domain upstream of the miRNA seed targeting sequence
(nucleotides 2–8), yet we identified this same SNP by virtue of its
presence in a miR-122 seed region (Supplementary Table S1).
However, due to the low frequency of rs9341070 in CEU samples
(<0.01) this SNP is not represented in any GWAS array. This
illustrates a common deficiency of GWAS data sets: the absence of
low frequency/rare SNPs that may also play a role in disease risk
(32). One would anticipate that appropriately powered future
association studies of these potential miRNA interacting rare
variants may support their role in risk.
We found that T/T homozygotes at rs1970801 had slightly higher

ORs in our ECOG cases (1.84) compared with the CGEMS cases
(1.65), and this could be explained by differences in case
ascertainment. CGEMS cases were recruited from a prospective
cohort study where only 22% (274 of 1,145) reported first-degree
family history as opposed to our cases whereby all cases exhibited
first-degree family history, namely an affected sibling. Second, all
CGEMS cases were of postmenopausal disease, whereas only half of
the ECOG cases indicated an age of diagnosis of <50. These
differences indicate that the genetic contribution to risk may have
been underestimated for rs1970801-T in the CGEMS study
reinforcing the importance of family history in confirmatory
replication studies as this may be valuable for later risk-assessment
predictions. We observed a higher OR for TT homozygotes at
rs1434536 when we tested for association with imputed genotypes
in the CGEMS controls compared with rs1970801 TT homozygotes
(1.94 versus 1.84; Table 1). These results also highlight both the
merits of the tagging SNPs used in the GWAS studies and the utility
of imputation for deriving missing genotypes.

Our replication of prior disease associations for two SNPs
(Table 1) relied on using a set of AIMs to correct for differences in
genetic admixture between our cases and CGEMS controls.
Approximately 6% to 7% of CGEMS controls and CGEMS cases
(data not shown) showed <90% CEU ancestry as defined by
HapMap reference samples. This indicates that population
substructure introduced by intercontinental admixture may have
contributed to potential false positives or missed associations in
the original CGEMS data. To rectify this, it has been proposed that
AIM panels should be used before GWA tests (26). More subtle
levels of admixture within both European and Chinese populations
have recently been described, which will necessitate the continued
use of extended AIM panels to discern finer levels of population
substructure as a prelude to association testing and biological
testing (33–35).
The usefulness of GWAS data for identifying breast cancer

susceptibility alleles is premised on the common disease–common
variant hypothesis whereby SNPs (>5% frequency) may act as
surrogates to identify causal variants. Replication studies of the
very top tier signals in breast cancer have firmly established some
associations; however, modest signals in first round GWAS screens
may not be selected for rescreening (36). Thus, we feel it is likely
that future meta-analyses of multiple GWAS data sets will provide
additional candidates for examination (37).
These findings have implicated a germline variant in breast

cancer susceptibility and provided a strong model for biological
causality via miRNAs. Our approach relies on integrating
association data, expression profiles, and testable biological models
to evaluate potential disease alleles in pathogenesis (38). As GWAS
have identified only common SNPs as genetic risk factors, it is
likely that many rare alleles present within motifs for miRNAs and
additional trans -acting regulators (i.e., transcription factors)
remain to be identified. In addition, approaches such as whole
genome sequencing and the identification of common recurrent
somatic mutations in breast tumors may provide a large collection
of potential disease alleles for exploration (39, 40).
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SUPPLEMENTARY METHODS 

Description of Study Populations and Genotyping 

Our ascertainment criteria for cases included a living affected sister with disease willing to 

participate in the study.  Among families that provided information, 96% reported Caucasian ancestry, 2% 

Ashkenazi, ~1% African American, 1.7% Native American, and <1% other.  Our sib pairs consisted of 8 

sets of self-reported monozygotic twins, (1.7%) and 6 pairs (1.3%) having non-shared paternity based 

upon allele sharing at the X-linked androgen receptor (AR) microsatellite (het=0.89) [1].  Non-shared 

paternity for a given sib pair was defined as an index case and her sibling sharing 0 alleles at AR.  Index 

cases from these pairs were nonetheless retained for association testing.  SNP assays were designed with 

assay Design 3.1 software into 3 separate assays (Supplementary Table S2).  After a 6ml multiplex PCR 

amplification the resulting products were treated with Shrimp Alkaline Phosphatase (SAP) and single-

base primer extension chemistry was conducted with mass modified dideoxyribonucleotides (iPlex Gold 

Chemistry).  Extension products were processed with SpectroCLEAN resin, and spotted onto 

SpectroCHIPs and analyzed via MALDI-TOF mass spectrometry [2].  Automated genotype calls were 

made with SpectroTYPER v3.4 software.  To reduce the likelihood of scoring errors due to genotyping 

platform disparities we genotyped both our AIM and association SNPs in a reference panel of HapMap 

samples and observed a concordance rate of 99.36% (2161/2175).  Genotype data for all association SNPs 

were tested for deviations from Hardy-Weinberg proportions in cases and we observed no deviation for 

the 3 SNPs tested (p<0.001).  Five AIMs showed deviations from Hardy-Weinberg proportions but were 

nonetheless retained for analysis with STRUCTURE 2.2 for population admixture. 

Population Structure Analysis and Association Testing 

We genotyped 59 AIMs utilizing Sequenom iPLEX mass spectrometry technology.  We 

downloaded equivalent genotypes for HapMap self-identified reference samples and for controls 



(n=1,142) and cases (1,145) from the CGEMS database.  After genotyping our ECOG BrCa cases we 

retained 455 individuals for STRUCTURE analysis.  Five AIMs (rs1040045, rs6451722, rs3907047, 

rs4746136 and rs798443) exhibited prior association to disease in the CGEMS dataset (p<0.006 to 

p<0.037) and were omitted from STRUCTURE analysis [3].  STRUCTURE analyses were run without 

any prior population assignment using 50,000 iterations with 10,000 burn-in cycles under the admixture 

model with initial � =1.0 without specifying population membership.  We utilized the infer � option and 

estimated a separate a for each population under the F model (� is defined as the Dirichlet parameter for 

degree of admixture).  When we included 105 AMI (AmerInd) individuals as described by Kosoy, et. al 

[4] and increased the defined population cluster parameter to k=4 populations we observed no appreciable 

difference in the clustering of our ECOG cases or CGEMS controls to CEU HapMap reference samples 

(data not shown).  More importantly we were also able to identify the most likely genetic ancestry of our 

cases and the CGEMS controls for which we lacked self-reported ethnicity.  Association testing for 

imputed rs1434536 genotypes were performed by the method of Marchini [5]. Briefly, rs1434536 

genotypes from CGEMS controls were imputed with IMPUTE from HapMap CEU SNPs from 

chromosome 4 region 96,289 – 96,296 kb, which surround rs1434536.  IMPUTE uses a hidden Markov 

model and known HapMap haplotypes to impute missing data.  Association testing with SNPTEST 

includes imputation uncertainty in the subsequent association test by modeling the observed data 

likelihood using the full data likelihood integrated over missing data. 

Cloning, Luciferase Assays, and qRT-PCR of BMPR1B

MB-MDA-231 and MCF-7 cell lines were obtained through American Type Culture Collection 

(Manassas, VA).  All tissue culture reagents were purchased from Invitrogen (Carlsbad, CA) and Sigma 

(St. Louis, MO).  PCR primers for BMPR1B were (forward primer: 5'-CCGCTCGAG 

GTCCCAGGACATTAAACTCTG-3', Reverse primer: 5'-TTTTCCTTTTGCGGCCGCGCATCA 



TATCTTGAACAAGTT-3’) containing Xho I and Not I restriction sites respectively for directional 

cloning into the MCS site Psi-CHECK-2.2.  Twenty-five nanograms of genomic DNA were PCR 

amplified (95°C, 5min, 95°C 30sec, 55°C, 30sec, 72°C, 40sec, for 35 cycles, 72°C 3 min final extension) 

with 1�l of Taq (5U/�l Roche), 1X Taq Buffer, 1�M primers, and 200�M dNTPs.  PCR products 

(~0.28kb) were restricted with the aforementioned enzymes, purified via gel electrophoresis and cloned 

into PsiCheck-2.2.  Genotypes for MCF-7 and MDA-MB-231 cell lines at rs1434536 were determined by 

sequencing PCR products derived from 25ng genomic DNA isolated from cells grown in culture and the 

aforementioned primers.   

MDA-MB-231 and MCF-7 cells seeded one day before, were transfected with plasmids bearing 

the T or C alleles in triplicates in 24-well plates at 80% confluency with a Lipofectamine 2000 

(Invitrogen) complexed with a mixture of 25 ng psiCheck reporter plasmid and 75 ng stuffer DNA 

(pBlueScript) per well.  miR125-b target site cleavage results in degradation of reporter mRNA, with a 

concomitant decrease in translated product, which can be detected by a luminescence-based assay system.  

Firefly luciferase expressed from psiCheck2.2 served as an internal normalization control.   

Transfection of miR-125b Duplexes and qRT-PCR of BMPR1B

Sequences for siRNA duplexes: siR 5’- GGACUAUAGCUAAGCAGAUUCAGat-3’ and 3’-

UUCCUGAUAUCGAUUCGUCUAAGUCUA-5’ (RNA nucleotides are shown in uppercase and DNA 

nucleotides shown in lower case) and has-miR-125b:hsa-miR-125b-1* (targets C allele of rs1434536) 

duplex: 5’-UCCCUGAGACCCUAACUUCUGA-3’ and 5’-ACGGGUUAGGCUCUUGGGAGCU-3’.  

These duplexes target positions chr4:96,270,043 and chr4:96,294,738 respectively in BMPR1B.  Cells 

were purified with RNA STAT-60 (IsoTex Diagnostics, Inc.) according to manufacturers directions.  

BMPR1B specific primers  5’-CAACAAAATTCTTCCCAGGAACT-3’ and 5’-

TGGTTCACAGAGTGCAACAATA-3’ were used to amplify cDNAs.  Samples were treated with DNase 

I (Ambion, Turbo DNA-free) and control reactions omitting M-MLV were also included to rule out 



genomic DNA contamination.  SYBR green technology was utilized for transcript quantitation. GAPDH

intron spanning primers ('5-CATTGACCTCAACTACATG-3' and 5'-TCTCCATGGTGGTGAAGAC-3') 

were utilized as normalization controls.  PCR conditions were: 95oC for 5 min, followed by 40 cycles of 

95oC, 15 sec, 55oC for 30sec, 72oC for 30sec. 
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Supplementary Table S1 SequenomMassARRAY assay designs of association and AIM SNPs

WELL* SNP_ID† 2nd PCRP‡ 1st PCRP UP_SEQ§
UEP_
DIR

EXT1_
CALL

EXT2_
CALL

Assay_1 rs9522149 AGAAAGGAGAGGAAACACCG TCAGCAACTTCTAGTCCTCG GGTCCTTGCAGCTCC F C T
Assay_1 rs11652805 CCCTCAAAGTTTGGTGCATC CTCTTCCTGGTCCTGAGATG CTTTCTCTCTCCCAGC F C T
Assay_1 rs9530435 ATCAGGCACATGGTAAGCAC CTCCATCTGGTACATATGTG gAAGCACTCAGCGAAG R T C
Assay_1 rs2416791 TATAGCATCTACCATCAGCC ATACTGCCCCATAAGGAGTG aACCATCAGCCCAATTC F A G

Assay_1 rs98556382 GGTTAGTTTTGGTGAAGTCC GACCTTGGCTTTTACCATAG TTGTTGCTCATGCATTT R G C
Assay_1 rs10108270 AACAGCATCTGAGACGCTTC AGTGACCCTGGACACAATTC TCAGGTGAGGACTTAGC R C A
Assay_1 rs4666200 CCCTATCCTTGGTGATTTGG CAGTCACAATTGGCAAGCAC tACTTCAGAGCTATTGGC R G A
Assay_1 rs9319336 ATGCAAGGTAATGCACCCTC TCTACCTGCAGGTAAGTGTC ACCCTCTCCCTGCTTCTAT F C T
Assay_1 rs3907047 CAGAATCGGACATGATACCC GAAAGTCCAGGAAGTTCAGG ctTCAGCTCTCTGATCTCC F C T
Assay_1 rs4908343 CCAAACCCCACAAGCTTAAC AGGGAGAGAAGGTCAGTTAC AACCCCTGGGCTATGACAA F A G
Assay_1 rs1513181 CAGATTTCCCATAGCCTCTC AGGTGAGACAGTTGGACAAG GTTGAGCTTGAAAAATTCCC F C T
Assay_1 rs3737576 GGTCCTGGTTCTTGTCAAAG AGGAGGAAGAGCATAGTGAG AGATTGTGAAAGACTGAAAT F A G
Assay_1 rs1040045 GAGAGAAAGGGACACAGAAC CCTCACCCCATCTACTCTTG tagtATGGGGATTGGGGTAA F C T
Assay_1 rs7803075 AATCCACATGAACTGCGCTC ATCTATCACGTGGACCTTTG cctCGCTCCTGGATCTTTTAC F A G
Assay_1 rs731257 GTTGAGGTATCAGTGGAATC TCCATCCTAATTGGAACTGC TGGAATCACAAATTGTATCTC R G A
Assay_1 rs7997709 TAACTGTGTTTCCCTCAGTG ATGTGGATGGATTGCTCAAC agaTTTCCCTCAGTGGTTAGC R T C
Assay_1 rs4918842 ATTGCTCAGAAATGCTGTGG TTAATCGGATGCTGAGCCTG AAATGCTGTGGATATTGACTTA F C T
Assay_1 rs10496971 AATGTCACCTTTAGGCAGAG GGGAACATTGAGTCCTCAAG ggggaTTTAGGCAGAGGCATTT F G T
Assay_1 rs12629908 CCAATCTCTTACATCTCCTG TCCATCATCCAGGAGCTTAG CTTACATCTCCTGAAAAGAAATT R G A
Assay_1 rs10007810 TCTTCTCTTGTAGACAGGGC CGTGGCACATGCCATGTTTT acttgAGACAGGGCCCTCTATCT F A G
Assay_1 rs772262 CACTTTTGACTTAAGACGGG TTCAATACCTCTGGCCTCTC cGACGGGTTTTTATCAGGACATA F A G
Assay_1 rs4746136 GGTATGTCCTAGATGACAAG AGCACATACCTGCAAGCACG TGGACAGATAAACTTATTTGTGTA R G A
Assay_1 rs2125345 AGTGTATGGTTTCTTTGTGG TAACGTGAGTCAGACTGTAG ggtagGGTTTCTTTGTGGGATTCT R G A
Assay_1 rs6451722 CTCTGTAAGCAGCTATTGCC TCTGCTCCTAAGGAAGATGC tCAGCTATTGCCATTTTTTTCTCAT F A G
Assay_1 rs7554936 AACCAGGGACTGCATACAAC CATCCTAGTGAATGCCATCC ccctTAAAGTCATAGGTGAACCTTC R T C
Assay_1 rs7657799 ACAAGGCCCAATTGCTGAAG AGCCAACTTGATTCTCTTTC cccTGATCTACCTTGCAGGTATAATG F G T
Assay_1 rs260690 CTCATAGTTGCTATGAACAG TCTGTGGCCAACGTAAAAGG ggcGTTGCTATGAACAGTTTAACAGT R C A
Assay_1 rs4891825 GTGTAACAATCTCAATCCCC CTAGGGTTGGTAAAGGATGG atcgCAATCCCCCTTAATGTTTTCATC F A G
Assay_1 rs6104567 ACAAGGCCCAGTATGATTG GCTTGGCTTTAATATGGAGG CAGTATGATTGATACATATCTAATTAA F G T
Assay_1 rs1471939 TACCACCCATCTTAAACAGC TGTTAACTCCAGAACAAGTG cctCATCTTAAACAGCTATAGATATAGT R T C
Assay_2 rs1407434 CCCATATCATCTCCACTCAG TGAACCTAAAAAGCAAAGGG GCCCTCAGTCCCTCT R T C
Assay_2 rs2504853 CATCCTGAAGGTGATGGAAG GAAATTCACAGGCTCCAGAC ATGGAAGCCTTGCAT F C T
Assay_2 rs870347 ACCTTTTTCAGCCTGACTCC ATCATGCGACATCCAGGTAG TGCTAAGTCCCTCACT F G T
Assay_2 rs4821004 CTTGCAAGTGTGAAGAGCAG CAAGGGCCGATGATATTTGC GGGGAGGGAGCAAGCC F C T
Assay_2 rs9845457 TTGCACTAGATCCGGGAAGC CTTACTCCATCCCAGTACAG ggCCGGGAAGCCGCTGC R G A
Assay_2 rs2946788 TATCTACTCTGGCCAAACTC CATTCCAATGAGCTTAAGCC CCAAACTCAATAGCCACA R G T
Assay_2 rs8113143 TGTGGGTTCTTGCTGTGTTG AAGTGAGAGGATGAGAGGAG GTTGGATAACACATCCCC R C A
Assay_2 rs2030763 CTTCCTTTTCTTACCAACTGC ATCCATGCGGATGGCTTAAC ATGAATAAGCTGAGCTTCT R G A
Assay_2 rs9809104 AAAACCACAGGACAGGACAG TGACGTGGAGTGATTTGGAG CAGGACAGTTATTCAGGAA F C T
Assay_2 rs798443 GGTATTGCTAACATCTCCAG CTCAGTGCAGATGGGAAATG cAATTTCCACTAACAACGCA F A G
Assay_2 rs2397060 AAAACATGTTTAGGGTTTG CCTTCATTACAACCCAGGTA ATGTTTAGGGTTTGAAGAAT F C T
Assay_2 rs4984913 GGAAGTGGTCCTCTTCTTAC ACCCGGAACTTTCGTGGTGT aagaaCAGGAAGTGGGCACA F A G
Assay_2 rs2627037 AGCGCCGAACTTCAATTATC GTGCCTTCCTTTTCGGAATC TTGTCTGAATCTCCAGTTTAC R G A
Assay_2 rs3943253 TGTGGCTTAGGAGTGACATC ATCCAGTGTAGAAAGAGCCG TGACATCGTAATACCACTTGG R G A
Assay_2 rs13400937 CTTACCACCCGTGAAATAAC CCAAAGTTTGTTCCAAATCTG aaACATTTCAGGAAGTTGAATT F G T
Assay_2 rs734873 ACTGTCCTGTGTCAAGAACC GATGTCTTGATGATTCCTCC gggaCCTAGGGCAAGAGAGTAA R T C
Assay_2 rs3745099 CAGTTACTTTTCTCCCCTGC AAGTAGAAGGTGAGTGAGGG ggccGCTATTTTCTCGGCACCTT R G A
Assay_2 rs1040404 AACTCAAGTGTCTCCTGAGC CAGCTGAGCATTTTGTAGTG tgGTGATACTATTTTCTACCACA F C T
Assay_2 rs10236187 AGAAGGAACGGCAGACAAAG CCTAGGTGGGAGTAAAAGTG ggagtCAGACAAAGCCTCACATTA F C A
Assay_2 rs1325502 TCTGGATAAACATTCTGGCG CATCACCCAGAATGGCAAAC gagtgCTGGCGTTGCTGCATGTTT R G A
Assay_2 rs10513300 TACCTCTGCAATGCCCTATC AAGAGCACATACTCCATACC CCCTATCTTATTATCATATGAGTTC F C T
Assay_2 rs12130799 GTGTTACTCAATGGAGCTCT GGTTCTGGGATATTGTTGGG gTTCTCTATTGTATCTCCAATGTCT F A G
Assay_2 rs6422347 TGAAGGCCGACTTCACGGA ATGTTGACCTCCCTCTCCC ggtcCGGAGCTGGTGACATTTTAAC F C T
Assay_2 rs1408801 GTGATAGTTTTACAGTTTCC ACATGCATGTGTATTGCAGG ggcaTTTTACAGTTTCCTAAACCATG R G A
Assay_2 rs4463276 TCGGCTTGTTTCCTTTTTTG ACAACAAGGAAAATGAGCCC tttgGTGGGTACACAGTAAGTGTATA R G A
Assay_2 rs4717865 GTTCTAGATTCAGACCCTGC CATCGGAGAGGCAAATTGAC ggggaCCTGCTGCTGCTACCCAGCCTC R G A
Assay_2 rs1760921 ATACGCAAAACCACTGCCAC TACTGGCCATATTCTCTCTC ccacaACTGCCACATCCGTCCCATACCT F A G
Assay_2 rs6556352 CAATGCATATGTACTGCTTCC AGCATTCTATAAACCGACAG ccTCCATAAAAATGAAATATCATTTAAC R T C
Assay_2 rs7421394 AGTTTAAGAGGTTTGACAGG TTTTCCACGTGAACATACCC cctctGTTTGACAGGATAATTTCTGAGA R G A
Assay_3 rs1219648 GACAAGCCATGGCCATCCTT TCTTCCATGGTACCGGTTTC GGCCATCCTTGAAGAG R G A
Assay_3 rs1970801 CAGTAGGCCATAAATGTGGG CAAATTGCTTTATGGGGAAG GACACCCATTTCTTACCT R C A
Assay_3 rs6831418 GGACTTCCTTACTAGAGCAC CCTCACAGAATTAAGAGTGC TGTTTCCTTTCCTCTCC R T C
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Assay_3 rs1434536 CTTGAACATCGTCCTGCTTC TGGGAGCTTCTCTGTCTTTG GGTTCAGACCTCACCT R G A
Assay_3 rs11097457 TGCTCTTGTGTTGTAAGAGG AGATACAAGCCATCTGCACG gggACATGTCAACAAAGATAGG F A G

Notes
* Assays 1 and 2 dervied from In4 markers of Kosoy, et al, Assay 3 SNP for association testing

† rs9855638 replaced In4 SNP rs6548616 with r2 >0.9 in 3 HapMap populations

‡ ACGTTGGATG mass tags were appended to each PCR primer
§ lower case nucleotides in extension primer are non complementary to amplified region
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Supplementary Table 2
SNPs Mapping to miRNA Sites

SNP_ID
miRNA recogniton
site chrom SNP_Pos* Motif_Chrom:position genelist†

rs10157828 GCAGCCA chr1 17267200 chr1:17267200 17267206 ER overexpressed
rs4366378 GGCCAGT chr1 208914363 chr1:208914359 208914365 ER+ overexpressed
rs6565 AACCATA chr1 28085744 chr1:28085739 28085745 ER overexpressed
rs6619 TTGGGAG chr1 37803283 chr1:37803283 37803289 ER+ overexpressed
rs1058240 CCGTTGA chr10 8156604 chr10:8156602 8156608 ER+ overexpressed
rs11191382 AATGGGT chr10 104488596 chr10:104488593 104488599 ER+ overexpressed
rs1334891 CCAGGTT chr10 99070861 chr10:99070857 99070863 ER+ overexpressed
rs7074516 GTGTGAG chr10 98344914 chr10:98344912 98344918 ER overexpressed
rs7922412 CAAGGGA chr10 124805384 chr10:124805379 124805385 ER+ overexpressed
rs10279 GTATTAT chr11 8925885 chr11:8925881 8925887 ER+ overexpressed
rs1056562 AAGGGAT chr11 117630835 chr11:117630830 117630836 ER overexpressed
rs10790248 ACACTAC chr11 117630882 chr11:117630877 117630883 ER overexpressed
rs12288903 AAGTCCA chr11 45860170 chr11:45860164 45860170 ER+ overexpressed
rs3741325 GTGCCAT chr11 117911199 chr11:117911194 117911200 ER+ overexpressed
rs3741360 TCCAGAG chr11 66056924 chr11:66056919 66056925 ER+ overexpressed
rs8432 AGCTGCT chr11 66056091 chr11:66056091 66056097 ER+ overexpressed
rs8995 CCACCCC chr11 63351648 chr11:63351645 63351651 ER overexpressed
rs2857672 CACCAGC chr12 50994544 chr12:50994544 50994550 ER overexpressed
rs859147 CTCTATG chr12 25152535 chr12:25152535 25152541 ER+ overexpressed
rs1327179 ATACTGT chr13 20626320 chr13:20626318 20626324 ER overexpressed
rs403904 AAGGCAT chr13 35144233 chr13:35144228 35144234 ER+ overexpressed
rs1565970 AGTCTTA chr14 51967826 chr14:51967824 51967830 ER+ overexpressed
rs10468050 AGGCACT chr15 69860993 chr15:69860990 69860996 ER+ overexpressed
rs16956198 CTGTTGA chr15 69858995 chr15:69858992 69858998 ER+ overexpressed
rs17811309 AAAGGGA chr15 69860243 chr15:69860239 69860245 ER+ overexpressed
rs2072692 GGGATGC chr15 87816037 chr15:87816035 87816041 ER overexpressed
rs30122 CATTAAC chr16 14266734 chr16:14266731 14266737 ER+ overexpressed
rs30126 GAGACGG chr16 14263266 chr16:14263262 14263268 ER+ overexpressed
rs1051443 TTAGCTC chr17 6294757 chr17:6294751 6294757 ER overexpressed
rs7687 TTCCCCC chr17 41459142 chr17:41459141 41459147 ER+ overexpressed
rs1046294 ACAACCT chr19 40352386 chr19:40352380 40352386 ER overexpressed
rs12427 GCTGGAG chr19 48962659 chr19:48962655 48962661 ER overexpressed
rs12891 GAGCCAG chr19 8233196 chr19:8233196 8233202 ER+ overexpressed
rs7257398 AAGCACA chr19 59433680 chr19:59433674 59433680 ER overexpressed
rs2287086 GTGCAAA chr2 60539999 chr2:60539993 60539999 ER overexpressed
rs6729137 AATGCAT chr2 5757912 chr2:5757907 5757913 ER overexpressed
rs6737419 GTGCAAA chr2 3570576 chr2:3570570 3570576 ER overexpressed
rs873033 TCTAGAG chr2 85390883 chr2:85390879 85390885 ER overexpressed
rs1048055 GTGCCAT chr20 1558062 chr20:1558057 1558063 ER overexpressed
rs2281807 GAGCCAG chr20 1558201 chr20:1558195 1558201 ER overexpressed
rs6043374 GTAAACC chr20 1557952 chr20:1557946 1557952 ER overexpressed
rs6091230 ACTGCAG chr20 48926602 chr20:48926602 48926608 ER+ overexpressed
rs2834602 TTACTAG chr21 35012300 chr21:35012294 35012300 ER+ overexpressed
rs12172608 AGGTGCA chr22 45137237 chr22:45137236 45137242 ER+ overexpressed
rs6007891 CAGTTTT chr22 45135497 chr22:45135493 45135499 ER+ overexpressed
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rs495702 CACTTCA chr3 173598334 chr3:173598328 173598334 ER overexpressed
rs1046322 GAGTGAC chr4 6355349 chr4:6355347 6355353 ER+ overexpressed
rs1434536 CTCAGGG chr4 96294988 chr4:96294988 96294994 ER+ overexpressed
rs1141538 ATGCTGC chr5 137303098 chr5:137303092 137303098 ER+ overexpressed
rs1438688 CCCCGCC chr5 148619255 chr5:148619255 148619261 ER+ overexpressed
rs1062577 ATTCTTT chr6 152465598 chr6:152465594 152465600 ER+ overexpressed
rs1225737 TGCCTTA chr6 11090638 chr6:11090633 11090639 ER+ overexpressed
rs508477 GGTGTGT chr6 13472323 chr6:13472320 13472326 ER overexpressed
rs7756717 CTGAGCC chr6 11090925 chr6:11090921 11090927 ER+ overexpressed
rs8523 ATTTCTC chr6 11089039 chr6:11089037 11089043 ER+ overexpressed
rs9341070 ACACTCC chr6 152461890 chr6:152461884 152461890 ER+ overexpressed
rs9341074 AATGGGT chr6 152464148 chr6:152464142 152464148 ER+ overexpressed
rs10263074 TTTATCT chr7 87375999 chr7:87375994 87376000 ER overexpressed
rs6616 ATTTCTC chr7 16790503 chr7:16790502 16790508 ER+ overexpressed
rs4986994 AACTGAC chr8 18124767 chr8:18124761 18124767 ER+ overexpressed
rs12710570 GTGCAAT chrX 115506264 chrX:115506260 115506266 ER overexpressed
rs6567569 TGCAGAA chrX 3534309 chrX:3534306 3534312 ER overexpressed
rs741500 TGTTACT chrX 10377020 chrX:10377016 10377022 ER overexpressed

* UCSC Build 36 coordinates
† Defined in Smith, et al BMC Bioinformatics 9:63,2008



Supplementary Table S3-Original CGEMS Association Findings 

CGEMS cases (n=1145) CGEMS controls (n=1142) CGEMS
SNP GT Count Prop HWE Count Prop HWE OR 95% C.I. P-value* Rank†

rs1219648 A/A 351 0.31 0.152 432 0.38 0.851 1.00 8.0E-06 2
Het A/G 542 0.47 534 0.47 1.25 1.04-1.50
Minor G/G 249 0.22 169 0.15 1.81 1.42-2.04

rs1970801 G/G 165 0.15 0.950 215 0.30 0.337 1.00 1.7E-04 79  
Het T/G 534 0.47 577 0.51 1.21 0.95-1.52
Major T/T 436 0.38 344 0.19 1.65 1.29-2.11

rs6831418 C/C 250 0.22 0.005 374 0.33 0.028 1.0 1.2E-04 52
Het C/T 515 0.45 588 0.52 0.88 0.73-1.06
Minor T/T 373 0.33 175 0.15 1.43 1.13-1.82

*Unadjusted P-value from the score test with df=2 in Logistic regression from original CGEMS GWAS 
†Rank of the SNPs from original CGEMS GWAS, for rs1970801, test was for minor allele G 
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Abstract

Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadeny-
lation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3’ untrans-
lated region (UTR) lengths. Different 3’UTR lengths can give different microRNA (miRNA) regulation
such that shortened transcripts have increased expression. The APA process is part of human cells’
natural regulatory processes, but APA also seems to play an important role in many human diseases.
Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements
that are important for the polyA process, such as the polyA signal and the downstream GU-rich region,
can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms
(SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we
show that APA-SNPs can affect 3’UTR length, miRNA regulation, and mRNA expression—both between
homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant
fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-
wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene
regulation and that APA alleles that give shortened transcripts and increased gene expression can be
important hereditary causes for disease.

Author Summary

Variants in DNA that affect gene expression—so-called regulatory variants—are thought to play impor-
tant roles in common complex diseases, such as cancer. In contrast to variants in protein-coding regions,
regulatory variants do not affect protein sequence and function. Instead, regulatory variants affect the
amount of protein produced. The 3’ untranslated region (UTR) is one gene region that is critically impor-
tant for gene regulation; cancers for example, often express genes with shortened 3’UTRs that, compared
with full-length 3’UTRs, have higher and more stable expression levels. We have investigated one kind
of regulatory variant that can affect the 3’UTR length and thereby cause disease. We identified several
such variants in different genes and found that these variants affected the genes’ expression. Some of
these variants were also strongly linked with known markers for disease, suggesting that these regulatory
variants are important hereditary causes for disease.

Introduction

In protein-coding genes, the polyadenylation process consists of cleaving the end of 3’ untranslated regions
(UTR) of precursor messenger RNAs (pre-mRNA) and adding a polyadenylation (polyA) tail. Alternative
polyadenylation (APA) can occur when several polyadenylation (polyA) signals lie in the last exon of
a protein-coding gene. Many APA signals are evolutionary conserved [1], and Expressed Sequence Tag
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(EST) data suggest that 54% of human genes have alternative polyadenylation signals [1]. The polyA
signals themselves are hexamer DNA sequences that usually lie 10 to 30 nucleotides upstream from
the cleavage site [2], but a GU-rich region 20 to 40 nucleotides downstream of the cleavage site is also
important for the polyA-process [2].

One functional consequence of APA is transcripts with different 3’UTR lengths and different mi-
croRNA (miRNA) regulation [3, 4]. Shortened transcripts tend to have increased expression compared
with longer transcripts, and the same expression increase can be achieved by deleting miRNA target sites
in non-shortened transcripts [5].

Data on APA can be used as an efficient biomarker for distinguishing between cancer subtypes and for
prognosis [6], and seems to play an important role in gene deregulation and in many human diseases [7].
One such mechanism for deregulation is mutations in the polyA signal or GU-rich downstream region [7].
A single nucleotide polymorphism (SNP) in the GU-rich region downstream of an alternative polyA
signal in the FGG gene has for example been shown to affect the usage of this polyA site, and has been
associated with increased risk for deep-venous thrombosis [8]. Similarly, a mutation in the 3’UTR of
the CCND1 gene has been shown to create an alternative polyA signal and is associated with increased
oncogenic risk in mantle cell lymphoma [9].

Hypothesizing that mutations in DNA elements such as the polyA signal can be an important cause
of altered APA, we investigated to what extent SNPs can create or disrupt APA signals (APA-SNPs).
Specifically, we tested whether APA-SNPs can give shorter 3’UTRs, increased gene expression through
loss of miRNA regulation (Fig. 1), and be associated with disease. Our hypothesis focuses on shorter
3’UTRs rather than longer ones, because the loss of functional miRNA sites in the 3’UTR is more likely
than the gain of new sites downstream of the gene.

First, by analysing EST data, we found that SNPs can create polyA motifs and affect 3’UTR length.
Second, differential allelic expression from RNA-seq data, as well as mRNA and miRNA microarray
expression data revealed an association between alternative polyA site strength (signal and GU-content),
loss of miRNA target sites, and transcript expression. Third, based on these analyses we also identified
significant APA-SNPs. Fourth, we mapped the identified SNPs to disease-associated SNPs and found
that APA alleles were significantly correlated with disease-risk alleles. Together, these results suggest
that APA-SNPs can be a significant causative mechanism in disease (Fig. S1).

Results

SNPs can create and delete polyadenylation signal motifs

The distribution of SNPs within 3’UTRs is fairly uniform [10] (Fig. S2A). The main exceptions are
microRNA target sites and the start and end of the 3’UTR, which have decreased SNP diversity that
is consistent with these regions containing functional elements under selective pressure [10]. Indeed,
when specifically investigating the region around the transcription end site, we found that the position
containing the polyA signal has a markedly decreased SNP density (Fig. S2B,C), indicating that SNPs
arising there could have a high functional impact.

To analyse SNPs in alternative polyadenylation signals, we first identified a set of SNPs that potentially
create new APA signals in 3’UTRs. Specifically, we searched for any Hapmap SNP [11] that could create
or disrupt one of the 13 known polyA signal hexamers [1] in any coding gene’s 3’UTRs (see Methods). We
found 1954 SNPs, including 755 SNPs that are mono-allelic in the CEU population from Hapmap [11] (see
Datasets). We kept only APA-SNPs that change from no signal to one signal in the locus, by discarding
loci with several signals in the 40 nucleotides around the SNP, discarding SNPs that change one signal into
another, and discarding mono-allelic SNPs. After filtering, 412 SNPs that can create or delete potential
polyadenylation signals remained. We will from now refer to them as our candidate SNPs.
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EST data indicate that SNPs can give functional alternative polyA sites

To investigate whether SNPs can create functional alternative polyA sites, we analysed the EST-based
polyA sites from the PolyA Db database [12, 13]. In the PolyA Db database, there are several polyA
sites which do not have any noticeable polyA signal (according to the reference genome) in the 40, 80,
and 100 nucleotides upstream from the reported cleavage site position (Table S1). In those regions, we
used different SNP data to look for SNPs that could create a polyA signal with the non-reference allele.
When considering regions of 100 nucleotides and SNPs from NCBI dbSNP Build 130 [14], we could
identify polyA signals with the alternative allele for more than 2% of the missing signals. Some of the
remaining sites can probably be explained by SNPs further upstream, and some other by exon splicing,
by alterations in ESTs that are not registered in dbSNP, or as false positive sites.

Since EST-based annotated polyA sites can be affected by SNPs, we wanted to test whether alleles
in polyA sites could be associated with EST ending positions. Specifically, we first took the inter-
section between the polyA signals from our 412 candidate SNPs, and the polyA sites from PolyA Db
database [12, 13]. We identified 18 intersecting polyA sites, that have a polyA signal with either the
reference or the non-reference allele, corresponding to 18 genes, and 18 SNPs. Five SNPs were discarded
because they lie within the 20 last nucleotides of the reference 3’UTR. The following 13 genes remained:
ABCC4, AKAP13, FANCD2, KY, MIER1, OSTM1, PNN, RASGRP3, RHOJ, SELS, SHMT1, SLBP,
and SLC11A2. Second, for each of these genes, we identified and imputed (see Methods) alleles at the
SNPs in the EST sequences when possible, and tested if the proportion of alleles with polyA signal
(APA alleles) was different for EST sequences ending within the interval [−30,+50] nucleotides around
the polyA site, compared to EST sequences ending further downstream (see Methods). The two genes
MIER1 (SNP rs17497828) and PNN (SNP rs532) were significant (Fig. 2, Table 1). After correcting
for multiple testing (Benjamini & Hochberg correction), the genes remained significant when including
alleles imputed based on haplotype (Table 1).

For MIER1, of the 16 EST sequences ending near the annotated APA site, 12 had the APA allele
(including 2 with a clear polyA tail), whereas 3 had the non-APA allele (none of them had a clear polyA
tail). Similarly, for PNN, of the 34 EST sequences ending near the annotated APA site, all had the
APA allele (including 10 with a clear polyA tail). Together, these results suggest that SNPs can create
functional APA sites and thereby affect 3’UTR length.

RNA-seq data indicate association between SNPs in polyA sites and both

transcript length and increased transcript expression

EST data can be used to identify alleles and transcript ending positions (Fig. 1), but EST data seldom have
sufficient resolution to quantify transcript expression levels. In contrast, RNA-seq data can both be used
to genotype SNPs [15] and to analyse transcript length and expression patterns. The main challenge with
RNA-seq data compared with ESTs, however, is the shorter sequence reads, which makes it challenging
to distinguish between homozygotes, heterozygotes with strong expression differences between its alleles
(allelic imbalance), sequencing errors, and alignment errors.

To explore whether RNA-seq data could reveal whether APA-SNPs affect transcript expression, we
therefore developed and validated an RNA-seq-based genotyping approach (see Supporting Text S2). We
then used this approach to show that APA-SNPs can affect transcript expression and that this effect is
associated with loss of miRNA regulation. Specifically, we first show that homozygous APA-SNPs have
significantly shorter 3’UTRs than have heterozygous or homozygous wildtype SNPs. Second, we show
an association between allelic imbalance of heterozygous APA-SNPs and the two following important
features of polyA sites: signal strength and GU level downstream of the cleavage site. Third, we show
that the loss of miRNA target sites can be the missing link in this association. Fourth, we use allelic
imbalance to detect potential functional APA-SNPs. Fifth, we show that APA-SNPs at strong sites
(strong APA signal and high GU level) that have a strong predicted effect on miRNA regulation, have
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higher allelic imbalance and higher transcript expression than have other APA-SNPs.

Transcripts are shorter for genes with homozygous APA-SNPs

RNA-seq data give the opportunity to both genotype exonic SNPs and determine transcript structure.
We therefore decided to use the Burge RNA-seq data to determine whether APA-SNPs had a significant
effect on transcript length. Moreover, as the Burge RNA-seq data set consists of samples from both
highly proliferating cell lines and highly differentiated human tissues and as transcripts in proliferating
cells tend to have shorter 3’UTRs, we also wanted to determine the effect that the cell’s proliferation
status had on transcript length. Specifically, we first estimated for each gene and RNA-seq sample, the
transcript’s 3’ end position and its distance from the 3’ end of the longest annotated transcript (see
Methods). Second, we divided the RNA-seq samples into two groups such that the five cancer cell lines
and one immortalized cell line were defined as proliferating, whereas the 16 other tissue samples were
defined as non-proliferating.

Third, from the 412 candidate APA-SNPs, we discarded those that share the same gene and those
that lie upstream of the longest 3’UTR (to avoid combinations of alternative splicing and alternative
polyadenylation), resulting in 362 SNPs. In total, 262 unique SNPs had 3’ end estimates and genotypes
available (6852 data points). To analyse the impact of APA-SNPs on 3’ end positions, we only considered
SNPs that lie far enough (at least 1500 bp upstream) from the annotated 3’end. This final requirement
gave 93 unique SNPs (2340 data points).

Fourth, we ran correlation analyses between the genotype (WT homozygous: 0, heterozygous: 1, and
APA homozygous: 2) and the negative logarithm of the distance between the estimated and the anno-
tated transcript end (see Methods). As expected, we found a significant negative correlation (Pearson’s
correlation coefficient r = −0.15, p-value p = 3.9 ∗ 10−13, sample size n = 2340), which shows that APA
homozygotes are shorter than the WT ones. Then, we tested the correlation between the negative log
distance and the proliferation status of the cell types (proliferating: 1; non-proliferating: 0). Again, as
expected, we found a significant negative correlation (r = −0.19, p < 2.2 ∗ 10−16, n = 2340). When sub-
grouping the samples based on proliferation status (Fig. S3), we could not detect a significant genotype
correlation in the proliferating cells—possibly because transcripts are already short in these cells due to
other factors. For non-proliferating cells, however, we found that APA homozygotes were significantly
shorter than the two other genotypes (r = −0.17, p = 1.01 ∗ 10−13, n = 1883). This result confirms our
previous EST results that APA SNPs can affect transcript length.

Heterozygous SNPs affecting strong polyA sites have an increased imbalance towards APA

alleles

Since RNA-seq data can genotype our candidate SNPs and at the same time determine transcript ex-
pression levels, we decided to analyse ratios of allele expression (allelic imbalance). According to our
hypothesis (Fig. 1), APA alleles can shorten transcripts, resulting in loss of miRNA targeting and in-
creased transcript expressions. To test this hypothesis, we investigated allelic imbalance of our APA-SNPs
in 19 of the samples from the Burge RNA-seq data; we excluded the three samples (MAQC, MAQC UHR,
and MD435) that were a mixture of several individuals. We expected increased transcript expression for
the APA allele compared to the non-APA allele; that is, a positive log ratio of the APA allele expres-
sion over the non-APA allele expression. Moreover, we expected this allelic imbalance to depend on two
important polyA site features: polyA signal strength and downstream GU level.

Signal strength Some polyadenylation signals occur more frequently upstream of known polyA sites
than other signals do [1]. By assuming that this frequency of occurrence correlate with signal strength,
such that frequent signals have a higher probability of causing polyadenylation than have rare signals
(Table S4), we expected that frequent (strong) signals would have a higher allelic ratio (AR) than rare
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(weak) signals. We compared the distribution of allelic ratios of APA allele over non-APA allele for each
signal, ordered by strength rank such that strong (frequent) signals had a low rank. As expected, we
found that signal rank is negatively correlated with log allelic ratio (r = −0.144, p = 0.013, n = 300)
(Fig. 3A). Strong signals tend to have high and positive log AR; that is, a higher expression of the APA
allele than of the non-APA allele. This fits our hypothesis that transcripts with an APA allele can escape
miRNA targeting, resulting in increased gene expression.

GU-content In addition to having strong polyA signals, functional polyA sites tend to have a GU-
rich region downstream of the cleavage site [2]. We therefore expected that SNPs creating alternative
polyadenylation signals with a GU-rich region downstream of the signal had a higher allelic imbalance
than the ones with no particular GU-rich region.

We computed the GU level for each of our candidate SNPs. As the background value outside the
GU-rich region is about 0.51 (Fig. S4), we used a threshold of 0.55 to define SNPs that have a downstream
GU-rich region. Then, in each of the two GU groups, we investigated the allelic ratio distribution for
each signal. We still found a negative correlation between the signal rank and the log allelic ratio for
the SNPs with a GU-rich region (r = −0.195, p = 0.032, n = 122) (Fig. 3B). In contrast, for the SNPs
without a GU-rich region, log AR did not correlate with signal rank (r = −0.104, p = 0.17, n = 178)
(Fig. 3C). This indicates that increased allelic imbalance at APA-SNPs requires both a strong signal and
a GU-rich downstream region.

To further evaluate the connection between signal strength, GU level, and allelic imbalance, we
grouped the SNPs according to their GU level and their signal strength (Fig. 4; strong: rank ≤ 6;
weak: rank > 6). Compared with the other three groups, APA-SNPs with a strong signal and a GU-
rich region had a significantly higher mean and median log AR (Student’s t-test, p = 0.025; Wilcoxon
rank sum test, p = 0.036). Together, these results suggested that alternative polyadenylation can give
increased expression of APA alleles.

The loss of miRNA target sites can explain an important part of allelic imbalance

Increased expression of APA allele transcripts is consistent with loss of miRNA regulation, but other
factors such as RNA-binding proteins could potentially also explain these results. We therefore wanted
to test whether loss of miRNA regulation could be a significant factor in the increased allelic imbalance.
Specifically, we matched the miRNA expression data of the MCF7, BT474, and T47D breast cancer cell
lines from Landgraf et al. [16] with the allelic ratios from the corresponding cell lines from the Burge
dataset (24 unique SNPs, 34 allelic imbalance values in the 3 cell lines). Given the miRNA profile of the
considered cell line, we then for each SNP computed a score which predicted the potential effect that a
cleavage site at the SNP locus would have on miRNA regulation (see Methods). Finally, we ran several
linear regression analyses with the log allelic ratios as response variable and the signal rank, the GU level,
and the miRNA score difference as dependent variables.

Basic linear models with signal rank, GU level, and miRNA score alone showed that these variables
could explain 3.84%, 3.55%, and 6.73% of the response variance, respectively. A model with signal
rank and GU level decreased the partial explained variance for each of the two variables compared to
the two individual models. In contrast, adding the miRNA variable to the Signal rank model, or the
GU level model increased all partial r2 values, indicating that the dependent variable is a conjunction
of these variables. Similarly, adding the miRNA variable to the Signal rank + GU level model could
increase all the partial r2 as well. In that full model, the miRNA variable could explain 12.39% of the
response variance (p-value p = 0.04). This indicates that loss of miRNA target sites can partly explain
the increased allelic imbalance for APA-SNPs in strong APA signals with high downstream GU content.
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Allelic expression can detect potentially functional APA-SNPs

Having established that APA-SNPs can give allelic imbalance by affecting miRNA regulation, we set out
to identify functional candidate APA-SNPs. We identified SNPs from the 19 non-mixed samples from
the Burge dataset that were classified as heterozygous when mapping reads to both the reference and
non-reference allele-based genomes and that had at least 10 allele counts in total. This resulted in 75
individual/SNP pairs (36 unique SNPs), which we tested individually for significant positive imbalance;
that is, an APA allele count significantly greater than the non-APA allele count. We used a χ2 goodness-
of-fit test (1 degree of freedom) to test if the allele counts fit the hypothesis of an equal proportion.
Three heterozygotes were significant and after correcting for multiple testing by using the Benjamini &
Hochberg correction, two heterozygotes remained significant. The two individual/SNP pairs had both a
positive log-ratio, a GU-rich region and a strong APA signal. After correcting with the more stringent
Bonferonni method, the same two pairs remained. Those two individual/SNP pairs were actually the
same SNP (rs2269123 in gene MRPS34 ) from two breast cancer cell lines (BT474 and MCF-7; p-values
5.53 ∗ 10−3 and 1.09 ∗ 10−11, respectively), suggesting that this SNP gives a functional APA signal that
strongly affects host gene expression.

MicroRNAs link higher proportion of APA alleles to higher gene expression

Since heterozygous SNPs in strong APA signals can have an increased imbalance towards APA alleles,
we investigated whether positive allelic imbalance can be associated with increased gene expression; that
is whether a higher proportion of APA alleles than non-APA alleles was associated with an increased
total allele count. We focused on the 12 samples from the Burge dataset that we could match to miRNA
expression data in similar cell types from Landgraf et al. [16]; these were the 3 breast cancer cell lines
(MCF7, BT474 and T47D), and the liver, heart, testis, and 6 cerebellum samples. In those 12 samples,
we identified 174 allelic ratios (97 unique SNPs) that were classified as heterozygous when mapping to
both the reference and non-reference allele based genomes. Given the miRNA profile, we then assigned
a miRNA score which predicted the potential effect that a cleavage site at the SNP locus would have on
miRNA regulation (see Methods).

Based on the 174 allelic ratios, we compared SNP expression (sum of APA and non-APA allele counts)
for groups with higher APA allele proportion (positive log AR) with groups with higher non-APA allele
proportion (negative log AR; Fig. 5). We found that SNPs with strong APA signal, high GU level, and
high miRNA score had a significant log SNP expression difference between positive log ratios and negative
log ratios. This indicates that APA alleles of SNPs with strong APA sites and high miRNA scores can
upregulate gene expression (Fig. 6). This links positive allelic imbalance to higher gene expression.

MicroRNAs link genotype to increased gene expression

To confirm the results from the RNA-seq-based allelic imbalance analyses, we turned to gene expression
data from the well characterised Hapmap population. We looked at human gene expression profiling of
EBV-transformed lymphoblastoid cell lines from 270 unrelated Hapmap individuals [17], and genotypes
of the same individuals, from the Hapmap database [11]. Specifically, we first investigated whether
genotypes of SNPs in strong polyA sites that affect miRNA targeting in general are associated with
increased gene expression. Second, we investigated whether individual APA-SNP genotypes correlate
significantly with gene expression.

Genotype of SNPs in strong polyA sites and the loss of miRNA target sites can explain

increased gene expression

From the Hapmap expression profiles and our 412 potential APA-SNPs, we identified 333 SNPs that
could be mapped to 315 unique probe IDs. Discarding SNPs sharing the same probe IDs, resulted in 299
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unique SNPs and probe IDs. We then used human miRNA expression profiles from EBV-transformed
lymphoblastoid cell lines [18], to compute a miRNA score that quantifies the potential effect of a cleavage
site at each SNP locus on miRNA regulation (see Methods).

Simple regression analyses with mRNA expression as response variable and with each of genotype,
signal rank, local GU level downstream of the signal, and miRNA score as dependent variables, found
that the GU level explained the most of the mRNA variance (r2 = 3.3%). We therefore computed the GU
level in the whole 3’UTR and ran a regression of the mRNA expression on this variable. Surprisingly, we
found that this variable was positively correlated with higher gene expression for our 299 genes (ρ = 0.285,
p = 5.3 ∗ 10−7) and could explain 7% of the response variance. One possible explanation is that non-
canonical polyA sites are thought to rely mostly on downstream GU-rich elements [19]. If this explanation
is true we could expect that genes with increased GU level in 3’UTR can have a higher number of APA
sites, which could result in generally higher mRNA expression. Indeed, based on polyA Db, we found
that 3’UTR GU level is positively correlated with the number of polyA sites in each gene (ρ = 0.193,
p < 2.2∗10−16, n = 13181). Moreover, the number of polyA sites is also positively correlated with mRNA
expression from microarray data (ρ = 0.200, p < 2.2 ∗ 10−16, n = 11756). Expectedly, longer 3’UTRs
are more likely to have more polyA sites (correlation coefficient ρ = 0.333, p < 2.2 ∗ 10−16, n = 17298).
However, we also found that the GU level is correlated with 3’UTR length (ρ = 0.192, p < 2.2 ∗ 10−16,
n = 17934). All these results suggest that the 3’UTR GU level is a confounding variable giving increased
APA and thereby mRNA expression. We therefore analysed mRNA expression data after correcting for
the general 3’UTR GU level; i.e. we regressed the mRNA expression on the 3’UTR GU content and used
the residuals as the new response variable.

When comparing residual gene expression medians for the 3 genotypes (Fig. 7), we found that increased
expression correlates with the number of APA alleles in the genotype and that SNPs with strong APA
signal (S) had a significant gene expression median difference between the 3 genotypes (Fig. 7 A). This
was particularly evident for SNPs with high miRNA score (Fig. 7 B), which are those that are supposed
to have the strongest effect on miRNA regulation. Furthermore, a multiple regression on transcript length
from the Burge RNA-seq data showed that APA homozygotes, cell proliferation, strong signals, and local
and global GU levels, all contribute significantly to reduced transcript lengths (Table S5). Together, these
results indicate that APA alleles of SNPs with strong APA sites and high miRNA scores can upregulate
gene expression and link APA homozygotes to increased gene expression.

Gene expression can detect potential functional APA-SNPs

Since genotype of SNPs in strong polyA sites and the loss of miRNA target sites can be associated with
increased gene expression, we decided to use correlation to detect potential functional APA-SNPs. Of the
333 candidate SNPs that mapped to gene probes, we discarded SNPs that were in genes whose maximum
expression value among the 270 individuals was lower than the total expression median, to remove from
the analysis genes that are very low or unexpressed in all the individuals. 243 SNPs remained and we
tested these separately in a correlation analysis of genotype and mRNA expression.

We found 47 SNPs (on 47 genes) that were significantly different from 0 (see Table S6). All had a
positive coefficient, indicating a positive correlation between genotype and gene expression. This fits both
previous results where APA was associated with increased expression levels [4] and our RNA-seq results.
After correcting for multiple testing with the Benjamini & Hochberg correction, 19 SNPs remained
significant; 13 SNPs remained if correcting with stringent Bonferroni correction.

Potential functional APA alleles are positively correlated with risk alleles from

disease-associated SNPs

Since SNPs can alter polyadenylation and affect miRNA target sites and gene expression, we wondered
whether they can also play an important role in human diseases. We therefore tested if any of our APA-
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SNPs were linked to trait-associated SNPs from the NHGRI GWAS catalogue [20, 21], which consists
of SNP-trait associations from published genome-wide association studies (GWAS) (accessed Apr. 18,
2011). Specifically, we mapped our 412 APA-SNPs to the 4304 GWAS SNPs, by using the mapping
method described in Thomas et al. [22]. The mapping was based on linkage disequilibrium (LD) data
from the Hapmap database (CEU population release 27). We identified 135 APA-SNP/GWAS-SNP pairs
(consisting of 84 unique APA-SNPs and 123 unique GWAS SNPs) that had available haplotype data in
Hapmap and one known and unique risk allele in the GWAS catalogue. For each APA-SNP/GWAS-
SNP pair, we computed the correlation between the APA allele and risk allele as the LD value r =

pAR−pA∗pR√
pA∗(1−pA)∗pR∗(1−pR)

[23], where pA, pR, and pAR are respectively the APA allele frequency of the APA-

SNP, the risk allele frequency of the GWAS SNP, and the “APA allele risk allele” haplotype frequency
in the CEU Hapmap population. For each of the 84 unique APA-SNPs, we computed r̂ as the mean of r
when an APA-SNP was linked to several GWAS SNPs, and similarly r̂2 as the mean of r2.

We hypothesised that if APA-SNPs play a role in diseases, then APA alleles would be positively
(r̂ > 0) and strongly (high r̂2) correlated with risk alleles, particularly for the significant APA-SNPs that
we identified in the previous sections, as they are more likely to be functional, and particularly those that
are linked to GWAS-SNPs from CEU-population-related studies, since the r values are based on CEU
haplotypes.

Among the 84 APA-SNPs, 60 were paired to GWAS-SNPs that are trait-associated in CEU-related
populations. Nine of those SNPs were identified in the previous sections as significant APA-SNPs, and
those nine SNPs had a significantly high number of positive r̂ (more positive correlations between APA
and risk alleles than expected) and a significantly high number of r̂2 greater than 0.2 (higher number of
correlations between APA and risk alleles than expected) (Table 2). In contrast, for r̂ computed from CEU
haplotypes but for GWAS-SNPs that are trait-associated in non-CEU-related populations, binomial test
p-values were not significant, suggesting that GWAS and haplotype data should be matched according
to population, to detect potential disease-related APA-SNPs.

Those results show that a significantly high proportion of our candidate SNPs is in LD with trait-
associated SNPs and their APA alleles are positively correlated with risk alleles of trait SNPs. This
suggests that those APA-SNPs can potentially be the cause of their corresponding disease-association
signals measured and registered in the GWAS catalogue.

Discussion

Our analyses confirmed the hypothesis (presented in Fig. 1) that SNPs can create functional alternative
polyadenylation signals and thereby affect miRNA-based gene regulation and give increased gene expres-
sion. Both EST and RNA-seq analyses supported our hypothesis, despite some limitations. Additionally,
the microarray analysis could also confirm those results and strengthen our hypothesis. Given those
results, we estimate the proportion of functional APA-SNPs to be (2 + 1 + 13)/(13 + 36 + 243) = 0.055
(5.5%).

The EST analysis supports our hypothesis but has some limitations. Specifically, we analysed EST
data for 13 genes and found that 2 of them had an APA-SNP that could create polyA motifs and affect
3’UTR length. However, the EST analysis does not take into account the presence of a polyA tail in
the EST sequence. Moreover, the ESTs came from a mix of tissues, which could also affect the results.
Segregating ESTs based on tissue origin or filtering on sequences with clear tails in the “short” group,
reduces sample size and affects statistical power. However, when combining sequences from our two
significant genes, all of the 12 EST sequences ending at the alternative cleavage site and that have a
polyA tail, had the APA allele. This number is significant (binomial test p-value of 0.024, where the
expected proportion of the APA allele is the combination of weighted allele frequencies of APA alleles for
the 2 SNPs), and tells that the shortened transcripts arose from functional APA signals from the APA
alleles.
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Similarly, RNA-seq data from the Burge Lab, matched to miRNA expression data showed association
between alternative polyA site strength (signal and GU-content), loss of miRNA target sites, allelic
imbalance, and transcript expression. The Burge dataset was generated by using cDNA fragmentation,
which gives a good coverage of 3’UTRs [24]. An increased allelic imbalance towards the APA allele could
come from the loss of miRNA target sites, but also from the fragmentation method. This is because
cDNA fragmentation gives a good coverage at the end of the transcript, and, in case of alternative
polyadenylation, the transcript is shorter for the APA allele, which results in a high coverage at the SNP
locus. In contrast, a longer transcript with the non-APA allele could have a higher coverage downstream,
but a lower coverage at the SNP locus. Bias from cDNA fragmentation would therefore give an increased
allelic ratio towards the APA allele simply because of transcript length differences. Consequently, we
cannot exclude that some of the overall RNA-seq trends can be attributed to cDNA fragmentation bias.

The independent microarray data strongly support the EST and RNA-seq results, however. Specif-
ically, the mRNA and miRNA expression data from microarray showed association between alternative
polyA site strength (signal and GU-content), loss of miRNA target sites, and transcript expression. This
microarray analysis had the advantage of directly using genotype data from Hapmap, instead of genotyp-
ing SNPs through mapped RNA-seq reads. Furthermore, the microarray analysis focused on transcript
expression differences between individuals and therefore required data from a unique cell type, whereas
the RNA-seq analysis focused on allelic expression differences within a sample and could therefore involve
different cell types. As expected, the microarray analysis showed similar results as the RNA-seq analysis,
suggesting that the increased allelic ratios from RNA-seq data did not come from a potential bias due to
the cDNA fragmentation method, but from the loss of functional miRNA target sites.

One clear disadvantage of using the RNA-seq data for genotyping and allelic-imbalance-based detec-
tion, was false positive homozygotes. We could detect potential functional candidate SNPs by testing for
allelic imbalance, which takes into account the number of reads and their quality, while testing for unusual
allele proportion patterns. The difficulty was to find extreme allelic imbalance, as we could miss extreme
imbalance by classifying a locus as homozygote because of too few reads (< 15%) corresponding to the
alternative allele. This was a conscious trade-off, however, since we wanted to maximise true positive
heterozygotes and avoid false positives (i.e. predicted heterozygotes that were in fact homozygous).

RNA-seq data enabled us to genotype SNPs in expressed genes and compute allelic imbalance. Geno-
type classification could be checked with known genotypes from the Heap dataset and with mono-allelic
SNPs. However the Heap dataset could not be used in the allelic imbalance analysis, because the library
was generated by using RNA fragmentation, which gives a good coverage for the coding regions [24], but
not for the UTRs. Since we were interested in SNPs in 3’UTRs, and particularly at the end of potential
alternative transcripts, RNA fragmentation would affect allelic imbalance.

The whole analysis is limited to SNPs that can make the reference 3’UTR shorter, lose miRNA sites
and upregulate genes, because the loss of functional miRNA sites within the 3’UTR is more likely than
the gain of new ones downstream of the annotated 3’UTR. However, it could be interesting to consider
the hypothesis where SNPs in the signals at the end of the reference transcript could make 3’UTR longer
having more miRNA target sites further downstream, and down-regulate the gene.

Alternative polyadenylation alleles play a role in 3’UTR shortening, gene deregulation, and increased
disease risk (Fig. 1). Our analyses confirm that APA is an important factor for miRNA-mediated gene
regulation [4]. EST data suggest that SNPs can create polyA motifs and affect 3’UTR length, and
allelic imbalance from RNA-seq data coupled to miRNA expression data suggest an association between
alternative polyA site strength (signal and GU-content), loss of miRNA target sites, allelic imbalance
and transcript expression. Similarly, mRNA expression data from microarray and genotype of the same
individuals, coupled with miRNA expression data could confirm association between alternative polyA
site strength (signal and GU-content), loss of miRNA target sites, genotype and transcript expression.

Each of our analyses could also be used to detect potential functional APA-SNPs. Those detected
APA-SNPs could be linked to GWAS-SNP markers. A significant part of those APA-SNPS had their
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APA allele positively correlated with disease-risk alleles and we propose that these are potential disease-
causative variants.

Methods

Datasets

We used SNP data from the CEU population (CEPH - Utah residents with ancestry from northern
and western Europe) from the human haplotype map project (HapMap database [11]), release 22 for
haplotype data, and release 27 for the genotype, allele, frequency, and linkage disequilibrium data. We
used the human genome assembly version 18 (hg18) [25], RefSeq gene annotations (hg18 version), and
EST sequences from the UCSC Genome browser [26]. We used human APA sites from PolyA Db [12,13].
We used disease-associated SNPs from the NHGRI GWAS catalogue [20, 21]. RNA-seq data came from
Heap et al. [15] and from the Burge Lab [27]. Human miRNA profiles came from Landgraf et al. [16]
(their Table S5) and from Wang et al. [18]. MicroRNA data came from the MirBase database release
16 [28].

Candidate SNPs in alternative polyadenylation signals

Thirteen polyA signal motifs are known in human genes: AAUAAA, AUUAAA, UAUAAA, AGUAAA,
AAGAAA, AAUAUA, AAUACA, CAUAAA, GAUAAA, AAUGAA, UUUAAA, ACUAAA, and AAUAGA
[1] (ordered by strength ranks). We detected SNPs in potential APA signals, by a motif search that looks
if any CEU Hapmap SNP in the 3’UTR of any coding gene would create/disrupt one of those 13 motifs.
For a given SNP, the motif search looks for a given motif in an mRNA sub-sequence consisting of the
SNP and its flanking sequences (6 nucleotides up/downstream), for each allele.

PolyA Db

We downloaded the 28.857 APA sites (human) from PolyA Db [12,13] from the UCSC track (hg18) [26].
We downloaded knownToLocusLink.txt and knownToRefSeq.txt from UCSC (hg18) [26] to convert entrez
gene ID to RefSeq gene ID. We took the intersection between our APA signals and polyA sites from
PolyA Db, by taking all the sites from PolyA Db that lie up to 40 bp downstream of our signals.

EST

For each of the 13 candidate genes, we downloaded the EST sequences (Expressed sequence tag) from
UCSC (hg18, tables ’all mrna’ and ’all est’) [26] that lie within their 3’UTR region. We also downloaded
their alignment to their reference mRNA sequence from UCSC [26], and the list of EST that support
the considered polyA site from PolyA Db2 [13]. We used sequence alignment to identify the allele and
haplotype of each sequence, when possible. Otherwise, the APA-SNP allele was imputed, by using
haplotypes from the CEU Hapmap population [11] (see Dataset). We tested the proportion of APA
alleles that support the candidate APA site, versus longer transcripts, by using a 2x2 contingency table.
If the 4 expected values were greater than 5: we used the 2x2 χ2−test, and Fisher’s exact test otherwise.

Allele imputation in EST data

Given a 3’UTR region of a gene of interest, we took all the phased SNPs from Hapmap [11] in that region,
as well as their haplotypes in the CEU population [11]. For each of those SNPs, we identified the allele
in the EST sequence when possible, to identify the EST haplotype. We discarded EST haplotypes that
had zero identified allele. For each remaining EST haplotype, we selected haplotypes from Hapmap that
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fit the identified alleles in the EST haplotype. The APA-SNP could be imputed if there was only one
unique allele at that SNP in all the selected haplotypes from Hapmap.

RNA-seq data

We downloaded RNA-seq data from human primary CD4+T cells from 4 individuals [15] (Short read
archive accession number: SRA008367), reads in FASTQ format, length of 45 bp. We downloaded Burge
lab RNA-seq [27] (Short read archive: SRA002355, and Gene expression omnibus: GSE12946): Human
tissue samples (brain, liver, heart, skeletal muscle, colon, adipose, testes, lymph node, breast, MAQC, 6
Cerebellum), immortalised and cancer cell lines (BT474, HME, MCF-7, MD435, T47D, MAQC UHR),
reads in FASTQ format, length of 36 bp. MAQC is a mixture of brain cell types from several donors,
MAQC UHR is a mixture of several cancer cell lines, and MD435 is thought to be contaminated by the
M14 melanoma cell line. Therefore those 3 cell lines were discarded from the allelic imbalance analysis.

RNA-seq mapping

We mapped RNA-seq reads using the RMAP software [29], with option ’-Q’ for position weight matrix
matching, based on quality score. Alignment was stored in BED files. We used the default options: 2
mismatches allowed in the 32 first nucleotides, 10 mismatches allowed in the whole read. Ambiguous
reads were discarded. Paired-End reads were mapped as Single-End reads.

We mapped those reads to 3’UTR ± 50bp: the reference sequence is all 3’UTR DNA sequences
(from the human genome assembly HG18 [25]) from all coding genes (excluding Y chromosome because
of overlap with X), including introns, extended of 50 nucleotides up- and downstream. Overlapping
sequences were merged (19012 regions). We mapped reads to a second version of the reference sequence,
where reference alleles of APA-SNPs were replaced by non-reference alleles.

RNA-seq genotyping

We counted base calls based on base quality probability score and sequence alignment score: We discarded
reads mapped with an alignment score s > 4, and reads that had a quality score < 99% accuracy at the
SNP. Quality score probability of accuracy at a SNP was computed as follows: p = 1− 10−ord(Q−33)/10,
where Q is the ASCII character of one base call in a read in FASTQ file format [30]. We computed the
mapping score as m = 1 − (s/5), where s is the alignment score given by RMAP. We counted alleles as∑

p ∗ m for each allele (for all the FASTQ files of each individual). We discarded alleles that do not fit
Hapmap bi-allelic SNPs. If there was only one allele left, we classified the SNP as homozygous. If there
were two alleles left, with both proportions greater than 0.15, we classified the SNP as heterozygous. If
there were two alleles but one had its proportion lower than 0.15, we classified the SNP as homozygous
with the allele having the biggest proportion.

RNA-seq transcript end estimation

We mapped reads from the Burge dataset using the alignment software Bowtie [31] version 0.12.7 with
default options. Bowtie generated alignments in the SAM format [32]. The transcript assembly software
Cufflinks version 1.3.0 [33] was then used with the SAM files to generate a list of expressed exons for
each run (default options). Those exons were then mapped back to annotated RefSeq genes. Exons that
mapped to several different genes were discarded; the corresponding genes they overlapped were also
discarded. For a given gene and a given run, the 3’ end of the exon that mapped the most downstream
on the gene was used as an estimate of the gene’s 3’ end. Finally, the distance between the estimate
and the annotated transcript end was computed for each gene and each run. This distance D is negative
when the transcript is shorter than the annotation and had a logarithmic distribution for negative Ds.
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Few transcripts were longer than the annotated transcription end site, resulting in positive D values. To
handle these few positive D values, we put a threshold at 30, so that all D ≥ 30 were truncated to 29.
We then converted the Ds to the logarithm scale by using the following formula: − log (−D + 30).

Allelic imbalance

Log Allelic Ratio for each heterozygous SNP is defined as logAR = log |APAallele|
|nonAPAallele| , where counts of

alleles are computed in a similar way as in the genotyping section (by taking base quality and alignment
score into account). logAR is positive when the transcripts with APA alleles are up-regulated compared
to non-APA allele.

However, to avoid that a mapping bias towards reference alleles affects allelic ratios, we used a
corrected allelic imbalance in our analyses, by combining allelic ratios computed from reads mapped to
the reference genome with reference alleles, and allelic ratios computed from reads mapped to the same
genome but with non-reference alleles at candidate SNPs. We defined it as the mean of the two log-ratios:

log2 AR = log2

√
AR

BR

ANR

BNR

where AR is the allelic ratio, AR and ANR are the counts of APA alleles mapped to respectively the
genome with reference alleles, and the one with non-reference alleles. Similarly BR and BNR are the
counts of non-APA alleles.

GU-rich regions

We took all the known coding genes from the UCSC RefSeq gene database (hg18) [26]. To define the
precise region of GU-analysis, for each gene, we computed the GU proportion in a 5-nucleotide long
window sliding from the polyA signal downstream in a 70-nucleotide long region. Those curves represent
the variation of GU proportion in the region for each gene. We then took the mean of all the curves,
which showed that the increased GU region was from the 25th window to the 45th window (Fig. S4). We
therefore defined the GU level as the mean of the GU-proportions in the 5-nucleotide windows, from the
25th to the 45th downstream of the polyA signal.

Scoring APA for miRNA regulation

MicroRNA expression in Burge samples

Human miRNA profiles from Landgraf et al. [16] (their Table S5) were matched to Burge samples. We
grouped and summed miRNA expression for mature miRNAs that have the same seed sequence and
identified 117 seeds having a non-null expression.

MicroRNA expression in Hapmap cell lines

We took human miRNA profile from Wang et al. [18] (Gene expression omnibus: GSE14794), consisting
of miRNA expression for EBV-transformed lymphoblastoid cell lines for 90 samples. For each of the 735
miRNA probes, we took the mean expression value among the 90 samples, resulting in one expression
value per probe. We then computed the mean expression value among miRNA probes, and discarded all
probes being smaller than the mean: 275 probes remained. We mapped probe IDs to miRNA seeds using
the Illumina annotation file HumanMI V1 R2 XS0000122-MAP. A total of 215 miRNA seeds remained.
For each seed, we summed the exponential of expression values of the corresponding probes, since they
were at a logarithm scale. We used these scores to compute the proportion of expression for each seed.
We discarded seeds that do not have reference mature miRNAs in the MirBase database release 16 [28].
163 seeds corresponding to 285 mature miRNAs remained.
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MicroRNA scores

For each of the candidate SNPs and their corresponding RefSeq genes, we defined a short 3’UTR as the
exonic region from the mRNA stop codon to the SNP, and a long 3’UTR, as the reference 3’UTR. We
computed miRNA target predictions on those short and long sequences using the prediction tool from
Saito et al. [34] for all mature miRNA sequence corresponding to the seed sequences identified in the
considered cell line. The tool scores the mRNA/miRNA pairs, according to how a miRNA targets an
mRNA: a high score means that the miRNA is more likely to down-regulate the mRNA. To compare
scores for long and short UTRs, we normalised scores using the normalising method described in Thomas
et al. [22]. Then for a given pair of miRNA seed and a UTR sequence, we took the score mean when
one miRNA seed motif corresponded to several mature miRNAs, to have one score per seed. Then for a
given UTR sequence, we computed a global score taking all expressed miRNAs into account: we summed
scores for all the seeds, weighted by their proportion of expression in the considered cell line. When a
gene corresponded to several RefSeq transcripts we took the score mean, resulting in having one long
UTR score and one short UTR score for each candidate SNP. We could then compute the score difference
for each SNP: this quantifies the potential effect of a cleavage site at the SNP locus on miRNA regulation.

Messenger RNA expression and genotype

We downloaded human gene expression profiling of EBV-transformed lymphoblastoid cell lines from
270 unrelated Hapmap individuals [17] (Gene expression omnibus: GSE6536, data normalised across
populations), and genotypes for the same individuals, from the Hapmap database release 27.

We mapped probe IDs to RefSeq genes using the BioConductor package for R [35, 36] (R version
2.10.1, AnnotationDbi package version 1.8.2 [37] and the annotation file illuminaHumanv1.db version
1.4.0). One candidate SNP could have one or several RefSeq gene IDs, which could be mapped to one or
several probe IDs. Among those probe IDs, we selected the one with maximum variance across all the
individuals in the dataset, and assigned it to the given SNP in the 3’UTR.

Genotype was encoded as 0, 1, and 2 for non-APA homozygotes, heterozygotes, and APA homozygotes,
respectively.

Bootstrapping median differences

We computed bootstraps of median differences: Given two groups with different sizes, we resampled
with replacement in each group with their actual original size. We took the median in each resampling
and computed the difference. We repeated this procedure 1000 times to create a median difference
distribution, which was then used to compute the 95% confidence interval (95% CI).

Mapping APA-SNPs to GWAS

We mapped APA-SNPs to GWAS SNPs, using the mapping method described in Thomas et al. [22]. The
mapping was based on linkage disequilibrium (LD) data from the Hapmap database (CEU population
release 27). The mapping parameter was the threshold T = 0 (see Thomas et al. [22]), to identify all
neighbouring APA-SNP/GWAS-SNP pairs.

Supporting information

Text S1 Translation of the Abstract into French by LFT

Text S2 RNA-seq data successfully genotype known SNPs.
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Figure S1 Diagram showing the workflow of our analyses and summarizing the number of SNPs in-
vestigated in each analysis.

Figure S2 Distribution of Hapmap SNPs within 3’UTRs of all RefSeq genes. Panel (A) shows the
SNP distribution as a function of relative position within the 3’UTR (coding end site at position 0 and
transcript end site at position 1). The SNP distribution, which is based on a kernel density estimate, is
relatively uniform across the 3’UTR. Panels (B) and (C) show the SNP distribution from, respectively,
500 bp and 200 bp upstream of the transcription end position to the first 50 bp outside the gene. The
SNP density is uniform within the 3’UTR except at the polyA signal position around 30 bp upstream of
the transcript end.

Figure S3 Distribution of distance D between estimated and annotated transcript ends within the
Burge RNA-seq data, grouped into six sub-groups by the samples’ cell proliferation state (non-proliferating
vs. proliferating) and the APA SNPs’ genotype (WT Hom.: homozygous wildtype; Het.: heterozygous;
APA Hom.: homozygous APA). The distance D is shown on a negative logarithmic scale to reflect that
the estimated transcript ends are shorter than the annotated ends. As expected, transcripts in prolifer-
ating cells are shorter than in non-proliferating cells. Moreover, transcripts that have homozygous APA
SNPs are shorter than other genotypes; particularly for non-proliferating cells.

Figure S4 GU content around transcription end site, based on all RefSeq genes. Mean of curves defined
as GU proportion in a 5-nucleotide window sliding from the polyA signal to 70 nucleotides downstream.
The GU-rich region is located between the 25th window and the 45th window.

Table S1 A portion of the EST-based polyA sites from PolyA Db that do not have any signal in N

nucleotides upstream of the cleavage site when looking at the reference genome, can be explained by a
SNP in the region creating a signal from the SNP’s non-reference allele.

Table S2 Checking genotyping of 755 mono-allelic SNPs in 2 datasets (Heap and Burge). Columns
correctHOM, incorrectHOM, and incorrectHET show the number and proportion of correctly classified
homozygotes and of incorrectly classified homozygotes and heterozygotes among the total number of
genotypes, respectively; ’correct|classified’ shows the proportion of correctly classified homozygotes among
classified genotypes. Row Burge CEU corresponds to individuals in the Burge dataset that are Caucasian.

Table S3 Genotyping results for the 412 candidate APA-SNPs in the Heap and Burge datasets.

Table S4 PolyA signal frequencies. The first three columns show polyA signal ranks, signal hexamers,
and their frequencies in human genes from Tian et al. [1]; columns four and five show the hexamers’
absolute and relative frequencies in human RefSeq 3’UTRs; column six shows the signal frequencies
divided by the signals’ relative frequencies in human 3’UTRs; and columns seven and eight show the counts
and frequencies of our 412 candidate APA-SNPs. PolyA signal frequency (“PAS frequency”) corresponds
well with how frequently the signal causes polyadenylation (“PAS frequency/Motif frequency”).

Table S5 Multiple regression on distance between the estimated and the annotated transcript end (D;
see Methods) and APA SNP genotype, cell proliferation status, APA signal strength, and local and global
GU level. We only considered SNPs that lie at least 1500 kb from the annotated 3’ end. (A) All the
dependent variables contribute significantly and negatively to the response variable (D), which means
that homozygous APA SNPs, proliferating cells, strong signals, local and global GU levels all contribute
to shortened 3’UTRs. (B) We get similar results when controlling for the global GU level. Specifically,
the response variable in this analysis was the residuals from regressing global GU level on D.
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Table S6 Significant APA-SNPs from the microarray, EST and RNA-seq analyses.
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Figure 1. A model of the effect of APA-SNPs in the 3’UTR of a gene. Top panel: For the C
allele, the second cleavage site (CS) is used, because the first polyA signal is not functional. For the A
allele, the first polyA signal is functional, therefore the pre-mRNA can be cleaved at the first CS,
resulting in a loss of functional miRNA target sites downstream, and increased gene expression. Middle
panel: EST sequences enable identifying APA-SNP alleles and 3’UTR length. Bottom panel: RNA-seq
reads enable genotyping APA-SNPs and quantifying expression patterns.
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Figure 2. SNPs can affect 3’UTR length. Panels (A) and (B) show 3’ ends of the MIER1 and
PNN genes as annotated in PolyA Db (3’ ends of the horizontal lines), and their candidate APA SNP.
The four other graphs show the inverse cumulative distribution of EST sequence ending position for
APA alleles (triangles) and non-APA alleles (circles). The dashed vertical line shows the threshold
separating short and long transcripts. The transcript proportion is decreasing before the threshold for
APA alleles, compared to non-APA alleles. This decrease indicates that APA alleles are more likely to
produce shorter transcripts. Panels (A), (C) and (E) show the MIER1 gene. Panels (B), (D) and (F)
show the PNN gene. Several unknown alleles could be imputed through haplotypes (included in Panels
(C) and (D)).
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Figure 3. Increased allelic imbalance correlates with signal strength and depends on

downstream GU-content. Log allelic ratio distribution of APA allele over non-APA allele for each
polyA signal ordered by strength. Panel (A): log allelic ratio is negatively correlated with signal rank
for all APA-SNPs. Compared with all APA-SNPs, APA-SNPs with a GU-rich region (Panel (B)) have a
stronger negative correlation between log allelic ratio and signal rank. For APA-SNPs without a
GU-rich region (Panel (C)), there is no significant correlation between signal rank and log allelic ratio.
The graphs include data from the 19 non-mixed cell lines and tissues. The line in each panel shows the
linear regression line; the corresponding Pearson correlation coefficient r is in the panel’s upper left
corner.
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Figure 4. Allelic imbalance distributions according to signal strength and downstream GU

levels. Allelic imbalance is increased towards APA alleles for APA-SNPs in strong (S) signals with high
downstream GU levels. The graph shows a box-plot of the log AR distribution of APA-SNPs grouped
by signal strength (weak (W) and strong (S)) and downstream GU levels.
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Figure 5. SNP expression difference between SNPs with positive and negative log allelic

ratios. Logarithm of SNP expression median difference between SNPs with positive log allelic ratios
and those with negative log allelic ratios, in several groups (low and high GU level, low (LMS) and high
(HMS) miRNA score, and weak (W) and strong (S) signal). Crosses show median differences.
Bootstrapping median differences gives 95% CI. Only one CI does not contain zero: the one with high
GU, HMS and S, indicating that positive allelic imbalance for SNPs in strong polyA sites and affecting
miRNA target sites, is associated with increased SNP expression, and therefore increased gene
expression.
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Figure 6. SNP expression distributions according to allelic imbalance direction. SNPs in
strong APA signal, with high GU level and high miRNA score, have a significantly higher logarithm of
SNP expression for SNPs with imbalance towards APA allele (positive (P) log allelic ratio), compared
to SNPs with imbalance towards non-APA allele (negative (N) log allelic ratio)
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Figure 7. APA homozygotes have an increased gene expression for strong polyA signals

and high miRNA score. Gene expression medians in several groups are shown: Median differences
between the APA homozygotes and non-APA homozygotes (Rhombus), and between heterozygotes and
non-APA homozygotes (Cross). 95% CI for median differences are shown. Expression of APA
homozygotes is generally higher, followed by heterozygotes, and then finally non-APA homozygotes.
(A): genes where alternative polyadenylation does not affect miRNA targeting (low miRNA score).
Strong signals (S) have a slightly higher median difference compared to weak signals (W). (B): genes
where alternative polyadenylation affects miRNA targeting (high miRNA score). Strong signals have a
significantly higher median difference
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Tables

Table 1. Significant genes in the EST analysis
no correction Benjamini&Hochberg correction

Gene imputation no imputation imputation no imputation
MIER1 0.004* 0.016* 0.032* 0.103
PNN 0.005* 0.004* 0.032* 0.058

* shows significant p-values.

P-values for 2x2 χ2
−test comparing the proportion of alleles with APA signal for short versus long EST sequences. The

MIER1 and PNN genes were significant (including and not including imputed alleles). After correcting for multiple
testing, the proportions including imputed alleles remained significantly different between short and long ESTs.

Table 2. Potential functional APA alleles are positively correlated with risk alleles from

GWAS SNPs.
Predicate Success count Trial count Success probability under H0 p-value (>)
[r̂ > 0] 8 9 32/60 = 0.533 0.03
[r̂2 > 0.2] 5 9 15/60 = 0.25 0.049

Two predicates were tested in a binomial setting: [r̂ > 0] for positive trend correlation between APA and risk alleles, and
[r̂2 > 0.2] for the strength of the correlation. For the 60 APA-SNPs paired to GWAS-SNPs, the proportions of r̂ > 0 and
r̂2 > 0.2 were respectively 0.53 and 0.25. Among the 9 SNPs identified in the previous sections as functional candidate,
respectively 8 and 5 succeeded the Bernoulli trial. Both null hypotheses were rejected.
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Supporting Abstract:
Single Nucleotide Polymorphisms Can Create Alternative

Polyadenylation Signals and Affect Gene Expression through Loss
of MicroRNA-Regulation

Laurent F. Thomas and P̊al Sætrom

Translation of the Abstract into French by LFT

La polyadénylation alternative (APA) est un mécanisme qui peut se produire
par exemple lorsqu’un gène codant pour une protéine présente plusieurs signaux
de polyadénylation (polyA) dans son dernier exon, résultant ainsi en ARN mes-
sagers (ARNm) de différentes longueurs au niveau de leur région 3 ’ non traduite
(UTR). Différentes longueurs de 3 ’ UTR peuvent perturber la régulation des
gènes par microARNs (miARNs) de telle sorte que l’expression des transcrits
écourtés augmente. L’APA fait partie des mécanismes naturels de régulation
des cellules humaines, mais semble également jouer un rôle important dans de
nombreuses maladies humaines. Bien qu’une polyadenylation altérée dans le
cadre de pathologies puisse avoir plusieurs causes, nous avons présupposé que
des mutations d’ADN au niveau d’éléments particulièrement importants dans
le processus de polyA, tels que le signal de polyA ainsi que la région en aval
riche en GU, pouvaient être un important mécanisme d’altération. Pour tester
cette hypothèse, nous avons identifié des polymorphismes nucléotidiques simples
(SNP) qui peuvent créer ou perturber des signaux de polyA alternative (APA-
SNP). En utilisant une approche d’intégration de données, nous montrons que
les APA-SNPs peuvent affecter la longueur du 3 ’ UTR, la régulation par miARN
et l’expression d’ARNm — et ce, en comparant aussi bien l’expression des gènes
d’individus homozygotes que l’expression allélique d’individus hétérozygotes.
Par ailleurs, nous montrons qu’une proportion significative d’allèles causant
l’APA est fortement et positivement liée aux allèles identifiées comme étant à
risque par des études pangénomiques d’association à diverses maladies. Nos
résultats confirment que l’APA-SNP peut modifier la régulation des gènes et
que les allèles d’APA donnant des transcrits raccourcis ainsi qu’une augmenta-
tion de l’expression des gènes peuvent être une importante cause de maladies
héréditaires.
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RNA-seq data successfully genotype known SNPs

We used our genotyping approach (see Methods) to analyse Heap and colleagues’
RNA-seq data [1], which are based on human primary CD4+T cells from 4 in-
dividuals. After mapping the reads to the reference genome, we could genotype
our 755 candidate SNPs that are mono-allelic in the Hapmap CEU population,
since the 4 individuals are known to be Caucasian. Of the 755 ∗ 4 = 3020 possi-
ble genotypes, 1650 were correctly classified as homozygous with the expected
Hapmap allele, 1360 could not be classified because of the lack of reads (unex-
pressed genes), only 3 were misclassified as heterozygous, and 7 were misclassi-
fied as homozygous with the unexpected allele (minor allele frequency (MAF)
allele) (Table S2). We also took the intersection between the known heterozy-
gous SNPs reported in Heap et al. [1], and our candidate SNPs (26 genotypes,
19 SNPs), and could classify all of them as heterozygous (Table S2).

We also analysed the Burge Lab’s RNA-seq data [2], which are based on
22 unrelated individuals; specifically, 7 cancer cell lines and 15 tissue samples.
Again we genotyped SNPs that are mono-allelic in the CEU population and
got similar results as for the Heap data (Table S2). Discarding samples that
are not Caucasian increased the fraction of correctly classified genotypes (Ta-
ble S2), which is consistent with us using the CEU Hapmap population to assess
correctness. Specifically, by using the Hapmap CEU population to evaluate our
genotyping approach, we got an upper-bound estimate of our method’s accuracy,
as the CEU population only approximates our samples’ true genetic variations.
Table S3 shows the number of classified genotypes in the 2 datasets for our
candidate SNPs, which exclude mono-allelic SNPs. Based on the CEU-based
validations, we expected most of these genotypes to be correct.
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Supplementary Figure S1
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Supplementary Figure S2
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Supplementary Figure S3
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Supplementary Table S1

Region Size # PolyA sites # PolyA sites with SNP-created Signal
N without Signal CEU Hapmap dbSNP126 dbSNP130
40 1728 6/1728 21/1728 24/1728
80 1343 9/1343 20/1343 26/1343
100 1210 10/1210 22/1210 26/1210

Supplementary Table S2

Dataset n total genotypes correctHOM incorrectHOM incorrectHET correct|classified
Heap 4 4 ∗ 755 = 3020 1650(54.6%) 7(0.23%) 3(0.1%) 99.4%
Burge 22 22 ∗ 755 = 16610 5748(34.6%) 42(0.25%) 51(0.31%) 98.41%

Burge CEU 18 18 ∗ 755 = 13590 4753(35%) 20(0.15%) 33(0.24%) 98.9%

Supplementary Table S3

Dataset n total genotypes classified
Heap 4 4 ∗ 412 = 1648 865(52.5%)
Burge 22 22 ∗ 412 = 9064 3156(34.8%)



Supplementary Table S4

PAS Motifs in 3’UTRs PAS frequency
Motif frequency

APA-SNPs
rank signal frequency count frequency count frequency
1 AAUAAA 53.18% 24436 15.90% 3.35 10 2.43%
2 AUUAAA 16.78% 13614 8.86% 1.89 27 6.55%
3 UAUAAA 4.37% 11434 7.44% 0.59 33 8.01%
4 AGUAAA 3.72% 7459 4.85% 0.77 23 5.58%
5 AAGAAA 2.99% 17767 11.56% 0.26 55 13.35%
6 AAUAUA 2.13% 9818 6.39% 0.33 23 5.58%
7 AAUACA 2.03% 7667 4.99% 0.41 42 10.19%
8 CAUAAA 1.92% 6507 4.23% 0.45 27 6.55%
9 GAUAAA 1.75% 5914 3.85% 0.45 23 5.58%
10 AAUGAA 1.56% 11005 7.16% 0.22 44 10.68%
11 UUUAAA 1.20% 25949 16.88% 0.07 55 13.35%
12 ACUAAA 0.93% 6570 4.27% 0.22 24 5.83%
13 AAUAGA 0.60% 5565 3.62% 0.17 26 6.31%

total 93.16% 153705 100% 412 100%

Supplementary Table S5

A
Variables βi estimates p-values

Genotype (WT:0, HET:1, APA:2) -0.30010 5.9 ∗ 10−12

Proliferating (True: 1, False: 0) -0.89453 < 2 ∗ 10−16

Signal (Strong: 1, Weak: 0) -0.18289 1.7 ∗ 10−2

Local GU level -1.06154 9.3 ∗ 10−4

Global GU level -10.30803 1.5 ∗ 10−4

Multiple R2: 0.0726

B
Variables βi estimates p-values

Genotype (WT:0, HET:1, APA:2) -0.29752 8.4 ∗ 10−12

Proliferating (True: 1, False: 0) -0.89865 < 2 ∗ 10−16

Signal (Strong: 1, Weak: 0) -0.18015 1.8 ∗ 10−2

Local GU level -0.93212 1.9 ∗ 10−3

Multiple R2: 0.0616



Supplementary Table S6. Excel sheet for microarray results

SNP Gene 3'UTRlengtSNPprop Signal GU DS Lympho pearson r pvalue BH pv bonf pv
rs3763406 FAM62B 3209 66,50 % 2 0,5 0,102 0,418 3,86E-12 9,37E-10 9,37E-10
rs986475 NCR3 172 77,91 % 1 0,7 0,000 0,410 1,05E-11 1,27E-09 2,55E-09
rs3743955 ITPRIPL2 5561 90,92 % 9 0,59 0,041 0,378 3,94E-10 3,20E-08 9,59E-08
rs10793442 ZNF239 358 92,46 % 9 0,76 0,000 0,342 1,78E-08 1,08E-06 4,33E-06
rs1060379 ZNF117 3667 82,00 % 2 0,52 0,053 0,337 2,86E-08 1,39E-06 6,94E-06
rs15062 BCKDHB 2466 92,09 % 2 0,48 0,033 0,283 3,23E-06 1,31E-04 7,86E-04
rs6972005 CALU 2310 80,48 % 6 0,59 0,017 0,267 8,52E-06 2,96E-04 2,07E-03
rs9162 CCDC74A 268 74,25 % 8 0,48 0,000 0,241 3,76E-05 1,07E-03 9,14E-03
rs6777019 CGGBP1 3523 51,49 % 7 0,67 0,132 0,247 4,23E-05 1,07E-03 1,03E-02
rs4612984 EXOC5 6133 71,20 % 2 0,47 0,175 0,249 4,39E-05 1,07E-03 1,07E-02
rs1052873 PBK 684 4,09 % 8 0,51 0,075 0,238 6,11E-05 1,35E-03 1,48E-02
rs3209335 PPM1A 6606 90,37 % 6 0,69 0,010 0,222 1,31E-04 2,64E-03 3,17E-02
rs1942 RTF1 2875 53,50 % 9 0,49 0,104 0,228 0,0002 2,82E-03 3,67E-02
rs1043881 BCAT1 6663 98,42 % 13 0,44 -0,007 0,222 0,0002 0,0039
rs29069 VAPA 5810 30,15 % 8 0,49 0,097 0,210 0,0005 0,0073
rs11920 C10ORF18 1948 44,30 % 4 0,51 0,176 0,204 0,0007 0,0107
rs9242 SRGAP2 3018 87,14 % 13 0,45 0,026 0,186 0,0011 0,0155
rs1188401 MATN1 2303 68,22 % 7 0,21 0,025 0,178 0,0027 0,0362
rs7305647 SUDS3 3602 92,39 % 9 0,7 0,011 0,174 0,0030 0,0390
rs1156 CHD6 2063 58,31 % 5 0,53 0,156 0,157 0,0051
rs702530 PDE4D 5625 52,14 % 3 0,37 0,024 0,163 0,0052
rs3745008 SLC14A2 576 2,95 % 7 0,31 0,079 0,161 0,0056
rs1053489 WDR48 1647 63,39 % 13 0,63 0,077 0,157 0,0067
rs1653589 CAMKK2 3007 32,03 % 10 0,56 0,069 0,154 0,0077
rs12608564 ZNF551 1513 55,58 % 8 0,55 0,076 0,154 0,0077
rs1057403 BTK 431 44,32 % 5 0,4 0,003 0,146 0,0111
rs10921309 TROVE2 1582 18,52 % 7 0,37 0,107 0,142 0,0119
rs703258 VCL 1987 79,72 % 11 0,52 0,084 0,136 0,0127
rs11948089 WDR36 3619 50,07 % 7 0,54 0,138 0,138 0,0127
rs1061686 NUDT19 1839 91,41 % 2 0,35 0,000 0,140 0,0132
rs10686 SEC23IP 7966 98,93 % 11 0,72 0,004 0,130 0,0162
rs2833955 C21ORF62 3004 85,09 % 9 0,64 0,061 0,129 0,0171
rs1061646 ZNF276 2678 49,40 % 5 0,55 0,095 0,131 0,0198
rs506619 DTNA 2651 11,69 % 13 0,53 0,154 0,128 0,0220
rs4145905 SORBS1 3286 40,66 % 10 0,67 0,200 0,127 0,0233
rs10143429 C14ORF129 1542 92,93 % 10 0,57 0,001 0,121 0,0270
rs4558 TJP2 830 74,70 % 8 0,63 0,052 0,118 0,0281
rs27194 NLRC5 996 7,43 % 9 0,5 0,152 0,117 0,0295
rs3731661 WDR35 3290 74,83 % 10 0,7 0,026 0,116 0,0324
rs12479 HSPA13 2501 26,71 % 13 0,56 0,117 0,117 0,0327
rs3750992 TRIM68 1604 11,35 % 11 0,49 0,155 0,116 0,0343
rs158688 SYK 2950 32,95 % 5 0,25 0,111 0,116 0,0349
rs10476052 ICHTHYIN 1762 32,12 % 5 0,53 0,161 0,115 0,0352
rs8970 LTBP1 963 11,21 % 7 0,45 0,119 0,115 0,0355
rs3748983 FLJ11151 5087 9,49 % 10 0,53 0,275 0,109 0,0367
rs15563 UBE2Z 1926 36,19 % 4 0,58 0,075 0,112 0,0397
rs11708200 NPHP3 1300 20,38 % 8 0,49 0,219 0,107 0,0410
SNP: SNP rsid
Gene: gene name
3'UTRlength: 3'UTR length
SNPprop: proportion of the 3'UTR upstream of the SNP
Signal: APA signal rank
GU: GU level downstream of the SNP
DS LymphoblamiRNA score of the SNP based on lymphoblastoid miRNA expression and target prediction
pearson r: pearson correlation coefficient between the SNP and gene expression
pvalue: p-value without correction for multiple testing
BH pv: p-value after benjamini correction
bonf pv: p-value after bonferonni correction



Supplementary Table S6. Excel sheet for EST results
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Supplementary Table S6. Excel sheet for RNA-seq results
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Supplementary Table S6. Excel sheet for GWAS results
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91. Kjell Å. Salvesen: ROUTINE ULTRASONOGRAPHY IN UTERO AND DEVELOPMENT IN 
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95. Per Oscar Feet: INCREASED ANTIDEPRESSANT AND ANTIPANIC EFFECT IN 
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1996 

110.Svend Aakhus: NONINVASIVE COMPUTERIZED ASSESSMENT OF LEFT 
VENTRICULAR FUNCTION AND SYSTEMIC ARTERIAL PROPERTIES. Methodology and 
some clinical applications. 

111.Klaus-Dieter Bolz: INTRAVASCULAR ULTRASONOGRAPHY. 
112.Petter Aadahl: CARDIOVASCULAR EFFECTS OF THORACIC AORTIC CROSS-

CLAMPING. 
113.Sigurd Steinshamn: CYTOKINE MEDIATORS DURING GRANULOCYTOPENIC 

INFECTIONS. 
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123.Geir Smedslund: A THEORETICAL AND EMPIRICAL INVESTIGATION OF SMOKING, 
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1997 

124.Torstein Vik: GROWTH, MORBIDITY, AND PSYCHOMOTOR DEVELOPMENT IN 
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127.Knut Bjørnstad: COMPUTERIZED ECHOCARDIOGRAPHY FOR EVALUTION OF 
CORONARY ARTERY DISEASE. 

128.Grethe Elisabeth Borchgrevink: DIAGNOSIS AND TREATMENT OF WHIPLASH/NECK 
SPRAIN INJURIES CAUSED BY CAR ACCIDENTS. 

129.Tor Elsås: NEUROPEPTIDES AND NITRIC OXIDE SYNTHASE IN OCULAR 
AUTONOMIC AND SENSORY NERVES. 

130.Rolf W. Gråwe: EPIDEMIOLOGICAL AND NEUROPSYCHOLOGICAL PERSPECTIVES 
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133.Ståle Nordgård: PROLIFERATIVE ACTIVITY AND DNA CONTENT AS PROGNOSTIC 
INDICATORS IN ADENOID CYSTIC CARCINOMA OF THE HEAD AND NECK. 

134.Egil Lien: SOLUBLE RECEPTORS FOR TNF AND LPS: RELEASE PATTERN AND 
POSSIBLE SIGNIFICANCE IN DISEASE. 

135.Marit Bjørgaas: HYPOGLYCAEMIA IN CHILDREN WITH DIABETES MELLITUS 
136.Frank Skorpen: GENETIC AND FUNCTIONAL ANALYSES OF DNA REPAIR IN HUMAN 

CELLS. 
137.Juan A. Pareja: SUNCT SYNDROME. ON THE CLINICAL PICTURE. ITS DISTINCTION 
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development of the human embryo. 
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144.Eli-Janne Fiskerstrand: LASER TREATMENT OF PORT WINE STAINS. A study of the 
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145.Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN 
RELATION TO INSULIN DEPENDENT DIABETES MELLITUS. 

146.Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING 
URACIL-DNA GLYCOSYLASE. 

147.Heidi Brurok: MANGANESE AND THE HEART. A Magic Metal with Diagnostic and 
Therapeutic Possibilites. 

148.Agnes Kathrine Lie: DIAGNOSIS AND PREVALENCE OF HUMAN PAPILLOMAVIRUS 
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Regulatory Proteins and HLA DQBI Genes. 

149.Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND 
PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS. 

150.Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND 
TREATMENT OF HIP DYSPLASIA IN NEWBORNS. 

151.Irene Hetlevik:  THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK 
INTERVENTION IN GENERAL PRACTICE. 

152.Katarina Tunòn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE. 
153.Johannes Soma: INTERACTION BETWEEN THE LEFT VENTRICLE AND THE SYSTEMIC 

ARTERIES. 
154.Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-

MADE FEMORAL STEM. 
155.Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR 
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CLAMPING CLINICAL AND EXPERIMENTAL STUDIES 
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160.Christina Vogt Isaksen: PRENATAL ULTRASOUND AND POSTMORTEM FINDINGS – A 
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162.Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO 
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164.Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR 
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