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Fig. 1. Assembly of a typical CZ puller. (This figure
is licensed under a Creative-Commons BY-NC-SA
license) (Rahmanpour, 2017)

1. INTRODUCTION

The Czochralski (CZ) process is a commercial process
for the growth of single crystals of semiconductors (e.g.,
silicon, germanium and gallium arsenide), metals, salts
and synthetic gemstones. This process is the workhorse
for the mass production of mono-crystalline silicon ingots,
which are later used as base material (substrate or wafer)
in semiconductor and photovoltaic industries.

A typical CZ furnace assembly is shown in Fig. 1. In
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this process, high purity silicon is melted in a crucible
which is surrounded by annular and base heaters. When
the desired melt temperature is attained, a seed crystal
mounted at the end of a pulling rod is immersed into the
molten silicon, and then gradually pulled upwards. This
pulling forms a meniscus between the growing crystal and
the molten silicon, and this meniscus protrudes above the
level of the melt. Heat loss at the top of the meniscus
causes the molten silicon to solidify (crystallize), and when
the pulling rate and crystal growth rate is well balanced it
is possible to produce a crystal of constant radius. While
there are several phases of this crystal growth process, this
paper addresses modeling for diameter control in the so-
called body phase, i.e., the main part of the process where
a constant crystal radius is desired. The manipulated
variable for radius control is the pulling speed, while this
work will focus on the use of a radius measurement derived
from a camera image.

The high temperatures inside the growth chamber lead
to the formation of a glowing ring near the base of the
crystal, because light from glowing hot surroundings gets
reflected by the meniscus before entering the camera. The
camera is calibrated to aim at the meniscus to measure the
radius of a specific glowing ring formed on the meniscus (in
the vicinity of melt-crystal/three-phase boundary). This
glowing ring is referred to as the bright ring in Czochralski
growth parlance. In reality, the perspective occlusion due
to the growing crystal in the centre and the surrounding
heat shield prevents the full 360◦ view of the bright annular
ring by the camera. Throughout this process, the crucible
is gradually lifted upwards to maintain the melt surface
at a constant level. In this way, the camera continues to
aim at the meniscus thereby avoiding any need to vary the
camera location or focus during the entire growth process.
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Fig. 2. Schematic view of the melt-crystal interface. (This
figure is licensed under a Creative-Commons BY-NC-
SA license) (Rahmanpour, 2017)

From an economical viewpoint, it is highly desirable to
maintain the radius of the produced crystal as constant as
possible. This allows for minimal post grinding or material
cut off, thereby making the overall process cost effective.

1.1 Measurement anomaly

An important system state for a commercial CZ process,
as explained above, is the radius of the growing crystal,
which unfortunately cannot be measured directly. Instead,
the radius measurement of the bright ring is used for the
diameter control (Digges et al., 1975), (Duffar, 2010) of
the crystal ingots in case of Si crystal growth.

An alternative measurement method is the continuous
weight measurement of the growing ingot. An anomaly,
i.e., an inverse response in the weight measurement signal
was first reported by Bardsley et al. (1974) in the year 1974
and later on by some of the fellow authors in the year 1977
(Bardsley et al., 1977a), (Bardsley et al., 1977b).

A fact that did not get such a broad attention in literature
is that the bright ring measurement is also affected by
a similar anomaly. With a decrease in pulling speed the
meniscus height decreases, making the meniscus profile
flatter. This causes the bright ring to initially move in-
wards before an increase in crystal radius (as reported in
Gevelber et al. (1988) and Gevelber (1994)). This effect
will cause the optical radius sensing method to indicate
that the crystal radius initially moves in the opposite
direction of what it actually does, thereby producing the
so called anomalous behaviour also for the camera mea-
surement. For the sake of clarity and to illustrate the
use of some nomenclature, the melt-crystal interface is
schematically depicted in Fig. 2.

The paper is organised as follows. Section 2 describes
the crystal diameter dynamics of the CZ process. The
measurement model used to simulate the bright ring
and the associated anomolous behavior is explained in
section 3. Model linearization and the anaysis of the right
half plane zeros is discussed in section 4, followed by
conclusions.

2. PROCESS MODEL

The model considered here is a simplified model aiming
at capturing only the dynamics of the crystal radius and

the pulling rate as control input. Therefore, the slower
dynamics of the crystal melt temperature is neglected. The
model therefore covers only the crystal radius, the heat
balance at the melt-crystal interface, and the dependency
of the radius on the meniscus height.

We therefore get the following simplified model of the CZ
growth process (also referred to as a hydromechanical-
geometrical model or simply interface dynamics):

ṙc = vg tan(αc) (1a)

ḣc = vp − vg (1b)

αc = arcsin

{
1−

(
hc

a

)2[
1 + 0.6915

(
rc
a

)−1.1]}
− α0

(1c)

where rc is the crystal radius, hc is the height of the
meniscus at the three-phase boundary, vg is the growth
rate of the crystal (lengthwise) calculated from the thermal
models explained in section 2.1, vp is the pulling speed,
and αc is the cone angle at the interface, which can be
mathematically expressed as the rate of change in crystal
radius w.r.t. change in the crystal length, i.e., αc = drc

dl .
The expression of αc in (1c) is derived from the analytical
approximation of meniscus height hc given by Johansen
(1994). Note the difference between αc and the contact
angle α, which are related through α = α0 + αc, where
α0 is the contact angle (wetting angle in some branches
of science) at constant radius growth. The parameter a is
the Laplace constant, also termed the capillary length. We
will assume α0 = 11◦ ( Tatarchenko (1993), Rahmanpour
et al. (2017)), and a = 7.62mm. The derivative of meniscus
height expressed in (1b) assumes perfect compensation for
melt level changes through crucible lift.

2.1 Thermal model assumptions for crystal growth rate

The crystal growth rate is found from an energy balance
at the interface:

vg =
φs − φl

ρs∆H
(2)

where φs is the heat flux from the interface into the crystal,
φl is the heat flux from the melt to the interface, ρs is the
density of the solid crystal, and ∆H is the heat of fusion
of silicon.

The heat flux is assumed to have a constant value, i.e.,
φs = 1.3× 105 Wm−2 (Rahmanpour et al., 2016).

Since the crystal gradually protrudes longer into the cooler
areas above the heat shield, the assumption of a constant
φs clearly cannot hold over the timespan of the entire
body stage. However, it is a reasonable assumption over
the much shorter timescale of the measurement anomaly.
For the heat flux φl from the melt to the interface, two
different model assumptions will be investigated:

Model I: Assuming heat transfer within the meniscus
itself is dominated by conduction (model assumption I)
leads to the following approximation of the heat flux
(Hurle et al., 1990):

φl =
kl
h
(TB − TS) (3)

where TB is the temperature at the base of the meniscus
and TS is the temperature at the interface (the melting
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Fig. 3. Actual plant image from the CCD camera

point of silicon). According to Yamasue et al. (2002), the
average thermal conductivity kl of molten silicon at 1700K
is around 57Wm−1 K−1. Using the data from Rahman-
pour et al., a heat flux of φl = 46 000Wm−2 for a meniscus
height hc = 7mm then yields TB−TS ≈ 5.6K. This implies
that the temperature within the melt is not uniform - Rah-
manpour had a 31K temperature difference between the
bulk of the melt and the interface. To make this consistent
with the heat flux to the interface, a significant part of the
thermal resistance needs to be between the bulk of the melt
and the base of the meniscus (since it is not reasonable
to have a lower heat transfer rate in the meniscus than
that resulting from pure conduction). To maximize the
difference between the two model assumptions, it will here
be assumed that TB is constant, independent of meniscus
height.

Model II: Assuming that the heat transfer from the
melt to the interface is dominated by convection, and is
independent of meniscus height. This leads to a constant
φl and hence a constant growth rate vg (when neglecting
the slow dynamics of the melt temperature). This model
assumption is the one used by Rahmanpour et al. (2017).

3. MEASUREMENT MODEL

A typical video image of the glowing meniscus around
the growing crystal captured by a camera installed at a
viewing port of a commercial puller is shown in Fig. 3.
Note that since the contrast between the meniscus and the
solid crystal is very weak, the camera measurement does
not try to measure the crystal radius directly, but rather
some identifiable point on the bright ring slightly outside
the actual solid crystal. It is this inability to directly
measure the crystal radius that causes the so-called ’bright
ring anomaly’ - which in linear control parlance is a right
half plane transmission zero of the corresponding transfer
function from the pulling speed to the radius measurement
- that is the object of study in this work.

The resulting illuminated profile for the meniscus can be
calculated by

� Calculating the meniscus shape. This can be cal-
culated from the so-called Laplace-Young equation.
Unfortunately, there is no analytical solution to the
Laplace-Young equation, which therefore has to be
solved numerically (Huh and Scriven, 1969). In this
work, the analytical approximation given by Hurle
(1983) is used instead:

Fig. 4. Ray tracing set up showing incident and reflected
light rays within the growth furnace (This figure not
drawn to scale)

Fig. 5. Theoretically calculated brightness profile as ob-
served by the camera. Minimum brightness (blue);
maximum brightness (red). Since, the view is sym-
metric on either side of the xz 1 -plane/camera plane,
the left portion of the meniscus is not shown.

r(hc, rc, z) = rc +

√
2

A
− h2

c −
√

2

A
− z2

− 1√
2A

ln

[
z

hc
·
√
2 +

√
2−A · h2

c√
2 +

√
2−A · z2

] (4)

where r and z are the radial and vertical coordi-
nates of the meniscus surface respectively. The menis-
cus surface extends from the three-phase boundary
(rc, hc) to the crucible wall (Rcru, 0) such that r ∈
[rc, Rcru], z ∈ [0, hc] where Rcru is the crucible radius.
A is defined as:

A =
1

a2
+

cos(α)

2rc hc

� Tracing rays backwards from the camera, via some
chosen point on the meniscus, back to its origin either
on the crucible wall or the underside of the heat
shield. A simple ray-tracing set up is illustrated in
Fig. 4.

� A measure of (relative) brightness can be obtained by
perturbing a point on the meniscus, and calculating
the resulting perturbation of the emission point on

1 The x and y axes in Fig. 5 define the radial coordinates of the

meniscus, i.e., r =
√

x2 + y2, while z-axis represents the height of
the meniscus above the melt surface.
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Fig. 3. Actual plant image from the CCD camera

point of silicon). According to Yamasue et al. (2002), the
average thermal conductivity kl of molten silicon at 1700K
is around 57Wm−1 K−1. Using the data from Rahman-
pour et al., a heat flux of φl = 46 000Wm−2 for a meniscus
height hc = 7mm then yields TB−TS ≈ 5.6K. This implies
that the temperature within the melt is not uniform - Rah-
manpour had a 31K temperature difference between the
bulk of the melt and the interface. To make this consistent
with the heat flux to the interface, a significant part of the
thermal resistance needs to be between the bulk of the melt
and the base of the meniscus (since it is not reasonable
to have a lower heat transfer rate in the meniscus than
that resulting from pure conduction). To maximize the
difference between the two model assumptions, it will here
be assumed that TB is constant, independent of meniscus
height.

Model II: Assuming that the heat transfer from the
melt to the interface is dominated by convection, and is
independent of meniscus height. This leads to a constant
φl and hence a constant growth rate vg (when neglecting
the slow dynamics of the melt temperature). This model
assumption is the one used by Rahmanpour et al. (2017).

3. MEASUREMENT MODEL

A typical video image of the glowing meniscus around
the growing crystal captured by a camera installed at a
viewing port of a commercial puller is shown in Fig. 3.
Note that since the contrast between the meniscus and the
solid crystal is very weak, the camera measurement does
not try to measure the crystal radius directly, but rather
some identifiable point on the bright ring slightly outside
the actual solid crystal. It is this inability to directly
measure the crystal radius that causes the so-called ’bright
ring anomaly’ - which in linear control parlance is a right
half plane transmission zero of the corresponding transfer
function from the pulling speed to the radius measurement
- that is the object of study in this work.

The resulting illuminated profile for the meniscus can be
calculated by

� Calculating the meniscus shape. This can be cal-
culated from the so-called Laplace-Young equation.
Unfortunately, there is no analytical solution to the
Laplace-Young equation, which therefore has to be
solved numerically (Huh and Scriven, 1969). In this
work, the analytical approximation given by Hurle
(1983) is used instead:

Fig. 4. Ray tracing set up showing incident and reflected
light rays within the growth furnace (This figure not
drawn to scale)

Fig. 5. Theoretically calculated brightness profile as ob-
served by the camera. Minimum brightness (blue);
maximum brightness (red). Since, the view is sym-
metric on either side of the xz 1 -plane/camera plane,
the left portion of the meniscus is not shown.

r(hc, rc, z) = rc +

√
2

A
− h2

c −
√

2

A
− z2

− 1√
2A

ln

[
z

hc
·
√
2 +

√
2−A · h2

c√
2 +

√
2−A · z2

] (4)

where r and z are the radial and vertical coordi-
nates of the meniscus surface respectively. The menis-
cus surface extends from the three-phase boundary
(rc, hc) to the crucible wall (Rcru, 0) such that r ∈
[rc, Rcru], z ∈ [0, hc] where Rcru is the crucible radius.
A is defined as:

A =
1

a2
+

cos(α)

2rc hc

� Tracing rays backwards from the camera, via some
chosen point on the meniscus, back to its origin either
on the crucible wall or the underside of the heat
shield. A simple ray-tracing set up is illustrated in
Fig. 4.

� A measure of (relative) brightness can be obtained by
perturbing a point on the meniscus, and calculating
the resulting perturbation of the emission point on

1 The x and y axes in Fig. 5 define the radial coordinates of the

meniscus, i.e., r =
√

x2 + y2, while z-axis represents the height of
the meniscus above the melt surface.
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Fig. 6. Relative brightness profile as observed along the
longitudinal/camera plane

the light source (crucible wall or underside of heat
shield), while also accounting for both the viewing
angle of the emission point of the light source as
seen from the point on the meniscus as well as the
emission intensity of the light source emission point
in question.

The full details of this procedure will not be presented here
due to space limitations. The procedure sketched above
can be extended by considering multiple reflections on the
melt surface between the emission point and the camera.
This results in a calculated brightness profile as illustrated
in Fig. 5.

The calculated brightness profile in Fig. 6 shows the
brightness profile along the portion of the illuminated
meniscus in the plane of the camera.

Furthermore, when visually comparing the 2D relative
brightness profile in Fig. 6 calculated for the meniscus
orientation in the plane of the camera with the 3D cal-
culated brightness profile in Fig. 5, it becomes clear that
the fluctuations in the left part of Fig. 6 correspond to
bright bands close to crystal ingot in Fig. 5. However, the
similar bright bands are not evident in video images from
a production plant Fig. 3. There can be several reasons for
this discrepancy, such as:

� The most probable cause is noise or surface waves re-
sulting in blurring/spatial averaging of the brightness
profile.

� Saturation of the image sensor of the camera, effec-
tively cutting of the highest peaks in the brightness
profile. This will depend on the exposure control of
the camera.

However, two points on the brightness profile can be
reliably identified from the camera images:

(1) The illuminated point marked as ‘ ’ in Figs. 5 or 6,
orginates from the highest point on the crucible wall
whose reflection from the meniscus can be seen by the
camera (that is not obstructed by the heat shield).

86 88 90 92 94 96
0

50

100

150

200

250
rc = 87.5(mm); hc = 5(mm)

Fig. 7. Relative brightness profile as observed along the
longitudinal/camera plane, for low meniscus height

(2) The point corresponding to the circle ‘ ’ in Figs. 5
or 6, orginating from the innermost edge of the
underside of the heat shield.

Either of the two points marked in Figs. 5 and 6 may be
used as a basis for the bright ring radius measurement.
Further justification for not using the the peak value of
the brightness profile as a measure of crystal radius can
be found from Fig. 7. This figure shows the calculated
brightness profile for a low meniscus height. It is observed
that the features in the left part of the figure in Fig. 6 have
disapeared. This would mean that if one were to base the
radius measurement on the brightest point on the profile,
one would risk this measurement to change discontinuously
depending on process conditions.

In the following, the point ‘ ’ is used for the radius
measurement, as this is where the change in brightness
is the strongest. The corresponding radius measurement
will be termed the bright ring radius, denoted rbr. To our
knowledge, this is also the bright ring measurement used
in industry. Note that there is an offset between the actual
crystal radius and the bright ring radius measurement.
At steady state this difference can be accounted for by
applying a bias to the measured rbr.

4. LINEARIZED PLANT MODEL DYNAMICS AND
ANALYSIS

The non-linear CZ dynamics expressed in (1) combined
with the bright ring radius measurement rbr described
above constitute a non-linear model relating pulling speed
to bright ring radius. Linearizing this non-linear model, the
resulting linear model can be expressed in general form as

ẋ = Ax+Bu

y = Cx
(5)

Note that we do not here include a direct throughput
term from input u to output y, as the measurement only
depends on the states.

Based on the two thermal model assumptions (as dis-
cussed in section 2), the non-linear plant dynamics (1)
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Fig. 8. Applied pull speed profile
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Fig. 9. Non-linear plant response for Model I subjected
to the applied input shown in Fig. 8, crystal radius
rc, bright ring radius rbr and αc in top left- and
-right panes respectively, the meniscus height and
the growth rate in the bottom left- and right-panes
respectively

are simulated for a specific input profile as shown in
Fig. 8. The resulting responses for the first and second
model assumptions (first: heat transport within the melt
itself is dominated by conduction; second: heat transport
from melt to interface is dominated by convection), i.e.,
system states, bright-ring radius measurement, meniscus
height and growth-rate are illustrated in Figs. 9 and 10
respectively. The inverse reponse or non-minimum phase
behaviour in the bright ring measurement is quite evident.
Moreover, it can be seen that for the second assumption
that relates to convection dominated heat transfer within
the melt, the growth rate (vg) remains constant whereas it
varies for the heat transfer assumption based on conduc-
tion.

The linear models thus obtained possess right half plane
(RHP) zero in the bright ring radius measurement transfer
function, thereby confirming the non-minimum phase be-
havior as discussed in section 1.1. In order to authenticate
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Fig. 10. Non-linear plant response for Model II subjected
to the applied input shown in Fig. 8, crystal radius
rc and bright ring radius rbr, αc in top-left and
-right panes respectively, the meniscus height and
the growth rate in the bottom-left and right-panes
respectively

Table 1. Pole and zero locations for the lin-
earized models I and II

Model Assumption I Model Assumption II
s-plane location [rad/sec] s-plane location [rad/sec]

Zero Pole 1 Pole 2 Zero Pole 1 Pole 2

0.02128 8.78e-06 -1.684e-3 0.02183 4.63e-07 7.602e-06

the linearization process, the responses of the non-linear
and linearzied models are compared by exciting both non-
linear as well as linear models with the same applied input.
Consequently, the input as shown in Fig. 8 is applied
to both linear and non-linear models and the resultant
system responses for thermal models I and II is shown in
Fig. 11. Another comparison between the non-linear and
linear models is obtained by using the step perturbation
of 1mmmin−1 in pull-speed to both linear and non-linear
models. The response of measured bright ring radius to the
step perturbation at steady state is shown in Fig. 12 for the
thermal model assumption I. Since the bright ring radius
response to step perturbation for thermal model II is
practically indisntinguishable from that of thermal model I
and is therfore not shown in Fig. 12. The close agreement
between the non-linear and linear model response, espe-
cially in the initial non-minimum phase response, confirms
the validity of the obtained linear models.

The analysis of the linearized models (with poles and zeros
listed in Table 1), shows that the location of RHP zeros
does not depend much on the assumption of heat transfer
method from the melt into the crystal.

The RHP zero will put an upper bound on the achievable
closed loop bandwidth for the control of crystal radius,
whereas the RHP pole(s) put a lower bound on the
required bandwidth (Skogestad and Postlethwaite, 2007).
Moreover, the RHP zero and RHP pole(s) are separated
by more than three orders of magnitude, indicating that
acceptable control quality should be obtainable.
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Fig. 8. Applied pull speed profile
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Fig. 9. Non-linear plant response for Model I subjected
to the applied input shown in Fig. 8, crystal radius
rc, bright ring radius rbr and αc in top left- and
-right panes respectively, the meniscus height and
the growth rate in the bottom left- and right-panes
respectively

are simulated for a specific input profile as shown in
Fig. 8. The resulting responses for the first and second
model assumptions (first: heat transport within the melt
itself is dominated by conduction; second: heat transport
from melt to interface is dominated by convection), i.e.,
system states, bright-ring radius measurement, meniscus
height and growth-rate are illustrated in Figs. 9 and 10
respectively. The inverse reponse or non-minimum phase
behaviour in the bright ring measurement is quite evident.
Moreover, it can be seen that for the second assumption
that relates to convection dominated heat transfer within
the melt, the growth rate (vg) remains constant whereas it
varies for the heat transfer assumption based on conduc-
tion.

The linear models thus obtained possess right half plane
(RHP) zero in the bright ring radius measurement transfer
function, thereby confirming the non-minimum phase be-
havior as discussed in section 1.1. In order to authenticate
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Fig. 10. Non-linear plant response for Model II subjected
to the applied input shown in Fig. 8, crystal radius
rc and bright ring radius rbr, αc in top-left and
-right panes respectively, the meniscus height and
the growth rate in the bottom-left and right-panes
respectively

Table 1. Pole and zero locations for the lin-
earized models I and II

Model Assumption I Model Assumption II
s-plane location [rad/sec] s-plane location [rad/sec]

Zero Pole 1 Pole 2 Zero Pole 1 Pole 2

0.02128 8.78e-06 -1.684e-3 0.02183 4.63e-07 7.602e-06

the linearization process, the responses of the non-linear
and linearzied models are compared by exciting both non-
linear as well as linear models with the same applied input.
Consequently, the input as shown in Fig. 8 is applied
to both linear and non-linear models and the resultant
system responses for thermal models I and II is shown in
Fig. 11. Another comparison between the non-linear and
linear models is obtained by using the step perturbation
of 1mmmin−1 in pull-speed to both linear and non-linear
models. The response of measured bright ring radius to the
step perturbation at steady state is shown in Fig. 12 for the
thermal model assumption I. Since the bright ring radius
response to step perturbation for thermal model II is
practically indisntinguishable from that of thermal model I
and is therfore not shown in Fig. 12. The close agreement
between the non-linear and linear model response, espe-
cially in the initial non-minimum phase response, confirms
the validity of the obtained linear models.

The analysis of the linearized models (with poles and zeros
listed in Table 1), shows that the location of RHP zeros
does not depend much on the assumption of heat transfer
method from the melt into the crystal.

The RHP zero will put an upper bound on the achievable
closed loop bandwidth for the control of crystal radius,
whereas the RHP pole(s) put a lower bound on the
required bandwidth (Skogestad and Postlethwaite, 2007).
Moreover, the RHP zero and RHP pole(s) are separated
by more than three orders of magnitude, indicating that
acceptable control quality should be obtainable.
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Fig. 11. Comparison of non-linear and linear system dy-
namics for thermal models I (top row) and II (bottom
row), when excited by the input profile as shown in
Fig. 8.
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Fig. 12. Comparison of non-linear and linear system dy-
namics for thermal model I, when excited by step
perturbation in vp.

5. CONCLUSIONS

The paper develops a simple model for the crystal radius
control problem in the CZ process for the production of
monocrystalline silicon. The model combines a simplified
crystal growth model with rigorous ray tracing to obtain
the bright ring radius measured by the camera. It is shown
that this simplified model can capture the non-minimum
phase characteristics of the plant, and that these non-
minimum phase characteristics do not depend strongly on
how heat transfer from the melt to the crystal is modelled.
Future work will investigate the control of the crystal
radius rc (as opposed to controlling the bright ring radius
rbr) based on the simple model derived in this paper.
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