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Preface

This thesis is submitted as the final part of the master of science program at the Norwegian University
of Science and Technology (NTNU) in Trondheim. The thesis is delivered during the fall 2019 and the
work was conducted at the Department of Marine Technology, NTNU. Professor Ingrid Schjølberg has
been the main supervisor for this thesis.

The thesis is assembled with a collection of two appended scientific articles and an associated resume
as main report. The collective topic for the thesis concerns vision based deep learning systems and how
such systems can aid in increasing autonomy in underwater operations. The two appended articles are
Transfer Learning in Underwater Operations and Dynamic Position of an Underwater Vehicle using
Monocular Vision-Based Object Detection with Machine Learning.
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Abstract

The 4th industrial revolution has been ongoing the last four years and results are starting to show in the
market. Google constantly reveals new technology that can beat humans at different strategy games
and they have developed AIs that can learn to walk on their own. Also, governments and classification
companies continuously works towards a set of regulations and guidelines for autonomous ships, Yara
Birkeland is a ship that is planned to be released in 2020 that will move towards fully autonomous
operations within 2022. Autonomy in underwater operations are also experiencing a growth which
shows in the expected market growth.

Machine learning is believed to play an important role in the shift towards autonomy. Feature ex-
traction methods for subsea applications existing today mainly consist of acoustic sensors. Feature
extraction using camera vision are rarely used, but improvements within neural networks, especially
convolutional neural networks (CNN), have proved promising results. This thesis will investigate the
use of such methods for subsea applications. The thesis specifically highlights two different objectives,
that are dispersed at two appended articles.

The first objective concerns the reality gap, which describes the phenomena that occurs when trans-
ferring knowledge between domains, specifically the artificial simulated domain and the real world
domain. Existing methods focusing on this have been explored and compared in order to generate an
outline of existing solutions. Due to the harsh environment in subsea applications, the use of camera
vision for feature extraction has been shallow. Bad lighting, marine snow, constantly change of en-
vironment etc. makes if difficult to model the subsea environment. Thus, there will almost certainly
exist a gap between a simulated environment and the real world. In the last few years numerous
frameworks targeting domain transfer have been published. Generative Adversarial Networks (GAN)
has stood out as maybe one of the recent most promising methods regarding domain transfer. This
thesis investigate the use of a framework called CycleGAN which introduces a cycle consistent feature
in the ordinary GAN. CycleGAN has proven good results in several disciplines and has in this thesis
been tested for the first time for datasets regarding an underwater environment. The method consist
of taking an image as input and generating a similar image in another domain, e.g. taking an image
of a rendered subsea panel as input and generating a real-looking subsea panel in a real underwater
environment as output. In this thesis the framework is applied on two different underwater image
datasets and is proven to accomplish a good mapping between simulated and real domains.

The second objective concerns visual based object detection using monocular camera. Deep learning
methods for object detection are investigated in collaboration with methods for extracting relevant
features from the respective detectors in order to aid a dynamic positioning (DP) system. A detec-
tor based on YOLOv3 is applied on a dataset collected from the Marine Cybernetics Laboratory at
NTNU. The dataset includes a known object in the laboratory pool environment. Once the detector
is trained and successfully detects the relevant object, a spatial scaling function and a DP system for
the underwater vehicle BlueROV2 is designed. The BlueROV2 performs DP relative to the object
extracting position information and spatial features from the detector. The system performs well and
the BlueROV2 manages to perform DP in a good manner with correct extraction of both localization
and spatial features of the object of interest.

iv



Sammendrag

Den 4. industrielle revolusjonen har p̊ag̊att de siste fire årene og resultater har begynt å vise seg i
industrimarkedet. Google slipper stadig ny teknologi som kan sl̊a mennesker i et mangfold av strate-
gispill og de har utviklet kunstig inteligens som kan lære å g̊a p̊a egenh̊and. Statlige instanser og
klassifikasjonsselskaper sammarbeider mot regler og retningslinjer for autonome skip, Yara Birkeland
er et skip som er planlagt ferdig i 2020 som vil g̊a mot full autonom operasjon innen 2022. Autonomi
i undervannsoperasjoner erfarer ogs̊a vekst som vises igjen i økning i markedet.

Maskinlæring er forventet å være en bidragsyter i skiftet mot en mer autonom fremtid. Metoder for
innhenting av relevant informasjon i undervannsapplikasjoner som eksisterer idag bruker hovedsakelig
akkustiske sensorer. Metoder for informasjonsinhenting som bruker kamerabilder er sjeldent brukt,
men forbedringer innen nevrale nettverk, spesielt Convolutional Neural Networks (CNN), har vist
lovende resultater. Denne rapporten vil undersøke bruken av slike metoder for undervannsoperasjoner.
Rapporten trekker spesielt frem to problemstillinger, som er fordelt p̊a to vedlagte artikler.

Den første problemstillingen anng̊ar realitetsgapet, som beskriver fenomenet som oppst̊ar n̊ar kunnskap
blir overført mellom domener, mer presist mellom det kunstige simuleringsdomenet og den virkelige
verden. Eksisterende metoder ang̊aende dette har blitt undersøkt og sammenlignet for å danne et
utsnitt av eksisterende metoder. Grunnet det tøffe miljøet under vann har bruken av kamerabilder
til informasjonsinnhenting vært liten. D̊arlig belysning, maritim snø, et miljø i kontinuerlig endring
etc. gjør det vanskelig å modellere et undervannsmiljø. Det vil derfor nesten garantert eksistere et
realitetsgap mellom det simulerte domenet og den virkelige verden. I løpet av de siste årene har flere
rammeverk som angriper realitetsgapet oppst̊att og blitt publisert. Generative Adversarial Networks
(GAN) har muligens st̊att frem som en av de mest lovende metodene for domenetransformasjon de
siste årene. Denne rapporten undersøker en metode av dette rammeverket kalt CycleGAN, som in-
troduserer en sykelkonsistens egenskap i det orginale GAN rammeverket. CycleGAN har vist gode
resultater inne flere disipliner og har i denne rapporten for første gang blitt anvendt p̊a undervannsap-
plikasjoner. Metoden best̊ar av å ta et bilde som input og reprodusere det samme bildet i et annet
domene som output, e.g. ta et generert bilde fra simuleringsdata av et undervannspanel som input og
produsere et virkelighetsnært bilde av det samme undervannspanelet. I denne rapporten er rammever-
ket anvendt p̊a to forskjellige dataset med bilder fra undervannsmiljøer og en god kartlegging mellom
simuleringsbaserte domener og den virkelige verden er oppn̊add.

Den andre problemstillingen omhandler optisk basert objekt detektering ved bruk av monokularkam-
era. Deep learning metoder for objekt detektering er undersøkt i unison med metoder for å ekstrakte
relevante egenskaper fra de respektive detektorene for å bidra i et dynamsik posisjonerings (DP) sys-
tem. En detekteringsalgoritme basert p̊a YOLOv3 er anvendt p̊a et dataset sammensatt av bilder fra
marin kybernetisk laboratoriet (MC-lab) ved NTNU. Datasettet inkluderer bilder av et kjent objekt i
bassenget i laboratoriet. N̊ar detekteringsalgoritmen er ferdig trent og kan vellykket detektere det rel-
evante objectet, er en skaleringsfunksjon samt et DP-system for undervannsdronen BlueROV utviklet.
BlueROV2 utfører DP relativ til det kjente objektet ved å innhente relevant informasjon ang̊aende
posisjon og avstander ved hjelp av detekteringsalgoritmen. Systemet fungerer tilfredstillende og klarer
å utføre DP med korrekt informasjonsinnhenting av b̊ade posisjon og avstander til objektet fra kam-
erabilder.
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Chapter 1

Introduction

This chapter gives a short introduction and describes the motivation behind the thesis. How underwater
operations are conducted today will also be discussed as well as how the industry is moving towards
a more autonomous future. General contributions and outline of the thesis are also given.

1.1 Motivation

The underwater robotic market size is claimed to reach USD 6.74 Billion by 2025 [1]. This corresponds
to a Compound Annual Growth Rate (CAGR) of 13.5%. By comparison, Apple Inc. had a CAGR of
9.2% the last 5 years, per July 30th 2019 [2]. The same report predicts that autonomous underwater
vehicles (AUV) will account for USD 1.48 billion by 2025. The Norwegian Government is investing
in the ocean space when designing the concept Ocean Space Center. The concept has a planned
investment of 4.7 billion NOK [3].

Activity, interest and growth within the ocean space are accordingly unquestionable. And with such
growth, advancement in the technology is forthcoming. In the last years, machine learning has ex-
perienced a substantial growth in both media coverage and technological applications and like most
industries, underwater operations experience changes towards more autonomous systems. The wide
interest and will to achieve progress that is shown today generates motivation for further investments
in the field. Machine learning is believed to play a significant role in this shift towards autonomy.

Teleoperated systems existing in inspection, maintenance and repair (IMR) operations today, the hu-
man operator is aided by visual and sensory feedback in order to assess the situation, make decisions
and remotely execute tasks. Making such systems more autonomously increases the demands regard-
ing the sensory systems and implemented software. What concerns sensors in underwater operations,
acoustic sonars have for a long time been preferable. However, recent technological advance within
camera systems and the use of visual aid proves that camera systems have potential to be the preferable
systems for short range navigation. Moreover, visual aided systems may provide systems with higher
spatial and temporal resolutions than the acoustic counterpart [4]. Nonetheless, it is not straightfor-
ward to use camera systems in underwater environments, especially when paired with robotic systems
during semi- or fully autonomous operations. The underwater scene is considered one of the most dif-
ficult conditions to perform optical detection and recognition of features and patterns, partly because
underwater image quality heavily depends on absorption and scattering of light [5, 6].

Despite the obstacles regarding machine learning, the interest for such applications in underwater en-
vironments is quite understandable. The underwater environment is exposed to constantly changing
environments - marine snow, bad lighting etc. This provides extremely high complexity for modeled
solutions. In order to model such uncertain environments it would require vast amounts of information
about the system. Machine learning and neural networks provides an alternative solution to this, and
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1.2. Underwater operations today

can help ensure that autonomous systems can cope with the high uncertainty present in underwater
environments. Moreover, technological advances and lowered costs of graphical processing units and
cameras provides a future for visual aided sensors. Simultaneously, the same type of development
has been seen in commercial underwater vehicle products, such as the BlueROV2, which allows cus-
tomization and testing of new hardware with user-made software. Incorporating visual aided tools for
underwater vehicles enables more autonomous functionality in underwater robotics, such as tracking
of objects during IMR or visually aided manipulation operations, whether it is used in exploration
operations, within the marine oil and gas or the aquaculture industry.

Although the existing frameworks have been tested and indicates promising results, they have never,
for my knowledge at this time, been applied in underwater conditions. The underwater environment is
a harsh and unforgiving environment and there could be elements here that will generate problems in
the existing solutions. Conditions at the bottom of the sea includes total darkness, sediments clouding
the view, currents and other factors which complicates operations. It is not straight forward to apply
something that works for one specific task to a complete different problem. Thus, it is not guaranteed
that the existing methods will provide satisfying results for the problems this thesis will investigate.

1.2 Underwater operations today

Underwater operations today are highly dependant on human operators. Operations previously ex-
ecuted by human divers are now mostly transferred to remotely operated vehicles (ROV). This has
enabled safer operations and the use of human divers for offshore applications have been gradually
faded out. Now the industry is experiencing a new shift towards more autonomous operations were
ROVs will become more independent of human operators. Performing operations on the seabed today
is a costly affair. The ROV needs to be supported by an operating team that controls it. A mothership
is also necessary which brings the requirement of a crew as well. Thus, in order to execute an under-
water operation a mothership must be operated along with pay for the crew and ROV team. Such an
operation is not only costly, but prone to human error from the operator, highly weather dependant
due to the mothership at surface level and spatial restricted due to the umbilical of the underwater
vehicle.

AUVs are also used. Since AUVs brings a higher level of autonomy they circumvents some of the
issues with ROVs. Especially regarding umbilical and constant supervision from crew and mothership.
However, with higher level of autonomy comes new requirements regarding autonomous complexity.
AUVs are vulnerable to loss of vehicle and data, and has less power storage than the ROV. Since global
navigation satellite system (GNSS) measurements are not applicable underwater, vehicle operation
in this domain lacks localization measurements and are prone to accumulation of localization error.
Today, the most common measurements and signal data arrives from acoustic sensors. Such signals
are prone to data loss due to transmission losses, acoustic noise in thrusters, signal reflections on
different surfaces, absorption loss and more. Feature extraction using camera vision are rarely used,
but improvements within artificial neural networks (ANN), especially convolutional neural networks
(CNN), shows promising results. In the presented work, systems using visual aid will be investigated.
This is mostly motivated by the rapid advance withing CNN and other computer vision frameworks
building on CNN.

1.3 Towards autonomy

At August 31st 1910, at the Dedication of the John Brown Memorial Park in Osawatomie, Kansas,
Theodore Roosevelt delivered a famous speech [7]. During the speech the former president expressed
concerns regarding the American economy. Roosevelt said,

3



1.3. Towards autonomy

”The absence of effective State, and, especially, national, restraint upon unfair money-
getting has tended to create a small class of enormously wealthy and economically powerful
men, whose chief object is to hold and increase their power.”

He was concerned a handful corporate giants would generate enormously wealth compared to the
common man, which could lead to increase in political influence and power. Roosevelt’s words are as
relevant today as in the late summer of 1910. A handful of giant companies rises again as the sole rulers
of the global market. Apple, Alphabet, Microsoft and the companies next in line dominate today’s
economy just as surely as US Steel, Standard Oil and Sears and Roebuck and Company dominated
the economy of Roosevelt’s days.

Figure 1.1: Worlds largest listed companies by market capitalization [7]

Figure 1.1 shows how only three companies that dominated the economy in 2006 remained on top in
2016. Another important matter taken from the figure is the number of information technology (IT)
companies, from only one in 2006 to five out of ten in 2016. Per November 16th 2018, both Apple
and Amazon have reach a market value above $1 trillion [8]. Roosevelt’s concerns were in other words
genuine.

These IT companies are the lighthouse in the 4th industrial revolution we are a part of today. This
revolution is also referred to as Industry 4.0 [9]. Figure 1.2 illustrates the four industrial revolutions.

4



1.3. Towards autonomy

Figure 1.2: Industrial revolutions [10]

The first industrial revolution consisted of steam and machines that mechanized the work of our
ancestors. Next was electricity bringing assembly lines and mass production around Roosevelt’s time.
Then the advent of computerization and the beginning of automation which began replacing the human
factor of the assembly lines. And now we are in the fourth revolution where computers and automation
will join forces in a revolutionary way. Systems equipped with machine learning algorithms will provide
controls and robotics operating with minimal input from humans. [11] defines autonomous systems
as a system that possesses self-governing characteristics, which allows it to perform pre-specified tasks
without human intervention. However, it is difficult to determine if a system is autonomous or not
with a classic binary value. Therefore it is more customary to talk about the level of autonomy. It is
hard to define a general set of levels of autonomy because it should necessarily be adapted to different
situations. [12] defines 6 levels of autonomy for autonomous cars, while [13, 14] has defines 10 levels
of autonomy for aerial vehicles. [15] has defined 4 levels of autonomy for aerial vehicle which later has
been adopted by [16] for marine applications. This definition is considered the most relevant for the
problem addressed in this thesis and are presented in Table 1.1

5



1.3. Towards autonomy

Table 1.1: Levels of autonomy defined in [16]

Level of autonomy Description
1. Automatic operation

(Remote control)
The system operates automatically. The human operator
directs and controls all high-level mission planning func-
tions, often preprogrammed. System states, environmental
conditions and sensor data are presented to the operator
through a human-machine-interface (HMI) (human-in-the-
loop/human operated)

2. Managements by Con-
sent

The system automatically makes recommendations for mis-
sion or process actions related to specific functions, and the
system prompts the human operator at important points
in time for information or decisions. At this level the sys-
tem may have limited communication bandwidth, including
time delay, due to, e.g. distance. The system can perform
many functions independently of human control when del-
egated to do so (human-delegated)

3. Management by Ex-
ception

The system automatically executes mission-related func-
tions when response times are too short for human interven-
tion. The human may override or change parameters and
cancel or redirect action within defined time lines. The op-
erator’s attention is only brought to exceptions for certain
decisions (human-supervisory control)

4. Highly Autonomous
operation

The system automatically executes mission or process re-
lated function in an unstructured environment with ability
to plan and re-plan the mission or process. The human may
be informed about the progress. The system is independent
and ”intelligent” (human-out-of-the-loop)

Reaching full autonomy is not just a question about the the technological challenges, but also the
political and social aspects. Yara Birkeland is planned to be the world’s first fully electric and au-
tonomous container ship with zero emissions [17]. The ship will be delivered in 2020 and will move
towards fully autonomous operations in 2022. To succeed with such a project several participants have
contributed. Kongsberg Maritime is responsible for technological solutions, the classification company
DNV-GL provides new guidelines for autonomous ships [18] and the Norwegian Maritime Authority
provides a new set of rules and regulations [19]. For this thesis it is mostly the technological aspects
that will be regarded.

1.3.1 Technological modules of autonomous systems

An autonomous system can be said to be composed of five modules [11] illustrated in Figure 1.3.

Figure 1.3: 5 modules of autonomous systems [20, 21, 22, 23, 24]
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The modules are

• Sensors: As humans use smells, vision and hearing to sense the world around them, an au-
tonomous system needs sensors in order to understand the environment it operates in.

• Learning: An autonomous system needs to learn from its environment and actions. In order
for a system to act independently from a human operator, it needs to adjust its actions relative
to the feedback it gets from its sensors. Machine learning algorithms can also be applied in order
for the system to solve tasks it had no prior knowledge to.

• Planning: When the system should conduct a task, it first needs a plan. If a robot should
relocate from position A to B, it needs a path to follow in order to avoid eventual obstacles.

• Diagnosis: An autonomous system needs to constantly run diagnosis. If it has low battery level
it needs to recharge, if it can’t complete a task due to physical constraints it has to communicate
this to other parties. The system has to constantly check these along with other factors in order
to be operational.

• Control: The system has to be able to control the specific task(s) it is made for. A robot oper-
ating an assembly line needs actuators to move objects. An underwater vehicle needs thrusters in
order to control its position and movements and actuators to perform tasks as turning switches
on subsea panels.

For this thesis all modules will be considered. DeepMind learned an artificial intelligence (AI) with no
prior knowledge of walking to stand up, walk, run and jump [25], using machine learning algorithms.
This proves how such algorithms can mimic the human brain regarding learning. The AI had no prior
knowledge about walking, it was only given rewards if it managed to do tasks such as move in a certain
direction. Neural networks are widely used within machine learning algorithms in order to mimic the
brains behaviour. Deepmind has also learned an AI to play the game GO with the use of convolutional
neural networks [26].

1.4 Objectives

This thesis investigates vision based methods for deep learning applications in underwater operations.
Feasibility, as well as limitations and challenges, of existing methods are discussed. Due to insufficient
knowledge about the application at underwater operations and unacquainted results, only the most
promising of the existing methods are implemented and tested in the appended articles. This is to
ensure that the methods are transferable to dissimilar training sets before devoting resources on bad
prospects. Relevant topics that are considered in the thesis are

1. The role of machine learning in the shift towards more autonomous systems

2. State of the art transfer learning methods

3. State of the art object detection methods

4. The role of vision based deep learning in the increasingly autonomy industry

5. Adequacy of existing methods in underwater environments

1.5 Main Contributions

The main contributions for this thesis are applications of machine learning frameworks in underwa-
ter environments. There are two appended papers, each with different applications, with individual
contributions summarized below. Both papers are submitted to conferences for publication.
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Paper 1 investigates a method for transfer learning in vision-based underwater operations. In the
presented work, experiments are conducted for two different datasets obtained in an underwater en-
vironment. The paper provides a collective overview of state-of-the-art frameworks targeting transfer
learning topics. Moreover, suggests solutions for reduction of the reality gap in the learning process of
machines. The paper is submitted to the Oceans 2019 Marseille Conference & Exhibition.

Paper 2 includes the design of a DP-system where the vehicle will have a desired position relative to a
known object, where position of the object is extracted from monocular camera. The object detection
scheme is provided with a labelled machine learning application, and an effective labeling scheme is
designed in order to cope with labeling of large datasets. The paper is submitted to the Oceans 2019
Seattle Conference & Exposition.

1.6 Outline of the Thesis

The next chapters will provide necessary background theory and insight relevant for the appended
papers. The general outline of the thesis is as follows.

Chapter 1 describes the motivation behind this thesis and how underwater operations are developing
towards autonomy, as well as the main objectives and contributions of the thesis.

Chapter 2 describes the facilities and equipment used in simulations and experimental testing.

Chapter 3 describes background theory regarding how neural networks and machine learning can aid
in a more autonomous direction. Existing solutions for similar situations are also presented.

Chapter 4 presents the methodology and frameworks utilized in the papers.

Chapter 5 provides conclusions and recommendations for further work.
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Chapter 2

Facilities and Equipment

This chapter considers the facilities and equipment used in simulations and experimental testing.
Important software are also described.

2.1 Facilities

This section provides information about the relevant facilities and locations that are used in simulations
and experimental testing.

2.1.1 Marine Cybernetics Laboratory

The Marine Cybernetics Laboratory (MC-lab) is a laboratory located at the Department of Marine
Technology, NTNU, in Trondheim. The laboratory consist of a control room and a towing tank with
dimensions 40m × 6.46m× 1.5m and includes a wave maker, a towing carriage and a 6 degrees of
freedom (DOF) real-time position system. The MC-lab is often used for experimental testing of DP
systems and was used for this purpose in Article 2. The water tank is also used as the underwater
laboratory environment in Article 1. The laboratory is mainly used by Master students and PhD-
candidates at the Department of Marine Technology, but also available for external users. The towing
tank and control room are depicted in Figure 2.1.

(a) Towing tank (b) Control room

Figure 2.1: MC-lab.
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2.1.2 Trondheimsfjorden

Trondheimsfjorden is a fjord located outside the city Trondheim, Norway. The location can be seen
on Figure 2.2. Trondheimsfjorden was in 2016 declared the worlds first technological test facility for
autonomous vessels operating below, above and at the surface of the water. In 2019 a charging stations
was placed at the bottom of the fjord, to use for experimental testing of underwater drones. Images
of the environment enclosing the test facility at the bottom of the fjord are used in Article 1.

Figure 2.2: Location of Trondheimsfjorden.

2.2 Equipment and Software

This section describes the most relevant equipment and software used in applications of the appended
articles.

2.2.1 BlueRov2

The BlueROV 2 is a small observation-class ROV produced by BlueRobotics. The ROV comes with
open-source electronics and software and is highly customizable for use in inspections, research, and
adventuring. BlueROV2 is depicted in figure 2.3 and the main features can be seen in Table 2.1.
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Table 2.1: Bluerov2 specifications

Parameter Value
L × H × W 457 [mm] × 254 [mm] × 575 [mm]
Weight in air 11.5 [kg]

Weight submerged 0 [kg]
Thrusters T-200
Battery 14.8 [V], 10 [Ah]

Depth rating 100 [m]
Camera Raspberry Pi Camera V2.1

Onboard Computer Raspberry Pi 3B and Navio2

Figure 2.3: BlueROV2 underwater vehicle

2.2.2 Robotic Operating System (ROS)

ROS is an open-ended collaboration framework for writing robot software. Despite the name, ROS is
not an operating system, but more a collection of tools, libraries and conventions. ROS originates from
Stanford University in the mid 2000s where researches craved software systems intended for robotics
use. Today ROS is an open source project and is used by everyone between simple hobbyists to large
scale industrial systems.

2.2.3 Python

All the mentioned frameworks are implemented using Python. Python is a programming language
developed under and OSI-approved open source license. The fact that it is open source makes it
free to use even for commercial use. There exists libraries that are free to download and specifically
developed for machine learning algorithms. Relevant libraries that has been used in the mentioned
frameworks are TensorFlow and PyTorch.

2.2.4 Tensorflow

TensorFlow was developed by the Google Brain group at Google for internal use in Google [27]. Google
Brain is a deep learning artificial intelligence research team at Google. TensorFlow was released to the

11



2.2. Equipment and Software

public at November 9, 2015, and has been a large participant for IT-companies the last years. Airbnb,
Uber, Spapchat, Google, Twitter and many more are all using TensorFlow [28], and the contributors
provides extensively material on learning the framework as well as get started with creating your own
machine learning applications. The framework is an open source software library used for numerical
computing and machine learning.

2.2.5 PyTorch

PyTorch was based on Torch which again is based on the Lua programming language [29]. The library
is an optimized tensor library for deep learning using graphics processing units (GPU) and central
processing units (CPU). The library was initially released in 2016 and was primarily developed by
Facebook and Uber’s ”Pyro” software [30].
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Chapter 3

Background Theory

This chapter considers the theoretical background for the thesis. Neural networks will be presented
in order to give a better insight in how they are used in existing frameworks as well as highlighting
the potential such artificial networks holds. More general understanding of machine learning will also
be discussed and how this is applied to domain transfer and object detection. Existing methods and
solutions will be introduced throughout the chapter

3.1 Neural Networks

When discussing machine learning, deep learning or artificial intelligence, neural networks are essential.
A neural network can be defined as an artificial network inspired by the natural neural networks in the
human brain [31]. Artificial neural networks are designed to perform cognitive functions, e.g. problem
solving and machine learning. Neural networks have successfully been implemented in games [26],
handwriting recognition [32] and even explosive detection [33]. Neural networks provides a method
for defining a system too complex to be defined by a simple model, e.g. image recognition and other
systems influenced by uncertainty.

In order to understand neural networks it can be advantageous to know graphs. Graphs are represented
with a set of points and the connection between them. A graph consist minimum of vertices and edges,
and can be represented by

G = (V (G), E(G)), (3.1)

where V (G) = V ertices and E(G) = Edges [34]. A simple graph is illustrated in Figure 3.1.
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Figure 3.1: Simple illustration of a graph

The edges in a graph can either be directional or undirected. A neural network is a particular version
of a graph and consists of neurons and links between the neurons. The neural network often consists
of several layers of neurons and the links describe the connection between the layers. A simple neural
network is depicted in Figure 3.2. Neural network terminology includes terms such as input layer,
hidden layer and output layer. In a network with 3 layers like Figure 3.2, layer 1 would be the input
layer, layer 2 the hidden layer and layer 3 would be the output layer. A network can contain several
hidden layers and are referred to as deep networks, which will be discussed in Section 3.3.2. The term
”hidden” only indicates that it is neither an input nor output layer.

Figure 3.2: Simple Neural Network

In neural networks the links often have additional attributes. These attributes are called weights and
describes the correspondence between specific neurons. Every link between all connecting neurons has
individual weights, meaning the number of weights in a large neural networks can’t exactly be counted
on one hand. The weights can be denoted as wljk, which represents the weight between the kth neuron

in the (l− 1)th layer to the jth neuron in the lth layer. An example is shown in Figure 3.3. The Figure
illustrates the weight between neuron 4 and 2 in the 2nd and 3rd layer. The notation is taken from
[35].
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Figure 3.3: Weight w3
24 in a neural network

During training of a neural network these weights are altered and updated. It is neither a surprise
nor a secret that this requires time and computational power. To circumvent this issue, pretrained
models can be utilized. Today there exist plenty of pretrained models available for research and training
purposes. Pretrained models consists of already trained weights for specific problems, which can reduce
training time for educational purposes. However, this assumes that the pretrained model corresponds
to the problem that it is used on. A pretrained model to recognize red/green lights in traffic lights
is not guaranteed to be applicable for recognizing yellow blinking lights on a subsea panel. This is
because we don’t really know which weights are important for the two slightly different problems, due
to the complexity of the neural network.

3.1.1 Training a Neural Network

The overall goal when training a neural network is to alter weights to make the connection between
neurons optimal. This will provide a network that optimally represents the desired solution to a certain
problem.

Weights

Weights have been mentioned, however how they influence the output from neurons has not been
explicitly explained. It was scientist Frank Rosenblatt who first introduced weights when he invented
the perceptron algorithm in 1958 [36]. Rosenblatt utilized a step function to determine the output
from a neuron. All the inputs to a neuron were weighted with different weights and the output, 0 or
1, was determined from whether the weighted sum was less or more than a threshold value.

output =

{
0, if

∑
j wjxj ≤ threshold

1, if
∑
j wjxj > threshold

(3.2)

where wj is the weight and xj is the input. To simplify the notation of the weighted sum, a bias can
be introduced to represent the threshold. If we define the bias as b := −threshold, it follows that

output =

{
0, if

∑
j wjxj + b ≤ 0

1, if
∑
j wjxj + b > 0

(3.3)

This weighted sum is calculated for every neuron in order to determine the output. The weights
then works in a way where attributes that are important to the neuron will have high weights on the
incoming links and the not so important attributes will have low values.

The perceptron function involves a step function, which leads to either 0 or 1 as output. A small change
in the input can therefore change the output completely and this can again have huge effects on the rest
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of the network. Other functions have therefore been introduced in order to ensure a gentler relation
between changes in input and output. These types of functions are often referred to as activation
functions and denoted by σ. The most commonly used activation functions are the sigmoid function,
the hyperbolic tangent function and the ReLu function. They take the weighted sum as input and are
all illustrated in Table 3.1 along with the step function. Note that z =

∑
j wjxj + b.

Table 3.1: Commonly used activation functions

Step function σ(z) =

{
0, if z ≤ 0

1, if z > 0

Sigmoid function σ(z) =
1

1+e−z

tanh σ(z) = tanh z =
ez−e−z
ez+e−z

ReLu σ = max{0, z} =

{
0, if z ≤ 0

z, if z > 0

Cost function

It was stated in Section 3.1 that the weighs are altered during training of a network. In order to
quantify how well the network behaves with certain weights and biases, a cost function is introduced.
The cost function is often represented by a mean squared error (MSE) function, and is denoted

C(w, b) :=
1

2n

∑

x

||y(x)− aL(x)||2, (3.4)

where n is the total number of training inputs, a is a vector of outputs from the network with x as
input. The sum is over all the individual training inputs, x where y(x) is the desired output. The
aim of a training algorithm would be to minimize the cost function. In the literature the cost function
is also referred to as the loss function. The desired outcome for a near-perfect network would be to
get C(w, b) ≈ 0 by altering the weights and biases. In order to solve such a minimization problem,
gradient descent, which is a commonly used method for minimization problems, can be used. In order
to find the minimum of the cost function using gradient descent, the gradient of C(w, b) is considered

∇C(w, b) :=
(∂C
∂w

,
∂C

∂b

)T
. (3.5)

Thus the aim is to find the minimum cost function by following the gradient, ∇C(w, b). As illustrated
in Figure 3.4, the red dot represents a global minimum which is the desired point.
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Figure 3.4: Optimal gradient

It is easy to see in this plot that the gradient, ∇C(w, b), will be purely positive and you will move
towards the minimum value by moving towards decreasing gradient. In other words, changes in wi
and bi that provides decrease in magnitude of Ci is desired. Mathematically this is represented with
the gradient descent algorithm

(w, b)′ = (w, b)− η∇C(w, b) (3.6)

where η is referred to as the learning rate and (w, b)′ is the updated values of the weights and biases.
When the gradient becomes 0 the function knows it is at the minimum. However, cost function tends
not to look like such an optimal plot. A often occurring problem from gradient descent is the saddle
point problem. The saddle point problem considers a situation where you get stuck on a saddle,
believing you are at the global minimum. Such a point is illustrated in Figure 3.5 below.

Figure 3.5: The saddle point problem

Stochastic gradient descent

To circumvent this problem the 2nd derivative can be computed. Then the algorithm can be ordered
to follow a positive 2nd derivative, meaning the gradient closes into 0. This derives a new problem,
the required computational time if 2nd derivatives of the cost function should be considered. Another
algorithm called stochastic gradient descent has been proposed which can solve this issues. This method
was probably first proposed by [37] in 1951, and suggests a method were the samples are determined
randomly instead of the way they appear in the input set. This generates a noisy gradient, and for
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non-convex minimization problems, considering a noisy gradient is actually not a bug, but rather a
desired feature. The stochastic gradient descent equation would then be denoted

(w, b)′ = (w, b)− η∇Ci(w, b), (3.7)

where the difference from (3.6) is that now C(w, b) is approximated by a gradient at a single sample,
Ci(w, b), instead of the average of the weighted sum from (3.4).

Architecture

As stated, the training of a neural network consists of minimizing the cost function with regards
to weights and biases. Another important parameter concerning the overall capability of the neural
network is it’s architecture. The architecture concerns number of layers, number of neurons in each
layer, connections between neurons etc.

A nematode worm possesses a total of 302 neurons [38]. Still this presumably unintelligent worm
is capable of performing complex tasks super computers today have troubles with. This is due to
the complexity of the yet unknown inner mechanisms and architecture of a worm’s biological neural
network. As stated before, artificial neural networks are inspired from the biological networks in human
brains. However, the immense complex brain is still not fully understood even by scientists who have
devoted large part of their professional life to investigating the human brain. Artificial neural networks’
architecture are therefore just a mere sketch of the complex biological version. Still, through the 4th

industrial revolution we now experience, new methods, algorithms and frameworks emerge rapidly.
A type of neural network that has proven to be successful in image recognition and classification is
convolutional neural networks.

3.2 Convolutional Neural Networks (CNN)

CNN’s consists of three layers

• Convolution layer

• Pooling layer

• Fully Connected layer

3.2.1 Convolution Layer

[39] defines CNN as

”Convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers.”

CNNs can be traced back to Fukushima and his Neocognitron [40]. He proposed a hierarchical multi-
layered neural network performing robust visual pattern recognition. Adding convolution to the neural
networks applies the definition

(f ∗ g)(t) ≡
∫ ∞

−∞
f(τ)g(t− τ)dτ. (3.8)

(f ∗ g)(t) is a entirely new function based on f(t) and g(t). It can be seen as the weighted average
of the function f(τ) at the time instant t where the weighting is given by g(−τ). In other words,
convolution describes the output in terms of the input.
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Relating this theory to the neural network terminology we can write

s(t) = (x ∗ ω)(t) =

∞∑

τ=−∞
x(τ)(t− τ), (3.9)

where the output s(t) is often referred to as the feature map. The inputs x and ω is often referred to
as the input and kernel, respectively. As seen by (3.9), this is the discrete version of the continuous
definition of convolution from (3.8). The problems this thesis will address are with regards to images,
therefore it would be more relevant to talk about multidimensional arrays. If an image, I is used as
the input, which is normally represented with two dimensions, the kernel K should be two-dimensional
as well. (3.9) can then be altered to a two dimensional version

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n). (3.10)

Discrete convolution can now be seen as matrix multiplication. If the networks are regarded as matrices
the kernels are often smaller matrices that extract the desired information from the input. A known
kernel in CNN is the edge detection kernel. This is a kernel that can be applied to an image to detect
edges [41], and can be represented by the matrix

Kedge =



−1 −1 −1
−1 8 −1
−1 −1 −1


 (3.11)

This kernel is multiplied with a matrix representing a picture in matrix form. This mathematical
procedure is shown in Figure 3.6.

Figure 3.6: Convolution in matrix perspective [41]

A (3x3) kernel will then reduce a (n,m) matrix to (n-2,m-2), and the information in the resulting
feature map will represent the desired information. However, if the input is a small image and several
layers of convolution can result in an undesirable small feature map. Padding is introduced to cope
with this, and involves adding additional rows and columns of 0’s at the beginning and end of the
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input matrix so the resulting feature map size won’t shrink. This method can be illustrated with




1 2 3
4 5 6
7 8 9


 padding−−−−−−−→




0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0



. (3.12)

Figure 3.7 shows a picture where the edge detection kernel (3.11) is used. This is a black and white
picture and as seen, the kernel perfectly locates the edges in the picture.

Figure 3.7: Edge detection applied to a black and white picture

Figure 3.8 illustrates another picture where the edge kernel is applied. This is a colored picture with
a lot more variance than the picture of the chess piece. However, it can be seen that the kernel still
locates the edges quite good. In the resulting image to the right it is possible to see the outlines of the
dog even though there is a great deal of noise from the grass.

Figure 3.8: Edge detection applied to a real picture [42]

3.2.2 Pooling Layer

When the convolution operation is done, pooling can be executed in order to decrease the feature
map dimensions. If pooling is executed, padding is normally not done. It would be counter intuitively
to ensure maintaining the dimension of the feature map if is decreased in the very next operation.
Regarding pooling, either max pooling or average pooling can be executed. The operation consist of
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running the input through a filter to extract the desired information and neglect the rest. Max- and
average-pooling is illustrated in Figure 3.9

Figure 3.9: Max- and average-pooling

Pooling does not have any parameters to learn, only hyper-parameters that have to be selected. These
parameters are the size of the pooling filters and the stride which is the number of elements the filter
moves between operations. In the example in Figure 3.9 the size of the filter is 2x2 and the stride is 2.

3.2.3 Fully Connected Layer

Fully connected layers acts like a standard single neural network layer. Thus, it consists of weights
and biases that should be trained. Note that the connected layers have sparse connections. This
means that nodes are not connected to every single node in the following layer. This results in fewer
connections, thus fewer operations and a decrease in computational complexity. Figure 3.10 illustrates
the architecture of a CNN inspired by the LeNet-5 network including convolution layers, pooling layers
and fully connected layers.

Figure 3.10: Fully connected CNN [43]

This network consists of two convolutional layers, two pooling layers and two fully connected layers.
Note that each pooling layer follows directly a convolution layer. The flatten procedure organize
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all parameters in a single vector which is used as input to the neural network. This is to ensure the
standard shape of an input layer. Note that the layers in the convolutional part of the network consists
of 3D matrices. This is due to the shape of the initial input, e.g. an image. An image consists of
red-green-blue (RGB) values, thus the input has 3 layers, one for each RGB value.

3.3 Machine Learning

In the last few years, new methods and articles regarding machine learning have regularly been pub-
lished. The interest in machine learning itself has experienced a substantial growth. Figure 3.11
illustrates the trend of how many times machine learning is searched for on the internet the last 10
years [44]. It has increased tenfold in the last 10 years.

Figure 3.11: Trends of machine learning the last 10 years

Machine learning applications have achieved state-of-the-art performances in multiple disciplines.
Google’s AlphaGo has beaten the worlds best human Go player, and is arguably the strongest Go
player in history [26]. InnerEye by Microsoft uses machine learning to develop image diagnostic tools
in order to detect tumors etc. In addition to the fields of games, technology and medicine, machine
learning approaches are also believed to have a dramatic impact in the fields of economics [45] in the
short future. Thus, it is safe to say that machine learning will, at some extent, impact the majority of
humans alive today.

Machine learning can be traced back to Arthur Samuel when he proposed a definition in 1959 [46].

”Machine Learning is the field of study that gives computers the ability to learn without
being explicitly programmed”.

However this definition could be interpreted as a bit vague. Almost 40 years later in 1997, Tom Mitchell
came with a more clear definition [47]

”A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves
with experience E”.

Article 1 concerns the problem of reducing the reality gap. Relating Mitchell’s definition to this specific
problem, the task T involves reducing the gap between a simulated environment and the real world.
The performance measure P is related to at which degree transformation between the domains is
achieved. The Experience E involves the information and features the frameworks manages to extract
from the dataset.

3.3.1 Learning Algorithms

From Mitchell’s definition, the goal of machine learning is clear. However, how to achieve this goal is
not yet stated. Different machine learning algorithms can be used to achieve a self learning computer
program.
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Supervised Learning

Supervised learning algorithms receives a dataset with labeled data. An example of such a dataset
could be images of cats and dogs where every image has a label stating if the image contains a cat or
a dog. During training the algorithm receives input and suggest an output. Afterwards the algorithm
is told the ”correct answer” and learns from the experience. The algorithm should later be able to
recognize other cats and dogs based on the training. However, if it receives an image very different
than the ones from the training set, it could experience difficulty. The idea is in general to learn the
mapping Y = f(X).

Figure 3.12: Supervised learning

The example with cats and dogs is a classification problem. Supervised learning can also solve regres-
sion problems. A typical regression problem is to estimate the selling price of a house by considering
number of rooms, size, building year etc. The system would then learn a mapping from these param-
eters to the selling price by training on houses with known selling price.

Unsupervised Learning

Unsupervised learning algorithms receives an unlabeled dataset. This means the algorithms should
learn without knowing the exact ”correct answer”. The supervised term originates from that the
algorithm has an instructor which shows the algorithm what to do. An unsupervised learning algorithm
has to manage without this instructor. Instead the algorithms learns useful properties and structures
of the dataset.

Figure 3.13: Unsupervised learning

Unsupervised learning can be divided into clustering and association problems. Clustering concerns
discovering groupings in the dataset, e.g. sorting an item by color. Association concerns finding
connections/rules in the dataset, e.g. students getting straight A’s also tends to be organized and to
work a lot. A known unsupervised learning method is Autoencoders, which are neural networks that
aims to copy their inputs to their outputs. Autoencoders will be discussed is Section 4.1.

Reinforcement Learning

Reinforcement learning works in a different way than supervised- and unsupervised learning. Instead of
just interacting with a fixed dataset, a reinforcement learning algorithm interacts with the environment,
which generates a feedback loop between the learning system and its experience [39].
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Figure 3.14: Reinforcement learning

It can be explained by figure 3.14. The learning concerns how an agent should take some action in an
environment in order to maximize some reward [48]. [49] proposed a reinforcement learning algorithm
called Q-learning. The goal of this algorithm is, simple put, a way of learning a policy in order to tell
agents which action is optimal under different circumstances.

3.3.2 Deep Learning

Deep learning is a subset of machine learning and can be defined within any of the learning algorithms
discussed above. The expression ”deep” refers to the depth of the networks used in the learning. For
deep learning algorithms, several hidden layers are used. The architecture of these neural networks are
inspired by the biology of the human brain [50]. However, unlike the human brain where every neurons
can connect together within certain areas, deep neural networks are divided into discrete layers with
specific connections and data transactions. The difference from an ordinary network vs a deep network
is illustrated in figure 3.15 below.

Simple Neural Network Deep Neural Network

Input Layer Hidden Layer Output Layer

Figure 3.15: Ordinary network vs deep network

A deep learning algorithm can detect if a prediction is wrong on its own, while a simple machine
learning algorithm needs an external invigilator to determine this. This is a result of the extra hidden
layers in the network. [51] studied the complexity of functions computed by deep neural networks
in terms of their number of linear regressions. Additional hidden layers increased the number of
regressions, but also provided superior performance.
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3.4 Vision Based Learning

The increasing improvement of CNN produce a solid foundation to develop vision based learning. In
this section relevant learning methodologies for the articles are introduced. The relevant topics to be
interpreted are domain transfer and object detection.

3.4.1 Domain Transfer

Transfer learning is a substantial, however interesting problem in machine learning. Human brains are
experts at knowledge transfer. Consider an example of a chef working in a french kitchen. He/she
is probably more equipped to work in a sushi restaurant than an engineer from Norway. The ability
the chef possesses where he/she can transfer his knowledge to another related task is present in all
humans. This might be perceived as a basic trait of the human intelligence, but is in fact extremely
complicated to establish as a computational ability. A robotic arm can be trained to sort red and
yellow cubes. However, the model often run into problems if the color of the cubes change to blue and
green. Or if the shape changes to triangles or simply the lighting setting changes. Models trained in
a simulated environment often experience the same problems when they are applied in the real world.
This is referred to as the reality gap. Different approaches has been tested to reduce this gap between
a simulated environment and the real world. [52] developed an object detector that trained only using
simulations. They demonstrated how their object detector could achieve high enough accuracy when
tested in real life after only being trained from simulations. The authors focused on a robotic arm that
would grasp desired objects in a cluttered environment. The authors objective was to perceive the real
environment as just another variation. This is an attempt to bridge the reality gap that is present in
simulations today. As most methods within domain transfer, their methods architecture was based of
CNN. The architecture consisted of five groups of convolutional layers and two fully connected layers,
and pooling between each of the groupings of convolutional layers.

The main idea is to make machines manage to transfer knowledge between different domains and
execute different related tasks. A related goal is to be able to execute the same tasks, however in
different environments. Regarding underwater operations the latter one is particularly interesting.
Training machines in an underwater environment can be extremely time consuming and error-prone
due to harsh environment. However, if machines are trained exclusively in simulations, the transfer of
knowledge to the real world could also generate failure. Generating robust techniques for transferring
the knowledge between domains is therefore of immediate interest for operators in this market.

3.4.2 Object Detection

Vision based object detection have exploded in the last few years. With the arrival of autonomous
cars, tremendous amounts of resources are put into research and development of the robustness of
such systems. Tesla has in the last years been the quarterback pushing this development. Even
though it was not revealed before 2014, every Tesla vehicle ever to enter the streets were built with
the intention of one day become autonomous. The vehicles have in fact gathered data since the first
Tesla Roadster, owned by Tesla CEO himself, Elon Musk, entered the streets in 2008. The gathered
data consist of sensor information and are used by engineers at Tesla for everything between improve
faults on the vehicles to train neural networks in autonomous appliances. This includes object detection
applications.

Object detection is commonly separated into two types (See Figure 3.16). One type follows the tradi-
tional object detection procedure. In essence, this means identifying region proposals and classifying
the proposals into object categories. In the literature this is known as Region Proposals Networks
(RPN). Such methods consider, at some extent, the same methodologies as the human brain. The
methods perform an initial scan of a scenario before separating the information into regions of spe-
cific interest. The second type follows a classifier-based approach or a regression problem. These
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methodologies both arrive from the supervised learning branch of machine learning (See Figure 3.17).
Thus, they share the overall objective of supervised learning to learn the mapping f(·) in y = f(x),
as discussed in Section 3.3.1. The pivotal difference between the classifier and regression approaches
is the type of output. Classification approaches aim to learn the mapping to a discrete or categorical
output, while regression approaches aim to learn the mapping to a continuous or numerical output.

Figure 3.16: Object Detection Methodologies

Figure 3.17: Machine Learning methologies

Associating vision-based object detection with underwater applications is increasingly relevant. Such
detection objectives can be solved with machine learning approaches such as classification [53], salient
feature detection [54] or object detection [55, 56]. Object detectors build with neural networks can
include a large variety of properties depending on the specific application. Vision based detectors
commonly considers edges, color differences and optical flow. Such properties are frequently considered
in combination with one another when building the neural networks.
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Chapter 4

Methodology

This Chapter considers the contemplated methodology for the thesis. Existing state of the art frame-
works are presented and necessary knowledge about the methodology considered in the articles are
given.

4.1 Autoencoders

As previously stated, Autoencoders are an unsupervised learning method. Autoencoders are funda-
mental for the architecture of neural networks when considering optical data as the contemplated
medium. The network functions by compressing the input into a latent-space representation before
reconstructing the output from this latent space [57]. This mapping is illustrated in figure 4.1, where
x is the input, h = f(x) encodes the input to the latent space, and r = h(z) decodes the latent
representation to the output. Thus the whole process is described with r = h(f(x)) and the goal is to
achieve r ≈ x. This process is carried out in order to extract desired features between the output and
input.

Figure 4.1: Architecture of autoencoders

An important property of the autoencoders is that the latent space, z, must have a smaller dimension
than x. If they are the same size, the encoder can simply copy the entire input without learning
any specific features. In this case even linear encoders and decoders can learn the mapping. By
restraining the dimension of the latent space, the autoencoders must learn to extract only the most
important features of the input in order to reconstruct a satisfying copy. There exists several types of
autoencoders. Four regularly mentioned types are

• Vanilla autoencoder

• Multilayer autoencoder

• Convolutional autoencoder
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• Regularized autoencoder

The difference in these four methods are quite self-explanatory. The vanilla autoencoder is a simple
version consisting of three layers, i.e. a neural network with one input layer, one hidden layer and
one output layer. The encoder and decoder are then simply the mapping between the input and the
hidden layer and the mapping from the hidden layer to the output layer respectively. The multilayer
autoencoder simply consists of several hidden layers. Convolutional autoencoder includes convolutional
operations as explained in Section 3.2. Regularized autoencoders are somewhat separated from the
other types. These autoencoder encourages the model to have other abilities than copying the output
from the input. The regularized autoencoders are typically described by two types, sparse autoencoders
and denoising autoencoders. The sparse autoencoders must respond to unique statistical features of
the training dataset due to the sparsity. Thus the model can learn useful features of the dataset in
addition to be an ordinary copy from input to output. For the denoising application, noise are added
to the input and the denoising autoencoder learns to remove it. This way the autoencoder will extract
the most important features and learn a more robust representation of the data.

4.2 Generative Adversarial Networks (GAN)

In the field of domain transfer, Ian Goodfellow came with a small breakthrough when he in 2014 intro-
duced GAN. This network consist of a combination of two networks, a generator and a discriminator.
The generator aims to produce content, while the discriminator determines the level of authenticity of
this content. They learn simultaneously and compete against each other, in what can be described as
a zero-sum game. An easy way to imagine the two networks, is to look at the generator as a criminal
trying to produce fake money, and the discriminator as the police who determines if the money are
real or fake. If the police rightly classifies the money as fake, the criminal (if he/she is smart) will
learn from this experience and produce more realistic money. Along the way, the police will also get
better at classifying the fake money and they will simultaneously get better at their respective job.

GAN is based on differentiable generator networks, which transforms samples of latent variables z
to samples x or distributions of samples x using a differentiable function G(z) [39]. A function is
said to be differentiable if the derivative of the function exists at each point in the functions domain.
GAN works on the principle of comparing generator networks with discriminator networks, in other
words a generator and a discriminator compete against each other. The principle is quite easy. The
generator produces samples x = G(z), and the discriminator attempts to determine if the samples are
produced by the generator or if they come directly from the training set. The discriminator produces
a probability given by D(x), indicating the probability that x is a real sample rather than a fake
sample produced by the generator. The end-goal of GAN is that the Discriminator will be unable to
distinguish the real samples from the fake and produce a constant probability of 0.5.

As stated, an often used method for learning GAN is looking at a zero-sum game. Consider a function
v(G,D) that determines the payoff of the discriminator. In a zero-sum game the gains and losses of
the participants are exactly balanced and equal to zero [58]. Thus the generator receives −v(G,D) as
its own payoff. During learning both participants have a desire to maximize their payoffs, until the
learning reach convergence

G∗ = arg min
G

max
D

v(G,D). (4.1)

An often chosen function for v in this example is

v(G,D) = Ex∼pdata
logD(x) + Ex∼pmodel

log(1−D(x)). (4.2)

This function concerns the expected value of D(x) with respect to the training data and the model.
The discriminator will focus on learning to correctly classify samples as real or fake, while the generator
will simultaneously try to generate as real looking samples as possible to fool the discriminator. These
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two participants will learn in parallel to each other. This model can be highly under-constrained, but
there exist several published methods and frameworks solving this.

[59] proposed a framework called Coupled Generative Adversarial Network (CoGAN) for learning joint
distributions between individual domains. The paper aimed to obtain a learning based on the joint
distributions between domains rather than learning from corresponding images in different domains.
This simplifies the requirements of the datasets, because with CoGAN they didn’t require correspond-
ing images in the different domains. The framework discovered the joint distribution instead. They
applied the CoGAN framework for color and depth images, and also on face images with different
attributes and demonstrated successfully image transformations between domains.

[60] illustrates methods for unsupervised image-to-image translation. They do this by learning a joint
distribution between individual domains. Their framework assumes there exists a shared-latent space
and is based on the CoGAN framework from [59]. The shared-latent space assumptions assumes that
a pair of corresponding images in different domains can be mapped in the same latent domain. A
latent space is a simpler representation of the images [61]. A shared-latent space between two domains
could be a way to represent the desired features in different images. By transferring the images to the
shared-latent space these shared features could be simpler to extract. By assuming there exist such a
shared-latent space [60] demonstrated image-to-image translation between two domains without any
corresponding images in the training datasets. They also discovered two limitations of the framework.
The translation model was unimodal due to the Gaussian latent space assumption. A unimodal
model means there exist only one peak, i.e. one right answer. The second limitation was possible
unstable training due to the saddle point searching problem. The saddle point searching problem is
a well known issue within regression analysis and machine learning frameworks. The issues consist
of difficulties in distinguishing saddle points from maximums and minimums. This problem has been
discussed in Section 3.1.1. Another framework deriving from GAN is CycleGAN which implements a
cycle consistency loss in addition to the already implemented adversarial loss.

4.2.1 CycleGAN

CycleGAN is a method to perform image-to-image translation between domains without paired im-
ages in each domain [62]. The authors have created methods using both TensorFlow and PyTorch.
The image-to-image translation are achieved without paired images by adding an additional mapping
function F in addition to G. Figure 4.2 represents the architecture of this translation.

Figure 4.2: Architecture of the CycleGAN method taken from [62]

From the architecture of CycleGAN it can be seen that when adding the additional mapping function
F (y), an additional discriminator DY is also necessary. DY attempts to distinguish images from
domain x and generated images F (y), and similarly DX tries to distinguish between images from y
and G(x). The objective function now becomes twofold and includes the adversarial loss and a new
cycle consistency loss. The adversarial loss can be defined as the payoff function in the zero sum game
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explained in Section 4.2 and (4.2). This gives an adversarial loss function represented by

LGAN (G,DY , X, Y ) = Ey∼pdata
logDY (y) + Ex∼pdata

log
(

1−DY

(
G(x)

))
. (4.3)

The cycle consistency loss is illustrated in the middle and right figures in Figure 4.2. Implementing
a desired cycle consistent mapping means that for each image, x or y, you want the original image
reconstructed after the image translation cycle, i.e., X ≈ F (G(X)) and Y ≈ G(F (Y )). The cycle
consistency loss can thus be defined with

Lcyc(G,F ) = Ex∼pdata
||F
(
G(x)

)
− x||1 + Ey∼pdata

||G
(
F (y)

)
− y||1. (4.4)

The objective then becomes a sum of the adversarial loss and the cycle consistency loss, and can be
represented with

LCycleGAN (G,F,Dx, Dy) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X) + λLcyc(G,F ), (4.5)

where λ determines the relative importance of the two objectives. Notice that there are used two
functions for adversarial loss. This is in order to ensure the losses for mapping between both domains
are accounted for. Remember that a loss function is equivalent to the cost function discussed in Section
3.1.1. Motivated by (4.1), the objected becomes to solve

G∗, F ∗ = arg min
G,F

max
DX ,DY

LCycleGAN (G,F,Dx, Dy). (4.6)

This model can be viewed as training two autoencoders, one mapping the F (G(x)) ≈ x and one
mapping G(F (y)) ≈ y. It should be noted that this method have special internal structure and
therefore not be seen in direct comparison with the autoencoders described in Section 4.1. Both the
generators and discriminators use ReLu functions as the activation functions. The ReLu function in
the discriminator is a leaky ReLu with slope 0.2. A leaky ReLu function is similar to the function
described in Section 3.1.1, but now the function is altered to σ = max{0.2z, z}. Preliminary results
from CycleGAN are depicted in Figure 4.3.

Figure 4.3: Published results from [62].

4.3 Object Detection

In object detection schemes, real-time pose of the object is generally of interest, thus stereo cameras
are often used [63, 64, 65]. Stereo cameras employs two or more lenses in order to simulate humans
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binocular vision, thus capturing spatial features in images to get a 3D representation. Moreover,
in machine learning applications where labeled data is needed, 3D images could be complicated to
process and labeling of such images are difficult. Processing standard monocular camera images
and labeling ordinary RGB 2D images is much less complicated. However, this requires alternative
methods for extracting spatial features. Underwater object detection using monocular camera has
previously been investigated [66]. The authors used visual features such as color and intensity as well
as investigating light transmission information. However, spatial features were not considered. [67]
presented a 3D object detection method based on 2D images. They modified the known You Only Look
Once (YOLO) algorithm [68] to receive input images from different angles and reconstruct a three-
dimensional representation with a 3D bounding box locating the object. The aforementioned YOLO
algorithm is one of the recent most successful real-time object detection algorithms. In contrast to
several other object detection methods, YOLO identifies the detection problem as a regression problem
as apposed to a classifier-based approach and the algorithm consist of a single neural network. These
specifications provides a framework able to process images at real-time at 45 frames per second. In
addition, the algorithm generalizes well to different domains, which makes it ideal for new applications.

A well known classifier object detector is the R-CNN [69]. The name derives from the combination of
regional proposals and convolutional neural networks. The R-CNN algorithm proposes 2000 regions
per image and works with these regions in an attempt to classify them in order to locate the object.
2000 regions per image is a lot to process and is computational expensive. The algorithm uses about
47 seconds per image, which makes it irrelevant regarding real-time detection. A modified version,
Fast R-CNN, proposed a slightly different approach. Instead of proposing 2000 regions per image,
the modified version feeds the input image to a CNN and outputs a convolutional feature map. The
proposed regions from the feature map is fed through a regions of interest (RoI) pooling layer and a
fully connected layer. Then a softmax layer is used in order to predict the class of the object as well as
the regions for the bounding boxes. As for R-CNN, Fast R-CNN uses selective search which is a slow
and time-consuming process. Faster R-CNN, a further modification, circumvents the selective search
algorithm. The algorithm uses a separate network instead of selective search in order to predict the
region proposals. This results in a much faster network. Faster R-CNN is the only network out of
these three that is fast enough to be relevant for real-time object detection.

The mentioned R-CNN networks are all Region Proposal Networks (RPNs). [70] proposed a novel
proposal generation method called Enhanced Region Proposal Network (ERPN) inspired by the RPN
in Faster R-CNN. In ERPN four improvements were presented compared to Faster R-CNN.

• A deconvolutional feature pyramid network (DFPN) is introduced in order to improve the region
proposals.

• Novel anchor boxes were designed with interspersed scales and adaptive aspect ratios. This
increased the capability of the object localization.

• A particle swarm optimization (PSO) based support vector machine (SVM) was developed in
order to distinguish the positive and negative anchor boxes.

• Improvement of the classification part of multi-task loss function in RPS, which resulted in
strengthened effect of classification loss.

ERPN surpassed Faster R-CNN in both speed and accuracy when tested on the PASCAL VOC 2007,
2012 [71] and MS COCO datasets [72].

Single Shot Detector (SSD) uses a classification/regression based approach and, hence, does not re-
quire object proposals, and encapsulates all computation in a single network [73]. Consequently the
algorithm is fast and suitable as a real-time object detector. SSD also proved to be more accurate
than the YOLO versions available at the time. However, new versions of YOLO has emerged since
then. The version YOLOv3 has proven to be just as accurate as SSD, however three times faster [74].
Still YOLOv3 is not as fast as it’s predecessor, where YOLOv2 could run on a Titan X at 45 FPS
while YOLOv3 is limited to about 30 FPS. This is due to the increased complexity of the underlying
network called Darknet. YOLOv2 utilize Darknet-19 consisting of a total of 30 layers, contained origi-
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nally a 19-layer network with additional 11 layers for object detection. YOLOv3’s network Darknet-53
contains 53 layers trained on ImageNet with 53 more layers for object detection. This gives a net-
work with 106 layers. This increased complexity is the cause of decreased speed as well as increased
accuracy. Darknet-53 incorporated some new important elements which Darknet-19 did not contain,
such as residual blocks, skip connections and upsampling. See Table 4.1 for the Darknet-53 layers.
Another issue YOLOv3 has addressed is the fact that previous versions have struggled with detecting
small objects. In YOLOv3, predictions are made at three different scales, and after each detection,
layers are upsampled. The upsampling helps the network learn fine-grained features, which are advan-
tageous for detecting small objects. The predictions are conducted with a convolutional layer which
uses 1x1 convolutions. For each scale 3 boxes are predicted. Each prediction consist of 3 bounding
boxes, an objectness score and class scores. The predictions consist of a convolutional layer with size
1× 1× (3 ∗ (1 + 4 + #C)), where #C is the number of classes the detector considers.

Table 4.1: Darknet-53

Type Filters Size Output
Convolutional 32 3 x 3 256 x 256
Convolutional 64 3 x 3 / 2 128 x 128
Convolutional 32 1 x 1

1x Convolutional 64 1 x 1
Residual 128 x 128

Convolutional 128 3 x 3 / 2 64 x 64
Convolutional 64 1 x 1

2x Convolutional 128 3 x 3
Residual 64 x 64

Convolutional 256 3 x 3 / 2 32 x 32
Convolutional 128 1 x 1

8x Convolutional 256 3 x 3
Residual 32 x 32

Convolutional 512 3 x 3 / 2 16 x 16
Convolutional 256 1 x 1

8x Convolutional 512 3 x 3
Residual 16 x 16

Convolutional 1024 3 x 3 / 2 8 x 8
Convolutional 512 1 x 1

4x Convolutional 1024 3 x 3
Residual 8 x 8
Avgpool Global

Connected 1000
Softmax
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Chapter 5

Conclusions and Further Work

The presented work focuses on the use of visual aided machine learning applications in the underwater
segment. The appended articles investigates different aspects of the development within underwater
operations. Transfer learning and object detection have been investigated and how the challenging
underwater environment affects different existing methods. The main conclusions of the articles are
summarized as follows:

Article 1 investigated methods for reducing the reality gap, by generating a mapping between a
simulated and a real environment. Simulations were conducted for two different datasets, localized
in a laboratory pool and the bottom of a fjord. The datasets had a clear distinction in the level of
details present in both the simulated and real environment. The dataset from the fjord included in
general higher level of details. Results suggested that the contemplated transfer learning framework,
CycleGAN, was able to generate a mapping between the domains. The distinction in details in the
two datasets also suggested that the higher level of details improved the results significantly. Further
work includes keep developing the obtained datasets and increasing the level of details in the simulated
models.

Article 2: presents a dynamic positioning procedure relative to an object of interest using a small-
class fully actuated underwater vehicle. The object is detected using a monocular camera and the
detector is based on the deep learning detector YOLOv3. The detector is trained on a labeled image
dataset of the object of interest. The dataset is large and the paper also presents a powerful labeling
procedure. Experimental testing results prove the effectiveness of the proposed methods, where a
small underwater vehicle performs DP relative to the object with small errors. Further work involves
adapting the proposed methods to an underwater vehicle-manipulator system for simultaneous DP of
the vehicle and gripping with the manipulator arm.
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Abstract—This paper investigates a method for reducing the
reality gap that occurs when applying simulated data in train-
ing for vision-based operations in a subsea environment. The
distinction in knowledge in the simulated and real domains is
denoted the reality gap. The objective of the presented work is
to adapt and test a method for transferring knowledge obtained
in a simulated environment into the real environment. The main
method in focus is the machine learning framework CycleGAN,
mapping desired features in order to recreate environments. The
overall goal is to enable a framework trained in a simulated
environment to recognize the desired features when applied in
the real world. The performance of the learning transfer is
measured by the ability to recreate the different environments
from new test data. The obtained results demonstrates that the
CycleGAN framework is able to map features characteristic
for an underwater environment presented with the unlabeled
datasets. Evaluation metrics, such as Average precision (AP) or
FCN-score can be used to further evaluate the results. Moreover,
this requires labeled data, which provides additional development
of the current datasets.

Index Terms—Underwater robotics, transfer learning, auton-
omy, CycleGAN

I. INTRODUCTION

Today, underwater operations experience a shift towards
use of more autonomous systems, where machine learning
is believed to play a central role. Especially, regarding the
ability to transfer knowledge between operator and system.
Human brains are experts at knowledge transfer. This might
be perceived as a basic trait of the human intelligence, but is
in fact extremely complicated to establish as a computational
ability. The main idea is to enable machines to transfer
knowledge between different domains and execute different
related tasks. An overall goal is be able to to train in a
simulated domain and then execute the same tasks in the real
world. Regarding underwater operations the latter one is of
particular interest as the deep sea is less accessible, operations
are costly and challenging.

Training machines in an underwater environment is ex-
tremely time consuming and error-prone due to the harsh
environment. Moreover, if machines are trained exclusively
in simulations the transfer of knowledge to the real world
could also generate failure. This is referred to as the reality
gap [1]. Generating robust techniques for transferring the
knowledge between domains is therefore of immediate interest
for operators in this market. There exist several published
methods dealing with this problem, however only for specific

domains. This paper will investigate one such method for
the use in the underwater domain. One of the most promis-
ing frameworks, CycleGAN, will be tested on two different
datasets considering underwater environments. The datasets
include real and rendered vision based pictures of subsea
panels.

A. Motivation

The underwater robotic market size is claimed to reach USD
6.74 Billion by 2025 [2]. This corresponds to a Compound An-
nual Growth Rate (CAGR) of 13.5%. By comparison, Apple
Inc.’s 5 year CAGR is, per April 2019, 9.2% [3]. The same
report predicts that autonomous underwater vehicles (AUV)
will account for USD 1.48 billion by 2025. The Norwegian
Government is investing in the ocean space when designing
the concept Ocean Space Center. The concept has a planned
investment of 4.7 billion NOK [4].

Activity, interest and economic growth within the ocean
space is in other words unquestionable, and with growth
advancement in the technology is forthcoming. In the last
years, machine learning has experienced a substantial growth
in both media coverage and technological applications. One
specific area is within vision-based navigation for autonomous
systems. The wide interest and willingness to achieve progress
that is shown today generates motivation for further invest-
ments in the field. Machine learning is believed to play a
significant role in the shift towards autonomy.

B. Background

Underwater operations today are highly dependant on hu-
man operators. Operations previously executed by human
divers are now mostly transferred to remotely operated ve-
hicles (ROVs). Moreover, the industry is today experiencing a
new shift towards more autonomous operations where ROVs
becomes more independent of human operators. Increasing
the level of autonomy and optimize the human-robot inter-
action in these operations can potentially reduce costs and
increase safety [5]. A higher level of autonomy leads to
new requirements and increasing the autonomous complexity.
Moreover, autonomous underwater vehicles (AUVs) require
higher level of autonomy than ROVs. Since global navigation
satellite system (GNSS) measurements are not applicable
underwater, vehicle operation in this domain lacks localization
measurements and are prone to accumulation of error. Today,
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the most common measurements and signal data arrives from
acoustic sensors. Such signals are prone to data loss due
to transmission losses, acoustic noise in thrusters, signal
reflections on different surfaces, absorption loss and more.
Feature extraction using camera vision are rarely used, but
improvements within artificial neural networks (ANN), espe-
cially convolutional neural networks (CNN), shows promising
results. In the presented work, systems using visual aided
navigation will be investigated. This is mostly motivated by
the rapid advance withing CNN and other computer vision
frameworks building on CNN.

Although it is in the last few years CNN has been given
recognition for its good results, it can be traced back to 1980
and Neocognitron [6]. He proposed a hierarchical multilayered
neural network performing robust visual pattern recognition.
Such networks can be defined as

”Convolutional networks are simply neural net-
works that use convolution in place of general matrix
multiplication in at least one of their layers.” [7]

A neural network can be defined as a computer program that
is inspired by the natural neural networks in the human brain
[8]. Such artificial neural networks are designed to perform
cognitive functions as problem solving and machine learning.
Neural networks have successfully been implemented in games
[9], handwriting recognition [10] and even explosive detection
[11]. Neural networks provides a method for defining a system
too complex to be defined by a simple model, e.g. image
recognition and other systems influenced by uncertainty.

A really important parameter concerning the overall capa-
bility of the neural network is it’s architecture. The architec-
ture concerns number of layers, number of neurons in each
layer, connections between neurons etc. A nematode worm
possesses only 302 neurons in total [12]. Still this presumably
unintelligent worm is capable of performing complex tasks
super computers today have troubles with. This is due to
the complexity of the yet unknown inner mechanisms and
architecture of a worm’s biological neural network. As stated
before, ANNs are inspired from the biological networks in
human brains. However, the extremely complex brain is still
not fully understood even by scientists who have devoted large
part of their professional life investigating the human brain.
ANNs architecture are therefore just a mere sketch of the
complex biological version. Still, through the 4th industrial
revolution we are experiencing today, new methods, algorithms
and frameworks emerge rapidly [13].

Machine learning applications have achieved state-of-the-
art performances in multiple disciplines using ANN. Google’s
AlphaGo has beaten the worlds best human Go player, and is
arguably the strongest Go player in history [9]. InnerEye by
Microsoft uses machine learning to develop image diagnostic
tools in order to detect tumors etc. [14]. Machine learning
approaches are also believed to have a dramatic impact in the
fields of economics [15] in the short future. Thus, it is safe
to say that machine learning will, at some extent, impact the
majority of the modern generation.

C. Contributions

This paper investigates a method for transfer learning in
underwater domains. Existing methods have not to a large
extent been tested for use in underwater domains. In the
presented work, experiments are conducted for two different
datasets obtained in an underwater environment. Large datasets
required for machine learning applications can be expensive
and difficult to acquire. Applying transfer learning methods for
underwater environments can provide an alternative method
for cost-effective and simple dataset generation. This paper
provides a collective overview of state-of-the-art frameworks
targeting transfer learning topics. Moreover, suggests solutions
for reduction of the reality gap in the learning process of
machines. The main contribution of the work is the application
of a transfer learning framework to vision-based underwater
operations.

The outline of the paper follows with Sec. II describing
investigated methods involving transfer learning. Sec. III de-
scribes the experiment setup and datasets as well as conducted
simulations, before the results are presented and discussed in
Sec. IV. Lastly conclusions and recommendations regarding
further work are presented in Sec. V.

II. RELATED WORK

Transfer learning is a substantial problem in machine learn-
ing. A robotic arm can be trained to sort red and yellow cubes.
However, such training algorithms often run into problems
if the color of the cubes change to blue and green. Or, if
the shape changes to triangles, or simply the lightning setting
changes. Algorithms trained in a simulated environment often
experience a problem when they are applied to real world data.
This is referred to as the reality gap. Different approaches
have been developed to reduce this gap between a simulated
environment and the real world. A suggested solution is to
train on a variation of simulated environment data. [16] devel-
oped an object detector that trained using only simulated data.
The paper focused on a robotic arm that would grasp desired
objects in a cluttered environment. They found it possible
to train the detector to 1.5cm accuracy. The simulator they
utilized consisted of randomly rendered images with variation
in camera position, lighting conditions, object positions and
non-realistic-textures. The objective was to perceive the real
environment as just another variation. They demonstrated how
their object detector could achieve high enough accuracy when
tested in real life even though it only had been trained on in
a simulated environment.

A breakthrough within the transfer learning topic arguably
came in 2014 when Generative Adversarial Networks (GAN)
was introduced [7]. The network consist of a combination of
two networks, a generator and a discriminator. The generator
aims to produce content, while the discriminator determines
the level of authenticity of the content. They learn simultane-
ously and compete against each other, in what can be described
as a zero-sum game. The generator produces samples x = G(z),
and the discriminator attempts to determine if the samples are
produced by the generator or if they come directly from the

41



training set. The discriminator produces a probability given
by D(x), indicating the probability that x is a real sample
rather than a fake sample produced by the generator. The
end-goal of GAN is that the discriminator will be unable
to distinguish the real samples from the fake and produce a
constant probability of 0.5. The discriminator will focus on
learning to correctly classify samples as real or fake, while the
generator will simultaneously try to generate as real looking
samples as possible to fool the discriminator. This model can
be highly under-constrained, but there exist several published
methods and frameworks solving this.

Coupled Generative Adversarial Network (CoGAN) is a
framework for learning joint distributions between individual
domains [17]. The model aims to obtain a learning based on
the joint distributions between domains rather than learning
from corresponding images in different domains. This simpli-
fies the requirements of the datasets, because CoGAN doesn’t
require corresponding images in the different domains. The
framework discovers the joint distribution instead. CoGAN has
been applied for color and depth images, as well as on face
images with different attributes and demonstrated successfully
image transformations between domains.

Based on the CoGAN framework, [18] illustrates a method
for unsupervised image-to-image translation. The method
learns a joint distribution between individual domains, by
assuming there exists a shared-latent space. The shared-latent
space assumption assumes a pair of corresponding images in
different domains can be mapped in the same latent domain.
The authors demonstrated image-to-image translation between
two domains without any corresponding images in the training
datasets. Moreover, a limitation of the presented translation is
a unimodal model due to the Gaussian latent space assumption.
A unimodal model means there exist only one peak, i.e. one
right answer. Another limitation is possible unstable training
due to the saddle point searching problem.

pix2pix uses conditional GAN (cGAN) to learn the transla-
tion between domains [19]. Since the release of the framework,
a large number of different experiments has been conducted by
different people. The framework shows promising results. The
downside of pix2pix is the need for correlating image pairs
in the source and target domain. A modified version of GAN,
CycleGAN, is a method to perform image-to-image translation
between domains without paired images in each domain [20].
The independence from paired images as well as wide range of
domains CycleGAN has been applied to, are the main reasons
why CycleGAN is the contemplated framework for this paper.

A. CycleGAN

A thorough description of the CycleGAN framework can
be found in [20]. Moreover, an overall description of the
framework and how the cycle consistency is implemented
in the framework is summarized here. The image-to-image
translation is achieved by adding an additional generator and
discriminator. The framework attempts to learn the mapping
y = G(x) and x ≈ F (G(x)), where G and F are two different
generators. CycleGAN is one of the recent most successful

approaches to the image domain transformation topic. Intro-
ducing x ≈ F (G(x)) provides an additional loss function, the
cycle consistency loss, in addition to the adversarial loss. The
adversarial loss is defined with

LGAN (G,DY , X, Y ) = Ey∼pdata
logDY (y)

+Ex∼pdata
log

(
1−DY

(
G(x)

))
,

(1)

where G is the mapping function attempting to generate
images G(x) similar to images in domain Y . DY attempts
to distinguish between the generated images, G(x), and the
real images y.

In order to implement a desired cycle consistent mapping,
the cycle consistency loss is added, (2). This loss ensures that
for each image, x or y, the original image is reconstructed
after the image translation cycle, i.e. X ≈ F (G(X)) and Y ≈
G(F (Y )), as previously mentioned.

Lcyc(G,F ) = Ex∼pdata
||F

(
G(x)

)
− x||1

+Ey∼pdata
||G

(
F (y)

)
− y||1 (2)

The objective in CycleGAN will concequently be a sum of
the adversiaral loss and the cycle consistency loss, represented
with the final loss function

LCycleGAN (G,F,Dx, Dy) = LGAN (G,DY , X, Y )

+ LGAN (G,DX , Y,X)

+λLcyc(G,F ). (3)

λ determines the relative importance of the two objectives.
Notice that the final loss function is represented with two
functions for adversarial loss. This is to ensure the losses for
mapping between both domains are accounted for. Considering
the loss function given by (3), the objective of CycleGAN will
be to solve

G∗, F ∗ = argmin
G,F

max
DX ,DY

LCycleGAN (G,F,Dx, Dy). (4)

As mentioned, CycleGAN offers unpaired image-to-image
translation. Regarding datasets, this provide a great advantage,
because datasets can be extracted from already existing data in
the industry. The framework can also provide the translation
with unlabeled dataset, which means time spent on labeling
each element in vast amounts of data can then be avoided.

III. EXPERIMENTAL SETUP

In this section the two contemplated datasets will be in-
troduced. Parameters regarding the training and testing of the
CycleGAN framework will also be presented.
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Fig. 1: Dataset 1.

A. Dataset

The datasets that will be used for simulations are two sets
containing real and rendered images of a subsea panel. Subsea
panels are installed on oil and gas templates on the Norwegian
Continental Shelf. The panels are accessed by ROVs for e.g.
valve operations and the ROVs operators are totally dependent
of good images. In case of autonomous valve operations,
automatic systems based on machine learning techniques and
the CycleGAN framework is one solution for image character-
ization. The datasets contains no corresponding images in the
training sets, meaning there exist no specific image for one
domain corresponding to another image in the other domain.
The datasets are also unlabeled. The framework is therefore
required to map the features between the domains without be-
ing told the correspondence between them. Dataset 1 contains
images of a subsea panel placed in the marine cybernetics
laboratory (MC-lab) at NTNU [21], as well as rendered images
of the same environment. This dataset contains four different
directories.

• trainA: Containing 4868 rendered .jpg images of the
subsea panel at the bottom of the MC-lab.

• trainB: Containing 2947 .jpg real images of the subsea
panel at the bottom of the MC-lab

• testA: Containing 132 rendered .jpg images of the subsea
panel at the bottom of the MC-lab

• testB: Containing 118 .jpg real images of the subsea
panel at the bottom of the MC-lab

The images are taken from a videostream filming the subsea
panel at different angles, while the rendered images are
rendered using the software blender. Fig. 1 represents image
examples taken from the dataset.

Dataset 2 contains real and rendered images of a subsea
panel placed in the the fjord outside Trondheim. These are im-
ages taken at a more realistic setting, which naturally contains
more noise than the images from the laboratory. The rendered
images are taken from a computer aided design (CAD) model

Rendered

Real

Fig. 2: Dataset 2.

where angles, distance and different noise patterns are altered
to ensure the dataset contains variance. The images can be
seen in Fig. 2. The dataset is split into 4 directories with

• trainA: Containing 1786 rendered .jpg images of the
subsea panel.

• trainB: Containing 406 .jpg real images of the subsea
panel at the bottom the fjord.

• testA: Containing 200 rendered .jpg images of the subsea
panel.

• testB: Containing 46 .jpg real images of the subsea panel
at the bottom of the fjord.

Both datasets represents an underwater environment, how-
ever at different extent. Dataset 1 is from a laboratory and the
images are characterized by clear water and light conditions,
not unlike a surface environment. Dataset 2 are more charac-
terized by a typical underwater environment. The environment
is dark, reflection from light source occurs and fouling are
present at a representative amount of the images. Another
reoccurring issue in underwater environments is marine snow
which leads to occluded images. Moreover, the images in this
dataset are taken from inside a fjord, which results in marine
snow being almost non-existent with relative clear images due
to calm water.

B. Framework

Dataset 1 discussed above includes images with size
256x256. When training on this network, both load size and
crop size of the framework are set to 256x256 in order
to maintain the resolution of the input images. Dataset 2
includes images with different image sizes. The rendered
images includes images in sizes 1080x980 and 1080x800. The
real images varies between 1920x1080 and 720x576. When
training on this dataset, the load size is set to 286x286 and
crop size 256x256. The different sizes of input images are
therefore coped with by loading all images into the framework
with equal size before they are cropped.

The model trains for 200 epochs, which represents going
through the entire dataset 200 times. The training is conducted
with a constant learning rate of 0.0002 for the first 100 epochs,
before decaying towards 0 for the last 100 epochs. For all

43



simulations, λ from equation 3 is set to λ = 10. The model
is saved every 3000 iterations. In order to keep track of the
progress during training, examples of the current state are
generated every time the model is saved. The discriminator
network architectures are 70x70 PatchGAN networks. The
regular GAN discriminator maps from a 256x256 input to a
scalar output to determine real or fake. In comparison, the
PatchGAN discriminator maps from a 256x256 input to a
NxN network of X outputs, where Xij signifies whether the
patch ij in the input image is real or fake. The architecture
of the generator networks contains two 2-stride convolutions,
nine residual blocks and two fractionally-strided convolutions
with stride 1/2. Further, the frameworks is trained with a batch
size of 3 with batch normalization. The batch normalization
ensures that the loss is calculated over the batch and not for
each instance. The framework is trained on a Nvidia GeForce
RTX 2080 Ti/PCIe/SSE2 graphics card.

IV. RESULTS AND DISCUSSION

In this section the results from the simulations will be
presented. Both datasets have been tested on transfer learning
between the two domains and the results vary. The varying
results will also be discussed and suggested improvements and
solutions will be presented.

A. Results

The results are obtained by testing the framework on the
test directories with the trained weights. A part of the obtained
results are depicted in Fig. 3. The figures includes six original
input images from the rendered domain and the corresponding
generated output. For both datasets. Testing has been con-
ducted between both domains, in order to see if the framework
has correctly mapped the relevant features in the two domains.
However, regarding the task of generating datasets for future
machine learning applications, the results presented in Fig. 3
would be the most interesting. Proper generation of images
in the real world domain enables generation of vast datasets
from rendered images. If large and decent datasets are hard
to obtain, this method can provide a more cost-effective
alternative.

The results are most satisfying for dataset 2. It can bee seen
from the figures that for dataset 2, the framework manages
to transfer the subsea panel into the other domain in a good
manner. The overall structure from the input is kept while the
domain changes towards the real domain. Regarding dataset 1
the results are not as satisfying. The output drastically deviates
from the input. The relative angle between the camera and
structure as well as the spatial features are changed in the
output relative to the input. The details on the subsea panel
also seems to be randomly placed on the panel. This suggests
that the mapping between the domains has been unsuccessful.
The domains possess some different features, e.g. QR-codes
are neglected in the rendered domain. The framework might
encounter issues mapping features that is simply non-existent
in one of the two domains.

Fig. 4 also illustrates an insufficient mapping between the
domains. For both datasets. This figure depicts the results
of applying the domain transfer on the real domain and
transferring the input images to the rendered domain. Dataset
1 demonstrates the same issues as for the opposite domain
transfer, where angles and spatial features of the input images
are changed in the domain transfer. This strengthen the theory
that the features of the domains has not been properly mapped
due to the low level of details in the rendered images. The
domain transfer for dataset 2 seems to encounter much of
the same issues. The input images includes parts of the
structure that are not included in the rendered domain. The
additional structure circumventing the subsea panel as well
as the robotic manipulator in the images are unknown to the
rendered domain. Consequently, the framework have problems
transferring theses features into the rendered domain where
they are completely absent.

As previously stated, CycleGAN compares the original
image to a reconstructed image in order to calculate the cycle
consistency loss. This is depicted in Fig. 5. The figure depicts
the input image fed to the framework and the output is the
corresponding image in the other domain. The reconstructed
image is generated by taking the output image as input and and
then transferred back to the first domain. The reconstructed
images represents the input very well. Notice that for the
second image line, the four orange dots are almost gone in
the reconstructed image. This demonstrates that the framework
perceives these features as non-important. The orange dots
are the only features on the rendered subsea panel with
information about where the QR-codes should be placed. If
these features are seen as non-important it could explain why
the generated subsea panels from Fig. 3a are often flipped.

B. Discussion

The results are promising and illustrates a decent mapping
between the domains, especially for dataset 2. However, less
satisfactory results were also obtained, which indicates that
the feature mapping may not be as robust as desired. It should
be noted that the level of details on the CAD models could
be a reason. The CAD model in dataset 1 illustrates a yellow
box with four orange dots. The different QR-codes that are
present on the real model are neglected in the CAD model.
This may confuse the framework when it attempts to map these
exact features between the two domains. This might also be a
reason why the generated images of the subsea panel often is
flipped for this dataset. The largest QR-code are placed in the
upper right corner of the real model. See Fig. 1. However, for
the constructed images, is seems randomly placed in either of
the upper corners. Placing QR-codes on the rendered model
could help ensure that the placement is perceived as a more
important feature to the framework. This dataset is obtained in
the MC-Lab at NTNU, and the images are not characterized
by the dark underwater environment. It is therefore believed
that the issues of mapping the features between the domains,
is due to the lack of details in the CAD model rather than
the fact that the domains are underwater. Moreover, we do

44



Input Output Input Output Input Output

(a) Dataset 1: Rendered → Real.
Input Output Input Output Input Output

(b) Dataset 2: Rendered → Real.

Fig. 3: Results from generating images in the real domain with rendered images as input.

not know exactly how the features are mapped in the neural
network, which makes it difficult to determine how much such
changes would improve the framework. It is also unknown if
they would improve the results at all.

The level of details are increased for dataset 2. However,
even though the CAD model is relatively detailed, it only
includes the panel itself. The real images shows a panel placed
on a larger subsea structure with a manipulator often occurring
in the images as well. The additional subsea structure around
the panel is non-existent in the CAD-model, which causes
some mapping issues. Constructing images of the panel from
a distance cause varying results due to this missing structure
in the CAD-model. When constructing close up images of the
panel on the other hand, the framework performs very well.
On the close up images, the level of details are quite similar
for the CAD-model and the real images. This provides good
circumstances for the framework to map the features between
the domains. This dataset is also much more characterized
by an underwater environment. When the panel is seen from
a distance it is perceived blurry, and the lighting becomes a
strong feature. Due to the dark environment, a source of light
is necessary in order to light up the subsea panel. Fouling on

the structure, distance of the camera, occluding of camera or
light source an other factors provides different reflections on
the structure and provides a challenging domain to map. Still,
the framework is able to represent this light reflection in a
good manner.

Overall, the framework performs well. Limitations that
occurs in the domain transfers are believed to arrive from
different features not being present in both domains, rather
than features characterized by underwater environments. Since
the framework is able to comprehend with such circumstantial
features, the obtained limitations should be possible to improve
similarly to surface limitations.

A limitation with the dataset is the absent of marine snow in
the images. The environments on the Norwegian Continental
Shelf are deeper, darker and more demanding than the datasets
presented in this paper. Another limitation is that the results
are hard to evaluate with a metric, due to the dataset being
unlabeled. A labeled dataset provides a ground truth, which
the results can be compared to. Two popular evaluation met-
rics for the results presented in this paper are the Average
precision (AP), which is often used when measuring accuracy
of classifiers [22], and the FCN-score used in [19].
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Input Output Input Output Input Output

(a) Dataset 1: Real → Rendered.
Input Output Input Output Input Output

(b) Dataset 2: Real → Rendered.

Fig. 4: Results from generating images in the rendered domain with real images as input.

V. CONCLUSIONS AND FUTURE WORK

This paper investigate methods for reducing the reality gap
for vision based systems in the underwater segment. Simula-
tions have been conducted on two different underwater datasets
in order to apply existing methods at underwater environments.
CycleGAN has been used as the contemplated framework. The
datasets consist of rendered and real images of two different
subsea panels. The framework was trained for 200 epochs
on the two different datasets and the results demonstrated
a partially successful mapping between the domains. Some
results were satisfactory, but less satisfactory results revealed a
less robust feature mapping. The framework proved to be able
to map features characterized by underwater environments,
such as dark images and light reflection. It is therefore believed
that increasing the level of details on the CAD models could
provide a solution for increasing the robustness of the feature
mapping. Moreover, using labeled datasets can also provide
possibilities for using evaluation metrics. These issues should
be addressed in future work.
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Abstract—Sonar and camera are two widely used sensors
in the underwater segment. Moreover, optical based systems
provide higher spatial and temporal resolution than their acoustic
counterpart. In this paper, a dynamic positioning system for a
small-class ROV relative to an object detected by a monocular
camera will be presented. The object detection will be performed
by the state-of-the-art object detector YOLOv3 trained on a
dataset representing the relevant known object. In order to
perform dynamic positioning based on 2D images a scaling will
be used to extract the spatial features from the images. The entire
system is able to perform at real-time which is essential for a
dynamic positioning procedure.

Index Terms—Underwater robotics, object detection, auton-
omy, data augmentation, dynamic positioning

I. INTRODUCTION

Subsea inspection, maintenance and repair (IMR) operations
are often identified with the offshore oil and gas industry,
but lately also highly relevant for deep sea mining and
aquaculture. IMR operations are commonly executed by un-
derwater vehicle-manipulator systems (UVMS), which today
rely heavily on humans. Increasing the level of autonomy and
optimizing the human-robot interaction in these operations can
potentially reduce costs and increase safety [1].

In teleoperated systems, the human operator is aided by
visual and sensory feedback in order to assess the situation,
make decisions and remotely execute tasks. The same con-
ditions apply for autonomous systems, only then the system
itself needs to conduct the operations without a human in the
loop, increasing the demands regarding the sensory systems
and implemented software. In the object detection aspect of
autonomous operations, sonars and cameras are two widely
used sensors [2]–[4]. Acoustic sonars have for a long time been
a preferable sensor in underwater systems. However, recent
technological advance within camera systems and the use of
visual aid proves that camera systems have potential for short
range navigation. Moreover, visual aided systems may provide
systems with higher spatial and temporal resolutions than the
acoustic counterpart [5].

It is not straightforward to use camera systems in underwa-
ter environments, especially when paired with robotic systems

during semi- or fully autonomous operations. The underwater
scene is considered one of the most difficult to perform
optical detection and recognition of objects and patterns.
This is because underwater image quality heavily depends
on absorption and scattering of light [6] [7]. With regards to
the operation at hand, underwater object detection is typically
performed with a specific object in mind, which might be
fully visible, or either partially or fully obscured by other
objects. With recent technological advances and lowered costs
of graphical processing units and cameras, object detection
can be performed both quickly and reliably, hence making
the method suitable in conjunction with autonomous control
application. Simultaneously, the same type of development has
been seen in commercial underwater vehicle products, such
as the BlueROV2, which allows customization and testing of
new hardware with user-made software. Incorporating object
detection methodologies for underwater vehicles enables more
autonomous functionality in underwater robotics, such as
tracking of objects during IMR or visually aided manipulation
operations, whether it is used in exploration operations, within
the marine oil and gas or the aquaculture industry.

This paper will investigate methods for efficiently labelling
of large datasets and training generated dataset based on the
state-of-the-art object detection framework YOLOv3 [8]. The
object detection will be used to locate a known object with
a monocular camera mounted in a BlueROV2 underwater
vehicle. Moreover, spatial features will be extracted from
the object detection in order to estimate the relative distance
between object and ROV. A dynamic positioning (DP) system
is designed to keep the vehicle at a desired relative position
and orientation to the object. The main contributions of this
paper are as follows:

• Collect a large dataset of the object and provide under-
water object detection using machine learning

• A method for efficiently labeling of large datasets
• Extraction of spatial information from monocular camera

underwater images
• A DP-system where the vehicle has a desired position
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relative to a known object, where position of the object
is extracted from monocular camera

• Demonstration if methods and concept in a laboratory
pool

The paper is structured as follows. Section II provides
some background information on visually aided control us-
ing underwater vehicles and presents related work on object
detection topics. Section III presents the dataset and how
the labeling and scaling procedures are conducted as well
as how the detector works. Furthermore Section IV describes
the motion control system, while the experimental setup is
explained along with results in Section V. Lastly, the results
are discussed in Section VI and conclusions and suggestions
for further work are provided in Section VII.

II. RELATED WORK

Optic-based underwater object detection is a hot topic today,
especially within the research community and various subsea
industries, but also for hobbyists, where a consistent series of
new contributions have surfaced in the last few years. The most
common vision-based techniques utilize either monocular (2D)
or stereo (3D) vision, while 2.5D methods also have been
proposed, mainly consisting of projection algorithms from the
2D image plane to reconstruct 3D environment features [6].
Detection methods range from on edge [9] [10] or color [11]
detection, optical flow [12], and techniques relying more on
machine learning approaches such as classification [13], salient
feature detection [14] or object detection [15] [16]. Color
detection simply finds and draws contours around neighboring
colored pixels in an image, while edge detection denotes the
boundaries of objects. Optical flow is used to track individual
pixels or pixel areas, and can be used in combination with the
aforementioned methods.

Within machine learning, there is a wide array of various
detection methodologies, mainly identified as two different
types. These are the region proposals based detectors and
the regression and classification based detectors. They both
originate from generic object detection as illustrated in Fig.
1. The first follows the traditional object detection procedure,
identifying region proposals and classifying the proposals into
object categories, also known as Region Proposals Networks
(RPN). Such methods consider, at some extent, the same
methodologies as the human brain. This method is based on an
initial scan of the entire scenario before it is separated into re-
gions of specific interest. The second type follows a classifier-
based approach or a regression problem. These methodologies
both arrive from the supervised learning branch of machine
learning. The branches of machine learning are shown in Fig.
2. Thus, they share the overall objective of supervised learning,
that is; learn the mapping from input x to output y, i.e. learn
the mapping function f(·) in y = f(x). The main difference is
that while classification approaches aim to learn the mapping
to a discrete or categorical output, regression approaches aim
to learn the mapping to a continuous or numerical output.

A collected review of the most essential methods of both
RPN and regression/classification based approaches can be

Fig. 1: Object Detection Methodologies

Fig. 2: Machine Learning methologies

seen in [17]. Some methods worth mentioning are the RPNs
R-CNN, Fast R-CNN and Faster R-CNN and the regres-
sion/classification based methods Single Shot Detector (SSD)
and You Only Look Once (YOLO) versions 1, 2 and 3. R-
CNN is region proposals combined with convolutional neural
networks, hence the name.

The R-CNN algorithm proposes 2000 regions per image.
The algorithm then works with these regions and attempts to
classify them in order to locate the object. 2000 regions per
image is a lot to process and is computational expensive. The
algorithm uses about 47 seconds per image, which makes it
irrelevant regarding real-time detection. A modified version,
Fast R-CNN, uses a slightly different approach. Instead of
proposing 2000 regions per image, the modified version feeds
the input image to a CNN and outputs a convolutional feature
map. The proposed regions from the feature map is fed through
a regions of interest (RoI) pooling layer and a fully connected
layer. Then a softmax layer is used in order to predict the
class of the object as well as the regions for the bounding
boxes. As for R-CNN, Fast R-CNN uses selective search,
which is a slow and time-consuming process. Faster R-CNN
is a further modification of the algorithm to circumvent the
selective search algorithm. Faster R-CNN uses a separate
network instead of selective search in order to predict the
region proposals. This results in a much faster network. Faster
R-CNN is the only network out of these three that is fast
enough to be applicable for real-time object detection [18]–
[20].

SSD uses a classification/regression based approach and,
hence, does not require object proposals, and encapsulates
all computation in a single network [21]. Consequently the
algorithm is fast and suitable as a real-time object detector.
SSD also proved to be more accurate than the YOLO versions
available at the time. However, new versions of YOLO has
emerged since then. The version YOLOv3 has proven to be
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just as accurate as SSD, however three times faster [8]. Still
YOLOv3 is not as fast as it’s predecessor, where YOLOv2
could run on a Titan X at 45 FPS while YOLOv3 is limited
to about 30 FPS. This is due to the increase complexity of the
underlying network called Darknet. YOLOv2 used Darknet-19
consisting of a total of 30 layers, contained originally a 19-
layer network with additional 11 layers for object detection.
YOLOv3’s network Darknet-53 contains 53 layers trained
on ImageNet with 53 more layers for object detection. This
gives a network with 106 layers. This increased complexity is
the cause of decreased speed as well as increased accuracy.
Darknet-53 incorporated some new important elements which
Darknet-19 did not contain, such as residual blocks, skip
connections and upsampling. See Table I for the Darknet-
53 layers. Another issue YOLOv3 has addressed is the fact
that previous versions have struggled with detecting small
objects. In YOLOv3, predictions are made at three different
scales, and after each detection, layers are upsampled. The
upsampling helps the network learn fine-grained features,
which are advantageous for detecting small objects.

As mentioned previously, pairing visual tracking method-
ologies of objects with underwater vehicles has a tremendous
potential in autonomous underwater operations. One of the
most famous and successful combination of this sort was
demonstrated by the underwater vehicle named SAUVIM
[22]. The object detection phase, which they considered to
be the most difficult part of the project, was threefold. Im-
age sonar and DIDSON sonar were used at long- and mid
range detection, while for the actual manipulation tasks, video
cameras were used in collaboration with ultrasonic motion
trackers. Further development of the SAUVIM project was
later presented by the TRIDENT and MARIS projects [23],
[24]. The TRIDENT project demonstrated the first multi-
purpose object search and recovery strategy. Similar to the

TABLE I: Darknet-53

Type Filters Size Output
Convolutional 32 3 x 3 256 x 256
Convolutional 64 3 x 3 / 2 128 x 128
Convolutional 32 1 x 1

1x Convolutional 64 1 x 1
Residual 128 x 128

Convolutional 128 3 x 3 / 2 64 x 64
Convolutional 64 1 x 1

2x Convolutional 128 3 x 3
Residual 64 x 64

Convolutional 256 3 x 3 / 2 32 x 32
Convolutional 128 1 x 1

8x Convolutional 256 3 x 3
Residual 32 x 32

Convolutional 512 3 x 3 / 2 16 x 16
Convolutional 256 1 x 1

8x Convolutional 512 3 x 3
Residual 16 x 16

Convolutional 1024 3 x 3 / 2 8 x 8
Convolutional 512 1 x 1

4x Convolutional 1024 3 x 3
Residual 8 x 8
Avgpool Global

Connected 1000
Softmax

TRIDENT project, the MARIS project stands out as one
of the recent most promising projects regarding autonomous
underwater manipulation. Compared to the TRIDENT project,
the MARIS project improved the vision system. Both projects
employed stereo cameras where the MARIS project improved
the detection algorithm to cope with partial occlusions of the
object.

Some of the other work related to vision-aided robotic
control applications can be found in [25]–[29]. The focus re-
ported by these articles are either solely related to underwater
object detection, positioning using vehicles and manipulation
of detected objects using manipulator arms, or a combination
of these. A more in-depth review article on this topic is pre-
sented in [6], where recent developments in machine learning
methodologies can be seen in [17].

III. DATA AUGMENTATION

In the presented work, the dataset applied represents a
known object in an underwater environment in the Marine
Cybernetics Laboratory (MC-Lab) at the Department of Ma-
rine Technology at the Norwegian University of Science and
Technology (NTNU). The dataset includes images retrieved
in two stages. The first stage was to retrieve by recording the
objects at close range with a monocular camera attached to
a robotic manipulator. The second stage was to retrieve by
manually controlling the ROV while recording the environ-
ment with the object. For both cases a Raspberry Pi Camera
V2.1 was used. Specifications regarding pixel size and field of
view of the camera are given in Table II. The two recordings
were split into image sets to generate the dataset.

A. Labeling

The collected dataset contains 7071 images. Such a vast
dataset provides comprehensive work regarding labeling the
images. Therefore, methods for efficiently labeling the images
were investigated. A popular method for managing large
datasets is crowdsourcing, where a task is distributed to
numerous participants for analyses. A reoccurring challenge
is the unknown reliability of the participants [30] [31]. Our
labeling scheme enables safe labeling of a large dataset with
over 7000 images in mere hours, where every label is verified
by the user in order to ensure the liability of the labels. The
labeling process is split in two steps.

• Initial labeling of images using color detection.
• Correcting of wrong/bad labels.
The considered object is characterized by a clear orange

color. This made it possible to separate the relevant colors
of the object in order to detect the object. The contemplated
images were transformed from the RGB space to the hue-
saturation-brightness value (HSV) in order generate a more
straightforward color map. Such a transformation can be seen
in Fig. 3. After the initial label generation using the color
scheme, the labels are regulated by the user operating an
interactive interface. Utilizing HSV images ensures that the
object becomes apparent in the image and simplifies the
color separation. The values characterizing HSV images also

51



Fig. 3: RGB to HSV transformation of the underwater image

Fig. 4: Visual representation of the scaling function. Area in
px2/1000 is plotted against the corresponding distance to the
object in cm. The original measured data is visualized with a
blue line and the final scaling using PCHIP is vizualized in
orange.

provide a simpler spectrum to analyze compared to RGB
values.

B. Spatial scaling

In object detection schemes, real-time pose of the object is
generally of interest, thus stereo cameras are often used [23]
[24] [32]. Stereo camera systems employ two or more lenses
in order to simulate humans binocular vision, thus capturing
spatial features in images to get a 3D representation. Moreover,
in machine learning applications where labeled data is needed,
3D images could be complicated to process and labeling
of such images are difficult. Processing standard monocular
camera images and labeling ordinary RGB 2D images is much
less complicated. However, this requires alternative methods
for extracting spatial features.

A scaling function is designed in consideration of the spatial
features in the system. The spatial features are important in
order to estimate the position of the object relative to the
ROV. The scaling function involves scaling the area of the
bounding boxes to the corresponding distance to the object.
The scaling is performed by manually by measuring different
distances to the object and registering the area of the detection
bounding box. The final scaling function is generated by using
piecewise cubic hermite interpolation polynomials (PCHIP) at
the registered values. A visual representation of the scaling is
depicted in Fig. 4

Values for (y,z) position of the object are also extracted as
pixel values from the image frame. Furthermore the values are
transformed into distances by (6) and (7), where the angles ψ
and θ are retrieved from (3) and (4), and x is the distance to

TABLE II: Specifications of the Raspberry Pi Camera V2.1

Parameter Definition Value
FOVw Field of view in horizontal plane 62.6 [deg]
FOVh Field of view in vertical plane 48.8 [deg]
Cw Total pixel width of camera frame 640 [px]
Ch Total pixel height of camera frame 480 [px]

Pobj,w Object pixel position in width direction 0 - 640 [px]
Pobj,h Object pixel position in height direction 0 - 480 [px]

the object retrieved from the scaling function depicted in Fig.
4. The remaining variables in the equations are explained in
Table II.

C. Object Detector

The object detector is based on the YOLOv3 algorithm
discussed in Section II. The algorithm trains for 5000 iterations
with a batch size of 64 and subdivision set to 16. An entire
batch is considered between every update of the weights in the
neural network. After training on the contemplated dataset of
the object in the MC-lab, the object detector performs well and
achieves an average precision (AP) of 97.9%, calculated with a
threshold of 50%. The AP value is incredibly high and proves
that the detection of the object is successful. However, the high
AP has to be considered with some constraints. The algorithm
was validated on a subset of the entire dataset, meaning
the validation set embodies almost identical features as the
training set. Consequently, a very high AP can potentially
point to a overfitted model just as well as a good one.

The final updated weights from the training procedure
are further used in the detection procedure. An algorithm
is designed with an image frame as input and coordinates
and size of the detected object as output. An outline of the
detection algorithm is depicted in Fig 5, where the numeric
values of (y,z) represents the center position, where (0,0) is the
top left corner. Numeric values for (w,h) represents width and
height of the bounding box. All values are given in pixel value.
Total pixel dimensions of the camera frame can be found in
Table II. Six parameters are defined in the table representing
horizontal and vertical field of view of the camera, total pixel
height and width of the camera images and the allowed pixel
position of the object within the camera image. The algorithm
assumes that there exists maximum one object per frame.
However, the detector itself can detect several objects per
frame, meaning that it is easy to modify the algorithm if
tracking multiple objects is desired in the future. The image
frames are sent from the camera feed and transformed into
OpenCV image objects before they are sent as input to the
detection algorithm. In the experiments the system is run on
a HP Laptop with Intel Core i7-7700HQ, 16 GB RAM and
an NVIDIA GeForce GTX 1060 (6 GB GDDR5 dedicated)
graphics card. With this setup, the detection can perform at
approximately 30-40 fps for 1080x720 resolution video, which
provides real-time compatibility.

IV. MOTION CONTROL SYSTEM

This section describes the motion control system (MCS),
i.e. the navigation, guidance and control system, that has been
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Fig. 5: Outline of the detection algorithm

developed for the unmanned underwater vehicle (UUV) for
use in experimental testing. The objective is to keep a fixed
position and heading angle of an underwater vehicle through
dynamic positioning (DP) relative to an object. It is impor-
tant to note that the MCS only performs during successful
detection of the object, and that the vehicle should use a
lower level MCS when the object cannot be detected. However,
the navigation, guidance and control system provided below
provides low position errors even without a lower level MCS,
and is highly advantageous in scenarios where such a system
is either non-existent or unreliable. A simple Kalman filter is
used for estimating the vehicle’s velocity and a sliding mode
controller based on the velocity is responsible for controlling
the vehicle. Automatic pitch and roll proportional-integral-
derivative controllers stabilize the vehicle in roll and pitch.
Consequently, roll and pitch motions are handled by a lower
level inertial navigation system (INS), and are omitted in the
MCS presented here. All forces and moments are handled by
a thrust allocation system in order for the thrusters to produce
the correct amount of torque.

A. Navigation System

The navigation system only considers the kinematic model
of the underwater vehicle relative to the detected object. The
kinematic model represents the vehicle’s states, which are
defined by its pose η = [pT θT ]T and velocity ν = [vT ωT ].
Vehicle position and Euler angle orientation are described
by the vectors p = [x, y, z]T and θ = [ψ]T , expressed in
the object frame. Linear and angular velocity are defined as
v = [u, v, w]T and ω = [r]T , expressed in the vehicle’s body-
frame. Due to the nature of monocular cameras, the position
and velocity of the vehicle are valid only when the object is
detected, and are defined as

η =
[
x y z ψ

]T
+wT

s (1)

ν =
[
u v w r

]T
, (2)

where the term ws represents Gaussian distributed white
noise. In order to find the values for η, we first calculate

ψ =
FOVw
Cw/2

· Pobj,w − FOVw (3)

θ =
FOVh
Ch/2

· Pobj,h − FOVh , (4)

where ψ is the heading angle and θ is the roll angle relative
to the object, and where the rest of the parameters have been
defined in Table II. Next, the vehicle’s distance to the object
x is retrieved from the scaling function estimated through
the PCHIP function S(A), depicted in Fig. 4. The y- and z-
distance relative to the object are then found by exploiting
the geometrical relations through x and (3)-(4). The position
estimation procedure can then be written as follows

x = S(A) (5)
y = x sin (ψ) (6)
z = x sin (θ). (7)

As previously mentioned, a Kalman filter is implemented
to estimate the vehicle’s velocity ν.

B. Guidance System

The guidance system generates appropriate references for
the control system, and is here based on reference velocities.
First, the desired position must be defined, and the velocity
reference can be derived from this by a simple technique,
similar to [33]. The desired position ηd is written as

ηd =
[
xd yd zd ψd

]T
, (8)

where xd, yd, zd, ψd correspond to the desired distance to
the object in x-, y- and z-direction and heading. The reference
velocities νr is used as a feedback to increase the convergence
to the desired position and heading angle of the vehicle, and
are calculated as

νr = −γ(ηd − η) , (9)

where γ in (9) is the task reference gain matrix.

C. Control System

The control system utilizes a sliding mode controller (SMC)
in order to make the states of the vehicle converge to the
desired values by controlling them to a sliding manifold with
global exponential stability properties. Similar to [33], the
manifold is chosen as

s = (νr − ν) + Λ

∫ t

0

(νr − ν) dτ , (10)
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Fig. 6: An image from the camera of the vehicle, showing
a successfully detected sylinder by the object detection algo-
rithms, represented by a bouding box (red) and a confidence
of 98.32% (green).

where Λ is the integral gain matrix, and where s is globally
exponentially stable if Λ > 0. Finally, the control law [34]
[33] is then given as

τ =KDs+ ĝ(Θ) +KSsat(s, ε). (11)

In (11), KD > 0 and KS > 0 are gain matrices. By assum-
ing that the vehicle is neutrally buoyant and that velocities will
be small, restoring forces and moments represented by ĝ(Θ)
can be omitted. Furthermore, the function sat(s, ε) refers to
a saturation function of s with lower and upper bound of ±ε,
and replaces the signum function to avoid chattering [33] [35].

V. EXPERIMENTAL TESTING

In the experimental testing, a BlueROV2 has been used,
which is a small-sized ROV. The vehicle is neutrally buoyant,
has six degree of freedom and runs the robotic operating
system (ROS) framework for message communication. It is
equipped with a monocular camera in front of the vehicle,
where the direction of which it points coincides with the
heading angle of the vehicle. A small information scheme
representing some of the main features of the vehicle can
be seen in Table III, and the vehicle itself is depicted in
Fig. 7. Experiments have been conducted in the Marine
Cybernetics Laboratory (MC-lab) at the Norwegian Univeristy
of Science and Technology (NTNU) in Trondheim, Norway.
The water tank in the MC-lab where the experiments have
been conducted is depicted in Fig. 8.

The experiment shows that the vehicle performs DP relative
to the object, and is controlled by a sliding mode controller
(SMC) based on velocity estimates by a Kalman filter (KF).
The KF incorporates the estimated position data of the object
through a trained model of the object, as described in Section
III. A successful detection during the dynamic positioning can

Fig. 7: The BlueROV2 underwater vehicle [36]

Fig. 8: Water tank in the Marine Cybernetics Laboratory.
Dimensions: L x B x D = 40m x 6.45m x 1.5m.

Fig. 9: The Bluerov2 performing dynamic positioning during
an experiment in the pool in the Marine Cybernetics Labora-
tory.
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TABLE III: Bluerov2 specifications

Parameter Value
L x H x W 457 [mm] x 254 [mm] x 575 [mm]

Weight in air 11.5 [kg]
Weight submerged 0 [kg]

Thrusters T-200
Battery 14.8 [V], 10 [Ah]

Depth rating 100 [m]
Camera Raspberry Pi Camera V2.1

Onboard Computer Raspberry Pi 3B and Navio2
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Fig. 10: Vehicle error position (blue) in x-, y-, z-direction [m]
and heading angle ψ [deg] from top to bottom, respectively.

be seen in Fig. 6, and the Bluerov2 and object during the
experiment is depicted in Fig. 9. This experiment was run for
approximately 90 seconds, and the results from this test can
be seen in figures 10 and 11. Position and heading errors can
be seen in Fig. 10, while velocity and angular velocity errors
are represented in Fig. 11.
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Fig. 11: Vehicle velocity error in x-, y-, z-direction [m/s] and
heading angle ψ [deg/s] from top to bottom, respectively.

TABLE IV: Root Mean Square Error for position and velocity
of the vehicle relative to the object

RMSE for position Value RMSE for velocity Value
RMSEx 0.024 [m] RMSEu 0.060 [m/s]
RMSEy 0.025 [m] RMSEv 0.056 [m/s]
RMSEz 0.016 [m] RMSEw 0.037 [m/s]
RMSEψ 3.7 [deg] RMSEr 4.2 [deg/s]

TABLE V: Gains and parameters used for reference velocity
generation and tuning the sliding mode controller.

Parameter Value
γ

[
2.5 2.5 2.5 0.3

]

Λ
[
0.02 0.02 0.12 0.2

]

KD

[
7.2 · 10−4 7.2 · 10−7 4.5 · 10−3 3.6 · 10−6

]

KS

[
3 · 10−3 3 · 10−6 1.9 · 10−2 1.5 · 10−5

]

The resulting plots in Fig. 11 show that the velocity is
tracked with small errors, which results in fast convergence
time and maintaining a small error in all lateral directions and
in the heading angle, as can be seen in Fig. 10. Root mean
square error (RMSE) is presented in Table IV, denoted by a
subscript for the respective state. This table shows an RMSE of
around 2.5 [cm] in x- and y-direction, 1.6 [cm] in z-direction
and 3.7 [deg] for the heading angle.

The gains of the guidance and control system have been
tuned to give a more aggressive steering in x-, y- and z-
direction through γ in (9). The integral effect in (10) is slightly
larger in z-direction and for the heading ψ compared to the x-
and y-direction, in order to compensate for drag forces from
the tether. Increased integral effect could have been applied for
control in x- and y-direction as well, but the values used here
were found to be suitable for following the desired reference
velocities. The gain matrices KD and KS were chosen to be
quite low. Furthermore, the unit of the reference velocity is
given in [cm/s], which might be the reason for the seemingly
small gain parameters in (9). The gains are presented in Table
V.

VI. DISCUSSION

As previously described the object detector was verified on
a subset of the entire dataset. The associated value of AP,
97.9% should therefore be considered with constraints. Several
experiments should be conducted where new datasets can
be retrieved for verification of the model. Optimally, several
datasets should be retrieved over several experiments to the
final training dataset as well, in order to ensure robustness of
the model.

If retrieving more data proves difficult in the future, it is also
possible to improve the verification with the currently obtained
dataset. The dataset can be divided chronologically into groups
of 4. The dataset can then first be trained on the parts 1, 2 and
3 and verified on part 4. Then a new training process should
be conducted on parts 1, 2 and 4 and verification on part 3.
Repeat the process until the model has been verified on all
parts and calculate the average AP of all processes. This will
give a better representation of the AP of the model. If the
dataset is large, it can also be divided into several groups than

55



4. However increasing the number of groups will increase the
time consumption of the whole process.

In the experimental testing, the MCS for the object tracking
mission starts automatically after the object is first detected.
The experimental results presented in Figures 10-11 and
Table IV show both good convergence rate and capability in
maintaining the desired states, with errors below 2.5 [cm] in
all directions and a heading angle error below 4 [deg]. There
is some oscillatory behavior

The vehicle experiences some difficulties maintaining a cer-
tain position relative to the object, which can be seen from the
oscillating behavior in Fig. XYZ. This is best explained by the
combination of a delay that arises between image acquisition
and when the image is ready for processing, and the time it
takes for the vehicle’s thrusters to propell the vehicle in the
desired direction. Less oscillations were achieved by making
the controller slower and to slightly decrease the effect of the
integral effect. There is also a slight mismatch between the
camera angle and the thrust allocation system, as the camera’s
angle is tilted approximately 5 to 10 degrees in the direction
of a positive heading angle for the vehicle, as can be seen
from Fig. 6. This may have contributed some to the error in
the heading angle, in addition to the x- and y-direction of
the vehicle. Another factor that may have contributed to the
errors and the somewhat oscillating behavior in Figures 10-
11 can be explained by the refraction of light caused by the
dome in front of the camera in Fig. 7, as seen in Fig. 6. Yet,
the detection algorithm had no trouble detecting the image,
and the ROV nicely converged towards and maintained the
desired states, and the effect was found to have negligible
impact on the performance of the system. Future work may
take the refraction into account by calibrating the camera’s
intrinsic parameters.

Experiments were also conducted for a moving object,
although not documented. The experiments demonstrated that
the vehicle managed to maintain the desired relative position
and followed the objects movement. The experiments were
conducted in a laboratory pool with still water and thus not
tested for conditions with constant or alternating currents.
However, it is believed that the presented MCS will be able to
cope with currents, given proper tuning of gains, particularly
the integral terms. Future work may involve experiments for
such conditions.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a dynamic positioning procedure rela-
tive to an object of interest using a small-class fully actuated
underwater vehicle. The object is detected based on a trained
model of a large image dataset that contains the object of
interest in an underwater environment, using a monocular
camera. Furthermore, the paper presents a powerful labeling
procedure of the object within the dataset, and a model trained
on these images. Experimental testing results prove the effec-
tiveness of the proposed methods, where a small underwater
vehicle performs DP relative to the object with small errors.
Further work involves adapting the proposed methods to an

underwater vehicle-manipulator system for simultaneous DP
on the vehicle and gripping with the manipulator arm.
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