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Abstract. Ship traffic in ice exposed areas is increasing, and ice navigation is largely a manual 
task. Despite the progress in machine learning and computer vision algorithms, little focus has 
been given to computer-aided scene understanding in icy waters to help modernize navigational 
support systems. This work lays the foundation for the automated identification of ice for surface 
vessels using modern deep learning (DL) algorithms. The focus is on locating and classifying 
multiple ice objects within images from a surface vessel travelling through icy waters. The 
following categories of surface ice features are considered: level-ice, deformed ice, broken-ice, 
icebergs, floebergs, floebits, icefloes, pancake-ice, and brash-ice. In the first phase, we used DL 
algorithms to classify the ice objects in an image. For this task, seven state-of-the-art residual 
network (ResNet) models have been tested and include ResNet18, ResNet34, ResNet50, 
SE_ResNet50, Xception-Cadene, Inception-v4, and Inception-ResNet-v2. During the second 
phase, we used DL algorithms to locate and classify ice objects. For these tasks, we used the 
UNet architecture combined with conditional random fields (CRFs) and analysed the effects of 
using fully connected CRF and convolutional CRF. We have trained and validated the models 
using the close-range optical ice imagery, and then the promising models were used to classify 
and locate the different ice features in images from the bridge of the US Coast Guard icebreaker 
Healy and the nuclear-powered icebreaker 50 Let Pobedy. This paper provides the main findings 
and lessons that were learned from the execution of this study. 

1.  Introduction 
Climate change affects the Arctic. Surface vessels operating in icy waters have become a common 
activity, and cruise ship traffic has increased in ice-exposed areas. In these areas, situational awareness 
at all times is essential for safe and efficient navigation. Ice navigation tasks include reliably detecting 
ice, interpreting ice conditions, finding a safe navigation route, and manoeuvring in the ice. A summary 
description of these tasks is provided in the following paragraphs. 

Ice detection. Ice information in the form of ice charts is considered to be ‘theoretical’, and marine 
radar is used as a primary means of finding ice. For navigational purposes, a radar’s range is typically 
set to 10 – 12 nm, but for finding ice and ways through the ice, it is set to 2 – 4 nm. The ice without 
snow cover can be detected at approximately 5 – 7 nm using the radar; however, it is more challenging 
to detect ice that is covered by snow and melting or to detect small isolated chunks of floating ice (e.g., 
growlers) in high sea states. Another indirect way of knowing that an ice edge is near is to monitor the 
water temperature and/or waves. The water temperature and swell are lower closer to the ice edge, 
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provided there is no wind change. The presence of ice can be detected as a light strip on the horizon. In 
this way, it is possible to detect ice at a distance of two times the visibility range. Furthermore, the 
presence of sea birds and animals can indicate an ice edge within approximately 12 nm. In the dark, a 
search light and deck illumination can be used for ice edge detection. However, in convoy operations, 
the search light can blind the icebreaker captain. In the recent years, increasingly more operators have 
used satellite data that have been input into a navigation system, and the challenge is to retrieve ice 
information at the right levels of detail at the right time, considering that ice conditions can rapidly 
change, especially within straights. Visual surface observation is still the best means of detecting 
hazardous ice and hazardous ice characteristics (ice pressure, ice adhesion, ice drift and icing). 

Interpretation of ice conditions and finding weak ice. The World Meteorological Organization [1] 
developed well-established nomenclature for classifying sea ice. A trained ice navigator is required to 
identify various shapes and forms of ice, to reliably recognize ice and, when possible, to avoid the most 
dangerous forms of sea ice (e.g., grounded or stranded ice). Differentiating first-year, second-year and 
multi-year ice is challenging in good weather [2], but fog, snow and darkness make this task even more 
difficult. The age of the ice may be determined by using its colour, thickness, freeboard, floe shape, size, 
ponding/drainage, hummocking, etc., and the details can be found in the information that is reported in 
[2]. New ice is grey, and water can be seen through the ice. Light blue coloured ice indicates stronger 
ice (multi-year ice), and contact with this ice should be avoided. It is also recommended to avoid ice 
that is covered by snow since it causes additional friction on the hull. Flat and even ice cover is preferable 
over hummocks. The wind direction should also be considered as important since it can cause the ice to 
come closer to the ship at any moment in time.  

Manoeuvring in ice. Manoeuvring in ice includes tasks such as safe passage planning and turning in 
ice, estimating the place where you can meet ice, following an icebreaker, turning in an ice canal, 
mooring operations, overtaking, and towing in ice. It is recommended to follow open water and leads, 
and avoid contact with ice as much as possible, especially multiyear ice or deformed ice. When 
approaching the ice, it is recommended to change the engine to manoeuvring mode, decrease the speed, 
and make ballast adjustments. It is better to enter the ice at a right angle with a minimum steering speed. 
Arctic surface vessels are usually supplied with a polar water operation manual and an ice navigation 
certificate where the information on safe vessel speeds is provided. The manoeuvring tasks in ice are 
complex and are not further discussed. 

Currently, all navigation of surface vessels in ice-infested waters is based on the experience of ice 
pilots and captains. To support ice transit decision process, it is of great advantage to be able to 
automatically identify ice types within an overall ice regime. Although considerable research has been 
devoted to autonomous shipping technology for aspects, such as navigation support, equipment 
monitoring, and safety improvements, rather less attention has been paid to computer-aided scene 
assessment from ships that are travelling in ice. Examples of relevant works are given in [3‒10] and 
include techniques and sensor systems for analysis of ice concentrations, floe-size distributions, and 
drift speeds using shipborne images from optical cameras and/or marine radars. However, to the best of 
our knowledge, no algorithm can discriminate between ice types using optical images from a surface 
vessel.  

Motivated by the recent progress in deep machine learning and computer vision in the field of scene 
assessment, we assume that optical cameras can let a surface vessel see its ice environment, and the 
associated software can learn to recognize different ice types and present the information to the bridge 
for decision support. To test the capabilities of modern deep learning algorithms as well as to identify 
the challenges that are associated with the automated identification of ice, the following experiment has 
been carried out.  

First, we trained and validated the classification and segmentation algorithms using the close-range 
optical ice imagery, and second, the most promising models were used to classify and locate the different 
ice features in images from the bridge of the US Coast Guard (USCG) icebreaker Healy and the nuclear-
powered icebreaker 50 Let Pobedy. We limit this study to multilabel ice object classification and 
segmentation tasks, which form the core of autonomous navigation and navigation assistance systems. 
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The identification of ice parameters, such as ice concentration, stage of development (age), freeboard, 
size, drift speed and direction, etc., is not addressed in this study but has been planned as a future work. 
A brief description of the experimental setup and of the most important results is provided in the 
following sections. We also highlight opportunities for future work. 

2.  Experimental setup 
The following categories of surface ice features have been considered: level-ice, deformed ice, broken 
ice, icebergs, floebergs, floebits, icefloes, pancake-ice, and brash-ice (Figure 1). This choice was limited 
by the available data that were gathered during a cruise to the Fram Strait on the RV Lance in March 
2012 and by querying the Google, Yandex, and Baidu search engines in different languages. The dataset 
contains optical images that are predominantly taken from on board the vessels. These images were 
generally captured in daylight under good visibility conditions. Only close-range optical images of ice 
surface features have been considered, and these images were manually labelled in accordance with the 
definitions from [1]. Additional features (leads, fractures, cracks and polynyas) were not labelled. All 
the deep-learning based models in this study were built using the fastai [11] and PyTorch libraries [12]. 
Almost all of the computations for the image classification task (Section 2.1) were performed on an 
NVIDIA TITAN X (12GB) GPU, and for the segmentation task (Section 2.2), the computations were 
performed on an NVIDIA V100 (16GB) GPU that was located at UNINETT/Sigma2 AS in Norway. 

 

 
Figure 1. Typical optical images of surface ice features. 

2.1.  Ice object classification from an image 
Convolutional neural networks (CNNs) have been chosen for this task, as a growing number of studies 
report similarities in the way CNNs and the human visual system processes objects, and [13] provides 
an overview. We have started with pretrained residual neural network models, namely, ResNet18, 
ResNet34, and ResNet50 [14], SE_ResNet50 [15], Xception-Cadene [16], Inception-v4 and Inception-
ResNet-v2 [17]. We trained the model in two phases. First, we trained only the upper fully connected 
layers using the collected ice imagery, whereas all other layers of the model had no change in their 
weights (since we froze the weights of the bottom layers). This is because the bottom layers have their 
weights pretrained by using the ImageNet dataset [18] and we did not want to change them during the 
initial phase. Then, we unfroze the remaining layers of the model and fine-tuned the whole model using 
differential learning rates [19]. The optimum learning rate was determined by finding the value at which 
the learning rate is the highest, and the loss is still decreasing. For the upper layer, it was set to 10-2, and 
that for the whole model ranged between 10-6 and 10-3. Smaller learning rate values were used for the 
lower layers of the model and larger values were used for the upper layers. To handle a small amount of 
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training samples (a total of 370 raw images), we exposed the model to more aspects of the data. More 
training data were generated from the available training samples using data augmentation. For each 
image in the dataset, we followed standard practices [14 – 17] and performed random geometric and 
colour augmentations, including zooming, cropping, horizontal flipping, rotations, lightening and 
contrast changes, and symmetric warping. These data augmentation increased the breadth of information 
that the model can analyse to learn from a given dataset. In addition, an adaptive synthetic sampling 
approach was adopted for imbalanced learning by artificially generating additional data for categories 
with few images, such as pancake ice, ice floes, floebergs, floebits, and icebergs. The model was exposed 
to different image sizes (resolutions of 224 × 224 and 299 × 299), which enables the model to better 
generalize and handle the small dataset size. The training stopped after 40 epochs for the two different 
image sizes (20 epoch per size), which took approximately 30 minutes on a single NVIDIA GPU (12 
GB). The learning rate was manually adjusted throughout the training when the validation error 
plateaued. The weight decay and dropout rates were adjusted to improve the model’s performance and 
generalization. 

To evaluate the performance of the model and to compare the prediction qualities of different models, 
two metrics were used: The F-beta score [20] (β=2, library default) and the accuracy. Overall, both 
SE_ResNet50 and ResNet34 performed better at classifying broken ice, deformed ice, and brash ice, 
whereas the performance for minority classes (floebits, floebergs, icebergs, and pancake ice) was lower. 
The F-beta score was up to 0.75, and the accuracy was as high as 92%. Analysis of the misclassified 
samples has also been carried out. ResNet34 outperformed the other tested models. The most 
challenging tasks were to distinguish between pancake ice and brash ice, as well as between broken ice 
and the partially melted level ice. Further testing of ResNet34 on images with distorted ice textures and 
colours revealed that the trained model is biased towards textures. The model could classify ice objects 
from greyscale images with poorer performance on the significantly distorted images with a small degree 
of local ice texture.  

2.2.  Segmentation of ice objects in an image 
The training and validation datasets consisted of 390 optical images and their corresponding 
segmentation masks (Figure 2). The major part of the images (370) was the same as in the above 
classification task except for the additional 20 images containing a man-made channel in ice and five 
additional classes (open water, melt ponds, underwater ice, sky, and shore). Each image was manually 
labelled to obtain the ground truth segmentation masks, as shown in Figure 2. Our goal is to create a 
model that will generate these masks for an unseen image as accurately as possible. The CNN 
architecture that we have used is a modified version of UNet [21], which is a neural network architecture 
commonly used for image segmentation. Experiments were run with replacing a standard backbone of 
UNet with ResNet34, ResNet50, and ResNet101 [15]. The UNet architecture consists of a down-
sampling encoder and an up-sampling decoder. For the down-sampling encoder, ResNets that are pre-
trained on ImageNet [18] were utilized. With the help of transfer-learning we ensured that the common 
features in images such as circles and edges are pre-learned by the network and when training on our 
data, the model learns the high-level features that are specific to our dataset. The learning rates for the 
training were chosen by plotting the loss versus the learning rate curve over a training iteration (epoch). 
The learning rate at which the loss decreases at the highest rate before increasing again was chosen. Like 
the procedures in Section 2.1, the training of the model was done in multiple phases with different 
learning rates. A smaller learning rate was chosen for the second phase of the training to ensure better 
model performance. The best weights (the weights from the epoch at which the mean intersection-over-
union (IoU) score of the classes is the highest) from phase 1 were used as the starting weights for the 
next phase of the training. The IoU metric is the number of pixels common between the target and 
prediction masks divided by the total number of pixels present across both masks.  

The predictions from the models were post-processed to remove the noise. Two different conditional 
random fields (CRFs) based post-processing techniques were used: fully connected CRFs [22] and 
convolutional CRFs [23]. The parameters of the CRFs were adjusted to get the better post-processing 
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performance. The weight decay rate and the dropout rate were chosen using iterations to improve the 
model performance. The models were trained on two image sizes, 256 × 256 and 512 × 512, and the 
best model from the 256 × 256 images was chosen as a starting point for training on 512 × 512 images. 
This approach helps the model to better generalize when using the 512 × 512 images. 

 

  
Figure 2. (from left) Image (Credit: Liliane Arizmendi) overlapped with manual segmentation 

mask, manual segmentation mask and classes in the segmentation mask. 
 

IoU, which was averaged over all classes, was chosen as an evaluation metric for the models. The 
UNet model with ResNet34 as the backbone outperformed other models on the 256 × 256 images, with 
a mean IoU score of 0.51 without post-processing and 0.70 after post-processing using the convolutional 
CRF. An average increase of 0.19 was seen in the mean IoU over 30 epochs as a result of post-processing 
using the convolutional CRF and an average increase of 0.10 was seen in the mean IoU as a result of 
post-processing using the fully connected CRF. A comparison between the time consumption of the 
convolutional CRF and the time consumption of the fully connected CRF was also performed. The fully 
connected CRF took significantly more time (an additional ~60 seconds per epoch) compared to the 
convolutional CRF with little average difference in the mean IoU. Further analysis of the misclassified 
samples revealed that the model was most confused between floebergs and deformed ice, as well as 
between pancake ice and brash ice. There were difficulties in identifying small parts of the shore near 
the horizon. The sky was the easiest part to predict, while melt ponds were almost always missed and 
classified as a part of the ice floe. In some occasions, less concentrated brash ice was classified as open 
water.  

3.  Models testing and main results 
The most promising approaches in Section 2 (i.e., ResNet34, UNet with ResNet34 with and without the 
convolutional CRF) were used to detect and classify the different ice features in publicly-available 
optical images from the bridge of the US Coast Guard icebreaker Healy and of the nuclear-powered 
icebreaker 50 Let Pobedy (Figure 3). The images from the Healey contain young ice, first-year ice, 
ridges, rafted ice and some open water, whereas the images from the 50 Let Pobedy predominantly 
contain first-year ice floes with few inclusions of brash ice and some open water. This identification of 
ice is based on definitions in [1]. The vessels’ bows were excluded from the classification- and 
segmentation tasks by manually defining regions A–D as shown in Figure 3.I. The A and B parts have 
been used for the classification task, whereas the C and D parts were used for the segmentation task. 
Figure 3.II – 3.IV shows the models predictions for these regions. Performance of the models was 
assessed only on the A–D regions and is summarized in the following paragraphs. 

The trained ResNet34 model correctly classified the ice objects in the optical images (two images 
per view) from the 50 Let Pobedy and Healey (images A and B in Figure 3.II). Note that in this study, 
we have used general terms, such as broken ice and deformed ice, rather than specific subdivisions, such 
as close ice, very close ice, rafted ice and ice ridges. In particular, the general term broken ice have been 
used to define predominantly flat ice cover that is broken by gravity waves or melting, and the term 
deformed ice have been used for ice that has been squeezed together and, in places, forced upwards (and 
downwards).  
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I. Original image from 50 Let Pobedy and the regions A – D 

exposed to the models (source: LiveJournal) 
I. Original image from Healey and the regions A – D 

 exposed to the models (source: coastguard.dodlive.mil)   

   
II. Ice objects classification 

 (Probabilities predicted with ResNet34) 
II. Ice objects classification 

(Probabilities predicted with ResNet34)   

  
III. Image overlapped with segmentation mask 

(UNet with ResNet34 + convolutional CRF) 
III. Image overlapped with segmentation mask 

(UNet with ResNet34 + convolutional CRF)   
 
 
 

 

 
 
 
 
 
 
 

Figure 3. Classification and segmentation results of the views from the bridge of the USCG icebreaker 
Healy and from the 50 Let Pobedy (LI – Level Ice, BI – Brash Ice, and OW – Open Water).  

 
The image segmentation results (Figure 3.III – 3.IV) using UNet with and without convolutional 

CRF post-processing are less perfect but promising. Overall, the predicted class labels with UNet do not 
contain false positive or false negative labels that could challenge the identification of hazardous ice 
features. There are limitations to detecting isolated ice floes, especially when using CRF post-
processing. Some artefacts in the predictions with UNet are visible in Figure 3.IV. Another limitation 
that is presented in Figure 3.IV is that the grey ice was partially identified as open water, and open water 
was partially identified as brash ice and ice floe. 
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Future work should focus on addressing these limitations, on model testing and on improving the 
overall accuracy of the predictions.  

4.  Concluding remarks  
Ice navigation is a complex task that includes the identification of hazardous ice. Currently, the 
navigation of surface vessels in ice-infested waters is largely a manual task that requires singnificant 
training and experience. To support the development of the data-driven automated identification of ice 
features from a surface vessel, we have presented the first results on classifying multiple ice objects 
within an image as well as locating ice objects in the image with the corresponding ice category. In this 
work, close-range optical images of ice have been used to ‘train’ models to locate and classify nine 
different ice types. After training the models, we have tested their capabilities to recognize the ice 
features in optical images that was taken in daylight from the bridge of the USCG icebreaker Healy and 
the icebreaker 50 Let Pobedy. The results are limited to a few images of a certain resolution and show 
that despite the small amount of data (370-390 original images for training and validation), the ResNet34 
model was able to classify the broken and deformed ice in the optical images. Locating surface ice 
features in images from the bridge was shown to be more difficult and has limitations, but we expect 
that the imperfect predictions of the models will improve as more systematically labelled data become 
available. The model performance on images of higher resolutions should also be checked.  

The presented work opens many opportunities for future research, as the amount of optical ice 
imagery that is collected from vessels is rapidly increasing (refer, for example, to the near real-time web 
camera feeds from icebreakers and research vessels, such as the USCG Healy, the 50 Let Pobedy and 
the Aurora Australis). Below, we highlight issues that are important to consider when planning to 
automatically interpret the ice conditions for a surface vessel.  

Data collection. The currently available optical images of ice are predominantly taken under 
favourable weather conditions with good visibility. Images of ice that are taken using artificial light or 
in poor lightning conditions, heavy snow, rain, and fog are scarce, and efforts are needed to collect and 
reliably label such data. Web cameras seem to be a good way to collect such data. A web camera should 
have a wide angle with minimum distortion, a high enough resolution, and an adequate sampling 
frequency. We recommend using a variable sampling frequency. More images could be collected during 
difficult ice conditions or in poor visibility conditions. Lower sampling frequencies can be used in open 
waters or in low ice concentrations. Not all ice going vessels are equally good for collecting ice data. 
On some vessels, cranes and other equipment may obstruct the view, thus reducing the clarity of the 
images. It is recommended that ships should place optical cameras on the bridge to avoid icing and 
malfunctions due to weather conditions. It is also recommended to collect the elevation of the mounted 
camera and a scale for identification of the size of the ice features as meta information along with the 
images. Without a reference, it is difficult to identify the sizes of the features for labelling purposes, this 
is especially true in case of the ice floes.  

Data labelling. Data labelling is one of the most time-consuming tasks, especially for broken ice 
fields with high ice concentrations, for which each and every ice floe, including the areas with brash ice 
and melt ponds, need to be labelled. None of the currently available labelled datasets are perfect with 
regard to the ice features. Often, there are few ice categories (mainly icebergs and ice fields), and many 
ice features are incorrectly labelled. For the multi-class image segmentation task, we recommend 
following a set of labelling rules because the human identification of ice depends on experience, and 
there will be images where it is impossible to reliably identify ice features. 

We expect that future work will result in an open ice-scene dataset for the training and benchmarking 
of models and in future improvements of the quality of optical ice images. We hope that the presented 
findings can stimulate and support the development of ice navigation support systems. 
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