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NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET 
DET MEDISINSKE FAKULTET 

 
XRCC1 assoierte multiproteinkomplekser i base eksisjonsreparasjon 

 

Arvestoffet (DNA) degraderes konstant av ytre faktorer, som stråling og kjemikalier, og 

indre faktorer, som produkter av metabolismen. Slik degradering ødelegger 

informasjonen som ligger i DNA, og kan derfor være toksisk for cellene og mutagent 

under replikasjon. Sannsynligheten for mutasjon er likevel ekstremt lav fordi DNAets 

integritet opprettholdes ved en lang rekke reparasjonsmekanismer. Disse involverer 

mange enzymer, struktur- og regulatoriske proteiner, med overlappende roller. Feil eller 

mangelfull reparasjon er drivkraften bak utviklingen av alderdomsrelaterte sykdommer 

og kreft, men er samtidig grunnlaget for genetisk variasjon og dermed for evolusjon. 

 

Vårt arbeid har fokusert på sporet for DNA-reparasjon av skade på nukleinsyrer 

(byggestenene i DNA) og enkeltrådbrudd, det vil si baseeksisjonsreparasjon (BER). 

Forenklet foregår BER over fire steg: 1. Den skadede nukleinsyren fjernes. 2. Et 

trådbrudd introduseres i DNAets ryggrad. 3. Syntese av en eller flere nukleinsyrer. 4. 

Endene på hver sin side av trådbruddet kobles. Selv om BER kan reproduseres med kun 

fire enzymer i et reagensglass, er mer enn tjue andre kjente proteiner involvert. Ett av 

disse, XRCC1, har ingen enzymatisk aktivitet, men fungerer som et regulerende og 

organiserende protein gjennom interaksjon med flere av BER-proteinene som samlet 

bidrar til alle stegene. 

  

Vi viser at XRCC1 fungerer som et stativ som samler en rekke BER-proteiner til store 

kompleks av varierende innhold. Disse BER-kompleksene interagerer med cellens 

replikasjonsmaskineri. Et av BER-enzymene, UNG2, interagerer direkte med XRCC1. 

Resultatene bekrefter hypotesen om at BER er tett knyttet til replikasjon, og avkrefter at 

BER drives frem av enzymers suksessive interaksjon med XRCC1 (paper 1). 

Sammensetningen av XRCC1-kompleksene varierer avhengig av type eller mengde 

skade som påføres DNA. De utvides til å inkludere proteiner involvert i replikasjon og 

BER-syntese av flere nukleinsyrer. Vi avkrefter hypotesen om at XRCC1-komplekser 



 

 

kun kan gjennomføre den underkategori av BER som syntetiserer en enkel nukleinsyre 

før sammenkoblingen av trådbruddet (paper 2). 

 

Ulike deler av XRCC1-proteinet, som er 633 aminosyrer langt, bidrar til BER. Vi viser 

at den sentrale regionen mellom aminosyrene 315 og 403 er nødvendig for XRCC1s 

evne til å samles ved DNA-skader. Regionen mellom aminosyrene 166 og 311 er med 

på å bestemme utstrekningen av akkumulasjonen. Vi avkrefter at XRCC1-rekruttering 

er avhengig av poly(ADP)ribosylering. XRCC1s bidrag til BER av metyleringsskader er 

ikke avhengig av dens tette interaksjon med DNA-polymerase beta og ligase 3, og 

regionen som interagerer med det sentrale replikasjonsorganiserende proteinet PCNA er 

ikke nødvendig for XRCC1-rekruttering til replikasjonsmaskineriet. De vanligste 

mutasjonene av XRCC1 kan føre til svekket rekruttering av XRCC1-komplekser til 

DNA-skader (paper 3). XRCC1s akkumulasjon til UV-induserte DNA-skader blir 

regulert av et signalsporet som involverer p38 mitogen aktivert kinase (MAPK). p38 

MAPK er et kjent stressresponsspor for bl.a. UV-stråling og inflammasjon. Våre 

resultater er de første observasjonene av at dette signalssporet kan påvirke et DNA-

reparasjonsspor (paper 4). 

 

Resultatene bidrar til kunnskapen om hvordan BER organiseres og reguleres, og BER er 

ett av mange spor man forsøker å påvirke ved behandling av kreft. Målrettet 

dysregulering av slike spor har potensial for å forbedre effekten av cellegift. Våre 

resultater viser at å hemme poly(ADP)ribosylering ikke nødvendigvis vil ha forventet 

effekt på BER. Ett av de signalsporene man ønsker å påvirke for behandling av kroniske 

inflammasjons-sykdommer, p38 MAPK sporet, kan også påvirke BER. Selv små 

endringer i balansen av reguleringen av XRCC1-rekruttering kan ha betydelige effekt 

når en hel organisme påvirkes over lang tid. 
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5meC   5-methylcytosine  
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Cdc25(A/B/C)  Cell division cycle 25 homolog (A, B, or C) 

CDK   Cyclin dependent kinase 
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CK2   Casein kinase 2  
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DDR   DNA damage response 
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Introduction 

The ability to store information, in form of linear combinations of bases in 

deoxyribonucleic acid (DNA) and transfer through generations is the most basic 

common trait of all living organisms. Subtle changes are introduced during the course 

of evolution, but as a whole the information remains remarkably stable. The five million 

years that separates chimpanzees and humans from their common ancestor has only 

introduced a ~5% divergence between their genomes (Britten, 2002). Nevertheless, 

DNA itself is far from stable. The human genome, with its approximately 3.2 x 109 base 

pairs (bp), accumulates thousands of lesions per cell per day merely by reaction with 

byproducts of cellular respiration, and DNA can be altered in a multitude of other ways 

and several kinds of lesions are produced (reviewed in (Friedberg et al., 2006)). Despite 

the continuous and high rate of genomic degradation, the rate of accumulation of 

somatic mutations is as low as 10-6 per cell division (Araten et al., 2005). DNA 

degradation has always been present and mechanisms to protect genomic integrity have 

evolved alongside DNA’s success as the main molecular carrier of genetic information 

on Earth. 

 

Decades after Crick, “[…]came to realize that DNA is so precious that probably many 

distinct repair mechanisms would exist” (Crick, 1974), several DNA repair mechanisms 

have been described, and they can be categorized into direct reversal, strand break 

repair, and excision repair. This thesis focuses on one of the key actors in the base 

excision repair / single strand break repair (BER/SSBR) pathway: X-ray repair cross-

complementing protein 1 (XRCC1), and its function as a scaffolding factor and 

response to genomic degradation within mammalian cells. The following will therefore 

mainly deal with BER, XRCC1, and proteins that interact with XRCC1. However, 

promiscuous proteins such as XRCC1 are seldom merely involved in a single 

biochemical pathway since interaction with other proteins suggests involvement with 

many other pathways.  
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DNA lesions 

DNA is a large and reactive macromolecule subjected to a complex and ever changing 

environment. DNA lesions occur spontaneously in neutral conditions, by reaction with 

molecules of both endogenous and exogenous origin, errors during DNA synthesis, and 

energy absorption from high-energy electromagnetic radiation (reviewed in (Friedberg 

et al., 2006)). 

Spontaneous damage 

The N-glycosylic bonds that attach bases to the sugar-phosphate backbone of DNA are 

susceptible to spontaneous hydrolytic cleavage, which generates apurinic/apyrimidinic 

(AP) sites. AP sites are both highly mutagenic, because they leave a gap in the template 

strand during DNA replication, and susceptible to hydrolysis and AP endonuclease 

mediated excision resulting in single strand breaks (SSBs). Spontaneous depurination in 

human cells is estimated to be ~10 000 purines per day and the rate of depyrimidation is 

20-fold lower. Another type of spontaneous hydrolytic DNA damage is deamination of 

bases. Loss of the exocyclic amino group of adenine (A), guanine (G), cytosine (C) or 

5-methylcytosine (5meC) respectively converts them to hypoxanthine, xanthine, uracil 

(U), and thymine (T). Hence deamination of 5meC and C potentially leads to G:C to 

A:T transition mutations since both T and U pair with A. Hypoxanthine potentially pairs 

with G, and thus leads to A:T to G:C transition mutations, while xanthine does not 

stably pair with any bases, but may arrest DNA synthesis (reviewed in (Friedberg et al., 

2006)). 

Reactive oxygen species 

Reactive oxygen species (ROS), such as superoxide radical (•O2
-) and hydroxyl radical 

(•OH), damage intracellular macromolecules such as proteins, lipids, carbohydrates, and 

DNA. The major endogenous source of ROS is probably by-products from the electron 

transport chain associated with mitochondrial respiration, but ROS can also be actively 

produced by neutrophiles and monocytes during inflammation (reviewed in (Ohshima et 

al., 2003; Friedberg et al., 2006)). Exogenous sources include ultraviolet-, -, -, and - 

radiation of water, and ingestion of redox cycling compounds. The reactivity, half life, 
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and diffusibility of ROS influence the capacity to damage DNA. While •OH is one of 

the most reactive of the primary ROS, and probably the major source of oxidative 

damage of DNA, it is not capable of diffusing more than two molecule diameters before 

it reacts with endocellular molecules. However, both •O2
- and •OH are readily converted 

to hydrogen peroxide (H2O2). H2O2 is relatively inert with high diffusibility, and can 

generate •OH and other ROS in the vicinity of DNA through the Fenton reaction in the 

presence of Fe2+. •OH mainly attacks DNA integrity by its addition to double bonds of 

DNA bases or by removing hydrogen from the deoxyribose backbone, resulting in a 

multitude of altered bases, base loss, and strand breaks. One of the most frequent 

relevant base alteration caused by ROS is 7,8-dihydro-8-oxo-deoxyguanine (8-oxoG). 

8-oxoG has the ability to pair with A during replication and thus cause G:C to T:A 

transversion mutations (reviewed in (Friedberg et al., 2006)).  

DNA replication errors 

Although DNA polymerases almost always select the correct incoming deoxynucleotide 

triphosphate (dNTP) during DNA synthesis, errors do occur. Misincorporation of 

nucleotides or slippage of the template strand cause base substitutions, deletions and 

additions if left unattended. However, the replicative DNA polymerases POL , POL , 

and POL  have 3’-5’ exonuclease activity that enables them to remove mispaired or 

unpaired nucleotides. Proofreading through 3’-5’ exonuclease activity makes the 

replicative the most accurate DNA polymerases with estimated error rates of less than 

10-5 errors per synthezied nucleotide (reviewed in (McCulloch et al., 2008)). Although 

these numbers are low, they potentially translate into several thousand mispaired bases 

when the whole human genome is replicated. Mismatched bases that escape DNA 

polymerases are repaired by the mismatch repair (MMR) pathway. In addition to errors 

in base pairing, DNA polymerases can also introduce lesions by incorporation of 

damaged nucleotide precursors, e.g. 8-oxo-dGTP, or dUTP (reviewed in (Friedberg et 

al., 2006)).  

 

DNA replication is susceptible to lesions encountered in the template strand. SSBs are 

converted into double strand breaks (DSBs) by the replication machinery (replication 

collapse), and must be repaired by doubles strand break repair (DSBR) pathways, 
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typically through homologous recombination (HR), before replication can be completed 

(reviewed in (Friedberg et al., 2006)). The stringent base pairing requirement of 

replicative DNA polymerases causes replication arrest when they encounter DNA intra-

strand crosslinks, bulky adducts and certain base lesions. However, these lesions need 

not always be assessed by a DNA repair pathway before replication proceeds. DNA 

polymerases with low base pairing stringency and no proofreading can replicate past 

lesions through processes collectively known as trans-lesion synthesis (TLS). The low 

requirement for correct base pairing greatly attenuates the fidelity of the DNA 

polymerases involved in TLS, and they are consequently prone to introduce errors 

(reviewed in (McCulloch et al., 2008)).  

Ionizing radiation 

-, -, - and X-ray radiation may ionize atoms. Individual exposure to ionizing 

radiation (IR) can vary considerably, but is omnipresent. IR can both directly ionize 

bases and sugars in DNA and cause indirect damage through reactive species formed 

such as reactive oxygen species (ROS) or other molecules surrounding DNA. Thus, IR 

causes base modifications, AP sites, SSBs and DSBs (reviewed in (Friedberg et al., 

2006). 

Ultraviolet radiation 

The ultraviolet spectrum of electromagnetic radiation (UV; 100-400 nm) is typically 

subdivided into three segments; UVC (100-295 nm), UVB (295-320 nm), and UVA 

(320-400 nm). The sun emits radiation throughout the whole spectrum, but the 

composition of the UV at the Earth’s surface largely depends on atmospheric properties. 

Oxygen in the atmosphere irradiated with wavelengths below 242 nm is converted into 

ozone, and ozone in turn absorbs wavelengths below 336 nm. This oxygen shield 

efficiently blocks UVC and attenuates UVB. At sea level solar UV irradiation 

constitutes of 5-10% UVB and 90-95% UVA (Ravanat et al., 2001). The aromatic rings 

of purines and pyrimidines absorb wavelengths below 320 nm, with a collective 

absorption maximum at 260 nm. Thus, UVC and UVB are readily absorbed by DNA, 

and its excitation mainly generates intra-strand crosslinks, such as cyclobutane 

pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidione adducts (6,4-
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photoproducts). UVA is weakly absorbed by DNA, but induces oxidative DNA lesions 

through excitation of other endogenous chromophores that in turn generate ROS 

(reviewed in (Friedberg et al., 2006)). Surprisingly, UVA irradiation also induces high 

levels of CPDs compared to the induced ROS lesions (Douki et al., 2003; Mouret et al., 

2006). The mechanisms behind UVA induced CPDs are still debated and energy 

transfer to DNA both through direct absorption and indirectly through photosensitizers 

has been suggested (reviewed in (Girard et al., 2011)). However, broad-band UVB 

(295-320 nm) induces 1000-fold more CPDs than broad-band UVA (340-400 nm) in 

Chinese hamster cells (Douki et al., 2003). The distribution of lesion types induced by 

irradiation with different wavelengths within the UV range still needs further research, 

but as a whole, mediation of intra-strand crosslinking seems to decrease and ROS 

lesions increase with increasing wavelengths within the UV spectrum. Moreover, the 

lesion distribution is also influenced by lesion intermediates generated by excision 

repair pathways and dose-dependent clustering of lesions. 

 

A major advance in the understanding of DNA repair responses has come from the 

development of microirradiation techniques in living cells and the visualization of 

responses by immunohistochemistry or fluorescent tags and microscopy (reviewed in 

(Nagy et al., 2009)). Upon irradiation of delimited areas of nuclei with IR or UV 

(microirradiation), DNA repair proteins accumulate in the irradiated area. The 

accumulation is seen as bright spots of variable intensity commonly referred to as foci. 

Relative quantification of foci intensities and/or photobleaching techniques provide 

information about the dynamics of the studied factors. The radiation source and dose 

and cellular pretreatment with photosensitizers largely determine DNA lesion 

distribution and consequently the selection of recruited repair factors (Kong et al., 

2009). 

Alkylating agents 

A broad range of endogenous and exogenous chemicals have the capacity of damaging 

DNA. The types of lesions include alkylation, crosslinking, intercalation, covalent 

attachment, and strand breaks, but only alkylation will be discussed here.  
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The most common alkylation of DNA is methyl transferase-directed methylation of C 

residues followed by G (CpG islands). Between 60% and 80% of all CpG islands in 

mammals contain 5meC (Ehrlich et al., 1982). Methylation of CpG islands in the 

promoter region of genes is involved in regulation of gene expression, and contributes 

cellular differentiation and epigenetic regulation (Jaenisch et al., 2003).  

 

Alkylating agents can be either mono- or bi-functional. Monofunctional agents interact 

covalently with one nucleophilic center, while the bi-functional have the capacity to 

interact with two. The latter thus has the potential to crosslink DNA strands. 

Nucleotides can be alkylated at several different nitrogen and oxygen positions, and the 

biological consequences are diverse (reviewed in (Friedberg et al., 2006)). The most 

abundant endogenous methyl donor S-adenosylmethionine has been estimated to 

produce 4000 7-methylguanines (7meG), 600 3-methyladenines (3meA) and 10-30 O6-

methylguanines (O6-meG) per human cell per day (Rydberg et al., 1982). 7meG does 

not influence base pairing or the replication machinery and is therefore considered quite 

harmless (Marnett et al., 1993). However, 7meG are unstable and spontaneously 

degrade to AP sites (reviewed in (Shrivastav et al., 2010)). 3meA blocks replication and 

is highly toxic (Karran et al., 1980; Evensen et al., 1982). O6-meG is less prevalent than 

both 7meG and 3meA, but is both cytotoxic and prone to cause G:C to A:T transition 

mutations because the methylation interferes with base pairing (Povey et al., 2002). 

 

Exogenous alkylating agents are numerous and exposure varies considerably. For 

example, smoking exposes lung tissue to a variety of nitrosamines that alkylate DNA, 

but nitrosamines can also be found in food, beverages, and even potable water (Scanlan, 

1983; Hoffmann et al., 1985; Brunnemann et al., 1987; Moller et al., 1989). 

Consequences of DNA damage 

The consequences of DNA lesions vary from none to lethal depending on the type of 

lesion, where it is located in the genome, cell type, and cell cycle state. Lesions that do 

not alter DNA structure or replication, or are outside of regulatory and coding regions 

are less likely to be deleterious. Conversely, a single lesion in a vital coding or 
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regulatory region can potentially cause cell death or trigger dysregulation of cellular 

processes leading to morbidity. 

 

Lesions in gene sequences commonly block transcription, rendering the gene products 

inaccessible or cause complementation errors. Lesions encountered during DNA 

replication are particularly challenging since error-free DNA synthesis requires strand 

dissociation and an intact template strand. A cell’s genomic state, and its intra- and 

extra-cellular environments are continuously monitored and tightly connected to 

regulation of DNA repair, cell cycle, and apoptosis (reviewed in (Warmerdam et al., 

2010)). DNA repair counters genomic degradation, and when accumulation of lesions 

above normal levels occurs, proliferating cells can arrest cell cycle progression to allow 

for further DNA repair. If the genomic degradation is not sufficiently countered by cell 

cycle arrest and subsequent DNA repair cells of multicellular organisms go into 

apoptosis. Several hundred kinase substrates involved in almost every significant 

cellular process are phosphorylated in response to DNA damage (Matsuoka et al., 2007; 

Stokes et al., 2007). Thus, our knowledge of the coordination of the cellular responses 

to genomic degradation is limited and observations hard to interpret as they involve 

convergence of many signaling pathways and regulatory mechanisms. 

DNA lesion detection 

Eukaryotic DNA is organized as coils around cores of histones forming nucleosomes. 

Nucleosomes are comprised of eight histones forming a bead on which a 147-bp long 

stretch of DNA wraps around twice. Each nucleosome is separated by a stretch of at 

least 20 bp of DNA, and the histones of different nucleosomes can interact to fold the 

nucleosome string into shorter and thicker filaments known as chromatin. Chromatin is 

packed more or less tightly depending on the post translational modification (PTM) of 

histones and methylation of CpG islands. Tightly packed chromatin (heterochromatin) 

renders DNA inaccessible for most proteins and thus works as a mechanism for 

differentiation. Conversely, actively transcribed regions of the genome are organized as 

relaxed chromatin structures (euchromatin) that allow access to all involved proteins. 

Chromatin organization influences DNA susceptibility, and DNA repair is tightly 

connected to chromatin reorganization (reviewed in (Cann et al., 2011)).  
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The research focus on lesions induced by highly toxic/mutagenic DNA damaging agents 

e.g. IR, UVC, and cancer drugs has created a bias in the DNA damage response (DDR) 

field towards research on lesions that cause severe DNA helix distortions (strand breaks, 

bulky adducts, and DNA crosslinks). Bulky adducts and inter- and intra- DNA strand 

crosslinks cause kinks in the DNA helix that are recognized by Xeroderma 

pigmentosum group C, and damage DNA binding protein 1. Once bound, they initiate 

the nucleotide excision repair (NER) pathway. Lesion detection is also coupled to 

transcription since stalling of RNA polymerase II triggers NER (reviewed in 

(Nouspikel, 2009)). Poly(ADP-ribosyl) polymerase (PARP) family members PARP1 

and PARP2 both bind to, and are activated by, SSBs, and PARP1 additionally binds 

DSBs (de Murcia et al., 1994; Ame et al., 1999; Wang et al., 2006). Upon activation, 

PARP1 and PARP2 poly(ADP-ribosyl)ate themselves and other nuclear proteins, and 

mediate e.g. chromatin relaxation, DNA repair, and regulation of cell cycle and 

apoptosis (reviewed in (Schreiber et al., 2006)). A third member of the PARP family, 

PARP3, has recently been showed to be activated by DSB and mediate NHEJ (Rulten et 

al., 2011). DSBs are also recognized by the Ku heterodimer (Ku70/Ku80) and RAD50 

of the MRN complex (MRE11/RAD50/NBS1). Together these DSB detectors compete 

and recruit genome integrity sensors that mediate different double strand break repair 

(DSBR) pathways (Hochegger et al., 2006; Wang et al., 2006; Haince et al., 2007). 

 

Less is known about detection of lesions that do not cause significant DNA helix 

distortion, e.g. base lesions. DNA glycosylases are able to bind and process a wide 

variety of base lesions. Based on the potential reduction of diffusion complexity and 

results observed with naked DNA strands in vitro, DNA glycosylase lesion detection is 

believed to happen through an electrostatically guided migration along the DNA 

backbone (reviewed in (Friedman et al., 2010)). The heterogenous chromatin 

organization and the diverging consequences of different base lesions in the 

heterochromatic regions of non-proliferating vs. proliferating cells oppose a hypothesis 

of base lesion detection merely through continuous scanning of the whole genome by 

independent DNA glycosylases. DNA replication on the other hand, represents a “once 

in a cell cycle” event in which chromatin is both relaxed and the whole interacts with 
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DNA processing enzymes that depend on DNA integrity. Proliferating cell nuclear 

antigen (PCNA), e.g. a scaffold protein in replication, has been shown to interact with 

several DNA glycosylases and other factors vital for BER, NER, and MMR (reviewed 

in (Moldovan et al., 2007)). 

Genome integrity sensors 

Genome integrity is continuously assessed by cells and linked to the regulation of 

several central cellular processes, such as cell cycle, apoptosis, transcription and DNA 

repair pathways. As previously mentioned, mainly responses to severe DNA helix 

distortions have been described. However, this bias might be biologically relevant. 

Lesions that cause little or no DNA distortion are frequent events that commonly are 

transiently converted into strand breaks during repair, and potentially cause replication 

collapse or block respectively converting the lesion into DSB or causing accumulation 

of ssDNA. Sensors that are activated by severe DNA helix distortions would thus 

indirectly sense lesions that do not cause significant helix distortion (reviewed in 

(Durocher, 2009)). DDR is believed to be primarily mediated by members of the 

phosphatidylinositol 3-kinase-like protein kinase (PI3K) family, Ataxia telangiectasia 

mutated (ATM), Ataxia telangiectasia and Rad3-related (ATR), and DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs), as well as by members of the PARP 

family (reviewed in (Ciccia et al., 2010)) 

 

Ku heterodimers bound to DSB recruit and activate DNA-PKcs which in turn initiates 

DSBR through non-homologous end joining (NHEJ) (reviewed in (Mahaney et al., 

2009)). The MRN complex bound to DSB recruits and activates ATM (Falck et al., 

2005; Berkovich et al., 2007). Once activated, ATM regulates resection of DSB termini 

through CtBP interacting protein (CtIP) and generates the ssDNA overhangs that are 

used in the strand invasion of the HR DSBR pathway during S/G2 (Jazayeri et al., 2006; 

Shiotani et al., 2009). ssDNA from either resected DSB or generated by helicases when 

replication is blocked is rapidly detected and coated by replicating protein A complexes 

(RPA; i.e. RPA1/RPA2/RPA3). RPA stabilizes the ssDNA and serves as a loading 

platform for ATR and its cofactor ATR-interacting protein (Zou et al., 2003). Thus, 

DNA replication and DNA repair intermediate monitoring partially converges through 
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PI3Ks. Although ATM is believed to be mainly a DSB sensor while ATR senses 

replication stress, their functional distinction is far from absolute. As mentioned, ATR 

senses resection of DSBs, and collapsed replication results in a DSB that is in turn 

sensed by ATM. Furthermore, many ATM and ATR substrates overlap. Because merely 

ATM and ATR have over 700 putative substrates in humans, involved in almost every 

aspect of the biological processes of a cell (Matsuoka et al., 2007), a presentation of 

PI3K-mediated DDR is beyond the scope of this thesis. ATM and ATR mediate cell 

cycle arrest mainly through their respective substrates, the checkpoint kinases (Chk) 

Chk1 and Chk2. Activated Chk1 and Chk2 phopshorylate and inactivate the cell 

division cycle 25 homologs A, B and C (Cdc25A, Cdc25B, Cdc25C). The inactive 

Cdc25 homologs cannot activate the cyclin dependent kinases (CDKs) that drive cell 

cycle through G1/S-, S-, or G2/M-phases of the cell cycle. Phosphorylation by PI3Ks 

and Chk2 also mediate activation of the tumour suppression transcription factor p53. 

Among its many targets, p53 can activate expression of members of the Bcl-2 protein 

family that trigger apoptosis, and p21 which inhibits CDKs and mediates G1/S or S-

phase arrest (reviewed in (Sakasai et al., 2009)).  

Poly(ADP-ribosyl) polymerase 1 and 2 and SSB detection 

Among the 17 members of the the PARP family of proteins only five are considered 

true PARPs (able to transfer ADP-ribose moieties to acceptor proteins) and among 

these, PARP1, PARP2, and PARP3 has so far been observed to respond to DNA strand 

breaks ((Ame et al., 1999; Iles et al., 2007) and reviewed in (Rouleau et al., 2010)). 

PARP1, PARP2 and PARP3 mediate DDRs through protein interactions, mono(ADP-

ribosyl)ation and poly(ADP-ribosyl)ation (PARylation). Of the three most is known 

about PARP1, which has been linked to many cellular processes such as DNA repair, 

chromatin organization, transcription, cell cycle regulation, and inflammation (reviewed 

in (Rouleau et al., 2010)). PARP2 is expected to share many of these functions, and 

similarities have been observed (reviewed in (Schreiber et al., 2006)). PARP1 and 

PARP2 both form homodimers, but are also found as heterodimers (Bauer et al., 1990; 

Schreiber et al., 2002). Both become activated when bound to SSBs, directly induced or 

as BER intermediates, and share similar expression patterns and interact with the BER 

scaffolding factor XRCC1 (Caldecott et al., 1996; Schreiber et al., 2002). However, 
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mice or cells deficient in either PARP1 or PARP2 show diverging phenotypes, and the 

protein interactions of PARP1 and PARP2 in human lysates only partially overlap 

(Yelamos et al., 2008; Isabelle et al., 2010). In response to UV, ROS, or alkylating 

agents, PARP1 is responsible for 90% of observed PARylation activity (Ame et al., 

1999; Schreiber et al., 2002). 

 

Upon activation, PARP1 and PARP2 start assembling branched chains of up to 200 

ADP-ribose moieties on themselves and many other targets. Poly(ADP)ribose (PAR) 

chains are rapidly disassembled by PAR glycohydrolase, making PARylation a transient 

event that last only minutes (reviewed in(Okano et al., 2003)). The ADP-ribose units 

contain an A moiety capable of forming hydrogen bonds and carry two negatively 

charged phosphate groups. PAR chains thus potentially cause both steric and 

noncovalent interactions with other molecules (reviewed in (D'Amours et al., 1999)). 

PARylation of histones in response to DNA damage contributes to chromatin 

reorganization, and PAR chains mediate DNA repair and signaling of the genomic state 

(reviewed in (Schreiber et al., 2006)). PAR also serves as a platform that recruits 

proteins. Three PAR association motifs have been described: a macrodomain, a PAR-

binding Zinc finger motif, and a cluster of 8 amino acids (aa) rich in acidic and 

hydrophobic residues (refered to as PAR binding motif; PARBM). Together these PAR 

association domains interact with more than 300 proteins, among which DDR and DNA 

repair proteins are overrepresented in addition to many DNA replication and 

transcription factors (Gagne et al., 2008). Putative PARBM have been identified in 

XRCC1 and Ligase 3  (LIG3 ) (Pleschke et al., 2000). 

 

When monitoring responses to strand breaks induced by near-UVA, both PARP1 and 

PARP2 accumulate to microirradiation induced foci (mIF). However, while PARP1 is 

rapidly and transiently accumulated, PARP2 accumulation is slower and lasts longer 

(Mortusewicz et al., 2007). The delayed PARP2 recruitment compared to PARP1 

indicates distinct roles in DNA repair. Interestingly, accumulation of both PARP1 and 

PARP2 in near-UVA microirradiated areas where enhanced by PARP1 activity 

(Mortusewicz et al., 2007). A central role of PARP1 was also observed for XRCC1 

recruitment. While PARP1 deficiency was associated with a considerable reduction of 
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XRCC1 recruitment to near-UVA mIF, PARP2 deficiency was not (Mortusewicz et al., 

2007). A similar reduction of XRCC1 recruitment to near-UVA mIF was observed 

when inhibiting PARylation (Godon et al., 2008). Together these observations indicate 

that XRCC1 recruitment to DNA damage depends on PARP1 activity.  

 

As SSB sensors, PARP1 and PARP2 initiate SSBR by mediating recruitment of 

XRCC1/ LIG3 /DNA Polymerase  (POL ) and associated BER/SSBR factors. LIG3  

interaction with both PARP1 and PAR has been observed to stimulate the ligation step 

(Leppard et al., 2003). However, while PARP1 knock-down reduces SSB rejoining in 

G1-phase, no significant reduction is observed in S-phase. This indicates SSBR 

redundancy by S-phase-specific repair pathways (Godon et al., 2008). BER is initiated 

by glycosylases and PARP1/PARP2 activation likely follows base removal (figure 1. 

step II). PARP1 has a high affinity for stalled BER intermediates and promotes gap 

filling past blocked 5’ termini by strand displacement (long patch BER, discussed later) 

(Dantzer et al., 2000; Lavrik et al., 2001; Prasad et al., 2001). However, PARP1 has 

recently also been shown to bind AP sites and has been proposed to protect lesions 

pending strand incision by AP endonuclease 1 (APE1) or 5’-dRP lyase activity 

(Khodyreva et al., 2010). Both PARP1 and PARP2 deficient MEF show reduced repair 

capacity of lesions induced by alkylation, and PARP1/PARP2 double knockout mice 

are not viable, indicating mutual dependency (Schreiber et al., 2002; Menissier de 

Murcia et al., 2003).
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Base excision repair 

More than 20 proteins have been shown to be involved in human BER, but merely four 

are necessary to reproduce the BER pathway in vitro (Kubota et al., 1996). BER can be 

presented as a core pathway of five enzymatic steps although the in vivo situation is 

much more complex (figure 1. steps I to V). 

 

BER is initiated when a base lesion is recognized by a glycosylase. The glycosylase 

flips the nucleotide, placing the base in an active pocket, and hydrolyzes the N-

glycosylic bond that attaches the base to the deoxyribose leaving an AP site (figure 1. 

step I). This specific removal of lesions as free bases distinguishes BER from other 

types of repair. The phosphodiester bond of AP sites is then hydrolyzed by enzymes 

with AP endonuclease activity, producing a gap in the double stranded DNA (dsDNA) 

(figure 1. step II). Gaps with 3’ hydroxyl termini allows DNA polymerases to initiate 

DNA synthesis, referred to as gap filling (figure 1. step III), and 5’ termini are trimmed 

to 5’ phosphate (figure 1. step IV) allowing ligation by ligases (figure 1. step V). The 

production of AP sites and gapped dsDNA as repair intermediates, and the involvement 

of several 3’ and 5’ termini tailoring enzymes, make BER a proficient repair pathway 

for spontaneously induced AP-sites and SSB, and exo- and endogenously induced SSB 

(e.g. by ROS and IR). 

BER in mitochondria 
Mitochondria are the only eukaryotic organelles apart from the nucleus that contain 

DNA. The emplacement of mitochondrial DNA (mtDNA) puts it in proximity of the 

main source of endogenous ROS source and its mutation rates in mammals are 10 to 

200-fold higher than nuclear DNA (Pesole et al., 1999). mtDNA is a closed-circular 

molecule of approximately 16,6 kb encompassing 37 genes, which codes for 13 of the 

approximately 90 proteins that are involved in the electron transport chain of respiration 

(reviewed in (Friedberg et al., 2006)). The importance of maintenance of mtDNA 

integrity is apparent as mutations are associated with ageing, cancer and hereditary 

diseases (reviewed in (Park et al., 2011)). Base lesions in mtDNA are processed through 

the same five enzymatic steps as described for nuclear BER. The presence of BER 

factors depends on mitochondrial import, and, in many cases, mitochondrial and nuclear 
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Figure 1. The base excision repair pathway 

I) to V) core enzymatic steps. Base removal (I) is shared by all DNA glycosylases, while they 

vary in their DNA incision (II). Gap filling is divided in two subpathways (III), were DNA 

polymerases synthesize either a single, short patch (SP), or several, long patch (LP), 

nucleotides. 5’ termini are processed (IV) before ligation (V). 
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BER factors are isoforms generated by alternative splicing (e.g. Ung and Lig3) (Nilsen 

et al., 1997; Lakshmipathy et al., 1999). Mitochondrial BER seems to rely on simpler 

complexes than nuclear BER. Several nuclear BER factors are not present in 

mitochondira, e.g. the scaffolding factor XRCC1 and probably FEN1, and seem to 

contain only one DNA polymerase (POL ) (Lakshmipathy et al., 2000; Kaguni, 2004; 

Akbari et al., 2007; Akbari et al., 2008; Szczesny et al., 2008). 

BER scaffolding 

In 1990, Thompson et al. discovered the first mammalian gene that affects cellular 

sensitivity to IR, naming it X-ray cross complementing 1 (Thompson et al., 1990). 

Xrcc1-deficient Chinese hamster ovary (CHO) cell lines have ~10-fold increased 

sensitivity to monofunctional alkylating agents, ~2-fold increased sensitivity to strand 

breaks and ROS mediating agents, and a ~10-fold increase in sister chromatide 

exchange (SCE) (reviewed in (Thompson et al., 2000; Caldecott, 2003)). The 

hypersensitivity of XRCC1-deficient cells to base lesions and strand breaks is a result of 

severely impaired BER/SSBR efficiency (reviewed in (Brem et al., 2005)). Despite the 

effect on BER/SSBR, XRCC1 has no known enzymatic activity. However, XRCC1 has 

been observed to interact with and stimulate a multitude of DNA repair factors within 

the BER/SSBR pathway, i.e. DNA glycosylases, SSB termini trimming factors, DNA 

polymerases, and ligases, and is thus believed to work as a BER/SSBR scaffolding 

factor. XRCC1 homologs seem to be restricted to eukaryotes with genomes larger than 

that of the social amoeba Dictyostelium (34 Mb), indicating a role as a mediator of 

increased efficiency and/or regulation of BER/SSBR (Caldecott, 2008). Unaddressed 

strand breaks and base lesions or BER/SSBR intermediates encountered during DNA 

replication cause replication block or collapse, triggering DSBR pathways and TLS. 

Dependency on recombinational repair and error-prone polymerases could in part 

explain the increased genomic instability of XRCC1-deficient cells. However, there are 

indications that XRCC1-deficient cells also show reduced repair of IR induced DSBs 

indicating involvement in DSBR (reviewed in (Caldecott, 2003)). Accordingly, XRCC1 

and interacting factors have been shown to participate in DNA-PK independent NHEJ 

(alternative NHEJ) (Audebert et al., 2004; Audebert et al., 2006). 
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 X-ray repair cross-complementing protein 1 

XRCC1 is a 633 aa long protein (70 kDa) with three domains: an N-terminal domain (aa 

1-183) followed by a 131 aa long region containing a nuclear localization signal (NLS), 

and two BRCA1 C terminus (BRCT) domains (BRCT1: aa 315-403, BRCT2: aa 538-

633) separated by 134 aa (inter BRCT region) (figure 2. B) 

 

The N-terminal domain of XRCC1 has been shown to bind nicked and gapped DNA in 

vitro, indicating that XRCC1 may serve as a strand break sensor/anchor (Marintchev et 

al., 1999; Mani et al., 2004). However, the N-terminal domain of XRCC1 also binds 

POL  with high affinity, possibly through interaction with the thumb domain of POL  

in a manner that excludes interaction with DNA (Caldecott et al., 1996; Kubota et al., 

1996; Cuneo et al., 2010). The interaction with XRCC1 stabilizes the expression of 

POL , and is required for POL  recruitment to DNA damage (Parsons et al., 2008; 

Hanssen-Bauer et al., 2011). 

 

 

 

Figure 2. Schematic overview of XRCC1 

A) Approximate XRCC1 protein interaction regions. B) XRCC1 domains. C) Known XRCC1 

phosphorylations and phosphorylating kinases (Chk2: Thr284, DNA-PKcs: Ser371, CK2: 

cluster of six residues from Ser475 to Ser523, possibly more). D) Three most prevalent XRCC1 

polymorphisms.  
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XRCC1 is translocated to the nucleus by a NLS ranging from aa 239 to 266 in the 

region linking the N terminal domain to BRCT1 (NLS region, aa 184-314) (Thompson 

et al., 1990; Masson et al., 1998). The NLS region interacts with PCNA sequestering a 

fraction of XRCC1 and its partners to the replication machinery during S-phase (Fan et 

al., 2004). 

 

Interaction with several DNA glycosylases (e.g. Uracil-DNA glycosylase 2; UNG2) is 

clustered in the region spanning from the NLS region to BRCT1 (aa 184-403), which 

also is suspected to bind APE1 (Vidal et al., 2001; Marsin et al., 2003; Campalans et 

al., 2005; Akbari et al., 2010). Hypoxanthine repair activity assays indicate that N-

Methylpurine DNA Glycosylase (MPG) binds within the aa 1-403 region of XRCC1, 

although this was not confirmed by immunoblotting (Campalans et al., 2005). 

 

Of the two XRCC1 BRCT domains, BRCT1 is the most evolutionary conserved and is 

required for efficient DNA damage repair and proliferation after methylation damage 

(Taylor et al., 2002; Kubota et al., 2003). XRCC1 BRCT1 interacts with the BRCT 

domain of PARP1, and with PARP2, and encompasses a putative PARBM (aa 379-400) 

(Masson et al., 1998; Pleschke et al., 2000; Schreiber et al., 2002). XRCC1 BRCT2 

binds the BRCT domain of Ligase 3  (LIG3 ) (Nash et al., 1997; Taylor et al., 1998) 

and, similar to XRCC1 interaction with POL , this interaction stabilizes the expression 

levels of LIG3  (Caldecott et al., 1995). The XRCC1 BRCT domains also serve as 

inter-XRCC1 interaction modules, although their respective contribution is still 

somewhat unclear. Beernink et al. reported in 2005 that XRCC1 BRCT1 domains could 

form a heterotetrameric interaction with PARP1, while BRCT2 domains could dimerize 

directly (Beernink et al., 2005). In 2006, Lévy et al. reported that XRCC1 dimerization 

was formed through BRCT1 domains and not BRCT2 (Levy et al., 2006). In 2011, 

Cuneo et al. reported a crystallographically resolved structure of a XRCC1/ LIG3  

tetramer with interaction between the XRCC1 BRCT2 domains (Cuneo et al., 2011). 

Although the details on how XRCC1 forms multimers are diverging, their presence has 

been confirmed in vivo by FRET (Fan et al., 2004). 
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The main PTM of BER proteins observed is phosphorylations (Almeida et al., 2007). 

XRCC1 is an heavily phosphorylated protein with more than 30 known1 phosphorylated 

Ser/Thr residues (Kubota et al., 2003). Ser371 within BRCT1 has been shown to be 

phosphorylated in vivo by DNA-PKcs upon IR induced DNA damage. In vitro 

phosphorylation of Ser371 causes XRCC1 dimer dissociation (Levy et al., 2006). 

However, all other verified phosphorylations of XRCC1 cluster outside of the BRCT 

domains, mainly within the regions between the N-terminal domain and BRCT1 (aa 

183-315), and in the inter BRCT region (aa 403-538) (figure 2. C). Chk2, activated by 

the PI3K ATM, complexes with XRCC1 and phosphorylates Thr284. Thr284Ala 

mutated XRCC1 was linked to accumulation of BER intermediates possibly through 

modification of XRCC1s interaction with glycosylases (Chou et al., 2008). Of the 

known kinase interactions with XRCC1, casein kinase 2 (CK2) is the most extensively 

documented. CK2 is a pleiotropic, ubiquitous, constitutively active kinase, involved 

with e.g. cellular growth and suppression of apoptosis. CK2 phosphorylates hundreds of 

different substrates and among them several factors known to be associated with 

cancerogenesis, such as nuclear factor kappa light chain enhancer of activated B cells 

(NF- B). CK2 expression is upregulated in a wide variety of human cancers and has 

become a popular target for drug design (reviewed in (Hanif et al., 2010)). The inter 

BRCT region of XRCC1 encompasses eight primary and five atypical consensus sites 

for CK2, and the cluster is readily phosphorylated by CK2 in vitro (Loizou et al., 2004). 

Within the cluster, nine residues were observed to be phosphorylated in vivo by mass 

spectroscopy, and among them six residues close to BRCT2 showed reduced 

phosphorylation when CK2 is knocked down (figure 2. C) (Loizou et al., 2004; Luo et 

al., 2004). Phosphorylations of residues in the inter BRCT region stimulate binding to 

the forkhead-associated (FHA) domains of the SSB/DSB termini trimming factors 

Aprataxin (APTX), Polynucleotide kinase/phosphatase (PNKP), and Aprataxin and 

PNKP like factor (APLF) (Date et al., 2004; Loizou et al., 2004; Luo et al., 2004; 

Bekker-Jensen et al., 2007; Iles et al., 2007; Kanno et al., 2007). FHA domains are 

involved in protein/protein interactions through phospho-threonine binding, and are 
                                                 
 
1 PhosphoSitePlus® database, search term "XRCC1"; p18887, 
http://www.phosphosite.org 
Last accessed 15th July 2011 
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found in more than 700 eukaryotic proteins such as kinases, phosphatases, kinesins, 

transcription factors, RNA binding proteins and metabolic enzymes (Hofmann et al., 

1995). Interaction with XRCC1 stimulates both the phosphatase and kinase activities of 

PNKP (Whitehouse et al., 2001).  

 

Although XRCC1-deficient cancer cell lines are viable, XRCC1-deficiency in mice is 

embryonically lethal (Tebbs et al., 1999). Because XRCC1-deficient embryos die at 

around the seventh day, the exact physiological role of XRCC1 in foetal development is 

difficult to address, but the arrested embryos resemble those associated with APE1 

deficiency and die at approximately the stage as Lig3-/- mice embryos (Xanthoudakis et 

al., 1996; Stucki et al., 1998; Puebla-Osorio et al., 2006). Similar to the XRCC1-

deficient CHO cells, XRCC1-deficient mice embryos show hypersensitivity to 

mutagens and increased SCE (Tebbs et al., 1999). Transgene complementation in the 

Xrcc1-/- mice expressing less than 10% of normal XRCC1 levels is sufficient to rescue 

the embryonical development and produce healthy fertile adults (Tebbs et al., 2003). 

However, heterozygous Xrcc1+/- mice, expressing 50% of normal XRCC1 levels, show 

increased precancerous lesions in the colon, and liver toxicity upon ingestion of 

alkylating agents (McNeill et al., 2011). 

 

XRCC1’s central role in BER/SSBR has prompted a multitude of epidemiologic studies 

of XRCC1 polymorphisms2. The three most prevalent non-synonymous single 

nucleotide polymorphisms (SNPs) of Xrcc1 lead to Arg194Trp (rs1799782), Arg280His 

(rs25489), and Arg399Gln (rs25487) variants in XRCC1. These SNPs have been 

extensively studied in relation to several types of cancer, but metastudies of these 

epidemiological results have so far not yielded any unambiguous relationship to cancer 

prevalence (Chen et al., 2011; Gsur et al., 2011; Huang et al., 2011; Xue et al., 2011). 

This is probably a result of both the size of populations included in the specific 

epidemiological studies and significant differences in the genomic SNP distribution 

                                                 
 
2 ~60% of all articles in the Pubmed database concerning XRCC1 are epidemiological studies of XRCC1 
polymorphisms. Search term "XRCC1". 
http://www.ncbi.nlm.nih.gov/pubmed 
Last accessed 18th July 2011 
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between studied populations. Homozygous Arg280His has e.g. been observed to be 

associated with breast cancer in Asians, but not in Caucasians (Li et al., 2009). 

Homozygous Arg194Trp increases lung cancer risk in Asians, whereas heterozygous 

Arg194Trp in Caucasians reduces the risk (Jiang et al., 2010). The only SNP considered 

to present “moderate amount of evidence” in relation to cancer is the -77T<C 

(rs3213245) XRCC1 promoter polymorphism in correlation with lung cancer (Vineis et 

al., 2009). 

 

DNA glycosylases 

To date, eleven DNA glycosylase genes have been identified in humans (Wood et al., 

2005)3. Although the overall folding architectures of the proteins they encode are 

similar, their substrate specificities are generally different. DNA glycosylases recognize 

a wide variety of base lesions that are generated by the thousands per genome per day, 

but the mechanism of their lesion detection is largely unknown (reviewed in (Friedman 

et al., 2010)). DNA glycosylases share a common lesion processing step involving 

DNA helix distortion that causes the damaged base to flip into a specific pocket in the 

active site of the DNA glycosylase. The damaged base is then released from the DNA 

backbone by hydrolysis of the N-glycosylic bond leaving an AP site in the DNA 

((Slupphaug et al., 1996) and reviewed in (Friedman et al., 2010)). The following step 

represents the first branching point from the core BER pathway. Monofunctional DNA 

glycosylases do not process the AP site further, while bifunctional DNA glycosylases 

also have an AP lyase activity, which cleaves the DNA backbone (reviewed in 

(Robertson et al., 2009)) (figure 1. step II). The AP lyase activity ( -elimination) of 

bifunctional DNA glycosylases produce a SSB with 3’- , -unsaturated aldehyde (dRP) 

and 5’-phosphate termini. The Nei endonuclease VIII-like (NEIL) family of 

bifunctional DNA glycosylases can further process the 3’-dRP termini to a 3’-phosphate 

by -elimination (Bandaru et al., 2002; Hazra et al., 2002a; Hazra et al., 2002b).  

                                                 
 
3 The URL cited in Wood et al. 2005 is incorrect. An updated table based on this article is available at: 
http://sciencepark.mdanderson.org/labs/wood/DNA_Repair_Genes.html#Human DNA Repair Genes 
Last accessed 10th October 2011. 
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Uracil-DNA glycosylase 2 

Human Ung was the first DNA glycosylase gene found to encode isoforms localized 

either in the nucleus (UNG2) or in mitochondria (UNG1) (Nilsen et al., 1997). UNG2 

removes U from U:A and U:G mispairs in vitro and likely in vivo (Kavli et al., 2002; 

Akbari et al., 2004). UNG2 interacts directly with both the scaffolding factors PCNA 

and XRCC1, and thus co-immunoprecipitates with several replication and base lesion 

repair factors (Otterlei et al., 1999; Akbari et al., 2004; Akbari et al., 2010). UNG2 has 

been shown to be responsible for a post-replicative removal of misincorporated dUMP 

(Otterlei et al., 1999). This is further supported by the observation that UNG2 

expression is upregulated during DNA replication (from late G1 to mid-S-phase) 

(Hagen et al., 2008). In addition to BER, UNG2 is involved in the immune response of 

both mice and humans (Nilsen et al., 2000; Rada et al., 2002; Imai et al., 2003; Kavli et 

al., 2005) 

AP site incision and 3’ terminus tailoring 

AP endonucleases interact with AP sites, produced either by DNA glycosylases or 

spontaneous base loss, by hydrolyzing the phosphodiester bond 5’ of the AP site. Of the 

two known human AP endonucleases (APE1 and APE2), APE1 accounts for more than 

95% of the AP endonuclease activity in human cells (Wilson et al., 1995; Suh et al., 

1997). The contribution of APE2 to BER is not known and, if present, probably is very 

limited and difficult to assess because its AP endonuclease activity is low and APE1-

independent BER has been proposed to work through both the -elimination of 

bifunctional glycosylases and Tyrosyl-DNA phosphodiesterase 1 (TDP1) (Wiederhold 

et al., 2004; Burkovics et al., 2006; Lebedeva et al., 2011). Initiation of DNA synthesis 

requires 3’ hydroxyl termini. Thus, the 3’-dRP or 3’-phosphate termini produced by 

bifunctional glycosylases require tailoring. Furthermore, directly induced SSBs 

typically do not result in 3’-hydroxyl termini. The majority of ROS induced SSBs have 

either 3’-phosphate or 3’phosphoglycolate termini, and abortive dsDNA unwinding by 

Topoisomerase1 (TOP1) causes SSB with TOP1 irreversibly bound to the 3’ termini 

(3’-TOP1). 3’-phospate and 3’ phosphoglycolate are processed by PNKP and APE1 

respectively, and 3’-TOP1 by TDP1 (reviewed in (Caldecott, 2008)).  
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Unprocessed SSB cause replication collapse and are assessed by HR during S-phase. 

However, quiescent cells depend more on SSBR to resolve SSB. This might be 

especially relevant concerning neurons, because the nervous system has a high energy 

metabolism through respiration but low levels of antioxidants. Mutations in TDP1 and 

APTX (involved in processing 5’ termini of aborted ligation and possibly 3’ 

phosphoglycolate and 3’ phosphate) have been associated to hereditary 

neurodegenerative diseases (reviewed in (Caldecott, 2009)). 

AP endonuclease 1 

APE1 is a 318 aa-long protein with three regions (reviewed in (Tell et al., 2010)). The 

35 N-terminal aa of APE1 contains a NLS and is involved in protein-protein 

interactions. Truncation of the NLS containing region of APE1 causes translocation to 

mitochondria (Chattopadhyay et al., 2006). Many proteins that have been reported to 

interact with APE1are known factors involved in BER (reviewed in (Tell et al., 2010)). 

The aa 35-127 region of APE1, known as the redox region, is capable of altering the 

DNA binding of several transcription factors through reduction of Cys residues in 

proteins, such as AP1, NF- B, and p53 (Xanthoudakis et al., 1992; Gaiddon et al., 

1999; Nishi et al., 2002). The aa 161-318 region of APE1 harbors its AP endonucleases 

activity that nicks AP sites and produces SSBs with 3’ hydroxyl and 5’ dRP termini 

(Mol et al., 2000). In addition to AP site cleavage, APE1 converts 3’-dRP termini, e.g. 

produced by bifunctional DNA glycosylases through -elimination. APE1 also converts 

3’ phosphoglycolate termini, produced during ROS mediated SSBs, to 3’-hydroxyl 

termini (Pascucci et al., 2002; Marenstein et al., 2003; Parsons et al., 2004). 

Mammalian APE1 has 3’ phosphatase activity but in vitro activity analysis strongly 

suggests that PNKP is the main 3’ phosphatase in mammalian cells (Wiederhold et al., 

2004). 

Polynucleotide kinase/phosphatase 

PNKP is a 521 aa long protein. Its catalytic activity resides in a C-terminally fused 3’ 

DNA phosphatase and 5’ kinase domain (Breslin et al., 2009). Mammalian PNKP 

phosphorylates 5’-hydroxyl termini of preferentially nicked, gapped dsDNA and DSBs 

with 3’ overhangs, and has phosphatase activity on a variety of 3’ phosphate termini on 
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both dsDNA and ssDNA (Karimi-Busheri et al., 1997; Bernstein et al., 2009). 3’-

phosphate ends are a product of -elimination by the NEIL family of bifunctional DNA 

glycosylases, making an APE1 independent BER pathway through PNKP plausible 

(figure 1. Step II) (Wiederhold et al., 2004). 

Gap filling/5’terminus tailoring 

The second major branching point in BER and first in SSBR occurs during gap filling. 

DNA polymerases synthesize either one or several nucleotides, coined short patch (SP) 

and long patch (LP) BER (or SSBR) respectively (figure 1. Step III) (Dianov et al., 

1992; Frosina et al., 1996). During SP BER, the 5’-dRP termini produced by APE1 

cleavage of AP-sites must be removed before ligation may occur. The major 5’-dRP 

lyase activity in mammalian cells corresponds to POL  and is, combined with POL ’s 

DNA synthesis activity, central to mammalian SP BER capacity (Sobol et al., 2000; 

Allinson et al., 2001; Podlutsky et al., 2001b). However, several other DNA 

polymerases have both DNA synthesis and dRP lyase activity, and have been proposed 

to be involved in BER: POL , POL , POL , and POL  (Longley et al., 1998; Bebenek 

et al., 2001; Braithwaite et al., 2005; Prasad et al., 2009). POL  is also central to LP 

BER and has been shown to initiate gap filling by insertion of one or two nucleotide(s), 

followed by a switch to POL  or POL  (Dianov et al., 1999; Podlutsky et al., 2001a; 

Akbari et al., 2009). The mechanisms that underlie the balance between LP and SP BER 

are elusive and probably complex because very disparate molecular mechanisms have 

been shown to influence it: e.g. cell cycle regulation, stress responses, lesion type, and 

the expression levels of involved proteins (Fortini et al., 1999; Dogliotti et al., 2001; 

Akbari et al., 2009; Sukhanova et al., 2010). Furthermore, presence of 5’-termini that 

cannot be processed into 5’-phosphate would require strand displacement (i.e. LP BER) 

(Dogliotti et al., 2001). Strand displacement in LP BER involves DNA replication 

factors such as PCNA and Flap endonuclease 1 (FEN1) (reviewed in (Sung et al., 

2006)).  
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DNA Polymerase  

The smallest of all known eukaryotic polymerases, POL  (39 kDa), is a member of the 

X family of polymerases and has two specialized domains. The dRP activity is located 

in an N-terminal domain of 8 kDa while the remaining C-terminal 31 kDa domain 

contains both nucleotidyl activity and dsDNA binding (template/primer) capacity 

(Prasad et al., 1998). POL  misincorporates nucleotides at rates of more than 10-4 errors 

per synthesized nucleotide, and since lesions repaired by BER exceed 104 lesions per 

cell per day proofreading is vital to avoid genomic degradation (reviewed in (Lindahl, 

1993; Yamtich et al., 2010)). Unlike replicative polymerases, POL  does not have 3’-5’ 

exonuclease activity (Beard et al., 2006). However, proofreading during BER has been 

proposed to be carried out by ligase discrimination and 3’-5’ exonuclease activities of 

AP endonucleases towards mispaired 3’ residues (Bhagwat et al., 1999; Chou et al., 

2002; Burkovics et al., 2006).  

 

POL  deficiency in mice is embryonically lethal, although cells from the embryo are 

viable in culture, indicating that POL  is vital to fetal development but not in cellular 

viability (Gu et al., 1994). Pol  knockout cell lines are highly sensitive to methylating 

agents. Interestingly, this sensitivity can be rescued by transfection of a truncated POL  

without DNA synthesis capacity but with dRP lyase activity intact (Ochs et al., 1999). 

POL  has been shown to interact with many factors involved in DNA repair, 

replication, and cell cycle regulation (reviewed in(Almeida et al., 2007)). 

Flap endonuclease 1 

FEN1 is a member of the XPG/RAD2 endonuclease family with both 5’ exonuclease 

and flap endonuclease activities (Harrington et al., 1994; Murante et al., 1994).  

 

The 5’ exonuclease activity converts DNA nicks to gaps, thus permitting DNA 

polymerases to initiate DNA synthesis (Liu et al., 2005). FEN1 is predominantly a flap 

endonuclease and cleaves 5’-flaps in their ssDNA/dsDNA junctions resulting in 

ligatable nicked dsDNA products. FEN1 is best known for its involvement in Okazaki 

fragment maturation during DNA replication and LP BER, but is also involved in 
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metabolic pathways, maintenance of telomeres, and apoptosis (reviewed in (Zheng et 

al., 2011)).  

 

The coordination of FEN1 activities in diverse pathways is probably influenced by its 

many protein interactions. There were 34 FEN1-interacting proteins in the STRING4 

database as of 2010, including the scaffolding factors PCNA and 9-1-1 (RAD9-RAD1-

HUS1) (Zheng et al., 2011). The 9-1-1 complex is believed to work as a DNA damage 

sensor, and like PCNA it stimulates the flap endonuclease activity of FEN1 (Wang et 

al., 2004). Although still elusive, the regulation and coordination of FEN1 in LP BER 

involve interactions with POL , APE1, LIG1, PCNA and PARP1 (Gary et al., 1999; 

Dianova et al., 2001; Lavrik et al., 2001; Pascal et al., 2004). FEN1 deficiency causes 

DNA replication defects and is embryonically lethal in mice (Larsen et al., 2003; Zheng 

et al., 2007). 

Proliferating cell nuclear antigen 

PCNA is a homotrimeric donut-shaped factor best known for its role as a DNA sliding 

clamp that provides stability for the replication machinery (Moldovan et al., 2007). 

Nevertheless, PCNA also interacts with a long list of factors involved in DNA repair, 

chromatin remodelling, cell cycle regulation, and cell survival, and has been classified 

as a central scaffolding factor involved in maintaining the integrity of proliferating cells 

(Maga et al., 2003). PCNA has recently been observed to regulate survival of fully 

differentiated neutrophiles through sequestration of procaspases in the cytosol, further 

broadening PCNA’s roles as a platform protein and its involvement in cellular processes 

(Witko-Sarsat et al., 2010). 

 

PCNA expression levels are modulated throughout cell cycle and peak in S-phase 

during which the numerous proteins involved in replication assemble in clusters within 

the nucleus. These replication clusters can be observed in live cells by conjugating 

fluorescent proteins to the involved factors and visualized by confocal microscopy. In 

                                                 
 
4 Search Tool for the Retrieval of Interacting Genes/Proteins 
http://string-db.org 
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early S-phase, the foci are small and scattered in the nucleus. In late S-phase, they 

assemble around nucleoli and close to the nuclear membrane (Leonhardt et al., 2000). 

Proteins involved in BER that interact with PCNA include: glycosylases (UNG2, MYH, 

NTH and MPG), DNA polymerases (POL , POL , and POL ), FEN1, LIG1, PARP1, 

and XRCC1 (Eissenberg et al., 1997; Levin et al., 1997; Loor et al., 1997; Otterlei et 

al., 1999; Zhang et al., 1999; Parker et al., 2001; Kedar et al., 2002; Frouin et al., 2003; 

Fan et al., 2004; Oyama et al., 2004; Xia et al., 2005).  

 

The interaction between PCNA and XRCC1 and the associated clustering of XRCC1 to 

the replication machinery, indicates involvement of BER/SSBR factors in replication 

(Fan et al., 2004). BER/SSBR contribution to replication is probably dual, because the 

consequences of lesions differ if they are either encountered (pre-replicative) or 

produced (post-replicative) by the replication machinery. Pre-replicative lesions with 

toxic potential repaired by BER/SSBR would include mutagenic lesions such as C 

deaminated to U (transition mutations), and lesions that cause replication block (e.g. 

thymine glycol and 3-meA) or replication collapse (SSB) (Caldecott, 2003; Akbari et 

al., 2010). Post-replicative lesions assessed by BER/SSBR would include base lesions 

such as misincorporated U and A opposite 8oxoG (Otterlei et al., 1999; Boldogh et al., 

2001). 

 

Ligation 

The final step of BER/SSBR requires fusion of the nicked DNA backbone. DNA ligases 

catalyze phosphodiester bond formation through a three-step reaction mechanism that 

requires a high-energy cofactor (ATP in eukaryotes) and adjacent 3’-hydroxyl and 5’-

phosphate termini. To date, three DNA ligase genes have been identified in mammals: 

Lig1, Lig3, and Lig4 (Barnes et al., 1990; Chen et al., 1995; Wei et al., 1995). While 

homologs of Lig1 and Lig4 seem to be present in all eukaryotic cells, Lig3 has only 

been found in vertebrates and encodes three distinct DNA ligases, i.e. the ubiquitously 

expressed nuclear and mitochondrial translational initiation variants of DNA ligase 3  

(LIG3 ) and a germ cell-specific alternative splice variant DNA ligase 3  (LIG3 ) 

(reviewed in (Ellenberger et al., 2008)). LIG4 does not seem to participate in 

BER/SSBR, because it only faintly accumulates in nuclear regions irradiated with UVA 
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(Mortusewicz et al., 2006), and little is known about LIG3  (reviewed in (Ellenberger 

et al., 2008)). The respective interactions between the scaffolding factors XRCC1 and 

PCNA with LIG3  and LIG1 indicate a distinct involvement in LP and SP BER sub 

pathways. While biochemical experiments confirms lack of participation of LIG3  in 

LP, LIG1 is both SP and LP proficient (Cappelli et al., 1997; Sleeth et al., 2004).  

 

Ligase 3 

Mitochondrial LIG3  is a 1009 aa long polypeptide with a N-terminal mitochondrial 

localization signal (MLS), followed by a SSB-binding zinc finger, a central DNA 

binding domain, a catalytic domain, and a C-terminal BRCT domain. Nuclear LIG3  

lacks the MLS (reviewed in (Ellenberger et al., 2008)). 

 

There are strong indication of LIG3  involvement in BER/SSBR: the XRCC1/ LIG3  

complex resists treatment with high salt concentrations, LIG3  recruitment to DNA 

damage foci depends on XRCC1, XRCC1 and LIG3  deficiencies are both 

embryonically lethal in mice with similar phenotypes, and in addition to XRCC1 other 

factors involved in BER/SSBR interact with LIG3  (e.g. PARP1 and TDP1) (Caldecott 

et al., 1995; Tebbs et al., 1999; Leppard et al., 2003; El-Khamisy et al., 2005; 

Mortusewicz et al., 2006; Puebla-Osorio et al., 2006). Assessing the in vivo contribution 

of LIG3  to BER/SSBR has been difficult, since Lig3 deficient cells have long proven 

unviable (Puebla-Osorio et al., 2006). However, the viability of Lig3-/- murine 

embryonic stem cells (mES) was recently rescued by expressing mitochondrial LIG3 , 

but not nuclear LIG3  (Simsek et al., 2011). The viability depended exclusively on 

mitochondrial ligase activity since mitochondrial expression of a zinc-finger domain 

and BRCT truncated LIG3 , LIG1, or ligases from either Chlorella virus or E. Coli 

could rescue Lig3-/- mES. Furthermore, rescued Lig3-/- mES did not show any 

hypersensitivity to methylation, ROS, UV, IR or PAR inhibition. This apparent lack of 

requirement of nuclear LIG3  was also observed in Lig3 deficient mice astrocytes 

successfully harvested from mice by tissue specific disruption of Lig3 (Gao et al., 

2011). While the Lig3-/- astrocytes showed severe mitochondrial dysfunction, causing 

neuronal defects in the mice, the repair capacities of methylation, ROS or IR induced 

lesions were not reduced compared to wild-type. However, repair capacity was reduced 
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when knocking down LIG1 expression, and even stronger when knocking down both 

LIG1 and LIG3 . These results indicate that the roles of the nuclear XRCC1/ LIG3  

complex are elusive, and potentially redundant to LIG1 or diverging between quiescent 

and proliferating cells. 
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Aims of the study 
 
The many XRCC1 protein interactions that have been reported, including the versatile 

scaffolding factor PCNA, have long indicated assembly of large BER proficient 

multiprotein complexes potentially involved in disparate DNA processing pathways. 

The overall aim of this thesis is to describe the composition, regulation and the 

involvements of such complexes by both in vivo confocal imaging techniques and in 

vitro biochemical methods that attempt to preserve the interactions within multiprotein 

complexes. 

We have aimed to address the following questions: 

A. Is XRCC1-mediated BER coupled to replication? 

B. Does DNA damage context influence XRCC1 scaffolding properties and 

complex properties? 

C. How do the different regions of XRCC1 participate in XRCC1 scaffolding 

properties? 

D. Is XRCC1 recruitment to DNA damage regulated by kinase signalling? 
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Manuscript/publication summaries 

Paper 1: DNA repair (Amst.) 2010 

Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA 

by XRCC1 complexes 

 
Akbari, M., Solvang-Garten, K.*, Hanssen-Bauer, A.*, Lieske, N. V., Pettersen, H. S., 

Pettersen, G. K., Wilson, D. M. 3rd., Krokan, H. E., Otterlei, M. 

*These authors contributed equally to this work 

 

The previous observations that both UNG2 and XRCC1 are recruited to the replication 

machinery through interaction with PCNA (Otterlei et al., 1999; Fan et al., 2004), the 

reported interactions between multiple DNA glycosylases and XRCC1 (Campalans et 

al., 2005), and an observed UDG activity of recombinant XRCC1 protein purified from 

E. Coli prompted us to examine whether there is a direct interaction between UNG2 and 

XRCC1 at replication foci. Confocal microscopy of fluorescently-tagged UNG2, 

XRCC1, and PCNA expressed in HeLa cells clearly showed, overlapping subnuclear 

localization to replication foci in S-phase. A direct interaction between UNG2 and 

XRCC1 was suggested by the results of the proximity ligation assay (PLA). PLA uses 

antibodies with conjugated DNA strands as proximity probes combined with rolling 

circle amplification and detection by fluorescent DNA probes. The functional distance 

between two targets producing a positive signal is close to FRET distance and thus a 

strong indication of protein-protein interaction (reviewed in (Weibrecht et al., 2010)).  

 

Chinese hamster XRCC1 (cXRCC1) deletion constructs immunoprecipitated (IPed) 

from EM9 CHO (Xrcc1-/-), washed in high salt, and incubated with the catalytic domain 

of human UNG2 ( 93 UNG2) demonstrated that 93 UNG2 interacts with the XRCC1 

region encompassing the NLS (aa 183-315). Because both XRCC1 and UNG2 interact 

with PCNA, direct cXRCC1 / 93 UNG2 interaction was confirmed by Far Western 

analysis. The presence of UNG2 in XRCC1 complexes was further confirmed by 

abrogation of U:A and U:G repair capacity of XRCC1-EYFP immunoprecipitates when 
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treated with the UNG inhibitor Ugi or antibodies targeted against the catalytic domain 

of UNG. 

 

In addition to the observed co-localization of UNG2, XRCC1, and PCNA in replication 

foci, several XRCC1 specific foci without UNG2 or PCNA were detected in both 

S- and non-S-phase cells, suggesting the presence of discrete XRCC1 complexes. 

Immunoprecipitation (IP) of XRCC1 or UNG2 from S-phase and G1/S-phase enriched 

and mildly formaldehyde crosslinked HeLa cells confirmed the presence of distinct 

complexes throughout cell cycle. The crosslinked XRCC1 immunoprecipitates 

contained high molecular weight complexes (HMW) (>200 kDa) with e.g. POL . In 

agreement with our confocal results, the yield of HMW XRCC1 complexes was higher 

in S-phase lysates and contained more UNG2 and PCNA compared with G1/S-phase 

lysates. The presence of UNG2 and XRCC1 in a common complex was also detected by 

IP of UNG2 and XRCC1. However, as the confocal results suggested, we found distinct 

differences in the protein composition of XRCC1 and UNG2 immunoprecipitates. LIG1 

only co-IPed with UNG2, while LIG3, POL , and PNKP co-IPed more readily with 

XRCC1-EYFP. Similar results were found when immunoprecipitating XRCC1 or 

UNG2 from chromatin-enriched lysates of freely cycling cells. 

 

To determine differences in repair proficiency between S-phase XRCC1 and UNG2 

complexes we tested their BER activity on U:A, U:G, and AP site substrates. XRCC1 

complexes performed complete BER on all substrates. In contrast, UNG2-complexes 

were unable to efficiently generate the final ligated product despite the presence of 

LIG1. The inefficient ligation was not affected by addition of APE1, but was rescued by 

addition of APE1 and T4 Ligase. Prolonged repair time and addition of merely APE1 

only partially rescued the production of the final ligated product, indicating that the 

UNG2 complex is inefficient in both SSB end-trimming and ligation. In summary 

western analysis and BER activity analysis indicated that XRCC1 and UNG2 in S-phase 

are present in common complexes as well as in functionally different complexes. 

 

The interaction between XRCC1 and UNG2 further prompted us to assess whether 

XRCC1 influences UNG2 specific U repair. Cell extracts from EM9 (Xrcc1-/-), its 
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parental wild-type cell line AA8 (Xrcc1+/+), and EM9 expressing exogenous cXRCC1 

were tested for their ability to repair U:A and AP site containing substrates and excise U 

from DNA. XRCC1-deficient cell extracts were considerably slower in their U:A repair. 

It is unlikely that the reduced U:A repair was due to lack of stabilizing effects of 

XRCC1 on POL  and LIG3 or reduced uracil-DNA-glycosylase activity, because the 

XRCC1-deficient cell extracts did not present reduced AP site repair nor Uracil-DNA 

glycosylase activity. Our results thus indicate that XRCC1 plays a specific role in the 

coordination of repair of U:A. 

 

In summary this paper shows a direct interaction between the NLS region of XRCC1 

and the catalytic domain of UNG2 in replication associated-complexes. Furthermore, 

we have identified functional differences between XRCC1- and UNG2- associated S-

phase complexes. Based on these and earlier observations we present a model 

suggesting pre-replicative BER targeting removal of mutagenic U:G mismatches, in 

addition to post-replicative excision of U:A misincorporations that are later repaired by 

XRCC1 BER complexes. 

Paper 2: Environmental and Molecular Mutagenesis 2011 

XRCC1 coordinates disparate responses and multiprotein repair complexes depending 

on the nature and context of the DNA damage.

Hanssen-Bauer, A.*, Solvang-Garten, K.*, Sundheim, O., Pena-Diaz, J., Andersen, S., 

Slupphaug, G., Krokan, H. E., Wilson, D. M.3rd., Akbari, M., Otterlei, M. 

* These authors contributed equally to this work 

 

XRCC1 is considered a central BER/SSBR scaffolding factor because of its many 

interactions with factors involved in BER/SSBR and the phenotypes of XRCC1-

deficient cells. The extensive overlap of interacting regions in XRCC1 has further led to 

a notion of XRCC1 organizing BER through sequential interaction with one or several 

enzymatic factors. However, both in vitro and in vivo data strongly suggest that XRCC1 

forms multimers, either through direct interactions between its BRCT domains or 

indirectly through the factors that bind to the BRCT domains (Fan et al., 2004; 

Beernink et al., 2005; Levy et al., 2006; Cuneo et al., 2011). Multimeric XRCC1 
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complexes would be able to incorporate factors with overlapping XRCC1 interactions 

into the same multiprotein complex. Furthermore, XRCC1 can interact with the 

scaffolding factor PCNA. Because "[t]here is hardly any protein known to date that 

rivals PCNA in its capacity to associate with so many different and alternative 

cofactors[.]" (Moldovan et al., 2007), it seems plausible that XRCC1 takes part in 

multimeric protein complexes capable of assembling many repair factors. Our 

observation of large XRCC1 complexes containing several BER factors, and the 

association of XRCC1 to the replication machinery during S-phase (paper 1) is in 

agreement with this hypothesis. 

 

In this paper we demonstrated that lysates from freely cycling cells contain XRCC1-

associated protein complexes with molecular weights ranging from 150-1500 kDa. BER 

assay analysis indicated that complexes ranging between 350-700 kDa had the highest 

capacity to initiate BER of AP sites, and contained detectable amounts of PNKP, POL , 

POL , LIG3, and PCNA. APE1 was not detected, but its presence is highly probable 

because IPed complexes were able to process AP site substrates. Furthermore, our 

previous results (paper 1) showed that APE1 only was detected when its interaction 

with XRCC1 complexes was fixed by formaldehyde crosslinking. UNG2 was identified 

in immunoprecipitates with molecular masses either above 670 kDa or below 440 kDa. 

Presence of UNG2 in high molecular mass complexes is in agreement with our 

observations in paper 1, where UNG2 was shown to be associated to large XRCC1 

containing complexes in S-phase. The presence of UNG2 in low molecular mass might 

indicate that complexes are broken down and/or new interactions are formed during the 

in vitro handling. However, the results confirm the observation that XRCC1 takes part 

in large multiprotein complexes containing factors capable of contributing to all BER 

steps. 

 

The presence of both POL  and POL  suggests that the XRCC1 complexes are both SP 

and LP BER proficient. We therefore assessed the POL’s respective contribution to 

insertion of the first or the following nucleotides by using IPed XRCC1-EYFP 

complexes from freely cycling cells and AP site containing substrate. Inhibition of 

POL  reduced first nucleotide incorporation by only 27% within the first 15 min and 
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57% after 45 min. Incorporation of the second and the following nucleotides increased 

with time in absence of POL  inhibitor, but remained undetectable when POL  was 

inhibited. Neutralizing antibodies targeting POL  activity reduced overall BER activity. 

Together these results indicate that nucleotide incorporation after the first nucleotide 

was exclusively performed by POL , and confirms earlier observations that POL  is 

central for the insertion of the first nucleotide (Podlutsky et al., 2001a). LP BER was 

further analyzed by challenging the IPed complexes with substrates containing a 

synthetic analog of AP sites, 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), which 

cannot be processed by the lyase activity of POL  but requires strand displacement and 

flap endonuclease activity. When detecting first nucleotide insertion of XRCC1 

complexes on AP site substrate, all detected repair products were ligated within 15 min, 

while a fraction of the gap filled THF substrate remained unligated. The incomplete 

THF substrate repair indicates that LP BER is less efficient than SP BER. Furthermore, 

AP site repair seems to mainly be repaired by SP BER as nucleotide insertion after the 

first nucleotide was not detected. However, nucleotide insertion of the second and 

following nucleotides was observed in THF substrate repair, confirming both that THF 

sites require LP BER and that XRCC1-EYFP complexes are LP BER proficient.  

 

By confocal imaging and fluorescent reporter proteins we show that PNKP and POL  

co-localize with XRCC1 both in and outside of replication foci. Neither PCNA nor 

UNG2 are found in foci outside of S-phase, and thus do not seem to participate in the 

repair of endogenously produced SSB and base lesions. Lan et al. have reported that 

PCNA accumulates in UVA (365 nm) mIF (Lan et al., 2004). However, the laser dose 

or the type of DNA damage induced in these experiments was not indicated. Because 

longer wavelength UVA mainly induces SSB and ROS, we used a near-UVA (405 nm) 

laser to assess the requirement of POL , PNKP and PCNA to mIF.  

 

First, we tested the requirement for XRCC1 in the recruitment of POL , PNKP, and 

PCNA by near-UVA microirradiation of EM9 and AA8 CHO expressing fluorescently-

tagged proteins. POL  was found to be completely dependent of XRCC1 (human or 

hamster), while the recruitment of PNKP and PCNA required lower doses with XRCC1 

present. Over-expression of human XRCC1 also lowered the required dose for the 
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treated with the UNG inhibitor Ugi or antibodies targeted against the catalytic domain 

of UNG. 

 

In addition to the observed co-localization of UNG2, XRCC1, and PCNA in replication 

foci, several XRCC1 specific foci without UNG2 or PCNA were detected in both 

S- and non-S-phase cells, suggesting the presence of discrete XRCC1 complexes. 

Immunoprecipitation (IP) of XRCC1 or UNG2 from S-phase and G1/S-phase enriched 

and mildly formaldehyde crosslinked HeLa cells confirmed the presence of distinct 

complexes throughout cell cycle. The crosslinked XRCC1 immunoprecipitates 

contained high molecular weight complexes (HMW) (>200 kDa) with e.g. POL . In 

agreement with our confocal results, the yield of HMW XRCC1 complexes was higher 

in S-phase lysates and contained more UNG2 and PCNA compared with G1/S-phase 

lysates. The presence of UNG2 and XRCC1 in a common complex was also detected by 

IP of UNG2 and XRCC1. However, as the confocal results suggested, we found distinct 

differences in the protein composition of XRCC1 and UNG2 immunoprecipitates. LIG1 

only co-IPed with UNG2, while LIG3, POL , and PNKP co-IPed more readily with 

XRCC1-EYFP. Similar results were found when immunoprecipitating XRCC1 or 

UNG2 from chromatin-enriched lysates of freely cycling cells. 

 

To determine differences in repair proficiency between S-phase XRCC1 and UNG2 

complexes we tested their BER activity on U:A, U:G, and AP site substrates. XRCC1 

complexes performed complete BER on all substrates. In contrast, UNG2-complexes 

were unable to efficiently generate the final ligated product despite the presence of 

LIG1. The inefficient ligation was not affected by addition of APE1, but was rescued by 

addition of APE1 and T4 Ligase. Prolonged repair time and addition of merely T4 

Ligase only partially rescued the production of the final ligated product, indicating that 

the UNG2 complex is inefficient in both SSB end-trimming and ligation. In summary 

western analysis and BER activity analysis indicated that XRCC1 and UNG2 in S-phase 

are present in common complexes as well as in functionally different complexes. 

 

The interaction between XRCC1 and UNG2 further prompted us to assess whether 

XRCC1 influences UNG2 specific U repair. Cell extracts from EM9 (Xrcc1-/-), its 
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and FEN1 accumulation followed the accumulation of PARP1 in 4-AN and PJ34 treated 

cells. 

  

To summize this paper confirmed the presence of XRCC1 in mulitiprotein SP/LP BER 

proficient complexes of variable composition. Our results also showed that PNKP and 

POL  co-localize with XRCC1 in replication foci and in both constitutively present and 

induced foci throughout the cell cycle. Furthermore, we showed that recruitment of 

PNKP and POL  by low dose UVA induced damage requires XRCC1. We also 

confirmed that PCNA does not co-localize with constitutively present XRCC1 

complexes and demonstrated that PCNA can be recruited together with FEN1 to sites of 

DNA damage and XRCC1 foci, depending on the extent and type of damage induced. 

Our results confirmed the involvement of POL  in first nucleotide insertion during gap 

filling, and indicated that it does not participate with insertion of the following 

nucleotides in competition with POL . We also demonstrated that PARylation is not 

crucial for recruitment of BER factors, and our results suggest that XRCC1 complex 

accumulation at DNA lesions is independent of PARP1 interaction. Based on these 

results, we proposed that XRCC1 is found in at least three multiprotein complexes: 

associated to replication, in a SP BER proficient “core complex” induced by low levels 

of DNA degradation, and in a SP/LP BER proficient complex induced by high levels of 

damage. 

Paper 3: DNA repair (Amst.) (accepted January 2012) 

The region of XRCC1 from residues 310 to 436, which harbours the three most common 

nonsynonymous polymorphic variants, is essential for the scaffolding function of 

XRCC1 

Hanssen-Bauer A.*, Solvang-Garten K.*, Gilljam K.M., Thorseth K., Wilson D.M. 3rd, 

Akbari M., Otterlei M. 

*These authors contributed equally to this work  

 

XRCC1 contributes to BER as a scaffolding protein through its many protein 

interactions and its capacity to be recruited to sites of DNA lesions and association with 

the cells replication machinery (paper 1 and 2). Proteins have been shown to interact 
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with regions of XRCC1 throughout its whole peptide sequence, and the associated 

proteins show variable dependency on XRCC1 for recruitment to lesions (paper 2). In 

this paper we examined the contribution of three different XRCC1 regions to its 

scaffolding properties, and attempted to assess the impact of the most common 

polymorphic variants of XRCC1. 

 

To determine the XRCC1 region necessary for its recruitment to lesions we performed 

near-UVA microirradiation in XRCC1-deficient cells expressing deletion constructs and 

full length XRCC1. We used laser doses sufficient for recruitment of PNKP and POL , 

but not PCNA and below the doses necessary for accumulation of the DSB marker 

H2AX (paper 2). Deletion constructs ranging between aa 166-436 (MD) and aa 311-

633 (BLB) were recruited similarly to full length XRCC1, a rapid accumulation 

reaching a maximum intensity after approximately 100 s. However, while the MD 

construct and full length XRCC1 foci reached a ~2-fold increase in signal compared to 

the background, the BLB mutant foci only reached a ~1.4-fold increase. These results 

suggest that the overlapping region between MD and BLB (aa 311-436; mainly 

BRCT1) is required for XRCC1 recruitment to lesions, while the MD specific region 

(aa 166-311; between N-terminal domain and BRCT1) is particularly important for the 

localization properties of XRCC1. The deletion construct ranging from aa 1-310 

(XNTD) did not accumulate into foci, even when the irradiation dose was increased 

100-fold. 

 

XRCC1 co-localizes with PCNA in replication foci independent of DNA damage (Fan 

et al 2004). Although only the MD and XNTD deletion constructs contained the PCNA 

interacting region of XRCC1 (aa 152-315), confocal imaging revealed that BLB also 

co-localizes with PCNA in replication foci. The lack of recruitment of XNTD indicates 

that the PCNA binding domain is not sufficient and that the BRCT1 region is required 

for localization to replication foci. The presence of BLB implies that XRCC1 can be 

recruited via other proteins. 

 

To further assess the contribution of the different XRCC1 regions to BER, we 

performed Comet assay on Xrcc1-/- EM9 CHO cells expressing XRCC1 deletion 
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constructs and treated the cells with either methyl methanesulfonate (MMS) or H2O2. 

While the XNTD and BLB constructs did not alter the accumulated fragmentation 

compared to the negative control, the MD construct partially complemented full length 

XRCC1 expression after MMS treatment. These results indicate that one or several of 

the specific interactions within the MD region of XRCC1 is critical for efficient repair 

of MMS-induced damage, but dispensable for repair of ROS-induced damage. 

 

The three most prevalent variants of XRCC1, Arg194Trp, Arg280His, and Arg399Gln, 

are all located within the MD construct. Their contributions to cancer risk have been 

assessed in numerous epidemiological studies and, although with diverging results, 

seem to be associated with cancer in combination with life style factors. We could not 

detect significant differences in the cellular localization or capacity to recruit PNKP or 

POL  to mIFs when comparing the XRCC1 variants with the conservative XRCC1. 

However, we did detect slightly reduced abilities to accumulate or remain in mIFs and 

slight differences in the repair profiles of MMS and H2O2-induced damage as measured 

by alkaline Comet assay. Small variations in recruitment to exogenously-induced DNA 

damage could support an association between these polymorphism and increased cancer 

risk in relation to life-style factors such as smoking. 

 

This paper shows that the BRCT1 domain (aa 315-403) is crucial for recruitment of 

XRCC1 to lesions, while the region spanning between the N-terminal domain and 

BRCT1 (aa 166-311) influences its recruitment properties. The aa 116-403 region plays 

a specific role in repair of MMS induced damage and is required for efficient 

recruitment of PCNA to lesions, probably through its PCNA interaction region. 

However, the PCNA interacting region is not required for XRCC1 localization to 

replication foci. Finally, the three most prevalent polymorphisms of XRCC1 have 

slightly reduced recruitment capacities to lesions and slightly reduced BER capacities. 
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Discussion
The original observations made by Thompson et al. that CHO cells defective in XRCC1 

present phenotypes indicating involvement in repair of base lesions and strand breaks 

(i.e. hypersensitivity to methylating agents, ROS and IR) have later been confirmed by 

the accumulation of reported XRCC1 interactions with DNA glycosylases and other 

enzymes capable of processing BER intermediates ((Thompson et al., 1990), reviewed 

in (Almeida et al., 2007)). This thesis centers on the notion of XRCC1 as a central BER 

scaffolding factor. However, proteins and their involvement in complex pathways have 

likely evolved from already existing factors and pathways. In accordance with this, 

involvement of XRCC1 in other repair pathways, such as NER and NHEJ, has been 

reported (Audebert et al., 2004; Moser et al., 2007). Furthermore, XRCC1-deficient 

cancer cell lines proliferate readily and are capable of repairing their genome after 

insults causing base lesions and strand breaks. Thus, it should be noted that there is 

extensive crosstalk and redundancy among DNA repair pathways. 

XRCC1 complexes are large multimers 
The observation that BER can be reproduced in vitro with as few as four enzymes and 

the existence of more than twenty BER factors capable of processing a broad selection 

of lesions and repair intermediates through different sub-pathways of BER has lead to a 

notion of BER as a succession of enzymatic events. In this regard, XRCC1 mainly 

contributes as a co-factor or temporary docking platform because it only interacts with a 

selection of the BER factors (e.g. roughly half of the DNA glycosylases, only one ligase 

and polymerase). Furthermore, only the interactions with POL  and LIG3 are 

considered strong and contribute to proteolytic stability, and the remaining interactions 

partners show extensive overlap scattered all along the XRCC1 peptide sequence. 

However, the dimeric interactions between XRCC1 BRCT domains and 

heterotetrameric assembly of XRCC1 with either PARP1 or LIG3 observed in vitro, and 

FRET results have long indicated the possibility of assembly of XRCC1 complexes able 

to contain many factors (Fan et al., 2004; Beernink et al., 2005; Levy et al., 2006; 

Cuneo et al., 2011). The assembly of large multiprotein complexes is plausible because 

many of the XRCC1 interacting proteins have been shown to interact among themselves 

(reviewed in (Almeida et al., 2007)) and XRCC1 interacts with another well known 
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scaffolding factor, PCNA. In 2004 our group isolated a large BER proficient 

multiprotein complex by pulling down UNG2, containing PCNA, XRCC1, and factors 

that overlap in their interaction with XRCC1 (Akbari et al., 2004). Similar results were 

obtained by Heale et al. and Parlanti et al,. who also observed factors in the complex 

that are not known to interact directly with XRCC1 (e.g. POL , POL , and FEN1) 

(Heale et al., 2006; Parlanti et al., 2007). Our results in paper 1 confirmed the presence 

of multiprotein XRCC1-EYFP-associated complexes containing BER factors with 

overlapping XRCC1 interactions (PCNA and PARP1 vs. UNG2 vs. APE1) as well as 

factors with no known interactions with XRCC1 (POL , FEN1, and LIG1) and 

endogenous XRCC1. The presence of such XRCC1 complexes was further confirmed 

by gel fractionation of immunoprecipitated XRCC1 complexes in paper 2. In vitro 

studies of the interaction between BER enzymes and their DNA substrates indicate that 

the enzymes stays bound to their product, preventing toxic and mutagenic effects of 

repair intermediates before handing it over to the following enzyme (Prasad et al., 

2010). Multiprotein BER complexes could contribute to tethering factors to the lesions 

and repair intermediates and thus potentially secure progression through the pathway, 

increase the rate of repair, and provide a platform that can handle irregularities through 

different paths or possibly several lesions in parallel. 

Variable complex compositions 
The involvement of replication factors such as POL , POL , FEN1, and PCNA in LP 

BER and the deleterious effects of replication past SSB and certain base lesions have 

lead to the hypothesis of replication-coupled BER / SSBR (reviewed in (Caldecott, 

2001)). The UNG2-associated complexes described by our group in 2004 contained 

both XRCC1 and PCNA while having a predominant SP BER activity (Akbari et al., 

2004). The presence of XRCC1 and UNG2 in the replication complex was confirmed 

by Parlanti et al. (Parlanti et al., 2007). In paper 1 we demonstrated that the composition 

of XRCC1-associated complexes varies throughout cell cycle. Furthermore, we showed 

that although UNG2 and XRCC1 interact directly, UNG2 and XRCC1 

immunoprecipitates from S-phase cells contain both common and separate factors and 

present different BER proficiencies. Confocal imagery (papers 1 and 2) indicated that 

XRCC1, PNKP and POl  are found both within and outside of replication foci, while 
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UNG2 is only found in association with the replication machinery. This confirms the 

presence of XRCC1 mediated BER / SSBR associated to replication and points to the 

presence of distinct BER complexes. This was further supported by the gel fractionation 

results in paper 2, which demonstrated the presence of BER proficient XRCC1 

complexes of variable size and composition. Notably, we found that the dose of near-

UVA laser used to induce DNA lesions influenced the repertoire of DNA repair proteins 

recruited. Low doses resulted in recruitment of factors that are also observed in foci 

independent of exogenously induced DNA damage, e.g. PNKP, and POL , while high 

doses in addition triggered recruitment of PCNA and FEN1. In sum our observations 

suggest the presence of a “XRCC1 core complex” that assembles at sites of endogenous 

or low levels of exogenous damage and is extended to include proteins involved in LP 

BER as well as other repair pathways when levels of damage reach a certain threshold. 

This XRCC1 core complex is found associated to replication where it interacts with 

DNA glycosylases such as UNG2. Based on western analysis of immunoprecipitated 

complexes and near-UVA laser mIF, we propose that the XRCC1 core complex 

includes PNKP, POL , and LIG3. Western analysis of formaldehyde crosslinked 

complexes in paper 1 and BER activity of low mass complexes in paper 2 further 

suggest that APE1 is also a member of the XRCC1 core complex. Our results do not 

exclude the presence of other polymerases, end-trimming enzymes, or glycosylases that 

were not included in our analysis. However, caution should be exercised when 

determining complex composition and activity. The presence of UNG2 in XRCC1-

associated complexes below 440 kDa in paper 2 is not in accordance with its observed 

presence in large replication-associated complexes in paper 1, and is most likely an 

artifact occurring during in vitro handling. Furthermore, Akbari et al. recently 

demonstrated that BER activity of nuclear extracts and UNG2 is influenced by the 

volume of the lysate extraction buffer (Akbari et al., 2011). 
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Complex regulation and recruitment 
The variable composition and rapid recruitment of XRCC1 multiprotein complexes 

observed in paper 1 and 2 suggest regulation of protein interactions through PTM. An 

overview of possible PTMs that influence recruitment and complex composition of 

XRCC1 multiprotein complexes is beyond the scope of this thesis since it probably 

involves interactions between proteins that do not include XRCC1. However, it should 

be noted that these potentially are just as important as direct interactions with XRCC1. 

 

PARP1 affinity for and activation by SSB and its reported interaction with the BRCT1 

domain of XRCC1 makes it a plausible candidate as initiator of XRCC1 complex 

recruitment to SSB (Masson et al., 1998). El-Khamisy et al. reported 

immunohistochemistry results that demonstrated abrogation of XRCC1 foci formation 

by inhibition of PARylation, and foci reduction by point mutation within a putative 

PAR binding motif in BRCT1, suggesting that XRCC1 recruitment to SSB is primarily 

mediated through interaction with PAR polymers rather than PARP1 (El-Khamisy et 

al., 2003). This was later supported by Mortusewicz et al. and Godon et al. whom 

observed strong reduction of XRCC1 recruitment by inactivation of PARP1s 

PARylation domain or by use of PARylation inhibitor (Mortusewicz et al., 2007; 

Godon et al., 2008). Godon et al. further demonstrated that PARylation inhibition with 

4-AN caused increased PARP1 accumulation in near-UVA mIF and suggested that 

PARP1 dissociation from SSB was hampered by the lack of PAR polymers causing 

reduced BER efficiency. Interestingly, our near-UVA mIF assays on HeLa treated with 

two structurally different PARylation inhibitors differ from these observations (paper 

2). While 4-AN treatment induced increased accumulation of PARP1 to near-UVA 

microirradiated areas, as observed by Godon et al., PJ34 did not. PARP1 foci were only 

observed in PJ34 treated HeLa after irradiation with high dose near-UVA. Our results 

suggest that the two PARylation inhibitors have diverging effects on PARP1 affinity for 

DNA, and represented an opportunity to assess effects of PARP1 accumulation on 

XRCC1 complex recruitment while PARylation is severely hampered (undetectable). 

Notably, XRCC1, PNKP and POL  recruitment to high dose near-UVA mIF did not 

increase as PARP1 accumulation increased in 4-AN treated cells in comparison with 
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PJ34 treated cells. At low dose near-UVA microirradiation PJ34 treated cells did not 

produce any detectable PARP1 nor XRCC1 foci, whereas PARP1 and XRCC1 were 

observed in both untreated and 4-AN treated cells. Our results therefore suggest that 

while PARP1 is important in recruitment of XRCC1 complexes when DNA damage is 

below a certain threshold, XRCC1 is probably not recruited through direct interaction 

with PARP1. As PARylation inhibition only slightly reduced accumulation of XRCC1, 

PNKP and POL  our results indicate that PARP1 mainly influences XRCC1 

recruitment through indirect mechanisms, such as through its involvement in chromatin 

relaxation. However, the increased PARP1 accumulation in 4-AN cells was 

accompanied by PCNA and FEN1 accumulation, indicating that recruitment of repair 

factors involved in LP BER and other repair pathways are mediated through direct 

interaction with PARP1. This PARP1 interaction, the lack of detectable PCNA and 

FEN1 in low dose near-UVA mIF, and the lower LP BER efficiency compared with SP 

BER of XRCC1 complexes from unstressed HeLa (paper 2) suggest that recruitment of 

factors involved in, among other pathways, LP BER is triggered when DNA damage 

levels are above a certain threshold. High levels of damage could increase the 

probability of BER intermediates and SSB escaping normal processing, exposing them 

to interactions causing unprocessable 5’-termini such as oxidized 5’ dRP (Demple et al., 

2002). SSBR in these cases would require factors involved in strand displacement.  

 

XRCC1 has been reported to be ubiquitinated, sumoylated, acetylated, and 

phosphorylated. XRCC1 ubiquitination is believed to affect XRCC1 expression levels 

through degradation and is thus probably not relevant to the rapid recruitment responses 

to DNA damage (Parsons et al., 2008). XRCC1 sumoylation was demonstrated in an in 

vitro SUMO1 substrate screening in 2005 (Gocke et al., 2005). While no specific 

conclusion towards its effect on BER was made, sumoylation potentially affects 

intracellular trafficking and protein-protein interactions. Proteins that take part of 

multiprotein complexes seem to be overrepresented among SUMO targets (reviewed in 

(Gocke et al., 2005)). Curated mass spectrometry datasets indicate that human XRCC1 
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contain three acetylated lysine residues (Lys256, Lys260, and Lys271)5. These residues 

are within, or close to, the XRCC1 NLS and within the region reported to interact with 

glycosylases, APE1, and PCNA. Recently Yamamori et al. reported that deacetylation 

of APE1 influenced its interaction with XRCC1 and the AP-endonuclease activity of 

XRCC1 multiprotein complexes (Yamamori et al., 2010). However, Yamamori et al. 

did not assess potential contribution of the XRCC1 acetylations. The most prominent 

PTM of XRCC1 known to date is, as previously mentioned, phosphorylation. In DDR 

the usual suspects among kinases are ATM, ATR and DNA-PKcs of the PI3K family. 

Levy et al. demonstrated in 2006 that DNA-PKcs phosphorylates XRCC1 at Ser371 

within the BRCT1 domain (Levy et al., 2006). Levy et al. also showed that IR induced 

in vivo XRCC1 phosphorylation was undetectable after treatment with PI3K inhibitor 

Wortmannin, and in vitro results suggested that DNA-PKcs phosphorylation of Ser371 

mediated dissociation of XRCC1 dimers. In 2008 Chou et al. reported that Chk2, 

believed to be mainly activated by ATM but also ATR, phosphorylates XRCC1 at 

Thr284 in vitro possibly mediating XRCC1 interactions with glycosylases (Chou et al., 

2008). In vivo Thr284 phosphorylation was reported to be induced by base damage and 

blocked by inhibition of Chk2. As both DNA-PKcs and Chk2 phosphorylation of 

XRCC1 were reported to be mediated by DNA damaging stress and potentially could 

influence XRCC1 recruitment through changes in either the PARP1 or DNA 

glycosylase binding regions we assessed the effects of Wortmannin and Caffeine (PI3K 

inhibitors) on near-UVA mIF formation as part of the pilot studies for paper 4. While 

Wortmannin seemed to increase XRCC1 mIF formation Caffeine reduced it (data not 

shown). The PI3K inhibitor LY294002 induced a slight reduction in XRCC1 mIF 

(paper 4). Neither Caffeine (data not shown) nor LY294002 (paper 4) produced any 

detectable reduction in XRCC1 phosphorylations as assessed by Two-dimensional-

PAGE in our hands. However, reduction of XRCC1 phosphorylation was observed 

when treating with Wortmannine (data not shown) in agreement with Levy et al. (Levy 

et al., 2006). The lack of concurrent mIF observations when treating with Wortmannine 

and Caffeine is probably a result of diverging PI3K specificities and unspecificities of 
                                                 
 
5 Uniprot database, search term "p18887" (Human XRCC1) 
http://www.uniprot.org/ 
Last accessed 12th december 2011 
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the inhibitors. The lack of observed reduction of phosphorylation of XRCC1 when 

treating with Caffeine or LY194002 is likely a result of lack of sensitivity in our assay. 

However, the observed reduction of phosphorylation caused by TBB inhibition of CK2 

(paper 4) suggest that PI3Ks mediate fewer phosphorylations on XRCC1 than CK2. 

CK2 phosphorylation between the BRCT domains of XRCC1 has been shown to 

mediate interaction with the FHA domains of PNKP, APLF and APTX (end-trimming 

enzymes) and inhibition affects BER activity (Loizou et al., 2004; Luo et al., 2004; Iles 

et al., 2007). Our observation that CK2 inhibition did not alter XRCC1 mIF formation 

(paper 4) thus suggests that FHA domain interactions within the BRCT domains do not 

participate in mediating recruitment of XRCC1 complexes. 
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a b s t r a c t

Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair

(BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with

PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same

complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in

live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci.

Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization

signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole

cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that

contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features.

XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based

on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Uracil may be introduced in DNA by two distinct mechanisms.

One is by hydrolytic deamination of cytosine that generates some

70–200 uracil bases per day in DNA [1]. This deamination results in

pre-mutagenic U:G mispairs, which unless repaired, give rise to C:G

to T:A transitions upon replication. The other mechanism, which

probably is quantitatively a more important source of uracil in DNA,

is the incorporation of dUMP in place of dTMP during replication.

This results in U:A base pairs that can perturb transcription [2,3]

or possibly be mutagenic due to erroneous BER and/or enhanced

levels of AP site [4,5].

Base excision repair (BER) of genomic uracil is initiated by one

of four uracil-DNA glycosylases (UDG) found in mammalian cells:

UNG2, SMUG1, TDG and MBD4 [6]. UNG2 removes uracil from U:A

base pairs, and is the only UDG known to interact with PCNA and

to localize in replication foci [7,8]. UNG deficiency perturbs normal

immune response in humans [9] and mice [10] and contributes to

the accumulation of mutations in mice [11].

∗ Corresponding author. Tel.: +47 72573075; fax: +47 72576400.

E-mail address: marit.otterlei@ntnu.no (M. Otterlei).
1 These authors contributed equally to the work.

BER is a multi-step process and can be reconstituted with a

limited number of proteins. However, in recent years, a num-

ber of proteins have been identified that are not strictly required

for BER in vitro, yet exert important effects on cellular BER

effectiveness, mainly through protein–protein interactions and

post-translational modification [12]. PCNA and XRCC1 are two key

proteins that seemingly provide platforms for repair protein inter-

actions. XRCC1 was originally identified as a factor involved in

single-strand break DNA repair and cells deficient in XRCC1 show

elevated levels of sister chromatid exchange [13]. XRCC1 interacts

with a number of proteins known to participate in BER including:

APE1 [14], POL� [15], Lig III [16], PCNA [17], poly (ADP-ribose) poly-

merase 1 (PARP-1) [18], PARP-2 [19], polynucleotide kinase (PNK)

[20] and the DNA glycosylases OGG1 [21], MPG, NEIL1 and hNTH1

[22].

The DNA glycosylases MPG, UNG2 and human MutY homolog

(MYH) interact with PCNA through their PCNA binding motif (PIP-

box) and co-localize with PCNA in replication foci [8,23–25]. UNG2

is responsible for post-replicative removal of mis-incorporated

dUMP during replication [8]. Similar to UNG2, MYH interacts with

PCNA and initiates post-replicative repair of adenine from A:8-

oxoG mispairs in newly synthesized DNA [23,26]. While these

observations suggest the presence of post-replicative BER, little is

known about the overall organization of BER during replication.

1568-7864/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dnarep.2010.04.002
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XRCC1 co-localizes and directly interacts with PCNA [17] and

UNG2 immunoprecipitates containing XRCC1 were found to be

capable of complete short patch and long patch BER [27]. However,

the extent of protein–protein interactions and whether XRCC1 and

UNG2 directly interact or are part of a large complex(es) was not

elucidated.

Our aim for conducting this study was to investigate whether

repair of uracil in DNA in S-phase cells takes place via XRCC1 medi-

ated protein complexes. We show that XRCC1 and UNG2 co-localize

in replication foci and are in close proximity of each other. Using

a pull-down assay we show that UNG2 directly interacts with the

NLS region of XRCC1. Extracts from synchronised cells expressing

EYFP fusions of UNG2 and XRCC1 and use of tag specific antibodies,

allowed us to directly compare the biochemical activities and pro-

tein content of XRCC1 and UNG2 immunoprecipitates from S-phase

cells. Our results provide evidence for the presence of XRCC1 com-

plexes containing UNG2 in addition to separate XRCC1 and UNG2

associated complexes with distinct repair characteristics. We pro-

pose a model for a role of XRCC1 in repair of uracil in replication foci.

2. Materials and methods

2.1. Chemicals and antibodies

Synthetic oligonucleotides were from Eurogentech (Belgium),

[�-33P]dTTP and [�-33P]dCTP (3000 Ci/mmol) were from Amer-

sham Biosciences, restriction enzymes from New England BioLabs,

paramagnetic protein-A beads from Dynal (Norway). Phenylmethyl

sulfonyl fluoride (PMSF) and Complete protease inhibitor were

from Roche. Antibody against (�)-POL� (ab3181), �-DNA Lig I

(ab615), �-DNA Lig III (ab587), �-APE-1 (ab194), �-XRCC1 (ab1838

(mouse) and abcam 11429 (rabbit)), �-PARP-1 (ab18376), �-FLAG

(Sigma) and �-GFP (ab290, Abcam, UK), �-GFP (in house, only

used for IP). Both �-GFPs also recognize the other GFP variants

(ECFP and EYFP). Other antibodies used were �-PNK (MAB-005,

Cytostore, USA), �-PCNA (PC10, Santa Cruz, USA), �-Fen-1 (Betyl,

USA), and in-house affinity purified rabbit polyclonal antibodies

raised against UNG2 [28]. Secondary antibodies: polyclonal rabbit

�-mouse IgG/HRP or peroxidase-labeled polyclonal swine �-rabbit

IgG) were from Dako Cytomation (Denmark), Alexa fluor 532 goat-

�-mouse IgG and Alexa Fluor 647 goat-�-rabbit IgG (Invitrogen).

IgGs were crosslinked to protein-A magnetic beads according to

procedure (New England Biolabs).

2.2. Cloning of fusion constructs

pEC/YFP-PCNA, HcRed-PCNA, pXRCC1-EYFP have been

described [17,29,30]. The UNG2-EYFP construct is a modified

version of the ProA-UNG2-EYFP construct from which UNG2-

EYFP transcription is regulated by its own promote [7]. A 3×
FLAG sequence is cloned in front of UNG2-EYFP in the EcoRI

blunted/KpnI site, thus the FLAG sequence is separated from the

N-terminus of UNG2 by a 84 bp linker.

Hamster Xrcc1-EYFP and Xrcc1-ECFP constructs were prepared

as follows: total RNA was isolated from AA8 cells (RNeasy midi

kit, Qiagen). First strand hamster Xrcc1 cDNA substrate was gen-

erated using dT-oligo and TaqMan Reverse Transcription Reagents

(Applied Biosystem). PCR was carried out using AccuTaq LA DNA

polymerase (Sigma–Aldrich), and oligonucleotides.

Xrcc1F-XhoI (5′-GAATTCCTCGAGGATGCCGGAGATCAGCCT-

CCGC-3′) and Xrcc1R-XmaI (5′-GAATTCCCCGGGCTCCGGCCTGTGG-

CACCACTC-3′). The PCR product was digested with XhoI/XmaI

and cloned into XhoI/XmaI site of EYFP-N1 vector (Clontech). The

deletion constructs were amplified using the following primer

pairs:

For Xrcc11–325-ECFP: Xrcc1F-XhoI (5′-GAATTCCTCGAGGAT-

GCCGGAGATCAGCCTCCGC-3′) and Xrcc1R2-XmaI (5′-GGATCC-

CCCGGGCCACCACACCCTGCAGAATC-3′).
For Xrcc11–180-ECFP: Xrcc1F-XhoI (5′-GAATTCCTCGAGGATGCC-

GGAGATCAGCCTCCGC-3′) and Xrcc1R3-EcoRI (5′-GGATCC-

GAATTCCTTTCACACGGAACTGGC-3′).
For Xrcc1315–633-ECFP: Xrcc1F2-EcoRI (5′-GGATCCGAATTC-

GGAGCTGGGGAAGATTCTG-3′) and Xrcc1R-XmaI (5′-GAATTCC-

CCGGGCTCCGGCCTGTGGCACCACTC-3′).
PCR products were purified, digested with appropriate restric-

tion enzymes, and cloned into the appropriate restriction sites

of pECFP-N1. The primer sequences were derived from NCBI-

AF034203.

2.3. Cell cultures

Cells were transfected with the different fusion constructs using

calcium phosphate (Profection Promega) or Fugene 6 (Roche). HeLa

and EM9 (Chinese hamster ovary cell line) cells stably express-

ing human or Chinese hamster XRCC1-EYFP or deletion constructs

thereof, UNG2-EYFP and EYFP were prepared by transfection

followed by cell sorting or cloning by dilution and prolonged cul-

turing in selective media (DMEM (Gibco)) containing 10% fetal

calf serum, gentamycin (0.1 mg/ml, Gibco), glutamine (1 mM),

fungizone (2.5 �g/l) and geneticin (G418, 0.4 mg/ml, Invitrogen).

For transient transfection the cells were examined after 16–24 h.

Untransfected cells were cultured in the same medium without

geneticin.

2.4. Proximity ligation assay (PLA) and immunofluorescence

staining

PLA was performed to visualize UNG2/XRCC1 interactions in

vivo. Briefly, in PLA oligonucleotide conjugated probe antibodies

are directed against primary antibodies. Annealing of the probes

occurs when the target proteins are in close proximity, which

initiates the amplification of a reporter signal [31]. Cells were

grown on coverslips overnight. Cells were washed once with

phosphate-buffered saline (PBS) and fixed with 2% paraformalde-

hyde for 15 min on ice, washed once with PBS, permeabilized with

methanol at −20 ◦C for 30 min, washed once with PBS–FCS (2%

fetal calf serum in PBS) and blocked by incubation in PBS–FCS

for 30 min prior to incubation with primary antibodies diluted in

PBS–FCS (mouse monoclonal �-FLAG (1:1000) and rabbit poly-

clonal �-XRCC1 (1:250). PLA was performed as described by the

manufacturer (Olink Biosciences) using the Duolink Detection Kit

with PLA PLUS and MINUS probes. For immunohistochemistry, the

cells were fixed, permeabilized and blocked and incubated with pri-

mary antibodies as above. Secondary antibodies used were Alexa

fluor 532 goat-�-mouse IgG and Alexa Fluor 647 goat-�-rabbit IgG.

2.5. Confocal microscopy

Fluorescent images of live cells co-transfected with ECFP, EYFP

and HcRed constructs (1 �m thickness) were produced using a Zeiss

LSM 510 Meta laser scanning microscope equipped with a Plan-

Apochromate 63×, 1.4 oil immersion objective. Three colour images

were taken using three consecutive scans and the following set-

tings: ECFP-excitation at � = 458 nm, detection at � = 470–500 nm,

EYFP excitation at � = 488 nm, at � = 530–600 and HcRed excitation

at � = 543 nm, detection at � > 615 nm. For immunofluorescence

staining: excitation at � = 543 nm and � = 633 nm and detection

at � = 560–615 nm and � > 650 nm respectively. PLA: excitation at

� = 543 nm and detection at � = 560–615 nm, together with EYFP

excitation at � = 514 nm and detection at � = 560–615 nm.
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2.6. Cell synchronization

HeLa cells stably expressing XRCC1-EYFP or UNG2-EYFP or EYFP

alone were synchronised by double thymidine block, which arrests

the cells at the G1/S border [32]. The cells were released at mid-S-

phase (3 h) [33]. Cell cycle phase was verified by flow cytometry.

The DNA analysis of the cells was performed after methanol fixation

(70%), RNase treatment (100 �g/ml in PBS at 37 ◦C for 30 min) and

propidium iodide (PI) staining (50 �g/ml in PBS at 37 ◦C for 30 min)

on a FACS Canto flow cytometer (BD-Life Science).

2.7. Formaldehyde crosslinking of proteins in intact cells and

preparation of whole cell extracts

Cells were synchronised by double thymidine block [32] and

analysed for cell phase by flow cytometry (BD Canto Flow) after

methanol fixation, RNAse treatment and propidium iodide stain-

ing. The cell fractions enriched in S- and G1-phases were harvested

and washed twice with cold PBS. 5–6 × 106 cells were resus-

pended in 10 ml PBS containing 0, 0.125 or 0.25% formaldehyde

and incubated at 37 ◦C for 20 min. Crosslinking was stopped by

adding glycine (final concentration 0.125 M) and further incuba-

tion at room temperature for 5 min. Cells (non-crosslinked and

crosslinked) were collected by centrifugation and washed once in

PBS, suspended in 8× packed cell volume (PCV) in buffer I (20 mM

HEPES pH 7.9, 1.5 mM MgCl2, 100 mM KCl, 0.2 mM EDTA, 20% (v/v)

glycerol, 0.5% Nonidet P-40, 1 mM DTT and Complete protease

inhibitor) containing 5 �l Omnicleave Endonuclease (200 U/�l Epi-

centre Technologies, WI) and sonicated. DNAse and RNase cocktail

I (2 �l (200 U/�l) of Omnicleave Endonuclease, 1 �l Bensonase

(250 U/ml, Novagene, Ge), 10 �l RNAse (10 mg/ml, Sigma–Aldrich),

1 �l DNAse (10 U/�l, Roche Inc.), and 1 �l micrococcal nuclease

(100–300 U/mg, Sigma–Aldrich) per 30 mg cell extract) was added

to the homogenate and incubated at room temperature for 1 h and

dialyzed at 4 ◦C overnight in buffer II (20 mM HEPES pH 7.9, 1.5 mM

MgCl2, 100 mM KCl, 0.2 mM EDTA, 10% (v/v) glycerol, 1 mM DTT and

Complete protease inhibitor). The extracts were cleared by cen-

trifugation at 16,200 × g for 10 min and the supernatant was used

for further analyses. For preparation of extracts from the chromatin

enriched fraction, sonicated HeLa cells were pelleted at 16,200 × g.

The pellet was resuspended in buffer II containing the DNAse

and RNAse cocktail I and incubated at 37 ◦C for 1 h. The extract

was cleared by centrifugation at 16,200 × g and the supernatant

was used for immunoprecipitation with anti-EYFP coupled beads.

The immunoprecipitation of all samples (formaldehyde crosslinked

and non-crosslinked samples and the chromatin enriched sam-

ples) was carried out in 5 ml buffer II, and the beads were washed

5× with 1 ml buffer II prior to suspension in loading buffer. For

the crosslinked samples the immunoprecipitates were heated at

65 ◦C for 10 min to release the proteins/protein complexes from

the beads. Half of the released material (after removal of beads)

was further incubated at 95 ◦C for 30 min to reverse the crosslinks.

The proteins were separated on denaturing polyacrylamide gel and

analysed by Western blot.

2.8. Pull-down assay and Far Western analysis

Cell extracts from EM9 cells expressing constructs of hamster

Xrcc1-EYFP were incubated with anti-EYFP beads overnight. The

beads were washed three times in 20 mM HEPES pH 7.5, 500 mM

KCl, 2 mM DTT, 5 mM PMSF, Complete protease inhibitor and 1%

Tween 20 in order to wash unrelated proteins off the fusion pro-

teins. The beads were then washed once in 20 mM HEPES pH 7.5,

100 mM KCl, 2 mM DTT, 20 mg/ml BSA 1% Tween 20, 5 mM PMSF

and Complete protease inhibitor and incubated with 0.2 �g/ml �93

UNG2 in the same buffer at 4 ◦C for 1 h under constant rotation. The

beads were washed in 20 mM HEPES pH 7.5, 200 mM KCl, 2 mM DTT,

1% Tween 20, 5 mM PMSF and Complete protease inhibitor, and

the pull-down material was analysed by Western blot. In the Far

Western experiment, the immunoprecipitates were washed three

times in 20 mM HEPES pH 7.5, 1 M KCl, 2 mM DTT, 5 mM PMSF

and Complete protease inhibitor and 1% Tween 20, separated on

Bis-Tris–HCl NuPAGE ready gels (4–12%) and transferred to PVDF

membranes (Immobilon, Millipore). The membrane was incubated

overnight in a buffer containing 10 mM Tris, pH 7.5, 0.5% BSA, 0.25%

gelatin, 0.2% Triton X-100, 5 mM �-mercaptoethanol, and 150 mM

NaCl. Fresh buffer containing 100 mM NaCl was added with 5 �g

of recombinant Cy-3 labelled �93 UNG2 protein (Cy 3 Ab Labeling

kit (PA33000), Amersham) and the membrane was incubated for a

further 4–6 h, washed briefly at room temperature with buffer con-

taining 10 mM Tris–HCl, pH 8, 0.05% Tween, and 100 mM NaCl. The

membrane was dried and first analysed in a Typhoon Trio Imager

(GE Healthcare), then stripped and probed with �-Xrcc1 antibody

for Western analysis.

2.9. Immunoprecipitation and Western blot analysis

For immunoprecipitation, antibodies covalently linked to

protein-A paramagnetic beads were added to the extracts in 5 ml

buffer II and incubated at 4 ◦C overnight. The beads were collected

from the solution, washed once in 1 ml of buffer II and thereafter

three times in 10 mM Tris–HCl pH 7.5 and 50 mM KCl. The beads

were used in BER assays (described below) or suspended in loading

buffer, heated, separated on Bis-Tris–HCl NuPAGE ready gels and

transferred to PVDF membranes. The membranes were blocked in

5% low fat dry milk in PBST (PBS with 0.1% Tween 20) and incubated

with primary antibody in 1% dry milk at 4 ◦C overnight. Follow-

ing incubation for 1 h with secondary antibody, membranes were

treated with Chemiluminescence reagent (SuperSignal West Femto

Maximum, PIERCE) and the proteins visualised in the Kodak Image

Station 2000R.

2.10. BER assay

An illustration of DNA substrate and strategy for BER patch size

analysis is shown in Fig. 3. To prepare the AP site substrate, we

incubated uracil-containing DNA with purified catalytic domain of

UNG [28]. The BER assay was carried out essentially as described

[27,34]. The purified DNA was digested with appropriate restriction

enzymes for BER analysis.

2.11. UDG activity assays

UDG activity was assayed according to previously described pro-

cedures [7,35]. Briefly, UDG activity was measured in 20 �l of assay

mixture containing 20 mM Tris–HCl (pH 7.5), 50 mM NaCl, 2 mM

EDTA, 1 mM DTT, 0.5 mg/ml BSA, 1.8 �M [3H]dUMP-containing calf

thymus DNA (specific activity 0.5 mCi/�mol) and nuclear extracts.

The mixture was incubated at 30 ◦C for 10 min and the amount of

released uracil was measured by scintillation counting.

3. Results

3.1. XRCC1, UNG2 and PCNA co-localize in replication foci

Deamination of cytosine results in a U:G mismatch that can give

rise to a C:G to T:A transition mutation if not repaired prior to repli-

cation. Previously, UNG2 was shown to localize in replication foci

and to be responsible for immediate post-replicative removal of

mis-incorporated uracil in DNA [8]. In view of the proposed role of

XRCC1 in organising DNA repair ahead of replication [17], we first

examined whether UNG2 and XRCC1 are simultaneously present in
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replication foci during S-phase. Using HeLa cells transiently trans-

fected with tagged proteins, we found that the PCNA foci contained

both UNG2 and XRCC1 (Fig. 1A, white spots), while several XRCC1

foci in S-phase cells and all XRCC1 foci in non S-phase cells, con-

tained neither UNG2 nor PCNA (Fig. 1A and B, red spots).

Next, we employed in situ Proximity Ligation Assay (PLA), a

technique that combines dual recognition of target proteins using

secondary antibodies with attached DNA strands as proximity

probes, forming templates for rolling circle amplification for detect-

ing protein interactions and/or proximity of proteins [31]. Two

proteins can appear to co-localize in confocal microscopy even

being up to 20-folds further apart [36] as compared to PLA [31]. So,

PLA provides stronger indications for in situ protein–protein inter-

actions. Expression of UNG2 is strictly cell cycle regulated, i.e. it

increases in late G1, achieves maximal expression in mid-S-phase

and becomes degraded in G2/M [33]. Thus, correct intra-cellular

localization of UNG2 is likely to be tightly associated with its level

of expression. We prepared cells stably expressing 3× FLAG-UNG2-

EYFP (UNG2-EYFP) containing the native UNG2 promoter [7,37] and

used this cell line for PLA analysis of UNG2 and XRCC1. For primary

antibodies we used a monoclonal anti-FLAG antibody (�-FLAG) for

UNG2 detection and a polyclonal antibody for XRCC1 detection

(�-XRCC1). The specificity of these was verified in HeLa cells trans-

fected with 3× FLAG-UNG2-EYFP (UNG2-EYFP) and Xrcc1 deficient

(EM9) Chinese hamster ovary (CHO) cells (CHO-EM9) transfected

with XRCC1-EYFP. Non-transfected cells, did not stain with these

antibodies (Fig. 1B, see arrows). Similar to the co-localization seen

in live cells (Fig. 1A), staining of stable UNG2-EYFP expressing cells

with �-FLAG and �-XRCC1 antibodies identified nuclear foci con-

taining both UNG2 and XRCC1 (Fig. 1B, lower row). By using both

EYFP and Flag tagged UNG2, we could examine co-localization of

PLA foci with UNG2 foci by detection of EYFP (UNG2-EYFP) as

an extra quality control. When using these antibodies in the PLA

system, we detected specific nuclear foci that co-localized with

UNG2-EYFP foci (Fig. 1C, upper panel). In a control experiment,

using PLA with only �-XRCC1, we detected a few foci (Fig. 1C, lower

panel, PLA control), but less than 10% of these foci co-localized with

UNG2-EYFP foci suggesting that they were unspecific. In contrast,

more than 90% of the PLA foci using both �-FLAG and �-XRCC1 anti-

bodies co-localized with UNG2-EYFP (Fig. 1C, upper panel, PLA). The

overview images (Fig. 1C, left) show additional representative cells

where the nuclei are outlined. In conclusion, the results of PLA assay

show that UNG2 and XRCC1 are sufficiently close to each other in

S-phase foci to suggest a direct interaction between the proteins.

3.2. UNG2 binds to the NLS region of XRCC1

One of the first indications for a direct interaction between

XRCC1 and UNG2 arose when we attempted to purify human

XRCC1 from E. coli extract. Bacterial E. coli Ung, which has high

sequence homology (55.7% identity and 73.3% similarity when con-

sidering conserved residues) to the catalytic domain of human

UNG2 [38], was readily co-purified with full length human XRCC1

(data not shown). Thus, we examined for an interaction of purified

catalytic domain of human UNG2 with different constructs of Crice-

tulus griseus Xrcc1 fused with ECFP (illustrated in Fig. 2C), using

a combination of immunoprecipitation, pull-down assay and Far

Western. The constructs were expressed in CHO-EM9 (Xrcc1−/−)

cells to avoid interaction with endogenous Xrcc1 and to allow

Fig. 2. Pull-down and Far Western analysis of Xrcc1 and UNG2 interaction. The

indicated constructs of Cricetulus griseus Xrcc1 fused with ECFP were transiently

expressed in Xrcc1 deficient Chinese hamster ovary cell line EM9. Cells expressing

only EYFP were used as control. The fusion proteins were immunoprecipitated with

paramagnetic beads covalently coupled with �-GFP. (A) The immunoprecipitates

were incubated with the catalytic domain of UNG2 (�93UNG2). The beads were

suspended in loading buffer and subjected to Western analysis. Lane 7, the beads

were only incubated with recombinant UNG. The membrane was incubated with

�-GFP antibody (upper panel) and �-UNG antibody (lower panel). (B) Far West-

ern analysis. The immunoprecipitates were separated on gel and transferred to a

PDF membrane and refolded. The membrane was first incubated with Cy-3 labelled

�93UNG2 then stripped and probed with �-XRCC1. White arrows shows binding

of �93UNG2 to XRCC1 fusion construct, while red arrows indicate no binding. (C)

Schematic overview of the XRCC1 deletion constructs applied and their ability to

bind to recombinant �93UNG2. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)

post-translational modification which may be important for pro-

tein interactions. Total cell extracts (DNase and RNase treated,

see Section 2) from the plasmid transfected CHO cells were incu-

bated with �-GFP (capable of capturing EGFP, ECFP and EYFP tags)

coupled beads. The beads were washed extensively with high

Upper row: HeLa cells expressing 3× FLAG-UNG2-EYFP (UNG2-EYFP) were fixed and incubated with a monoclonal �-FLAG antibody and a polyclonal �-XRCC1 antibody

followed by detection of PLA foci using oligonucleotide conjugated probe antibodies directed against the primary antibodies. Annealing of the probes occurs when the target

proteins are in close proximity, which initiates the amplification of a reporter signal and appears as foci (PLA, �-FLAG and �-XRCC1). An overview of several cells after PLA

(overview, PLA) (far left, the nuclei are enclosed) and a merged image of PLA and UNG2-EYFP are shown (merged) (far right). Lower row: same as upper row but the cells

were not stained with the �-FLAG antibody (PLA ctr). Bar, 5 �m.
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salt wash buffer and then incubated with the catalytic domain of

UNG2 (�93 UNG2) [28] for pull-down analysis or separated by gel

electrophoresis and transferred to a membrane for Far Western

analysis.

Western blot analysis of the pull-down material showed that the

fusion proteins containing the NLS region of Xrcc1 as well as full

length Xrcc1-ECFP were able to pull-down �93 UNG2 (Fig. 2A). This

result suggests that UNG2 directly interacts with Xrcc1 at the NLS

region of Xrcc1.

To further verify a direct interaction between UNG2 and Xrcc1,

and exclude the possibility that this binding is mediated via a com-

mon binding protein such as PCNA, we performed Far Western

analysis incubating the membrane containing the different fusions

proteins immunoprecipitated from transiently transfected CHO-

EM9 cells with Cy-3 labelled �93 UNG2. Fig. 2B shows specific

Cy-3 bands corresponding in size to full length Xrcc1, Xrcc11–325

and Xrcc1�428–560 fusion proteins (lanes 6–8 and 1–3 respectively,

white arrows). No specific bands for UNG2 can be detected for the

Xrcc11–180 and Xrcc1315–633 fusion proteins (lanes 9–10, and 4–5,

respectively, red arrows). Some of the degraded fusion proteins

in lanes 1–3 were also able to interact with Cy-3 labelled UNG2

(lanes 6–8). In summary, these results clearly demonstrate a direct

interaction between Xrcc1 and UNG2. Based on the results shown

in Figs. 2–5 (see also below), only a sub-fraction of Xrcc1 binds

UNG2, possibly mediated by a post-translational modification on

Xrcc1.

3.3. XRCC1 immunoprecipitates carry out UNG specific uracil-BER

To examine whether XRCC1-EYFP immunoprecipitates were

proficient in uracil-BER we carried out functional analysis of the

immunoprecipitates using a closed circular DNA containing uracil

at a defined position (Fig. 3, left panel). Compared to the robust

capacity for complete BER of AP sites (Fig. 3, right panel, lanes 7–9),

we detected a low, but significant, level of uracil-BER activity in

the immunoprecipitates (lanes 1 and 4). The latter activity was

completely inhibited by neutralising �-UNG [28] (lanes 2 and 5)

or Ugi [39] (lanes 3 and 6). These results indicate that XRCC1-EYFP

immunoprecipitates contain functional repair complexes with a

capacity for UNG2 specific uracil-BER.

3.4. UNG2 and XRCC1 are part of a common complex as well as

distinct repair complexes in S-phase cells

UNG2 co-localized with XRCC1 in replication foci (Fig. 1A),

thus we next examined whether XRCC1 and UNG2 are present in

a common or distinct replication associated complexes. For this

we used 3× FLAG-UNG2-EYFP expressing cells, cells expressing

XRCC1-EYFP and cells only expressing EYFP. We employed in vivo

formaldehyde crosslinking and immunoprecipitation with anti-

bodies against the EYFP tag to analyze the protein composition of

the immunoprecipitates. Whole cell extracts were prepared from

formaldehyde crosslinked and non-crosslinked cells enriched at the

G1/S-boarder and mid-S-phase (double thymidine block synchro-

nization). Immunoprecipitates from EYFP expressing cells were

used as the control. Importantly, the experiments were carried out

under identical conditions with the same antibody.

Formaldehyde crosslinking is a sensitive method that needs

to be optimized to avoid excessive crosslinking. To examine the

extent of crosslinking, we carried out BER analysis of XRCC1-

EYFP immunoprecipitates from crosslinked cell extracts. Since the

immunoprecipitates showed detectable uracil and AP site BER

activity (Fig. 4A), a considerable number of proteins in the immuno-

precipitates were functional, illustrating that the crosslinking was

mild under our experimental conditions.

For Western analysis, the immunoprecipitates were suspended

in loading buffer and heated at 65 ◦C for 10 min to release proteins

from the beads (most crosslinks still present). Half of the eluted

material (after removal of the beads) was further heated at 95 ◦C

for 30 min to reverse the crosslinks. The results show that close

to equal amounts of XRCC1-EYFP and UNG2-EYFP were immuno-

precipitated from the crosslinked and non-crosslinked samples

(Fig. 4B, compare fusion proteins at different formaldehyde con-

centrations). This further supports that under our experimental

conditions, the crosslinking was mild, as excessive crosslinking

would have likely resulted in a considerable reduction in the

amount of immunoprecipitated fusion protein from the samples

due to loss of available epitopes. We detected high molecular

weight proteins or protein complexes (>200 kDa) in the immuno-

precipitates from the crosslinked extracts containing XRCC1 and

POL� (Fig. 4B, first and third column, marked with red aster-

isk). Much less of these bands were detected after reversal of the

crosslinks by heating at 95 ◦C, whereas the bands for XRCC1 and

POL� became correspondingly more intense (Fig. 4B, second and

fourth columns). Notably, the high molecular weight complexes

appeared to be more pronounced in the XRCC1-EYFP immuno-

precipitates from the mid-S-phase extracts compared to the G1/S

extracts, suggesting an increase in the amount of large XRCC1-EYFP

complexes in S-phase. In agreement with the confocal images, in

which we identified co-localization of XRCC1 and UNG2 only in

replication foci (Fig. 1A), we detected more UNG2 and PCNA in

Fig. 3. BER analysis of XRCC1-EYFP immunoprecipitates from whole cell extract. Left panel: schematic illustration of U:G and U:A DNA substrates for BER analysis. AP site

DNA was prepared by incubation of uracil-containing DNA with recombinant UNG. Right panel: lanes 1–6, uracil-BER analysis of XRCC1-EYFP complexes in the absence or

presence of UNG2 neutralising antibodies (�-UNG2) or Ugi. Lanes 7–9, analysis of AP site BER. Lane 10 shows BER analysis of the control immunoprecipitates from EYFP

expressing cells. The repair reaction was carried out at 32 ◦C for 15 min. The repaired DNA was digested with XbaI/HindIII to get information about the ligated and unligated

repair products as shown.
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Fig. 4. Comparative Western blot analysis of XRCC1-EYFP and UNG2-EYFP immunoprecipitates from extracts of mid-S- and G1/S-phase enriched cells. (A) BER activity of

immunoprecipitated XRCC1-EYFP from crosslinked and non-crosslinked cell extracts. BER was carried out at 32 ◦C for 15 min. The repaired DNA was digested with XbaI and

HindIII to get information about the ligated and unligated repair products. (B) Western analysis of immunoprecipitates from formaldehyde crosslinked and non-crosslinked

XRCC1-EYFP and UNG2-EYFP expressing HeLa cell extracts. Cells were treated with formaldehyde (0, 0.125 or 0.25%) prior to whole cell extract preparation. Western

blot analysis of the immunoprecipitates before (65 ◦C) and after (95 ◦C) reversal of the crosslinks is shown. (C) Western analysis of immunoprecipitates from insoluble

chromatin-bound fraction of freely cycling HeLa cells using anti-XRCC1 (lane 1) or anti-UNG (lane 2) antibodies. One representative gel from three experiments is shown.

immunoprecipitates from mid-S-phase XRCC1-EYFP extracts, as

well as higher amounts of XRCC1 and PCNA in immunoprecipitates

from mid-S-phase UNG2-EYFP extracts, as compared to immuno-

precipitates from G1/S boarder cell extracts (Fig. 4B, second and

fourth columns). Western analysis of immunoprecipitates from

the control EYFP expressing cells was negative for XRCC1, UNG2,

PCNA, POL�, Lig III, Lig I, PARP-1, PNK and APE-1 (data not shown),

demonstrating that non-specific binding to beads and excessive

non-specific crosslinking of proteins in vivo was not a problem

under the conditions employed. This observation is in agreement

with a recent study showing that immunoprecipitation of tagged

proteins with magnetic beads display a low level of unspecific

binding to the immunoprecipitates compared to several available

methods [40].

The results thus far suggested that UNG2 and XRCC1 are

likely part of a common multiprotein complex in replication foci.

However, the overall composition of XRCC1-EYFP and UNG2-

EYFP associated proteins varied significantly with respect to the

amount of Lig III, Lig I, PARP-1 and PNK in the immunoprecip-

itates (Fig. 4B, mid-panel). For example, the XRCC1 partner, Lig

III [16], was readily detected in the XRCC1-EYFP immunoprecip-

itates both without and after crosslinking (Fig. 4B, second column),

whereas in the UNG2-EYFP immunoprecipitates, the amount of

Lig III followed the amounts of XRCC1, i.e. more was detected
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Fig. 5. BER analysis of UNG2-EYFP and XRCC1-EYFP immunoprecipitates from mid-

S-phase enriched cells and BER analysis of cell extracts in the absence or presence

of Xrcc1. (A) BER activity of the immunoprecipitated UNG2-EYFP and XRCC1-EYFP

complexes was analyzed using U:A, U:G and AP:G DNA substrates with or without

additional recombinant APE1 and T4 DNA ligase at 32 ◦C for 15 min. Lanes 7 and 11

show repair activity of the immunoprecipitates from EYFP expressing cell extracts

as control. (B) Time-course BER analysis of the immunoprecipitated UNG2-EYFP

and XRCC1-EYFP complexes using U:G substrate. (C) End-trimming and DNA ligase

activity of UNG2-EYFP immunoprecipitates. After 1 h incubation, half of the repaired

DNA was further incubated with T4 DNA ligase (lane 2). (D) Time-course BER analysis

of extracts from AA8 (Xrcc1+/+), EM9 (Xrcc1−/−) and EM9 cells expressing Xrcc1-EYFP

(EM9-Xrcc1-EYFP) on a U:A and AP:A substrate. All DNA samples were digested with

XbaI and HindIII to get information about DNA ligase and end-trimming activity of

the immunoprecipitates.

in mid-S-phase extracts (Fig. 4B, fourth column). Lig I was bar-

ley visible in any XRCC1-EYPF immunoprecipitates, while it was

readily detected in all UNG2-EYFP immunoprecipitates, with more

in the mid-S-phase immunoprecipitates (Fig. 4B, mid-panel, sec-

ond and fourth columns). Thus, XRCC1 and UNG2 seem to be

part of separate complexes, as well as a common complex, during

S-phase.

Interestingly, the amounts of PARP-1, POL� and Lig III were

higher in the immunoprecipitates from non-crosslinked XRCC1-

EYFP extracts than from the crosslinked extracts (Fig. 4B, mid-

and lower panel). This may be due to protein interactions that

take place in the extracts before or during immunoprecipitation,

which may otherwise occur at a lower extent in situ. On the other

hand, APE1 was only detected in the immunoprecipitates from the

crosslinked cells (Fig. 4B, lower panel), suggesting that APE1 asso-

ciates with XRCC1 and UNG2 with low affinity, so most of it may

fall off during immunoprecipitation. This seemingly agrees with the

disparate reports on the interaction of APE1 with XRCC1 at different

experimental conditions [14,17]. However, immunoprecipitated

XRCC1-EYFP complexes clearly contained AP-endonuclease activ-

ity (Figs. 3 and 4A), indicating the presence of APE1, even though

it was not detected by Western analysis from non-crosslinked

extract.

3.5. XRCC1 and UNG2 are part of a common complex in

chromatin

Because the confocal studies showed that XRCC1 and UNG2

co-localize in replication foci and Western analysis suggested

that these two proteins are present in a common, higher order

complex during S-phase, we fractionated HeLa cells and car-

ried out immunoprecipitation of a chromatin enriched fraction,

which likely contains replication associated complexes. We used

antibodies against endogenous UNG2 and XRCC1 for immuno-

precipitation. Fig. 4C shows that similar to the results from the

crosslinked samples, Lig III and PNK were readily detected in

the XRCC1 immunoprecipitates, while Lig I was only detected

in UNG2 immunoprecipitates. A low amount of UNG2 was

detected in the XRCC1 immunoprecipitate and a low amount

of XRCC1 was detected in the UNG2 immunoprecipitate. These

data support the notion that XRCC1 and UNG2 are part of dis-

tinct as well as shared complexes, where only a fraction of

XRCC1-associated complexes contain UNG2 and vice versa. These

results also show that the overall organisation of protein–protein

interactions within immunoprecipitates of fusion proteins using

tag specific antibodies is largely identical to those detected in

immunoprecipitates of corresponding endogenous XRCC1 or UNG2

proteins.

3.6. XRCC1 complexes immunoprecipitated from S-phase cells

perform complete uracil and AP site repair

Next, we carried out comparative BER analysis of the immuno-

precipitated XRCC1-EYFP and UNG2-EYFP from mid-S-phase

enriched cells for repair of uracil and AP site in DNA (U:A and

U:G). We found that UNG2-EYFP immunoprecipitates were unable

to efficiently generate the final ligated product with any of the sub-

strates (Fig. 5A, upper panel, lanes 1, 2 and 8), whereas complete

BER was carried out by the XRCC1-EYFP immunoprecipitates at the

same time (15 min) (Fig. 5A, lower panel, same lanes). To exam-

ine whether the levels of APE1 or a DNA ligase were responsible

for the observed deficiency in repair activity of the UNG2-EYFP

immunoprecipitates, we carried out BER analysis in the presence

of supplemented APE1 or T4 DNA ligase. Addition of APE1 had no

detectable effect on the amount of incorporated nucleotide dur-

ing BER, indicating that sufficient AP-endonuclease activity was

present in the UNG2-EYFP immunoprecipitates (Fig. 5A, upper

panel, lanes 3, 4 and 9). In contrast, addition of T4 DNA ligase

increased the amount of ligated products significantly (Fig. 5A,

upper panel, lanes 5, 6 and 10), indicating that the ligation step was

slow despite the presence of Lig I in similar immunoprecipitates

(Fig. 4B and C). On the other hand, the XRCC1-EYFP immunopre-

cipitates performed complete uracil and AP site BER, and addition
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of recombinant APE1 and T4 DNA ligase had no detectable effect on

total BER (Fig. 5A, lower panel, lanes 3–6 and 9 and 10).

Next, we carried out time-course kinetic analysis of uracil-BER

by the different immunoprecipitates and found that the amount

of ligated products by UNG2 immunoprecipitates increased with

prolonged incubation, but the unligated products were still more

abundant (Fig. 5B, lane 7). The XRCC1-EYFP immunoprecipitates on

the other hand, appeared to complete the repair pathway rapidly,

and no unligated repair intermediates could be detected at any time

point (Fig. 5B, lanes 2, 5 and 8). To examine whether the low level

of ligated products in the UNG2 immunoprecipitates was due to

unligatable DNA repair intermediates, we carried out uracil-BER

of UNG2 immunoprecipitates for 60 min, and then incubated half

of the purified DNA with excess T4 DNA ligase (see Section 2),

which is expected to seal all ligatable ends [41]. DNA was then

analysed for ligated and unligated repair products. The amount

of ligated products increased, similar to what was found after

addition of T4 DNA ligase in Fig. 5A (lane 10). However approx-

imately 45% of the DNA was still unligated (Fig. 5C). This result

indicates that also DNA end-trimming was less efficient in UNG2

immunoprecipitates as compared to XRCC1 immunoprecipitates.

In summary, we have identified two functionally different S-phase

associated BER complexes based on immunoprecipitation of UNG2

and XRCC1.

3.7. XRCC1 affects the rate of uracil-BER

We next examined if absence of XRCC1 could have any effect on

repair of uracil by cell extracts. We examined the repair efficiency

of cell extracts from wild type (AA8) and Xrcc1 deficient (EM9) cell

lines, as well as an EM9 cell line expressing Cricetulus griseus Xrcc1-

EYFP fusion protein. Xrcc1-EYFP was functional because it restored

DNA repair capacity of EM9 cells following hydrogen peroxide chal-

lenge as assessed by the Comet assay (data not shown). We could

not include the Xrcc1 deletion mutants used for pull-down experi-

ments in this experiment, because we failed to establish EM9 cells

stably expressing the respective constructs.

In order to distinguish between UNG2 and the other uracil-DNA

glycosylases (SMUG1, TDG and MBD4) present in the cell extract,

and thereby to focus on a biological role of the Xrcc1-UNG2 interac-

tion, we used a U:A containing substrate which is strictly processed

by UNG2 [7,42]. The U:G substrate, arising following deamination

of cytosine, on the other hand, is efficiently corrected by SMUG1,

TDG, MBD4 as well as UNG2 [43]. BER analysis for repair of U:A

showed that after 5 min the level of BER was considerably lower in

the Xrcc1 deficient extract, as compared to extracts from the wild

type or Xrcc1-EYFP expressing cells (Fig. 5D, upper panel, lanes

4–6). However, this was not seen for AP site repair under identi-

cal conditions (Fig. 5D, lower panel, lanes 4–6), indicating that the

slower uracil-BER in the absence of Xrcc1 was unlikely due to over-

all reduced stability of POL� or Lig III in these cells [44,45]. To rule

out that the observed differences in U:A BER were related to varying

ability of the extracts for uracil excision (UDG) from the U:A con-

text, we performed a standard UDG activity assay [36]. We found

that extracts from the Xrcc1 deficient cells had 20% higher UDG

activity compared to the wild type cell extract, indicating that the

slower U:A BER in the Xrcc1 deficient cell extracts was not simply

related to UDG capacity of the extract, but more likely due to a role

for XRCC1 in coordinating the repair of uracil.

In summary, we have identified two functionally different S-

phase associated BER complexes based on immunoprecipitation of

UNG2 and XRCC1. A sub-fraction of the XRCC1 complex also con-

tained UNG2, probably mediated through a direct binding between

the NLS region of XRCC1 and catalytic domain of UNG2. We have

presented data indicating reduced repair of uracil in cell extracts

from Xrcc1−/− cells as compared to wild type cells and cells recon-

stituted with Xrcc1-EYFP, suggesting a functional implication of the

XRCC1-UNG2 interaction in vivo.

4. Discussion

Both UNG2 and XRCC1 interact with PCNA in replication foci

[8,17,46], thus we wanted to examine whether XRCC1 and UNG2

directly interact and are part of a complex involved in repair of

uracil. Here we show that XRCC1 and UNG2 co-localize at sites

of DNA replication and likely physically interact with each other

at these sites. We show a direct interaction between the catalytic

domain of UNG2 and the NLS region of XRCC1. In agreement with

this, the results of BER assay analysis showed that XRCC1-EYFP

immunoprecipitates from S-phase cell extracts contained UNG2-

specific repair activity. Furthermore, we show that Xrcc1 deficient

cells have reduced initial UNG2-specific uracil (U:A) repair.

To compare the composition of the XRCC1 and UNG2 associ-

ated complexes, we analysed complexes isolated from G1/S and

mid-S-phase cells. We designed our study in a way that allowed

us to immunoprecipitate target proteins from different cell lines

using the same tag-specific antibody, thus avoiding variations due

to different degrees of antibody specificity. Moreover, this strat-

egy permitted us to avoid the potential problem of competition

between antibody and proteins for binding to the same site on

the target protein. Stringent washing of immunoprecipitates can

reduce the level of non-specific protein–antibody interactions, yet

some weakly bound, but physiologically relevant, proteins may

be disrupted. To circumvent this problem, we included in vivo

formaldehyde crosslinking of proteins, enabling us to observe pro-

teins not detectable in non-crosslinked samples under otherwise

identical conditions. Moreover, formaldehyde crosslinking of pro-

teins in intact cells stabilizes protein–protein interactions as they

take place “in situ”. The results supported the presence of UNG2 in

an S-phase XRCC1 complex. Furthermore, the data supported spe-

cific interaction of Lig III, POL� and PNK with XRCC1 and specific

interaction of Lig I with UNG2, indicating the presence of separate

UNG2- and XRCC1-associated complexes.

Two important functional differences were detected between

the immunoprecipitated XRCC1 and UNG2 complexes: (1) XRCC1

complexes carried out fast and complete BER (including ligation)

and (2) UNG2 complexes did not perform efficient ligation. This was

unexpected because the immunoprecipitates contained FEN-1 and

Lig I. However, this could be explained by differences in organisa-

tion of the complexes as discussed below and illustrated in Fig. 6.

Because UNG2 and XRCC1 only co-localize in replication foci

during S-phase, and not in other non-S-phase XRCC1 foci, it is

tempting to speculate that the XRCC1-UNG2 complex have a spe-

cific repair function during replication. UNG2 is the only UDG

known to be localized in replication foci [43]. We have previously

suggested the presence of a pre-replicative XRCC1-SSBR complex

[17], and based on the data presented in this study, we now

extend this model to include pre-replicative BER. In this model, pre-

replicative XRCC1-UNG2 complexes may facilitate efficient repair

of mutagenic U:G mismatches ahead of replication. We also sug-

gest that pre-replicative XRCC1-BER complexes may be important

for the repair of other mutagenic base lesions such as AP sites and

3-methyladenine (3meA). 3meA is removed from DNA by the MPG

DNA glycosylase, which interacts with XRCC1 [22] as well as PCNA

[24]. Lack of XRCC1 may therefore at least in part explain the high

sensitivity of XRCC1 deficient cells to MMS [47].

Previous data have shown that UNG2 rapidly removes mis-

incorporated dUMP during replication [8]. During replication, DNA

synthesis on the leading and lagging strands may involve differ-

ent forms of protein interactions and complexes. Thus, whereas

continuous DNA synthesis on the leading strand is rapid and proces-
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Fig. 6. A model for repair of uracil in DNA by XRCC1 and UNG2 complexes. UNG2 is linked to replication through its interaction with XRCC1 and PCNA, both of which interact

with a number of proteins involved in DNA replication and repair. We suggest a model for how these interactions organize efficient pre-replicative repair of U:G mismatch

and post-replicative repair of mis-incorporated uracil (U:A) in DNA, during replication.

sive, and does not normally involve FEN-I and Lig I, DNA replication

on the lagging strand requires rapid engagement of proteins also

involved in long patch BER, such as POL�, FEN1 and Lig I. Since the

majority of the UNG2 associated complexes isolated from S-phase

were inefficient in the ligation step of BER, post-replicative repair

of uracil [8] may be organized into different forms on the leading

and lagging strands. Thus, in order to retain the continuity of DNA

replication on the leading strand, removal of uracil from DNA by

UNG2 [8] may not be coupled to the later repair steps, and the fol-

lowing AP site may be rapidly repaired by post-replicative XRCC1

complexes. However, on the lagging strand, UNG2 may be part of a

replication/repair complex that carries out uracil removal followed

by AP site incision and repair synthesis probably in the form of long

patch BER. Our proposed model for replication associated BER is

shown in Fig. 6.
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a b  s  t  r a  c t

XRCC1 functions  as  a  non-enzymatic,  scaffold protein  in single  strand  break  repair (SSBR)  and base

excision  repair (BER). Here, we examine  different  regions of  XRCC1  for their contribution  to the scaf-

folding  functions  of  the protein.  We  found  that the central BRCT1  domain  is  essential  for  recruitment  of

XRCC1  to  sites  of  DNA  damage and  DNA  replication. Also,  we found that  ectopic  expression  of the  region

from residue 166–436 partially  rescued  the  methyl  methanesulfonate  (MMS) hypersensitivity  of XRCC1-

deficient EM9 cells, suggesting  a  key  role for  this  region  in mediating  DNA  repair.  The  three most common

amino  acid  variants of XRCC1,  Arg194Trp, Arg280His and Arg399Gln,  are  located  within the region com-

prising  the  NLS and BRCT1 domains, and  these  variants  may be associated with increased  incidence of

specific  types of cancer. While  we  could  not  detect differences in  the intra-nuclear  localization or the

ability to  support recruitment of POL� or  PNKP  to micro-irradiated sites  for these variants  relative to  the

conservative protein, we  did  observe  lower  foci  intensity after  micro-irradiation  and  a  reduced  stability

of  the  foci  with the  Arg280His  and Arg399Gln  variants,  respectively. Furthermore,  when challenged  with

MMS  or hydrogen  peroxide,  we  detected  small  but consistent  differences in  the  repair profiles  of cells

expressing these two  variants  in  comparison to  the  conservative  protein.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The human genome is constantly exposed to DNA damaging

agents that generate abasic sites (AP sites), base damage of dif-

ferent types, and single strand breaks (SSBs). Repair of  such lesions

involves base excision repair (BER) and single strand break repair

(SSBR) pathways. These pathways converge into  a  common path-

way after the initial step of base removal by  a DNA glycosylase

in BER [1]. X-ray repair cross-complementing protein 1 (XRCC1)

has an important role in SSBR/BER by acting as a non-enzymatic,

scaffold protein [2–5]. The human XRCC1 gene was identified by

complementation of  Chinese hamster ovary (CHO) cells  that dis-

played increased sensitivity to  X-rays and other DNA damaging

agents, particularly those that generate SSBs and base lesions [6,7].

These cells specifically displayed reduced SSBR capacity and an

increased frequency of  sister chromatid exchange [8].  Recently,

XRCC1 deficient cells were found to have  reduced  initial repair of

∗ Corresponding author at: Department of  Cancer Research and Molecular

Medicine, Faculty of Medicine, Norwegian University of Science and Technology,

NO-7489  Trondheim, Norway. Tel.: +47  72573075; fax: +47  72576400.

E-mail  address: marit.otterlei@ntnu.no (M.  Otterlei).
1 These authors contributed equally to this work.

uracil in DNA as well [2]. Notably, inefficient XRCC1 associated SSBR

is  reported to  contribute to neurodegenerative disease in humans

[4,9].

XRCC1 interacts with a number of  proteins important to the

SSBR/BER pathways, including the DNA glycosylases OGG1, NEIL2,

NTH1, MPG, and UNG2 [2,10,11], AP  endonuclease-1 (APE-1)

[12], DNA polymerase �  (POL�) [13], DNA ligase III� (Lig  III�)

[14], proliferating cell nuclear antigen (PCNA) [15], poly (ADP-

ribose) polymerase 1 (PARP-1)[16], PARP-2 [17] and polynucleotide

kinase/phosphatase (PNKP) [18]. XRCC1 is also an important com-

plex partner for  aprataxin and  tyrosyl-DNA phosphodiestrase

(TDP1),  two  proteins found to be deficient in hereditary spinocere-

bellar ataxias [4,19,20]. XRCC1  forms dimers and  oligomers that

may serve as a platform for higher order complexes, and is

found in complexes of significantly different sizes and composi-

tion [2,3,15,21]. Recently, we proposed a  model whereby XRCC1

orchestrates SSBR/BER during S  phase based  on characterization of

complexes isolated from  S phase cells  [2].

XRCC1 possesses two BRCA1 carboxyl-terminal (BRCT)

phospho-protein interaction domains, BRCT1 and BRCT2. Based

on in  vitro  data, the interaction between two  XRCC1 molecules

is suggested to be  mediated by the  central BRCT1 domain [21].

Furthermore, a  functional BRCT1 domain in XRCC1 is  shown

to be important for  SSBR during both G1 and S/G2 phases  of

1568-7864/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dnarep.2012.01.001
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the cell cycle and for cell  survival following treatment with the

alkylating agent methyl methanesulfonate (MMS) [22,23]. It is

not clear whether the C-terminal BRCT2 domain contributes to

complex formation between XRCC1 monomers; however, the

stable interaction between XRCC1 and Lig III�, which is required

for the stability of the ligase, is facilitated  through this domain

[14]. The BRCT2 domain is also involved in the XRCC1/Lig III�
heterodimer formation [24]. Interestingly, recent data shows that

Lig III� is dispensable for  nuclear DNA repair, suggesting that

XRCC1 dependent DNA  repair may  utilize other DNA ligases such

as Lig I [25,26].

Of  the reported promoter or  coding single nucleotide polymor-

phisms (SNPs) in human XRCC1 within the  Ensembl2 database,

four have been extensively studied in relation with different types

of cancer. These are: −77T>C (promoter, rs3213245), Arg194Trp

(R194W, rs1799782), Arg280His (R280H, rs25489) and Arg399Gln

(R399Q, rs25487). The  three polymorphisms found in the coding

region, R194W, R280H and R399Q, have been analysed in  meta-

studies for different cancer types, but so  far the meta-studies have

failed to provide an unambiguous relationship between the poly-

morphism and disease prevalence [27–30]. This could partly be a

result of population dependent differences in the frequency and

distribution of the SNPs, e.g. the R280H variant is  more frequent in

Asians (7–15%) than in Caucasians (4–9%). R280H has been reported

to be associated with an increased rate of  breast cancer in Asians

(Odds Ratio (OR) = 2.27), but not in Caucasians [31].  Another meta-

study suggests that a  homozygous state in R194W increases lung

cancer risk, especially in  Asians, while R194W heterozygousity

decreases the cancer risk of  lung cancer, especially in Caucasians

[32]. When assessing the cumulative evidence by  means of  the

Venice criteria, only the −77T>C promoter polymorphism corre-

lated with an increased risk  of lung cancer  at  level B  (moderate

amount of evidence) [33]. Thus, despite  the multiple reports of  cor-

relations for the different SNPs and  certain cancer types, a  broad

consensus has  proven to be elusive.

In this study we have explored different regions of  XRCC1 as well

as different XRCC1 SNP variants in  facilitating: (1) the recruitment

of XRCC1 to sites of  micro-irradiation, (2) direct XRCC1–XRCC1

interaction, (3) the assembly of BER proteins at regions of  micro-

irradiation, (4) the  localization of XRCC1 to replication foci  and  (5)

the repair of  hydrogen peroxide (H2O2) and MMS  induced DNA

damage. We found that the BRCT1 domain is key to correct intra-

nuclear localization of  XRCC1 to  both repair and replication foci,

and sufficient for  a  direct XRCC1–XRCC1 interaction. Furthermore,

we show that the region covering the nuclear localization signal

(NLS) and the BRCT1 domain (i.e. residues 166–436), is able to par-

tially complement the repair defect of XRCC1-deficient cells after

MMS  treatment, but not after H2O2 treatment. For the  three XRCC1

nonsynonymous SNP  variants, we could not  detect any major

differences in intra-nuclear localization, but did observe small dif-

ferences in the repair profiles and recruitment to and dissociation

from micro-irradiated regions.

2. Materials and methods

2.1. Fluorescently tagged protein constructs

pCFP-PCNA, pXRCC1-YFP, pYFP-XRCC1, pYFP-POL� and pYFP-

PNKP have been previously described [2,15,34]. To  generate

N-terminal YFP-tagged deletion fragments of  XRCC1, segments of

the XRCC1 coding region were PCR amplified and subcloned into

the pYFP-C1 vector (Clontech). In  brief, XNTD was  cloned into the

2 http://www.ensembl.org/Homo sapiens/Gene/Variation Gene/Table?

g=ENSG00000073050.

BglII site,  MD  into  the BglII/BamHI site and BLB into the BglII/EcoRI

site (for details see [15]). CFP versions of  YFP-tagged fusion proteins

were prepared by switching the Age1/Not1fragment of  the CFP and

YFP-N1 vectors. SNPs of  XRCC1; R194W, R280H and R399Q were

introduced into pXRCC1-YFP by  site-directed mutagenesis accord-

ing to the protocol provided by  the manufacturer (Stratagene) and

verified by  sequencing.

2.2.  Cell  lines

CHO  EM9  (Xrcc1-deficient) cells stably expressing tagged

human XRCC1 or the indicated deletion mutants were prepared by

transfection (Fugene 6). Cells used in confocal imagery were cul-

tured 16–48 h  in normal media prior to use (Alpha modified MEM

(Sigma–Aldrich) supplemented with 10% FCS, 250 �g/ml ampho-

tericin B  (Sigma–Aldrich), 100 �g/ml gentamycin (Invitrogen) and

1 mM glutamine (BioWhittaker)). Cells used  in  Comet analysis were

selected for  stable expression by prolonged culture in normal media

supplemented with Genticine (G 418, Invitrogen), followed by  cell

sorting and cloning by dilution. All  cells were cultured at  37 ◦C  in a

5% carbon dioxide-humidified atmosphere. The stable cells lines

were used in Comet analysis. Confocal analysis (co-localization,

micro-irradition and FRET analysis) were done 16–48 h after  tran-

sient transfection of CHO EM9  cells.

2.3. Preparation of cell extracts and immunoprecitipitaiton

Whole cell extracts were prepared by carefully resuspending

the harvested cell pellet in 3× PCV (packed cell volume) in  buffer

I (20 mM  HEPES-KOH pH 7.8, 100 mM KCl, 1.5 mM  MgCl2, 0.2  mM

EDTA, 20% glycerol, 0.5% NP-40, 1 mM  DTT, 1× Complete protease

inhibitor (Roche), and phosphatase inhibitor cocktail (PIC I and II;

Sigma–Aldrich)). 2 �l Omnicleave Endonuclease (200 U/�l; Epicen-

ter Technologies) was added before sonication. The extracts were

treated with DNase/RNase (cocktail of  2 �l  Omnicleave Endonucle-

ase, 1 �l DNase (10 U/�l; Roche), 1 �l benzonase (250 U/�l; EMD),

1 �l micrococcal nuclease (100–300 U/mg; Sigma–Aldrich), and

10 �l RNase (2 mg/ml; Sigma–Aldrich) per 30 mg  cell extract incu-

bated at 37 ◦C for  1 h), and dialysed in buffer II  (20 mM HEPES-KOH

pH 7.8, 100 mM  KCl,  1.5 mM MgCl2, 0.2 mM EDTA, 10% glycerol,

1 mM DTT, and 0.01× Complete protease inhibitor) at 4 ◦C  for a

minimum of 4 h, followed by  clearance by  centrifugation. XRCC1-

YFP and deletion constructs were immunoprecipitated (IPed) using

paramagnetic Protein-A beads  (Dynal) covalently coupled to  an

in-house polyclonal rabbit anti-GFP antibody. The beads were incu-

bated with cell  extract for  a minimum of  4 h at 4 ◦C  in  buffer II

with additional Complete protease inhibitor (1× ).  The  beads were

washed in 10 mM Tris–HCl  pH 7.5, 50 mM KCl and  used in  Western

blotting analysis (WB). The expression levels of conservative (a.k.a.

wild-type) and XRCC1 SNP variants were analysed directly by WB

without IP.

2.4.  Western analysis

The  membranes were blocked in 5%  low fat dry milk in PBST (PBS

with 0.1% Tween 20), incubated with  polyclonal anti-XRCC1 (after

IP, deletion mutants) (Santa Cruz sc-11429) or mouse monoclonal

anti-XRCC1 (Abcam ab-1838) (cell extracts of  full length XRCC1

and SNP variants) in 1% dry  milk at  4 ◦C  overnight, and incubated

1 h in 1% dry milk with  complementary HRP conjugated secondary

antibodies and visualised using a Kodak Image Station 2000R.

2.5.  Confocal imaging

Fluorescent  images were acquired using a  Zeiss LSM 510  Meta

laser scanning microscope equipped with a  Plan-Apochromate
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63x/1.4 oil  immersion objective. The images of live  cells were

acquired in growth medium, with the stage heated to 37 ◦C. CFP

was excited at � = 458  nm and detected at � = 470–500 nm and  YFP

was excited at �= 514 nm and detected at � = 530–600 nm,  using

consecutive scans. The thickness of  the slice was 1  �m.  No image

processing except contrast and intensity adjustments were per-

formed

2.6. 405 nm micro-irradiation

A Zeiss 405 nm diode laser was focused through a Plan-

Apochromate 63x/1.4 oil  immersion objective to a  diffraction-

limited spot size in a Zeiss LSM 510 Meta laser scanning microscope.

The 405 nm diode output was measured to 30 mW using a Field-

Master GS energy meter (Coherent Inc.) with a low  power probe.

We used 60 laser beam iterations (60 it) at a speed of  1.27 �s/pixel

over a  50 × 2 pixel area in  the cell  nucleus outside nucleoli (low

dose, recruits POL� and PNKP, but not  PCNA [3]), or 600 it  (high

dose, which recruits PCNA and FEN-1 as  well). The high  dose may

give low levels of  double-strand breaks  (DSBs) as  determined by

staining for  �H2AX [3].  Time lapse image acquisition started 1

scan prior to  the micro-irradiation. Signal intensities were mea-

sured using the LSM 510  Meta operating software version 4.2. The

relative signal strength of the foci were  obtained by  dividing aver-

age foci signal strength with average signal strength measured in a

non-irradiated, equally sized region of the nucleus. Only cells with

similar signal intensities were analysed. Size bars on the image

equals 5 �m.

2.7. Fluorescent resonance energy transfer (FRET) measurements

FRET  was measured using the  sensitized emission method as

previously described [35]. Briefly, NFRET was calculated from mean

intensities (I) within a region of interest (ROI) containing more

than 75 pixels where all pixels had intensities below 250. Chan-

nel 1 (CFP) and 3 (YFP) were  measured as described for imaging,

and channel 2 (FRET) was excited with  � = 458 nm and  detected at

� = 530–600 nm.

2.8.  Single cell gel electrophoresis (Comet) assay

Exponentially growing CHO EM9 cells stably expressing

XRCC1-YFP were treated with H2O2 (Sigma–Aldrich) or MMS

(Sigma–Aldrich) in PBS for the indicated times and at  the indicated

concentrations, washed twice with PBS, and harvested in 4 ◦C cell

medium. After centrifugation at 400 × g for  5 min, the cells were

suspended in 37 ◦C 1% low-melt agar, mounted on  a microscope

slide, and immediately cooled to 4 ◦C. The embedded cells were

lysed overnight at 4 ◦C in lysis solution (2.5 M NaCl, 0.1  M EDTA,

10 mM Tris–HCl, 10% DMSO, 1% Triton X-100, 17 mM  NaLauroyl

Sarcosine, pH 10). Alkaline (pH 13.3) single-cell gel electrophore-

sis was performed as described [36] except the  samples were

not treated with uracil DNA-glycosylase. Hundred Comets were

selected randomly from each slide and evaluated using Komet 5.0

Imaging Software (Andor Technology).

3. Results

3.1. The BRCT1 domain is sufficient for recruitment of XRCC1 to

sites  of DNA damage

The  contribution of the different domains of XRCC1 for the relo-

cation of  the protein itself, as  well as for  its  binding partners, has not

been extensively explored. To examine this issue, we transfected

CHO cells deficient in XRCC1 (CHO EM9) with constructs expressing

either full length XRCC1 or an  XRCC1 deletion mutant tagged with

YFP,  and determined the region responsible for  XRCC1 recruitment

to sites of micro-irradiation-induced DNA damage. Fig. 1A shows

a schematic of  the  deletion mutants and the  binding regions for

some key SSBR/BER proteins. The XRCC1 deletion constructs are

partly overlapping and contain one or more domains of  XRCC1. We

micro-irradiated the cells with energies sufficient for  recruitment

of POL� and PNKP, but not PCNA, to sites of irradiation; the dose of

micro-irradiation applied was  previously shown to not introduce

DSBs [3].

All constructs except BLB were  strictly localized in the  nuclei,

consistent with those residues (amino acids 239–266) predicted to

make  up the NLS [16]  (Fig. 1B). Full length XRCC1 rapidly assem-

bled into foci after micro-irradiation, showing a  maximum intensity

increase of approximately 2.0 fold around 100 s post irradiation. MD

and BLB deletion mutants were also recruited to micro-irradiated

regions,  while XNTD did not  move into foci  even at 10–100 fold

higher laser doses (Fig.  1B, marked with white arrows, and data

not shown). The results above were the  same for all XRCC1 dele-

tion mutants regardless of  whether the YFP tag was positioned at

the  N- or  C-terminus (not shown). Although the total nuclear inten-

sity of the  YFP-BLB deletion mutant was comparable to YFP-MD and

XRCC1-YFP,  the BLB mutant foci had lower intensity; we  observed a

maximum  of a  1.4 fold increase compared to the  2 fold increase for

the  full length XRCC1 and  the MD  deletion mutant (Fig.  1B, right

panel). This result suggests that residues 166–310 are important

not only for nuclear localization, but also for recruitment to  and/or

stability of complexes at  the sites of DNA damage. The importance

of the BRCT1 domain for  the ability of  XRCC1 to form repair foci

was demonstrated as the XNTD mutant did not recruit to  sites of

high dose micro-irradiation.

Visual  colocalization of  proteins does  not necessarily mean

that they are directly  interacting, while positive fluorescence res-

onance energy transfer (FRET) requires that the  fluorescent tags

are less than 100 Å apart [37]. In order to examine whether only

BRCT1, or both BRCT-domains in XRCC1 is important for  the direct

XRCC1–XRCC1 interactions, we  measured FRET between CFP and

YFP tagged  MD-constructs and compared to the full length XRCC1.

FRET data showed that similar to full length XRCC1s [15], the MD

constructs were closer than 100 Å (Fig.  1 C).  This strongly suggests

that the BRCT1 domain is capable of  mediating the XRCC1–XRCC1

interaction.

3.2. Recruitment of DNA POL  ̌ to micro-irradiated regions

requires both  the NTD and the BRCT1 domain, while recruitment

of  PCNA and  PNKP is only partly  affected by XRCC1

Localization of POL�  to irradiated regions is  strictly dependent

upon XRCC1, while recruitment of PNKP and PCNA is enhanced by

XRCC1 [3]. We examined if the XRCC1 mediated recruitment of

POL�, PCNA and PNKP to micro-irradiated regions was dependent

upon direct interaction to their respective binding regions (Fig. 1A),

which previously have been mapped by in  vitro analysis of purified

proteins [13,15,18]. CHO EM9 cells were  either transfected with

tagged POL�, PCNA,  or PNKP alone or together with tagged full

length XRCC1, MD,  or BLB (CPF/YFP in  pair). Because XNTD did not

form foci after micro-irradiation (Fig. 1B), it  was not included in

these studies. Confocal  analysis verified that even upon very high

doses of laser micro-irradiation (1200 iterations), more than  suf-

ficient to introduce DNA DSBs, no  POL� foci could be detected in

absence of XRCC1, while PNKP and PCNA were recruited to sites of

damage (Table 1). POL� was  recruited to micro-irradiated regions

when co-expressed with full length XRCC1, but not  with the MD

or BLB fragments (Appendix A, Table  1). Thus, the reported NTD

binding region in XRCC1 is required for relocation of  POL�.  Recruit-

ment of PCNA to micro-irradiated regions increased in the presence

of XRCC1, and this may  be  associated with a  direct interaction
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Fig. 1. Cellular localization and  level of recruitment of XRCC1 deletion mutants to micro-irradiated regions. (A)  Overview of the distinct domains in XRCC1, sites of interactions

with other proteins, position of the  three most common nonsynonymous polymorphic variants and  definition of deletion mutants used in this study.  XNTD: extended XRCC1

N-terminal domain, BRCT1/2: BRCA1 C-terminus (BRCT) domains. NLS: nuclear localization domain. BLB: BRCT1 Linked BRCT2 domain, MD:  Mid  Domain (B) Left panel:

recruitment of full length XRCC1-YFP and YFP-XNTD, YFP-MD, YFP-BLB deletion mutants to sites of micro-irradiation (60  it, see Section 2); bars 5 �m. Arrows indicate

irradiated regions. Right panel: graphs showing fold increase in foci  intensities after micro-irradiation of  the irradiated region. Mean ±  SEM, XRCC1 n = 15, XNTD n =  5,  MD

n = 15, BLB n = 20. (C)NFRET is  calculated by sensitized emission as  described in Section 2. Representative data from one out of  there independent experiments are shown.

Cells were co-transfected with CFP  and YFP vectors (CFP/YFP), full  length  (XRCC1-CFP/XRCC1-YFP) and  MD deletion mutants (CFP-MD/YFP-MD). NFRET in selected regions of

interest (ROI) are presented as dots with mean ± SEM,  n =  30–36.
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Table 1
Ability of  XRCC1 and XRCC1 deletion mutants to  support foci formation after micro-irradiation.

Cell lines Cells  transfected with indicated constructs POL� PCNA PNK

EM9  (XRCC1−/−) –a +a +a

AA8 +++a ++a +++a

EM9  (XRCC1−/−) f.l.  XRCC1 +++ +++a ++a +++a

EM9  (XRCC1−/−) XNTD N.D. N.D. N.D.

EM9 (XRCC1−/−) MD  +++ – ++ +

EM9 (XRCC1−/−) BLB  +++ – + ++

N.D., not determined; f.l.,  full length; –, no foci; +,  foci after 1200  iterations;

++, foci after 600  iterations; +++, foci  after 60 iterations.
a Published previously in Hanssen-Bauer et al.  [3].

between XRCC1 and PCNA, as  MD, but not  BLB, enhanced the

recruitment of PCNA to  micro-irradiated regions (Table 1). Further-

more, we found that BLB,  but  not MD,  increased localization of PNKP

to sites of  DNA damage generated by  micro-irradiation, consistent

with the direct interaction between PNKP and XRCC1 facilitating

the recruitment (Table 1). CFP-tagged POL�, PCNA,  and PNKP were

all recruited similarly to micro-irradiated regions in the parental

XRCC1 proficient cell line  (CHO AA8) used as a  control (Table 1).

Images corresponding to Table 1 are given in Supplemental Fig. S1.

3.3. The BRCT1 domain of XRCC1 is  required for recruitment of

XRCC1  to replication foci

Although  XRCC1 lacks  the two reported PCNA interaction motifs

[35,38], XRCC1 interacts directly with  PCNA and localizes to repli-

cation foci independent of an  exogenous source of  DNA damage

[15]. XRCC1 likely operates here as  part of a distinct replication

associated complex proficient in BER [2]. The results  presented in

Table 1 show that the identified PCNA binding region in XRCC1 [15]

is important for recruitment of  PCNA to  micro-irradiated regions.

We examined whether the DNA damage independent localization

of XRCC1 to  replication foci was directed by the PCNA binding

region in XRCC1. We  found that both  BLB and MD,  similar to  full

length XRCC1, colocalized with PCNA in replication foci  (Fig. 2),

even though only MD  includes the reported PCNA binding region

(Fig. 1A). XNTD, on the other hand, which includes most of  the

PCNA binding region  and pulls down PCNA in vitro [15], did not

colocalize with replication foci. Thus, colocalization of  XRCC1 and

PCNA in replication foci is dependent on the region between 310

and 436 of XRCC1, which includes the  BRCT1 domain. In  addition,

co-localization of  the BLB deletion mutant and PCNA implies that

XRCC1 can be recruited to replication foci via binding to proteins

other than PCNA. Candidate proteins are PARP-1 [39], MPG [40]

and UNG2 [2,41], which have been found  in replication foci and

have their XRCC1 binding domains in,  or  partially within, the BLB

deletion mutant.

3.4.  The NLS-BRCT1 region in XRCC1 is important for rapid repair

of  MMS induced DNA damage

XRCC1-deficient  cells show an increased sensitivity to DNA

damage introduced by  MMS (10 fold) and H2O2 (2  fold) [7]. Because

both MD and BLB were recruited to  micro-irradiated regions and

colocalized with replication foci, they could potentially scaffold

repair proteins and support SSBR/BER. We  examined this hypoth-

esis in cloned cell lines of CHO EM9  cells stably expressing the

deletion constructs using the  Comet assay. The Comet assay as  per-

formed here enabled us to detect the total amount of DSBs, SSBs

and alkali-labile sites (i.e. AP sites); hence, all repair intermediates

of BER/SSBR after removal of damaged bases.

In three independent experiments we found that the MD

deletion mutant, unlike the XNTD or BLB fragment, was able to

partially complement XRCC1 for repair of MMS  induced DNA

damage  (Fig.  3A show merged results). Judged by the average

fluorescence intensities and Western blot analysis (Fig. 3C), this

outcome was  clearly not related to a  higher expression level of MD

compared to the other deletion mutants. The MD mutant spans the

region  reported to be important for  interactions with DNA glyco-

sylases (amino acids 166–436), such as MPG  [10], as well  as with

PCNA, APE-1, and PARP-1 [12,15,16]. The MD fragment, however,

lacks the  portions of  XRCC1  responsible for  the interactions with Lig

III� and POL� [13,14]. Since the MD deletion mutant also contains

the reported binding regions for  OGG1, NTH1 and NEIL2 [10,11],

DNA glycosylases primarily involved in the repair of  oxidative

base lesions, we tested the ability of  this fragment to  complement

XRCC1 after treatment of cells  with H2O2.  Neither MD,  nor  the

other deletion mutants, contributed reproducibly to any change in

DNA repair after H2O2 treatment in  parallel experiments (Fig. 3B).

Thus, our results indicate that a  specific interaction of  the MD

deletion mutant is critical for  the efficient XRCC1-directed repair

of MMS-induced DNA damage, yet is dispensable for  oxidative

DNA damage repair. We examined whether the complementation

Fig.  2. Colocalization of the XRCC1 deletion mutants and PCNA in replication foci.

Confocal  fluorescence images of XRCC1 and its deletion mutants with YFP-tag

(green)  co-expressed with CFP-tagged PCNA (red) in live S phase CHO EM9 cells.

The  yellow dots in the merged  pictures (third row) indicate colocalization of the

proteins; bars 5 �m. (For interpretation of the references to  color in figure caption,

the  reader is referred to the web version of the article.)
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Fig. 3. Comet analysis of the XRCC1  deletion mutants for their  ability to  complement full length XRCC1. Analysis of CHO  EM9  cells stably expressing YFP, XRCC1-YFP, YFP-

XNTD, YFP-MD and YFP-BLB. Comet analysis after 10 min  treatment with  (A) MMS  (600 �M)  or (B) H2O2 (62.5 �M).  100  comets  were selected  randomly from each slide  and

evaluated using Komet 5.0 Imaging Software (Andor Technology). Data  presented are  merged from three independent experiments (n  =  100), and are  presented as scatter

plot of % Tail DNA  on the  y-axis. Mean ± SEM,  n = 300. *p < 0.0001. (C)  Expression levels of the fusion proteins in the  different cell lines  detected after immunoprecipitation

(IP). Two bands are seen due to partial degradation of  the fusion proteins. The band at 50 kDa represent  IgG  from the IP.

observed may  stem from an  interaction between XRCC1 and MPG,

but found that knock  down of MPG by siRNA did not change

the pattern of  repair for any of the  deletion constructs (data not

shown).

3.5. The variants Arg194Trp, Arg280His and Arg399Gln of XRCC1

display  subtle differences in repair profiles

The MD  deletion mutant exhibits similar nuclear  localization to

full length XRCC1, responds similarly to micro-irradiation as  full

length XRCC1, and partly complements the MMS  hypersensitiv-

ity of the EM9 cell line. The three most frequent non-synonymous

SNPs found in XRCC1, Arg194Trp (R194W), Arg280His (R280H)

and Arg399Gln (R399Q), are all located within the  MD fragment

(marked by stars in Fig. 1A). Since this region seems to be essen-

tial for both the proper localization and the scaffolding function

of XRCC1, we examined intra-nuclear localization of  YFP-tagged

versions of  these XRCC1 polymorphic variants. All three  variants

showed a  localization pattern similar to  the conservative (a.k.a.

wild-type) form of  XRCC1 (Fig. 4), consistent with previous results

[42]. Moreover, all three variants colocalized with  PCNA in  replica-

tion foci (panel A),  and supported relocation of POL� (panel B)  and

PNKP (panel C) to regions of  micro-irradiation similar to  conser-

vative XRCC1. We note that only the R399Q XRCC1 variant tagged

with YFP is shown in comparison with conservative XRCC1-YFP in

Fig. 4; the other two polymorphic variants behaved similarly and

are shown in Supplemental Fig. S2.

We next determined quantitatively the  kinetics of  appear-

ance and dissociation of the polymorphic variants from sites

of micro-irradiation relative to the conservative XRCC1. For  the

R194W variant, we did not  detect a significantly different pattern

of  relocation compared to the conservative XRCC1 (Fig. 4D, left

panel), although a  tendency toward a  lower foci intensity, hence

less accumulation, was observed. The R399Q variant reached its

highest foci intensity peak earlier than the conservative XRCC1

(after 60 s versus 120 s, respectively, shown in red), suggesting a

reduced ability to stay at the site of  damage. Moreover, the ini-

tial slope of  the curve supported a  more immediate dissociation

of the R399Q variant (Fig.  4D, right panel), although the differ-

ence in average intensities was not  statistically significant until

300 s (marked with *). For heterozygous R280H, a  recent report

[42] suggested that this variant dissociated more rapidly than its

conservative form from sites of  micro-irradiation in HeLa cells.

Under our experimental conditions (homozygous expression and

low dose micro-irradiation of  CHO EM9 cells not introducing DSBs),

we could not detect any difference in the rate of dissociation,

i.e. the  slopes are equal for the R280H variant compared to con-

servative XRCC1. However, R280H did display a tendency, which

was statistically significant after 300 s, for  impaired foci forma-

tion, i.e. lower foci  intensity (Fig. 4D, mid panel). The time to reach

maximum intensity was  similar for the  R280H variant and  the

conservative XRCC1. Finally, we detected small differences in the

ability of  two (R194W and R399Q) of  the XRCC1 variants to  com-

plex with the conservative XRCC1 by FRET analysis (Supplemental

Fig. S3).

Because reduced ability to be recruited to foci or  an increased

rate of dissociation could lead to repair deficiencies, we next exam-

ined  the repair kinetics of  MMS and H2O2 induced DNA damage

in XRCC1-deficient cells complemented with the conservative or a

variant XRCC1 protein using the Comet assay as described earlier.

In order to detect subtle differences in repair efficacy between

the conservative XRCC1 and polymorphic variants, we used high
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Fig. 4.  Colocalization analysis of XRCC1 or XRCC1 SNP variants, with POL� and  PNKP in micro-irradiated regions, and with PCNA in replication foci. (A)  CHO EM9  cells

co-transfected with conservative XRCC1-YFP (left panel)  and  XRCC1R399Q-YFP (right panel, R399Q is representative for all three variants) with CFP-PCNA, (B) conservative

XRCC1-YFP (left panel) and XRCC1R399Q-YFP (right panel, R399Q is representative for all three variants) with CFP-POL� (C) conservative XRCC1-YFP (left panel) and  XRCC1R399Q-

YFP (right panel, R399Q is representative for all three variants) with CFP-PNKP; bars  5 �m. (D) Graphs showing recruitment and  dissociation of XRCC1-YFP and XRCC1R194W-YFP

(left panel), XRCC1R280H-YFP (mid panel) and XRCC1R399Q-YFP  (right panel) to  selected micro-irradiated regions (60  it, see Section 2). Graphs show mean ± SEM, conservative

XRCC1-YFP, n = 28 (from three  independent experiments), XRCC1R194W-YFP, n = 10, XRCC1R280H-YFP, n = 14 and XRCC1R399Q-YFP (in red), n  = 14. *p <  0.05. (For  interpretation

of the references to  color in figure caption, the reader is referred to  the web version of the article.)

doses of MMS  and  H2O2 (8 and 4  fold, respectively, higher than

in experiments shown in Fig. 3). After 120 min,  the DNA damage

levels were reduced for  each of the  complemented cell lines,

indicating that all cells were able to recover after these doses

of MMS  and H2O2 (Fig. 5A). The  polymorphic variants, however,

showed significant and reproducible differences in the pattern

of % tail DNA compared to  the conservative XRCC1 after MMS

treatment;  initially lower tail. A disparate pattern was also seen

for the R280H and R399Q variants after H2O2 treatment (Fig. 5A,

upper row shows comet tail distribution in one  representative

experiment, two  other experiments are shown in Supplemental

Fig. S4). Western analysis (Fig. 5B) showed no correlation between

the DNA repair profile and the expression level of the polymorphic

variants relative to  the conservative XRCC1 protein.
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Fig. 5. Analysis of the ability of  the XRCC1 SNP  variants to complement conservative XRCC1. (A) Comet  analysis of CHO EM9  cells  stably expressing XRCC1-YFP, XRCC1R194W-

YFP, XRCC1R280H-YFP, XRCC1R399Q-YFP after  treatment with MMS  (4.8  mM)  (left panel) and H2O2 (250 �M) (right  panel) after  0  and 120 min  recovery. 100 comets were

selected randomly from each slide and evaluated using Komet 5.0 Imaging Software (Andor Technology). Data presented is  from one representative out  of three  independent

experiments, and is presented as scatter plot of % tail DNA on the  y-axis.  Mean ±  SEM, n = 100 (B) expression levels of the fusion proteins in the corresponding cell lines (C)

model of different repair kinetics between conservative and  polymorphic variants. Dashed grey line represents polymorphic variants with delayed BER.

4. Discussion

Point mutations in the BRCT1 domain of XRCC1 (i.e.

LI360/361DD and W285D) are reported to  affect cellular resis-

tance to MMS  induced DNA damage. However, the intra-nuclear

localization of  the described BRCT1 mutants is not known. Since

these mutations disrupt the correct folding of  XRCC1, it is  possi-

ble that the amino acid substitutions may  in fact impair proper

intra-cellular distribution [22,23,43]. Because expression of  the

BLB-mutant does not rescue the XRCC1-deficient cells, our data

suggest that it is not the BRCT1 domain per se,  but the larger NLS-

BRCT1 region (residue 166–436) that is  important for the ability of

XRCC1 to support repair after MMS  treatment.

We have recently published that localization of  POL�  to  sites of

irradiation was completely dependent on XRCC1, while the recruit-

ment of  PNKP and PCNA was only  enhanced in  the presence of
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XRCC1 [3]. Studies have shown that XRCC1 binds to nicked and

gapped DNA [44] and that the NTD domain of XRCC1 exhibits a spe-

cific  affinity for these lesions [45].  This domain of XRCC1 (NTD) also

interacts with POL� [13]. A previous study  suggests a  POL� depen-

dent recruitment of  XRCC1 to sites of DNA damage [46]. However,

the fact that the XNTD deletion mutant does not form foci suggests

that the interaction with POL� is  not  sufficient for  re-localization

of XRCC1 to sites of damage.

XRCC1  and the three polymorphic variants, R194W, R280H and

R399Q, show similar intra-nuclear localization, and all variants

supported POL�  and  PNKP relocation to sites of  micro-irradiation.

Interestingly, the R399Q variant is  located within a  conserved PAR-

binding motif (amino acids 379–400 [47]) (see  Fig. 1A). We  found

that this variant had a reduced ability to remain at  sites of micro-

irradiation, and this could possibly be due to reduced PAR-binding.

Reduced XRCC1 recruitment and/or ability to form stable  com-

plexes will likely affect recruitment of  XRCC1 interacting proteins

and the overall efficiency of  repair.

The Comet assay as performed here detects AP sites, SSB and

DSBs and several forms of repair  intermediates, but not damaged

bases. The differences in the repair profiles of the  XRCC1 variants

after MMS  and H2O2 treatment could be explained by  reduced

recruitment of these XRCC1s and interacting proteins to sites of

DNA damage, reduced ability to make complexes or interact with

DNA glycosylases, and/or reduced efficiency of  excision of  dam-

aged bases or resolution of strand break intermediates. Reduced

base excision will result in  less % tail DNA immediately or shortly

after DNA damage introduction, which is  what we  see (Fig. 5A).

Thus, what may  be  interpreted as more efficient  initial repair by

merely looking at the comet tails, could actually be a delayed BER

response as  illustrated in  the model in Fig.  5C (broken line).  Such

differences may  only be detectable in a small time window and

may  vary with different types  of DNA damage. Interestingly, NSCLC

(non-small cell lung cancer) patients, who are heterozygous for

the XRCC1 variants R280H and R399Q, were found to  have  signif-

icantly lower 8-oxoG incision activity in extracts from lung tissue

compared to extracts from NSCLC patients homozygous for the con-

servative form of XRCC1 [48].  Because XRCC1 forms multimeric

complexes, reduced ability of  the variants for complex stability

(Fig. 4D and Supplemental Fig. S3) could possibly affect repair also

in heterozygote variants.

Recent  reports concerning a possible association of  XRCC1 vari-

ants with cancer incidence have  detected high OR values when

including several variants within the XRCC1 protein or when com-

bined with SNPs in  other DNA repair proteins. For instance, R399Q

was reported to be associated with increased breast cancer risk

alone (OR = 4.67) and together with the −77T>C variant (OR =  7.04)

[49]. R399Q was furthermore found to be associated with  an

increased colorectal cancer risk  alone (OR  = 1.65), while a  signifi-

cantly stronger association was found in combination with a XPD

SNP (Lys751Asn) (subunit of  transcription factor IIH, involved in

nucleotide excision repair, NER) (OR = 3.52) [50]. Thus, even if  the

differences in the repair profiles of the SNPs  detected under our

experimental conditions are subtle, they might be  of  biological sig-

nificance, and perhaps more so  when combined with polymorphic

variants of other DNA repair proteins in the same pathway.

In  summary, in this paper we have shown that the region

in XRCC1 harbouring the three most common SNPs is essential

for localization of  XRCC1 and its interacting partners to sites of

DNA damage and DNA replication. Although we did not observe

profound differences in the functional activities of  the XRCC1 poly-

morphic variants, there was a  statistically significant reduction in

the ability of R280H to  be  recruited to  or R399Q  to remain at foci

after micro-irradiation. A  significant change in repair  profile after

DNA damage induced by H2O2 and MMS  was also observed with

the R280H and R399Q variant-complemented EM9  cell  lines. The

observed differences herein may ultimately affect the overall reg-

ulation of BER/SSBR and account for  the reported associations of

XRCC1 polymorphisms with increased risk of disease.
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Fig. S1:  Images corresponding to data shown in Table 1 (part with grey background). 
Lowest dose that gives detectable foci are shown. 
 
Micro-irradiation: a Zeiss 405 nm diode laser was focused through a Plan-Apochromate 
63x/1.4 oil immersion objective to a diffraction-limited spot size in a Zeiss LSM 510 Meta 
laser scanning microscope. The 405 nm diode output was measured to 30 mW using a 
FieldMaster GS energy meter (Coherent Inc.) with a low power probe. We used 60 laser beam 
iterations (60 it) at a speed of 1.27 sec/pixel over a 50 × 2 pixel area in the cell nucleus 
outside nucleoli (CHO EM9 cells). Low dose, recruits POL  and PNKP, but not PCNA ,600 
it (high dose) recruits PCNA and FEN-1 in the presence of full length XRCC1 [1],. The 
highest doses (600 it and 1200 it) may give double-strand breaks (DSBs) as determined by 
staining for H2AX [1]. 



 
 
 
Fig. S2: Colocalization analysis of XRCC1 or XRCC1 SNP variants, with POL  and PNKP 
in micro-irradiated regions, and with PCNA in replication foci. (A) CHO EM9 cells were 
transiently co-transfected with XRCC1R194W-YFP (left panel) and XRCC1R280H-YFP (right 
panel), with CFP-PCNA, (B) with CFP-POL  and (C) with CFP-PNKP.  

Micro-irradiation: a Zeiss 405 nm diode laser was focused through a Plan-Apochromate 
63x/1.4 oil immersion objective to a diffraction-limited spot size in a Zeiss LSM 510 Meta 
laser scanning microscope. The 405 nm diode output was measured to 30 mW using a 
FieldMaster GS energy meter (Coherent Inc.) with a low power probe. We used 60 laser beam 
iterations (60 it) at a speed of 1.27 sec/pixel over a 50 × 2 pixel area in the cell nucleus 
outside nucleoli. Bars 5 m.  
 
 



 
 
Fig. S3: NFRET between conservative-conservative XRCC1, R194W-conservative XRCC1, 
R280H-conservative XRCC1 and R399Q-conservative XRCC1. Cells were co-transfected 
with CFP and YFP vectors (YFP / CFP) as a negative control. NFRET in selected regions of 
interest (ROI) (i.e. spontaneous foci) are presented as dots with mean ± SEM, n=49-60.  
Statistics:  
EY/EC vs. XRCC1/XRCC1, different, p<0.0001 
EY/EC vs. SNPs/XRCC1 (all three), different, p<0.0001 
XRCC1/XRCC1 vs. R194W/XRCC1, different, p=0.0008   
XRCC1/XRCC1 vs. R280H/XRCC1, not different, p=0.1153   
XRCC1/XRCC1 vs. R399Q/XRCC1, different, p=0.0243  
 
Fluorescent resonance energy transfer (FRET) measurements. Normalized FRET (NFRET) 
was measured using the sensitized emission method as previously described [2, 3]. Briefly, 
NFRET was calculated from mean intensities (I) within a region of interest (ROI) containing 
more than 75 pixels where all pixels had intensities below 250. Channel 1 (CFP) and 3 (YFP) 
were measured as described for imaging, and channel 2 (FRET) was excited with = 458 nm 
and detected at = 530-600 nm.   
 
 
 
 
 



 
Fig. S4: Analysis of the ability of the XRCC1 SNP variants to complement conservative 
XRCC1. Comet analysis of CHO EM9 cells stably expressing XRCC1-YFP, XRCC1R194W-
YFP, XRCC1R280H-YFP, XRCC1R399Q-YFP after treatment with MMS (4.8 mM) (left panel) 
and H2O2 (250 M) (right panel) after 0 and 120 min recovery. 100 comets were selected 
randomly from each slide and evaluated using Komet 5.0 Imaging Software (Andor 
Technology). Data presented is from two representatives out of three independent 
experiments, and is presented as scatter plot of % tail DNA on the y-axis. Mean ± SEM, 
n=100.  
Comet analysis: Alkaline (pH 13.3) single-cell gel electrophoresis was performed as 
described [4] except the samples were not treated with uracil DNA-glycosylase.  
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