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ABSTRACT
A two-dimensional numerical analysis on the hydrodynamic

force of perforated plates in oscillating flow is presented, and a
new semi-analytical force model is proposed. Plates with ten dif-
ferent perforation ratios, τ , from 0.05 to 0.50 are simulated. The
Keulegan–Carpenter numbers in the simulations cover a range
from 0.002 to 2.2 when made nondimensional with the width of
the plates. Resulting hydrodynamic added mass and damping
coefficients are presented. All perforated plates with perfora-
tion ratios greater than or equal to 10% are found to be damp-
ing dominant. The numerical results are obtained using a two-
dimensional Navier–Stokes solver (CFD), previously validated
against dedicated 2D experiments on perforated plates. Further-
more, we present verification of the code against the analytical
solid flat plate results by Graham. The presently obtained hy-
drodynamic coefficients are compared with the state-of-the-art
semi-analytical method for force coefficient calculation of perfo-
rated plates by Molin, as well as the recommended practice for
estimating hydrodynamic coefficients of perforated structures by
DNV GL. Based on the CFD results, a new method for calcu-
lating the hydrodynamic force on perforated plates in oscillat-
ing flow is presented. The method is based on curve fitting the
present CFD results for perforated plates, to the analytical ex-
pressions obtained for solid plates by Graham. In addition to its
simplicity, a strength of the method is that coefficients for both
the added mass and damping are obtained.

∗Corresponding author: fredrik.mentzoni@ntnu.no

INTRODUCTION
Perforated and ventilated structures are commonly found in

many marine applications. Examples include heave plates, wave
absorbers, damping plates, hatch covers, mudmats and various
protection equipments used on complex subsea structures. Many
of these structures have large widths and lengths compared to
their thickness, and can, in terms of flow and resulting loads, be
simplified as perforated plates. Due to the industrial relevance,
there has been a great deal of analytical, numerical and experi-
mental investigations on perforated plates. Molin [1] presented
an extensive review in 2011. A brief summary of some other
relevant studies performed after 2011 is given in [2].

The present study is part of a bigger project (MOVE), where
the motivation is to reduce uncertainty when performing marine
deployment operations, which is likely to be cost saving by re-
ducing conservatism and delays when it comes to the time used
on waiting for acceptable weather conditions. The hydrodynamic
behavior and forces on perforated plates are relevant in this re-
spect. One objective of the project involves increased knowl-
edge on the hydrodynamic loads on typical members of subsea
structures, including how to account for interaction and shield-
ing effects between different member types. In an initial study,
experimentally obtained hydrodynamic force coefficients for dif-
ferent configurations of perforated plates and cylinders were pre-
sented [3]. The hydrodynamic forces on perforated plates is iden-
tified as the most important contribution to the total force on a
subsea module. Challenges with estimating the hydrodynamic
coefficients from experiments were highlighted. The initial study
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was followed up with further experimental investigations and the
development of a numerical viscous flow solver which can es-
timate hydrodynamic coefficients of subsea structures in a two-
dimensional setting [2]. Special attention was given to the ef-
fect of flow separation at the ends of perforated plates, which
has been pointed out by several previous studies to be of impor-
tance [1, 4–7].

In the current study, we present a numerical analysis on the
hydrodynamic forces of perforated plates in oscillating flow. We
compare results from our numerical viscous solver with the state-
of-the-art method for calculating hydrodynamic coefficients of
perforated plates, and focus on how to easily estimate hydrody-
namic coefficients of perforated plates. A large range of numer-
ical simulations are performed for perforated plates with perfo-
ration ratios, τ , from 0.05 to 0.50, for Keulegan–Carpenter (KC)
numbers,

KC =
WT
D

, (1)

of 0.002 ≤ KC ≤ 2.2. Here W is the amplitude of the velocity,
T the period of motion and D the plate width. The present range
of KC numbers covers typical KC numbers for perforated plate
structures used in marine operations.

The structure of the present text is explained in the follow-
ing. First, the numerical method (CFD) is presented. Details on
the discretization of the perforated plates are given in this section.
We briefly describe the results from the validation of the CFD
against dedicated 2D perforated plate experiments. Furthermore,
a presentation of our CFD results from simulations of solid plates
are presented, and compared against the analytical investigation
by Graham [8]. Next, we summarize the semi-analytical method
by Molin [9, 10]. A summary of the recommendations for cal-
culating hydrodynamic coefficients on perforated structures by
DNV GL [11] is then given. We next proceed to the CFD results
from the present simulations of perforated plates in oscillating
flow. Comparisons are given with calculations performed using
the semi-analytical method. We end our result section by pre-
senting coefficients found when curve-fitting our CFD results for
perforated plates, to the analytical expressions obtained by Gra-
ham for solid plates, thereby proposing a new semi-analytical
force model for perforated plates. Finally, conclusions are drawn
in the last section.

NUMERICAL METHOD
A two-dimensional Navier–Stokes solver, based on the

fractional-step method, as that by Chorin [12], is used in the
present analysis. The abbreviation CFD (computational fluid dy-
namics) refers to this solver and its results throughout the paper.
A staggered grid is used in the solver, where the grid cells are
geometrically stretched from a fine region close to the perforated
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FIGURE 1. VALIDATION OF PRESENT NUMERICAL METHOD
AGAINST EXPERIMENTAL DATA OF PERFORATED PLATES.
DETAILS PROVIDED IN [2].

TABLE 1. DESCRIPTIVE PARAMETERS OF THE DISCRETIZA-
TION OF PLATE MODELS I AND II. PLATE WIDTH (D), WIDTH-
TO-THICKNESS ( D

t ), WIDTH-TO-HOLE-SIZE ( D
lh ), WIDTH-TO-

CELL SIZE IN THE FINE GRID REGION CLOSE TO THE PLATE
( D

∆
), DOMAIN SIZE TO PLATE WIDTH ( l

D ), AND TOTAL NUM-
BER OF GRID CELLS IN THE DOMAIN.

Model D D
t

D
lh

D
∆

l
D Cell count

I 0.42m 140 140 280 14.3 74268

II 0.36m 120 80 240 16.7 67860

plates, towards larger cells closer to the boundaries of the com-
putational domain. The boundaries in the computational domain
are placed far from the plates (total domain size, l, is 6m× 6m
corresponding to l

D = 14.3-16.7, cf. Table 1), such that the sim-
ulations represent infinite fluid conditions.

The numerical solver has previously been validated against
dedicated 2D experiments on perforated plates [2]. Selected re-
sults from the validation are presented in Fig. 1. Experimentally
obtained hydrodynamic coefficients for two perforated plates,
with perforation ratios of 19% and 28%, are here compared to
simulation results of numerically modeled perforated plates with
corresponding perforation ratios by the presented CFD. The ex-
periments were conducted in a wave flume at the Marine Tech-
nology Center in Trondheim, well suited for performing forced
oscillation tests of perforated plates. A considerable amount of
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FIGURE 2. ILLUSTRATIONS OF THE FINE REGION OF THE CFD GRIDS FOR PLATES WITH PERFORATION RATIO τ = 0.25 USING
PLATE MODELS I (TOP) AND II (BOTTOM). TOTAL DOMAIN SIZE IS 6m×6m.

work was invested to ensure the general quality of the experi-
ments. In addition to force and motion measurements, the free-
surface elevation was measured during the tests, and the corre-
sponding wave-radiation damping found to be unimportant. The
vertical motions of the oscillating plates were monitored by sev-
eral accelerometers. Special care was taken to ensure an instru-
mental setup where the measured force and accelerations have
zero phase delay, in order to obtain reliable hydrodynamic force
coefficients. For a more thorough description of the experimental
setup, we refer to previous studies [2, 3].

In the experimental investigations used to validate the CFD,
perforated plates were forced to oscillate in otherwise still water.
In the CFD, on the other hand, the plates are fixed while pre-
scribed oscillating flow conditions are set as boundary conditions
on the computational domain boundaries, such that the plates ex-
perience an ambient, sinusoidally oscillating flow. Since the fluid
is oscillating in the CFD, the total calculated force on the plates
consists of the hydrodynamic diffraction force and the Froude–
Krylov force. In order to have comparable results between the
experiments and CFD, the Froude–Krylov force is subtracted in
the CFD. Further, the diffraction force is decomposed in a damp-
ing term, proportional to the prescribed velocity, and an added
mass term, proportional to the acceleration,

Aη̈ +Bη̇ = FH , (2)

with A being the added mass coefficient, η̈ the acceleration of the
ambient flow, B the damping coefficient, η̇ the velocity of the
ambient flow, and FH the hydrodynamic diffraction force. The
added mass and damping coefficients are obtained by Fourier av-
eraging,

A
∫

mT
η̈η̈ dt +0 =

∫
mT

FH η̈ dt, (3)

0+B
∫

mT
η̇η̇ dt =

∫
mT

FH η̇ dt. (4)

Here m indicates the oscillation number. The CFD results are
based on simulations lasting ten oscillation periods. The five
first oscillation periods are ignored. The measured force on the
plates in the last five oscillation periods is then used to calcu-
late the hydrodynamic coefficients, that is, m = 6,7,8,9,10. The
mean value from these five oscillation periods are presented in
the result figures. The standard deviation between the coeffi-
cients from these five m are also calculated, but are found to be
small in all cases, in general less than 1% of the mean value. To
increase readability, the standard deviations are not plotted in the
result figures. The coefficients are made nondimensional by the
analytical added mass of a solid flat plate. In two-dimensional
flow, this is

A0 =
π

4
ρD2, (5)

where ρ is the fluid density. Nondimensional damping coeffi-
cients are obtained by dividing B with A0 times the circular fre-
quency of motion, ω .

A total of ten perforation ratios, ranging from τ = 0.05 to
τ = 0.50 are investigated. The perforated plates are discretized
using multiple plate elements of solid cells, with openings be-
tween them containing fluid cells, cf. Fig. 2. We follow the
findings of [2] regarding mesh size and number of holes in the
plates; the results converged with seven plate elements and grid
cell sizes of ∆ = 2mm. Two different numerical perforated plate
models, I and II, with different numerical meshes, widths and
number of fluid cells in the openings, are tested for each perfora-
tion ratio, in order to increase the confidence in the results, and
to investigate the numerical uncertainty of different modeling of
the same plate perforation. Details of plate models I and II are
given in Table 1. The two meshes are illustrated in Fig. 2.

One of the advantages of the numerical viscous flow solver
is the ability to easily visualize and observe features of the flow
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FIGURE 3. STREAMLINES FOR τ = 0 (TOP), τ = 0.20 (MIDDLE) AND τ = 0.40 (BOTTOM) AT KC = 0.95. THE PLOTS ARE OBTAINED
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field. Examples of flow fields are provided in Fig. 3. Here,
streamline plots for simulations with plate model I at KC = 0.95
are provided for τ = 0 (top), τ = 0.20 (middle) and τ = 0.40 (bot-
tom). The color map for the contours represent the vertical ve-
locity (red for positive, blue for negative). The plots are zoomed
in on the plates at a time-instant 41% into an oscillation period
where the velocity at the boundaries is set to w = W sin(ωt).
Note that the flow is globally deflected towards the sides of the
plate even for high perforation ratios, similar to that for a solid
plate. Vortices due to plate-end flow separation is easily observed
for τ = 0.2. A closer view reveals vortical structures behind each
plate element at the scale of the plate element lengths for all per-
foration ratios.

GRAHAM’S SOLID PLATE MODEL
We next turn to the analytical results by Graham for solid

plates [8]. In his analysis of the hydrodynamic forces on sharp-
edged objects at low KC numbers, Graham found that the added
mass and damping coefficients of a solid plate were functions of
KC

2
3 ,

A
A0

= a0 +a1KC
2
3 , (6)

B
ωA0

=
b1

π2 KC
2
3 . (7)
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FIGURE 4. ADDED MASS (RED) AND DAMPING (BLUE) CO-
EFFICIENTS OF A SOLID PLATE FROM CFD. CIRCULAR MARK-
ERS: MODEL I. SQUARE MARKERS: MODEL II. COMPARISON
WITH THE ANALYSIS BY GRAHAM [8]; THEORETICAL (a1 =

0.25, b1 = 11.8) AND EXPERIMENTAL FIT (a1 = 0.2, b1 = 8.0) PRE-
SENTED WITH, RESPECTIVELY, DASHED AND DOTTED LINES.

TABLE 2. CURVE FIT OF PRESENT SOLID PLATE CFD SIMU-
LATIONS TO EQS. (6) AND (7).

Model a0 a1 b1

I 1.007 0.2137 10.03

II 1.003 0.2179 10.16

Combined 1.005 0.2160 10.11

The theoretical analysis yielded a0 = 1, a1 = 0.25 and b1 = 11.8.
Curve-fit with the experimental results in the KC number range
≈ 3-7 by Singh [13], gave somewhat smaller values for the co-
efficients, a1 = 0.2 and b1 = 8.0 [8]. Note that the KC number
range for which this was based on, was quite modest.

The resulting coefficients from the solid plate validation case
of the present CFD are compared to the analytical results by Gra-
ham and presented in Fig. 4. As for the perforated plates, two
solid plate models are simulated with the present CFD, denoted I
and II, in a similar manner as that of the perforated plates. Only
minor differences are found between plate models I and II. Due
to the finite thickness of the numerically simulated plates, the
low-KC limit added mass is slightly larger than the theoretical
value of 1 for an ideal flat plate (zero thickness). The numerical
simulations yield coefficients that are, in general, between the

theoretically and experimentally obtained a1 and b1. Resulting
a0, a1 and b1 based on curve fit of the numerical simulations are
provided in Table 2.

We return to Graham’s model in the last section of our paper.

MOLIN’S SEMI-ANALYTICAL METHOD
Assuming a quadratic pressure-drop condition for the flow

through the openings of a perforated object, combined with the
assumption of potential flow conditions in the fluid domain, such
that all vorticity is constrained to a thin strip coinciding with the
plate, Molin developed a method for estimating hydrodynamic
coefficients of perforated structures [9, 10]. A notable finding of
the method is that both the added mass and damping coefficients
are functions of the amplitude of motion. Furthermore, both co-
efficients have the limiting value of zero when the amplitude goes
to zero.

For the case of an oscillating two-dimensional perforated
plate, the hydrodynamic coefficients can be obtained from
Fourier-series by eigenfunction expansion of the velocity poten-
tial [1], or, as shown in An and Faltinsen [14], by assuming anti-
symmetric vortices distributed along the plate. The resulting hy-
drodynamic added mass and damping coefficients are found to
be functions only of the so-called perforated KC number,

KCpor =
Z
D
(1− τ)

2µτ2 . (8)

Hence, the force coefficients are functions of the amplitude of
motion, Z, the width of the plate, D, the perforation ratio, τ , and
the discharge coefficient, µ , only. The discharge coefficient is a
function of the local geometry of the plate openings.

The original semi-analytical method does not take flow sep-
aration at the plate-ends into account. Flow separation at the
plate-ends will in general increase the damping and reduce the
added mass coefficient [6]. In order to account for the plate-end
flow separation effect, Sandvik et al. [5] proposed to add a drag
force term, which in 2D is written

F =
1
2

ρCDDwr|wr|, (9)

with a drag coefficient inspired by the solid flat plate analytical
investigation by Graham [8],

CD = αKC−
1
3 . (10)

The relative velocity in the drag force term, wr, is the plate veloc-
ity minus the relative fluid velocity through the plate, averaged
over the plate [1]. Consequently, with the drag force term added,
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both the added mass and damping coefficients become functions
of KC in addition to KCpor. The semi-analytical method includ-
ing the drag correction term represents the state-of-the-art for
force coefficient calculation of perforated plates. Later in the
text, we compare the method with the results from our CFD.

In the semi-analytical method, the drag correction coeffi-
cient, α , and discharge coefficient, µ , must be determined. When
compared with the solid plate results by Graham, α of Eq. (10)
corresponds to b1 of Eq. (7). Graham’s theoretical analysis
yielded b1 =α = 11.8. For a perforated plate, the flow separation
at the plate ends will be weaker than for a solid plate [4, 6], and
consequently α < 11.8. In the present study, a large range of cal-
culations are performed, using 24 different values for α ranging
from α = 0.5 to α = 12.0, with increments of 0.5.

According to Molin et al. [1,6,15], the discharge coefficient
is usually 0.3 < µ < 1.0. A sensitivity study performed by An
and Faltinsen [4], showed that the value of the discharge coeffi-
cient is of importance, especially for the added mass coefficient.
In his 2011 review [1], Molin presents a number of methods for
estimating the loss coefficient, K, where the relation between the
loss coefficient and the discharge coefficient is

µ =
1− τ

Kτ2 . (11)

For a perforated plate where the perforations have square edges,
the loss coefficients provided by Blevins [16, pp. 314–315], cor-
responds to discharge coefficients in the range 0.35 < µ < 0.65
for the presently simulated perforation ratios. Based on this, the
present calculations are performed using a range of discharge co-
efficients from µ = 0.3 to µ = 1.0 with increments of 0.05.

Taking into account the ten different perforation ratios, the
24 values of α and the 15 discharge coefficients, a total of 3600
semi-analytical calculations are performed. For each perforation
ratio, the combination of α and µ that corresponds to the smallest
mean relative difference between the semi-analytical method and
the CFD, for the considered KC numbers, is presented. Three
results are provided for each plate perforation, the combination
of µ and α that yields the smallest relative difference for 1) the
added mass coefficient, 2) the damping coefficient, and 3) both
coefficients combined.

DNV GL RECOMMENDED PRACTICE
DNV GL has developed a recommended practice (RP) for

modeling and analysis of marine operations, the DNVGL-RP-
N103 [11]. Included in the RP are relations for estimating the
added mass of perforated structures. As stated in the RP, the
added mass of an object in the limit of zero amplitude can be
calculated numerically with potential flow assumptions using a
source method. Based on results from perforated plates with cir-

TABLE 3. LOW-KC LIMIT ADDED MASS OF A PLATE WITH
PERFORATION RATIO τ = 0.3 MODELED WITH DIFFERENT
NUMBER OF HOLES, nh, AND CORRESPONDING HOLE SIZE,
lh, TO PLATE WIDTHS, D, USING A SOURCE METHOD.

nh
lh
D

A
A0

Rel. diff. to (12)

1 0.3 0.284 17%

2 0.15 0.207 40%

4 0.075 0.144 58%

8 0.0375 0.098 71%

16 0.01875 0.071 79%

32 0.009375 0.055 84%

DNV GL 0.343

cular holes, DNV GL provides the following relation for estimat-
ing the added mass in the low-KC limit [11, Section 3.3.4].

A
A0

= exp
(
−τ

0.28

)
. (12)

Contrary to the semi-analytical method presented in the previous
section, Eq. (12) suggests that perforated plates have a consid-
erable added mass in the low-KC limit. Note that the relation
is a function of the perforation ratio only. However, in the low-
KC limit, the hole size relative to the plate size is the important
parameter for the added mass of a perforated plate. An exam-
ple is given in Table 3, where the added mass coefficients for
plates with a perforation ratio of τ = 0.3, modeled with different
hole sizes, are presented. The results are obtained using a nu-
merical source method. The plate thickness is set to 1% of the
plate width, that is t

D = 0.01. As illustrated, decreasing the hole
size, and thereby increasing the number of holes on the plate, re-
duces the added mass of the plate. In the semi-analytical method
presented in the previous section, the assumption of an infinite
number of holes is applied, and the low-KC added mass is zero.
In order to get a correct estimate of the low-KC added mass of a
specific perforated structure, the number of holes is important.

A relation for the added mass at any KC number is also pro-
vided by DNV GL [11, Section 4.6.4],

A
A0

=


1, τ ≤ 0.05
0.7+0.3cos

(
π
(

τ−0.05
0.34

))
, 0.05 < τ < 0.34

exp
( 0.1−τ

0.28

)
, 0.34≤ τ ≤ 0.50.

(13)

The relation is based on model test data and includes a safety
margin. As for the low-KC relation in (12), the all-KC relation in
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FIGURE 5. ADDED MASS RELATIONS FOR PERFORATED
STRUCTURES IN DNVGL-RP-N103, EQS. (12) AND (13) [11].

(13) is a function of perforation ratio only. However, as pointed
out in several previous studies, the hydrodynamic coefficients of
perforated plates are highly amplitude dependent.

Sections 3.3.4 and 4.6.4 of the RP, titled Added mass and
damping for ventilated structures and Effect of perforation, re-
spectively, contain relations for the added mass coefficients, but
no information on how to account for the perforation ratio when
estimating damping coefficients. From (2) and (5), the amplitude
of the hydrodynamic force can be written as a function propor-
tional to the nondimensional added mass and damping coeffi-
cients,

FH ∝

√(
A
A0

)2

+

(
B

ωA0

)2

. (14)

An increase in the nondimensional added mass coefficient or
damping coefficient increases the hydrodynamic force ampli-
tude. Further, the hydrodynamic force amplitude is proportional
to the square root of the coefficients squared. Therefore, the
larger term dominates, and if for instance B

ωA = 2, damping alone
is 89% of the hydrodynamic force amplitude. Recent investi-
gations have shown that the hydrodynamic force on perforated
plates is in general damping dominant, for τ & 0.1 [2–6]. A sim-
ilar outcome is expected for the wave excitation forces. Conse-
quently, proper calculation of the damping coefficient is at least
as important as the added mass coefficient.
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FIGURE 6. ADDED MASS (TOP) AND DAMPING (BOT-
TOM) COEFFICIENTS FOR NUMERICALLY SIMULATED PER-
FORATED PLATES. CIRCULAR MARKERS: MODEL I. SQUARE
MARKERS: MODEL II.

RESULTS
Added mass and damping coefficients predicted by the

present CFD are presented in Fig. 6. As for the solid plate mod-
els, there are small differences between the perforated plate mod-
els I and II. The added mass clearly increases with decreasing
perforation ratio. The largest rate of absolute changes in A appear
for τ . 0.20. For the damping, B, there is a more steady rate of
absolute change with decreasing perforation ratio. Notably, P05,
P10, P15 and P20 all yield larger damping coefficients than the
solid plate, P00, for a range of low KC numbers.

The ratio between the damping force and added mass force
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is presented in Fig. 7. For practical values of the KC number,
perforation ratios larger than τ = 0.1 are found to be damping
dominant. Even the densest perforated plate, P05, is damping
dominant for KC > 0.95. We would like to stress the importance
of this fact.

The results from calculations with Molin’s semi-analytical
method are presented in Table 4. Three observations are high-
lighted in the following. 1) Even from a large range of µ and
α combinations, the best fit still has a considerable relative dif-
ference when compared to the CFD results. The semi-analytical
method seems best suited for moderate perforation ratios, and the
relative differences are larger for both smaller and larger perfo-
ration ratios. 2) There are no generic values of µ and α , and it is
not obvious how these parameters should be chosen. The loss
coefficients for a perforated plate with square edges provided
by Blevins [16, p. 314] suggests that µ should increase from
µ = 0.35 for the smallest perforation ratio, τ = 0.05, to µ = 0.5
for the largest perforation ratio, τ = 0.5. However, the present
results found the best (combined) fit when µ is larger than 0.5,
without much dependency on the perforation ratio. The drag cor-
rection coefficient, α , is found to decrease with increasing per-
foration ratio, ranging from α = 10.5 for τ = 0.05 to α = 1.0
for τ = 0.50. 3) The best fit to both added mass and damping is
in general not found for a single combination of µ and α . Most
noticeable is the inconsistent trends in α . For smaller perfora-
tion ratios, the best fit to the damping coefficient is found with
a larger α than what gives the best fit for the added mass coef-
ficient. This behavior is opposite for higher perforation ratios,
that is, for the largest perforation ratios, the added mass best

TABLE 4. THE COMBINATION OF µ AND α THAT YIELDS THE
BEST FIT WITH THE ADDED MASS AND DAMPING COEFFI-
CIENTS OF THE CFD RESULTS, SEPARATELY AND COMBINED.
MEAN RELATIVE DIFFERENCE (dr) AND CORRELATION COEF-
FICIENT (r) BETWEEN COMBINED SEMI-ANALYTICAL BEST
FIT AND CFD RESULTS.

τ
Best A

A0
Best B

ωA0
Combined best fit

µ α µ α µ α dr r

0.05 0.35 0.5 1.0 10.5 1.0 10.5 21% 0.94

0.10 0.95 2.0 1.0 9.5 0.60 9.5 15% 0.95

0.15 0.85 4.5 0.95 9.0 0.60 8.0 12% 0.97

0.20 0.75 5.5 0.85 8.0 0.65 7.0 11% 0.98

0.25 0.65 6.5 0.80 7.5 0.65 6.5 12% 0.98

0.30 0.55 7.0 0.80 7.0 0.65 6.0 14% 0.98

0.35 0.45 7.0 0.75 5.5 0.65 4.5 16% 0.99

0.40 0.45 6.5 0.75 4.5 0.70 3.0 17% 0.99

0.45 0.45 5.5 0.75 3.0 0.70 2.0 19% 0.99

0.50 0.40 6.0 0.80 3.5 0.75 1.0 21% 0.99

fit is found with a larger α than the damping best fit. A sim-
ilar problem has previously been observed when comparing the
semi-analytical method to experimental results; when comparing
the semi-analytical method with experiments of a perforated disk
with a perforation ratio of 20%, Molin et al. [6] found that α = 6
was needed to get a good fit for the damping coefficient, but this
would underestimate the added mass coefficient. The results by
An and Faltinsen [4], comparing the semi-analytical method with
experimental results of two rectangular perforated plates of per-
foration ratios 8% and 16%, yielded a similar conclusion.

Of the 3600 different combinations of perforation ratios, dis-
charge coefficients and drag correction coefficients, one of the
best fits was found for the 25% perforation ratio plate using
µ = 0.65 and α = 6.5. This combination gives a mean rela-
tive difference across the considered KC numbers of 12%. We
emphasize, however, that this value of µ is higher than those pro-
vided by Blevins. The added mass and damping coefficients pre-
dicted by the semi-analytical method for τ = 0.25 and µ = 0.65
for varying α values are presented in Fig. 8. Note, in particular,
that the value of α that gives the best fit to the CFD results is
depending on the range of KC numbers considered. A similar
tendency was found by An and Faltinsen [4].

Added mass and damping coefficients from the CFD simu-
lations, for three KC numbers, are presented as functions of the
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FIGURE 8. ADDED MASS (TOP) AND DAMPING (BOTTOM)
COEFFICIENTS FROM MOLIN’S SEMI-ANALYTICAL METHOD
FOR τ = 0.25 AND µ = 0.65. EACH CURVE REPRESENTS A
GIVEN VALUE OF α . TO INCREASE READABILITY, ONLY 12 OF
THE 24 CALCULATED α ARE INCLUDED. MARKERS ARE CFD
RESULTS FOR THE PERFORATED PLATE WITH PERFORATION
RATIO τ = 0.25.

perforation ratio, τ , in Fig. 9. A similar presentation was given
for the added mass relations provided by DNV GL, cf. Fig. 5.
Both figures illustrate a reduction of added mass as the perfora-
tion ratio increases. However, Fig. 9 highlights the amplitude
dependence of the coefficients. Both relations by DNV GL are,
in general, conservative compared to the present CFD results, but
for small perforation ratios, the relations by DNV GL underesti-
mate the added mass compared to the CFD results. Further, we
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FIGURE 9. ADDED MASS AND DAMPING AS FUNCTIONS OF
PERFORATION RATIO AT THREE KC NUMBERS.

emphasize again that the present results highlights the need for
including damping, as the damping force is in general larger than
the added mass force, with increasing relative importance as the
perforation ratio increases.

PROPOSED CFD-FITTED SEMI-ANALYTICAL METHOD
Estimating simple relations for the added mass and damp-

ing coefficients that are functions of both the KC number and
the perforation ratio is, evidently, not trivial. In the following,
we propose a semi-analytical model for perforated plates, based
on Graham’s model for a solid plate [8]. The method is semi-
analytical in the sense that it is based on Graham’s analytically
derived expressions, Eqs. (6) and (7), but with the parameters, a0,
a1 and b1, curve-fitted to our present CFD results for perforated
plates. Since the present CFD is well validated with experiments
for perforated plates, we argue that the model is well rooted in
the physics.

For each perforation ratio, the resulting parameters, a0, a1
and b1, are presented in Table 5. Comparisons of the curve-fits to
the CFD results are presented in Fig. 10. The applied functional
relationship, i.e. Eqs. (6) and (7), seems to provide a reasonable
model. A deficiency is that the damping coefficients are under-
estimated for the densest perforated plates at low KC numbers.
Note that the perforated plates in the CFD, and the experimen-
tally investigated perforated plates which the CFD was validated
against, have sharp edged openings. This is likely to give conser-
vative coefficients. Sandvik et al. [5] performed an experimental
investigation of a realistic hatch cover model (a perforated pro-
tection structure for subsea modules), consisting of rows of cir-
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EQS. (6) AND (7). CURVE-FIT COEFFICIENTS PRESENTED IN
TABLE 5. CIRCULAR MARKERS: MODEL I. SQUARE MARK-
ERS: MODEL II.

cular cylinders. In [3], a comparison was made between their
results and experiments of a perforated plate with sharp open-
ings. The perforation ratios were similar in the two cases. The
protection structure yielded, in general, smaller added mass and
damping coefficients than the perforated plate with sharp open-
ings. Reynolds number effects must also be considered in cases
of blunt members.

Compared to the results from the semi-analytical method by
Molin, the presently proposed curve-fits yield in general smaller
mean relative differences and are considerably better correlated

TABLE 5. COEFFICIENTS IN EQS. (6) AND (7) WHEN CURVE-
FITTED TO THE CFD RESULTS. MEAN RELATIVE DIFFERENCE
(dr) AND CORRELATION COEFFICIENT (r) BETWEEN CURVE-
FIT AND CFD RESULTS.

τ a0 a1 b1 dr r

0.00 1.000 0.216 10.1 3% 1.00

0.05 0.748 0.230 10.1 2% 1.00

0.10 0.498 0.252 9.58 4% 0.99

0.15 0.281 0.271 8.72 5% 0.99

0.20 0.132 0.261 7.67 4% 0.99

0.25 0.055 0.222 6.57 2% 1.00

0.30 0.017 0.181 5.48 4% 0.99

0.35 0.000 0.156 4.44 7% 0.99

0.40 0.000 0.120 3.49 11% 0.99

0.45 0.000 0.087 2.69 15% 0.99

0.50 0.000 0.057 2.04 16% 0.99

with the CFD results. Compared to the RP by DNV GL, a
strength of the proposed method is that an estimate for both the
added mass and damping coefficients of perforated plates is eas-
ily obtained.

The curve fits for the perforated plates are based on results
for both plate models I and II for 0.24 ≤ KC ≤ 2.2. The results
from the smallest KC numbers are ignored when performing the
curve fitting for the perforated plates, as this gave a more realistic
overall behavior of the curves. The number of holes on the plate
is the important parameter for the added mass in the low KC
limit. If a value for the added mass in the low-KC limit is needed,
i.e. for KC < 0.24, one should use an alternative approach, e.g.
a source method calculation.

CONCLUSION
Numerical results, in terms of hydrodynamic added mass

and damping coefficients, from simulations of perforated plates
in oscillating flow, were presented. Ten perforation ratios, τ ,
from 0.05 to 0.50, in addition to a corresponding solid plate,
were investigated for 0.002 ≤ KC ≤ 2.2. The results from the
solid plate simulations were in good agreement with the analyt-
ical investigations by Graham [8], supporting the validity of the
simulations. Our perforated plate CFD results were validated
against previous experimental studies. Both the added mass and
damping coefficients in general decrease with increasing perfora-
tion ratio. The decrease in added mass was largest, such that the
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relative damping contribution on the total hydrodynamic force
increased with increasing perforation ratio. All plates with per-
foration ratios greater than or equal to τ = 0.1 were found to be
damping dominant. The plates with τ < 0.1 were added mass
dominated for the small KC numbers, and dominated by damp-
ing for the larger KC numbers.

In addition to the numerical simulations, 3600 calculations
were performed with Molin’s semi-analytical method for esti-
mating hydrodynamic coefficients of perforated plates. Con-
siderable differences were found between the present CFD and
Molin’s method. Challenges with choosing the empirical coeffi-
cients in the semi-analytical method, µ and α , were highlighted,
as also noted in recent literature.

Based on the relations for hydrodynamic coefficients from
the analytical solid plate model by Graham, we presented a new
semi-analytical method based on curve-fitting of our CFD results
for perforated plates. The new model provide estimates of the
added mass and damping as functions of the perforation ratio
and amplitude of motion. Due to their simplicity, these relations
can be a useful tool for estimating hydrodynamic coefficients of
perforated plates. Further validation for more perforation ratios,
as well as different types of perforated structures, would be fa-
vorable.
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