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a b s t r a c t

One of the challenges when applying managed pressure drilling (MPD) offshore on a floating rig is the
wave-induced heaving motion of the rig. During drillstring extensions, the drillstring is rigidly attached
to the rig and follows the rig’s heaving motion. This induces pressure oscillations in the well that can
violate pressure margins, in particular in rough conditions and when margins are tight. In order to
enable drilling operations under such conditions, the pressure oscillations are to be attenuated by use
of a controllable valve installed in the bottomhole assembly (BHA) at the bottom of the drillstring. The
subject of this paper is the controller design for the valve flow based on measurements of the BHA
movement and downhole pressure. Using a frequency-domain approach, the control law is designed to,
in case of downwards BHA movement, reduce the valve flow to compensate the mud being displaced
by the BHA and the flow due to mud clinging to the moving drillstring. Controlling the valve flow in
such a manner creates large differential pressures over the valve that can potentially destabilize the
BHA motion, which must be taken into consideration in the control design. Stability and performance
of the closed-loop system are verified in simulations using a high-fidelity model of the drilling mud
and elastic drillstring.

© 2019 Published by Elsevier Ltd.

1. Introduction

1.1. Managed pressure drilling

When drilling a well, fluid, often called drilling mud, is pumped
down through the drillstring, through the bit and up the annulus.
One of many purposes of the mud is to control the pressure in
the well. It is essential to keep the pressure between the pore
pressure and the fracture pressure of the formation to avoid detri-
mental events such as kick (undesired inflow of hydrocarbons
into the well) or formation fracture. While upper parts of the well
are protected by casing, the open-hole section in the lower part
of the well is exposed to the formation. In challenging situations
with tight margins between pore and fracture pressure, man-
aged pressure drilling is often applied to enable faster and more
flexible pressure control than is possible in conventional drilling,
see e.g. (Hannegan, 2006; Rehm, Schubert, Haghshenas, Paknejad,
& Hughes, 2013). In managed pressure drilling, a choke at the
topside outflow of the annulus controls the mud pressure to a
desired setpoint, which gives additional control over the pressure
in the well besides the mud weight and frictional pressure drop.

✩ This work was supported by Equinor, Norway.
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E-mail addresses: timm.strecker@unimelb.edu.au (T. Strecker),
aamo@ntnu.no (O.M. Aamo).

In many situations, it is desired to control the pressure at the
well bottom to within ±2.5bar of a setpoint (Godhavn, 2010).
Automation and feedback control can enable such tight pressure
control (Godhavn, 2010; Godhavn, Pavlov, Kaasa, & Rolland, 2011;
Stamnes, Zhou, Kaasa, & Aamo, 2008). One of the challenges
in pressure control are disturbances, such as drill string move-
ments. Drillstring movements when running into or pulling out
of the hole have long been known to induce pressure oscillations
that can potentially violate pressure margins (Burkhardt, 1961;
Mitchell, 1988; Samuel, Sunthankar, McColpin, Bern, Flynn, et al.,
2003; Wagner, Halal, Goodman, et al., 1993).

1.2. Heave-induced pressure oscillations

When drilling offshore from a floating rig, a different form of
drillstring movement occurs due to the wave-induced heaving
motion of the rig. When extending the drillstring by a segment,
the heave compensators that usually decouple the string mechan-
ically from the rig’s heave motion are disabled, and the drillstring
oscillates with the waves. The modeling and prediction of heave-
induced pressure oscillations have been the subject of research
over the last years (Aarsnes, Gleditsch, Aamo, & Pavlov, 2014;
Landet, Pavlov, & Aamo, 2013; Strecker, Aamo, & Manum, 2017).
Since the period of the heave motion is roughly in the same range
as the time it takes pressure waves to propagate through the
well, it has been identified that distributed-parameter models are
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required to accurately capture the dynamics, and attempts using
low-order lumped models, which have successfully attenuated
the effect of slow drillstring movements, have failed (Pavlov,
Kaasa, & Imsland, 2010).

Efforts on attenuating heave-induced pressure oscillations
have so far focused on controlling the opening of the topside
choke (Aamo, 2013; Albert, Aamo, Godhavn, & Pavlov, 2015;
Landet et al., 2013; Mahdianfar, Hovakimyan, Pavlov, & Aamo,
2016; Strecker & Aamo, 2017b, 2017c). Since circulation usually
needs to be stopped when extending the drillstring, the opening
of the topside choke is basically the only control input available
without additional instrumentation. While control from topside
can achieve an improvement in some situations, the fact that the
control signal has to overcome a significant amount of friction as
it propagates kilometers through the well, and the delay before
it reaches the well bottom, impose limitations on the achievable
performance of this approach (Strecker & Aamo, 2017a, 2018).
Moreover, even if an improvement is achieved at the well bottom,
disturbance rejection from topside creates a pressure amplitude
profile along the well that can make things worse at other loca-
tions in the well (Aarsnes, Aamo, Hauge, & Pavlov, 2013; Strecker
& Aamo, 2018).

1.3. Contribution and outline

This paper presents a new approach to attenuating heave-
induced pressure oscillations. Here, circulation is maintained dur-
ing drillstring connections, and an instrument comprising a con-
trollable valve as well as acceleration and pressure sensors and
a computing unit is installed in the bottomhole assembly. Flow
disturbances induced by the heave motion are compensated by
controlling the flow through the controllable valve. We present
the design of a control law that computes the desired valve flow
based on the measured movement. Installing both sensor and
actuator downhole has two main advantages over control from
topside. First, the actuator is at or very close to where pressure
control is desired. Thus, there is practically no delay and no
friction that affects the control input before it reaches the control
objective. Second, the motion of the drillstring bottom, which is
the main cause of the downhole pressure oscillations, is measured
directly. Therefore, the system does not rely on being able to
accurately predict the movement of the elastic drillstring. Since
no information exchange between the controllable valve and the
rig is required – other than perhaps start/stop signals – it can
work autonomously.

One of the challenges when controlling the valve flow in such
a manner is that it creates large differential pressures, resulting
in a force on the BHA that is in phase with the BHA movement.
In order to avoid amplifying, or even destabilizing the drillstring
motion, the control law must be designed to avoid exciting res-
onant frequencies of the elastic drillstring and the mud column
inside the string.

In a few situations, it can happen that pressure oscillations
remain in the annulus that are only slowly dampened by fric-
tion. For such cases, we present a pressure feedback scheme to
improve attenuation of the oscillations.

The paper is organized as follows. In Section 2, we present
a high fidelity model consisting of a set of coupled hyperbolic
differential equations for the dynamics of the drilling mud both
inside the drillstring and in the annulus, as well as the elastic
drillstring. Section 3 contains the design of low-order controllers
for attenuating the pressure oscillations based on BHA motion
measurements. In particular, four different designs are presented
and their stability and performance properties are compared.
Performance and stability for the two most recommendable de-
signs are further analyzed in Section 4, including the sensitivity

Fig. 1. Well schematic.

Table 1
List of variables and subscripts.
Symbol Subscript

p Pressure a Mud in annulus
q Flow rate i Mud inside drillstring
A Cross sectional area d Drillstring or BHA
β Bulk modulus b Mud below bit
F Friction force per meter rig Rig
σ Drillstring stress mp Main pump
v Velocity CV Controllable valve
ϵ Drillstring strain acc Accumulator

with respect to uncertainty, the parameterization of controller
parameters over well length when drilling a long well section,
and the system behavior in non-vertical wells. In Section 5, we
construct a case in which the remaining pressure oscillations with
BHA-movement-to-flow control are still significant, and design a
pressure feedback control to improve attenuation of the pressure
oscillations. Finally, concluding remarks are given in Section 6,
and several system coefficients are given in the appendix.

2. Modeling

A schematic of a well of length L is depicted in Fig. 1. We
divide the well into 4 different sections: Section S1 comprises the
section between topside and the top of the bottomhole assembly
(BHA), section S2 reaches from the top of the BHA to the position
where the controllable valve is installed, section S3 is from the
controllable valve to the drillbit (at the BHA bottom) and section
S4 is the section below the bit. If required, the model can easily be
extended by more sections to include, for instance, heavy weight
drill pipe between the BHA and drill string.

The axial position, z, is measured from the bottom of the well
and is kept stationary relative to earth. Although the position of
the drill string and BHA oscillates with the heave motion, this
movement is very small compared to the well length (less than
±5m compared to several km). Therefore, zbit , zCV and zBHA are
considered time invariant for simplicity.

Following the approach in Mitchell (1988) and Strecker et al.
(2017), the mud and drillstring dynamics in each section are
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modeled as coupled hydraulic transmission lines. Mathematically,
these are described by a set of coupled wave-type hyperbolic
partial differential equations (PDEs), with coupling terms at the
section boundaries. This type of PDE model has been verified
by field data from surge-swab operations in Samuel et al. (2003)
and Wagner et al. (1993). More recently, (Kvernland, Gorski,
Sant’Ana, Godhavn, Aamo, Sangesland, et al., 2019) reported a
very good match between the model from (Strecker et al., 2017)
and pressure data from a well with heave (see also Figs. 5–7
and Table 1 in Kvernland et al. (2019)). A good overview over
hydraulic transmission line models is also given in Stecki and
Davis (1986a, 1986b).

2.1. Distributed dynamics

The dynamics in each well section Sj, j = 1, 2, 3, are governed
by the following set of 6 coupled partial differential equations
which model distributed mass and momentum balances for the
elastic drillstring (or BHA, respectively), mud in annulus and mud
inside the string:
∂pa,j
∂t

= −
βa,j

Aa,j

∂qa,j
∂z

−
βa,j

Aa,j

∂Aa,j

∂pi,j

∂pi,j
∂t

(1)

∂qa,j
∂t

= −
Aa,j

ρ

∂pa,j
∂z

−
1
ρ
Fa,j(qa,j, vd,j) − Aa,jg (2)

∂pi,j
∂t

=
βi,j

Ai,j

∂qi,j
∂z

−
βi,j

Ai,j

∂Ai,j

∂pa,j

∂pa,j
∂t

(3)

∂qi,j
∂t

=
Ai,j

ρ

∂pi,j
∂z

−
1
ρ
Fi,j(qi,j, vd,j) − Ai,jg (4)

∂σd,j

∂t
= E

(
∂vd,j

∂z
+

∂εz,j

∂pi,j

∂pi,j
∂t

+
∂εz,j

∂pa,j

∂pa,j
∂t

)
(5)

∂vd,j

∂t
=

1
ρ

∂σd,j

∂z
−

1
ρAd,j

(
Fmech,j(vd,j)

+Fd,j(qa,j, qi,j, vd,j)
)
− Ad,jg (6)

Here, the subscripts indicates the subsystem (a for mud in annu-
lus, i for mud inside string, d for elastic drillstring (j = 1) and
BHA (j = 2, 3)), p is mud pressure, q is volumetric flow rate
(relative to earth), σd is the drillstring stress, ϵz the drillstring
strain in axial direction , vd the drillstring velocity (relative to
earth), β is the effective bulk modulus, A is cross sectional area, ρ
is density, F are friction forces and g is gravitational acceleration.
See also Table 1 for nomenclature. For brevity, we omitted the
argument (z, t) behind the system states in (1)–(6), and assume
that all parameters are constant along each section, although
all steps in this paper can easily be generalized to consider
space-varying parameters. Formulas for the coefficients modeling
pressure-induced pipe ballooning and length changes are given in
Appendix A. The model for the section below the bit S4 is similar
but simpler, as it is purely fluid-filled without any drillstring or
BHA. Mass and momentum for the mud balances are
∂pb
∂t

= −
βb

Aw

∂qb
∂z

(7)

∂qb
∂t

= −
Ab

ρ

∂pb
∂z

−
1
ρ
Fb(qb) − Ag. (8)

Remark 1. While the distributed dynamics are very pronounced
in all states in section S1, the BHA, in contrast, behaves almost
like a rigid body for the parameters used in this paper. However,
in order to be able to directly apply the method to other cases,
for instance when S2 represents a several hundred meter long
heavy-weight drill pipe section, or when the bit is far from the
well bottom, we use the transmission line PDE model for each
well section.

Remark 2. Details of individual tools in the BHA are neglected
in the model above, and the BHA is essentially modeled as a
restriction of the flow area. Briefly speaking, if the frictional
pressure drop over the BHA is large (say, 15bar), then it can
be impossible to control the pressure both above and below the
BHA to within a specified window around a setpoint (say, within
±5bar) at the same time, even without heave. Therefore, such a
case will be extremely challenging to drill with any technology.
On the other hand, if the frictional pressure drop over the BHA
is not very significant, it is fair to neglect some details of the
BHA shape and approximate it as an approximately smooth flow
restriction.

2.2. Boundary and coupling conditions

The PDE system (1)–(8) is completed by the following set of
boundary and coupling conditions. Here, the rig vertical velocity
vrig is an external disturbance. The flow through the controllable
valve, qCV , is the control input. In this paper we assume that the
valve opening can be controlled sufficiently fast to provide any
desired flow, and treat qCV as the control input rather than e.g. the
valve opening or an opening/closing force.

The boundary conditions at the top of the well are governed
by the heaving motion of the rig, the inflow from the main pump
and the outflow through the annular choke. Here, the topside
position of the annulus is kept static relative to earth whereas
the drillstring top moves with the heaving rig. An accumulator
partially filled with air is installed at the outlet of the main pump
in order to smoothen potential pressure oscillations inside the
drillstring. The air pressure inside the accumulator is governed
by the ideal gas law, i.e. Vair,accpair,acc = cacc is constant, and we
have Vacc = Vmud,acc = Vair,acc . The topside mud pressure inside
the string is assumed to be equal to the gas pressure. This gives
for the topside boundary conditions

qa,1(L, t) = qchoke(t) (9)

V̇mud,acc(t) = qmp − qi,1(L, t) − Ai,1vd(L, t) (10)

pi,1(L, t) =
cacc

Vacc − Vmud,acc
(11)

vd,1(L, t) = vrig (t) (12)

where qmp is the main pump flow rate (assumed to be constant)
and the flow through the annular choke, qchoke, is modeled by a
valve equation of the form

qchoke(t) = cchoke

√
p1a(L, t) − 1[bar]

ρ
. (13)

In practice, the choke flow is determined by a separate con-
trol system for the choke opening but, as this choke control
loop is much slower than the heave disturbance, we treat choke
coefficient cchoke as a constant in this paper.

According to Bernoulli’s principle, there is a discontinuity in
the mud pressure at locations where flow areas change. However,
these discontinuities are magnitudes smaller than the pressure
fluctuations caused by heave, and are neglected in the following.
Thus, the coupling condition at the upper BHA end are governed
by continuity of mud pressures and string velocity, force balance
at the transition from drillstring to BHA, as well as the flow
balance induced by the moving area change. For brevity, we
introduce the notation pzBHAa,1 = pa,1(zBHA, t) for all t and Aa,1−2 =

Aa,1 − Aa,2. This gives

pzBHAa,1 = pzBHAa,2 (14)

pzBHAi,1 = pzBHAi,2 (15)

Ad,1σ
zBHA
d,1 = σ

zBHA
d,2 Ad,2 + pzBHAa,1 Aa,1−2
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Table 2
Nominal parameters.
L 4000m E 200GPa τ0 10Pa
zbit 10m Ef 50GPa K 30mPas
zCV 60m ρ 1580kg/m3 n 1
zBHA 110m ρd 7800kg/m3 qmp 1.5m3/min
rw 0.1079m cchoke 10−3 m2 ν 0.3
β 2GPa cbit 7.5 × 10−4 m2 νf 0.2

+ pzBHAi,1 Ai,1−2 (16)

qzBHAa,1 = qzBHAa,2 + Aa,1−2v
zBHA
d,2 (17)

qzBHAi,1 = qzBHAi,2 − Ai,1−2v
zBHA
d,2 (18)

v
zBHA
d,1 = v

zBHA
d,2 (19)

The coupling condition at zCV is similar to the one at zBHA, but here
we have qCV as an input

pzCVa,2 = pzCVa,3 (20)

pzCVi,2 Ai,2 − σ
zCV
d,2 Ad,2 = pzCVi,3 Ai,3 − σ

zCV
d,3 Ad,3 (21)

qzCVa,2 = qzCVa,3 + Aa,2−3v
zCV
d,3 (22)

qzCVi,2 = qCV − Ai,2v
zCV
d,2 (23)

qzCVi,3 = qCV − Ai,3v
zCV
d,3 (24)

v
zCV
d,2 = v

zCV
d,3 . (25)

At the drill bit (BHA bottom), mud flow rates are governed by the
flow through the bit, qbit , and the dashpot-like effect of the mov-
ing BHA, mud pressure below and around the BHA is assumed
continuous, and the pressure forces on the BHA determine the
mechanical stress at the BHA bottom

qzbiti,3 = qbit − Ai,3v
zbit
d,3 (26)

qzbitb = −qbit + qzbita,3 + Ad+i,3v
zbit
d,3 (27)

pzbitb = pzbita,3 (28)

pzbitb Ad+i,3 = pzbiti,3 Ai,3 − σ
zbit
d,3 Ad,3. (29)

The flow through the bit is modeled by a valve equation

qbit (t) = cbit

√
pi,3(zCV , t) − pb(zCV , t)

ρ
(30)

There is a no-flow boundary condition at the well bottom,

qb(0, t) = 0. (31)

2.3. Model parameters

Throughout this paper, unless stated otherwise, we use the
well parameters given in Table 2 and as outlined in the following.
We assume that the well has a constant diameter rw as given in
Table 2, is vertical and that the drillstring is concentric in the well.
Thus, the cross sectional areas are

Ai,j = πr2di,j Ad,j = π
(
r2do,j − r2di,j

)
(32)

Aa,j = π
(
r2w − r2do,j

)
Ab = πr2w, (33)

for j = 1, 2, 3, where rdi,j and rdo,j are the inner and outer
drillstring/BHA diameters, respectively, and are given in Table 3.

The friction terms are determined by the mud properties
and the well geometry. The Herschel–Bulkley model (Herschel &
Bulkley, 1926) is widely used to model the rheology of drilling
fluids, and has become the recommended standard in the drilling

Table 3
Well geometry.

S1 S2 S3

rdo,j 0.0635m 0.0698m 0.0698m
rdi,j 0.0546m 0.0381m 0.0381m

Fig. 2. Viscous friction forces on mud column and on drill string for constant
flow rates and stationary drill string.

industry (API Recommended Practice 13D, 2006). It relates the
shear rate γ̇ to the shear stress τ by

τ (γ̇ ) =

(
K |γ̇ |

n−1
+

τ0

|γ̇ |

)
γ̇ if |τ | > τ0

γ̇ = 0 if |τ | ≤ τ0

(34)

where τ0, K and n are the yield point, consistency index and flow
index of the fluid, respectively. That is, the shear stress has to
overcome the yield point before the fluid shears. The case n = 1,
which we are using in this paper, is often called Bingham fluid,
in which case K is called the plastic viscosity. Since flow in the
annulus is laminar under the given flow rates and geometry,
we apply the methodology developed in Strecker et al. (2017)
to construct the friction terms Fa,j and Fb, which are shown in
Fig. 2 for a stationary drill string. Briefly speaking, the friction
terms are obtained using curve fitting and data obtained from
2D simulations of the fluid velocity profile over the annulus cross
section. The effect of mud being accelerated by sticking to the
moving string is taken into account by formulating friction as a
function of the fluid velocity relative to the drillstring velocity.
Therefore, friction forces also depend on the drill string velocity.
See Strecker et al. (2017) for more details.

Inside the drillstring, the flow rate is large enough to induce
turbulence. Therefore, the method from (Strecker et al., 2017) is
not applicable since it assumes laminar flow. Instead, we use the
friction terms from (API Recommended Practice 13D, 2006) for
fluid friction inside the drillstring, which are also shown in Fig. 2.

In vertical wells, it is assumed that there is no contact force
between the drillstring and the formation. Thus, Fmech = 0 in
vertical wells. In non-vertical wells, however, gravity and bending
forces lead to a contact force between string and formation. In
such cases, we apply the formula from (Aadnoy & Andersen,
1998). Briefly, mechanical drag is modeled as

Fmech(vd) = µN sign(vd) (35)

where µ is a friction factor and N is the normal force of the string
acting on the formation.
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Fig. 3. Wave elevation spectrum Sw according to the Jonswap spectrum with
significant wave height 6 m and peak period 12 s, response amplitude operator
of a semisubmersible rig and rig response spectrum Sr .

2.4. Heave motion

Waves are usually characterized via the spectrum of the wave
elevation. For the North Sea, the Jonswap spectrum (Hasselmann,
Barnett, et al., 1973) has been developed based on curve fitting
and observational data. The Jonswap wave spectrum Sw for a
significant wave height of 6m and 12 s peak period is depicted
in Fig. 3. The actual motion of the drilling rig also depends on the
response amplitude operator (RAO) of the rig, which describes the
rig motion response to waves depending on the frequency. Many
semisubmersible drilling rigs that are used in rough conditions
are designed to have a small RAO, in particular at high frequen-
cies, such as the one depicted in Fig. 3. The rig response spectrum
Sr is given by

Sr (ω) = Sw(ω)RAO2(ω). (36)

Almost all of the energy in Sr in the example in Fig. 3 is in the
frequency range 0.35 ≤ ω ≤ 0.65 rad/second, corresponding
to periods from approximately 9.5 to 18 s. It should be noted
that other drilling platforms, such as drilling ships, can have a
larger RAO in the frequency range of the waves, resulting in a
larger response spectrum. Since the boundary condition (12) is
expressed in terms of velocity rather than elevation, we require
spectrum of the vertical rig velocity, Sv , which is given by

Sv(ω) = ω2Sr (ω). (37)

2.5. Transfer functions

The controller design in this paper and part of the performance
analysis will be completed in the frequency domain. For this
purpose, the state–space model (1)–(8) is linearized around the
steady state determined according to a fixed pump flow rate qmp
and vrig = 0. That is, all flows inside the drillstring and in the
annulus are equal to qmp, the drillstring velocity and qb are zero.
The steady state pressures at each location are determined by in-
tegrating the hydrostatic and frictional pressure gradient against
the flow direction starting from the annular choke. Then, the
nonlinearities in the friction terms, in the valve equations for the
bit and annular choke, and in the equation for the accumulator
pressure are linearized around steady state. The pump flow rate
is kept sufficiently high such that the flow disturbance due to
heave never reverses the flow direction, keeping the flow rate
away from the strong friction nonlinearities at zero flow in Fig. 2.

Next, we Laplace-transform the linearized system to obtain
the transfer functions from the external input vrig and the control
input qCV to the bottomhole pressure

p0(t) = pb(0, t), (38)

Fig. 4. Block diagram of the closed-loop system. They lower block indicates the
controller C consisting of the heave integrator Ch and the velocity-estimate to
flow controller Cvq .

which is to be kept at the setpoint by control, and to the mea-
surement

v̇CV = v̇
zCV
d,2 . (39)

Let P(s) =

(
p11(s) p12(s)
p21(s) p22(s)

)
denote the open-loop transfer

function, i.e. (see also Fig. 4)(
p0(s)
v̇CV (s)

)
= P(s)

(
vrig (s)
qCV (s)

)
. (40)

The closed-loop transfer function from vrig to p0 is

Gcl(s) = p11(s) + p12(s)C(s) (1 − p22(s)C(s))−1 p21(s). (41)

Using this, the root mean square of the bottomhole pressure,
which is a reasonable performance measure, is given by

rms(p0) =

√
1
2π

∫
∞

−∞

|Gcl(iω)|2Sv(ω)dω (42)

where Sv is the spectrum of the vertical heave velocity as given
in (37).

Regarding the derivation of P , Laplace-transforming (1)–(6) in
each well section j = 1, . . . , 4 gives an ODE in z of the form
∂

∂z
xj(z, s) = Āj(s)xj(z, s) (43)

where the states vectors are

xj(z, s) =
(
pa,j(z, s) qa,j(z, s) pi,j(z, s) qi,j(z, s)

σd,j(z, s) vd,j(z, s)
)T

, j = 1, 2, 3 (44)

x4(z, s) =
(
pb(z, s) qb(z, s)

)T (45)

The matrix Āj(s) as well as others that are used in the following
equations are given in Appendix B. Defining

z10 = zBHA, z20 = zCV , z30 = zCV , z40 = zbit , (46)

the solution of (43) is of the form

xj(z, s) = eĀj(s)(z−zj0)x(zj0, s). (47)

for z ∈ Sj. After linearizing (10)–(11) and (13), the topside
boundary conditions can be written in the form

B̄11(s)x1(L, s) = B̄11(s)eĀj(s)(L−zBHA)x1(zBHA, s)

= D̄1(s)
(

vrig (s)
qCV (s)

) (48)

and analogously for the coupling and boundary conditions at zBHA,
zCV , zbit and z = 0. Stacking all coupling and boundary conditions
into one equation, the overall system can be written as

Λ(s)x∗(s) = D(s)
(

vrig (s)
qCV (s)

)
(49)
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with

x∗
=
(
x1(zBHA) x2(zCV ) x3(zCV ) x4(zbit )

)T
. (50)

After solving (49) for x∗, the outputs are obtained by use of (47),
i.e.

p0(s) = Γ1(s)x∗(s), v̇CV (s) = Γ2(s)x∗(s). (51)

If the objective is changed to controlling the pressure at a position
different to the well bottom, the performance output can easily
be changed to the pressure at an arbitrary position in the annulus
or below the bit by modifying the Γ1 matrix. Finally, using Γ =

(Γ1 Γ2)
T ,

P(s) =

(
p11(s) p12(s)
p21(s) p22(s)

)
= Γ (s)Λ−1(s)D(s). (52)

3. Controller design

Both dominant causes of downhole pressure oscillations –
the dashpot-like movement of the BHA and mud sticking to the
moving drillstring – are most appropriately described as flow
disturbances rather than as accelerations. Therefore, we split the
controller from BHA acceleration to controllable valve flow into
two steps. First, a heave integrator, denoted by Ch, estimates the
current BHA velocity from the measured acceleration. Second, a
feedforward controller, denoted Cvq maps the estimated velocity
to the desired controllable valve flow. The full controller from
acceleration to flow is denoted by

C(s) = Ch(s)Cvq(s). (53)

3.1. Heave velocity estimation

Mathematically, the heave velocity can be obtained by simply
integrating acceleration. In practice, this would result in drift of
the mean of the estimated velocity due to measurement bias and
noise. A better solution is given by a band-pass filter of the form

Ch =
s

s2 + 2ζωcs + ω2
c

(54)

which acts like an integrator at high frequencies but ensures that
there is no drift in the mean of the estimated velocity. Here, the
cut-off frequency ωc is chosen slow enough such that the filter
behaves like an integrator in the dominant frequency range of
the heave motion. In this paper, we use ωc = 0.01, which
is much slower than the heave frequency. Therefore, there is
almost no error between real heave velocity and the velocity es-
timated from acceleration measurements. In practice, small error
between actual and estimated heave velocity will be a require-
ment on the hardware used, although first lab-scale experiments
(see also Figure 5 in Kvernland, Christensen, Borgen, Godhavn,
Aamo, Sangesland, et al. (2018)) suggest that the heave velocity
can be estimated relatively accurately in such a fashion and even
better results should be expected with higher-quality hardware.
Heave-estimator design tradeoffs taking into consideration the
magnitude of noise and bias are also discussed in Godhaven
(1998).

3.2. Design of controller vCV to qCV

3.2.1. Nominal infinite-dimensional controller
Assume for now that the BHA velocity is directly available to

the controller instead of estimated via the acceleration. This is a
reasonable assumption because, as discussed above, we assume
that the error between actual heave velocity and the velocity
estimated by Ch using acceleration measurements is negligible.

Fig. 5. Bode plot of C∞ and the different low-order approximations (lpf=low-
pass filter, lp&nf = low-pass and notch filters, uncon=unconstrained c2 , con =
constrained c2). The black dotted lines indicate the frequency range of the heave
disturbance.

The transfer functions from vrig and qCV to vCV are 1
s p21(s) and

1
s p22(s), respectively.

After closing the control loop, the pressure output p0 is given
by

p0(s) =

(
p11 + p12Cvq(I −

1
s
p22Cvq)−1 1

s
p21

)
vrig . (55)

In an ideal case, the closed-loop transfer function form vrig to
output p0 should be zero. Mathematically, this can be achieved by
setting the closed-loop transfer function from vrig to p0 as given
in (55) to zero and solving for C . This gives

C∞ = s
p11

p11p22 − p12p21
. (56)

However, the feedforward controller as given in (56) is infinite-
dimensional and, hence, not implementable in practice. There-
fore, a finite-order approximation of C∞ is required.

3.2.2. Low-order controller
In this paper we use a least-square approximation of C∞

weighted by the disturbance spectrum. That is, we compute the
finite-order controller by solving the optimization problem

min
Cvq∈C

∫
∞

0
Sv(ω)

⏐⏐Cvq(iω) − C∞(iω)
⏐⏐2 dω (57)

where C is the set of permissible controllers of the desired struc-
ture. Since the computational power available downhole is lim-
ited, the dimension of the controller should be small. As can be
seen in Fig. 3, the frequency range of the heave disturbance is
relatively narrow. Therefore, good disturbance rejection can be
achieved by a relatively low-order approximations of C∞. The
velocity-to-flow controller Cvq obtained via (57) is then combined
with the velocity estimator (54) to obtain the acceleration-to-
flow controller C as in (53).

The Bode plots of C∞ and 1
s p22 are depicted in Figs. 5 and 6,

respectively. At low frequencies, 1
s p22 has almost constant gain

and phase. Gain and phase then increase, starting approximately
in the frequency range of the heave motion, with a first resonance
at approximately ω = 1.7 rad/s. More resonances occur at higher
frequencies, where the magnitude decreases very slowly with
increasing frequency. The infinite-dimensional controller C∞ is
also approximately constant at low frequencies. Both gain and
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Fig. 6. Bode plot of p22 and of the feedback loop p22C with C as in (53) using
Ch as in (54) and different choices of Cvq .

Fig. 7. Nyquist plot of the feedback loop 1 − p22C with C as in (53) using Ch
as in (54) and different choices of Cvq .

Table 4
Comparison of the closed-loop performance for different controller choices.
Cvq / C (58) (59) (60) (61) Ad-hoc C = 0

rms(p0) [bar]
(frequency domain) 0.06 1.1 0.3 0.05 1.1 3.6

rms(p0) [bar]
(nonlinear simulation) 0.2 1.1 0.4 0.2 1.2 3.7

phase drop in the heave frequency range. In the following we
discuss and compare different choices of controller form for Cvq; a
low-pass filter and a low-pass filter combined with a notch filter.
Unconstrained low-pass filter. Since C∞ roughly resembles a
low-pass filter at frequencies up to the heave disturbance, and in
order to cancel resonances at higher frequencies, our first choice
is to perform the optimization in (57) over the set of all low-pass
filters, i.e.

C =

{
c1

c2s + 1
: c1 ∈ R, c2 ≥ 0

}
. (58)

The Bode plot of the resulting first-order controller is also de-
picted in Fig. 5, and the Bode plot of the closed feedback loop Cp22
using this Cvq is shown in Fig. 6. Since this choice of Cvq matches
the optimal C∞ very closely, the closed loop-performance is very

good, with rms(p0) ≈ 0.06bar when computed via the transfer
function and (42). In the simulation of the full nonlinear model,
the root mean square of the bottomhole pressure deviation from
steady state is slightly higher at 0.2 bar. See also Table 4. Stability
of the closed-loop system can be tested via the Nyquist plot which
is depicted in Fig. 7. By differentiating the total energy in the mud
and elastic drillstring, it can be shown that the open-loop system
with inputs vrig and qCV is stable. Thus, for stable controllers, the
closed-loop system is stable if the Nyquist contour of 1 − p22C
does not encircle the origin. The low-pass filter obtained by the
optimization still has a relatively large gain at the frequency of
the first resonance at ω ≈ 1.7, resulting in a peak gain of the
feedback loop of approximately 0.83, and consequentially a rather
small gain margin in case of modeling or actuator errors.
Constrained low-pass filter. The effect of the first resonance at
ω ≈ 1.7 rad/s can be reduced by limiting the roll-off frequency.
For instance, a peak gain of p22C of approximately 0.5 can be
achieved by limiting the roll-off frequency to 1 rad/s, i.e. using

C =

{
c1

c2s + 1
: c1 ∈ R, c2 = 1

}
. (59)

However, this significantly affects the controller in the heave
frequency range, resulting in a worse performance of rms(p0) ≈

1.1bar.
Constrained low-pass and notch filters. A more subtle way of
avoiding excitation of the first resonance is by use of a notch-
filter. This can be realized by optimizing over the set

C =

{
c1

c2s + 1
s2 + ω2

n

s2 + ζωns + ω2
n

: c1 ∈ R, c2 ≥ 0.2
}

. (60)

where we use ωn = 1.7 and ζ = 0.5 for the nominal parameter
set. The parameter ζ determines the width of the notch and is
tuned to be wide enough to robustly cancel the resonance but
narrow enough to avoid affecting the controller much in the fre-
quency range of the heave motion. In order to limit the controller
gain at the frequencies of higher resonances, we limit the roll-off
frequency by the (active) constraint c2 ≥ 0.2. The notch filter
and bound on the roll-off frequency affect performance slightly
(rms(p0) ≈ 0.2bar), but robustness is improved considerably, see
Figs. 6 and 7. Since the constraint on c2 is active in this example,
the optimization is actually performed over the steady state gain
c1 only.
Unconstrained low-pass and notch filters. If the roll-off fre-
quency is left unconstrained, for comparison, i.e. using

C =

{
c1

c2s + 1
s2 + ω2

n

s2 + ζωns + ω2
n

: c1 ∈ R, c2 ≥ 0
}

, (61)

one obtains slightly better performance at the expense of higher
gain at the frequencies of higher resonances, which again leads to
relatively small gain margins (Fig. 5 through 7). In the remainder
of the paper, we focus on the two designs using (58) and (60), that
is the unconstrained low-pass filter and the constrained low-pass
and notch combination, respectively.
Ad-hoc controller. For comparison, Figs. 5 through 7 and Table 4
also show performance and robustness for a simpler controller
design and no control. An ad-hoc approach for designing the feed-
forward controller Cvq would be to simply cancel the dashpot-like
effect of the drillstring movement. Neglecting friction around
the BHA, the drillstring movement displaces a volume equal to
−(Ad,1 + Ai,1)vd,1(xBHA, t) at the bottom of the annulus. This flow
disturbance can be canceled by use of

Cvq(Ad,1 + Ai,1). (62)

Constant valve flow. We will also compare performance to the
case that the flow through the controllable valve is kept constant
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at qmp, which is equivalent to C = 0. By use of the ad-hoc
controller design (62), the downhole pressure oscillations are
reduced compared to the uncontrolled case (rms(p0) from 3.6 bar
to 1.1 bar), but not to the same level as the optimization-based
designs.

4. Controller performance analysis

4.1. Performance in simulations of the nonlinear model

In the following, we further analyze the controller perfor-
mance in simulations of the full nonlinear model. Fig. 8 shows
the time series of the vertical heave velocity of the rig used in all
simulations over a 5 min period. The bit follows the rig movement
closely with a slightly larger amplitude due to resonances in the
elastic drill string. The bit movement is almost identical for all
controllers discussed above. The figure also shows the time series
of the deviation of the bottomhole pressure from the mean value.
In the uncontrolled case, the pressure oscillates with the heave
motion by up to approximately ±8bar. Both the unconstrained
low-pass filter (58) and the notch-filter combined with the con-
strained low-pass filter (60) suppress the oscillations of p0 to
within ±1bar, with slightly better performance by the low-pass
filter. The ad-hoc controller also achieves a significant reduction
to within ±2.5bar. These results are in line with the trends
in Table 4. Notably, in all simulations the pressure amplitude
peaks exceed its root mean square significantly. The percentage
of time when the time series of p0 exceeds rms(p0) by a factor
of γ or more is also depicted in Fig. 8. The downhole pressure
exceeds rms(p0) on average 35% of the time, exceeds 1.5 · rms(p0)
approximately 12% of the time and 2 · rms(p0) less than 5% of the
time. Such a statistic can be useful in practice when one might
be interested in the amplitude of pressure peaks rather than only
the rms value.

Also relevant in practice is the distribution of the pressure
oscillations along the well rather than at only one location at the
well bottom, and is given in Fig. 9. In the uncontrolled case, the
pressure amplitude has a maximum at the bottom and decreases
along the well. Both controllers (58) and (60) reject the pressure
oscillations most effectively at the bottom, for which they are
designed. Pressure amplitudes remain somewhat larger further
up in the well, but still significantly smaller than in the uncon-
trolled case. By replacing the pressure output p0 in the transfer
functions (see also Fig. 4) by the pressure at an arbitrary location
in the annulus, for instance at z = 1000m, and following the
same procedure in the controller design for the modified transfer
functions, it is possible to design the controller that rejects the
pressure oscillations at other locations than the well bottom. The
result for such a design with an unconstrained low-pass filter is
also shown in Fig. 9. The pressure amplitude at z = 1000m is
reduced further at the expense of a slightly larger amplitude at
z = 0. However, as shown in Fig. 7, robustness is worse than
with the original design. That is, modifying the pressure output
pushes the optimized controller parameters closer to the margin
of stability. Introducing constraints on the controller parameter
c2 as discussed above, all of which were active, leads to almost
exactly the same controllers, and thus pressure amplitude pro-
files, as with p0 as performance output. That is, it is impossible
to create the pressure profile of the black line in Fig. 9 with
the same robustness margins as when using (60). This case can
still be relevant in practice, though, if closed-loop instability is
impossible due to mechanical friction in long horizontal wells.

Fig. 8. Time series of rig and bit velocities, downhole pressures for different
controller choices, as well as percentage of time when the downhole pressure
time series exceeds γ · rms(p0).

Fig. 9. Root mean square of the pressure plotted over the axial position. The
solid lines are obtained from simulations of the nonlinear model while the
dashed lines are according to the transfer functions and (42).
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4.2. Flow through controllable valve

Fig. 10 shows the time series of the flow through the control-
lable valve. The flow fluctuates considerably between approxi-
mately 500 l/min and 2500 l/min. The flows for the low-pass filter
and low-pass and notch designs are very similar, while the ad-
hoc controller induces smaller flow variations due to the smaller
controller gain. There is usually a non-return valve installed in
the bit in order to prevent particles such as rock cuttings from
getting into the drillstring. Therefore, negative qCV is impossible
and the mean of qCV , i.e. the main pump flow rate must be chosen
large enough to ensure that qCV stays away from zero. Fig. 10 also
shows the coefficient of the controllable valve, cCV , depending on
the mean pressure drop over the valve, that is required to induce
the flow for the low-pass and notch controller. Here, we assume
that the flow is governed by a valve equation of the form

qCV = cCV

√
∆pCV

ρ
(63)

where ∆pCV is the pressure drop over the controllable valve. The
valve coefficient can be controlled via the opening of the valve.
When increasing qCV , a higher pressure drop over the bit causes
a pressure build-up between bit and controllable valve, meaning
that the valve must be opened further to provide the flow. If the
mean of ∆pCV is chosen too low, such as 50bar in this example,
the required valve coefficient variations would become very large
and even saturate during high waves. When increasing the mean
of ∆pCV to 75bar, the valve coefficient variations become feasible.
Increasing ∆pmean

CV further decreases the variations of the valve
opening. For instance, if the coefficient of a fully open valve is 2×

10−3 m2, roughly 2.7 times the value of cbit in this example, and
assuming a linear valve characteristic, the valve opening would
oscillate between approximately 5% and 65% for ∆pmean

CV = 75bar
and approximately 5% and 35% for ∆pmean

CV = 100bar. Therefore,
it is important to build up a sufficient pressure drop over the
controllable valve prior to operation.

4.3. Stability of closed-loop system

The purpose of this section is to further investigate stabil-
ity of the closed-loop system in simulations, in particular the
significance of nonlinearities in the model. Since fluid friction
in the interior of the drillstring is quadratic in the flow rate,
the transfer functions which are based on a linearization of the
friction function tend to underestimate the stabilizing effect of
friction. Moreover, mechanical friction in non-vertical wells can
further stabilize the drillstring movement.

Fig. 11 shows the net fluid pressure forces acting on the BHA
relative to the bit movement with and without control. Briefly
speaking, pressure forces are in phase with the bit movement in
case of control and in opposing phase without control. Without
control, upwards movement of the BHA results in an increase in
the fluid pressure above the BHA inside the string, and thus an
increase in the pressure force acting downwards on the BHA and
the controllable valve. Similarly, it causes a net decrease of the
upwards pressure forces from below and from the annulus. That
is, upwards movement of the BHA results in an net downwards
force on the BHA, which dampens its movement. The controller,
however, increases the flow through the controllable valve in
case of upwards movement, mainly to compensate the displaced
fluid. Therefore, the fluid pressure inside the drillstring decreases
relative to steady case while the pressure forces from below
and from the annular side are kept close to steady state. Thus,
upwards bit movement leads to a net upwards force on the
BHA. If this positive feedback mechanism is strong enough, in

Fig. 10. Time series of qCV and the discharge coefficient of the controllable valve
for different differential pressures.

Fig. 11. Net upwards fluid pressure forces acting on the BHA assembly relative
to upwards bit velocity.

particular when a resonant frequency is excited, it can destabilize
the system.
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Fig. 12. Nyquist plot of the feedback loop using the low-pass filter multiplied by
various factors, and the corresponding bit velocities obtained from simulations
of the nonlinear model.

In the linear model, the closed-loop system becomes unstable
if the Nyquist contour of 1 − p22C encircles the origin. In the
following we test to which degree the Nyquist criterion agrees
with stability observed in simulation of the nonlinear model, for
the example with the unconstrained low-pass filter controller
obtained via (58). As shown in Fig. 12, the Nyquist contour is
at the margin of stability if the controller is multiplied by a
factor of 1.2. In a vertical well, the trajectory of the bit velocity
is still stable, but it exhibits some high-frequency oscillations
around the trajectory when using the unmodified controller. If
the multiplicative factor is increased, these oscillations become
more severe, but remain stable. Divergence of the bit movement
is observed from approximately a factor of 1.45 onwards, where
the bit begins to oscillated with increasing amplitude in the
frequency of the first resonance observed in the Bode plot of p22
at ω = 1.7 rad/s. While it is advisable to keep a reasonable margin
from instability, it has to be considered in practice the vibrations
observed at a factor of 1.2 can already be detrimental due to
increased wear on the equipment.

Fig. 13. Variation of 1
s p22 with well length.

Since real wells are never perfectly vertical, there will always
be mechanical drag dampening the drillstring movement. Fig. 12
also shows the trajectory of vbit in a well that is inclined by 2
degree from vertical. Two degree inclination results in a 140m
horizontal displacement of the well bottom relative to the well
head in the 4000m deep well. In this well, the bit movement re-
mains stable if the controller is multiplied by a factor of 1.45, but
instability occurs from a factor of approximately 1.55 onwards.
Thus, the stabilizing effect of mechanical friction is noticeable.
However, the potentially destabilizing effect of the flow controller
is still relevant in such near vertical wells.

4.4. Variation with well length

During the drilling process, it is essential to be able to drill
a whole section of up to several kilometers length. Therefore, it
is important to understand how the system dynamics depend on
well length. Moreover, controller performance can be improved
by updating controller parameters as drilling progresses, instead
of using one fixed controller for drilling a long section.

Fig. 13 shows how 1
s p22 varies with the length of the well. The

frequency of resonances, most importantly of the first resonance,
increases the shorter well is. This can be directly related to
the time pressure waves in the mud inside the drillstring take
to propagate through the well. The magnitude of the transfer
functions also varies slightly.

Nyquist plots of the closed loop system using the controller
designs discussed above are shown in Fig. 14. When using the
unconstrained low-pass filter design (58) or the ad-hoc controller
(62), longer wells are more robustly stable, whereas a 2000m
deep well is right at the margin of stability when using these
controllers, and render the closed-loop system unstable in a short
1000m well. This dependence on well length can be attributed
to a combination of the resonant frequency and the fact that
the shorter the well, the less friction dampens pressure waves
propagating through the well. Similar to the previous section,
the Nyquist criterion roughly agrees with stability observed in
simulations of the nonlinear model. By use of the constrained
notch-filter design (60) with the same parameters ζ = 0.5 and
c2 ≥ 0.2 (the optimization constraint on c2 is active for all
lengths tested here), stability is sufficiently robust in all cases.
Here, the frequency of the notch-filter, ωn, is determined as the
first resonance as depicted in Fig. 13. Due to better robustness,
we focus on the design (60) in the following.

If communication between topside and the controllable valve
is available, it is possible to update the controller as drilling
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Fig. 14. Nyquist plots for different well lengths using the unconstrained low-
pass filter (58), the constrained low-pass plus notch filter (60), and the ad-hoc
controller (62).

Table 5
Dependence of performance on well length using the second-order parameter-
ized controller coefficients, and using the ad-hoc controller and no control for
comparison.
Well length [m] 1000 2000 3000 4000 5000 6000

rms(p0) [bar) 0.5 0.45 0.4 0.4 0.5 0.4
rms(p0), ad-hoc Unstable 0.8 0.95 1.1 1.3 1.45
rms(p0), C = 0 3.3 3.55 3.55 3.6 3.9 4.25

progresses. However, if no such communication is available, or
breaks down, it is important to still be able to autonomously
update the controller, where the well length can be determined
for instance by detecting connections of new drillstring segments.
The frequency of the notch-filter ωn as well as the controller
coefficient c1 obtained form the optimization procedure is plotted
over the well length in Fig. 15. As shown in the figure, it is
possible to find an accurate second-order parameterization of
these controller parameters over L. The Nyquist contours when
using this parameterization are virtually the same as those in
Fig. 14. Performance is given in Table 5. The magnitude of the
remaining pressure oscillations varies slightly with well length,
but not significantly.

4.5. Sensitivity with respect to model uncertainty and actuation
errors

In this section we investigate the sensitivity of closed-loop
performance and stability with respect to uncertainty in various
parameters. In practice, many downhole parameters, such as
friction and bulk modulus, are uncertain to a certain extent, or
change over time. For instance, mud composition or the pressure
drop over the annular choke might be changed intentionally
during the drilling operation, but mud properties can also change
unintentionally and unnoticed due to chemical reactions or tem-
perature changes. Therefore, it is important that the controller
performance is not excessively sensitive with respect to such
uncertainties.

The sensitivity of the downhole pressure oscillations with re-
spect to multiplicative uncertainty in the annular friction, friction
inside the drillstring and in the mud bulk modulus is depicted
in Fig. 16. Here, the nominal parameters are multiplied by a
factor of 1 + ∆, and the controller is obtained by use of the
constrained low-pass + notch filter controller design (60) and
nominal parameters. In all three cases, the magnitude of the

Fig. 15. Controller parameters depending on well length as obtained by
least-squares optimization and second-order approximation.

Fig. 16. Sensitivity of performance with respect to various parameters when us-
ing the constrained low-pass plus notch filter (60) tuned for nominal parameters,
and without control.
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Fig. 17. Nyquist contour for all parameter samples from Fig. 16.

pressure oscillations is affected only little. For all three types of
uncertainty, re-optimizing the controller for the actual, uncertain
parameters brings only a marginal improvement compared to the
controller that is designed for nominal parameters (not depicted
in the figure). In the case of uncertainty of the bulk modulus, for
instance, the sensitivity can be attributed to the fact that a larger
bulk modulus generally results in larger pressure oscillations, as
the same trend can also be seen in the case without control. The
Figure also shows the sensitivity with respect to changes in the
pressure drop over the annular choke, ∆pchoke. This pressure drop
is controlled via the choke opening, and is changed while drilling
in order to adjust the mean value of the bottomhole pressure.
Controller performance is also very insensitive with respect to
such changes in this example. However, in other examples with
very little friction in the annulus, performance can be more sensi-
tive since the magnitude of potential pressure resonances depend
on a combination of choke opening, well length and the annular
friction parameters.

Sensitivity of the Nyquist contours is depicted in Fig. 17.
Uncertainty in annular friction has almost no effect. Uncertainty
in friction inside the drillstring, in contrast, has a more significant
effect as it determines by how much pressure resonances inside
the drillstring are dampened, which can apply a destabilizing
force on the BHA. The effect of uncertainty in β and ∆pchoke on
robustness is moderate.

The previous analysis assumes exact actuation, where we have

qCV (t) = qmp + qC (t) (64)

where qC (t) is the controller output at time t . Figs. 16 and 17 also
show the sensitivity with respect to gain and delay errors in the
heave-rejection controller, i.e.

qCV (t) = qmp + δ × qC (t − θ ) (65)

for gain error δ and delay θ . Due to the single-input single-output
structure of the controller, the delay is the sum of delays in

sensing and actuation. Here, we assume that the mean of qCV is
held accurately at qmp, for instance by a separate slower control
loop keeping the interior pressure above the controllable valve
constant. Both performance and robustness of stability are rela-
tively sensitive to controller gain errors, significantly more sen-
sitive than with respect to parametric errors considered above.
Performance is similarly sensitive with respect to a delays of
approximately 0.5 s or longer, while the effect of delays is hardly
noticeable for delays of less than around 0.1 s. Since the controller
gain is designed to be small, stability is robust with respect to
delays.

4.6. Inclined wells

Since mechanical friction between the drillstring, BHA and
borehole wall is basically a step function in the drillstring ve-
locity, it is not possible to find an accurate linear approximation.
Therefore, mechanical friction is not considered in the transfer
functions derived in Section 2.5, and thus in the controller design.
However, many wells are non-vertical. In many situations, a well
has a vertical section up to a certain depth and then a near-
horizontal section through the reservoir. The well path of such a
well is depicted in Fig. 18, along with the simulated bit movement
and the downhole pressure oscillations. As the rig moves with
the heaving motion, the tension in the drillstring first has to
overcome drag in the more than 2000 m long horizontal section
before the bit moves. The bit is at rest until enough tension builds
up. Once the drag force is overcome, the built-up tension causes
the bit to snap, resulting in a short velocity peak larger than the
rig velocity and the bit velocity in the vertical case (compare to
Fig. 8). This is also visible in the spectrum of the bit movement.
Compared to the rig motion, the bit motion in case without
control has a smaller peak at ω = 0.5, but the bit velocity has
additional components at a higher frequencies of around ω = 1.4.

Fig. 18 also shows the downhole pressure trajectory both
with and without control. Even though the controller design
neglects mechanical friction, a significant improvement in the
pressure oscillations is achieved. Due to the fact that the con-
troller measures the BHA movement and thus, essentially, the
disturbance, performance is relatively insensitive to errors in the
drillstring model. This is a big difference to the case where the
actuation is topside, which heavily relies on being able to predict
the bit movement based on the model for drillstring elasticity.
See Strecker and Aamo (2018) for comparison. The remaining
pressure oscillations in Fig. 18 are slightly worse than in the
nominal example in Fig. 8, though, since the controller gain is
too small at the second frequency peak around ω = 1.4 rad/s,
which is very close to the frequencies that are filtered out by the
notch filter. In fact, it can be seen in Fig. 18 that with control,
the downhole pressure oscillates with frequency ω = 1.4 rad/s
while the lower frequency components are attenuated very well,
whereas without control the pressure trajectory follows the bit
movement more closely.

Due to the higher bit velocities, the control inputs are larger,
both when using the low-pass filter and the low-pass with notch
filter designs. The larger variations in qCV cause larger forces on
the BHA. Therefore, despite mechanical friction, the bit velocities
when using control are slightly larger than without control. Yet,
instabilities did not occur even when multiplying the controller
gains with a factor of 2 (not depicted here). Thus, the low-pass
filter design appears to be robustly stable in this case, and it is
not necessary to introduce the notch filter at the expense of some
performance.
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Fig. 18. Well path of a deviated well, simulated bit movement and pressure
oscillations, and spectrum of the heave velocities.

5. Utilizing pressure feedback

The proposed controllable valve can not only measure accel-
eration but also mud pressures both on the inner and annular
sides. In this section, we investigate to what extent feedback
of the annular pressure next to the controllable valve can im-
prove performance. Let pCV denote the deviation of the annular
pressure from steady state. In the previous examples, feedfor-
ward control, where the control input is computed based on the

Fig. 19. Block diagram of the closed-loop system with both feedforward and
feedback.

Fig. 20. Downhole pressure oscillations in deviated well like in Fig. 18 with and
without pressure feedback.

measured bit movement rather than by feedback of the control
error, achieves very good disturbance rejection. Performance is
relatively sensitive with respect to actuation errors, but this is
related to hardware limitations and hardly possible to improve
by modifying the control architecture. One case where feeding the
control error back into the control input can bring an advantage
is in horizontal wells, where we have seen in Section 4.6 that
the feedforward controller can fail to attenuate high-frequency
components of the disturbance.

In order to design an example where the benefit of feedback
is clearer, we change the choke coefficient and fluid rheology to
cchoke = 3 × 10−4 m2, τ0 = 5Pa and K = 10mPas. This way,
friction in the annulus is reduced and a pressure resonance in
the annulus is created, similar to the high-frequency pressure
oscillations observed in Fig. 18 but larger in magnitude. The
corresponding pressure trajectories in open-loop and with the
low-pass filter feedforward controller is shown in Fig. 20. The
feedforward controller achieves an reduction in pressure oscilla-
tions from rms(p0) ≈ 2.4bar to rms(p0) ≈ 1.4bar, but is not as
effective as in the previous case. The bit movement is almost the
same as in Fig. 18.

It is straightforward to derive the extended transfer function
P in Fig. 19 by following the same steps as in Section 2.5. We
focus on the case where the bit is only a few meters above
the well bottom, the controllable valve is installed close to the
bit and friction around the BHA is small. Thus, pCV is almost
identical to p0, and we can design the feedback controller to
reject the oscillations of pCV . The feedback controller should not
control the mean of the downhole pressure, and have small gain
at high frequencies to avoid sensitivity to noise and exciting high-
frequency resonances. Therefore, we propose a band-pass filter of
the form

Cfb(s) = −k
s

(s + ω1)(s + ω2)
. (66)
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The frequencies ω1 = 0.1 rad/s and ω2 = 10 rad/s are chosen to
accommodate the heave spectrum and slightly higher frequen-
cies. The minus sign in (66) is to reduce the flow qCV if pCV is
too high and vice versa. Then, following a similar procedure as in
Section 3.2, the gain k is designed so that the closed loop system
is stable and has a similar gain margin as the unconstrained low-
pass filter in Fig. 7, which gives k = 2 × 10−7 m3/(sPa). Smaller
k reduces effectiveness whereas larger k risks instability of the
closed-loop system. The resulting downhole pressure oscillations
in our example are shown in Fig. 20. The feedback controller
achieves a reduction of rms(p0) to approximately 0.5 bar, with
almost no change in the bit movement.

6. Conclusion

In this paper, we considered the problem of attenuating heave-
induced pressure oscillations by controlling the flow through a
valve at the bottom of the drillstring based on the measured
BHA motion. Changing the valve flow creates large differential
pressures that can amplify the drillstring movement. A trade-
off between performance and designing the control law to avoid
exciting resonant, destabilizing frequencies is discussed. The pro-
posed control law achieves a significant reduction in the pressure
oscillations in the well. Due to the proximity of actuator and
sensor to the well bottom, which is where the most pressure-
sensitive part of the well is and where the piston-like effect of
the drillstring movement occurs, performance is relatively insen-
sitive to uncertainty in parameters and unmodeled mechanical
friction in horizontal wells. If required, pressure feedback can be
applied to improve attenuation of remaining pressure oscillations.
When the cost for additional instrumentation is justified, the
controllable valve can enable drilling operations in conditions
where other methods, such as setting the choke opening to create
a pressure antiresonance or pressure control from topside are
insufficient.
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Appendix A. Coefficients for drillstring deformation

Variations in the fluid pressures cause ballooning and com-
pression of the elastic string and the formation. Formulas for the
changes in drill string internal and external diameter as well as
length due to internal and external pressures are given in Young
and Budynas (2002), Table 13.5, cases 1a and 1c. They can be used
to derive the following expressions

∂Aa,j

∂pa,j
=

2πr2do,j
E

(
r2do,j + r2di,j
r2do,j − r2di,j

− ν

)

+
2πr2w
Ef

(
1 + νf

)
(67)

∂Aa,j

∂pi,j
= −

4πr2do,jr
2
di,j

E(r2do,j − r2di,j)
(68)

∂Ai,j

∂pa,j
= −

4πr2do,jr
2
di,j

E(r2do,j − r2di,j)
(69)

∂Ai,j

∂pi,j
=

2πr2di,j
E

(
r2do,j + r2di,j
r2do,j − r2di,j

+ ν

)
(70)

∂Ab

∂pb
=

2πr2w
Ef

(
1 + νf

)
(71)

∂εz,j

∂pa,j
=

2νr2do,j
E(r2do,j − r2di,j)

(72)

∂εz,j

∂pi,j
=

2νr2di,j
E(r2do,j − r2di,j)

(73)

For a given mud bulk modulus β under atmospheric conditions,
the effective bulk modulus for mud inside string, mud in annulus
and mud below bit are

βa,j =β

(
1 +

β

Aa,j

∂Aa,j

∂pa,j

)−1

(74)

βi,j =β

(
1 +

β

Ai,j

∂Ai,j

∂pi,j

)−1

(75)

βb =β

(
1 +

β

Ab

∂Ab

∂pb

)−1

(76)

Appendix B. Matrices for Laplace-transformed system
Define the friction factors as follows (see also Section 2.3

and Strecker et al. (2017) for more details on the friction terms)

faa,j =
∂Fa,j
qa,j

fad,j = −
∂Fa,j
vd,j

(77)

fii,j =
∂Fi,j
qi,j

fid,j = −
∂Fi,j
vd,j

(78)

fda,j =
∂Fd,j
qa,j

fdi,j = −
∂Fd,j
vi,j

(79)

fdd,j =
∂Fd,j
vd,j

fb = −
∂Fb
qb

(80)

where the derivatives are taken at flow rate = qpump (except for
the subsystem below the bit, where the nominal flow rate is zero)
and string/BHA velocity = 0, and the signs are chosen such that all
friction factors are positive (See Eqs. (81) and (82) given in Box I).

Ā4(z, s) =

(
0 −

sρb+fb,j
Ab

−s Ab
βb

0

)
(83)

B̄11(s) =

⎛⎝ 0 0 0 0 0 1
0 0 s cacc

pmp
pmp 0 pmpAi,1

−kc 1 0 0 0 0

⎞⎠ (84)

B̄21(s) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

Aa,1−2 0 Ai,1−2 0 −Ad,1 0

⎞⎟⎟⎟⎟⎟⎠ (85)

B̄22(s) =

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 −Aa,1−2
0 0 0 −1 0 −Ai,1−2

−1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 Ad2 0

⎞⎟⎟⎟⎟⎟⎠ (86)

B̄32(s) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0 Ai,2
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 Ai,2 0 −Ad,2 0

⎞⎟⎟⎟⎟⎟⎠ (87)
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Āj(z, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
sρa,j+faa,j

Aa,j
0 0 0 fad,j

Aa,j

−s Aa,j
βa,j

0 −s ∂Aa,j
∂pi,j

0 0 0

0 0 0 sρi,j+fii,j
Ai,j

0 fid,j
Ai,j

s ∂Ai,j
∂pa,j

0 s Ai,j
βi,j

0 0 0

0 −
fda,j
Ad,j

0 fdi,j
Ad,j

0 sρd,j +
fdd,j
Ad,j

−s ∂εz,j
∂pa,j

0 −s ∂εz,j
∂pi,j

0 s
E 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j = 1, 2, 3 (81)

Λ(s) =

⎛⎜⎜⎜⎜⎝
B̄11(s)eĀ1(s)(L−zBHA) 0 0 0

B̄21(s) B̄22(s)eĀ2(s)(zBHA−zCV ) 0 0
0 B̄32(s) B̄33(s) 0
0 0 B̄43(s)eĀ3(s)(zbit−zCV ) B̄44(s)
0 0 0 B̄54(s)e−Ā4(s)zbit

⎞⎟⎟⎟⎟⎠ (82)

Box I.

B̄33(s) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 1 0 Ai,2
0 −1 0 0 0 −Aa,2−3
0 0 0 0 0 −1

−1 0 0 0 0 0
0 0 −Ai,3 0 Ad,3 0

⎞⎟⎟⎟⎟⎟⎠ (88)

B̄43(s) =

⎛⎜⎝0 0 −kb 1 0 Ai,3
0 1 −kb 0 0 Ad,3 + Ai,3
1 0 0 0 0 0
0 0 Ai,3 0 −Ad,3 0

⎞⎟⎠ (89)

B̄44(s) =

⎛⎜⎝ kb 0
kb −1
−1 0

−(Ad,3 + Ai,3) 0

⎞⎟⎠ (90)

B̄54(s) =
(
0 1

)
(91)

D̄1 =

(1 0
0 0
0 0

)
D̄3 =

⎛⎜⎜⎜⎜⎜⎝
0 1
0 1
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎠ D̄ =

⎛⎜⎝ D̄1
06×2

D̄3
05×2

⎞⎟⎠ (92)

Γ1(s) =
(
01×18 (1 0) exp(−Ā4(s)zbit )

)
(93)

Γ2(s) =
(
01×11 s 01×8

)
(94)
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