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Summary

Throughout this work, the applicability of using an open-source approach
for optimizing well placement configuration of an oil reservoir was inves-
tigated. In petroleum field development, manual tools are frequently em-
ployed to optimize reservoir depletion strategies that are tedious and usu-
ally inefficient. Therefore, attention to finding a systematic optimization
approach for petroleum field development problems in a cost-efficient man-
ner has increased over the past decades. The efficiency of an optimization
process can be significantly improved by utilizing automatic optimization
procedures. Although the implementation of such procedures is very often
associated with costly software licenses, this cost can be eliminated by us-
ing software packages with open-source type licenses.

The applicability of an open-source optimization workflow has been demon-
strated through the case study described in this thesis. The case study fo-
cuses on finding the optimal well placement configuration for a marginal
oil field in the Norwegian Continental Shelf, and it consists of two parts.
The first part of this work focuses on converting the ECLIPSE model of the
reservoir so that it can be run in OPM-Flow, which is a reservoir simula-
tor with an open-source license. The second part of this thesis focuses on
solving the well placement optimization problem of this oil field by using
FieldOpt, which is a software that applies mathematical programming tech-
niques to ease the optimization procedures applied to field development.

During the simulation model conversion process, a number of approxima-
tions and modifications were made to the original simulation deck to de-
velop a work model that can be run in Flow. The impacts of individual
modifications were investigated, and the simulation results generated by
Flow were validated against a commercial reservoir simulator via a bench-
mark test. The benchmark test using the work model of the reservoir in-
dicated that results predicted by Flow are in close agreement with the ref-
erence simulator results, and simulation run-time comparison showed that
the single-core performance of Flow was only slightly slower than the ref-
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erence simulator in this test.

In the second part of this thesis, the well placement configuration of the
reservoir was optimized. The optimization algorithms used in this part
were Particle Swarm Optimization (PSO) and Asynchronous Parallel Pat-
tern Search (APPS). Two different search configurations for each optimiza-
tion algorithm were explored. The performance of these algorithms was
assessed in terms of the total number of function evaluations performed
for each optimization run, final incremental objective function (i.e., NPV)
improvement yields, and applicability of the placement solutions. Results
indicated that for this particular optimization problem, the PSO algorithm
yielded slightly higher objective function improvements for single well op-
timization cases. However, in terms of efficiency, the APPS algorithm con-
verged to optimum solutions in a smaller number of function evaluations.
Consequently, the final well placement configuration based on the individ-
ual placement solutions improved the objective function by 30.8% over the
base case scenario.
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Chapter 1
Introduction

According to leading energy outlook and analysis firms, the world’s con-
sumption of energy is rapidly increasing and this trend will surely continue
into the foreseeable future. Although renewable energy sources are the
fastest growing source of energy, it is predicted that oil and gas will ac-
count for around 50% of the worldwide primary energy consumption by
2040, see figure 1.1.

 The transition to a lower-carbon 
energy system continues,  
with renewable energy and  
natural gas gaining in importance 
relative to oil and coal.

 In the ET scenario, renewables  
and natural gas account for  
almost 85% of the growth in  
primary energy, with their 
importance increasing relative  
to all other sources of energy.

 Renewable energy (7.1% p.a.) is the 
fastest growing source of energy, 
contributing half of the growth 
in global energy, with its share in 
primary energy increasing from  
4% today to around 15% by 2040.

 Natural gas (1.7% p.a.), grows 
much faster than either oil or coal, 
overtaking coal to be the second 
largest source of global energy  
and converging on oil by the end  
of the Outlook.

 Oil (0.3% p.a.) increases during  
the first half of the Outlook,  
although much slower than  
in the past, before plateauing  
in the 2030s. 

 Coal consumption (-0.1% p.a.)  
is broadly flat over the Outlook,  
with its importance in the global 
energy system declining to its 
lowest level since before the 
industrial revolution.

Key points

Shares of primary energy Primary energy consumption by fuel

The transition to a lower-carbon fuel mix continues, led by 
renewables and natural gas

79   |   BP Energy Outlook: 2019 edition   |   © BP p.l.c. 2019

Fuels

Billion toe

Renewables and 
natural gas account for 
85% of energy growth

Figure 1.1: Primary energy consumption forecast (BP Energy Outlook 2019).
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Chapter 1. Introduction

Considering the fact that the fossil fuels are non-renewable energy sources,
meeting the required energy demand for oil and gas will be challenging
in the future. Although huge reserves of unconventional hydrocarbon re-
sources are available, the excisting recovery mechanisms for these resources
are eighter not economically attractive at the current economic environment
or politically and environmentally sensitive to meet the ever-increasing en-
ergy demand (Muggeridge et al., 2014). Since it is becoming increasingly
difficult to find new conventional oilfields, oil and gas companies are focus-
ing on maximizing the hydrocarbon recovery factors (RF) from their exist-
ing fields as well as sustaining the economic production rates. A recent
study shows that the average RF from mature oilfields around the world
is between 20-40 %, which means that more than half of the hydrocarbon
volumes are left under the ground (Muggeridge et al., 2014). However,
the RF can be improved by choosing the optimal reservoir development
strategy for both new discoveries and existing fields that will maximize
the oil recovery and minimize the capital expenditure. In traditional reser-
voir engineering practice, manual tools are commonly employed to come
up with optimum reservoir development strategy which might require ex-
cessive amounts of trial and error tries before reaching to a decisive reser-
voir depletion strategy. However, as modern computers are becoming more
powerful and less expensive, the manual workflow of finding the optimal
solutions to field development problems can be replaced with automatic
procedures. This will make the workflow more time efficient as well as less
prone to errors if applied properly.

Nowadays, finding a systematic optimization approach for petroleum field
development problems in a cost-efficient manner is a popular research topic
among researchers, industry leaders, and engineers. The main cost of the
automatic optimization approach is very often associated with software li-
censes. These proprietary software packages, e.g. Petrel and ECLIPSE
by Schlumberger, enable reservoir engineers to simulate various field de-
velopment scenarios and make decisions based on the simulated results.
However, this cost can be eliminated by using open-source software suits
instead. Therefore, the first part of this thesis consists of converting the
ECLIPSE model of the reservoir to be compatible with OPM-Flow, which
is an open-source reservoir simulator. This part was carried out as a spe-
cialization project in reservoir engineering during the fall semester in 2018.
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This work is a case study focusing on the well placement optimization of
a marginal oil reservoir in the Norwegian Continental Shelf (NCS) by us-
ing FieldOpt, which is a software that applies mathematical programming
techniques to search for the optimal solutions in the field development prob-
lems. The flexible programming structure of FieldOpt allows it to be adapt-
able to a wide variety of optimization algorithms, use cases, and method-
ologies for solving field development and reservoir management problems
(Baumann et al., 2019). Throughout this work, different optimization algo-
rithms were employed to find an optimized well placement configuration
for a conventional oil field located on the NCS, and performance of these
algorithms were compared in terms of the total number of cost function
evaluations and the final objective function values obtained. The main pur-
pose of this work is to prove the possibility of using FieldOpt for realistic
field development optimization decisions.

Thesis Outline. The structure of the following chapters contained in this
thesis are described as below:

Chapter 2: Background. The background topics on reservoir management,
field development optimization, and optimization theory are contained in
this chapter. A comprehensive description will be provided for each of the
optimization algorithms tested in this work. Besides, the software architec-
ture of the FieldOpt software will also be presented in this chapter.

Chapter 3: Methodology. This chapter starts with explaining the key con-
cepts regarding the open-source field development optimization workflow
and the benefits that this type of workflow potentially offers to the industry.
This will be followed by brief background information on the reservoir and
its simulation model used in this case study. The details of the simulation
model conversion and validation procedure will also be outlined. Finally,
the optimization methodology implemented to optimize the well placement
in the reservoir will be presented.

Chapter 4: Results. This chapter consists of two sections. The results of the
simulation model conversion and validation of the converted model will be
presented in the first section. The second section will be the presentation of
the well placement optimization results that were obtained using FieldOpt.

3



Chapter 1. Introduction

Chapter 5: Discussion. This chapter will expand upon the main results
achieved during this work, and try to address the main research questions.
Furthermore, the drawbacks and further recommended improvement areas
in Flow and FieldOpt will be summarized.

Chapter 6: Conclusions. The end-summary and concluding remarks are
contained in this chapter. Recommendations on further work will also be
highlighted at the end.

4



Chapter 2
Background

The work done in this thesis combines the aspects of reservoir manage-
ment, field development optimization, reservoir simulation, and optimiza-
tion theory. In this chapter, brief introductions to part of those topics that
are relevant to this work are provided.

2.1 Reservoir Management and Field Develop-
ment Optimization

The reservoir management practice can be defined as maximizing prof-
its from a reservoir by optimizing recovery while minimizing the capital
investments and operating expenses with the use of available resources.
These resources include technology, human, and financial. Successful reser-
voir management requires a multidisciplinary team effort and integration of
people, tools, data, and technology (Satter et al., 1994). According to Sat-
ter, although the reservoir management plan can be implemented at any
time during the lifetime of the reservoir, the ideal time to start managing a
reservoir is at its discovery. An early implementation of reservoir manage-
ment leads to better overall project planning, implementation, monitoring,
and evaluation as well as saves capital in the long run.

As of today, many different tools are available for reserve estimations and
reservoir performance prediction, such as material balance techniques, vol-
umetric estimations, decline curve analysis, and reservoir simulators. Each
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Chapter 2. Background

of these tools have their own pros and cons depending on the problem and
the way these tools are applied. However, reservoir simulators are more
commonly employed in reservoir management projects compared to the
other alternative tools. This is because simulation models account for the
complex flow patterns and changing fluid properties over time, which are
crucial parameters that affect the future performance of the reservoir.

Reservoir models are built based upon the data gathered from multiple
sources, such as seismic, well logs, well tests, and production history match-
ing from the existing wells. Since it is possible to build different realiza-
tions of a reservoir based on the same data, the models should be validated
and occasionally updated as new information becomes available about the
reservoir. Reservoir simulators are also widely used for solving field devel-
opment optimization problems, where multiple development scenarios are
built and compared based on their future performance. Therefore, building
and maintaining a reliable reservoir model is an essential task for reservoir
management and development.

2.1.1 Reservoir simulation
A reservoir simulator utilizes a set of partial differential equations to de-
scribe the flow of fluids and change of dynamic properties of a reservoir
during its production. The reservoir is represented by a numerical model
consisting of an array of individual grid cells, where the adjacent grid cells
are linked together by the interblock transport equations. The equations that
describe fluid flow in porous media are derived by combining the concepts
of mass conservation and Darcy’s equation. For clarity, the flow equations
described in this section entail several simplifications. Details on the flow
equations and numerical discretization can be found in Aziz and Settari
(1979) or Peaceman (1977).

In the following, the governing equations for fluid flow in the porous media
will be presented.

∇
[

1

Bo

uo

]
+ qo = − ∂

∂t

[
1

Bo

φSo

]
(2.1)

Equation 2.1 describes the flow of the oil phase in the system, where Bo is
the oil formation volume factor, and uo is the Darcy velocity of this phase.
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Rock porosity and oil saturation are represented by φ and So, respectively.
The source/sink term of the oil phase is represented by qo.

∇
[

1

Bw

uw

]
+ qw = − ∂

∂t

[
1

Bw

φSw

]
(2.2)

Similarly, Equation 2.2 describes the flow of the water phase in the system,
where Bw is the water formation volume factor, and uw is the Darcy veloc-
ity of this phase. The source/sink term and saturation of the water phase
are represented by qw and Sw, respectively.

∇
[
Rs

Bo

uo +
1

Bg

ug

]
+ qg +Rsqo = − ∂

∂t

[
φ

(
Rs

Bo

So +
1

Bg

Sg

)]
(2.3)

Equation 2.3 describes the flow of the gas phase in the system, where Bg is
the gas formation volume factor, and ug is the Darcy velocity of this phase.
The source/sink term and saturation of the gas phase are denoted by qg and
Sg, respectively.

The Darcy velocity of each fluid flowing through the porous medium is
expressed as:

ui = −kkri
µi

∇pi, i = o, w, g (2.4)

where i specifies the corresponding fluid phase, k is the absolute (rock) per-
meability, and ∇pi is the pressure gradient of phase i. The viscosity and
relative permeability of phase i is denoted by µi and kri(Si), respectively.

In order to solve the equations presented above, three additional equations
are required. These equations are:

So + Sw + Sg = 1 (2.5)

pcow = po − pw (2.6)

pcog = pg − po (2.7)

where pcow represents the capillary pressure between the oil and water
phase, and pcog represents the capillary pressure between the oil and gas
phase in the system.
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The equations (2.1) to (2.7) are discretized and solved numerically for the
saturation and pressure of each phase. Reservoir model sizes for these
equations typically range from tens of thousands to several millions of grid
blocks for small and large models, respectively. A typical reservoir simula-
tion might require several hundred time steps.

In order to compute the volume of fluids produced and injected at each time
step, reservoir models are coupled to well models via the source term q as:

q = J(pR − pbh) (2.8)

where pR is the average reservoir pressure in grid cell, and pbh is the flow-
ing bottom-hole pressure in the well. The constant of proportionality J
is referred to as the productivity index (PI) for production wells and the
well injectivity index (WI) for injection wells (Lie, 2014). This well model
can be extended further to account for near wellbore formation damage
(skin), anisotropic media, multiphase flow, and horizontal wells. Further-
more, there are also models to describe the fluid flow inside the well to
compute the surface flow rates and tubing head pressure. See Peaceman
et al. (1983) for further details on this topic.

2.1.2 Field development optimization
Optimization project of a petroleum field involves a wide spectrum of engi-
neering disciplines, where decisions have to be made in various field devel-
opment aspects such as reservoir production, drilling, and facilities opera-
tions (Baumann et al., 2019). Since the field level optimization of a reser-
voir comes down to the well level optimization decisions, a few possible
well configuration parameters, e.g. the number, type, location, bottom-hole
pressure (BHP) and valve settings, can be identified as potential optimiza-
tion parameters.

The research on field development optimization is quite extensive, and in-
vestigating every aspect of production optimization is out of the scope of
this work. However, optimization of well parameters can be narrowed down
to three key parameters: well control, well completion design, and well
placement configuration. This thesis focuses only on optimization of the
well placement in the reservoir.
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Well Control Optimization. The goal of the well control optimization is to
determine the optimal settings that will maximize the oil and gas production
rates and decrease the water production rate of the producer wells, as well
as find the optimum injection rates for the injector wells that will maximize
the sweep of the reservoir. The main control variables for optimization are
the well bottom hole pressure, and the production or injection target rates
for the producer and injector wells at specific dates, respectively.

The two main strategies to deal with well control optimization is the reac-
tive and proactive approaches (Ebadi et al., 2006). In the reactive strategy,
the well controls are based on downhole events, such as a sudden increase
in water or gas production rate. On the other hand, with the proactive
approach, the well control settings are planned long before water or gas
breakthrough in the well. This approach relies heavily on the current and
forecasted well performance. Therefore, a precise model of the reservoir or
the well is required in order to employ this approach.

Well Completion Optimization. The well completion optimization aims to
maximize the NPV and minimize unwanted fluid production by finding the
optimal settings for inflow control valves (ICVs). The wells that contain
such downhole assemblies are often called smart wells or intelligent wells.
This technology allows the control of pressure profiles along the wellbore
by restricting or shutting off the flow from the specific compartments in
the multi-lateral wells (see figure 2.1). Smart wells are also equipped with
downhole sensors to acquire real-time flow rate, downhole temperature, and
pressure data for reactive or proactive production control (Arukhe et al.,
2017). The surface control unit controls the valve settings of ICVs via
eighter hydraulic or electrical control lines.

The main challenge with the use of ICVs is to determine the correct vavle
settings to achieve the optimum flow conditions in the well since the num-
ber of possible valve configurations is too high for finding the optimum
valve setting manually by trial and error method. Therefore, well comple-
tion optimization has become a popular research topic in the oil and gas
industry since automation of this process will lead to a higher productivity
index, better water management, longer well life, and save time at the same
time. There are many optimization algorithms available to solve such op-
timization problems given that a reliable simulation model of the reservoir
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and the well exists.

Figure 2.1: The figure illustrates the smart well completion for four separate inflow zones
isolated by packers and inflow control valve in each zone. Electric and hydraulic control
lines as well as the measurement devices are not shown in the figure (Van der Poel and
Jansen, 2004).

Well Placement Optimization. The main idea behind the well placement
optimization task is to find the optimal locations for the producer or injec-
tor wells to be drilled in the reservoir formation. The optimum placement
for each well is usually determined after the total number and type of wells,
and their operational settings, such as BHP or injection rates, are specified
by the reservoir management team. It is important to have clear limitations
on the feasible search area of the new wells, which is usually based on the
engineering experience or the specific knowledge about the reservoir, such
as faults, thief zones, etc.

Once these limitations are established and translated into the constraints on
the problem formulation, the success of the optimization job depends on
the constraint-handling capabilities of the optimizer, and the efficiency of
the search algorithms being used for the task (Jesmani et al., 2015). The
constraints guide the optimizer to search for the optimal solution in the de-
sired region of the formation and avoid locating the well too close to the
neighboring wells or to the geological structures that will be challenging to
drill through. A wide variety of optimization methodologies have been de-
veloped, and have been applied in various engineering disciplines since the
1960s (Jansen et al., 2005). The methodologies that are applied to solve the
well placement optimization problems are typically the gradient-free and
direct search methods. More detailed information about the methodologies
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used in this work will be presented in the next section.

Currently, FieldOpt software (see section 2.3) is capable of solving all three
of the field development optimization problems that were mentioned in this
section.

2.2 Optimization Theory
In mathematics, an optimization problem consists of finding the input value
that maximizes or minimizes the function by systematically searching within
an allowed solution space and computing the value of the function. In gen-
eral, optimization is finding the ”best available” values of an objective func-
tion given the input domain.

2.2.1 Optimization problem

An optimization problem consists of three components: the objective func-
tion, variables, and constraints. Mathematically, optimization problem can
be described as (Nocedal and Wright, 2006):

min
x∈Rn

−f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) > 0, i ∈ I (2.9)

Where:

• x is the vector of variables, also called as parameters;

• f is the objective function, a function of x needs to be maximized or
minimized;

• c is the vector of constraints that the variables must satisfy. The
number of components in c is the number of individual restrictions
that are placed on the variables.

• E and I are the set of indices for equality and inequality equations
respectively.
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In reservoir production optimization problems, a reservoir simulator is used
to solve the equations of fluid flow in porous media to compute the objective
function associated with a given input variable. The objective function in
these type of problems is usually Net Present Value (NPV) or the weighted
sum of the cumulative fluid productions from the reservoir.

In order to search for the optimal well placement in the specific region
of the reservoir, a reservoir bound constraint needs to be imposed on the
variables. Reservoir bound constraints prevent the movement of the heel
and toe of the well outside the specified region. Therefore, optimizing the
well placement in order to maximize the NPV can be formulated as below
(Bellout, 2014):

NPV (x) =
Ns∑
k=1

(
Np∑
j=1

poq
j,k
o (x)∆tk −

Np∑
j=1

cwpq
j,k
wp(x)∆tk−

−
Ni∑
j=1

cwiq
j,k
wi (x)∆tk

)/
(1 + i)t

(2.10)

where Np and Ni denote total number of producer and injector wells in the
system, qj,k

o ,qj,k
wp and qj,kwi are flow rates for the produced oil and water, and

water injected for the well j at the output interval k respectively, and ∆tk
is the length of each of the Ns time steps in the simulation. The weights
of each component are the oil price, and cost of water production and in-
jection per barrel, which are represented by po, cwp and cwi respectively.
The i stands for the discount rate (expressed in %), and t is the is the total
number of the years starting from zero at the first year. The discount rate is
the interest rate that is used for calculating the present value of the future
cash flow of a project, company, or asset. For simplicity, the discount rate
was assumed to be zero in this work.
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2.2.2 Optimization algorithms
Once the objective, variables, and constraints for the given problem are
identified, an optimization algorithm can be used to find its solution. De-
pending on the type of optimization problem, a wide variety of algorithms
are available to solve the problem. However, it is crucial to pick an algo-
rithm that is suitable for the given problem, since this choice determines if
the problem is solved efficiently or not, or even if a solution is obtained at
all.

Optimization algorithms require an initial guess of the optimal values of the
variables and iteratively generate a set of improved estimates until the con-
vergence conditions are met. The main difference between the optimization
algorithms is the strategy they use to move from one estimate to another.
For example, some algorithms use the local information from the current
point only, while others use the information gathered from other points or
previous iterations. An optimization algorithm needs to have the follow-
ing properties to be considered suitable for real engineering and scientific
applications (Nocedal and Wright, 2006):

• Robustness: The algorithm should handle the problem properly for
any reasonable initial starting points.

• Efficiency: It should keep the computation cost low.

• Accuracy: It should not be sensitive to the noise in the input data,
and identify the solution with precision.

These properties may conflict with each other when employed to solve real
optimization cases. Therefore, the users have to find a balance between
these three points based on their needs and the problem at hand.

Discrete versus Continuous Optimization. Depending on the type of the
variable that the algorithm is searching for, the optimization problems can
be categorized as discrete optimization problems and continuous optimiza-
tion problems.

In discrete optimization problems, the solution only makes sense if it is an
integer value. Solving the problem with real variables and then rounding
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them to the nearest integer values does not guarantee that the solution ob-
tained is optimal. As a result, a new mathematical constraint is introduced
to the existing constrains in eq. (2.10):

xij ∈ Z, for all i and j (2.11)

where Z is the set of all integers (Nocedal and Wright (2006)). For the gen-
eral problem of well placement, well locations are considered to be discrete
variables due to the fact that wells are assigned to discrete grid blocks in
the reservoir simulation model.

The continuous optimization problems, on the other hand, use variables
that are chosen from a set of real values in order to calculate the objec-
tive function. One typical example of such an optimization problem in the
context of this work would be a well control optimization case. Because
of this continuity, it is possible to use the objective function information at
any point to get information about the function behavior at the neighboring
points by using various calculus techniques. The optimization problems
in this category can be solved using the gradient-based optimization algo-
rithms, which will be mentioned in the next sections.

Deterministic and Stochastic Optimization. Deterministic optimization is
the branch of optimization algorithms that incorporate algorithms that rely
heavily on linear algebra, i.e. gradient-based, to search for an optimum
point in the search space. The results of a deterministic optimization pro-
cess are replicable because the solution of this method depends on the initial
guess point. Therefore, the solution will always converge to the same opti-
mum point if departed from the same starting point (Cavazzuti, 2012).

This branch of optimization algorithms usually require a lower number of
objective function evaluations to reach the solution compared to stochastic
optimization algorithms. However, these algorithms have a high chance of
converging to a local optimum instead of the global optimum.

Stochastic optimization branch, on the other hand, consists of algorithms
that solve an optimization problem by including mathematical randomness
in their search procedure (Cavazzuti, 2012). Depending on the way the
randomness is included, stochastic optimization algorithms can be further
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classified into separate families, e.g. Simulated Annealing, Particle Swarm
Optimization, Evolutionary Algorithms, Genetic Algorithms, etc. Each of
these families contain algorithms that are built to mimic some natural phe-
nomena that are observed in nature. Commonly, the search techniques of
these algorithms are population-based, meaning they are imitating the col-
lective behavior of the living organisms, such as flocking or swarming.

The main advantage of stochastic algorithms is that they do not get trapped
in a local optimum due to the role of randomness in their search process.
In each search step, the initial guess is randomly generated and solved it-
eratively until the optimum solution is found. Compared to deterministic
optimization methods, these algorithms are also less mathematically com-
plicated. However, stochastic methods can be computationally resource-
intensive to implement as a large number of objective function evaluations
are required for convergence (Sethi, 1983).

Optimization methods can be further classified into local and global opti-
mization groups. Local optimization algorithms are usually gradient-based
and seek for the stationary points of the objective function. However, the
stationary points found by the algorithm are not guaranteed to be the global
maxima or minima of the function (see figure 2.2). Global optimization al-
gorithms are essentially stochastic optimizers that are non-gradient based,
so that they do not get stuck in the local optimum points and rather continue
searching for the global optimum.

Regardless of the method used for solving an optimization problem is de-
terministic or stochastic, some elements are required in order to set up and
solve the problem. Especially a starting point in the search domain, and
a stopping criterion must be provided. Once the optimization process is
run, the algorithms generate a sequence of iterates that terminate when the
solution has been reached with sufficient accuracy or when the number of
function evaluations exceeds the allowed threshold.

The gradient-based deterministic algorithms search for the feasible solu-
tion by using the gradients of the function at the given point in order to
determine the search direction at the next iteration. There are two strategies
available for searching for the direction of the optimum point: line-search
approach and trust region approach.
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Figure 2.2: An illustration of a function with two local maximums and a global maximum
(Jin, 2015).

Line Search Methods. For a general optimization problem,

min
x∈Rn

−f(x), (2.12)

where f : IRn → IR, the optimization algorithm starts the search from point
x0 and generates a sequence of points x(k) in the search space converging
to the optimum solution (assuming f is smooth). The steps of a line search
method at iteration k can be summarized as:

• determine a direction dk

• find αk that minimize f(xk + αkdk), where α ∈ IR

• set xk+1 = xk + αkdk,
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where xk is a point in search space and dk is a search direction, also referred
to as descent direction (Kolda et al., 2003). First, a descent direction vector
dk ∈ IRn is calculated at the point xk, which means it has to be within 90o

of -∇f(xk) (see figure 2.3):

−∇f(xk)Tdk > 0 (2.13)

Figure 2.3: The figure illustrates the level curve of a function at xk, shown in black. The
red arrow represents the steepest descent direction from xk, and the red line represents the
tangent plane at the xk. The descent direction, indicated by the blue line segment, satisfies
the descent condition in eq. (2.13) since it is within 90o of −∇f(xk). However, only a
short step along the direction dk will yield improvement. As a consequence, the iterates
may converge prematurely to a point that is not a stationary point as the angle between the
dk and −∇f(xk) approaches 90o (Kolda et al., 2003).

Second, a step length αk > 0 is calculated so that the objective function
value is decreased:

f(xk+1) < f(xk) (2.14)

Once the above condition is satisfied, the point xk+1 becomes the new it-
erate, and the first two steps are repeated. However, simple application of
these steps does not guarantee that the solution will converge to a stationary
point (Gould, 2006). In general, the performance of line search methods de-
pends on the choice of both the step-length α and search direction dk. This
search method, also called the exact line search, can fail to find the opti-
mum point of the function if the step-length size is not chosen properly,
meaning the step-length size being too long or too short is detrimental to
the final result (see figure 2.4).
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Figure 2.4: The figure illustrates the possible ways that a line search can fail if poor
choices of step-length sizes are made. In figure (a), the step are too long relative to the
amount of decrease achieved by one iterate to the next. Therefore, the solution does not
converge to an optimal point. On the other hand, in figure (b), the steps sizes are too
short relative to the linear rate of decrease of the function so that the search converges
prematurely (Kolda et al., 2003).

The poor choices of step lengths can be avoided by imposing acceptance
criteria for the step length sizes. The condition

f(xk+1) ≤ f(xk+) + c1αk∇f(xk)Tdk (2.15)

prevents the steps that are too long via sufficient decrease criteria, and the
condition

∇f(xk + αkdk)Tdk ≥ c2∇f(xk)Tdk (2.16)

prevents steps that are too short through a curvature criterion, where 0 <
c1 < c2 < 1. The conditions in the eq. (2.15) and eq. (2.16) are referred to
as the Armijo-Goldstein-Wolfe conditions (Kolda et al., 2003). Such search
methods are referred to as the inexact line search methods.
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It is preferable to use the inexact line search because the steps sizes picked
by this method are neighter too long or too short (Cavazzuti, 2012). The
modern line search methods, e.g. steepest descent, conjugate gradient, and
Quasi-Newton method, aim to pick the initial guess for each step-size so
that the convergence to the optimum point is guaranteed. As a result, these
methods reach the optimum point of a function in a much less number of
objective function evaluations, which makes these methods computation-
ally cheaper.

30 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION
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Figure 2.4: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch steepest-descent method.

is a descent direction. In fact, this direction solves the direction-finding problem

minimize
p∈IRn

mQ
k (xk + p)

def
= fk + 〈p, gk〉 + 1

2 〈p,Bkp〉, (2.2)

where mQ
k (xk + p) is a quadratic approximation to the objective function at xk.

Of particular interest is the possibility that Bk = Hk, for in this case mQ
k (xk + p) gives a

second-order Taylor’s approximation to f(xk + p). The resulting direction for which

Hkpk = −gk

is known as the Newton direction, and any method which uses it is a Newton method . But notice

that the Newton direction is only guaranteed to be useful in a linesearch context if the Hessian Hk

is positive definite, for otherwise pk might turn out to be an ascent direction.

It is also worth saying that while one can motivate such Newton-like methods from the prospec-

tive of minimizing a local second-order model of the objective function, one could equally argue that

they aim to find a zero of a local first-order model

g(xk + p) ≈ gk +Bkpk

of its gradient. So long as Bk remains “sufficiently” positive definite, we can make precisely the

(a) Method A

2.5. MORE GENERAL DESCENT METHODS 31

same claims for these second-order methods as for those based on steepest descent.

Theorem 2.5. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for

the iterates generated by the Generic Linesearch Method using the Newton or Newton-like

direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0

provided that the eigenvalues of Bk are uniformly bounded and bounded away from zero.

Indeed, one can regard such methods as “scaled” steepest descent, but they have the advantage

that they can be made scale invariant for suitable Bk, and crucially, as we see in Figure 2.5, their
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Figure 2.5: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch Newton method.

convergence is often significantly faster than steepest descent. In particular, in the case of the

(b) Method B

Figure 2.5: Figure illustrates the iterates generated by two methods while searching for
the optimum of the objective function f(x, y) = 10(y − x2)2 + (x − 1)2. It can be
observed that the Method B performed much better in this case since it converged to the
optimum point within significantly less number of objective function evaluations (iterates)
compared to Method A (Gould, 2006). Thus, Method B is computationally cheaper than
Method A in this case.
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Trust Region Methods. Compared to the line search methods, where a de-
scent direction (dk) and step size (αk) is picked to reduce f(xk+1), the trust-
region methods pick the overall step sk to reduce a model of f(xk+sk), and
then choose the next step as (xk+1 = xk + sk), which is a minimizer of the
model in this trusted region. In other words, this method defines a region
around the current point f(xk) and constructs a model function whose be-
havior in this region is assumed to be similar to that of the actual objective
function (Nocedal and Wright, 2006). This process allows for the direction
and step-length to be chosen simultaneously (see figure 2.6).

The size of the trust region is usually chosen according to the performance
of the algorithm at the previous iterations. If the step is unsuccessful, the
trust region size is reduced and a new minimizer is defined. On the other
hand, if the previous model is reliable in producing successful steps, the
size of the trust region is systematically increased so that longer steps can
be taken towards the optimum point of the function.

The quadratic model (hence the mQ) used in the trust-region methods can
be formulated as

mQ
k (d) = fk +∇fT

k d+
1

2
pTBkd (2.17)

where fk = f(xk), ∇fk = ∇f(xk), and Bk is a systematic approximation
of the local Hessian matrix, which is a square matrix with second-order
partial derivatives of a scalar field or scalar-valued function (Nocedal and
Wright, 2006).

In practical applications and simulation-based optimization problems, the
cost of obtaining the analytical derivatives of the objective function is typi-
cally expensive. Therefore, a standard option is to use the finite-difference
methods to estimate the objective function derivatives and feed this infor-
mation to the gradient-based optimization algorithms (e.g. equation 2.17).
However, this option brings its own set of problems when dealing with the
noise and nonsmoothness in the objective function.

In simulation-based optimization setting, a computer simulation must be
run and the output must then be post-processed to evaluate the values of the
objective function. In many cases, the computed values may look like the
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Figure 2.6: The figure illustrates the steps taken by both trust-region method and line
search method on a function f of two variables. The model function mk is based on the
function and its derivative information at xk. The step taken by line search method is
based on this model, where it is a minimizer of mk. It is evident that the step taken by the
trust-region method is more efficient in terms reducing f in this case (Nocedal and Wright,
2006).

plot in Figure 2.7. As a result, the function gradients estimated by finite-
difference methods can be widely inaccurate to be used in the gradient-
based algorithms (Kolda et al., 2003). Although certain mathematical tech-
niques exist to overcome this problem, e.g. adjoint techniques (Sarma et al.,
2005), derivative-free optimization methodologies are considered to be a
more practical option for well placement optimization problems.
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Figure 2.7: The figure illustrates objectives that are computed by solving Navier-Stokes
equations with finite element scheme adaptation. The finite-difference approximation of
gradients in functions with high frequency, low-amplitude oscillations may not be reliable
to be used in gradient-based optimization algorithms (Kolda et al., 2003).
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2.2.3 Optimization algorithms used in this work
Due to the deterministic nature of the well placement optimization prob-
lems, it possible to deal with a non-smooth objective function with mul-
tiple local optimums. Practice shows that the gradient-based optimization
algorithms perform poorly compared to the performance of derivative-free
optimization algorithms in such problems, since they are more likely to get
trapped in a local minima or maxima. Therefore, this work employs two
derivative-free and discrete optimization algorithms.

Asynchronous Parallel Pattern Search (APPS). APPS is a deterministic
and derivative-free optimization algorithm that dynamically initiates search
steps in repose to events instead of cycling through a fixed set of search di-
rections, thus the name asynchronous (Kolda and Torczon, 2003). This
optimization algorithm mainly concentrates on the parallelization of the
search strategy which makes it computationally cost-effective compared to
regular parallel pattern search (PPS) algorithms. In this section, an outline
of both PPS and APPS is presented as a general background. It is consid-
ered that an optimization problem same to the one mentioned in eq. (2.12)
is to be solved.

PPS starts the search at k = 0 and at the end of iteration k − 1, it is as-
sumed that every process knows the best point xk−1, where f(xk−1) is the
best known value of f . At the step xk−1, the step-length control param-
eter is defined to be ∆k−1. Each process i ∈ P , constructs a trial point
xk−1 + ∆k−1di and initiates the evaluation of f(xk−1 + ∆k−1di) . After all
the evaluations of the f are finalized, the processes communicate these val-
ues with each other to determine the new position xk and ∆k. This process
can be formulated as following:

If there exists i ∈ P such that

f(xk−1 + ∆k−1di) < f(xk−1) (2.18)

then k ∈ S, where S denotes the set of successful iterations.
Then, the update rules are

xk =

{
xk−1 + ∆k−1di, if k ∈ S
xk−1, otherwise

(2.19)

23



Chapter 2. Background

∆k =

{
λ∆k−1, if k ∈ S
θ∆k−1, otherwise

(2.20)

where λ and θ represent the expansion and contraction factors respectively,
and di is the direction that produced the largest decrease (Kolda and Tor-
czon, 2003). A pseudo-code of this algorithm is presented in Algorithm [1].

Figure 2.8 depicts the first five iterations of PPS applied to the problem in
(2.12). Each of the subfigures from (a) to (f) depicts the position of xk,
the best known point, as a magenta dot and four dark blue dots represent
the trial points that are being evaluated at that iteration. It can be observed
that the length of the steps taken is reduced near the minimum point as the
algorithm missed the opportunity to find the solution at the third iteration
(subfigure d) because the step-length was too long. The PSS algorithms
are designed to wait for all processes to finish evaluating the function value
before moving on to the next iteration. Such synchronized design of PPS
results in idling of the processes and prolong the run-time of the algorithms
to find the optimum point (see figure 2.9).

APPS algorithms, on the other hand, are designed to use the idle time of
the processes to perform additional function evaluations. The general strat-
egy to achieve this from the perspective of a single process is as following
(Kolda and Torczon, 2003):

• Evaluate f(xbesti + ∆best
i di);

• If f(xbesti + ∆best
i di) < f(xbesti ), communicate this result to the other

processes;

• Update local values of xbesti and ∆best
i , based on local calculations

and any information that may arrive from other processes;

• Repeat

Such design allows the successful processes to communicate its results to
all other processes and move forward without waiting for all evaluations
to be finished. As a result, this method cuts down on the run-time of the
algorithms and prevents wasting valuable computational resources.
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2.2 Optimization Theory

Algorithm 1 Pattern Search Algorithm adapted from (Baumann, 2015)
1: procedure PATTERNSEARCH(f, x0,∆tol,∆0,D, xd, xu,
θ, λ) fbest ← f . Evaluate initial objective value

2:3: x← x0 . Set x to initial guess value
4: ∆← ∆0 . Set initial step-length value
5: while ∆ > ∆tol do . Iterate while step-length is greater than tolerance
6: M← (x+ ∆× dk) for all dk ∈ D . Create the list of moves
7: for all xk ∈M do
8: if xk < xd or xk > xu then . Check if x is in the bounds
9: Discard xk . Discard x if it is outside the bounds

10: end if
11: end for
12: xmin ← argmin : f(xk) . Find the best move in iteration
13: if f(xmin) < fbest then . Found a better position
14: x← xmin . Change the best position
15: fbest = f(xmin) . Evaluate new best objective value
16: else . If better position is not found
17: ∆← θ∆ . Reduce the step-length
18: end if
19: end while
20: end procedure
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Figure 2.8: The figure illustrates the parallel pattern search applied to find the minimum
of the function f(x, y). In this case, the expansion factor λ is equal to 1 and the contraction
factor θ is equal to 1

2 (Kolda and Torczon, 2003).

Looking at the Figure 2.10, the first eight steps generated by four processes
when APPS applied to f(x, y) is illustrated. Unlike PPS, four different best
points are used for evaluating trial points at any time step. The open circles
indicate the points at which the function is being evaluated, and the filled
circles indicate the best known point. The results from the previous time
step, i.e., for k > 0, are depicted in the background in gray color. There are
three possible outcomes:

• A trial point from the previous iteration becomes the new best point.
In this case, the search moves to this point.

• The evaluation at the trial point did improve upon the best-known
value at that iteration. However, it was succeeded by an even bet-
ter point from another process. Such cases are indicated by starred
circles.
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• The value at the trial point did not improve upon the best-known
value at that iteration. These cases are indicated by crossed circles.

In this example, the first three iterations are successful (i.e., k ∈ 1, 2, 3 ⊆
S). Therefore, the length of the step for iterations 2 and 3 is expanded since
two or more successful steps are taken successively along the same direc-
tion.

Figure 2.9: An illustration of idling of the processes, represented as dashed lines, for each
iteration in a sample case where PPS method is used. Looking at the time t = 0, all four
processes start evaluating the trial value of the objective function at the initial best point,
where f(xk) = 25. The processes 2, 3, and 4 finish evaluating the function value at t = 1.
However, these processes have to wait (idle) for the process 1 to finalize the calculation
before they can move on to the next iteration. At t = 2, process 1 finishes the evaluation,
and all four of the processes move on to the next best point, where f(xk+1) = 13 (Kolda
and Torczon, 2003).
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Figure 2.10: Illustration of asynchronous parallel pattern search applied to find the mini-
mum a function f(x, y). Unlike PPS, this method allows the processes to evaluate a new
trial point as soon as they finish a function evaluation. Each process evaluates a trial point,
communicates the results to all other processes, and moves on to the next known best
location in the search space (Kolda and Torczon, 2003).
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Particle Swarm Optimization (PSO). The PSO is a rather simple and pow-
erful stochastic algorithm that was first developed to be used in artificial in-
telligence applications (Eberhart and Kennedy, 1995). However, it was ob-
served that this algorithm can be applied to solve optimization problems as
well. The algorithm, which the pseudo-code is presented in Algorithm[2],
solves the problem by generating candidate solutions, also known as the
particles, in the search space and moves them around according to math-
ematical rules using the particle’s position and velocity. In order to solve
the problem in the equation [2.12], the PSO algorithm can be formulated as
(Kennedy and Mendes, 2002)

vi(k + 1) = vi(k) + c1ρ1(k)(pl,i(k)− xi(k))+

+c2ρ2(k)(pg,i(k)− xi(k))
(2.21)

xi(k + 1) = xi(k) + vi(k + 1) (2.22)

where xi is the location of the ith particle of the kth generation (i ∈ {1, .., np}
and k ∈ N), vi is the velocity of the particle, pl,i(k) is the best location of
the ith particle over all generations, and pg,i(k) is the location of the best
particle in the neighborhood of the ith particle over all generations. The
coefficients c1 and c2 stand for cognitive and social acceleration factors re-
spectively.

The PSO algorithm takes the following steps in order to find the optimum
point of the search space (Sharaf and Elgammal, 2018):

1. Generate the initial swarm by positioning the particles in the search
space (S) in a random order, where each particle has a random veloc-
ity.

2. Evaluate the function value of each particle in the swarm, also known
as the fitness of each particle.

3. For each particle: if pl,i(k + 1) > pl,i(k) , then set pl,i(k + 1) as the
new best location value and update the location of the particle.

4. Compare pl,i(k + 1) of all the particles in the swarm and update
pg,i(k + 1) as the new best global location of the swarm.
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5. Change the velocity (accelerate) of each particle towards its pl,i(k+1)
and pg,i(k + 1), both weighted by a random coefficient.

6. Repeat from step 2 until the convergence to the optimum is reached,
where pl,i(k) of all the particles in the swarm is equal to pg,i(k).

Algorithm 2 Pseudo-code of the PSO adapted from (Brownlee, 2011)
1: procedure PSO(S, Nparticles, kmax, ∆tol). Define the search space, number

of particles in swarm, maximum number of iterations, and deviation tolerance
2: Population← ∅
3: for (i = 1 to Nparticles) . Initialize the swarm
4: Pvelocity ← randomV elocity(i) . Calculate a random velocity
5: Pposition ← randomPosition(i) . Calculate a random position
6: Pp best ← Pposition . Set the particle positions
7: if f(Pp best) ≤ f(Pg best) . Check the fitness of each particle
8: Pg best ← Pp best . Set the initial global best position
9: end

10: Population← (Pvelocity & Pposition) . Populate the swarm
11: end
12: k = 0
13: while ∆ > ∆tol and k < kmax do . Set termination conditions of the loop
14: for (P ∈ Population)
15: Pvelocity← UpdateV elocity(Pvelocity, Pg best, Pp best)
16: Pposition← UpdatePosition(Pposition, Pvelocity)
17: if (f(Pposition) ≤ f(Pp best)) . Check the fitness of each particle
18: Pp best ← Pposition

19: if f(Pp best) ≤ f(Pg best)) . Check the fitness of the swarm
20: Pg best ← Pp best

21: end
22: end
23: end
24: k ← +1 . Update the iteration count

25: ∆← Pk
g best−P

k−1
g best

Pk−1
g best

. Update the relative difference

26: end
27: Return:(Pg best)
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The performance of the PSO algorithm mainly depends on the selected pa-
rameters for the search of the global optimum location of the search space.
In the basic configuration of the PSO algorithm, all particles are allowed
to communicate with all other particles. In such setting, the topology of
the swarm is global, where all particles in the swarm share the same global
best position. Using global topology as a particle communication structure
might lead the swarm to get trapped in a local optimum instead of the global
optimum.

One of the commonly used topology types in practice is von Neuman topol-
ogy configuration, where each particle communicates with its four neigh-
bors: neighbors above, below, and on each side on a two-dimensional lattice
(Kennedy and Mendes, 2002). The other important parameter to choose is
the number of particles in the swarm. Too many particles will lead to an ex-
cessive amount of objective function evaluations making the process com-
putationally expensive, while on the other hand, swarm with a few particles
might not converge to the optimum at all. A rule of thumb is to choose the
population size directly proportional to the number variables in the objec-
tive function.

2.3 FieldOpt
As it was mentioned in section 2.1, the field development optimization
workflow involves building multiple potential development scenarios, sim-
ulating these scenarios, and comparing the simulation results based on their
future performance. Traditionally, these tasks are executed manually, which
usually requires a high engineering effort, is less productive, and often
prone to errors. FieldOpt is a software designed to automate and increase
the productivity of the petroleum field development workflow. It is cur-
rently being developed by NTNU Petroleum Cybernetics Group (PCG)
aimed for MSc. and Ph.D. students to conduct research. The FieldOpt
is an open source platform, and the source code is available in GitHub:
https://github.com/PetroleumCyberneticsGroup/FieldOpt

This programming framework automates the manual workflow of compar-
ing the performance of different field development scenarios, which is a
repetitive process in nature, by integrating mathematical optimization pro-
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cedures with reservoir simulation. FieldOpt is implemented in the C++
programming language. It has a modular architecture, i.e. it is composed
of separate components, also referred to as modules, that are connected.

The main advantage of such software architecture is that any module in
the system can be replaced or new modules can be added without affecting
the rest of the system. FieldOpt was developed by keeping these quality
attributes in mind: modifiability, performance, scalability, and testability
(Baumann, 2015).

Modifiability dictates how easy it is to modify the system. A common
strategy to improve the modifiability of a system is to reduce the size of
modules, increase cohesion in the modules, and reduce the dependency of
modules from all other modules.

Performance indicates how stable is the software under a particular work-
load. The performance of FieldOpt largely depends on the third-party ap-
plications, such as a reservoir simulator. Therefore, efficient execution of
reservoir simulation can enhance the performance of FieldOpt.

Scalability is the property of a system to handle the additional workload by
adding resources to the system. Enabling the software to exploit a larger
amount of computational resources, such as allowing it to use multiple
cores, can increase the scalability of the system significantly.

Testability indicates how easy it is to find faults in the system in a given test
context. A common strategy to improve the testability of the system is to
reduce the complexity of the modules so that each module can be tested for
faults independently from the other modules. The testability and the modi-
fiability of the system are inherently connected to one another, as reducing
the complexity of module usually results in a reduction of its size.

Overall, all these characteristics mentioned above make FieldOpt easily
adaptable to a wide variety of petroleum field optimization problems, test-
ing new field development techniques, and prototyping new optimization
algorithms. In general, FieldOpt operates by taking in a driver file and out-
puts a solution file and log files (see figure 2.11). It is composed of four
primary modules:
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• Model

• Runner

• Optimization

• Simulation

Optimization Logs

Driver Files

FieldOpt Final Results

Reservoir Definition

Performance Logs

Figure 2.11: How FieldOpt operates from users perspective. Figure adapted from (Bau-
mann, 2015)

The Model module contains all variable properties of the field develop-
ment plan, such as well placements, completion configuration, production
constraints, and all other properties required by the simulator. The Model
encompasses the Well objects, where each Well object further contains Tra-
jectory, a list of Control objects, and some other objects that needed to
describe a functional well (see figure 2.12). The properties contained in
this module are communicated to other modules through the Case objects.

The purpose of the Runner module is to drive the optimization loop of
the FieldOpt (see figure 2.13). It initializes FieldOpt by reading the run-
time settings provided through the input files. Once the run is initialized,
the runner starts the optimization loop, evaluates the results, and checks if
the termination conditions are met. It also contains the Bookkeeper class,
where optimization algorithms submit Case objects to it, as well as check
if a Case object has already been submitted to the bookkeeper. The Runner
has the capability to execute a serial optimization loop, where simulations
are run in sequential order, or a parallel optimization loop, where simula-
tions are performed concurrently.
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systems such as computer clusters. Though more difficult270

to implement than thread-level parallelization, process-

level parallelization is more flexible and enables exploita-

tion of multiple nodes on a computer cluster, a crucial

feature when working with multiple reservoir realizations

or using, e.g., population-based optimization algorithms.275

Parallelization is implemented using the Manager-Worker

architectural pattern (Grama et al., 2003, p. 141). When

launched in MPI-mode, FieldOpt designates one process

as the manager and the remaining processes as workers.

The manager controls the optimization loop and is re-280

sponsible for generating new candidates using the Opti-

mization module and writing logs while the workers are

responsible for running the actual simulations for these

candidates and reporting the results to the manager. The

architecture and program flow are illustrated in Figure 4.285

Manager

Optimization

Worker Worker Worker

Simulator Simulator Simulator

(1) GetCase()

(2) AssignCase()

(4) ReturnCase()
(2) (4)

(2)

(4)

(3) Evaluate() (3) (3)

Figure 4: Illustration of parallelization in FieldOpt.

3.3. Model

The Model module contains FieldOpt’s internal rep-

resentation of the variable properties of a field develop-

ment plan as well as some properties needed for simulation.

The properties are not made directly available to the Op-290

timization- or Runner modules but are communicated

through Case objects (c.f. next section). Encapsulating

the variables in this manner limits the effect of necessary

code changes due to a new parameter. Enabling optimiza-

tion of a new parameter, for instance, requires no changes295

in the Optimization module.

The root Model class primarily serves as a container for

Well objects as all properties currently optimized by Fiel-

Model VariablePropertyContainer

Well Control

Trajectory WellSpline PseudoContVert

WellBlock Completion

Perforation

Compartment

SegmentedCompl

ICV Packer

1..*

1

1..*

0..1

1..*

1

0..*

0..*

0..1

Figure 5: Class diagram for the Model module.

dOpt describe a well. Each Well object further contains a

list of Control objects, a Trajectory object and, option-300

ally, compartmentalization describing more advanced well

features. Figure 5 shows the basic structure of the Model

module by its internal classes and their interrelations.

All property values that can be optimized are stored

in Property objects within their respective parent classes.305

To include a specific property as a variable in an optimiza-

tion run, a pointer to its actual Property object is added

to the VariablePropertyContainer, c.f. Listing 1.

Control :: Control(

Settings :: ControlEntry entry , Well well ,

VariablePropertyContainer *varcont)

{

if (entry.control_mode == BHPControl) {

this ->mode_ = entry.control_mode;

this ->bhp_ = new ContinousProperty(entry.bhp);

if (entry.is_variable) {

this ->bhp_ ->setName(entry.name);

varcont ->AddVariable(bhp_);

}

this ->rate_=new ContinousProperty(entry.rate);

}

}

Listing 1: C++ excerpt of Control constructor showing inclusion of

properties as variables for a FieldOpt optimization run.

An essential feature of FieldOpt’s Model is that alter-

native parameterizations of some properties can be applied310

6

Figure 2.12: The figure illustrates the class diagram for the Model module (Baumann
et al., 2019).

3. Implementation

The primary implementation goal of FieldOpt has been

to develop a code base that can be easily modified and220

extended by its users. To achieve this, FieldOpt is divided

into loosely coupled modules that serve as a foundation

for an object-oriented design which limits the amount of

code needed to add new features. This section describes

FieldOpt’s primary modules and their internal structure.225

3.1. Module Overview

FieldOpt’s four primary modules are:

Model, contains all variables of a field development plan,

particularly well placements, completion configura-

tion, and production settings.230

Runner, controls the loops driving the optimization pro-

cess in both serial and parallel variants and handles

logging, bookkeeping, and reservoir realizations.

Optimization, contains implementations of all optimiza-

tion algorithms, as well as constraints and objective235

functions.

Simulation, supports simulation including driver file writ-

ing, execution of simulations, and results reading.

Optimization

All things directly related to

optimization.
Optimization

Optimization algorithms

Constraints

Objective functions

Execution

Drives the optimization loop,

writes logs, handles book-

keeping and implements par-

allelization.

Runner

Parallelization

Logging

Bookkeeping

Domain

Everything necessary to go

from a field description to a

vector of variables or simula-

tion deck, and back.

Simulation

Model

Support modules

Well representation

Simulator interface

Figure 2: Overview of FieldOpt’s modules.

In addition to the primary modules, FieldOpt builds

upon a set of support modules. These provide utility func-240

tions, e.g. for reading reservoir grid files, interpreting sim-

ulation files, and parsing driver files. As mentioned in the

introduction, these modules can be divided into three ar-

chitectural layers, illustrated in Figure 2.

Subsequent sections describe the primary modules in245

detail. The class diagrams of this section follow the UML

standard (Rumbaugh et al., 2004) but are pared down for

overview and clarity.

3.2. Runner

The Runner module is responsible for driving the op-250

timization loop. It contains two implementations: a se-

rial runner for sequential execution of simulations (suitable

for serial optimization algorithms and debugging); and a

parallel runner for concurrent execution of multiple sim-

ulations. The module also contains implementations for255

logging and bookkeeping.

The Runner module is responsible for initializing Fiel-

dOpt by reading the runtime settings provided through

command line flags. The runner starts by constructing

the Settings classes and uses these to instantiate the re-260

maining modules. After initialization, it starts the opti-

mization loop, wherein the other modules are called to

generate new perturbations, evaluate them and check the

termination conditions. Figure 3 shows FieldOpt’s serial

execution loop as a flowchart.265

Runner

Request

new Case

from Optimizer

Update Model

w/ Case values
Run simulation

Calculate OFV
Update Case

with new OFV

Return Case

to Optimizer

Finished?

no

yes

Figure 8Figure 7

Figure 3: Serial optimization loop as seen from the Runner’s point

of view.

FieldOpt’s parallel runner is implemented using the

Message Passing Interface (MPI) (Message Passing Inter-

face Forum, 2015). MPI supports process-level paralleliza-

tion which is standard on distributed-memory computing

5

Figure 2.13: The figure illustrates the serial optimization loop of the Runner module
(Baumann et al., 2019).
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The Optimization module handles the algorithm implementation, search
space constraints, objective function evaluations, and the Case class in Fiel-
dOpt. The Case class contains a full set of variable values of a specific
perturbation of the model, including the post-processed simulation results,
such as the objective function value. Each variable in this class is assigned
with a universally unique identifier (UUID). Looking at the figure[2.14], it
can be observed that the Optimizer class is the parent class to all optimiz-
ers, and has ConstraintHandler and CaseHandler as its supporting classes.
These classes provide the functionality to all of the optimization algorithms
in the Optimizer class, such as case logging, evaluation of new candidate
cases, and application of constraints. Such a module structure eases the
process of adding new optimization algorithms and constraints to FieldOpt
since no changes outside of the Optimization module is required.

without affecting other modules. Whether a trajectory is

described directly as a set of blocks or as a Bezier curve de-

fined by many points, information seen by other modules

will not change. The Optimization module will always

get a Case object with anonymous property values, and the315

Simulation module will always get a list of WellBlock ob-

jects. This makes it easier to experiment with alternative

formulations more suitable to a particular optimization al-

gorithm or set of constraints.

3.4. Optimization320

The Optimization module contains everything directly

related to optimization in FieldOpt, i.e., algorithm imple-

mentations, constraints, objective functions, and the Case

class. Table 1 lists algorithms, constraints and objective

functions that are currently supported by FieldOpt. The325

relationships between the most important classes in the

module are shown in Figure 6. Figure 7 shows a flowchart

of how all optimization algorithms operate in FieldOpt.

Table 1: Current features in the Optimization module.

Optimizers Parallel Async.

APPS (Kolda, 2005) Yes Yes

CompassSearch (Kolda et al., 2003) Yes No

EGO (Jones et al., 1998) No No

GA (Chuang et al., 2015) Yes No

PSO (Nwankwor et al., 2013) Yes No

Constraints Bound Penalty Projection

BHP, Rate, ICV Yes Yes Yes

Inter-well distance No Yes Yes

Well length No Yes Yes

ReservoirBoundary Yes No Yes

Objective functions Expression

WeightedSum f(x) =
∑N

i=1 ciCi

NPV f(x) =
∑N

i=1

∑T
t=1

Ci,tci
(1+di)

t−1

Most important to the Optimization module is the

abstract Optimizer class (parent class to all optimizers)330

and its supporting classes ConstraintHandler and CaseHandler.

Optimizer

GSS GeneticAlgorithmEGO

CompassSearch APPS RGARDD

CaseHandler

Case

ConstraintHandler

Constraint

BHPConstraintWellSplineLengthInterWellDistance

1 1

n 0..n

Figure 6: Class diagram for the Optimization module. Objective

functions and some constraints are omitted.

Optimizer

Case queue

empty?

Return Case

from queue

Iterate

(alg. specific)

Apply

constraints

Add new Case(s)

to queue

yes

no

Figure 3

Case requested

Figure 3

Return Case

Figure 7: Simplified view of the optimization loop as seen from the

Optimizer’s point of view.

These classes significantly ease the process of implement-

ing new optimization algorithms and constraints by (1) en-

forcing an interface for all optimization algorithms, mean-

ing new optimizers will not require changes outside the335

Optimization module; and (2) providing functionality

common to all optimization algorithms, such as handling

of new candidates for evaluation, application of constraints,

and logging.

The Optimization module’s communication interface340

is defined by three methods of the Optimizer class which

are called exclusively by the Runner module: (1) get Case

for evaluation, (2) return evaluated Case, and (3) check if

finished. This general interface restricts information ex-

change with the Optimization module to Case objects,345

ensuring compatibility with other modules and allowing

all algorithms to leverage the same parallelization features

in the Runner module.

The Case object describes a specific perturbation of

7

Figure 2.14: The figure illustrates the class diagram of the Optimization module (Bau-
mann et al., 2019).
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without affecting other modules. Whether a trajectory is

described directly as a set of blocks or as a Bezier curve de-

fined by many points, information seen by other modules

will not change. The Optimization module will always

get a Case object with anonymous property values, and the315

Simulation module will always get a list of WellBlock ob-

jects. This makes it easier to experiment with alternative

formulations more suitable to a particular optimization al-

gorithm or set of constraints.

3.4. Optimization320

The Optimization module contains everything directly

related to optimization in FieldOpt, i.e., algorithm imple-

mentations, constraints, objective functions, and the Case

class. Table 1 lists algorithms, constraints and objective

functions that are currently supported by FieldOpt. The325

relationships between the most important classes in the

module are shown in Figure 6. Figure 7 shows a flowchart

of how all optimization algorithms operate in FieldOpt.

Table 1: Current features in the Optimization module.

Optimizers Parallel Async.

APPS (Kolda, 2005) Yes Yes

CompassSearch (Kolda et al., 2003) Yes No

EGO (Jones et al., 1998) No No

GA (Chuang et al., 2015) Yes No

PSO (Nwankwor et al., 2013) Yes No

Constraints Bound Penalty Projection

BHP, Rate, ICV Yes Yes Yes

Inter-well distance No Yes Yes

Well length No Yes Yes

ReservoirBoundary Yes No Yes

Objective functions Expression

WeightedSum f(x) =
∑N

i=1 ciCi

NPV f(x) =
∑N

i=1

∑T
t=1

Ci,tci
(1+di)

t−1

Most important to the Optimization module is the

abstract Optimizer class (parent class to all optimizers)330

and its supporting classes ConstraintHandler and CaseHandler.

Optimizer

GSS GeneticAlgorithmEGO

CompassSearch APPS RGARDD

CaseHandler

Case

ConstraintHandler

Constraint

BHPConstraintWellSplineLengthInterWellDistance

1 1

n 0..n

Figure 6: Class diagram for the Optimization module. Objective

functions and some constraints are omitted.

Optimizer
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from queue

Iterate

(alg. specific)
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constraints

Add new Case(s)

to queue
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no

Figure 3

Case requested

Figure 3
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Figure 7: Simplified view of the optimization loop as seen from the

Optimizer’s point of view.

These classes significantly ease the process of implement-

ing new optimization algorithms and constraints by (1) en-

forcing an interface for all optimization algorithms, mean-

ing new optimizers will not require changes outside the335

Optimization module; and (2) providing functionality

common to all optimization algorithms, such as handling

of new candidates for evaluation, application of constraints,

and logging.

The Optimization module’s communication interface340

is defined by three methods of the Optimizer class which

are called exclusively by the Runner module: (1) get Case

for evaluation, (2) return evaluated Case, and (3) check if

finished. This general interface restricts information ex-

change with the Optimization module to Case objects,345

ensuring compatibility with other modules and allowing

all algorithms to leverage the same parallelization features

in the Runner module.

The Case object describes a specific perturbation of

7

Figure 2.15: The figure shows the simplified version of the optimization loop of the Op-
timizer module (Baumann et al., 2019).

The function of the Simulation module is to launch the simulations and
read the results. The code contained in this module launches reservoir sim-
ulations by executing shell scripts in the child processes. When asked by
the Runner module to evaluate the current state of the Model, the well in-
formation is taken from the Model to write a simulator input for the well
blocks, controls, and completions. Once the reservoir simulation is ready
to be run, a shell script is executed to start the simulation. Finally, when the
simulation is finalized, the results are read from the disk and communicated
to other modules for further processing to evaluate the objective function.
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the model, including the variable values and, after eval-350

uation, the objective function value. The variables are

represented as hashmaps from a universally unique iden-

tifier (UUID) to variable value. The variable values can

either be accessed one-by-one through their UUIDs or col-

lectively as vectors. The first Case object, the base case,355

is generated by the Model module. The Optimization

module then creates copies of the base case which are as-

signed new UUIDs and new variable values to represent

each new solution candidate. In the Optimization mod-

ule, Case objects are contained in the CaseHandler class,360

which maintains a list of all Case objects that have been

generated by the optimizer in the current optimization run

and keeps track of their current status (evaluated, queued,

or under evaluation).

Constraints are currently enforced using either a penalty365

or a repair strategy. They are enforced onto (infeasible)

solution candidates before they are added to the evalu-

ation queue. This implementation is intended to be as

flexible as possible. All constraints must implement the

abstract Constraint class and at least one of four meth-370

ods for checking and/or enforcing constraints: (1) check

whether any constraints are violated; (2) compute and en-

force a penalty for each constraint violated; (3) project (re-

pair) solution candidate onto feasible solution space; (4)

get a pair of maximum/minimum bound vectors for the375

variables.

To further ease the application of constraints, all con-

straints are added to the ConstraintHandler.

The ConstraintHandler encapsulates all the constraints

used in an optimization run and allows algorithms to batch-380

apply any set of constraints without knowing which are

used.

3.5. Simulation

The Simulation module contains the code needed to

execute simulations and read the results. Presently, Fiel-385

dOpt supports reservoir simulators and features as listed

in Table 2. As simulator usage is irrelevant to all modules

except Simulation, this section does not go into detail on

the implementation of each specific interface.

Table 2: Reservoir simulators and optimization features supported

by FieldOpt.

Simulator Supported features

ECLIPSE Control, well placement, completions.

Flow Control, well placement.

AD-GPRS Control, well placement.

INTERSECT Control, completions.

FieldOpt launches reservoir simulations by executing390

shell scripts in child processes. This approach was cho-

sen to increase flexibility with respect to installation di-

rectories and simulator versions. While a set of execution

scripts is provided along with FieldOpt, custom scripts

can easily be created and set to perform additional tasks,395

such as additional pre- or post-processing of the simulator-

input.

Figure 8 shows the tasks performed by the Simulation

module when asked by the Runner module to evaluate

the current state of the Model. First, well information400

is retrieved from Model to write simulator input for well

blocks, controls, and completions. Then the aforemen-

tioned shell script is executed to start the simulation. The

simulation process can either be allowed to run indefinitely

or be automatically terminated after a set time. When the405

simulation is finished, the results are read from disk into

enumerated properties which are made available to other

components such as objective functions.

Read states

from Model

Write driver

files to disk

Execute simulator

shell script

Read Results

from disk

Figure 3

Run simulation

Simulation

Figure 8: Processing performed by the Simulation module.
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Figure 2.16: The figure illustrates the processes performed by the Simulation module
(Baumann et al., 2019).

Currently, the reservoir simulators supported by the FieldOpt software are:

• ECLIPSE 100/300. Supported features: well control, well place-
ment, and well completions optimization.

• Flow. Supported features: well control, and well placement opti-
mization.

• AD-GPRS. Supported features: well control, and well placement op-
timization.

• INTERSECT. Supported features: well control, and well comple-
tions optimization.

Driver Configuration File. FieldOpt is configured through a driver file,
where this file should include the input and output directories, the data
configuration and grid file of the reservoir simulation model, as well as
specification of which reservoir simulator to use for the run. The FieldOpt
driver file contains this information in separate objects; namely the Global,
Optimizer, Simulator, and Model objects. This file is designed to be in a
JavaScript Object Notation (JSON) format. Aforementioned file format is
easy to read and write by humans as well as easy to parse and write it by
machines because the information is well organized and stored in a partic-
ular structure.
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Oil and gas companies rely on advanced subsurface software to develop
and manage their assets successfully. Currently, there are many software
packages capable of performing such tasks. However, some software suits
are more popular and frequently used throughout the industry. Schlum-
berger’s reservoir simulator ECLIPSE (Eclipse) would be a fitting example
for such subsurface software packages. Eclipse is a reservoir simulator that
is well known and widely used by reservoir engineers because of its tech-
nical capabilities, continuous support and development, and ease of use.
However, Eclipse is a proprietary (also known as closed-source licensed)
software, meaning the end-user can only buy the right to use the software
for a certain amount of time but not the software itself. In this type of soft-
ware distribution, the source code of the software is claimed to be a trade
secret by the manufacturer, and the end-user is not allowed to access the
inner workings of the program (Kristoffersen, 2017). An alternative to the
closed-source software environment is the open-source environment.

Unlike the closed-source environment, software manufacturers that operate
in the open-source environment allow their products to be freely used, mod-
ified, and shared by the end-users. Such an environment allows free access
to the inner workings of the software so that the end-users can fix bugs,
make modifications to improve their workflow, and contribute to the future
development of the used product. An example of an open-source licensed
reservoir simulation software package is the OPM-Flow (Flow) reservoir
simulator. This simulator was made and is continuously developed by the
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Open Porous Media (OPM) Initiative, which is a organization that coordi-
nates collaborative software development, maintains and distributes open-
source software for petroleum field development applications (OPM, 2017).

As it was mentioned in the introduction chapter, the cost of automatic opti-
mization techniques in the oil and gas industry is mainly associated with the
subsurface software license fees, such as reservoir simulator license fees.
However, using an open-source licensed software not only reduces the cost
of the automatic optimization projects, but also provides programming flex-
ibility so that the end-user can custom fit the software to their specific needs
to improve the project workflow. For example, Schlumberger charges extra
for the Eclipse license fee which enables running simulations in parallel
(ensemble) in multi-core systems compared to the one-core license, where
reservoir simulations can only be run in series. On the other hand, Flow is
equipped with Message-Passing Interface (MPI) that enables two or more
processors to communicate. This feature allows Flow to run simulations
in parallel if more than one core is available for its disposal and such a
setup can reduce the computational time significantly (Kristoffersen, 2017).
Therefore, running ensembles in Flow with a multi-core setup instead of in
Eclipse will reduce cost in terms of license fees and computational time
for the end-user. These points inspired the first part of this thesis, where
the Eclipse model of the conventional oil reservoir was converted to run in
Flow.

The software tools that were utilized for generating and post-processing the
results in this work are presented in Table 3.1. It is worth mentioning that
except for Eclipse, these software tools have open-source licenses.

Table 3.1: Tools used in this work.

Software Purpose
Flow (v.2018.10) Reservoir simulations
FieldOpt (v.1.0.0) Optimization
ResInsight (v.2019.04) Visualization & result post-processing
Eclipse (v.2016.2) Reservoir simulations

The first part of this chapter includes general information about the reser-
voir and its current development plan, as well as the methodology used for
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converting the simulation model. The next part of this chapter focuses on
the optimization methodology utilized to find the optimum well placement
in this reservoir. The results and interpretations of both of these sections
will be presented in the next chapter.

3.1 Field Introduction
The oil field that was used in this case study is located in the NCS. The
exact location, depth, and name of the reservoir are regarded as confiden-
tial information by the owner of the field. Therefore, from now on, the
field where the reservoir is located will be referred to as “the Field” in this
report. The Field was discovered in the first decade of 2000 by four ex-
ploration wells (see figure 3.1), and as of today, commercial oil production
has not yet started from this reservoir. Thus, no production history data is
available except for the production tests performed on appraisal wells. The
simulation model of this reservoir was built based on the information gath-
ered from the exploration wells, such as well logs and pressure transient
tests. The base case development plan is to drain the reservoir via four hor-
izontal oil production wells, and two water injection wells. Moreover, this
plan assumes that there will be no pressure support from the aquifer during
production, and because of this, the purpose of water injection is to both
provide pressure support and increase the sweep efficiency in the reservoir.
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Figure 3.1: The figure illustrates the top of the reservoir based on the depth geomodel.
The faults are visible as the black polygons. The map also depicts the location of the four
exploration wells, marked as Exp Well 1, 2, 3, and 4, drilled into the reservoir. Figure
adapted from Ross Offshore AS.

Reservoir structure. The Field is composed of four sedimentary forma-
tions laying on top of each other sequentially. These formations will be
referred to as Formation One, Two, Three, and Four throughout this doc-
ument. Formation One is the upper formation and Formation Four is the
lower formation (see figure 3.2).
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Figure 3.2: This figure depicts the cross-section of the Field looking from south to north.
Formation Two (marked as the black layer) is the coal layer that separates the Formation
One from the other two formations at the bottom. The figure also illustrates the central
fault located in the middle of the Field. This fault is a sealing-fault, and it divides the Field
into Western and Eastern segments. Figure adapted from Ross Offshore AS.

Each of these formations has distinct reservoir characteristics, where these
characteristics significantly affect the fluid dynamics in the reservoir. Hence,
having a clear description of the rock formation in any hydrocarbon bearing
reservoir is a crucial ingredient for designing a successful development plan
for a petroleum field. The description of each of the formations constituting
the Field are as following:

• Formation One. The depositional environment of this formation is
interpreted to be shallow marine where it varies from distributary
channels to lower shoreface. The deposits are comprised of light
brown, poorly sorted, fine to coarse-grained, and slightly silty sand-
stones. The flow channels commonly consist of fine sediments. The
formation thickness varies from approximately 35 meters in the west-
ern segment to 28 meters in the eastern segment. The average Net-
to-Gross (NTG) is around 75%.

• Formation Two. This formation consists of a massive black coal
layer in the upper part and contains some interbedded layers of sand,
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with NTG ratio of 3%, in the lower part. Therefore, Formation Two
acts as a sealing layer between the Formation One and Formation
Three. The depositional environment of the coal section is interpreted
to be a coastal swamp or a bay setting. The thickness of this forma-
tion varies from approximately 55 meters in the western segment to
14 meters in the eastern segment.

• Formation Three. This formation comprises a thick sandstone layer,
which is subdivided into three subzones based on the well logs and
stratigraphic picking. The bottom part represents a vertically stacked
channel system deposited in a coastal swamp or a bay setting. The
middle part also consists of a sandstone layer, which is interpreted to
be deposited in a terrestrial fluvial setting. The upper part consists of
fluvial deposits influenced by marine input suggesting a depositional
environment to be a coast. Therefore, the top and middle parts of
this formation has a channeled structure. The thickness of the For-
mation Three is relatively constant, and it is approximately 20 meters
thick throughout the reservoir. The average NTG ratio of the whole
formation is estimated to be around 40%.

• Formation Four. This formation consists of 2 broad systems based
on their interpreted depositional environments: a fluvial distribu-
tary system and an Aeolian dune belts. The fluvial system deposits
are typically comprised of light brown colored, poor to moderately
sorted, fine to medium grained, and silty sandstones. The Aeolian
system, on the hand, is composed of light brown colored, moderately
sorted, very fine grained, and cross-stratified sandstone layer. The
approximate thickness of the Formation Four in the eastern segment
is around 30 meters. The average NTG ratio is around 60% for the
whole formation.

Furthermore, the Field is limited by faults on three sides; north, west,
and east. Pressure transient analysis indicates that these faults are sealing,
which means that there might not be additional aquifer pressure support
across them during the production. On the southern side, there is no fault
limiting the model, and an aquifer could act as pressure support from this
side. However, the base case field development scenario does not include
aquifer support since the presence of an aquifer is highly uncertain. There-
fore, the only way to maintain the reservoir pressure in the Field is through
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the water injection.

Another critical parameter to consider while designing a field development
plan is the pressure communication between the formations. The presence
of pressure communication between the two rock structures indicates that
fluids contained in these structures can flow from one to another while hav-
ing no pressure communication means that fluids can not flow between the
formations. This parameter plays a central role when designing the pres-
sure support and injection strategy of the field.

The well tests carried out in the exploration wells drilled in the Field indi-
cated that there is a pressure communication between the Formation Three
and Formation Four. However, no pressure communication was observed
between the Formation One and lower formations. In theory, this means
that the reservoir pressure in the Formations Three and Four can be sup-
ported by one common injector instead of having two injection wells for
each of these formations. Considering the cost of drilling and injecting
fluids on an offshore platform, the former option will save a significant
amount of capital in the project. On the other hand, Formation One re-
quires a dedicated water injector for pressure support. Another important
geological feature to note is that there is no pressure communication be-
tween the western and eastern segments of the Field, since the central fault
is a sealing fault.

Reservoir fluids. The Field formations contain undersaturated oil, mean-
ing there is no free gas in the reservoir at the initial conditions. The oil has a
relatively low viscosity of around 1.4 cP at reservoir conditions. Such a low
oil viscosity is especially advantageous in water flooding projects. The low
mobility ratio prevents the injected water from rushing past the oil in the
reservoir because both of the fluids have similar mobilities in this case. In
the case of the Field, it is likely that the displacement of oil by the injected
water will be effective in terms of sweep efficiency, and it can be expected
that water breakthrough will not occur at the early stages of the production
phase.

Eclipse Model of the Field. The original simulation model of the Field
was built in Petrel (Schlumberger), which is a software that serves as a base
platform to communicate multi-disciplinary subsurface information for vi-
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sualization and simulation, and it was intended to be run in Eclipse 100.
This model consists of 1100736 (112 × 117 × 86) grid cells, where only
188051 of these grid cells are active. The fluid model applied to replicate
the fluid behavior in the reservoir was the black-oil model, i.e., a model
where the composition of the fluids in the system is assumed to be con-
stant. The base case scenario is designed with the production time frame of
25 years, starting in early 2015. In this work, only one geological realiza-
tion of the Field is employed, and the reservoir model used in this work is
the facies based model.

Initial drainage strategy. The initial drainage plan includes four oil pro-
ducer wells and two water injector wells, where all of these six wells are
located eighter in the Formation Three or Formation Four (see figure 3.3).
The specific drilling schedule has not been taken into account in this time
frame. Therefore, all of the wells in the model get online on the first day of
the simulation.

An important point worth mentioning is the well control schedule of the
base case development plan. In general, all wells in a reservoir simulation
model are operated by a set of scheduled controls. A basic control schedule
of a well should specify the preferred phase flowing in the well (e.g., oil,
gas, water), its planned state of operation (e.g., open or closed), and if the
well flow is primarily controlled by the rate (e.g., oil, gas, water, or liquid
rate) or pressure (e.g., well bottom hole pressure). The simulator can switch
between the controls of a well during the simulation if the limiting targets
(e.g., minimum bottom hole pressure or maximum water production rate),
when specified, have been reached (Bellout, 2014).

A more advanced well production control schedule can include gas lift in-
jection parameters, electric submersible pump settings, well group con-
straints, and field production targets and limits. The field liquid produc-
tion and injection rate constraints usually originate from the designed fluid
handling capacity of the production facilities, such as the separator unit ca-
pacity or the storage and transportation unit capacities.

In the base case scenario, the producer wells in the Field are specified to
be operated with minimum well bottom hole pressure (BHP) of 60 bars,
target liquid production rate of 2000 m3/day at the surface conditions, and
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Figure 3.3: The initial saturations of oil (red) and water (blue) in the Field model (K-slice:
40-44). The figure also shows the base case well placement configuration in the reservoir.
Notice that the wells are not in the same horizontal plane (viewed from above), and the
well trajectories were converted to splines by FieldOpt.

to have gas lift as an artificial lift mechanism. The water injectors, on the
other hand, are specified to be operated with water injection rate of 1500
m3/d at the surface conditions, and the maximum well BHP being 500 bars.
This means that the injection wells will inject 1500 m3 of water per day as
long as the well BHP is below 500 bars. If the injector well BHP reaches
500 bars, the simulator will reduce the injection rate accordingly to comply
with the well BHP constraint.

In addition, a well group constraint is also imposed on the injection wells,
where these injectors should maintain the voidage replacement ratio (VRR)
of one at the reservoir conditions. The VRR is the ratio of the total volume
of fluids injected into the reservoir to the total volume of fluids withdrawn
from the reservoir during the production phase (Clark et al., 2003). There-
fore, keeping the VRR close to unity will help to maintain the reservoir
pressure throughout the production life of the field, and ultimately increase
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the hydrocarbon recovery. In the base case drainage plan, the simulator will
automatically regulate the water injection rates of both of the injector wells
so that the total water injection volume is equal to the total volume of fluids
produced by the four producer wells at the reservoir conditions.

3.1.1 Model conversion and validation
A work model that can be run in Flow was developed based on the Eclipse
model of the Field that was provided by the operator company. This work
model was used in all of the optimization cases launched by the Field-
Opt software. As it was mentioned at the beginning of this chapter, using
an open-source reservoir simulator can provide a more efficient workflow
compared to the industry-standard reservoir simulator. This section de-
scribes the original simulation model of the Field as well as introduces the
Flow reservoir simulator and outlines the conversion procedure followed
for the development of the work model.

During the conversion phase, the main effort was spent on obtaining a suf-
ficient overlap in the production curves predicted by the original model and
the work model. This part of the work was carried out as a specialization
project in reservoir engineering during the fall semester in 2018. The re-
sults and validation of the work model will be presented in Chapter 4. The
final results of this process will be presented and discussed in the next chap-
ter (see Chapter 4.1.1).

OPM-Flow reservoir simulator. Flow is a reservoir simulator that does
not require a license to use it. Also, no additional license is required for
running reservoir simulations in parallel. This means that the optimiza-
tion algorithms implemented in the FieldOpt software can launch multiple
reservoir simulation runs without any license requirement. However, the
parallel implementation of the simulation runs are still limited by a number
of other factors, such as the number of processors available, server load,
and the constraints on read-and-write access to the disk on the server hard-
ware (Bellout, 2014). In this work, OPM-Flow version 2018.10 was used.

Conversion method. All data needed by both Eclipse and Flow to execute
a simulation should be collected in an input data file, which is a ASCII
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file. These reservoir simulators identify different data items by keywords,
which are usually followed by its associated data. Eclipse’s input data file
consists of eight data sections, where each keyword belongs to only one of
these data sections. If a required keyword is missing in the input file or
placed in a data section other than it belongs, the simulator will raise an
error and end the simulation run. For more detailed information about the
input syntax of Eclipse and Flow reservoir simulators, the reader is encour-
aged to refer to the user manual of these simulators (Schlumberger, 2014;
OPM, 2018).

Although the syntax is usually unique for each simulator, the general set-
up of input files for most of the reservoir simulators is very similar. The
input data syntax required for Flow is very similar to the input data syn-
tax required for Eclipse 100, where the input file for both of the simulators
consists of the same data sections. Even though this makes converting the
input data deck from one simulator to another much easier, Flows current
keyword library is not as extensive as the ECLIPSE 100’s keyword library.
The keywords that are not recognized by Flow needs to be replaced with a
supported keyword since the unrecognized keywords in the input deck may
prevent initialization of the simulation run.

The work model that was converted from the original reservoir model of
the Field required several approximations in terms of model parameters
and simulator functions. These approximations include modifications to the
saturation functions (e.g., relative permeability tables), well group control
handling, and artificial lift mechanisms (e.g., gas lift injection). In general,
the model conversion and validation process was focused on finding how
these approximations affect the simulation outputs, and how to minimize
the difference between the production curves predicted by the work model
and the original model.

The model conversion process started with reducing the original input data
deck to the bare minimum data that is required for initialization of the sim-
ulation to run in Flow by removing all of the extra functionalities (e.g., lift
gas injection, well group controls) and include files (e.g., fault coordinates).
The main idea behind this approach was to start with a very simple input
deck that generates the same production curves when run in both of the
simulators. Step-by-step, as the previously removed data items were added

49



Chapter 3. Methodology

back to the input deck, the data items that are not recognized or do not
work as intended in Flow reservoir simulator were identified. At each step,
the original Eclipse model was compared to different work model config-
urations for a number of production quantities, such as the field reservoir
pressure (FPR), well BHPs, field production rates and totals (FFPR and
FFPT), and well rate curves.

The rest of this subsection will present the details regarding the modifica-
tions and approximations made to the original Eclipse reservoir model that
were required for the conversion to the work model in Flow. Each para-
graph will start with a short introduction about the data section, which the
modified keyword item belongs to in the input data file, and followed by
the specifics of how these keywords were tuned.

RUNSPEC section. This section includes the description of the simulation
run, such as the units, grid size, table sizes, number of wells in the model,
and fluid phases included in the system. The following items in this section
where modified for model conversion:

• Petrel Options (PETOPTS). This keyword indicates that the geometry
files (exported from Petrel) contain transmissibility and pore volume
data, where these parameters are usually provided separately from the
geometry files. Typically, this option is used in Petrel when modeling
a reservoir with a complex rock structure. This feature is designed to
reduce the error in the simulation calculations in Eclipse due to the
complex geometry of the grid structure, such as faults and pinchouts
(Schlumberger, 2014). However, this leads geometry files to be ex-
ported in GSG file format, where Flow cannot read the data from such
files. The original Eclipse model of the Field includes this item be-
cause the reservoir structure contains a significant amount of faults.
Therefore, the PETOPTS option was deactivated and a new Eclipse
model of the Field, with grid geometry file in GRDECL format, was
exported from Petrel.

• Constrained Pressure Residual Solver (CPR). The default linear equa-
tion solvers may fail to converge in complex reservoir simulation
models. Such cases might lead to a significant numerical error in
the outcome and longer simulation run-time. Eclipse uses the CPR
linear solver to reduce the run time and improve the performance of
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the simulation when the linear equations fail to converge frequently.
Although Flow also has this capability, the CPR solver feature on the
version 2018.10 is implemented at the experimental level, and has
an adverse effect on the run-time of the simulations. Therefore, this
option was disabled in the work model.

GRID section. This section contains the basic geometry of the simulation
grid and the rock properties, such as the porosity, permeability, net-to-gross
ratios in each grid cell. The simulator uses this information to calculate the
grid block pore volumes, grid center depths, and inter-block transmissibil-
ities of the model. The items that were modified during the model conver-
sion are the following:

• Fault Threshold Pressure (THPRESFT). In Eclipse reservoir mod-
els, it is possible to set threshold pressure for a fault, where the flow
occurring between adjacent grid blocks on each side of the fault is
prevented until the pressure difference in these grids exceeds the
specified threshold pressure value. Some of the faults in the origi-
nal Eclipse model of the Field have threshold pressure value of zero,
which is equal to the default value used for all faults in Eclipse mod-
els if no threshold pressure value is specified. This feature is not
supported in Flow. Therefore, it was removed from the work model
of the Field.

PROPS section. This section of the input data file contains the pressure
and saturation dependent properties of the reservoir fluids and rocks, such
as the relative permeability tables, fluids compressibility tables, and rock
compressibility tables. The following items where modified in this section:

• Oil Properties (PVTO tables). This table contains the properties of
the oil phase (with dissolved gas in it) in the simulation model. It
is composed of four columns, where each column contains the dis-
solved gas-oil ratio, bubble point pressure, oil formation volume fac-
tor, and saturated oil viscosity. The input syntax of both of the simu-
lators require that the data entries in the second and third columns of
this table to be entered in increasing order. However, some of the data
entries in the original Eclipse model of the Field violates this rule. In
such cases, Eclipse issues a warning message about this problem in
the simulation run-log and continues the simulation. Flow, on the
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other, issues an error message and stops the simulation due to vio-
lation of the input syntax. This issue was fixed by re-arranging data
entries in increasing order in the work model so that Flow accepts the
input.

• End-point Scaling (SCALECRS). This keyword is used for end-point
scaling of the relative permeability curves of the fluids in the sys-
tem. Relative permeability curves are used for predicting the mobil-
ity of each phase in the system during reservoir drainage. End-point
scaling is an option that allows the use of the same normalized rel-
ative permeability curve to a set of different regions and rock types
in the reservoir while still honoring the variations in the rock proper-
ties, such as connate water saturation and maximum values of relative
permeabilities to flowing phases (Schlumberger, 2014). The connate
water saturation in the original Eclipse model is scaled to be 60%,
meaning that the water phase is immobile in the grid cells with less
60% water saturation. Although Flow does support end-point scal-
ing of the relative permeability curves, it does not work as intended
because the simulation does not initialize in Flow when SCALECRS
parameter is set to 60%. Therefore, the end-points of the relative per-
meability curves in the converted work model was scaled manually to
match them to the scaled relative permeability curves in the original
model.

SCHEDULE section. This section specifies the operations of the wells
in the simulated run, such as the well completion data, production and in-
jection controls as well as the times at which output reports are required
(Schlumberger, 2014). The following items were modified in this section:

• Well Group Controls. Group constraints can be used for imposing
an upper limit for production or injection parameters on a selected
group of wells to manage the overall production of a field. For exam-
ple, if an upper limit for group gas production rate is exceeded, the
simulator will reduce the fluid production from the wells with high
gas-oil ratio (GOR) to keep the group gas production rate within the
predefined limits. Similarly, group controls can also be imposed on
injector wells. In the original Eclipse model of the Field, both of the
injection wells are under group control to maintain VRR equal to one,
where the simulator sets the injection rates automatically so that total
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water volume injected is equal to the total volume of fluids produced
from the field at the reservoir conditions. However, this feature does
not work as intended in Flow because of a bug in the software algo-
rithm. Therefore, well group controls were disabled in the converted
work model.

• Gas Lift (AQL). Artificial gas lift is an advanced production tech-
nique, where gas is injected into the production well to reduce the
density of the fluid column. As a result, a lower pressure differen-
tial between reservoir and surface is needed to bring the fluid with
less density to the surface. In the original Eclipse model of the Field,
all four of the wells include artificial gas lift. Although Flow also
supports this feature, it does not work as intended since the well cal-
culations do not converge when the gas lift is activated. Hence, the
gas lift option was deactivated for all four of the production wells in
the work of the Field.

• Periodic Testing of Closed Wells (WTEST). Periodic testing of closed
wells can be applied to wells that are closed due to an economic limit
during the simulation. The producer wells in the simulation model
of the Field have 95% water cut as their upper economic limit. This
means the simulator will automatically shut-in a producer well if it’s
water cut is higher than 0.95. Such limits can be specified via WE-
CON keyword for each well individually in Eclipse. If the WTEST
keyword is included in the SCHEDULE section of a simulation deck,
the simulator will test closed wells if they are capable to flow un-
der the current operating conditions at each time-step (Schlumberger,
2014). If a tested well is capable to flow, then that well will be put
back to production. Even though Flow supports this feature, it does
not work as intended. Thus, the periodic testing of closed wells op-
tion was deactivated in the work model of the field.
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3.2 Optimization Work
This section introduces the well placement optimization methodology im-
plemented to find improved locations for the four production wells in the
Field. Detailed information about the objective function, function parame-
ters, constraints, and implemented optimization algorithms are presented.

3.2.1 Optimization problem
The main problem addressed in this work is to find the optimum locations
for the producer wells so that NPV of the Field is maximum. Therefore, the
variables in this problem are the four horizontal well locations subject to
reservoir boundary constraints. The problem formulation can be presented
as

min
xp∈Rn

−NPV (xp) subject to
{
crb(xp) 6 0 (3.1)

where xp and n denote the well placement coordinates and number of ob-
jective function variables, respectively. The non-linear constraint on the
reservoir bounds, crb(xp), defines the region where optimization algorithm
should search for the optimum coordinates of the well.

Objective function. The objective function used in this work was the
weighted sum of the cumulative fluid production volumes from the reser-
voir. As it was mentioned in section 2.2.1, the discount rate of future cash
flow was assumed to be zero for simplicity. Therefore, the equation (2.10)
can be simplified as

NPV (xp) =
Ns∑
k=1

(
Np∑
j=1

poq
j,k
o (xp)∆tk −

Np∑
j=1

cwpq
j,k
wp(xp)∆tk−

−
Ni∑
j=1

cwiq
j,k
wi (xp)∆tk

) (3.2)

where the Table 3.2 presents the economic parameters used in this equation.
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Table 3.2: This table contains the economic parameters used for calculating the objective
function. These parameters were adapted from Volkov and Bellout (2017).

Parameter Value
po - Oil price 60 $/bbl
cwp - Water treatment cost 5 $/bbl
cwi - Water injection cost 3 $/bbl

Objective function variables. The objective function variables in this
work are the heel and toe coordinates of the well, for which its placement is
to be optimized. For each well, the case operator needs to determine six co-
ordinates (three for the heel and three for the toe) since the wells are highly
deviated (see figure 3.4). Therefore, the optimization problem where only
one horizontal well location needs to be optimized yields n = 6 well place-
ment variables (n = 6 ·Nw with Nw being the number of wells).

Figure 3.4: The figure illustrates an example of a well movement in the solution space
(looking from above) when its placement is optimized. The solid line represents the initial
placement of well A. The red arrow denotes the movement direction of the heel and toe
of the well towards their new positions determined by the algorithm. The dashed line
represents the new position of well A, where the optimization algorithm will evaluate the
objective function for this case, and decide whether the new location of well A is better or
not.

Reservoir-bound constraints. The reservoir bound constraints are based
on not allowing the heel and toe of the well to move outside the predefined
region in the reservoir, which contains the initial coordinates of the well. In
a case where the heel and toe coordinates lie outside the constrained region,
the operator projects hell and toe coordinates onto their respective bounds
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(Bellout, 2014). These constraints guide the search for the new well coor-
dinates that are more realistic with respect to the geological features of the
reservoir, such as avoiding placing a well too close to a fault. In this work,
only the rectangular-shaped reservoir bound constraints were imposed on
the well placement variables (see figure 3.5). The bounding region was de-
fined by a range of (i,j,k) indices, that created a box-shaped boundary in
(x,y,z) space.

Constrained region

heel

toeinfeasibletoefeasible

Figure 3.5: The figure illustrates an example of a projection of infeasible well toe coordi-
nate onto the constrained bound area (looking from above). Figure adapted from (Bellout,
2014).

Optimization algorithms. In this work, the optimization algorithms im-
plemented to solve the well placement optimization were the APPS and
PSO algorithms (both were introduced in section 2.2.3).

APPS. The APPS algorithm requires the following control parameters to
initialize the search for an optimum well location: initial coordinates for
both hell and toe of the well, an initial step-length, a convergence criterion,
a contraction factor, an expansion factor, and a maximum number evalua-
tions allowed before convergence. The control parameters used for APPS
algorithm are presented in Table 3.3.

In the simulation model of the Field, the scale ratio between the z-axis
and the x and y-axes is approximately about 1: 100. This makes choosing
a suitable initial step-length (and consequently, the convergence criterion)
more challenging because there is a high probability that the well coordi-
nates would be outside of the feasible region. Therefore, the AutoStep op-
tion, which is implemented in FieldOpt’s Optimization module, was used.
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With AutoStepInitScale set to 0.75, the initial step-length is calculated as
0.75 times the distance between the minimum and maximum values de-
fined by the bound constraints along each axis. The same principle applies
for defining the minimum step-length for convergence criterion with Au-
toStepConvScale setting.

Table 3.3: This table presents the APPS algorithm’s control parameter specifications ap-
plied for the well placement optimization problems in this work. Both initial step-length
and convergence criterion were calculated automatically based on the bound region di-
mensions. After every successful iteration, the step length was kept the same, i.e. the
expansion factor was set to 1. On the other hand, the step-length was reduced by half if the
iteration did not find a better position, and the algorithm converged to a solution once the
step-length was 0.01 times the bound region dimensions. The algorithm was allowed to
execute a maximum of 1000 case evaluations, and the search automatically terminated if
the algorithm did not find the optimal well placement coordinates within these evaluations.

Parameter Value
AutoStepConvScale 0.01
AutoStepInitScale 0.75
AutoStepLengths true
Contraction Factor 0.5
Expansion Factor 1
Maximum Evaluations 1000
Maximum QueueSize 2

In general, choosing proper control parameters for an optimization algo-
rithm is not always a straightforward task, and even can be very challenging
in some problems, e.g. simulation based optimization problems. Although
there are commonly used rules of thumb for some algorithms, the control
parameters that are picked based on these rules do not guarantee an efficient
performance of an optimization algorithm. Therefore, a sensitivity analysis
needs to be performed to determine the suitable control parameters of an
optimization algorithm for each optimization problem.

In this work, the initial step-length parameter was tested to assess the per-
formance of the APPS algorithm in the well placement optimization prob-
lem of the Field. The main reason for testing this parameter was to de-
termine the relationship between the initial step-length parameter and the
number of objective function evaluations executed by the algorithm before
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converging to a solution. It was expected that a longer initial step-length
parameter would yield a faster convergence, i.e. lower number of function
evaluations executed, as well as the algorithm would have a lower probabil-
ity of getting trapped in a local optimum. Therefore, three different values
for AutoStepInitScale were tested for each optimization case: 0.25, 0.50,
and 0.75.

PSO. The PSO algorithm requires the following control parameters to ini-
tialize the optimization of a well location: number of particles in the swarm,
the social and cognitive learning factors, and a maximum number of swarm
generations. The control parameters used for the PSO algorithm in this
work are presented in Table 3.4. Due to the significant difference in scale
between the z-axis and the x and y-axes in the reservoir model, the veloc-
ity of each particle was scaled down by 25% (V elocity Scale setting) at
each iteration to reduce the probability of well coordinates being outside
the feasible region. The cognitive and social acceleration factors were cho-
sen such that c1 + c2 = 4, based on Shi et al.’s paper (Shi et al., 2001).
These factors weigh the stochastic acceleration terms that pull each particle
toward Pp best and Pg best coordinates in the bound region. Consequently,
low values for these factors allow particles to travel far from the target re-
gions before converging to the best position, while high values result in an
abrupt movement toward, or past, the best position. Hence, both accelera-
tion factors were chosen to be equal to 2 in this work.

One of the critical control parameters to decide in the PSO algorithm is the
number of particles in a swarm since this parameter influences how many
objective function evaluations will be executed during the search process.
A general rule of thumb is to choose the number of particles directly propor-
tional to the number of variables in the objective function, i.e., a function
with a higher number of variables require a swarm with higher amount of
particles for the efficient performance of the PSO algorithm. Therefore,
a well placement problem of a horizontal well (six coordinate variables)
would require around six particles in the swarm, and a swarm with a higher
number of particles is needed if more than one horizontal well placement is
optimized by the PSO algorithm.
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Table 3.4: This table presents the control parameters specified for the PSO algorithm in
this work. The algorithm generates a swarm with six particles to search the bound space.
The velocity of each particle was multiplied with 0.25 to prevent the abrupt movement of
the particles. A maximum of 138 iterations were allowed for each search.

Parameter Value
Max Generations 138
Cognitive Factor : c1 2
Social Factor : c2 2
Swarm Size : Nparticles 6
V elocity Scale 0.25

In this work, a sensitivity to the swarm size parameter (number of particles)
was tested to asses the performance of the PSO algorithm. The main reason
for testing this parameter was to determine the influence of this parameter
on the total number of objective function evaluations and the final objective
function value obtained. Therefore, two different values for swarm size
(Nparticles) parameter were tested for each optimization case: 6 and 12.

3.2.2 FieldOpt configuration
This section gives a brief overview of the optimization workflow that was
used to optimize the well placement of the Field and describes how the var-
ious features of FieldOpt were employed in this work. In addition, relevant
parts of the FieldOpt driver file are also presented as code snippets through-
out this section.

Optimization workflow. Upon a more detailed analysis of the production
results from the work model of the Field, it was observed that the field and
well oil production rates peak very early during the production time frame,
and no substantial production plateau is observed (see Appendix B). This
means that a large part of the oil recovery is predicted to occur during the
early stages of production. Therefore, considering this fact and the limita-
tions of computational resources available for this work, the placement of
the wells were optimized only for the first 300 days.

FieldOpt is capable of optimizing placement of any number of wells in
a single optimization run. As it was mentioned in the previous sections,
placement optimization of a single deviated well adds 6 variables to the
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well placement optimization problem. Consequently, the number of opti-
mization variables to be solved increases as more wells are optimized si-
multaneously. However, the relationship between the computational cost
and the number of optimization variables is not linear. That is, the cost of
computation increases exponentially as the number of variables gets larger
in an optimization problem.

Table 3.5: Specifications of the computer used in this work.

Component Specification
Operating System Ubuntu 16.04 LTS 64-bit
CPU Intelr Xeonr CPU E5520 @ 2.27GHz x4
Memory 24GiB System Memory @ 1066 MHz
Storage 500GB Hitachi HDP72505

The specifications of the computer used in this work are presented in Ta-
ble 3.5. Considering the limited computational power of this computer,
the placement of only one well was optimized in each optimization case to
keep the computational requirement of the optimization problem feasible.
The results of each optimization case are presented and analyzed in the next
chapter (see section 4.2).

Case configuration example in FieldOpt. This section briefly outlines the
overall architecture of a driver file used in FieldOpt along with the descrip-
tion of placement optimization case setup of the well PROD 1.

In FieldOpt, each well is parameterized as a straight line between two points
in space. Therefore, the (x,y,z) coordinates of heel and toe of the well are
required to initialize an optimization run. The section of the driver file,
where initial well spline coordinates and well control parameters are speci-
fied, is shown in Listing 3.1. In this optimization case, the optimal location
of a single highly deviated oil producer that operates with BHP constraint
of 60 bars with no liquid target rate is to be searched.
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Listing 3.1: Specification of the initial placement of the producer PROD 1. The heel
and toe coordinates are anonymized for confidentiality reasons (relative distances are pre-
served).

1 "Wells": [
2 {
3 "Name": "PROD_1",
4 "Group": "G1",
5 "Type": "Producer",
6 "DefinitionType": "WellSpline",
7 "PreferredPhase": "Oil",
8 "WellModel": "Projection",
9 "WellboreRadius": 0.1905,

10 "SplinePoints": {
11 "Heel": {
12 "x": 100000.00,
13 "y": 1000000.00,
14 "z": 1000.00,
15 "IsVariable": true
16 },
17 "Toe": {
18 "x": 98724.38,
19 "y": 1002071.07,
20 "z": 870.48,
21 "IsVariable": true
22 }
23 },
24 "Controls": [
25 {
26 "TimeStep": 0,
27 "State": "Open",
28 "Mode": "BHP",
29 "BHP": 60.0,
30 "IsVariable": false
31 }
32 ]
33 }]

The algorithm searches for an optimum placement solution within the bound-
ing region defined by the user. It is defined by a range of (i,j,k) indices
which contain the initial coordinates of the well. Listing 3.2 shows the rel-
evant part of the driver file where the bounding region is defined for well
PROD 1. This well may be positioned anywhere inside of the box marked
with solid black lines in Figure 3.6.
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Listing 3.2: Specification of the bounding region of the producer PROD 1.

1 "Constraints": [
2 {
3 "Wells": ["PROD_1"],
4 "Type": "ReservoirBoundary",
5 "BoxImin": 86,
6 "BoxImax": 102,
7 "BoxJmin": 29,
8 "BoxJmax": 62,
9 "BoxKmin": 10,

10 "BoxKmax": 44
11 }
12 ]

|

PermX(mD)

PROD_4 PROD_3 PROD_2

PROD_1

INJ_1

INJ_2

Figure 3.6: The figure shows the permeability map of Formation Three in the reservoir.
The trajectories of the production and injection wells are represented as green and yellow
lines, respectively. The reservoir bound constraint is illustrated by the black box (2D
projection).

The rest of the driver file contains the NPV parameters, optimization algo-
rithm configurations, and specification of which reservoir simulator to be
used for the optimization run (see listing 3.3). In this example, the opti-
mization problem is to maximize the NPV subject to the reservoir bound
constraints specified in the Constraints section of the driver file. The PSO
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algorithm with 12 particles will iterate the well location coordinates to find
the optimal solution within 138 generations. A complete JSON driver file
is presented in Appendix A.

Listing 3.3: Specification of the NPV parameters, algorithm setup, and simulator selection
PROD 1.

1 "Global": {
2 "Name": "OPM_WORK",
3 "BookkeeperTolerance": 1e-3
4 },
5 "Optimizer": {
6 "Type": "PSO",
7 "Mode": "Maximize",
8 "Parameters": {
9 "MaxGenerations": 138,

10 "PSO-LearningFactor1": 2,
11 "PSO-LearningFactor2": 2,
12 "PSO-SwarmSize": 12,
13 "PSO-VelocityScale": 0.25
14 },
15 "Objective": {
16 "Type": "WeightedSum",
17 "UsePenaltyFunction": false,
18 "WeightedSumComponents": [
19 {
20 "COMMENT": "Coefficient: 60 $/barrel *

6.2898 barrel/sm3 = 377.389"
21 "Coefficient": 377.389,
22 "Property": "CumulativeOilProduction",
23 "TimeStep": -1,
24 "IsWellProp": false
25 },
26 {
27 "COMMENT": "Coefficient: -3 $/barrel *

6.2898 barrel/sm3 = -18.869"
28 "Coefficient": -18.869,
29 "Property": "CumulativeWaterInjection",
30 "TimeStep": -1,
31 "IsWellProp": false
32 },
33 {
34 "COMMENT": "Coefficient: -5 $/barrel *

6.2898 barrel/sm3 = -31.449"
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35 "Coefficient": -31.449,
36 "Property": "CumulativeWaterProduction"

,
37 "TimeStep": -1,
38 "IsWellProp": false
39 }
40
41 ]
42 },
43 "Simulator": {
44 "Type": "Flow",
45 "FluidModel": "BlackOil",
46 "ExecutionScript": "bash_flow.sh",
47 "ScheduleFile": "OPM_WORK_SCH.INC"
48 },
49 "Model": {
50 "ControlTimes": [
51 0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 25

0, 275, 300],
52 "Reservoir": {
53 "Type": "Flow"
54 }]
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Results

Similar to the previous chapter, this chapter also consists of two sections.
The results of the simulation model conversion and the validation of the
work model will be presented in the first section of this chapter. As it was
mentioned in Chapter 3, Eclipse is often referred to as an industry standard
reservoir simulator due to its technical capabilities and continuous support
by its developer. Hence, the simulation results from Flow will be consid-
ered as valid only if the deviation is insignificant when compared to the
output results from Eclipse. The second part of this chapter will be the
presentation of the well placement optimization results that were obtained
using FieldOpt. The performance of the optimization algorithms imple-
mented in this work will also be investigated throughout this part.

4.1 Model Conversion and Validation
Throughout this section, a systematic framework was used to execute a con-
sistent comparison between the results that were obtained from Flow and
Eclipse reservoir simulators. In this framework, the relative change and the
deviation between the results are quantified as shown in the equations (4.1)
and (4.2) respectively.

Relative change (x, xref ) =
Actual change

xref
=
x− xref
xref

(4.1)
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Deviation (%) =
x− xref
xref

× 100% (4.2)

where, in both of the equations, x and xref stand for the test variable value
and reference variable value respectively. The extent of the deviation from
the reference was divided into three categories for a constructive analysis:

• < 5% - The deviation is small.

• 5-10% - The deviation is moderate.

• > 10% - The deviation is large.

All reservoir simulation results are only a mathematical representation of
reservoir dynamics that occur in real space and time. It is difficult to com-
pare simulation results to the real values that they are representing due to
the inherent uncertainty of the mathematical models. Although there is no
evidence on which reservoir simulator has a better description of what hap-
pens in a reservoir during its production lifetime, Eclipse has been used
as a reliable reservoir simulator in a wide variety of reservoir management
projects around the world for decades. Thus, Eclipse was used as the refer-
ence simulator throughout this work.

4.1.1 Model comparison results
The comparison and validation process of the work model of the Field was
performed in multiple stages. The results will be presented in the fol-
lowing order: First, the impacts of individual modifications (mentioned
in section 3.1.1) on the simulation results were investigated. Second, the
combined impact of all modifications on the simulation results was inves-
tigated. Lastly, the simulation results generated by Flow and Eclipse were
compared. Although each simulation run of the Field model generates an
extensive amount of output data, comparing each one of these prediction
parameters would be time inefficient and unnecessary for validation of the
work model. Hence, only the prediction results on field-level data (e.g.,
field pressure, total fluid production, and injection volumes) and well-level
data (e.g., well BHPs, fluid production, and injection rates) which are in-
dicative enough to presume that the rest of the output data yield similar
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comparison results will be presented.

4.1.2 Impacts of individual modifications
The impact of each modified item was investigated by applying only one
modification to the original Eclipse model, and running this modified simu-
lation deck in Eclipse. The production quantities obtained from this model
were compared to production quantities predicted from the original model.
The results for the impacts of each modified item in the original input deck
is presented in the same order as in section 3.1.1.

Petrel Options: The ECL PETOPTS disabled case. Deactivating the
PETOPTS option and exporting a new with geometry file in GRDECL for-
mat resulted in a higher pressure depletion in the reservoir. Looking at
the average field pressure (FPR) profiles in Figure 4.1, it can be observed
that the deviation between the modified and reference case results is around
17% at the end of the simulation run, which is a large deviation.
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Figure 4.1: The plots show the average field pressure profiles and deviation of the average
field pressure of the modified case from the reference. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.

The cumulative fluid production and injection quantities predicted by the
modified case also deviate considerably from the reference case. Table 4.1
shows that the total oil and water production volumes deviate from the ref-
erence volumes by around 36% and 17%, respectively. The pressure maps
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shown in Figure 4.2 indicate a non-uniform pressure depletion of the reser-
voir in the original Eclipse model of the Field, where significant pressure
differences along the faults are observed.

ECL_original ECL_PETOPTS_dis.

Pressure [bars]

Figure 4.2: Shown in the figure are the pressure maps of Formation Four (K-slice: 35-
44) predicted by the reference case (left) and modified case (right) at the end of the field
production (25 years). The scale of the pressure color bar was modified (while keeping the
relative pressure differences the same) for confidentiality reasons. It can be observed the
reference case predicts huge pressure differences (up to around 300 bars) along the faults
in some parts of the reservoir.

CPR Solver: The ECL CPR disabled case. Disabling the CPR solver for
the simulation calculations in the reservoir model of the Field did cause an
observable deviation in the prediction results. Looking at the average field
pressure curves predicted by the reference case and modified case in Figure
4.3, it can be observed that the maximum deviation between the predicted
results is around 1.6%, which is small. Similarly, Table 4.1 indicates that
the maximum deviation in cumulative fluid production and injection vol-
umes predicted by the modified case is less than 2%.

This modification did have a significantly adverse effect on the run-time of
the simulation in the modified case compared to the reference case (see Ta-
ble 4.1). Upon further investigation, it was revealed that the number of lin-
ear equation calculations performed by the simulator was around 3.6 times
higher in the modified case in comparison to the reference case. This was
the case because the linear equations fail to converge more frequently when
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Figure 4.3: The plots show the average field pressure profiles and deviation of the average
field pressure of the modified case from the reference. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.

the CPR solver feature is disabled in the original Eclipse model. Therefore,
in the modified case, the simulator had to reduce the time-step size (see fig-
ure 4.4) every time a linear equation failed to converge in order to minimize
the truncation error in the simulation calculations.
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Figure 4.4: Simulation time-step size results for the reference case and CPR solver dis-
abled case.
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Fault Threshold Pressure: The ECL THPRESFT disabled case. Re-
moval of THPRESFT keyword and its data items from the simulation deck
of the original Eclipse model did not change the model. The field total
production and injection volumes presented in Table 4.1 indicate that the
deviation of simulation results between the modified case and reference
case is negligible. These were the expected results for this case, since the
removal of THPRESFT keyword has no impact on the fluid flow dynamics
in the reservoir model of the Field (see section 3.1.1).

Oil Properties and Rel-Perm Scaling: The ECL PVT modified case.
The impact of modifications made to the PROPS section of the original
model is analyzed together, since both of these modifications has to do
with the fluid properties in the system. Scaling of the relative permeability
curves manually resulted in small deviation of the field production param-
eters in the modified case. Due to the inadequate implementation of rela-
tive permeability curve scaling functionality in Flow, the end-points in of
these curves were scaled manually to match the scaled curves generated by
Eclipse. The average field pressure predicted by the modified case plotted
in Figure 4.5 shows the maximum deviation from the reference values is
slightly higher than 4%. -20
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Figure 4.5: The plots show the average field pressure profiles and deviation of the average
field pressure of the modified case from the reference. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.
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4.1 Model Conversion and Validation

Well Group Controls and Artificial Lift: The ECL GCON disabled &
ECL AQL disabled cases. The well group controls (VRR = 1) imposed
on both of the injector wells in the Field was disabled due to insufficient
implementation of this feature in Flow. In this case, the water injection rate
targets (1500 m3/d) and injector well BHP constraints (500 bars) are the
only controls of the injector wells. Looking at Figure 4.6, the BHP param-
eter of the injector wells never reach its upper limit during the simulation
run in the reference case since the simulator automatically regulates the
water injection rates of the injectors according to the cumulative fluid pro-
duction rates from the reservoir. On the other hand, it can be observed that
the injector wells in the modified case are controlled by the water injection
target rate during the first half of the simulation, except for the short time
period for the INJ2. During the second half of the simulation, the simula-
tor switches the controls of the injector wells to WBHP parameter, where
injector wells operate at maximum BHP.
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Figure 4.6: The WBHP and WWIR profiles for the injector well INJ1 and INJ2 are shown
in the figure. Suffix “a” denotes that the pressure and injection rate axes are anonymized.

Looking at Table 4.1, deactivation of the well group controls for the injec-
tor wells leads to cumulative water produced and injected volumes to de-
viate around 11% and 13% form the reference volumes, respectively. The
cumulative oil production volume stayed almost the same since the addi-
tional water volume injected into the field did not improve the volumetric
sweep efficiency in the reservoir. However, higher cumulative water in-
jection volume caused the average reservoir pressure predictions to deviate
significantly from the reference values.
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Chapter 4. Results

Looking at Figure 4.7, it can be observed that the water injection without
the well group controls imposed on the injectors leads to overpressurization
of the reservoir, since the VRR is around 1.04 for this case. As a result, the
deviation of the average field pressure is slightly higher than 15% by the
end of the simulation in this case.
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Figure 4.7: The average field pressure profiles (normalized to preserve confidentiality)
predicted by the modified cases and reference case is presented in the left plot. The devi-
ation of the average field pressure predictions in the modified cases is shown in the right
plot. The suffixes “original”, “GCON dis”, and “AQL dis” signifies the reference case,
well group controls disabled case, and gas lift disabled case, respectively. The suffix “a”
on the title of y-axis signifies that the pressure values have been normalized for confiden-
tiality reasons.

The artificial lift option was deactivated in the work model of the Field due
to the numerical difficulties encountered in Flow. The simulator was not
able to interpolate the vertical lift performance relationship (VLP) table,
which enables a simulator to calculate the pressure drop in the production
tubing as a function of well flow rate, included in the original Eclipse model
of the Field. In such situations, well tubing head pressure (WTHP) controls
cannot be specified either since the simulator requires a VLP table to cal-
culate this parameter. Therefore, the default value of 0 bars was used for
the WTHP parameters of all producer wells in the simulation case where
the gas lift option was deactivated.

In general, the drawdown of a producer well is reduced when the gas lift
option is disabled due to a heavier fluid column in the wellbore. On the
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4.1 Model Conversion and Validation

other hand, well drawdown is increased when no WTHP constraint is im-
posed on a producer well. Looking at Figure 4.8, it can be observed that all
producer wells in the gas lift deactivated case are operated at the minimum
WBPH limit (60 bars). Thus, the producer wells have a higher drawdown
in this case in comparison to well drawdown in the reference case.

Table 4.1 indicates that the deviation of the total produced volumes of oil
and water in the gas lift deactivated case is around 9% and 15%, respec-
tively. Due to the higher cumulative fluid volume withdrawal, the average
reservoir pressure is lower in the modified case compared to the reference
case (see figure 4.7). The deviation of the average field pressure is around
−13% by the end of the simulation.
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Figure 4.8: Figure illustrates well bottomhole pressures. Suffix “a” denotes that the pres-
sure and injection rate axes are anonymized.
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Periodic Testing of Closed Wells: The ECL WTEST disabled case. Re-
moval of WTEST keyword and its data items from the simulation deck of
the original Eclipse model did not change the model. The field total produc-
tion and injection volumes presented in Table 4.1 indicate that the deviation
of simulation results between the modified case and reference case is neg-
ligible.

4.1.3 Combined effects
The simulation results presented in Table 4.1 show how the various model
conversion approximations and modifications impact the total production
and injection volumes in each modified case.

Table 4.1: In this table, field total production and injection volumes predicted by the
modified cases are presented as a fraction of cumulative volumes predicted by the reference
case.

Case FOPT [-] FWPT [-] FWIT [-] Time [min]
ECL orig. 1.000 1.000 1.000 52
ECL PETOPTS dis. 1.359 1.167 1.180 48
ECL CPR dis. 0.983 0.984 0.984 75
ECL THPRESFT dis. 1.000 1.000 1.000 52
ECL PVT mod. 0.970 1.057 1.040 -
ECL GCON dis. 0.999 1.113 1.132 -
ECL AQL dis. 1.089 1.148 1.106 50
ECL WTEST dis. 1.000 1.000 1.000 52
ECL reduced 1.368 1.195 1.251 180
ECL reduced† 1.006 1.024 1.060 180
ECL work†† 1.000 1.000 1.000 216
OPM work§ 1.000 1.000 1.000 252

† ECL PETOPTS dis. case as the reference case.
†† ECL reduced case as the reference case.
§ ECL work case as the reference case.
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4.1 Model Conversion and Validation

Combined Effects: The ECL reduced case. The combined impact of all
of the modifications, which were mentioned in the previous section, was
also investigated by applying all of these approximations and modifications
together to the original simulation deck of the Field. Looking at Figure 4.9,
the average field pressure profile predicted by the reduced model seems to
deviate significantly from the reference case pressure profile. It is evident
that the PETOPTS feature in the original simulation deck has a dominant
impact on the simulation results. The maximum deviation of the average
field pressure is around 38% by the end of the simulation.
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Figure 4.9: The plots show the average field pressure profiles and deviation of the average
field pressure of the reduced model from the reference. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.
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4.1.4 Flow vs Eclipse
The aim of the validation process was to validate the simulation results pre-
dicted by OPM-Flow simulator. In order to do so, the reduced model of the
Field was run in both simulators, and the results were compared.

The work model: The ECL work & OPM work cases. Finally, the work
model of the Field was developed by implementing all of the modifications,
which were mentioned previously, on the original simulation deck. Look-
ing at the field production results and pressure profiles presented in Table
4.1 and Figures 4.10 and 4.11, the match between the results predicted by
both of the simulators gave a close match, i.e., the deviation between the
results is less than 1%. Thus, the work model results predicted in Flow is
validated, and this concludes the validation part of this work.50
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Figure 4.10: The plots show the average field pressure profiles and deviation of the av-
erage field pressure of the work model run in Flow. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.
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Figure 4.11: Field production and injection rates. The suffix “a” on the title of y-axis
signifies that the pressure values have been normalized for confidentiality reasons.
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The run-time of the work model in Flow on a single core setup was 36
minutes (17%) longer compared to run-time in Eclipse. The time-step size
plot in Figure 4.12 indicates that Flow takes larger time-steps than Eclipse
without accumulating significant truncation error. It is a remarkable perfor-
mance from an open-source reservoir simulator given the complexity of the
simulation model of the Field.
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Figure 4.12: Simulation time-step size results for the work model in both Eclipse and
Flow.
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4.2 Optimization Results
This section describes the results obtained from FieldOpt by utilizing the
optimization workflow described in the previous chapter (see section 3.2.2).
The main results of each well optimization run will be described in terms of
final objective value and algorithm performance. Moreover, the implemen-
tation of these solutions in the work model of the Field is also presented.
The best placement solutions obtained for each well were implemented to-
gether in the work model to develop an optimized well placement scenario
of the Field. The results of the optimum and base case development scenar-
ios (introduced in section 3.1) are compared and presented in terms of the
final objective function values, field production quantities, and saturation
map plots at different time steps.

4.2.1 Optimization solutions
The procedure utilized throughout the optimization part of this work pro-
duced a total of 16 well placement solutions in the work model of the Field.
That is, the placements of all four producer wells were optimized by using
two optimization algorithms launched with two different configurations in
FieldOpt. The optimization runs using the APPS optimization algorithm
with the initial step-length scaling (AutoStepInitScale) configuration set to
0.25 and 0.75 are denoted by the name of the well which is optimized, fol-
lowed by “APPS1” and “APPS2”, respectively. Similarly, the runs using
the PSO algorithm with swarm size of 6 and 12 particles are denoted by the
name of the well which is optimized, followed by “PSO1” and “PSO2”, re-
spectively. Values associated with the initial well configuration is referred
to as “Base Case” in the tables. All results reported in this section are pre-
dicted by the work model of the Field run in Flow.

Optimization results for well PROD 4. Figure 4.13 and Table 4.2 show
the objective function evolution versus the number of function evaluations
(simulations) of each optimization case for the PROD 4. For APPS algo-
rithm, the improvement of NPV in the cases where the initial step-length
scaling configuration with 0.25 and 0.75 is 16.19% and 16.56%, respec-
tively. However, the APPS algorithm with the former configuration (APPS1)
converged to a solution (maximum NPV) value within 298 function evalua-
tions, which is twice as fast compared to the latter APPS (APPS2) algorithm
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configuration. Applied to the same the problem, the PSO algorithm with 6
particles yields 14.36% NPV improvement after 531 function evaluations.
Similarly, the PSO algorithm configuration with 12 particles yields 17.48%
NPV improvement after 574 function evaluations.
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Figure 4.13: The figure shows the objective function evolution versus the number of eval-
uations for both configurations of APPS (left) and PSO (right) algorithms. The suffix “f”
denotes that the values are presented as a fraction of base case objective function value.

Table 4.2 shows the results of production quantities after 300 days pre-
dicted by each case. It can be observed that the total oil production in all
of the optimized cases is higher than the base case prediction. Total wa-
ter production and injection volumes are approximately close to base case
prediction volumes except for P4 PSO2 case. The total water production
volume in the P4 PSO2 case is significantly higher when compared to all
other cases. The reason for such performance is that the optimum place-
ment found in this case is too close to the WOC in the Western segment
of the Field. Hence, water-breakthrough occurs much earlier in this case
compared to all other optimization cases for well PROD 4. In general, all
four optimization cases for this well yields a higher oil recovery because
the optimized well trajectories target the unswept regions (in the base case)
and drain the Western segment of the reservoir more efficiently (see figure
4.16).
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Table 4.2: Optimization results for well PROD 4.

Case PROD 4
WOPT [-]

PROD 4
WWPT [-]

FOPT
[-]

FWPT
[-]

FWIT
[-]

#Eval. ∆
NPV[%]

Base Case 1.000 1.000 1.000 1.000 1.000 - -
P4 APPS1 4.509 10.989 1.157 0.999 1.000 298 16.19
P4 APPS2 4.537 10.643 1.160 0.919 1.000 596 16.56
P4 PSO1 4.267 6.638 1.139 0.994 1.000 531 14.36
P4 PSO2 5.171 5258.124 1.179 6.150 1.000 574 17.48

Optimization results for the rest of the wells. Tables 4.3, 4.4, and 4.5
show the optimum placement results for wells PROD 1, PROD 2, and
PROD 3, respectively. For well PROD 1, both P1 APPS1 and P1 PSO2
cases yield around 12% NPV improvement after 472 and 624 function eval-
uations, respectively.

Table 4.3: Optimization results for well PROD 1.

Case PROD 1
WOPT [-]

PROD 1
WWPT [-]

FOPT
[-]

FWPT
[-]

FWIT
[-]

#Eval ∆
NPV[%]

P1 APPS1 1.800 11.639 1.132 8.178 1.000 472 12.24
P1 APPS2 1.841 17.632 1.104 12.007 1.000 494 8.64
P1 PSO1 1.683 12.535 1.091 8.687 1.000 528 7.92
P1 PSO2 1.710 14.198 1.136 9.761 1.000 624 12.33

For well PROD 2, P2 PSO2 case yields the highest NPV increase around
11.8% after 977 function evaluations.

Table 4.4: Optimization results for well PROD 2.

Case PROD 2
WOPT [-]

PROD 2
WWPT [-]

FOPT
[-]

FWPT
[-]

FWIT
[-]

#Eval ∆
NPV[%]

P2 APPS1 1.156 1.598 1.048 1.163 1.000 407 4.93
P2 APPS2 1.172 1.875 1.054 1.239 1.000 500 5.49
P2 PSO1 1.259 5.483 1.080 2.283 1.000 828 7.99
P2 PSO2 1.186 1.453 1.115 1.153 1.000 977 11.86

For well PROD 3, the PSO algorithm cases with 6 and 12 particles yield
around 6.3 NPV increase after 584 and 758 function evaluations.
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Table 4.5: Optimization results for well PROD 3.

Case PROD 3
WOPT [-]

PROD 3
WWPT [-]

FOPT
[-]

FWPT
[-]

FWIT
[-]

#Eval ∆
NPV[%]

P3 APPS1 1.867 15.924 1.020 0.976 1.000 552 2.06
P3 APPS2 1.863 14.807 1.020 0.970 1.000 1013 2.07
P3 PSO1 1.297 2.012 1.062 1.073 1.000 584 6.36
P3 PSO2 1.264 2.223 1.061 1.061 1.000 758 6.25

Combined well placement solution. The optimum well placement con-
figuration of the producer wells in the Field was assembled by using the
optimum placement solutions for each producer well generated by Field-
Opt (described in the previous section). Since each well had four optimized
placement solutions, only the solution that was considered to be practically
applicable (e.g., not too close to other wells or completed outside of target
formations) and yielded a higher NPV improvement was picked for each
well. In this part, the simulation results for the combined well placement
scenario are presented and described. Throughout this section, the “Opti-
mized Case” represents the results of the scenario where the optimized well
configuration is implemented to drain the reservoir. The length of each pro-
ducer well in both of the cases is shown in Table 4.6.

Table 4.6: Well lengths for Base Case and Optimized Case scenarios.

Case
Well Length[m]

PROD 1 PROD 2 PROD 3 PROD 4
Base Case 2456 1384 1247 896
Optimized Case 1796 1545 1037 1176
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The description of each producer well in the optimized well placement sce-
nario is presented below:

• Well PROD 1: A dedicated Formation Four producer in the Eastern
segment of the Field. It was a dedicated Formation Three producer
in the base case scenario.

• Well PROD 2: A commingled producer from Formation Three and
Formation Four in the Eastern segment of the Field. It was a dedi-
cated Formation Four producer in the base case scenario.

• Well PROD 3: A dedicated Formation Four producer in the Eastern
segment of the Field, which is the same description as in the base
case scenario.

• Well PROD 4: A commingled producer from Formation Three and
Formation Four in the Western segment of the Field, which is the
same description as in the base case scenario.

The total production quantities from the reservoir for the optimized case are
shown in Table 4.7. This case with optimized well configuration yields 31%
higher cumulative oil production after 300 days, and the NPV improvement
is around 30.8%. The cumulative water production volume is 7.8 times
higher compared to the base case. Looking at the field average pressure
profiles depicted in Figure 4.14, it can be observed that the pressure deple-
tion predicted in the optimized case is significantly higher compared to the
base case. This is a reasonable outcome since the extra volume of fluids
withdrawn from the reservoir is not compensated for by the injectors (i.e.,
VRR is lower in the optimized case).

Table 4.7: In this table, field total production and injection volumes predicted by the opti-
mized well configuration case are presented as a fraction of cumulative volumes predicted
by the base case.

Case FOPT [-] FWPT [-] FWIT [-] ∆ NPV[%]
Base Case 1.000 1.000 1.000 -
Optimized Case 1.311 7.842 1.000 30.81
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Chapter 4. Results

Another feature of the optimized well placement scenario worth noting is
the water-breakthrough time. The water production plots in figures 4.14
and 6.1 indicate that water-breakthrough time is shorter in the optimized
case (after 50 days) compared to the base case (after 110 days).
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Figure 4.14: Field production totals and average pressure for the base case (dashed) and
optimized case (solid) over a production time frame of 300 days. The suffix “a” on the
title of y-axis signifies that the pressure values have been normalized for confidentiality
reasons.
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4.2 Optimization Results

The total fluid production from each well in the optimized case is shown
in Table 4.8. It can be seen that except for well PROD 2, the optimized
scenario yields higher total oil and water production volumes for each well
over the base case.

Table 4.8: Total production volumes for each well in the optimized well configuration
case are presented as a fraction of cumulative volumes predicted for the corresponding
well in the base case.

Quantity PROD 1 PROD 2 PROD 3 PROD 4
WOPT [-] 1.693 0.644 1.225 4.432
WWPT [-] 10.974 1.142 1.721 9.926

The oil saturation map of the Field after 300 days of production are shown
in Figures 4.15 and 4.16 for the base case and optimized case well con-
figuration scenarios, respectively. In Figure 4.16, it can be seen that well
PROD 4 is longer in the optimized case, and its new location targets the
oil accumulation near the WOC in the Western segment of the Field. The
increased WOPT in this well by such re-positioning is a significant factor
contributing to the overall improvement in NPV for the optimized scenario.
It can also be observed that wells PROD 1, PROD 2, and PROD 3 are re-
located towards the east of the Field. As a result of this relocation, the cen-
tral part of reservoir in the Eastern segment has a better sweep compared
to the base case. The water-breakthrough time in producer well PROD 1 is
reduced significantly (see figure 6.1) in this scenario because its new trajec-
tory is closer to injector well INJ 1. The well PROD 3 has greater drainage
area in the optimized case since it moved further towards the east of the
Field, away from the central fault.
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Figure 4.15: Oil saturation map of Formation Four (K-slice:41-44) after 300 days of
production in the Base Case. The initial producer trajectories are shown as black lines.
Injector trajectories are marked with grey lines. The wells are not in the same formation.

Figure 4.16: Oil saturation map of Formation Four (K-slice:41-44) after 300 days of
production in the Optimized Case. The initial and optimized producer trajectories are
shown as dashed and solid black lines, respectively. Injector trajectories are marked with
grey lines. The wells are not in the same formation.
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Chapter 5
Discussion

This chapter expands upon the results that were presented in the previous
chapter, and tries to address the main research questions. Similar to the
previous chapter, this chapter also consists of two sections.

Simulation model conversion and validation. The simulation model con-
version process was focused on developing the work model of the Field.
During this process, a number of approximations and modification were
made to the original Eclipse model since Flow does not support all of the
technical features implemented in Eclipse reservoir simulator. The impacts
of these modifications on the simulation prediction results were presented
in section 4.1.1 and Table 4.1. The items mentioned in that section can be
summarized and discussed as below:

PETOPTS Keyword. Deactivation of this option impacts the fluid dynamics
in the reservoir simulation model. The cumulative volumes predicted for
oil and water in the PETOPTS deactivated case deviated by approximately
36% and 17%, respectively. The inspection of the pressure maps revealed
non-uniform depletion of the reservoir in the original Eclipse model of the
Field, where significant pressure differences along the faults were observed.
No physical reason was found for such behavior of the model since the hor-
izontal wells passing through the faults should have prevented the occur-
rence of such high-pressure differences, due to the cross-flow through the
well annulus. On the other hand, the pressure drainage predicted by the
modified case is more uniform and physically reasonable. It was hard to in-
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vestigate why this might be the case since Eclipse does not provide details
of this feature beyond the reference manual and technical description.

CPR Solver. Disabling the CPR solver generated a significant deviation
in the prediction results for this particular reservoir model. Such a devia-
tion between the results was not expected. Preconditioning the linear equa-
tions via the CPR feature in a simulation model means that the same flow
equations are solved by using a different mathematical technique. In this
case study, it was not exactly clear why preconditioning the linear equa-
tion solver yielded an observable deviation in the prediction results. As
expected, disabling this feature increased the run-time of the simulation.
This result indicates that the CPR solver feature can potentially reduce the
computational cost of running this reservoir model.

End-point Scaling. The manual scaling of the relative permeability curves
of the original model did not yield a significant deviation in the prediction
results. However, it is worth mentioning that the scaling of connate water
saturation to 60% in all of the grid cells in a simulation model of a con-
ventional oil reservoir seems to be an unusual practice. Such high connate
water saturation throughout the reservoir is improbable.

Well Group Controls and Artificial lift. Deactivation of the well group con-
trols for the injector wells and lift gas injection for the producers yield a
significant deviation in the prediction results of this model when imple-
mented individually. Hence, fixing the software implementation of these
features in Flow would be desirable.

The impacts of deactivation of the gas lift option and well group con-
trols on the field-wide production could have been mitigated in the work
model by imposing additional control parameters on the wells. This can be
accomplished by extracting the resulting well bottom-hole pressures from
the reference case, discretizing these quantities at different time intervals,
and using these discretized values as well bottom-hole pressure constraints
for the entire production time frame in the work model of the Field. How-
ever, it seemed reasonable to assume that the impacts of these modifications
would have a dampening effect on each other when applied together in the
work model of the field. Therefore, no further action was taken to reduce
the deviation of the simulation results predicted by these modified cases in
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this work.

During the model conversion and validation process, some drawbacks and
software bugs in Flow (v.2018.10) simulator were found. The following
items were identified as the potential improvement areas in Flow:

• Implement an adequate CPR solver feature.

• Expand the keyword library items in order to make model conversion
process from Eclipse to Flow more user-friendly (e.g., THRPRESFT).

• Fix the software bugs in SCHEDULE section items, such as the well
group controls (GCONINJE) option, VLP table interpolation tech-
nique, and periodic testing of closed wells (WTEST) feature.

Validation. After investigating the impacts of each individual modification
made to the original model, a benchmark test was conducted by using the
work model of the Field. With this test, an impressive match (i.e., the de-
viation is less than 1%) was demonstrated between the prediction results
generated by Flow and Eclipse. The simulation time-step size comparison
presented in Figure 3 revealed that Flow takes longer time-steps compared
to Eclipse, which indicates that each reservoir simulator has different con-
vergence criteria for solving linear equations. However, taking longer time-
steps to solve the linear equations in the simulation model does not translate
into a shorter simulation run-time. The run-time comparison of the work
model presented in Table 4.1 showed that the single core performance of
Flow is 17% slower than Eclipse.

Well Placement Optimization. In this section , the results for the opti-
mization part of this work are discussed and analyzed. The following top-
ics are discussed: optimization algorithm performance; the applicability of
optimization solutions; technical limitations and challenges regarding Fiel-
dOpt.

The results for the optimization part of this work are presented in section
4.2. For each oil producer, two optimization algorithms were used. Both
of the algorithms were run from the same initial position with two different
configurations for all four producers in the Field. The results are presented
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in Tables 4.2 through 4.5. Through the results presented in these tables,
a clear optimization incremental in the objective function (i.e., NPV) can
be seen in all of the cases. The highest incremental objective function im-
provement was observed to be around 17.5% for well PROD 4. For the rest
of the wells, the NPV incremental was between 5 to 12 %. When compared
in terms of the number of function evaluations, APPS algorithm with the
smaller step-length configuration utilized for optimizing well PROD 4 per-
formed the least amount of function evaluations (in 298 evaluations) before
converging to an optimum solution.

On average, it was observed that the PSO algorithm yields a higher incre-
mental NPV improvement in this particular case study. Due to its stochastic
nature, this algorithm searches the bound region more thoroughly compared
to the APPS algorithm. That is, the PSO algorithm tries a broader solution
span with different well configurations and orientations in the search space
before converging to an optimum solution. However, upon a closer exami-
nation of the optimum solutions obtained for each well, it was revealed that
most of the well trajectories found by the PSO algorithm were not realistic
enough to be applicable in field development projects.

As presented in Table 4.2, it was observed that the optimization case with
the highest NPV incremental also had the highest total water production
volume over the base case. In this particular case, the optimized well trajec-
tory found by the PSO algorithm was very close to the WOC at the Western
segment of the reservoir. Such cases indicate that more realistic constraints
have to be introduced into the optimization problem in order to take full
advantage of the capabilities of PSO algorithm. Thus, using the simplified
weighted sum of the cumulative fluid production volumes as the objective
function led to impractical solutions in this optimization problem. The oc-
currence of these cases can be reduced by increasing the water handling
cost parameter used in the objective function and imposing an upper limit
for the water production rate depending on the water handling capacity of
topside facilities.

For this particular optimization problem, the optimum placement solutions
generated using the APPS algorithm were found to be more realistic, and
this algorithm reached its solutions in a smaller number of evaluations in
general. Such an outcome is reasonable since APPS is a deterministic al-
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gorithm, where the performance of such algorithms is highly dependent
on the initial well coordinates provided. Therefore, the performance and
placement solutions of this algorithm could have been better or worse de-
pending on the initial well coordinates provided.

Based on the optimum placement solutions obtained for each producer, an
improved well placement configuration was compiled for developing the
Field (see figure 4.16). As a result, the improved well configuration yielded
30.8% increase in NPV after 300 days of production over the base case well
configuration. The lengths of the optimized wells were not significantly
different compared to their lengths in the base case. Moreover, the mech-
anistic study of the new drainage strategy revealed that the producers were
re-positioned towards the oil accumulations that were left undrained in the
base case scenario. The well orientations were kept perpendicular to the
orientation of the channels in the Eastern segment of the Field since such
well orientation increases the channel exposure to the producers. These
observations indicate once again that the objective function improvements
achieved by FieldOpt are systematic in this optimization problem.

One important point worth mentioning is that the geological uncertainty of
the Field was not accounted for in this work. This could have been done
by employing a number of different geological realizations of the Field and
running an ensemble of simulations, which would enable the probabilistic
analysis of the optimization solutions. However, such a workflow will in-
crease the computational cost of the work significantly.

The main technical limitation was the computational resources available
for this work. With an optimization horizon of 300 days, the average run-
time for each function evaluation (i.e., simulation) was around 50 minutes.
It should be noted that 300 days of production time is too short compared
to the production time frame of 25 years in the base case scenario. Fur-
thermore, given the scope and time restrictions for delivering this work,
only one well placement was optimized in each optimization case. How-
ever, combining separately optimized well placement solutions do not nec-
essarily equate to the optimum well placement solution for a reservoir. The
optimum well placement configuration of the Field can only be found by
optimizing all of the wells simultaneously.
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Throughout the optimization work, a number of impediments and chal-
lenges were encountered regarding FieldOpt. Some potential improvement
areas in FieldOpt are summarized below:

• Bound region constraints. Currently, the reservoir bound constraints
can only be specified as a rectangular shape containing the initial
well coordinates. This makes fitting deviated well coordinates into
the feasible region very challenging in faulted and curvy reservoir
formations, such as the formations in Field. Having an option to set
up a bounding region with a customized shape would significantly
ease the optimization workflow.

• Driver file configuration. The driver files in FieldOpt are configured
manually, which leaves a lot of room of for human errors. In addition,
knowing how to read and write these files might not be so straight-
forward for an average user. Therefore, developing a graphical user
interface and user manual would make FieldOpt more user-friendly
and attract new collaborators.

• Drilling schedule optimization. The schedule for drilling the wells
is an important decision during the development stage of petroleum
fields. The optimum placement of a well in the reservoir might vary
depending on the drilling order of the wells since the placement vari-
ables in well placement optimization problems are inter-related. Im-
plementing drilling schedule optimization functionality in FieldOpt
would make it a more comprehensive field optimization software
package.
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Chapter 6
Conclusions

This thesis presents an open-source approach for well placement optimiza-
tion of a marginal petroleum field on the NCS. Two open-source simula-
tors, OPM-Flow and FieldOpt, were employed for this task. This work
consists of two parts: the first part dealt with converting the Eclipse simu-
lation model of the reservoir to run in Flow, and the second part focused on
improving the oil recovery by optimizing the well placement in the reser-
voir by using FieldOpt.

The main intention of the first part of the work was to convert the origi-
nal Eclipse model of the Field to run in Flow, and validate the simulation
results against the reference simulator. The technical limitations of Flow
combined with a complex simulation model of the Field required several
approximations and modifications to be made to the original model in or-
der to develop the work model. The impact of each modified item in the
simulation deck was investigated by comparing the results in each case to
the reference case results. Lastly, simulation results from the work model of
the Field run in Flow was validated by comparing them to the reference sim-
ulator results. The computational performance test on a single-core setup
indicated that the predictive simulation run-time of the work model in Flow
was only 17% slower than Eclipse. Overall, this part of the work showed
that the open-source reservoir simulator can be a reliable and competitive
alternative to a proprietary reservoir simulator, such as Eclipse.
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Throughout the second part of this work, the placement of the producer
wells was optimized by using two optimization algorithms, which were
implemented in FieldOpt. An apparent improvement in the objective func-
tion (i.e., NPV) was observed in all of the optimization cases. The highest
incremental NPV improvement yielded by the APPS and PSO algorithms
in single well optimization cases was 16.2% and 17.5%, respectively. The
optimum well trajectories found by the APPS algorithm were considered
to be more practical and realistic compared to solutions found by the PSO
algorithm due to the objective function constraints applied for this particu-
lar optimization problem. The final well placement configuration of the
Field compiled by combining the individual placement solutions gener-
ated 30.8% incremental increase in the NPV over the base case scenario.
Through this case study, FielOpt’s ability to optimize the placement of
wells in a reservoir was confirmed.

Overall, this thesis as a whole demonstrated that it is possible to use open-
source workflow to make well placement decisions for petroleum field de-
velopment projects. The main benefit of such a workflow is that it reduces
the cost of automatic optimization projects by eliminating hefty subsurface
software fees. In addition, it provides programming flexibility so that the
end-user can custom fit the software to their specific needs. The potential
beneficiary of this workflow would be operators looking to reduce costs as-
sociated with field development optimization projects.

Recommendations for further work. The full potential of neither Flow
nor FieldOpt was exploited in this work due to the work scope, technical
difficulties with simulation software, and computational power restrictions.
Hence, there is still a lot of room to further expand the scope of this work.
Some of the recommended topics are listed below:

• Use different realization models (i.e., net-based and facies based mod-
els) to investigate the uncertainty in the simulation results related to
the static properties of the Field, and repeat the workflow presented
in this work.

• Investigate the reason for the significant deviation of the simulation
results caused by removing the PETOPTS and CPR solver features
from the original Eclipse model of the Field.
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• Some authors have reported that Flow has slightly outperformed Eclipse
in dual-core benchmark study conducted on the Norne field model. It
would be interesting to test the dual-core performance of Flow with
the work model of the Field.

• The continuation of this work could investigate an optimization case
where all six of the wells, that is four oil producers and two water
injector, are optimized simultaneously in FieldOpt.

• Test the performance of the remaining optimization algorithms im-
plemented in FieldOpt on the well placement optimization problem
of the Field. Further, solve the placement optimization problem over
a longer optimization horizon.

• Impose more realistic constraints and penalty functions on the prob-
lem variables by implementing minimum inter-well distance, maxi-
mum well length, and maximum water production rate. Moreover,
use a realistic discount rate to account for the time value of the future
cash flow.

Further details on this work. All the data that was used for this thesis
will be stored for future references for those who would like to investigate
further, ask questions, or view the results manually with respect to terms
and conditions of the confidentiality agreement. Further inquiries can be
directed to: sadigov@ualberta.ca
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Appendix A
Presented in Listing 6.1 is a complete JSON driver file for launching an
optimization run in FieldOpt.

Listing 6.1: Configuration of the JSON file for launching well placement optimization
run with PSO algorithm. The heel and toe coordinates of the wells are anonymized for
confidentiality reasons (relative distances are preserved).

1 {
2 "Global": {
3 "Name": "OPM_FM_RELPR_MS",
4 "BookkeeperTolerance": 1e-3
5 },
6 "Optimizer": {
7 "Type": "PSO",
8 "Mode": "Maximize",
9 "Parameters": {

10 "MaxGenerations": 138,
11 "PSO-LearningFactor1": 2,
12 "PSO-LearningFactor2": 2,
13 "PSO-SwarmSize": 12,
14 "PSO-VelocityScale": 0.25
15 },
16 "Objective": {
17 "Type": "WeightedSum",
18 "UsePenaltyFunction": false,
19 "WeightedSumComponents": [
20 {
21 "Coefficient": 377.389,
22 "Property": "CumulativeOilProduction",
23 "TimeStep": -1,
24 "IsWellProp": false
25 },
26 {
27 "Coefficient": -18.869,
28 "Property": "CumulativeWaterInjection",
29 "TimeStep": -1,
30 "IsWellProp": false
31 },
32
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33 {
34 "Coefficient": -31.449,
35 "Property": "CumulativeWaterProduction",
36 "TimeStep": -1,
37 "IsWellProp": false
38 }
39
40 ]
41 },
42 "Constraints": [
43 {
44 "Wells": ["P1"],
45 "Type": "ReservoirBoundary",
46 "BoxImin": 86,
47 "BoxImax": 102,
48 "BoxJmin": 29,
49 "BoxJmax": 62,
50 "BoxKmin": 10,
51 "BoxKmax": 44
52 }
53 ]
54 },
55 "Simulator": {
56 "Type": "Flow",
57 "FluidModel": "BlackOil",
58 "ExecutionScript": "bash_flow.sh",
59 "ScheduleFile": "OPM_FM_SCH.INC"
60 },
61 "Model": {
62 "ControlTimes": [
63 0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 25

0, 275, 300],
64 "Reservoir": {
65 "Type": "Flow"
66 },
67 "Wells": [
68 {
69 "Name": "P1",
70 "Group": "G1",
71 "Type": "Producer",
72 "DefinitionType": "WellSpline",
73 "PreferredPhase": "Oil",
74 "WellModel": "Projection",
75 "WellboreRadius": 0.1905,
76 "SplinePoints": {
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77 "Heel": {
78 "x": 100000.00,
79 "y": 1000000.00,
80 "z": 1000.00,
81 "IsVariable": true
82 },
83 "Toe": {
84 "x": 98724.38,
85 "y": 1002071.07,
86 "z": 870.48,
87 "IsVariable": true
88 }
89 },
90 "Controls": [
91 {
92 "TimeStep": 0,
93 "State": "Open",
94 "Mode": "BHP",
95 "BHP": 60.0,
96 "IsVariable": false
97 }
98 ]
99 },

100 {
101 "Name": "P2",
102 "Group": "G2",
103 "Type": "Producer",
104 "DefinitionType": "WellSpline",
105 "PreferredPhase": "Oil",
106 "WellModel": "Projection",
107 "WellboreRadius": 0.1905,
108 "SplinePoints": {
109 "Heel": {
110 "x": 200000.00,
111 "y": 2000000.00,
112 "z": 2000.00,
113 "IsVariable": false
114 },
115 "Toe": {
116 "x": 199946.02,
117 "y": 2001375.49,
118 "z": 1871.05,
119 "IsVariable": false
120 }
121 },
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122 "Controls": [
123 {
124 "TimeStep": 0,
125 "State": "Open",
126 "Mode": "BHP",
127 "BHP": 60.0,
128 "IsVariable": false
129 }
130 ]
131 },
132 {
133 "Name": "P3",
134 "Group": "G3",
135 "Type": "Producer",
136 "DefinitionType": "WellSpline",
137 "PreferredPhase": "Oil",
138 "WellModel": "Projection",
139 "WellboreRadius": 0.1905,
140 "SplinePoints": {
141 "Heel": {
142 "x": 300000.00,
143 "y": 3000000.00,
144 "z": 3000.00,
145 "IsVariable": false
146 },
147 "Toe": {
148 "x": 299635.01,
149 "y": 3001285.53,
150 "z": 2919.47,
151 "IsVariable": false
152 }
153 },
154 "Controls": [
155 {
156 "TimeStep": 0,
157 "State": "Open",
158 "Mode": "BHP",
159 "BHP": 60.0,
160 "IsVariable": false
161 }
162 ]
163 },
164 {
165 "Name": "P4",
166 "Group": "G4",
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167 "Type": "Producer",
168 "DefinitionType": "WellSpline",
169 "PreferredPhase": "Oil",
170 "WellModel": "Projection",
171 "WellboreRadius": 0.1905,
172 "SplinePoints": {
173 "Heel": {
174 "x": 400000.00,
175 "y": 4000000.00,
176 "z": 4000.00,
177 "IsVariable": false
178 },
179 "Toe": {
180 "x": 399714.17,
181 "y": 4000845.09,
182 "z": 3981.07,
183 "IsVariable": false
184 }
185 },
186 "Controls": [
187 {
188 "TimeStep": 0,
189 "State": "Open",
190 "Mode": "BHP",
191 "BHP": 60.0,
192 "IsVariable": false
193 }
194 ]
195 },
196 {
197 "Name": "I1",
198 "Group": "I1",
199 "Type": "Injector",
200 "DefinitionType": "WellSpline",
201 "PreferredPhase": "Water",
202 "WellModel": "Projection",
203 "WellboreRadius": 0.1905,
204 "SplinePoints": {
205 "Heel": {
206 "x": 500000.00,
207 "y": 5000000.00,
208 "z": 5000.00,
209 "IsVariable": false
210 },
211 "Toe": {
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212 "x": 499146.29,
213 "y": 5000555.74,
214 "z": 5010.48,
215 "IsVariable": false
216 }
217 },
218 "Controls": [
219 {
220 "TimeStep": 0,
221 "State": "Open",
222 "Mode": "BHP",
223 "BHP": 500.0,
224 "Rate": 1500.0,
225 "IsVariable": false
226 }
227 ]
228 },
229 {
230 "Name": "I2",
231 "Group": "I2",
232 "Type": "Injector",
233 "DefinitionType": "WellSpline",
234 "PreferredPhase": "Water",
235 "WellModel": "Projection",
236 "WellboreRadius": 0.1905,
237 "SplinePoints": {
238 "Heel": {
239 "x": 600000.00,
240 "y": 6000000.00,
241 "z": 6000.00,
242 "IsVariable": false
243 },
244 "Toe": {
245 "x": 599678.81,
246 "y": 6000508.2,
247 "z": 6017.65,
248 "IsVariable": false
249 }
250 },
251 "Controls": [
252 {
253 "TimeStep": 0,
254 "State": "Open",
255 "Mode": "BHP",
256 "BHP": 500.0,
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257 "Rate": 1500.0,
258 "IsVariable": false
259 }
260 ]
261 }
262
263 ]
264 }
265 }

107



Appendix B
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Figure 6.1: Well oil and water production rates in the optimized well placement scenario
(as a fraction of corresponding rates in the base case). The suffix “a” on the title of y-axis
signifies that the values have been normalized for confidentiality reasons.
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