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Abstract

Sequencing technologies have changed not only our approaches to classical genetics, but also the field of
epigenetics. Specific methods allow scientists to identify novel genome-wide epigenetic patterns of DNA
methylation down to single-nucleotide resolution. DNA methylation is the most researched epigenetic mark
involved in various processes in the human cell, including gene regulation and development of diseases, such as
cancer. Increasing numbers of DNA methylation sequencing datasets from human genome are produced using
various platforms—from methylated DNA precipitation to the whole genome bisulfite sequencing. Many of those
datasets are fully accessible for repeated analyses. Sequencing experiments have become routine in laboratories
around the world, while analysis of outcoming data is still a challenge among the majority of scientists, since in
many cases it requires advanced computational skills. Even though various tools are being created and published,
guidelines for their selection are often not clear, especially to non-bioinformaticians with limited experience in
computational analyses. Separate tools are often used for individual steps in the analysis, and these can be
challenging to manage and integrate. However, in some instances, tools are combined into pipelines that are
capable to complete all the essential steps to achieve the result. In the case of DNA methylation sequencing
analysis, the goal of such pipeline is to map sequencing reads, calculate methylation levels, and distinguish
differentially methylated positions and/or regions. The objective of this review is to describe basic principles and
steps in the analysis of DNA methylation sequencing data that in particular have been used for mammalian
genomes, and more importantly to present and discuss the most pronounced computational pipelines that can be
used to analyze such data. We aim to provide a good starting point for scientists with limited experience in
computational analyses of DNA methylation and hydroxymethylation data, and recommend a few tools that are
powerful, but still easy enough to use for their own data analysis.
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Background
All scientists working with genomic data today encounter
a data-rich environment, where computational analysis is
becoming a necessity [1]. Big data from experiments is
produced, published, and in most cases made freely avail-
able in databases to anyone at any time. However,

experimental biologists are often not able to analyze these
data themselves. Limited computational competence is
not the only explanation. The variety of tools for genomic
data analysis can be overwhelming, without sufficiently
clear guidelines for choosing between different tools and
pipelines. Currently available reviews tend to only men-
tion the variety of tools that could be used but without
discussing them in more detail [2–5]. Here we try to rect-
ify this situation by providing an overview of currently
available tools and pipelines for a specific subset of gen-
omic data, which for this review is DNA methylation
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sequencing data derived by the most widely used experi-
mental approaches.
DNA methylation is an important feature of the cell

and is involved in many biological processes, including
transcription regulation, X chromosome inactivation,
genomic imprinting, transposon inactivation, embryonic
development, and chromatin structure modification [2].
It is also known that DNA methylation patterns are al-
tered in many diseases, including cancer, which makes
this epigenetic mark an attractive target for various stud-
ies. High-throughput DNA methylation analysis has now
become routine in laboratories worldwide. Experimental
methods for DNA methylation detection include restric-
tion enzyme-based, affinity enrichment-based, and bisul-
fite conversion-based approaches [2–8]. Detection of 5-
methylcytosine (5mC) can be performed genome-wide
or in selected regions, and at different resolutions all the
way down to single nucleotide level. After preparing the
DNA by one of three abovementioned protocols, DNA
is sequenced. Genome-wide detection of 5mC by bisul-
fite sequencing is regarded as the current gold standard
for DNA methylation detection [5, 7, 9, 10].
5mC is the most abundant and most researched epi-

genetic mark and has been shown to be essential for
gene regulation [11, 12]. In addition, a modification as-
sociated with DNA demethylation—5-hydroxymethylcy-
tosine (5hmC)—has also been shown to be involved in
normal development as well as various diseases [11–13].
Methylated DNA precipitation approach, originally de-
veloped for DNA methylation detection, is now adapted
to detect 5hmC, while other techniques, such as DNA
hydroxymethylation sequencing, are created specifically
for 5hmC detection [6].
The computational analysis of DNA methylation se-

quencing data generated by different experimental ap-
proaches can be a challenging task, especially for the
scientists with limited experience in this type of data
processing. They often want to make use of publicly
available datasets to validate their hypotheses or process
their own DNA methylation data but can get over-
whelmed by the selection of tools and pipelines. To in-
terpret DNA methylation, data must be processed,
visualized, and statistically analyzed [2, 3, 5, 7]. The out-
come of this workflow should be methylation levels for
different positions and regions in the genome, or if two
conditions are being compared, differentially methylated
positions (DMPs) or regions (DMRs) [2, 3, 7]. One typ-
ical example of differential analysis is DNA methylation
comparisons between cancer and normal tissues.
Several computational tools have been created for the

various experimental approaches, and for individual
steps in the data analysis workflow. For a non-expert
user, it can be difficult to choose the best tool, or to
combine the right tools into a pipeline. As far as we

know, there is currently no review paper that discusses
and later recommends a few convenient pipelines avail-
able for the scientist who wants to get started with DNA
methylation data analysis, but who has limited experi-
ence in this area. Universal pipelines that can handle all
types of DNA methylation and hydroxymethylation se-
quencing data have yet to be developed. Before this is
achieved, there is a need to develop better guidelines for
choosing the right tools and pipelines when analyzing
DNA methylation and hydroxymethylation sequencing
data.

DNA methylation and hydroxymethylation
DNA methylation is a covalent modification of cytosine nu-
cleotides, usually located in a CpG dinucleotide [14]. DNA
is methylated by transferring a methyl group from the
donor S-adenosyl-L-methionine (SAM) to the 5′carbon
atom of a cytosine, creating 5mC [14–17]. The chemical re-
action is implemented by a group of special proteins,
termed DNA methyltransferases (DNMTs) [14–16]. In
mammals, DNMT3A and DNMT3B are responsible for de
novo DNA methylation, while DNMT1 copies methylation
patterns during DNA replication [14, 16, 18]. Methyl
groups can be removed by ten-eleven translocation (TET)
family proteins that include TET1, TET2, and TET3 [14].
Methylation marks in the cell also need to be read, which is
done by protein factors such as MeCP2, which has a
methyl-binding domain (MBD), but also by other less
known proteins that do not have MBDs [14, 19, 20].
DNA methylation in vertebrate genomes occurs mostly

in the context of CpG dinucleotides, which often form
clusters of different sizes. Regions with high CpG density
are defined as CpG islands (CGIs). CGIs are between 300
and 3000 bp long (average of 1000 bp) with greater than
50–55% GC content and observed/expected ratio of CpG
to GpC greater than 0.6, although the specific CGI defin-
ition often depends on the source [5, 21, 22]. Around 30,
000 CGIs have been identified in the human genome [23].
Most promoters (around 70% of annotated genes) are as-
sociated with a CGI [21] and they remain largely
unmethylated in normal cells [23]. On the other hand,
CGIs located in intragenic regions are more often methyl-
ated and these regions remain inactive [23].
5hmC is produced by the oxidation of 5mC catalyzed by

TET proteins [11–13, 24]. Three proteins TET1, TET2,
and TET3 all convert 5mC to 5hmC, while also being able
to catalyze further oxidation into 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC) [13, 24]. TET1–3 are 2-
oxoglutarate and Fe (II)-dependent dioxygenases and con-
vert 5mC into 5hmC using the co-substrate α-
ketoglutarate [12, 24]. 5hmC levels vary between cell
types, with higher frequencies in ES cells and the nervous
system. Total levels of 5hmC are 14-fold lower compared
with 5mC [11, 12]. 5hmC in ES cells is found at
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transcription start sites (TSSs), gene bodies, and cis-
regulatory elements [12].

Experimental approaches for detecting DNA
methylation and hydroxymethylation
There are three main groups of experimental techniques
used for genome-wide DNA methylation and hydroxy-
methylation detection and methylation data production: (1)
restriction enzyme-based, (2) affinity enrichment-based,
and (3) bisulfite conversion-based methods [2, 3, 5–8].
These three groups describe the mechanism, i.e., how
methylated cytosine is recognized in order to differentiate
methylated and unmethylated DNA (or hydroxymethylated
and non-hydroxymethylated DNA). Bisulfite conversion-
based methods are arguably the most commonly chosen
approach today [5]. However, for a given study, the most
appropriate approach should be chosen according to the
specific biological problem being addressed, the quantita-
tive nature and resolution required by the study, and the
cost that can be afforded [2].
Two main types of technologies used to detect methy-

lation signals are methylation arrays and sequencing [6].
Before the era of high-throughput sequencing, methyla-
tion arrays, such as Illumina Infinium, were widely used
to detect methylation signals [2, 3]. Arrays are still rele-
vant today, mostly because they are simple to analyze
and provide a sensitivity and specificity that cannot cur-
rently be achieved by sequencing methods at a similar
cost [25]. In many cases, methylation arrays are suffi-
cient to detect relevant methylation changes in the stud-
ies of biological system, for example, they are widely
used for cancer methylomes [2]. Furthermore, their re-
producibility makes it possible to compare new and pre-
vious results [26]. In this context, the transition from
array to sequencing can be challenging. However, the
resolution of genome-wide methylation offered by se-
quencing methods provides the possibility to explore
methylation patterns far beyond the single-site methyla-
tions shown by arrays [2]. Sequencing is thus replacing
arrays as the method of choice for methylation profiling,
even though the data are more complicated to analyze
[3]. Sequencing-based technologies have been developed
based on all three groups of experimental techniques
mentioned above.

Restriction enzyme-based approaches
There are specific proteins that can recognize and cleave
only unmethylated sequences, leaving methylated DNA
intact [2, 6]. MspI, HpaII, NotI, SmaI, and BstUI are
methylation-sensitive restriction enzymes (MREs) and
are used as a basis for restriction enzyme-based methods
[2]. In MRE-seq, DNA fragments are size-selected (be-
tween 40 and 220 bp) and sequenced, and the locations
of unmethylated CpG sites are determined [6]. By using

this approach, relative DNA methylation levels can be
estimated using read coverage. MRE-seq is cost-effective
and easy to perform [2]. However, this technique has
relatively low coverage, because the method depends en-
tirely on the location of restriction sites [2, 6].

Affinity enrichment-based approaches
Proteins with MBD or antibodies against 5mC are used
to recognize methylated DNA in affinity enrichment ap-
proaches [6]. A methylcytosine-specific antibody is used
in MeDIP to immunoprecipitate methylated DNA and
the fractions are later evaluated by high-throughput se-
quencing (MeDIP-seq) [2, 27]. The resolution of this
technique is 100–300 bp, 1× coverage covers up to 70%
of all CpGs in human genome [27]. MeDIP-seq esti-
mates the relative enrichment of methylated DNA across
the genome [2, 27]. One important drawback of this ap-
proach is a challenge of computational analysis—CpG-rich
fragments are more likely to be enriched compared with
the regions that are poor in CpG (< 1.5%), and such re-
gions can be underrepresented or interpreted as unmethy-
lated [2, 27]. Therefore, computational corrections are
necessary to normalize CpG content. MeDIP-seq can be
adapted to hydroxymethylation by choosing an antibody
specific to 5hmC (hMeDIP-seq) [2, 11, 24, 28]. The ap-
proaches that use different MBD-containing proteins are
similarly low-performing in CpG-poor regions, but
methyl-capture sequencing (MethylCap-seq) has been
shown to cover more regions, while MBD-capture sequen-
cing (MBDCap-seq) is able to detect two times more
DMRs compared with MeDIP-seq [6, 8].

Bisulfite conversion-based approaches
The most popular way to distinguish methylated cytosine
from unmethylated is by treating DNA with sodium bisul-
fite, which deaminates unmethylated cytosine to uracil,
while 5mC remains intact [2, 5–7]. After the conversion,
uracil is converted to thymine in the PCR step of the proto-
col. With this strategy, it is possible to study genome-wide
methylation patterns. Whole-genome bisulfite sequencing
(WGBS, BS-seq) and reduced-representation bisulfite se-
quencing (RRBS) integrate bisulfite conversion and high-
throughput sequencing [2, 7]. The steps of the WGBS are
as follows: (1) genomic DNA purification and sonication,
(2) end reparation, A-tailing, and methylated adapters
ligation, (3) size selection, (4) bisulfite conversion, (5) PCR,
and (6) sequencing of the resulting library [2]. WGBS is a
standard profiling strategy for example in NIH Roadmap,
ENCODE (initially in 2012 RRBS protocol was used [29]),
Blueprint, and IHEC projects. By theoretically covering
100% of the cytosine residues in the genome, WGBS is the
most informative and accurate method, and is often used to
investigate regions outside of CGIs [2, 30]. A major advan-
tage of WGBS is that it can show the context of
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methylation, and, more importantly, absolute DNA methy-
lation levels can be determined [2]. However, at the same
time, WGBS is the most expensive and resource-
demanding technique, since it requires a comprehensive
genome coverage [2, 5–7, 30]. A way to reduce the cost of
the experiment is to use RRBS, which is a popular choice
when certain regions are of interest, rather than the whole
genome [2, 7]. In RRBS, DNA is digested into short frag-
ments with CpG dinucleotides at the ends using
methylation-insensitive restriction enzymeMspI, which rec-
ognizes 5′-CCGG-3′ sequences [7, 30]. Before bisulfite
conversion and PCR, fragments that are rich in CpGs are
selected—selection of 40–220-bp-long fragments has been
shown to cover 85% of CGIs, mostly in promoter regions
[30]. The disadvantage of RRBS is a low coverage of distal
regulatory elements and intergenic regions, in which case
WGBS would be a more appropriate choice [2]. However,
it is important to note that bisulfite sequencing is not able
to distinguish 5mC from 5hmC, because both modifications
are resistant to conversion to uracil [11].

DNA hydroxymethylation sequencing
There are several approaches designed specifically for
5hmC sequencing. The main idea behind oxidative bisul-
fite sequencing (oxBS-seq) is specific oxidation of 5hmC
into 5fC or 5caC using potassium perruthenate [6, 11, 31].
5fC and 5caC are converted to uracil nucleotides as
unmethylated cytosines and oxBS-seq results in registra-
tion of 5mC excluding 5hmC. Therefore, a control BS-seq
is necessary to recognize which positions were excluded in
oxBS-seq [6, 11, 31]. Tet-assisted bisulfite sequencing
(TAB-seq) comes as an improvement to the oxBS-seq, be-
cause it is able to read 5hmC directly [6, 11, 32]. 5hmC
residues are protected by glucose moiety in the first step
of the protocol [6, 32]. Unprotected 5mC nucleotides are
then oxidized to 5fC or 5caC by TET and converted to
uracil along with unmethylated cytosine. 5hmC are the
only residues that are read as cytosines [6, 11, 32].

Computational analysis of DNA methylation and
hydroxymethylation sequencing data
The three main steps of computational analysis of DNA
methylation data are as follow: (1) data processing and
quality control; (2) data visualization and statistical ana-
lysis; (3) validation and interpretation [2, 3, 5]. For restric-
tion enzyme- and enrichment affinity-based methods
(MRE-seq, MeDIP-seq), data is analyzed by comparing the
relative abundance of the fragments, while for bisulfite se-
quencing (WGBS and RRBS), methylation is called at indi-
vidual cytosine residues and statistical testing for
differential methylation can be performed by investigating
DMPs or DMRs [2, 3].

Bisulfite sequencing data processing
The processing of bisulfite sequencing data is challen-
ging due to bisulfite conversion, which reduces sequence
complexity significantly. C to T alignments are asym-
metrical, i.e., Watson and Crick strands are not comple-
mentary, because conversion occurs only at Cs and not
Gs [3, 5–7]. These are the main concerns that computa-
tional tools for bisulfite sequencing data analysis must
be aware of and deal with, which is different compared
with tools for regular DNA sequencing data analysis.
It is important to ensure a high quality of the sequen-

cing reads in order to get a good alignment, and later
correct methylation scores [3]. Therefore, prior to the
alignment step incorrectly converted reads should be
discarded and reads with adapter sequences must be
found and adapters trimmed, using for example Cuta-
dapt [5, 33]. Some pipelines have these features included
already. Trimmed sequencing reads are aligned to the
reference genome and methylation is called. Aligners for
sequencing data are based on two types of algorithms:
wild-card or three-letter [2, 3, 5, 34, 35]. Bisulfite
aligners output aligned reads along with methylation
calls for each C with sequence context information. The
wild-card algorithm substitutes Cs with Ys (wildcards) in
the reference genome, so reads can be aligned with both,
Cs and Ts [3, 34, 35]. Examples of tools that integrate
wild-card aligners are as follows: LAST [36], BSMAP
[37], RRBSMAP [38], and Pash [39]. On the other hand,
the three-letter algorithm converts all Cs into Ts, both
in the reference genome and in the reads [3, 34, 35].
This reduces sequence complexity, but allows the adap-
tation of standard aligners, such as Bowtie. With three-
letter aligners, many reads align to more than one pos-
ition and are discarded, avoiding incorrect results, but
DNA methylation information for some of the CpGs are
lost [2, 3]. However, it is possible to align discarded
reads to the best-matching positions to increase the
coverage of CpGs [2, 3]. Examples of tools that integrate
three-letter aligners: Bismark [40], BRAT-BW [41], BS
Seeker 3 [42].
Due to beforementioned issues related to asymmetrical

alignments and non-complementarity, post-alignment
tools are needed. It is possible to filter out the sites with
best coverage, and also to calculate the average methyla-
tion levels and generate informative plots in order to see
the scope of the problems in the alignments. Several
tools can be used: BSPAT is able to summarize and
visualize DNA methylation co-occurrence patterns and
detect allele-specific methylation, while SAAP-RRBS can
give the annotation of each C and report for high cover-
age and quality CpGs [2]. Another issue to be aware of
during analysis is double counting of the same DNA
fragments, which should be avoided by trimming over-
lapping parts of paired-end reads [3].
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Finally, most of the tools and the principles of the
computational analysis of DNA methylation data in this
review are described for the more common single-base
encoding sequencers (Illumina, Roche 454, Ion Torrent).
If the data have been generated with a two-base encod-
ing sequencer (ABI SOLiD), the bioinformatic pipeline is
challenged and requires special attention [3].

MRE-seq and MeDIP-seq data processing
For MRE-seq or MeDIP-seq, methylation levels are de-
termined by comparing relative abundance of the frag-
ments, i.e., the methylation information is in the
enrichment or depletion of the sequencing reads [3]. Se-
quencing of the resulting libraries counts the frequency
of specific DNA fragments in each library (methylated
and unmethylated) and provides the raw data from
which methylation levels can be inferred [3]. Unmethy-
lated DNA can be enriched using unmethylated DNA-
cutting enzymes (HELP-seq assay). A special attention
should be put on handling the batch effect, which pos-
sibly can occur due to fluctuations in DNA sequencing
coverage [3].
Processing of the MeDIP-seq data starts with the

alignment, which is performed using standard aligners,
such as Bowtie or BWA [3]. Relative enrichment scores
are calculated by “extending the sequencing reads to the
estimated DNA fragment size and counting the number
of unique reads that overlap with each CpG or genomic
regions of interest” [3]. However, methylation scores
after alignment are confounded by an uneven CpG dis-
tribution in the genome, which must be corrected (nor-
malized) [3, 43]. The most frequently described tools for
data normalization are BATMAN and MEDME or the
MEDIPS pipeline that combines both [3, 43]. MeQA and
MeDUSA are the pipelines that include BWA and MED-
IPS, making MeDUSA the most complete pipeline for
MeDIP-seq data analysis [43]. Repitools is an R package
that is recommended for quality control [3].
In the analysis of MRE-seq data, sequencing reads are

aligned to the reference genome, using an all-purpose
aligner of user’s choice. The restriction sites of the re-
striction enzyme used in the experiment must then be
checked and matched [44]. DNA methylation is inferred
by analysis of the read coverage. Differently from bisul-
fite sequencing and MeDIP-seq data analysis, just a few
tools have been created specifically for MRE-seq data.
One of them is the R package msgbsR [44].

Data visualization and statistical analysis
Methylation data can be visualized in various genome
browsers, such as UCSC Genome Browser or Ensembl,
where the global distribution of a DNA methylation pro-
file can be inspected [3]. Methylation tables in BED or
bedGraph formats derived from data processing must be

converted into bigBed or bigWig file formats that allow
visualization of large data sets in genome browsers [3].
Various diagrams can be used to represent the data, in-
cluding box plots, violin plots, tree-like diagrams, and
scatter plots.
The next step after visualization is determination of

DMPs and DMRs and this step is assay independent. In-
dividual Cs are investigated and tested, but when differ-
ences are small, testing scale can be extended to a
cluster of neighboring Cs [2, 7]. The actual size of a re-
gion can vary from a single C to entire gene loci, as it
depends on the biological question and bioinformatic
analysis pipeline. Most DMRs are between a few hun-
dred to a few thousand bp long [3]. The difference be-
tween DMR detection in a bisulfite sequencing pipeline
and enrichment-based sequencing pipeline is that for bi-
sulfite sequencing, DMRs are detected from methylation
tables, while for enrichment data they are detected dir-
ectly from count data.
The success of DMP and DMR determination depends

on computational power (which is especially important
when genome-wide data is being analyzed) and the stat-
istical testing itself [2]. The algorithms mostly adopt a
sliding window approach across the genome to survey
candidate DMRs [2]. Only the sites that are covered by
the data from all samples are eligible for DMR testing.
Statistical correction for multiple testing is essential, be-
cause many sites are tested simultaneously [2, 3]. The
correction is done by controlling the false discovery rate
(FDR) [3]. FDR inference for each DMR is often done
using the q value method, but alternative approaches are
also available [3]. Replicates help to improve the statistical
significance of DMR detection; however, replicates are not
always available for public data [2, 5]. Fisher’s exact test
can be used when replicates are not available [7]. How-
ever, differences in DNA methylation may then be overes-
timated, because variation within groups is not taken into
account [2]. Identified DMRs are ranked based on statis-
tical significance and effect size (methylation difference, t-
score from t test or p value). One of the most important
tools for DMR detection is BSmooth, but methylSig,
methylPipe, and BiSeq can also be used [2].

Validation and interpretation of the differences
After the statistical analysis, the list of DMRs is gener-
ated and can be interpreted. It is useful to rank DMRs
by p values, but relative and absolute differences in DNA
methylation can be used as an additional measure for
ranking [3]. The most highly ranked DMRs can be
inspected manually in the genome browser. Often DMRs
are validated in a new sample cohort and usually using
locus-specific DNA methylation assays [3].
Interpretation of the DNA methylation and hydroxy-

methylation results depends highly on the experimental
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setup. However, computational tools can be helpful to
explore the results. DMPs and DMRs are usually being
associated with genes, based on their location relative to
gene promoter or body. The now popular gene set en-
richment analysis (GSEA) and pathway analysis can be
performed for functional analysis, using web-based tools
like Enrichr [45, 46] or DAVID [47]. GSEA aims to iden-
tify overrepresented genes and associate the set with
possible phenotypes [48]. When DMRs are not mapped
to specific genes, the GREAT (Genomic Regions Enrich-
ment of Annotations Tool) approach can be used [49].
Correlating DNA methylation with gene expression pat-
terns is a widely used strategy for interpretation of the
functions and importance of the discovered DNA
methylation changes. Moreover, DNA methylation data
can be integrated with other omics data, such as ChIP-
seq. New tools such as BioMethyl are emerging that in-
tegrate several algorithms specifically for interpretation
of DNA methylation data [50]. However, interpretation
of DNA methylation changes and omics data integration
is still a challenging task, both technically and biologic-
ally, and should be an appropriate topic for a separate
review in order to cover all relevant aspects.

Specific computational tools for analyzing DNA
methylation sequencing data
The following section describes several tools that have
been developed to analyze DNA methylation sequencing
data generated using the different experimental proto-
cols presented above. For each experimental technique,
we indicate which tool we believed to be the optimal

choice for a scientist with limited knowledge in compu-
tational data analysis. For the selection and recommen-
dations, we used criteria of performance (from the raw
reads processing to differential analysis), graphic output
options, and availability of a detailed manual (see
Table 1). In addition, we took into account more prac-
tical criteria, such as how easy it was to download,
install, and execute the particular tool, based on personal
experience. The tools are recommended for each experi-
mental protocol, according to the number of criteria that
could be fulfilled. The recommendations are discussed
in more detail under the “Discussion” section.

Selected tools for bisulfite sequencing data analysis
Just a handful of tools can perform all or most of the ne-
cessary steps in the data analysis. For example, BS Seeker,
Bismark, and BSMAP are suitable for bisulfite sequencing
read alignment only [37, 40, 42], while GBSA and
BSmooth are for specific downstream analyses [51, 60]. BS
Seeker performs alignment and methylation calling, but
does not calculate methylation ratio or beta scores [42].
On the other hand, Bicycle is able to perform all necessary
steps and is relatively universal to different platforms [54],
while SMAP is a great example of a convenient pipeline,
but suitable only for RRBS data [55].
BSmooth is a tool for WGBS data analysis that performs

alignment of the reads, measures methylation levels, and
detects DMRs when biological replicates are available [51].
BSmooth takes into account biological variability (not only
sample) while searching for DMRs. The algorithm detects
regions consisting of several CpGs; thus, biologically

Table 1 Selected tools and their features. Whether the pipeline is capable of performing an analysis from raw reads to DMRs and
DMPs was a crucial criterion for the selection of tools. However, other aspects, such as graphic output and availability of a detailed
manual, were also important for the final recommendation

Selected tool Experimental
approach

From raw reads to DMPs and DMRs Graphic output Detailed
manual
available

Reference

Quality control and
3′ trimming

Alignment Methylation
levels

Differential
methylation

BSmooth WGBS No Yes Yes DMRs only BED, bedGraph,
Tab-del

Yes [51]

MOABS WGBS, RRBS, and
possibly 5hmC seq

Yes Yes Yes, but no
beta score

Yes BED, bedGraph,
Tab-del

Yes [52]

MethPipe WGBS and 5hmC seq Error estimation only Yes Yes Yes BED, bedGraph,
Tab-del

Yes [53]

Bicycle* WGBS and 5hmC seq Yes Yes Yes Yes BED, bedGraph,
Tab-del, VCF

Yes [54]

SMAP* RRBS only Trimming only Yes Yes Yes, also SNPs Tab-del Yes [55]

Genestack.com
(web-based)

WGBS and RRBS Yes Yes Yes No Yes Yes [56]

MeQA MeDIP-seq Yes Yes Yes No No Yes [57]

MeDUSA* MeDIP-seq Yes Yes Yes Yes No Yes [43, 58]

msgbsR* MRE-seq Yes No Yes Yes Yes Yes [44, 59]

*Recommended
Tab-del, tab-delimited output
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significant differentially methylated single CpGs will be
missed in the results, which can be a disadvantage in a re-
search setting [51]. Working with the BSmooth algorithm
can be challenging to many users, since data must be pre-
processed and adapted for the analysis in an R environ-
ment. Considering the level of difficulty and the limited
capabilities of the tool, it is therefore not recommended
for most users (Table 1).
MOABS (Model-based Analysis of Bisulfite Sequencing

data) is one of the most powerful command line-based
pipelines that are suitable for WGBS, RRBS, and 5hmC
data analysis [52]. It is able to perform alignments,
methylation calling, identification of DMPs and DMRs,
and differential methylation analysis (Table 1). It reports
a unique value that combines biological and statistical
significance for differential methylation—credible methy-
lation difference (CDIF) [52]. Since the pipeline does not
report beta score for methylation, it can be difficult to
compare results from MOABS with results from other
research projects. The MOABS pipeline offers powerful
algorithms for data analysis. However, setup of the ana-
lysis is complicated and probably too complicated for
users that are inexperienced with respect to command-
line use. It seems to be complicated to organize the in-
put and output files, and the user must be very familiar
with writing definitions and paths. MOABS can be exe-
cuted by writing a master/configuration script or by
using command lines. Using a configuration script is
more convenient, but the whole analysis is performed at
once, which can be demanding regarding computational
power and CPU time.
MethPipe is a pipeline similar to MAOBS and inte-

grates various tools for methylation data analysis, includ-
ing alignment, methylation calling, analysis of hypo- and
hypermethylated regions, and differential methylation
analysis (Table 1). It is also applicable for DNA hydroxy-
methylation analysis [53, 61]. However, MethPipe is con-
siderably more difficult to use, compared with Bicycle,
SMAP, or even MOABS, since it requires even more
commands to be written and executed. On the other
hand, writing and executing individual commands in the
pipeline allows a maximum amount of control on the
process: it can be run in small steps, with output files
named and ordered according to user’s preferences. Fur-
thermore, MethPipe has an extensive documentation
with thorough instructions, which is useful to read even
without intending to use the pipeline itself, since it de-
scribes the basic principles of DNA methylation data
analysis [61]. MethPipe developers have also created and
curate a reference methylome database MethBase, which
can be useful for biological comparisons [53]. For ex-
ample, by adding tracks of methylomes from different
human tissues and cell lines to the UCSC browser and
comparing them to own data. Data from MethBase can

be downloaded using UCSC Table Browser or from the
MethBase website for individual methylomes, where files
contain methylation levels and coverage information for
each CpG.
MOABS and MethPipe could be the pipelines of choice

for more experienced users. However, because of its high
functionality and user-friendly command line, Bicycle is
the main pipeline we are suggesting for use by scientists
with different backgrounds.

Bicycle (recommended for WGBS, targeted BS-seq, and TAB-
seq)
Bicycle is a pipeline for computational analysis of bisul-
fite sequencing data that is more powerful or at least as
powerful as MOABS or MethPipe, but undeniably easier
to use, which is a great benefit for scientists without ad-
vanced computational skills [54]. The pipeline is able to
perform all necessary steps—from conversion and index-
ing of the reference genome to the differential methyla-
tion analysis (Table 1). The tool is suitable for both
paired-end and single-end reads. Bicycle has several ad-
vantages over other pipelines and includes more options
than any other bisulfite sequencing analysis pipeline
[54]. It can analyze the efficiency of the bisulfite conver-
sion, which is important for correct estimation of methy-
lation levels. Furthermore, it identifies and removes
ambiguous reads, which is not included in other pipe-
lines. Removal of clonal reads is also a Bicycle feature
that is not often covered in methylation pipelines. No
other pipeline has a non-CG to CG context correction
option, while Bicycle performs it automatically during
methylation analysis.
Methylation analysis of raw sequencing reads, and sub-

sequent differential methylation analysis can be performed
with just 4 commands, and 2 additional commands are re-
quired only when a reference genome is used for the first
time [54].
The 6 steps in the pipeline (Additional file 1):

1. Creating a project. All output files are held in one
folder.

2. Creating two in silico bisulfited reference genomes.
C-to-T conversion for Watson strand reads and
G-to-A conversion for Crick strand reads.

3. Indexing the reference genomes. Steps 2 and 3 are
needed to be executed only for the reference when
used for the first time.

4. Aligning the reads.
5. Methylation analysis and methylcytosine calling.
6. Determination of DMPs and DMRs. Differentially

methylated positions are always determined, but
when regions of interest are determined, only
relevant positions alongside with differentially
methylated regions are reported.
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Bicycle creates two in silico bisulfited versions of refer-
ence genomes: C-to-T conversion is made to accommo-
date reads from the Watson strand and G-to-A
conversion for the reads from the Crick strand [54].
Two versions of references are then indexed. Reads are
processed concurrently and mapped to the references
executing two separate threads. The mapping command
outputs SAM files, which are then automatically con-
verted to BAM files and indexed with SAMtools [54].
Each cytosine is visited and assigned to a methylation

context (CG, CHG, or CHH). Methylation level calcula-
tion and methylation calling are performed [54]. Various
corrections, which can be controlled by options, are per-
formed automatically. For example, if a cytosine is initially
assigned to CHG or CHH due to single-nucleotide poly-
morphism (SNP), it is re-assigned correctly to a CG. In
this step, filters can be applied: disregard ambiguous reads,
discard clonal reads and keeping the highest quality one,
filter out incorrectly converted reads [54]. During methy-
lation calling, at each position, bicycle estimates the error
rate in bisulfite conversion by calculating the error as the
percentage of unconverted Cs from an unmethylated con-
trol genome (when it is included in the experiment), by
calculating the error as the percentage of unconverted
barcodes (when barcodes with unmethylated Cs were at-
tached to the reads before bisulfite conversion) or by using
a specified fixed error rate [54].
The significant advantage of the Bicycle pipeline is that

it also can perform a differential methylation analysis.
Both DMPs and DMRs are computed by comparing to
groups of samples (control and condition). The statis-
tical analysis is based on MethylSig algorithm [62].
Bicycle can be adapted for the analysis of 5hmC, iden-

tified using the TAB-seq approach. 5hmC would be re-
ported as methylated cytosine during the analysis with
the pipeline. Analysis should be available for the oxBS-
seq data as well, but then positions that overlap between
oxBS-seq and BS-seq of the same sample should be dis-
carded in order to identify 5hmC but leave 5mC modifi-
cations behind.

SMAP (recommended for RRBS)
SMAP is another example of a bisulfite sequencing data
analysis pipeline [55]. It focuses on RRBS data analysis
from reference preparation to detection of DMPs,
DMRs, SNPs, and allele-specific methylation (ASM). In
step 1 of the pipeline, the reference genome is prepared
by converting all Cs into Ts for both strands and index-
ing those strands. Reference is cut into target regions,
based on the enzyme that was used in the RRBS proto-
col. In step 2, reads are trimmed and aligned in step
3 (Additional file 1). Two alignment algorithms can be
chosen: Bowtie2 or bsmap and their options selected. In
step 4, methylation levels are calculated for target

regions. DMPs and DMRs are detected in step 5 using
Fisher’s exact test when seed number is smaller than 5.
Otherwise, t test or chi-square tests are chosen automat-
ically. SNPs and ASM are analyzed in step 6 using Bis-
SNP or Bcftools. Heterozygous SNPs are then filtered for
ASM event detection. In a final step, results are summa-
rized into a report [55].

Web-based alternatives to command-line tools
There are several online pipelines for methylation analysis,
where own data can be uploaded and analyzed using a vis-
ual interface rather than a command-line. However, often
online platforms require frequent maintenance, and lack
of this leads to poor website performance, annoying er-
rors, and crashes. Another important concern is data pro-
tection for sensitive human genetic data in servers or
clouds used by the particular platform, since data has to
be uploaded to perform the analysis, and such data hand-
ling and storage is still a topic of discussion [63–65].
Genestack.com is an online platform that offers pipe-

lines for the analysis of various data types, including
WGBS (and RRBS) (https://genestack.com) [56]. A 30-
day free trial is available in order to try the tools. How-
ever, since September 2019 access to the Genestack plat-
form has been restricted and after the free trial period a
paid subscription is required. The platform is visually
pleasing and visualizes the results from all necessary
steps of the methylation data analysis pipeline, which is
a big advantage, compared with the command line-based
tools. Unfortunately, big data upload is not efficient
enough and is highly time-consuming. The advantage is
that uploads can be resumed after some time even if com-
puter is turned-off or internet connection interrupted.
Furthermore, some of the available public data is already
accessible and does not need to be uploaded. However,
the access of the tools and their application to the data
can be confusing, since they are not well listed in the
menu. To make it easier, there is a task manager available
to track the activity and access the results. In addition, the
Genestack website has several thorough tutorials, created
especially for the WGBS, RNA-Seq, and other omics data.
Mapping to the reference genome is performed using

the BSMAP algorithm, and various options such as num-
ber of mismatches or the BS data generation protocol
can be chosen. Unfortunately, differential methylation is
not available in Genestack, which is a significant disad-
vantage of the platform. Overall, considering the disad-
vantages of the platform and controversies regarding the
treatment of sensitive data, this platform would not be
our first choice for data analysis (Table 1).

MeDIP-seq data processing
The earliest tools developed specifically for MeDIP-seq
data analysis were Batman and MEDIPS (which is
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possibly the most frequently used tool for MeDIP data
analysis), but these tools do not perform quality control
or mapping of the reads [57]. Therefore, additional tools
are required to prepare the data for analysis, which is
time-consuming and can be challenging computation-
ally. As a solution, there are several pipelines that com-
bine various tools, including MEDIPS. The most
frequently described and recommended pipelines in vari-
ous publications are MeQA and MeDUSA.

MeQA
Huang et al. created the MeQA pipeline for “pre-pro-
cessing, data quality assessment and distribution of se-
quences reads, and estimation of DNA methylation
levels of MeDIP-seq datasets” [57]. To run the pipeline,
a configuration file must be prepared, which is then
called by a command line. The pipeline consists of two
main parts. Part A performs a quality control (summa-
rized in a pdf report with graphs), and an alignment that
results in BAM files and alignment quality control. Ref-
erence genome and indexes are downloaded automatic-
ally from UCSC, which is a great advantage of MeQA.
DNA methylation levels are estimated in part B and
mapped regions are extracted in BED format. The re-
gions or parts of regions that correspond to promoters,
bidirectional promoters, genes, or downstream of genes
are identified and CpG enrichment is estimated. Sum-
mary of the results is generated.
Unfortunately, MeQA does not perform differential

methylation analysis (DMR analysis) [57]. In addition,
currently the pipeline seems to be unavailable, which
prevents us from recommending it.

MeDUSA (recommended for MeDIP-seq data analysis)
MeDUSA (Methylated DNA Utility for Sequence Ana-
lysis) is a pipeline for MeDIP-seq data analysis that fo-
cuses on accurate DMRs detection [43, 58]. It contains
several packages to perform a complete analysis of
MeDIP-seq data: sequence alignment, quality control,
and DMR identification (Table 1) [58]. BWA is used for
the alignment, SAMtools for subsequent filtering, and
FastQC for quality control metrics. MeDUSA integrates
and uses MEDIPS as a tool for methylation analysis. The
pipeline is executed by writing a configuration file,
which runs the scripts of the pipeline. Template and ex-
ample configuration files are available to download.
The pipeline consists of four parts. In part 1, the align-

ment of reads and filtering is performed, using BWA and
SAMtools. Some of the alignment parameters are set up
in the configuration file, while more can be added by
modifying the part 1 script. The part 2 script runs MED-
IPS and its quality control and generates WIG tracks for
individual strands and both strands combined. The
tracks are converted to bigWig format. DMRs are called

in part 3 using MEDIPS. In part 4, these DMRs are an-
notated (Additional file 1). In this step, annotation files
are required, and they must be written in GFF file for-
mat and organized in the correct directory structure.
Annotation files are available together with MeDUSA
v2.0, while the newest version 2.1 does not include these
files. However, they can easily be copied from one ver-
sion to another.

MRE-seq data processing
MRE-seq is not the most popular approach to study
DNA methylation, although some datasets are publicly
available and have potential to be used. Therefore, devel-
oping specific tools and pipelines for this type of data is
not common. However, R Bioconductor has a package
just for methylation-sensitive restriction enzyme sequen-
cing data, msgbsR [44].

msgbsR (recommended for MRE-seq data analysis)
The methylation sensitive genotyping by sequencing R
package (msgbsR) contains a collection of functions for
MRE-seq data analysis [44, 59]. However, the input must
be indexed BAM files, which means that the user must do
data pre-processing before using msgbsR. This can be
done with Bowtie2 or BWA aligners. msgbsR then identi-
fies and quantifies read counts at methylated sites. Enzyme
cut sites are also verified and DNA methylation is assessed
based on read coverage [44]. One of the advantages of this
package is the differential methylation analysis.
In the pipeline, the input BAM files are read. Then cut

sites are extracted and checked. Incorrect cuts are fil-
tered out and a preliminary read count table is gener-
ated. msgbsR can plot the results using plotCounts.
The user should keep in mind that this package re-

quires pre-processing of raw data and knowledge of the
R programming language and analyzing MRE-seq data
means that both the R programming language and
command-line tools will have to be used. However, an
example script is provided on the website together with
a manual [59].

Discussion
As shown above, there is a large variety of tools available
for analyzing DNA methylation sequencing data. The
analysis of such data includes several main steps that
each consists of several more detailed procedures. How-
ever, the majority of existing reviews only lists and rec-
ommends tools for individual steps [2–6]. Consequently,
for a researcher, who is not sufficiently experienced in
big data analysis and bioinformatics, finding and choos-
ing the most appropriate tools for an analysis can be ra-
ther overwhelming. Furthermore, most of the tools are
command line-based with complicated installation and
execution procedures, and therefore challenging to
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integrate in the analysis workflow, especially when input
and output files need to be converted to fit the particular
tool. Often detailed instructions for this are not avail-
able. At the same time, beginners in DNA methylation
sequencing data analysis must obviously learn the details
of the chosen tools or pipelines in order to perform and
understand the analysis in a reliable way, and we hope
that this review can be a good starting point for initiat-
ing such analyses and provide relevant references. Here
we have described available tools and pipelines, dis-
cussed their main advantages and disadvantages, and
suggested a few that in our opinion currently represent
the most optimal choice for DNA methylation sequen-
cing data analysis. In the review, we also point out the
need for pipelines that are powerful enough to fully
analyze DNA methylation sequencing data—from raw
sequencing reads to differentially methylated positions
and/or regions (Table 1). Some of the pipelines can also
be adapted to DNA hydroxymethylation data analysis.
Bicycle is the pipeline we have chosen to feature the

most. Even though it is a command line-based pipeline,
it is described so well that downloading and running the
software is relatively straightforward [54]. It is important
to understand that for big data analysis, such as DNA
methylation, using command-line tools is the most con-
venient way to perform the analysis, since publicly avail-
able raw data are more easily downloaded and processed
by using command-line tools. To enable effective ana-
lysis, pipelines should not be too complicated to use.
Advantages of Bicycle are its simplicity, yet universality
and functionality. The pipeline is suitable for bisulfite se-
quencing analysis and can also be adapted to DNA
hydroxymethylation data analysis. It performs all essen-
tial steps and has more additional options than many
other pipelines [54], like identification of ambiguous
reads or beta score calculation. The options can easily
be specified in commands, compared with more compli-
cated command lines in MethPipe or MOABS, where a
sophisticated configuration file is required [52, 53].
Probably the biggest drawback of the Bicycle (and in fact,
many other command-line based pipelines) is a lack of
graphic output, because it only provides VCF file for
possible visualization in UCSC genome browser, whereas
results from differential methylation analysis are in text
files only.
Unfortunately, Bicycle does not include a workflow for

RRBS data analysis, which could be a suggestion for a
potential pipeline improvement in the future, thereby
making the tool truly universal for bisulfite sequencing.
SMAP is an optimal pipeline example to fill the missing
gap of RRBS data analysis. Like Bicycle, it performs all
necessary steps in the analysis and outputs DMPs, DMRs
and, if required, SNPs and allele-specific methylations
[55]. Even though SMAP is run by writing a

configuration file, example files and user manual make it
easy enough to use for an unexperienced user.
One way to avoid command-line tools would be to use

online platforms. Arguably the biggest advantage of such
platforms is a user-friendly interface, where analysis is
performed by clicking and/or dragging actions. Further-
more, these platforms usually output attractive graphs
that almost instantly can be used in reports and papers,
while after Bicycle or SMAP analysis such graphs would
need to be generated separately using sometimes com-
plicated software. However, online platforms entirely de-
pend on the servers and developers, who must maintain
the service to keep it active. In addition, since the whole
analysis of DNA methylation is a time-consuming
process, web page crashes are a significant risk. Gene-
stack is an online platform that has a solution for this
problem by saving the progress of analysis and even the
file uploads. Nevertheless, comparing functionality and
accessibility of command line-based tools and online
platforms, command-line should still be a first choice for
big data analysis.
With respect to DNA hydroxymethylation analysis,

there are to our knowledge no tools exclusively for this
type of data, but many pipelines for WGBS analysis could
be adapted (for example, Bicycle pipeline). However, for
some other tools, possible adaptations must be assumed
by the user, since documentation is not extensive enough
or recommendations are not clear. A lot is fundamentally
unknown about hydroxymethylation, so development of
more tools targeting this specific DNA modification
should be the focus of future developments.
Enrichment and restriction-based approaches for DNA

methylation analysis are not as popular today as WGBS,
RRBS, or microarrays. Consequently, there are fewer
available tools and pipelines for this type of data, and
few new tools are being developed. Nevertheless, MRE-
seq and especially MeDIP-seq are still used, when
single-nucleotide resolution is not needed, and numer-
ous datasets produced with these techniques are publicly
available. MeDUSA is a pipeline we recommend for
MeDIP-seq analysis. The pipeline integrates MEDIPS for
indicating the robustness of the normalization algorithm.
This might mean that the tools for MeDIP-seq analysis
are efficient enough to eliminate the need for a big var-
iety of tools. For example, the MeQA pipeline is cur-
rently unavailable to download, leaving MeDUSA the
main pipeline for MeDIP-seq data analysis.
Third-generation sequencing approaches, including

single-cell sequencing, nanopore sequencing, and single-
molecule real-time sequencing (SMRT) technologies,
have been created and already adapted to DNA methyla-
tion detection [2]. The wider use of new experimental
approaches will eventually lead to a larger number of
such datasets becoming available in databases, thus
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creating a need for user-friendly tools and pipelines cre-
ated specifically for this type of data analysis. Third-
generation DNA methylation data analysis is therefore
an important direction for future discussions, but for the
time being, the methods described in this review still
dominate.
Recommendations for tools and pipelines are very im-

portant for scientists, especially according to their level
of difficulty and requirements regarding computational
experience. After reviewing the possibilities for DNA
methylation sequencing analysis, it can be concluded
that the current landscape of available pipelines and
tools, especially for bisulfite sequencing data analysis, ap-
pears chaotic and without specific recommendations. A
majority of the tools are suitable only for individual
steps, or a selection of steps. Existing pipelines are
mostly incomplete or still not widely used, often due to
lack of maintenance. However, if users give proper credit
to the creators of pipelines, including comprehensive ci-
tations, we believe that this would lead to fruitful discus-
sions inside the user community, drawing attention to
these pipelines and tools as well as their creators. This
may improve the chance that a tool stays available in the
future and is kept constantly improved and updated. It is
crucial to properly describe the methods that were used
in research projects to process different types of data.
When it comes to the Methods section, researchers
should be more detailed in describing computational
and statistical data analysis and properly include the ref-
erences and name the tools and algorithms that were
used, and carefully define how they were combined into
a workflow. Researchers could take example from
Methods sections for experimental procedures, where
over the time scientists have learned to meticulously list
all materials and define exactly how they were used. In
computational projects, often not a single, but a series of
individual steps (using a selection of tools or even parts
of different algorithms) are used to achieve the result. If
these steps are clearly defined, then it becomes easier to
understand the computational process of the research
project and subsequently reproduce the results, which
should be a sign of high-quality science.

Conclusions
Bicycle is the main recommended pipeline for the
whole-genome bisulfite sequencing and targeted bisulfite
sequencing data analysis. This pipeline fits the criteria of
being universal, highly functional, but at the same time
easy enough even for the scientists with no or limited
experience with computational analysis. Some pipelines,
including Bicycle, can be adapted to DNA hydroxy-
methylation data analysis, but there are no specific tools
yet for this type of data. Another tool, SMAP, is recom-
mended specifically for reduced-representation bisulfite

data analysis, while MeDUSA is a pipeline of choice for
analyzing precipitated methylated DNA. Recommended
pipelines were picked from a large variety of available
tools, where some are described better than others.
Some are also used more often, and hence they are being
updated more regularly, while others are no longer avail-
able. It is important to acknowledge computational tools
and pipelines in scientific papers, and to communicate
with the authors, which could lead to more regular up-
dates, improved manuals, and better selection guidelines.
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