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Introduction
Learning performance is strongly associated with learners’ perception of task difficulty and 
on-task mental effort (Papamitsiou & Economides, 2015; Yen, Chen, Lai, Su, & Chuang, 2015) 
among others (eg, affective states, self-regulation behavior, perceived self-efficacy and expertise). 

Abstract
Students’ on-task engagement during adaptive learning activities has a significant effect 
on their performance, and at the same time, how these activities influence students’ 
behavior is reflected in their effort exertion. Capturing and explaining effortful (or 
effortless) behavior and aligning it with learning performance within contemporary 
adaptive learning environments, holds the promise to timely provide proactive and 
actionable feedback to students. Using sophisticated machine learning (ML) algorithms 
and rich learner data, facilitates inference-making about several behavioral aspects 
(including effortful behavior) and about predicting learning performance, in any 
learning context. Researchers have been using ML methods in a “black-box” approach, 
ie, as a tool where the input data is the learner data and the output is a given class 
from the chosen construct. This work proposes a methodological shift from the “black-
box” approach to a “grey-box” approach that bridges the hypothesis/literature-
driven (feature extraction) “white-box” approach with the computation/data-driven 
(feature fusion) “black-box” approach. This will allow us to utilize data features that 
are educationally and contextually meaningful. This paper aims to extend current 
methodological paradigms, and puts into practice the proposed approach in an adaptive 
self-assessment case study taking advantage of new, cutting-edge, interdisciplinary 
work on building pipelines for educational data, using innovative tools and techniques.
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Students’ on-task mental effort is an important factor of their educational outcomes, such as 
their persistence in learning (eg, Jung & Lee, 2018) and their academic achievement (eg, Chen, 
2017; Pardo, Han, & Ellis, 2017). According to Humphreys and Revelle (1984), effort is “the moti-
vational state commonly understood to mean trying hard or being involved in a task. Effort is 
increased when the subject tries harder, when there are incentives to perform well, or when 
the task is important or difficult.” In this study, the terms “effortful behaviour” and “engage-
ment” are used interchangeably, and they refer to learners’ conscious, intrinsically motivated 
and active involvement with the learning tasks.

Although engagement and active involvement with the learning activities lead to better educa-
tional outcomes, “true performance” is often overshadowed by effortless behavior commonly 
exhibited by students: “cheating,” “guessing” or “gaming the system” behavioral patterns coun-
terfeit these outcomes (eg, Baker, Corbett, Koedinger, & Wagner, 2004; Wise & Kong, 2005). In 
traditional classrooms, before instructors provide a set of  tasks to their students, they need to 
be aware of  the students’ comprehensions, their ability level, as well as an estimation of  effort 
needed to successfully accomplish those tasks, to prevent students from engaging in effortless 
behavior. Similarly, contemporary intelligent tutoring and adaptive learning systems automati-
cally identify students’ ability level (eg, estimate students’ knowledge mastery from performance 

Practitioner Notes
What is already known about this topic

• Capturing and measuring learners’ engagement and behavior using physiological 
data has been explored during the last years and exhibits great potential.

• Effortless behavioral patterns commonly exhibited by learners, such as “cheating,” 
“guessing” or “gaming the system” counterfeit the learning outcome.

• Multimodal data can accurately predict learning engagement, performance and 
processes.

What this paper adds

• Generalizes a methodology for building machine learning pipelines for multimodal 
educational data, using a modularized approach, namely the “grey-box” approach.

• Showcases that fusion of eye-tracking, facial expressions and arousal data provide the 
best prediction of effort and performance in adaptive learning settings.

• Highlights the importance of fusing data from different channels to obtain the most 
suited combinations from the different multimodal data streams, to predict and ex-
plain effort and performance in terms of pervasiveness, mobility and ubiquity.

Implications for practice and/or policy

• Learning analytics researchers shall be able to use an innovative methodological 
approach, namely the “grey-box,” to build machine learning pipelines from multi-
modal data, taking advantage of artificial intelligence capabilities in any educational 
context.

• Learning design professionals shall have the opportunity to fuse specific features 
of the multimodal data to drive the interpretation of learning outcomes in terms of 
physiological learner states.

• The constraints from the educational contexts (eg, ubiquity, low-cost) shall be catered 
using the modularized gray-box approach, which can also be used with standalone 
data sources.
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indices) and select the most appropriate tasks to deliver to students accordingly, considering the 
required effort for those tasks (eg, the probabilities to guess or slip the solution, Baker, Corbett, 
Aleven, 2008; Gowda, Rowe, Baker, & Chi, 2011; Pelánek, 2016).

Motivation of the research and research question
Students’ on-task effort exertion during adaptive learning activities is an important factor that 
affects their performance. Therefore, deeper understanding, explaining and predicting effortful 
behavior is expected to shed light to more complex learning mechanisms in adaptive learning 
settings.

Existing methods for the prediction and explanation of  effortful behavior are usually based on 
learners’ response time patterns and data coming from traditional computer activity logging 
(Papamitsiou & Economides, 2015, 2016; Wise & Kong, 2005). For example, van Gog, Kirschner, 
Kester, and Paas (2012) found that repeatedly measuring mental effort (using subjective rating 
scales and associating the measurements with response times) after performing individual tasks 
in a series, was favored for tasks that take longer than usual to complete.

Other computational methods operationalize effortful behavior as probabilities (Gowda et al., 
2011). In these cases, a guessing parameter is incorporated in learner models to describe the 
possibility of  the learner to respond correctly in a generally random fashion (effortless) instead 
of  actively seeking to determine the correct answers (effortful). For example, Backer et al. (2008) 
make contextual estimations of  the probability for a student to have guessed or slipped.

Furthermore, more sophisticated measurements have also been employed for coding effortful 
interactions, focusing mostly on learners’ engagement: the idea to employ effort-related mul-
timodal physiological measures in the operationalization of  student engagement is not new 
(D’Mello, Craig, & Graesser, 2009; Gilzenrat, Cohen, Rajkowski, & Aston-Jones, 2003; Mulder, 
1986). Multimodal data provide educational technology researchers with an unprecedented 
opportunity to gain insights into and deeper understand learners’ actions in diverse learning 
contexts (eg, D’Mello et al., 2009; Furuichi & Worsley, 2018). For example, pupil dilation was 
found to be highly correlated with engagement, heart rate (HR) variability and cognitive load 
have been acknowledged to reflect self-regulatory capacity, whereas facial features have been 
extensively used for emotion recognition that are related to deeper learning (D’Mello et al., 2009; 
Gilzenrat et al., 2003; Mulder, 1986).

Towards explaining and understanding students’ effortful behavior and learning performance, 
we propose building machine learning (ML) pipelines on multimodal physiological data collected 
during an adaptive learning activity. The physiological data sources include eye-tracking, electro-
encephalography, facial features and arousal data (HR, blood volume pressure (BVP), electroder-
mal activity (EDA) and skin temperature). Various combinations of  such data sources have been 
used in the past to explain (Raca & Dillenbourg, 2014) and/or predict (Beardsley, Hernández-Leo, 
& Ramirez-Melendez, 2018) learning behaviors (Furuichi & Worsley, 2018) and/or performance 
(Junokas, Lindgren, Kang, & Morphew, 2018).

In the present study, we propose a shift in methodological paradigm for developing ML pipelines 
for educational data, and through a case study, we put the proposed approach into practice to pre-
dict learning performance and explain how the students achieve high performance by exhibiting 
effortful behavior. This understanding would enable us to identify appropriate moments, during 
the learning process, for giving actionable feedback to the students. As such, the research ques-
tion that guided this work is: “What combinations of  students' physiological data explain 
their effortful engagement and learning performance in adaptive learning conditions?”
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To address the research question, this study was contextualized and operationalized in adaptive 
self-assessment conditions. Self-assessment leads students to a greater self-awareness, by facili-
tating self-regulation of  motivation and actions (McMillan & Hearn, 2008), and inherently pro-
motes students’ effortful behavior, because the result of  the assessment is primarily important 
to the student herself  (Papamitsiou & Economides, 2019). Furthermore, adaptation has shown 
a positive impact on learners’ engagement with the activities (Normadhi et al., 2019), which is 
also reflected on learners’ performance (Barla et al., 2010; Liu, McKelroy, Corliss, & Carrigan, 
2017). In addition, previous work with multimodal data yielded results in other learning set-
tings. However, although each of  the individual data streams have their own challenges, their 
fusion is even more technically difficult and demanding (Ochoa & Worsley, 2016). As such, lack 
of  previous work in adaptive learning contexts along with the challenges in fusing multimodal 
data, as well as extending or contradicting previous finding from other contexts motivated this 
study.

Contribution
A core contribution of the presented work derives directly from the study itself, and concerns 
the fusion of multimodal data and ML methods to predict learners’ effortful behavior and per-
formance in adaptive assessment tasks. Most of the recent approaches on measuring effort rely 
solely on response time patterns and guessing behavior patterns (eg, Chang, Plake, Kramer, & 
Lien., 2011; Wise, Kuhfeld, & Soland, 2019). Therefore, this study is the first one—to the best of 
our knowledge—that goes a step ahead from the commonly used clickstream data for effort esti-
mation/predictions, by exploiting non-invasive high-frequency multimodal data.

Furthermore, due to the inherent particularities of  multimodal data, the common approach that 
researchers have been using to analyze them and address the educational objectives they set, is 
to employ ML methods (eg, Di Mitri et al., 2017; Mattingly et al., 2019). However, although the 
authors describe the method they use, ML is presented as “black-box,” ie, as a tool where the 
input data are the learner data and the output is a class/value from the chosen construct, without 
actually inspecting how/why the considered algorithms are accomplishing what they are accom-
plishing. For example, in a previously proposed framework for modeling learners’ behavior and 
actions in an Intelligent Tutoring System, Conati and Kardan (2013) suggested an ML pipeline 
consisting of  two phases. The pipeline first detects learners’ behavioral clusters and then clas-
sifies a new learner to one of  the predefined clusters, based on their logged actions. In Conati’s 
and Kardan’s (2013) framework, the idea was to first relate the clusters’ features to the learning 
outcomes and then isolate in each cluster those behaviors that are responsible for the learning 
effects. Next, as new users interact with the system, they are classified in real time into one of  the 
clusters generated by the behavior discovery phase. Still, this framework is not using multimodal 
data, and it is processing the learners’ logs in an automated (ie, “black-box”) manner.

This paper proposes a shift from the “black-box” approach to a “grey-box” approach, where the 
input features can be informed from the context and the theory/relevant research, the data fusion 
is driven by the limitations of  the resources and contexts (eg, ubiquitous, low-cost, high precision, 
different experimental settings), and the ML method is chosen in an informed manner, rather than 
just as a way to obtain the optimal prediction/classification accuracy. In other words, this contri-
bution aims to invite researchers to shift from the optimal ends (outputs) to the optimal means (paths).

Besides proposing the aforementioned “grey box” approach, the present study puts into prac-
tice this approach, in a case study that as an authentic example showcases the whole process 
of  building a ML pipeline. Specifically, this contribution, explicitly streamlines the process from 
gathering the multimodal data within a learning context—based on the educational constraints 
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(eg, ubiquitous, low-cost, high precision, different experimental settings)—to fusing and analyz-
ing them, and to predicting a learning construct (ie, performance and effort, in this study), as a 
generic, “step-by-step” methodology.

Finally, it is important to make it explicitly clear that this contribution in no way claims that the 
methods used in this paper have not been previously used, or that the paper presents novel ways 
of  handling the physiological data, or that the educational data are interpreted in a different way; 
the core scope of  this contribution is to frame and standardize a commonly used research practice 
(ie, ML), and to point out the “grey-box” approach for improving upon the ways ML methods can 
be used with multimodal data in education.

Related work: Utilizing multimodal data to predict learning constructs
Physiological data from multimodal channels have been acknowledged regarding their potential 
to provide insights to educational technology researchers about learners’ states and behaviors 
(Lane & D’Mello, 2019). In a recent selective review, Lane and D’Mello (2019) summarized how 
different physiological data (eg, gaze, facial features, fMRI, fNIRS, EMG, EEG) have been used 
in state-of-the-art approaches to measure learners’ attention, focus, cognitive load and various 
affective states and learning strategies, and what is their capacity to inform and guide the design 
of cognitive, affective and metacognitive scaffolds.

In the above-mentioned approaches, the physiological data have been typically processed using 
ML, and were interpreted by considering contextual information, as well. The reason is that phys-
iological measurements lack objective ground truth (D’Mello, Dieterle, & Duckworth, 2017), 
resulting in weak interpretation when compiled alone into constructs like affect and engagement. 
This limitation is also highlighted in Di Mitri, Schneider, Specht, and Drachsler (2018). In their 
study, the authors demonstrated how the ground truth for various “learner labels” was obtained, 
and they concluded that none of  the listed approaches provides an objectively measurable ground 
truth (Di Mitri et al., 2018). This “missing” contextual information, though, is common practice 
in educational research to be grounded in and obtained from the knowledge from relevant litera-
ture (eg, in formulating hypotheses).

Furthermore, it has been argued that configuring ML methods for the multimodal data that mea-
sure specific characteristics of  the learner, is an adequate and recommended means (Giannakos, 
Sharma, Pappas, Kostakos, & Velloso, 2019). Nowadays, both the physiological data collec-
tion devices and the ML methods are rapidly being developed into cost-effective, consumer-off-
the-shelf  products (D’Mello et al., 2017). This could explain the increasing adoption of  such 
approaches in complex and open-ended learning settings (eg, programming, robotics, complex 
problem solving, Blikstein & Worsley, 2016), and not only in the case of  online, in-front-of-the-
screen or cognitive tutors.

One of  the most prominent uses of  multimodal data in combination with ML is affect prediction 
(Bosch, D’mello, Ocumpaugh, Baker, & Shute, 2016; D’Mello, Bosch, & Chen, 2018; Mattingly 
et al., 2019). For example, Mattingly et al. (2019) predicted affective states (performance, intelli-
gence, personality, mood, anxiety, health measures, exercise, sleep and stress) using the data col-
lected from the physical activity and phone logs. D’Mello et al. (2018) also focused on predicting 
the affective states of  their participants, using audio, facial expressions, HR, EDA, temperature 
and ECG. Furthermore, Bosch et al. (2016) predicted students’ affective states while using an 
online physics tutor using facial features and movement data.

Taking advantage of  technological advancements in “big data” capturing and processing, many 
studies carried out in educational settings have used multimodal data and focused either on 
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measuring learner engagement in individual/collaborative conditions (eg, Andrade, Delandshere, 
& Danish, 2016; Worsley & Blikstein, 2014), or on predicting individual learner performance in 
more diverse set-ups (eg, Spikol, Ruffaldi, Dabisias, & Cukurova, 2018).

Apparently, using physiological data to capture and measure learners’ active on-task involvement 
and effortful behavior is not new (eg, D’Mello et al., 2009; Kalsbeek & Ettema, 1963). For instance, 
pupillary response has a long association with the measurement of  mental effort in response to 
cognitive variables. Marshall (2002) attempted to quantify small discontinuities in pupil size that 
are related to cognitive activity. Gaze has long been studied as an approach for understanding 
users’ behaviors and cognitive states (Lai et al., 2013). Moreover, Fairclough, Moores, Ewing, and 
Roberts (2009) found that electroencephalography (EEG) variables were sensitive to disengage-
ment due to cognitive load. Furthermore, effort-related cardiovascular responses can be mapped 
to success importance until a maximum effort has been achieved (Wright & Kirby, 2001).

In particular, regarding engagement in individual learning, Andrade et al. (2016) used Multimodal 
Learning Analytics (MMLA) to automatically detect the moments when students’ expectations are 
likely to influence their engagement with the knowledge (“epistemological frames”). The authors 
used speech, posture and gaze to model such moments, in order to understand the depth of  stu-
dents’ engagement with the content, but they could not verify a direct relationship between the 
behavioral patterns in the multimodal data and “epistemological frames.” However, in another 
study, Worsley and Blikstein (2014) verified this relationship. Specifically, the students collaborated 
in pairs to complete an engineering design task, and the authors used hand/wrist movement, elec-
tro-dermal activation, and voice activity detection, for modeling how students engage with the 
task, in terms of  the reasoning strategies the used. Furthermore, in a face to face classroom setting, 
Pijeira-Díaz, Drachsler, Kirschner, and Järvelä (2018) utilized the EDA, Galvanic Skin Conductance, 
temperature and the accelerometer data, to measure simultaneous arousal levels among the stu-
dents with respect to the students’ mood, motivation, affect and collaborative engagement. Results 
shown that low arousal was the predominant state, whereas all students were never in high arousal 
states in the classroom, at the same moment. In the same context, Raca and Dillenbourg (2014) 
used the synchronization of  students’ gaze direction and body postures for predicting their self-re-
ported attention. Attention has been found to be a strong construct of  engagement (Kinnealey et 
al., 2012; Mundy, Acra, Marshall, & Fox, 2006). The results showed that students with lower levels 
of  attention were slower in reacting to the teacher than the focused students.

Furthermore, considerable amount of  research has also been conducted to predict learning per-
formance in diverse learning tasks, using multimodal data. Specifically, researchers have used 
EEG and behavioral data (eg, reaction time from clickstreams, Beardsley et al., 2018) to predict 
students’ recall, or gestures, postures and body movements to predict students’ performance in 
repeating, recalling and association tasks (Junokas et al., 2018). In a project-based learning case, 
Spikol et al. (2018) used objects created by the students in their respective projects, in combi-
nation with students’ positions, hand gestures, facial expressions, audio, video and interaction 
patterns with the physical computing platform, aiming to predict the quality and correctness of  
the solution. Other researchers aimed to model learners’ performance using either audio, video 
and the log data from a chemistry educational tutor (Liu et al., 2019), or HR, BVP and other phys-
iological data sources in self-regulated learning activities (Di Mitri et al., 2017). While learners 
were solving mathematical problems, Smith, King, and Gonzalez (2016) recorded Kinect sensor 
data and dialogues and used these data sources to explain students’ performance in terms of  
interaction patterns. In all studies, the prediction of  performance achieved was highly accurate.

Except from predicting affective states and performance and explaining engagement, other stud-
ies employed multimodal data for other research objectives, as well, including modeling dialogue 
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acts (Ezen-Can, Grafsgaard, Lester, & Boyer, 2015; Worsley, 2018), idea creation (Furuichi & 
Worsley, 2018) or motivational intentions (Yu et al., 2018), assessing presentation skills (Chen et 
al., 2016; Ochoa et al., 2018) and predicting collaborative coordination/synchrony between the 
collaborating peers (eg, Grafsgaard, Duran, Randall, Tao, & D’Mello, 2018; Schneider & Blikstein, 
2015; Stewart, Keirn, & D’Mello, 2018; Worsley, 2014). Furthermore, substantial work has 
been done in the area of  providing feedback using data in one or more modalities (Pardo, Poquet, 
Martínez-Maldonado, & Dawson, 2017). For example, EEG data and responses/clickstream data 
have been exploited for understanding affectional reactions to feedback (eg, Cabestrero et al., 
2018; Luft, Nolte, & Bhattacharya, 2013). In a slightly different context, Andrade (2017) used 
multimodal data (motion and gaze) to show how students’ explanations of  feedback loops dif-
fer while controlling an embodied simulation. Finally, Moridis and Economides (2012) provided 
effective feedback using Embodied Conversational Agents based on emotional facial expression 
and speech. The exhaustive list of  multimodal data applications are beyond the scope of  the work 
presented in this paper.

The manual analysis of  learners’ interactions (with a computer or peers) is a complicated and 
sometimes tedious process. Among the primary motivations of  these studies was to reduce this 
human workload, and to select appropriate multimodal data for capturing learners’ behaviors 
(Andrade et al., 2016; Ochoa et al., 2018). In line with these works, the long-term motivation of  
the present study is to fuse (or utilize combinations of) multimodal data sources for explaining 
learners’ behavior in adaptive learning settings and build ML pipelines for facilitating the efficient 
processing of  those data.

In a nutshell (See Table S1), the previous research has employed multimodal data in different 
classroom/experimental settings, with individual/collaborative tasks, to understand learners’ 
behavior associated with high levels of  performance, to explain learners’ on-task engagement 
patterns or to support learners/instructors in an automated manner. In this contribution, we 
explore the combinations of  multimodal data to predict learning performance and effortful 
behavior in an adaptive self-assessment procedure and explain how to build efficient ML pipelines 
for the educational multimodal data.

Pipeline from data collection to educationally meaningful interpretations
ML in multimodal educational data
As seen from the review of relevant literature, several channels of learners’ physiological data 
can be recorded during students’ participation in learning activities, aiming to help us under-
stand and explain educational constructs (eg, Pijeira-Díaz et al., 2018; Spikol et al., 2018). Those 
multimodal data are usually collected with specialized equipment and include eye-tracking, 
EEG, facial expressions, heart-rates, gestures, postures, audio, video, body motions and many 
more. The information captured in those data is rich enough to describe different aspects and 
dimensions of the learners’ states at any moment during the learning process. Furthermore, 
these data shall next be fed into an analysis cycle to (a) extract from them the educationally 
meaningful knowledge associated with human learning mechanisms and (b) answer to educa-
tionally critical questions about human learning processes.

However, typical analysis techniques (eg, analysis of  variance, correlations, linear regressions) 
usually considered in educational settings, are employed mostly for hypothesis testing, where 
hypothesizing is guided from previous work or/and theories. When dealing with multimodal 
data, for analyzing the high volumes of  those data (ie, predictions/classifications), other, more 
sophisticated techniques need to be configured. To predict the different aspects of  learners’ states 
at any moment from multimodal data during the learning process, ML algorithms should suit 
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the nature of  the data: not all algorithms are appropriate for treating all kinds of  data, and the 
purpose of  the analysis also needs to be considered.

The studies reviewed in the related work section use the ML methods in combination with the 
multimodal data sources to predict various learning constructs in a given learning context. 
However, the description of  the ML methods as it is used in these papers, serves only as a part of  
the research methods and not as an explication of  the ML pipeline. To make this statement clear, 
let us consider the following hypothetical study, conducted in a video-based learning context. 
Let the learning task be as simple as watching a video (at learner’s own pace) and next answer a 
test of  multiple-choice questions, based on the video content. Let also the research objective be 
the prediction of  the test score (performance), based on data collected during the video-watch-
ing task. For the needs of  the (hypothetical) study, the researchers have recorded clickstream, 
eye-tracking and EEG data and facial videos. This example is a simplification of  a typical study, 
similar to the ones mentioned in the related work section. The data analysis methods in a typical 
study like this one, would include features extraction and application of  one or more prediction/
classification algorithms. The reporting of  results would be based on the algorithm yielding the 
most accurate prediction/classification results.

However, there are a few problems with such studies: (a) the ML pipeline is not explicitly mentioned 
in the study, limiting the generalizability of  the method; (b) the approach is not modular which 
limits the investigated feature space; (c) there is no investigation based on the feature selection and 
the prediction/classification algorithms; (d) the ML methods are used in a black-box manner, ie, 
there is lack of  step-by-step understanding of  the method; and (e) the methodologies don’t system-
atically allow researchers to introduce contextual, theoretical and background information to the 
analysis, eg, utilizing data features that are educationally and contextually meaningful.

The “Grey-box” of ML and how to use it
This paper demonstrates a generalized and modular ML pipeline. The present method explicates 
how a literature/hypothesis-driven “white-box” approach for feature extraction (ie, ground truth 
contextual knowledge) can be combined with a computation-driven “black-box” approach (ie, ML) 
for feature-fusion into a “grey-box” approach. In the “grey-box approach” the features are extracted 
based on the theory or relevant literature and the need of the analysis, and then ML does the nec-
essary computational analysis, that follows the boundaries set from the “white-box” part of the 
approach, avoiding in this way the results that can’t be interpreted to inform an instructional deci-
sion. In the “grey-box” approach, there is a clearer understanding (than the “black-box”) about the 
combinations of feature selection and prediction/classification algorithms. Moreover, this pipeline 
can be fine-tuned for the research needs, eg, one can use only facial videos and wristband data in 
a setting that demands high levels of pervasiveness, while in a controlled lab setting, eye-tracking 
and EEG can be added to the data sources. Thus, the proposed technique allows us to utilize ML 
advantages, but at the same time embrace, the important for learning sciences, information about 
the context, as well as appropriate theoretical grounds and related works.

The primary goal of  ML algorithms, in educational contexts, is for the machine (ie, the algorithm) 
to “learn” from the educational data and use this “lesson” to predict/classify learning events, 
with sufficient efficiency, accuracy and scalability. ML algorithms have been found to achieve the 
most accurate predictions, but in most of  the cases utilize a “black-box” approach, that makes it 
difficult to explain relationships or produces educationally meaninglessness results. In this sec-
tion, we explain this process in simple terms, targeting to showcase that enhancing educational 
processes with artificial intelligence mechanisms can facilitate human learning and produce edu-
cationally meaningful implications.



© 2019 The Authors. British Journal of Educational Technology published by John Wiley & Sons Ltd on behalf of British Educational Research 
Association

3012    British Journal of Educational Technology  Vol 50 No 6 2019

Specifically, we generalize the process of  building ML pipelines, using multiple sources of  learn-
ers’ physiological data. The whole process is synopsized in Figure 1. We use the term “module” to 
describe every separate phase or step of  the pipeline. The modularity of  the pipeline reflects how 
fine grained can be the different phases of  the pipeline building process.

As seen in the Figure 1, the ML pipeline consists of  three different modules, namely: feature 
extraction, feature selection and prediction. The first step in this process—after data collection—
is to provide the machine with the possible features of  the multimodal data (ie, feature extraction 
step). The feature extraction step is highly dependent on the types and the specifications of  the 
data collections and analyses employed. In other words, the available data and related educa-
tional theory guide and determine feature extraction.

However, not all features are equally meaningful to the machine: the feature extraction proce-
dure results in a multitude of  features, which might or might not satisfactorily explain an out-
come of  interest (if  the features extraction is inspired by the literature, this might come from the 
difference in the learning settings). In this case, just like with the human learning, the machine 
needs to “make-sense” from the data, and therefore, only those features from the input data that 
shall be useful to the machine, have to be selected. The selection of  the features is implemented 
in the second module of  the pipeline, named feature selection. Feature selection utilizes different 
techniques, such as principal component analysis (PCA), Random Forests (RF), Bayesian meth-
ods and information criteria (the list is not exhaustive). The last step of  the pipeline is utilizing 
the selected features to “train” the machine to make predictions or classifications, this happens 
using an appropriate prediction/classification algorithm (eg, Support Vector Machines (SVM), 
Neural Networks, decision trees). The result of  this process shall be interpreted in an education-
ally meaningful manner by the human end-user, in order to guide decision making and instruc-
tional interventions, accordingly.

Methods—Case study
Participants
Thirty-two undergraduate students (15 females [46.9%] and 17 males [53.1%], aged 18–21 years-
old [M = 19.24, SD = 0.831]) at a European University enrolled in an online adaptive self-as-
sessment procedure for the Web Technologies course (related to front-end development). The 
participants undertook the self-assessment task individually, at a University lab, especially 
equipped and organized for the needs of the experimental process, for approx. 45 minutes each 
student, on October 2018.

Figure 1: The different modules of a generalized machine learning pipeline  
[Colour figure can be viewed at wileyonlinelibrary.com]
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Study design and experimental procedure
Prior to their participation, all students signed an informed consent form that explained to them 
the procedure and was giving the right to researchers to use the data collected for research pur-
poses. After granting consent, the participants had to wear a wristband and an EEG cap and be 
connected to all the data collection devices (ie, eye-tracker, wristband, EEG, cameras). The exper-
imental setup is illustrated in Figure 2. Then, the actual adaptive self-assessment test started and 
the students had to answer to the test items.

Each item had two to four possible answers, but only one was the correct. Every time the stu-
dent submitted an answer to an item, her mastery class was revised and the next item was 
delivered to her, according to the correctness of  the answer and the distinguishability of  the 
items. Specifically, the selection of  the next item was based on entropy, a maximum infor-
mation gain strategy from Information Theory. The goal was to select the item that has the 
greatest expected reduction in entropy, ie, that better fits the learner’s mastery class, based 
on the answers she provided on the previous items. For adapting the self-assessment, the 
Measurement Decision Theory (MDT) (Rudner, 2003) was utilized (for the full description of  
the adaptation mechanism, and the preparation of  the item bank, please see the supplemen-
tary material-Appendix E).

Finally, the test score was made available to the students, along with their full-test results, includ-
ing all the items they had answered to, their responses, the correctness of  the responses, and 
the option to check the correct answer to the items that they had submitted wrong answers, to 
rethink and self-reflect.

The participation to the procedure was optional. The adaptive self-assessment tests were offered 
to facilitate the students’ self-preparation before the final exams, to help them track their prog-
ress, align with their learning goals and self-reflect. The scores on these tests had no participation 
to the final grade (ie, no rewards as external motivation).

It should be clarified that the decision to conduct the study in a self-assessment testing context 
was grounded on previous research that demonstrates that students who take practice tests often 

Figure 2: The experimental setup—The participant is connected to all data collection devices and is ready to take 
the self-assessment test  

[Colour figure can be viewed at wileyonlinelibrary.com]
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outperform students in non-testing learning conditions such as restudying, practice, or filler 
activities. A recent meta-analysis examined the effects of  practice tests versus non-testing learn-
ing conditions, and the results revealed that practice tests are more beneficial for learning than 
restudying and all other comparison conditions (Adesope, Trevisan, & Sundararajan, 2017). 
Furthermore, it has been argued that self-assessment leads students to a greater awareness, by 
training them to self-regulate their motivation and behavior, as well as by promoting metacog-
nition and fostering reflection on their own progress in knowledge or skills, and finally, to under-
standing themselves as learners (Nicol & MacFarlane-Dick, 2006).

Data collection
We collected sensor data from four different sources: eye-tracking, EEG, facial video and arousal 
data from wristband (HR, BVP, EDA and skin temperature (TEMP)). The details of the apparatus 
and the setup of each device can be found in Appendix F.

Furthermore, during the study we also computed participants’ effort and performance for the 
whole assessment session (ie, the dependent variables-outcomes of  interest).

Effort
As stated in the Introduction, effortful behavior and on-task engagement are considered syn-
onyms in this study. In other words, effort is an indicator ofhow much engaged the learners are 
in completing the tasks. In this study, for the effort calculation, the response time effort (RTE) 
measurement was employed (Wise & Kong, 2005). RTE measures the proportion of items thatthe 
students try to solve (solution behavior) instead of guessing the answers (guessing behavior). 
Details can be found in Appendix E.

Performance
The measurement used for students’ performance in this study was the score the students 
achieved on the self-assessment test. For the score computation, only the correct answers were 
considered, without penalizing the incorrect answers (ie, without negative scores), due to the 
adaptive nature of the test. Specifically, the selection of the next item to deliver to students was 
guided by the correctness of the previous answer, and as such, the incorrect answers partic-
ipated in formulating the “degree of difficulty” of the test. Furthermore, due to the adaptive 
nature of the test, the students had to respond to and solve different number of items. Overall, 
a minimum of 10 and a maximum of 20 items were used to classify the students based on their 
diagnosed mastery level. To overcome these issues concerning the score computation, each 

student’s j learning performance (LP) was calculated as: LPj =

∑k

i =1
di zi

k
, where k is the 

number of items and according to the correctness of the student’s answer on each item i, with 
zi ∈ {0,1} and the difficulty of the item, di. Each item had been previously weighted based on its 
difficulty level (see supplementary material) and contributed differently to the overall self-as-
sessment score, ranging from 0.5 points (easy) to 1 point (medium) to 1.5 points (hard). The final 
score was on a [0–10] scale.

Building the pipeline

Feature extraction
After collecting the data, we proceeded to the feature extraction step. Specifically, we defined 
the eye-tracking features based on events (ie, fixations (Reichle, Warren, & McConnell, 2009); 
saccades, (Russo et al., 2003), pupil diameter (Prieto, Sharma, Kidzinski, Rodríguez-Triana, & 
Dillenbourg, 2018)), and we computed the mean, variance, maximum and median and other 
statistics of those events (eg, number of fixations and saccades and the ratio of fixations and 
saccades).
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For the EEG data stream, we defined band specific features. We calculated band powers of  alpha, 
lower beta and theta bands (Worden, Foxe, Wang, & Simpson, 2000) from all the 17 channels. 
Band power is calculated as the root mean square of  a signal over a period. The bands are fre-
quency ranges and are strongly correlated to cognitive states (Hassib, Khamis, Friedl, Schneegass, 
& Alt, 2017). For example, the alpha band power has been associated with attention (Huang, 
Jung, & Makeig, 2007), the lower-beta band is related tomemory and theta is related to cognitive 
load (Kumar & Bhuvaneswari, 2012).

Furthermore, using face videos we defined expressions and features from different face regions 
(eyes, nose, mouth, jawline). Following a best practice of  the literature, we extracted the facial 
Action Units (AUs, Cohn, Ambadar, & Ekman, 2007) using the OpenFace library (Amos, 
Ludwiczuk, & Satyanarayanan, 2016). Figure 3 shows the AUs detected in this study.

Finally, we defined features from the arousal data using the distributions of  the data coming from 
the four different sensors (ie, HR, EDA, TEMP, BVP) (Kikhia et al., 2016). From the Empatica E4 
wristband we extracted the following statistical features: mean, median, variance, skewness, 
maximum for all the different data streams.

An overview of  the extracted features from all data sources can be found in Appendix B.

Feature selection
As mentioned in the previous section, several feature selection techniques can be employed. In 
this study, we compare two commonly used feature selection techniques, ie, PCA and RF, briefly 
described in Appendix F.

Prediction algorithms
SVM, decision trees and Gaussian process regression (GPR) are used to predict the student per-
formance and effort, using the selected features. Brief descriptions of the prediction methods can 
be found in Appendix F.

Figure 3: Action units extracted using the OpenFace Library. Action unit 45 (not shown in the figure) is “Blink”
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The overall ML pipeline built in this study is illustrated in Figure 4:

Data analysis
To identify how the combinations of the multimodal data can predict performance and effort in 
the adaptive assessment, we divided the whole dataset into training and testing subsets, retain-
ing data from the quarter (ie, eight) of the participants for testing. We repeated these four times, 
to use every quarter for training, this is a common ML technique. Further, we performed a four-
fold cross-validation to remove the sampling bias from the training set. To evaluate and compare 
the different predictive models (solutions), we used the Normalized Root Mean Squared Error 
(NRMSE). NRMSE is the proposed metric for student models (Pelánek, 2015), and is used in most 
of the articles in learning technology (Moreno-Marcos, Alario-Hoyos, Muñoz-Merino, & Kloos, 
2018) for measuring the accuracy of learning prediction.

Results
In this section, we present the prediction results for effort and performance and the feature selec-
tion results for the scenarios with the lowest NRMSE.

Prediction results
All solutions provided prediction accuracy (all in NRMSE hereinafter) ranging from 12.08% to 
39.44% for effort, and from 6.21% to 25.49% for performance. For simplicity reasons, we present 
only the top results in the following subsections (ie, less than 15% for effort and less than 10% for 
performance). The comprehensive list of selected features for all possible combinations of modal-
ities, feature selection algorithms and prediction methods, for both dependent variables (ie, total 
300 combinations) can be found in Appendix D. The basic idea is to have the NRMSE value as low 
as possible, ie, as close to 0 as possible. However, the interpretation of “how good a given value of 
NRMSE is” can be based on the range of the predicted variable. For example, in our case, the two 
predictables were performance (scale 0–10) and effort (scale 0–20). We achieve 6.21% and 12.08% 
NRMSE for performance and effort, respectively. One can interpret the performance error as an 
error of 0.6 marks on the scale of 0–10. Similarly, the interpretation of error in effort prediction 
could be translated to about two questions difference in the actual number of guessed answers.

Prediction of effort
Table 1 illustrates the results for the prediction of students’ on-task effort, in the self-assessment 
activity. Both feature selection methods (ie, PCA and RF) combined with the SVM radial predic-
tion algorithm, provide the optimal prediction, with the lowest error rate being 12.08% in both 
solutions. Both optimal solutions combine features from the same sources (ie, eye-tracking, faces 
and wristband data). Figure 5 shows the results of predicting the performance (least NRMSE) 
using SVM Radial with the different values of learning rate and the radius size. This predictor 

Figure 4: The different stages of the specific machine learning pipeline built in this study  
[Colour figure can be viewed at wileyonlinelibrary.com]
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uses the features from eye-tracking, facial expressions and wristband data. On the other hand, 
the red curve in the Figure 7 shows the results of predicting the performance (highest NRMSE) 

Table 1: Prediction results for students’ effort in adaptive self-assessment

Feature selection Prediction algorithm Modalities NRMSE (%)

RF Svm radial EΤ-Face-WB 12.08
Svm radial Face-WB 13.09

PCA SVM Linear EEG 14.77
EEG-Face-WB 13.56
EEG-WB 13.53
ET 12.81
ET-EEG-Face 13.82
ET-Face 14.17

SVM radial All 14.30
EEG 13.77
EEG-Face-WB 13.98
EEG-WB 13.97
ET 14.20
ET-EEG 12.36
ET-EEG-Face 14.30
ET-EEG-WB 13.23
ET-Face 13.34
ET-Face-WB 12.08
ET-WB 12.19
Face 12.27
Face-WB 14.68
WB 13.68

ET = eye-tracking; EEG = electro encephalograph; WB = wristband data. The values in bold depict the 
best NRMSE results.

Figure 5: Prediction results for effort using SVM radial with PCA features using the combination of eye-tracking, 
face and wristband data  

[Colour figure can be viewed at wileyonlinelibrary.com]
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using SVM Linear with the different values of learning rate. This predictor uses the features from 
facial expressions.

Prediction of performance
Table 2 demonstrates the results for the prediction of performance. As seen in this table, PCA 
outperforms RF (both optimal predictions utilize SVM radial); the lowest error rate using PCA 

Figure 7: Prediction results for performance using SVM radial with PCA features using the facial data (blue line). 
Prediction results for effort using SVM radial with PCA features using the combination of eye-tracking, face and 

EEG data (red line)  
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6: Prediction results for performance using SVM radial with PCA features using the combination of eye-
tracking, face and wristband data  

[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


© 2019 The Authors. British Journal of Educational Technology published by John Wiley & Sons Ltd on behalf of British Educational Research 
Association

Building pipelines for educational data    3019

Ta
bl

e 
2:

 P
re

di
ct

io
n 

re
su

lt
s 

fo
r 

st
ud

en
ts

' p
er

fo
rm

an
ce

M
od

al
it

ie
s

R
F

 fe
at

ur
e 

se
le

ct
io

n
PC

A
 fe

at
ur

e 
se

le
ct

io
n

G
au

ss
ia

n 
po

ly
M

od
el

 tr
ee

s
SV

M
 p

ol
y

SV
M

 r
ad

ia
l

G
au

ss
ia

n 
po

ly
SV

M
 li

ne
ar

SV
M

 p
ol

y
SV

M
 r

ad
ia

l

A
ll

9.
67

8.
21

7.
21

8.
4

0
7.

65
EE

G
9.

34
8.

14
8.

0
4

8.
36

8.
23

EE
G

-F
ac

e
8.

18
7.

57
8.

4
0

7.
76

EE
G

-F
ac

e-
W

B
9.

76
8.

12
7.

59
8.

37
7.

71
EE

G
-W

B
9.

50
8.

13
7.

79
8.

36
7.

47
ET

9.
41

8.
15

7.
18

8.
38

7.
46

ET
-E

EG
9.

48
9.

77
8.

15
7.

35
8.

39
6.

66
ET

-E
EG

-F
ac

e
9.

82
8.

15
7.

15
8.

38
7.

49
ET

-E
EG

-W
B

9.
51

8.
16

8.
99

8.
36

8.
05

ET
-F

ac
e

8.
15

8.
70

8.
37

8.
07

E
T-

Fa
ce

-W
B

8.
10

9.
55

7.
9

9
8.

14
7.

55
8.

39
6

.2
1

ET
-W

B
9.

36
8.

14
7.

27
8.

4
0

7.
4

0
Fa

ce
9.

0
0

9.
06

8.
14

7.
76

8.
39

6.
49

Fa
ce

-W
B

7.
41

7.
70

8.
55

8.
07

7.
99

8.
49

8.
38

7.
78

W
B

9.
36

9.
98

9.
01

8.
20

7.
50

8.
4

0
7.

75

G
au

ss
ia

n
 p

ol
y 

=
 G

au
ss

ia
n

 p
ro

ce
ss

 m
od

el
s 

w
it

h
 p

ol
yn

om
ia

l k
er

n
el

; S
V

M
 L

in
ea

r 
=

 S
V

M
 w

it
h

 li
n

ea
r 

ke
rn

el
; S

V
M

 P
ol

y 
=

 S
V

M
 w

it
h

 p
ol

yn
om

ia
l k

er
n

el
; S

V
M

 
R

ad
ia

l =
 S

V
M

 w
it

h
 r

ad
ia

l k
er

n
el

. E
T

 =
 e

ye
-t

ra
ck

in
g;

 W
B

 =
 w

ri
st

ba
n

d.
 T

h
e 

m
is

si
n

g 
va

lu
es

 in
 th

e 
ta

bl
e 

ar
e 

al
l m

or
e 

th
an

 1
0

%
 N

R
M

SE
. T

h
e 

va
lu

es
 in

 b
ol

d 
de

pi
ct

 th
e 

be
st

 N
R

M
SE

 r
es

u
lt

s.



© 2019 The Authors. British Journal of Educational Technology published by John Wiley & Sons Ltd on behalf of British Educational Research 
Association

3020    British Journal of Educational Technology  Vol 50 No 6 2019

is 6.21%, while the lowest error rate using RF is 7.99%. In terms of modalities, we see that the 
same combination of modalities (ie, eye-tracking, facial action units and wristband data) results 
the optimal prediction, in both cases. Figure 6 shows the results of predicting the performance 
(least NRMSE) using SVM Radial with the different values of learning rate and the radius size. 
This predictor uses the features from eye-tracking, facial expressions and wristband data. On the 
other hand, the blue curve in the Figure 7 shows the results of predicting the performance (high-
est NRMSE) using SVM Linear with the different values of learning rate. This predictor uses the 
features from eye-tracking, facial expressions and EEG data.

Feature selection
In this section, we present feature selection results using PCA and RF. Those features were used 
to predict students’ effort and performance, with the lowest NRMSE (ie, SVM with radial kernel). 
The complete results from the feature selection module can be seen in Appendices B and C.

Figure 8: Variable importance with RF for effort prediction (the maximum importance is normalized at 100)  
[Colour figure can be viewed at wileyonlinelibrary.com]
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1. Feature selection with RF for effort prediction: the lowest NRMSE is obtained by 
combining the eye-tracking, facial and wristband features (Table 1). Figure 8 depicts the 
top 15 features used to predict students’ effort. The most important feature (ie, important 
predictors) is the number of fixations (eye-tracking) during the test, followed by average 
saccade duration (eye-tracking) and intensity of nose wrinkler (face). Finally, the most 
important feature from wristband is the average temperature.

2. PCA feature selection for effort prediction: as explained in Feature Selection sub-sec-
tion, a threshold on the number of components to use in the prediction module was set at 90% 
of the variance explained in the data. This resulted in the top 17 components (explain 91.06% 
of variance). Figure 9 illustrates the correlations between the top 34 features (coming from 
the 17 components) and effort. The most correlated feature is the maximum BVP (wristband), 
followed by lip corner puller presence (face) and inner brow raiser presence (face) (in absolute 
values). Finally, the most correlated feature from eye-tracking is the number of saccades.

3. RF feature selection for performance prediction: again, the lowest NRMSE is obtained 
by combining the eye-tracking, facial and wristband features (Table 2). Figure 10 shows the 
top 15 features used to predict students’ performance. The most important feature (top pre-
dictor) is the number of fixations (eye-tracking) during the test, followed by blink presence 
(face) and kutrosis of temperature (wristband).

4. PCA feature selection for performance prediction: the 90% threshold on the variance 
explained resulted in 19 components, in this case (explain 92.27% of variance). Figure 11 
illustrates the correlations between top 38 features (from the 19 components) and effort. 
The most important features are the inner brow raiser presence (face) and its intensity (face) 

Figure 9: Pearson correlation between the effort and the top 34 features corresponding to each of the top 17 PCA 
components
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followed by chin raiser presence (face). The most important feature from eye-tracking and 
wristband data are number of saccades and maximum BVP respectively.

Discussion
Previous studies revealed significant findings in terms of what physiological data are appropri-
ate for explaining students’ behavior (Lane & D’Mello, 2019) and modeling and predicting their 
emotions, engagement with the tasks and performance, in diverse learning settings (D’Mello et 
al., 2009; Di Mitri et al., 2018; Fairclough et al., 2009; Marshall, 2002; Spikol et al., 2018). In these 
settings, the exploitation of ML techniques was proposed to reduce human workload during the 
analysis of learners’ interactions, and to select appropriate multimodal data for capturing learn-
ers’ behaviors, (Andrade et al., 2016; Ochoa et al., 2018). However, the lack of previous results in 

Figure 10: Variable importance with RF for performance prediction, (the maximum importance is normalized at 
100)
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adaptive learning conditions, a gap in the methodology to systematically employ multimodal 
data fusion and analysis for prediction purposes, and the need to explicate and generalize the 
“step-by-step” building of a ML pipeline motivated the present study.

The main aim of  the study was to identify the most important constructs from multiple modalities 
and their combinations that predict students’ effortful behavior and performance (or lack thereof) 
in adaptive learning procedures. The majority of  previous research lack objective ground truth 
(Di Mitri et al., 2018) and do not explain the educational constraints (eg, ubiquity, low-cost, high 
precision, different experimental settings) based on which the features in use were selected. To 
address the research question, this work suggests a “grey-box” approach as a generic methodol-
ogy for building ML pipelines for multimodal educational data and exemplifies its usage in a study 
that employs data from four physiological data sources.

Specifically, we collected EEG, eye-tracking, facial expressions and wristband data from 32 stu-
dents, while they were answering an adaptive self-assessment test. Next, we extracted features 
from the data sources (eg, number of  fixations, blink presence, BVP) that have been commonly 
used in literature (D’Mello et al., 2018; Huang et al., 2007; Kikhia et al., 2016; Reichle et al., 
2009), to add ground truth contextual knowledge (Di Mitri et al., 2018), that would be necessary 
for the interpretation of  the findings later on. After the feature extraction step, we employed two 
feature selection algorithms (PCA, RF) to find the set of  a few important variables contributing to 
the learning outcomes, ie, that strongly correlate with effort and performance. Using the selected 
features, we predicted the outcomes of  interest, by configuring three commonly used ML algo-
rithms (SVM, Model Trees, GPR).

Figure 11: Pearson correlation between the performance and the top 38 features corresponding to each of the 19 
PCA components
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Findings and interpretations
Extending previous results (eg, Fairclough et al., 2009; Marshall, 2002), and coinciding with 
more recent findings (eg, Di Mitri et al., 2017; Junokas et al., 2018; Spikol et al., 2018), our find-
ings suggest that although individual modalities can be a good proxy for performance and effort, 
fusing features from different modalities has the potential to further increase prediction accu-
racy. In other words, and in line with Giannakos et al. (2019), it is confirmed that data fusion 
produces more consistent and accurate predictions than those from individual data sources.

It is important to mention, though, that the features to be fused were not randomly selected (ie, 
not in a “black-box” approach, just because the ML algorithms perform better with those ones), 
but they were chosen in a literature-driven “white-box” approach, taking advantage of  the most 
appropriate background work.

Specifically, one interesting finding is that both feature selection methods (PCA, RF) returned fix-
ation duration, saccade duration and saccade velocity histogram-based features (ie, maximum, 
skewness, mean) from eye-tracking data. Fixation duration has been found to be correlated with 
learners’ attention (Abernethy & Russell, 1987; Reichle et al., 2009), whereas saccade dura-
tion often indicates task difficulty (Bestelmeyer et al., 2006; Vuori, Olkkonen, Pölönen, Siren, & 
Häkkinen, 2004). Furthermore, skewness of  saccade velocity histogram often reveals students’ 
anticipation patterns (Liao et al., 2005).

Furthermore, facial action units are known to be related to students’ emotions (Cohn et al., 2007; 
Lewinski, den Uyl, & Butler, 2014). For example, upper lid raiser indicates happiness; dimpler 
and lip corner puller are constituents of  contempt; inner brow raiser and lip corner depressor 
contribute to sadness; and finally, lip and lid tightener are the main components of  anger. Both 
PCA and RF yielded them among the most important ones. This result ties emotions to perfor-
mance and effortful engagement in a more direct manner than previously reported (Linnenbrink 
& Pintrich, 2002, 2003). Moreover, using only facial features (ff) results in NRMSE that is com-
parable to the best model for performance (NRMSEff = 7.76%; NRMSEbest = 6.21%) and effort 
(NRMSEff = 12.27%; NRMSEbest = 12.08%). This finding is interesting in that it supports that 
using only facial data is a satisfactory, yet low-cost and ubiquitous solution.

Moreover, regarding wristband data, histogram-based features were selected for the best predict-
ing model, as well. Those data streams have recently been found to be related to learners’ per-
ceived performance and satisfaction (Sharma, Pappas,Papavlasopoulou, & Giannakos, 2019). In 
the past, they had found to be good predictors of  engagement (Worsley & Blikstein, 2014). Also, 
using features from only wristband (WB) data results in NRMSE that is comparable to the best 
model for performance (NRMSEwb = 7.50%; NRMSEbest = 6.21%) and effort (NRMSEwb = 13.68%; 
NRMSEbest = 12.08%). This result is useful in terms that using only wristband data can provide 
accurate mobile and ubiquitous solutions.

Our predictors (the features from physiological data) and dependent variables are continuous 
valued, making it possible for the students to have multiple different types of  effortful behavior 
simultaneously (eg, higher attention, lower cognitive load and negative emotions such as anger), 
providing a finer-grained explanation of  effort, and a more accurate estimation of  performance, 
as well. This extends results from previous studies that used classes (eg, Worsley, 2018) and hence 
were not able to predict continuous variables or they predicted continuous variables, yet not with 
multimodal data (Sharma, Jermann, & Dillenbourg, 2015). The present study exemplified how to 
solve this problem by keeping the dependent variables continuous, claiming that low error rate is 
feasible by fusing multimodal data.
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However, the feature space that can be computed includes features that are not always easy to use 
and are not always interpretable in educationally meaningful ways in different learning settings. 
In the demonstrated “grey-box” approach, the literature-driven feature selection process allows 
us to select those features from which we can make sense by explaining them in educational 
terms. This gives us an opportunity to continue exploring multimodal data to provide actionable 
feedback to both the students and teacher with little amount of  training.

Conclusions
The inherent particularities of adaptive learning, ie, the fact that the tasks are tailored to the 
detected mastery level and abilities of the learners, as well as the estimation of learners’ perfor-
mance directly from the adaptive learning environment itself, make this context a very special 
learning setting for the study of learners’ effortful engagement, which has been extensively stud-
ied in other learning conditions (Galla et al., 2014; Hughes, Luo, Kwok, & Loyd, 2008).

This study demonstrated a consolidated analysis of  fused multimodal educational data, collected 
during an adaptive self-assessment activity, using sophisticated ML methods for prediction pur-
poses. The implications of  the suggested approach are discussed in this section.

Implications for research and practice
First, this study adds to the educational technologies research by providing a generalized and 
modularized “grey-box” methodology for building ML pipelines for multimodal educational 
data, aiming to justify each step in the process, to predict effortful engagement and performance 
in adaptive learning settings, and bridge the existing gaps in relevant literature. This is the first 
study—to the best of our knowledge—that explicitly determines the steps of the pipeline build-
ing process, grounds the selection of multimodal features on relevant literature, fuses the diverse 
multimodal data and simplifies a series of sophisticated artificial intelligence techniques to shed 
light to the “black-box” of ML for educationally meaningful outcomes.

Most of  the past works have used the modules we present; however, (a) they do not mention the 
other options available to the researchers (eg, Andrade et al., 2016; Ochoa et al., 2018); (b) they 
describe the algorithms only as part of  the methods section without associating the feature selec-
tion process to the possible constraints of  the educational context (ie, in a “white-box,” hypothesis 
formulation manner); (c) they do not provide a literature-driven explanation for the selection of  
the features (they rely on with what features the ML algorithm performs better).

The thorough analysis showcased that multimodal data fusion and different ML algorithms can 
provide useful predictions about students’ effort exertion and performance that are easy to inter-
pret in terms of  physiological learner states. The demonstrated “grey-box” approach is a method-
ological “tool” in the hands of  educational technologies researchers and professionals, to support 
them identify those features within the physiological data that are grounded in previous contex-
tual knowledge and can best explain the learning situation they are trying to understand.

Considering the restrictions (constraints) from the educational context (eg, ubiquity, low-cost, 
high precision, different experimental settings), the step-by-step modularized methodology can 
be utilized not only for the multimodal data but also for separate standalone data sources such 
as clickstreams, postures, gestures, gaze We shown 150 examples of  different pipelines that can 
be built for each of  our dependent variables: these pipelines consist of  different modules, ie, data 
sources, feature selection and prediction algorithms. The options for the different modules are not 
limited to the ones presented in this paper. Moreover, due to the nature of  the modules employed, 
such pipelines are transferable to other contexts beyond adaptive self-assessment.
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Implications for adaptive learning
The modularized methodology presented in this study can help learning design professionals, 
as a tool, to identify and integrate specific features into the adaptive learning environments 
(based on physiological data), to prevent cognitive students’ overload and effortless behavior (eg, 
guessing).

The most important features from the pipeline which are critical in terms of  learner effortful 
behavior (eg, blinks, brow raiser presence, nose wrinkler), can be extracted and delivered back 
to the students, thus opening the learner models to them (Bull & Nghiem, 2002). These features 
can also be used in an aggregated fashion to display on the dashboards for teachers (Martinez-
Maldonado, Echeverria, Santos, Santos, & Yacef, 2018; Prieto, Sharma, Dillenbourg, & Jesús, 
2016). As we have mentioned before, the most important features (in terms of  how they con-
tribute to improving prediction accuracy for both performance and effort) can be explained in 
educational terms, extending previous studies that claim that the same features are important 
for learning as well. For example, attention is a key factor in achieving high performance (eg, 
Greenfield, DeWinstanley, Kilpatrick, & Kaye, 1994; Harris, Danoff  Friedlander, Saddler, Frizzelle, 
& Graham, 2005; Sharma, Alavi, Jermann & Dillenbourg, 2016) and emotions also play a signif-
icant role in explaining learning processes (eg, Frenzel, Pekrun, & Goetz, 2007; Meyer & Turner, 
2002; Pekrun, 2006). Actionable feedback is one of  the most important issues to be dealt with 
in adaptive learning. By using physiological data from different channels, we showed in this 
paper, that with a few minutes of  interaction to be able to provide this kind of  feedback (The 
average duration of  the self-assessment test was 8 minutes and 41.93 seconds, SD = 2 minutes 
and 0.56  seconds). This provides possible paths to implement actionable feedback systems for 
learners.
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