
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Kasper Aalberg Røstvold

Once More, with Feeling

Computer Generated Poetry with Inherent
Sentiment

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

July 2019

Kasper Aalberg Røstvold

Once More, with Feeling

Computer Generated Poetry with Inherent
Sentiment

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
July 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
This master’s thesis presents the implementation and evaluation of a system able to
generate poetry with an inherent sentiment value. Poetry generation is one of the more
interesting challenges within the fields of Natural Language Processing and Computational
Creativity, as it is dependent on both the form of the content, and the creation of
understandable, meaningful and poetic language. A central part of poetry is the experience
of the reader — including the emotions poetry can evoke. The motivation behind this
project is to investigate if poetry can be generated to contain a specific sentiment, and
whether readers of the poetry would experience the sentiment that was intended.

Most state-of-the-art solutions within the field of Computer Generated Poetry have
utilized Artificial Neural Networks. The system created in this project has implemented
a Long Short-Term Memory Neural Network as the main component, trained on a data
set consisting of English poetry written and published by users on a public website.
Additional modules of the system consist of rhyme pair generation, rule-based word
prediction methods, and a search algorithm for extending generation possibilities.
Several experiments were conducted in this project, involving training of the neural

network and evaluation of the generated poetry. A selection of human judges participated
in evaluating 20 poems generated by the system, 10 of them generated with a positive
sentiment and the other 10 with a negative sentiment. The judges evaluated poems based
on a set of standard evaluation metrics, in addition to evaluating the sentiment. The
results of these experiments indicate that while there are some weaknesses in different
aspects of the system compared to other state-of-the-art solutions, it is fully capable of
generating poetry with an inherent sentiment that is perceived by readers.

i

Sammendrag
Denne masteroppgaven presenterer implementasjonen og evalueringen av et system som
kan generere poesi med et forhåndsbestemt sentiment. Poesigenerering er en av de mer
interessante utfordringenge innenfor feltene Naturlig Språkprosessering og Maskinskapt
Kreativitet (Computational Creativity), siden det er avhengig av både formen på innhol-
det, men også evnen til å produsere forståelig, meningsfullt og poetisk språk. En sentral
del av poesi er opplevelsen til leseren, som blant annet involverer følelsene poesien kan
fremkalle. Motivasjonen bak dette prosjektet er å undersøke om poesi kan genereres for å
inneholde et bestemt sentiment, og om lesere av diktet vil oppfatte det sentimentet som
var tiltenkt.

De fleste av dagens moderne løsninger innenfor feltet Maskinskapt poesi har benyttet
nevrale nettverk. Systemet som ble utviklet i dette prosjeket implementerte et nevralt
nettverk av typen Long Short-Term Memory som den sentrale komponenten, hvor
nettverket er trent på et datasett bestående av engelsk poesi som er skrevet og publisert
av brukere på en offentlig nettside. Andre moduler inkludert i det ferdige systemet
består av en genereringsmetode for rimpar, regelbaserte ordprediksjons-metoder, og en
søkealgoritme for å utvide genereringsmulighetene.
Flere eksperimenter ble gjennomført i dette prosjektet, som involverer trening av det

nevrale nettverket, og evaluaring av den genererte poesien. Et utvalg av lesere evaluerte
20 dikt generert av det implementerte systemet, hvor halvparten var generert med et
positivt sentiment, og andre halvparten med negativt. Leserne evaluerte diktene basert på
et utvalg av standard evalueringsfaktorer, i tillegg til å evaluerere sentiment. Resultatene
fra eksperimentene indikerte at selv om det er noen svakheter i et par aspekter ved
systemet sammenlignet med andre moderne løsninger, så er det helt i stand til å generere
poesi med et tiltenkt sentiment som blir oppfattet av lesere.

ii

Preface
This master’s thesis is submitted to the Norwegian University of Science and Technology
(NTNU) as a part of the requirements for the degree of Master of Science in Computer
Science. The thesis work has been performed at the Department of Computer Science at
NTNU, Trondheim. The supervisor of this thesis was Professor Björn Gambäck.
I would like to thank my supervisor Björn Gambäck for his guidance and feedback

throughout the entire process of writing this master’s thesis, and the fellow students, in
addition to my father, who participated in discussions and provided insight and helpful
feedback regarding the work of this project. I would also like to thank the people who
participated in the experiments that were conducted, and Tikhonov and Yamshchikov
for providing the data set that was used in this project.

Kasper Aalberg Røstvold
Trondheim, 15th July 2019

iii

Contents
1 Introduction 1

1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 3
1.4 Contributions . 3
1.5 Thesis Structure . 3

2 Background Theory 5
2.1 Poetry . 5
2.2 Artificial Intelligence Methods . 6

2.2.1 Reinforcement Learning . 6
2.2.2 Deep Learning . 8
2.2.3 Artifical Neural Nets . 8
2.2.4 Recurrent Neural Nets . 9
2.2.5 Long Short-Term Memory Networks 11

2.3 Natural Language Processing . 13
2.3.1 Text Processing and Representation 13
2.3.2 Sentiment Analysis . 14

2.4 Frameworks . 15
2.4.1 Keras . 15
2.4.2 Natural Language Toolkit . 16
2.4.3 Vader . 16

2.5 Evaluation of poetry . 17

3 Related Work 19
3.1 Different Approaches to Poetry Generation 19

3.1.1 Template-Based Poetry Generation 19
3.1.2 Generate and Test Approaches . 20
3.1.3 Evolutionary Approaches . 21
3.1.4 Case-Based Reasoning Approaches 21
3.1.5 Corpus-Based Approaches . 22
3.1.6 Blackboard Architecture . 23

3.2 Recent Approaches that implement Neural Networks 24
3.2.1 Advancement of Neural Models . 24
3.2.2 Format Constraints . 25
3.2.3 Planning Schema . 26
3.2.4 Polishing Schema . 27

v

Contents

3.2.5 Memory Component . 27
3.2.6 Author-Stylization . 28
3.2.7 Mutual Reinforcement Learning 29

3.3 Sentiment in Poetry Generation . 31

4 Data set 33

5 Architecture 35
5.1 The Long Short-Term Memory (LSTM) network 35

5.1.1 Training data . 35
5.1.2 Architecture of the network model 37

5.2 Poetry generation system . 39

6 Experiments and Results 47
6.1 Experimental Plan . 47
6.2 Experimental Setup . 47

6.2.1 Training and evaluating Long Short-Term Memory networks . . . 47
6.2.2 Evaluating the generated poetry 50

6.3 Experimental Results . 51
6.3.1 Training of the Long Short-Term Memory network 52
6.3.2 Results from Evaluation of the Generated Poetry 53

7 Evaluation and Discussion 55
7.1 Evaluation . 55

7.1.1 Evaluating the Long Short-Term Memory networks 55
7.1.2 Evaluating the generated poetry 57

7.2 Discussion . 62

8 Conclusion and Future Work 67
8.1 Conclusion . 67
8.2 Future Work . 68

Bibliography 71

Appendices 77
1 Poems generated with negative sentiment 77
2 Poems generated with positive sentiment 81

vi

List of Figures
2.1 Artificial Neural Network . 9
2.2 Recurrent Neural Network . 10
2.3 Recurrent Neural Network over time . 10
2.4 Long Short-Term Memory . 12

3.1 Word-Based Long Short-Term Memory model 29

5.1 LSTM prediction process . 38
5.2 LSTM prediction vector . 40
5.3 Poetry generation with rhyme word input 41
5.4 Word prediction update process . 42
5.5 Search tree algorithm . 44
5.6 Prediction value of a generated sequence 45

vii

List of Tables
4.1 Data sets . 34

5.1 Sentiment words in data sets . 35
5.2 Training data sets . 36

6.1 Evaluation data sets . 49
6.2 LSTM 1.* details . 52
6.3 LSTM 2.* details . 52
6.4 LSTM 1.* training results . 52
6.5 LSTM 2.* training results . 53
6.6 Standard evaluation metrics result . 54
6.7 Sentiment evaluation results . 54
6.8 Sentiment degree results . 54

ix

1 Introduction
In this master project a system was designed and implemented for generating poetry
with a given inherent sentiment. A literature study on the field of computer generated
poetry and the state-of-the-art solutions was conducted, and used as motivation for the
implementation of the final generation system. The system consists of a bi-directional
Long Short-Term Memory model, combined with rhyme pair generation, rule-based word
prediction methods, and a tree search algorithm. The Long Short-Term Memory network
was trained on a data set consisting of publicly published poetry.

Several experiments and the results are presented in this thesis, conducted both on
training of the neural network model and on poetry generated by the system. In total
20 poems were generated, and a selection of human judges participated in the poetry
experiments, evaluating the poetry on several factors, including the perceived sentiment.
This chapter first presents the background and motivation for this master’s thesis,

followed by the goal it tries to achieve and research questions it tries to answer. Afterwards,
it presents the research methods used, the main contributions, and the overall structure
of the thesis.

1.1 Background and Motivation

Computational creativity is a sub-field of artificial intelligence with elements from cognitive
science, philosophy, linguistics and arts, where the goal is to use computers to simulate a
creative process and/or create artistic results. Computational creativity can be applied in
many areas such as composition and lyrics for music and different forms of visual art like
paintings, Computational creativity also has promising use in other applications such as
mathematics and games like chess. One of the main application areas of computational
creativity is linguistics, where the focus is on creativity related to the use of language.
Examples of linguistic creativity could be poetry, language retrieval, word associations,
jokes, analogies or story narratives.
In addition to the goal of simulating artistic processes and producing actual artistic

results, computational creativity also enables us to better understand human creativity
and to design programs that can enhance and support human creativity.

One of the main challenges of theoretical computational creativity is how to define what
creativity is, both as a process and what defines the result of such a process. Because
of the lack of a single definition offering a complete picture of creativity, AI researchers
Newell, Shaw and Simon (Newell et al., 1959) developed a combination of novelty and
usefulness to a multi-pronged view of creativity, one that uses four criteria to categorize
a given answer or solution as creative:

1

1 Introduction

• The product of the thinking has novelty and value (either for the thinker or for his
culture).

• The thinking is unconventional, in the sense that it requires modification or rejection
of previously-accepted ideas.

• The thinking requires high motivation and persistence: either taking place over a
considerable span of time (continuously or intermittently), or occurring at high
intensity.

• The problem as initially posed was vague and ill-defined, so that part of the task
was to formulate the problem itself.

This project looks at poetry generation, as it is one of the more interesting challenges
within computational creativity. Poetry generation is a type of linguistic creativity that
requires certain qualities in both form and content as well as the creation of understandable,
meaningful and poetic language. A central part of poetry is the experience of the reader
— which involves the emotions poetry can evoke. The motivation behind this project is to
investigate if a system can be implemented to generate poetry with a specific sentiment,
and whether a human reader would experience the intended sentiment.

1.2 Goals and Research Questions
Goal The overarching goal of this thesis is to contribute to the field of poetry generation

by exploring and developing methods for generating poetry with a specific inherent
sentiment experienced by readers of the poetry.

Research question 1 What are the possible solutions and implementations for generating
poetry with an inherent sentiment?

In order to develop a poetry generation system related to the goal of this thesis, it is
necessary to investigate state-of-the-art solutions and methods within poetry generation
in general, and the methods and solutions for generating poetry that contains a sentiment
value.

Research question 2 What Neural Network architecture can achieve best results for
generating poetry?

The Long Short-Term Memory (LSTM) network is chosen as the neural network to
implement and experiment on in this thesis work. The reason for this is explained fully
in chapter 5, with the main point being that neural networks, particularly the LSTM,
are the most used solutions in state-of-the-art solutions for poetry generation. This
research question therefore focuses on which specific LSTM architecture and what specific
parameters of the network will produce the best performing network for word prediction
in a poetry generation system (based on a relevant data set).

2

1.3 Research Method

Research question 3 Will the generated poetry be perceived to contain a sentiment value,
and does this value correspond to the value the poetry was intended to have?

The inherent sentiment of the poetry to be generated will be decided in advance, with
the goal of producing poetry that contains such sentiment. The question to be answered is
whether the inherent sentiment will be perceived by human judges, so that the generated
poetry can be said to contain the intended sentiment, as stated in the Goal.

1.3 Research Method
The research method used in this thesis work includes experiments conducted in two areas.
The first includes conducting experiments on the prediction abilities of trained Long
Short-Term Memory network models with differing architectures and parameter values.
The prediction abilities are measured by experimenting with all the different models on
an experiment data set. The second area of experiments involves the evaluation of the
poetry that will be generated by the system implemented. The evaluation is be done by
a group of human judges, who evaluate poetry using different metrics such as standard
evaluation metrics for computer generated poetry, but also metrics for the perceived
sentiment value of the poetry.

Experiments on the neural network model was conducted to find the best solution for
implementing a poetry generation system. The second area of experiments, consisting of
evaluation of the poetry, was conducted to get a sense of the quality of poetry and the
performance of the generation system, and also to be able to compare the work done in
this thesis with similar work conducted in this field.

1.4 Contributions
The main contributions from this Master’s thesis are:

1. A literary study of the development and state-of-the-art solutions for poetry
generation, including solutions for emotion- or sentiment based poetry generation.

2. Design and implementation of a state-of-the-art system able to generate poetry
with an inherent sentiment value.

1.5 Thesis Structure
In Chapter 2 the theory and definition of poetry is presented, followed by the background
theory for the artificial intelligence methods needed to understand this thesis, natural
language processing, and the methods used for evaluation generated poetry. In addition,
it presents the different frameworks and resources used in this thesis.

Chapter 3 contains a literary study on the development and different approaches that
have been used for poetry generation, followed by the state-of-the-art solutions, both for

3

1 Introduction

poetry generation in general, but also for generating poetry that is emotion or sentiment
based.
Chapter 4 presents the original data set that was used in this thesis, and the pre-

processing that was done on the data.
Chapter 5 presents and explains the architecture behind the poetry generation system

that was implemented in this thesis, first covering the LSTM model that was implemented
and used, and secondly covering the complete poetry generation system.
Chapter 6 contains the plan, setup and results of all the experiments that were

conducted. The experiments are involved in two different areas, the first part concerning
experiments on training neural network models, the second part concerning human judges
evaluating the poetry that was generated.
Chapter 7 contains an evaluation of the experiment results, the complete poetry

generation system, and the poetry that was generated for this thesis, including limitations
and faults, and comparisons to other solutions. Afterwards a discussion is presented,
concerning the goals and research questions in this thesis regarding the final results.
Chapter 8 draws a conclusion of the work and the results, in addition to the possible

future work being presented.

4

2 Background Theory
This chapter covers the theory and background behind the different areas relevant to
this project. A general background of computational creativity and theory of poetry
is presented, followed by different artificial intelligence algorithms and models that are
presented and discussed in later chapters, including the models implemented in the poetry
generation system. The later sections in this chapter cover natural language processing
and sentiment analysis, as well as present different frameworks and resources used in this
project. The final section consists of theory and approaches to evaluating poetry.

2.1 Poetry
Two different definitions of poetry — defined by Merriam-Webster and the Oxford English
Dictionary respectively — are given as:

• “Writing that formulates a concentrated imaginative awareness of experience in
language chosen and arranged to create a specific emotional response through
meaning, sound, and rhythm.” (Merriam-Webster, 2018)

• “Composition in verse or some comparable patterned arrangement of language in
which the expression of feelings and ideas is given intensity by the use of distinctive
style and rhythm; the art of such a composition.” (Oxford English Dictionary,
2018)

Though it is difficult to clearly and distinctly define what constitutes poetry, certain
elements of poetry can be specifically defined. Therefore the theory of form and sound
patterns in poetry is presented.
Concerning the structure of poetry, a central definition is the use of Lines. A Line

refers to each line of text in the poem, which are seperated by the start of a new line.
Several lines grouped together are called Stanzas, which are separated by an empty line
from other stanzas. A stanza can also be referred to as a verse, as most dictionaries
still define these concepts as synonyms. Different types of stanzas can be identified, and
named, based on the number of lines in the stanza. A couplet is a stanza of two lines, a
tercet of three, etc.
The different sound patterns of poetry are Rhyme, Rhythm, and Meter. A rhyme is

the repetition of similar sounds, often occurring at the end of each line. The pattern
of the rhymes in the poem can be defined by using letters of the alphabet to describe
the patterns: a rhyme pattern of abab refers to the first and the third line of the poem
rhyming, and the second and fourth rhyming. Rhythm is the pattern of stressed and

5

2 Background Theory

unstressed syllables in a line of poetry. Meter is a pattern of rhythm, in other words
premeasured patterns of stressed and unstressed syllables. Feet are individual rhythmic
units, they are the building blocks of a meter.
Different forms of poetry exist, based on either a specific structure or the content of

the poem. Examples of these forms are Sonnets, which are lyrical poems consisting of
14 lines, usually written in a meter called iambic pentameter, that refers to the specific
meter of the foot iamb (which is two syllables — an unstressed followed by a stressed),
repeated five times (penta). Other examples are Haikus, which are non-rhyming poems
having three lines, with 5-7-5 syllables in the lines, respectively, and Limerick, which
consists of five lines, with an aabba rhyming pattern.

2.2 Artificial Intelligence Methods

This section covers the background of relevant Artificial Intelligence methods, namely
those that are presented in related work (chapter 3), and the methods that were used
for this project (chapter 5). Firstly deep learning is described, and some deep learning
methods are presented. These methods include the Artificial Neural Network (ANN),
Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). These are all
methods that have been used with success in recent poetry generation. RNNs, especially
the LSTM, produce good results for generating text based on previously processed text,
and is the model used in the poetry generation system for this project. The method of
Machine Learning called Reinforcement Learning will be covered in this section as well,
since it has also been implemented in state-of-the-art poetry generation.

2.2.1 Reinforcement Learning

Reinforcement learning is an area of machine learning, which involves learning what
to do — how to map situations to actions — so as to maximize a numerical reward
signal (Sutton and Barto, 2015). Reinforcement learning is implemented in closed-loop
problems, because the learning system’s actions influence the situation, and therefore its
later inputs as well. In addition, the learner is not told which actions to take, as in many
other forms of machine learning, but instead must discover which actions yield the most
reward by trying them out. This type of learning is different from supervised learning,
where the latter is built around training on labeled examples provided by a knowledgeable
external supervisor. Reinforcement learners try to solve interactive problems, where the
agent must be able to learn from its own experience. It also differs from unsupervised
learning, as the system is trying to maximize a reward signal instead of trying to find a
hidden structure. Therefore reinforcement learning is considered a third machine learning
paradigm, alongside supervised and unsupervised learning (Sutton and Barto, 2015).
A reinforcement learning system consists of four main elements: a policy, a reward

signal, a value function, and optionally a model of the environment. The policy defines
the learning agent’s way of behaving at a given time. In general, it is a mapping from
perceived states of the environment to actions to be taken when in those states. The

6

2.2 Artificial Intelligence Methods

policy can be a simple function or lookup table, or it may involve extensive computation
such as a search process. In general, policies may be stochastic.
The reward signal defines the goal in a reinforcement learning problem. On each

time step, the environment sends to the reinforcement learning agent a single number
which is the reward. The agent’s objective is to maximize the total amount of reward it
receives over the entire process. The reward signal, therefore, defines what the good and
bad events are for the agent. The only way the agent can influence the reward signal
is through its actions, either directly or indirectly (by changing the environment). In
general, reward signals may be stochastic functions of the state of the environment and
the actions taken.
The value function specifies what is good in the long run, as opposed to the reward

signal which indicates what is good in an immediate sense. The value of a state is the
total amount of reward an agent can expect to accumulate over the future, starting
from that state. Values indicate the long-term desirability of states after taking into
account the states that are likely to follow, and the rewards available in those states.
One example is an action that grants a low reward initially, but leads to possible actions
that can grant high rewards later. A value state can be said to estimate “how good” it is
to be in a specific state.
The model of the environment mimics the behavior of the environment, by allowing

inferences to be made about how the environment will behave. For example, given a
state and action, the model could predict the resultant next state and the next reward.
Models are used for planning — a way of deciding on an action by considering possible
future situations before they are actually experienced.
Action selection rules define which actions the algorithm should select. The simplest

action selection rule is to select one of the possible actions at a given time, which has the
highest estimated action value. In other words, choosing the action that is estimated to
reward the highest value. This is referred to as a greedy action selection method, and
can be written as in Equation 2.1 where At is the greedy action at time t, and Qt(a) is
the value of action a at time t. argmax equals the value at which the function Qt(a) is
maximized.

At = argmaxaQt(a) (2.1)

Two important aspects of reinforcement learning are exploration and exploitation. The
former refers to the algorithm’s ability to explore lower rewarding actions, or actions
of unknown consequences, to be able to explore the different possibilities of actions in
the environment, and what their results will be. The latter refers to the algorithm’s
ability to consistently select actions with the highest calculated value, to optimize the
performance. There is a distinct trade-off between these two qualities, as an algorithm
with an emphasis on exploration will consequently be lacking in optimizing every action.
Vice versa, emphasis on exploitation will reduce the exploration quality. Different action
selection rules and value functions can be chosen with respect to which quality one wants
the system to emphasize, exploration or exploitation.

7

2 Background Theory

2.2.2 Deep Learning

Deep learning refers to a wide class of machine learning techniques and architectures,
with the broad aspect of using many layers of non-linear information processing that
are hierarchical in nature. Deep learning can be categorized into three major classes
of machine learning (Deng and Yu, 2014), namely unsupervised or generative learning,
supervised learning, or a hybrid of the previously mentioned, often referred to as semi-
supervised. The principle behind deep learning is learning data representations, as
opposed to task-specific algorithms.

2.2.3 Artifical Neural Nets

Artificial Neural Networks (ANN) are frameworks for different machine learning algorithms
inspired by biological neural networks (Goodfellow et al., 2016). The main component
in the ANN is the neuron (also referred to as the perceptron), which is implemented to
mimic the basic functionality of a biological neuron. These artificial neurons receive input
data, which is processed, and the results are given as output. The variables involved are
the weights and biases of each neuron. The input data for each neuron is multiplicated
with its weight variable, to produce the data it gives as output.

A neural network consists of layers of these artificial neurons or perceptrons, where
input and outputs from the neurons are shared between the layers. Each layer can
contain many neurons, that all receive input from the neurons in the previous layer,
and forward their output to the next one. In an ANN, input data comes in through
the input layer, and is then processed by the neurons in the first layer, whose outputs
are forwarded as input to the next layer. The last layer of an ANN is the output layer
which outputs the final values, from the initial input data that was processed through
the entire network. The layers in between the input and output layer are called hidden
layers. While the input and output layer size must conform to the size of the input data
and expected output data, the size of the hidden layers do not have to, and can therefore
vary. Figure 2.1 shows an ANN with input and output layers with three neurons, and
one hidden layer with five neurons. In addition to the weight of each neuron, biases
can be added as additional variables used in the process of calculating the output. This
processing of input data to output data, is called the activation function of the neuron.
The activation function of the neurons in the output layer is referred to as the output
function, which gives a final prediction or classification for the network. The advantage
of an ANN is its ability to learn very complex features simply by training on data, and
produce predictions. The user does not need to understand the complexity of the neural
net in detail, but simply by training, testing and validating an effective neural net can
be produced and verified.
To be able to train and improve, the loss functions (also called the cost functions)

are used to find values that indicate how well the network is performing on training
data, compared to the correct answers. The goal of a network is to minimize the loss
function during training, resulting in a more optimized network. There are different loss
functions that are used, with different intentions regarding whether the network is used

8

2.2 Artificial Intelligence Methods

Input Layer

Hidden Layer

Output Layer

Figure 2.1: Artificial Neural Network with one hidden layer.

for classification or regression. For classification, it is normal to use a variation of the
softmax classifier which makes use of cross entropy loss, which will measure the correct
versus the incorrect predictions. For regression, a common loss function is to use the
model’s predicted distance against the real value and then regularize it, to help prevent
overfitting on the training data.
By using the loss function, the network can be updated to try to minimize the loss

by use of backpropagation. After the network has processed and returned an output,
the loss is calculated, and then backpropagation (Rumelhart et al., 1986) is executed,
by propagating the loss value (often referred to as error) back to all the neurons in
the network, to give each neuron an associated error value in relation to the neuron’s
contribution to the final output. With backpropagation, we subtract the derivative of the
loss function with respect to the weight of each neuron, scaled by a learning rate. This
algorithm is called gradient descent, which is a type of iterative optimization algorithm.
The terminology of maximizing the input through Maximum Likelihood Estimation
(MLE) is often used, but this is equivalent to minimizing the loss function through
backpropagation.

2.2.4 Recurrent Neural Nets

Recurrent Neural Networks (RNN) is a family of neural networks for processing sequential
data (Goodfellow et al., 2016). An RNN can scale to and process much longer sequence
lengths than other general ANNs. The RNN possesses a memory of previous input
calculations in the network’s internal state, which makes it more suitable for natural
language processing, because textual semantics depend on the sequential order of words.

9

2 Background Theory

x0

x1

x2

h0

h1

Input Layer Output Layer Hidden layer

Figure 2.2: Recurrent Neural Network with one hidden layer.

h

x

h(...) h(t-1)

f

x(t-1)

h(t)

f

x(t)

h(t+1)

f

x(t+1)

h(...)

f

Unfold

Figure 2.3: A Recurrent Neural Network unfolded over time. Figure adapted from
Goodfellow et al. (2016), with permission from the author.

An RNN can for example be used to predict the upcoming word in a created text, based
on previous words, or notes of music based on the previous notes.

Figure 2.2 shows a model of a Recurrent Neural Network. The similarity to the previous
neural network in figure 2.1 can be seen, with the difference being the self-recurrent
connections in the hidden layer, which represent the recurrent aspect of the network. This
is what is responsible for the memory of the network, as the calculations at each time
step in the hidden layer are sent to the next time step, so information about previous
calculations are kept in memory.
Figure 2.3 shows a RNN with no outputs. This recurrent network just processes

information from the input x by incorporating it into the state h(t) that is passed forward
through time. By looking at the model on the right, which is unfolded, we can see the
network as a computational graph, where each node is now associated with one particular
time instance.
Equation 2.2 illustrates how the hidden state h(t) at each time step t is calculated,

based on the previous time state ht−1 and the current input x. θ represents the parameters
that are being learned to produce the best output.

10

2.2 Artificial Intelligence Methods

h(t) = f(ht−1, xt; θ) (2.2)

2.2.5 Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) is an improvement of the regular RNN, and is
more capable of learning long-distance dependencies. It was introduced by Hochreiter
and Schmidhuber (1997). LSTM is useful when there is a greater distance between cases
that are somehow related, for example words in a text, since it can store values over
arbitrary intervals as memory.

Instead of neurons in the recurrent hidden layer, the long short-term memory has LSTM
units. There are different architectures for LSTM units, but a common architecture
is that a LSTM unit is made up of four components. The main one — the memory
component (often referred to as the cell) — is self-connected, and responsible for keeping
track of the dependencies between the elements in the input sequence. In other words,
it stores the temporal states of the network. In addition, there are three components:
the input gate, output gate, and forget gate. The input gate controls the values that are
sent into the cell, the forget gate controls the extent of which a value remains in the cell,
and the output gate controls the value in the cell which is used to compute the output
activation of the LSTM unit.
While each cell has its own inputs, outputs and memory, cells can be combined in a

single block with input-, output- and forget gates. In this case, the cells share the same
gates. This way, each cell can hold a different value in its memory, but the memory
of the block is written to, read from, and erased at the same time. Blocks sharing the
same layer where they receive their inputs from and feed their output to, make up a new
collective outer layer which they all are a part of, by sharing the input and output.
Figure 2.4 (on page 12) shows an early depiction of an LSTM, without forget gates.

The memory blocks containing memory cells make up the hidden layer.
The multiplicative gates control the data that comes in and out of the memory cells.

By closing specific input gates, the cells connected to that input can store and therefore
access the information in memory over a long period of time, by not having it overwritten
by new input. Therefore the purpose of the input gates is to control the flow of input
activation into the network layer. The output gates control the output of data on to the
following layer. There are connections into and out of the different gates, where some
of the connections are recurrent. The weights of these connections have to be learned
through training, and they are what controls how the gates operate.
While the LSTM still resembles the structure of the RNN, where the hidden state

is calculated based on the previous state and the current input, the calculation of the
LSTM is different. It uses five different equations, where the first three are for calculating
the activation vector for the three different gates (input, output, forget), while the last
two calculate the cell state vector, and the hidden state vector — which is the output
vector of the LSTM unit (Hochreiter and Schmidhuber, 1997; Gers et al., 2000).

Equations 2.3, 2.4 and 2.5 (shown on page 12) are for calculating the activation vectors,
where ft is the vector for the forget gate, it for the input gate, and ot the output gate.

11

2 Background Theory

Cell 1
Block 1

Cell 2
Block 1

Cell 1
Block 2

Cell 2
Block 2

out 1

in 1

out 2

in 2

Input

Hidden

Output

Layer

Figure 2.4: A Long Short-Term Memory model. Figure adapted from Hochreiter and
Schmidhuber (1997), with permission from the authors.

t indicates the time step. The weights of the forget gate vector control to what degree
the LSTM unit remembers information. The input vector is the weight of the degree to
which a unit is acquiring new information, similarly for the output being the information
passed on.

ft = σg(Wfxt + Ufht−1 + bf) (2.3)

it = σg(Wixt + Uiht−1 + bi) (2.4)

ot = σg(Woxt + Uoht−1 + bo) (2.5)

W , U represent the weight matrices and b the bias vector parameters which are learned
during training. σg represents the activation function, which is often a sigmoid function.
h is the hidden state vector.
After these calculations, the cell state vector ct is updated, using Equation 2.6 (on

page 13). It takes the Hadamard product of the forget gate vector and the previous
cell state vector ct−1, and adds the Hadamard product of the input gate vector with

12

2.3 Natural Language Processing

an equation equal to the earlier gate vector equations, this time using the cell state’s
weight matrices and bias vector, and the activation function σc — which in this case is
the hyperbolic tangent function. The operator ◦ denotes the Hadamard product.

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (2.6)
Finally the new hidden state ht is calculated, using Equation 2.7. It takes the Hadamard

product of the output gate vector and an activation function — in this case the hyperbolic
tangent — multiplied with the cell state calculated in the previous equation.

ht = ot ◦ σc(ct) (2.7)
LSTM is the chosen network that is implemented in this project, chosen for its obvious

advantage for text generation, and prevalent use in the state-of-the-art solutions for
poetry generation, presented in chapter 3. The choice of the model and implementation
process is described further in chapter 5. However, there are many other types of ANNs
that also could have been chosen. These include the Gated Recurrent Unit (GRU) model
(Cho et al., 2014), a very similar model to the LSTM, but that does not use a memory
unit which the LSTM does. Another model is the Convolutional Neural Network (CNN),
(LeCun et al., 2015), which takes advantage of local coherence in the input to cut down
on the number of weights, and is often used for processing images.

2.3 Natural Language Processing
Natural Language Processing (NLP) is a sub-field of computer science concerned with
the interaction between computers and human languages, including how computers can
process and analyze natural language data, typically to be able to understand or derive
meaning from human language. This field is heavily involved in computational linguistic
creativity, since the main aspect of this field is processing and analyzing natural language.

Another aspect of the goal (see section1.2) of this thesis is the use of Sentiment Analysis
in combination with poetry generation. This refers to text being associated with a specific
sentiment, which adds another dimension to the textual content. Sentiment analysis
utilizes NLP techniques.

The theory behind text processing is presented, with regards to how language can be
processed and represented for further use in computational linguistic creativity. Followed
by the theory of sentiment analysis.

2.3.1 Text Processing and Representation

A major part of natural language processing is the processing and representation of text
and data for further use. This proposes several challenges, generally with regards to how
to be able to capture the most meaningful and interesting elements of a text, with the
purpose of creating accurate numerical representations of elements.
Some general processing methods in NLP include Tokenization and Part-of-Speech

Tagging. Tokenization is the task of finding the words in a document. By analyzing

13

2 Background Theory

a character sequence and a defined document unit, tokens are collected, which often
will be words or terms. The challenge with tokenization is the processing of a text,
what characters can be disregarded, and what are words/terms/character sequences that
should be tokenized. Other processing tasks include text-generalization, e.g. setting all
letters to lower-case, or the use of stemming, transforming words to their root forms, so
not to differentiate between the inflections.

Part-of-Speech (POS) Tagging builds on the tokenization process by categorizing the
tokens selected and assigning them part-of-speech tags. Examples are verbs, nouns, etc.
This is not always a simple task, so POS-tagging often needs to take an entire character
sequence in the form of a sentence, or even a larger part of the text being processed, into
consideration for the tagging process.
Some existing models for textual representation include Bag of Words (BoW), which

is used in both NLP and Information Retrieval (IR). It represents texts or documents
as numerical feature vectors, by creating a vocabulary of unique tokens, and creating a
feature vector for every document or text and counting the number of times each token
occurs. BoW does not take word order into account.
Another type of language modelling is word embeddings, which is a collective term

for models that learn to map a set of words in a vocabulary to vectors, making them a
representation of text in an n-dimensional space. One word embedding technique is the
model word2vec (Mikolov et al., 2013). The word2vec embedding method finds relations
between words in a text or a sentence, measuring syntactic and semantic similarities.
The model consists of shallow, two-layer neural networks that are trained to reconstruct
linguistic contexts of words. It uses a large corpus of text as input, to produce a vector
space with each unique word in the corpus being assigned a corresponding vector in
the space. These word vectors are positioned in the vector space such that words that
share the previously mentioned similarities are located close to one another in the vector
space. Other word embeddings models include gloVe (Pennington et al., 2014), which
uses word-to-word co-occurrence to build its model, and BERT (Devlin et al., 2018),
which uses bi-directional encoder representations from Transformers. By making use of
the attention mechanism Transformer that learns contextual relations between words,
BERT applies a bi-directional training of Transformer to language modelling.

2.3.2 Sentiment Analysis

Sentiment analysis, also referred to as opinion mining, is the field of study that analyzes
people’s opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards
different entities (Liu, 2012). Sentiment analysis has been investigated mainly at three
levels, namely document level, sentence level, and entity and aspect level. The document
level refers to the task of classifying whether a whole opinion fed document expresses
a positive or negative sentiment. Sentence level is the task of determining whether a
single sentence expresses a positive, negative or neutral opinion. Entity and aspect level
looks directly at the opinion itself, and is based on the idea that an opinion consists of a
sentiment (positive or negative) and a target (of the opinion). The goal of this level of
analysis is to discover sentiments on entities and/or their aspects.

14

2.4 Frameworks

Opinions can also be classified into two different types, called regular opinions and
comparative opinions. A regular opinion expresses sentiment only on a particular entity
or an aspect of the entity, while a comparative opinion compares multiple entities based
on some of their shared aspects.
The most important indicators of sentiment are sentiment words, also referred to

as opinion words. These are the words generally used to express a type of sentiment,
examples being good, great, bad, horrible. In addition to the single words, there are also
phrases and idioms used to express sentiment. A list of these words and phrases is called
a sentiment lexicon.

The computational methods for sentiment analysis are usually based either on machine
learning techniques such as naive Bayes classifiers trained on labeled dataset, or use lists
of words associated with the emotional value (positive-negative evaluation or sentiment
score values).
Several resources for sentiment analysis exist, including the Sentistrength sentiment

analysis tool (Thelwall et al., 2010) and the WordNet-Affect lexical resource (Strapparava
and Valitutti, 2004). These were used for poetry generation by Misztal and Indurkhya
(2014), described in depth in section 3.3. Another sentiment analysis resource is Vader
(Valence AwareDictionary for sEntiment Reasoning; Hutto and Gilbert, 2015), which is
used in this project, and described further in the next section.

2.4 Frameworks

This section introduces the different frameworks and resources that are used in this
project. Only the frameworks used for the poetry generation system — and only the
relevant parts of the frameworks that were used in this case — will be described, but
other alternatives and options are also mentioned.

2.4.1 Keras

Keras1 is one of the leading high-level neural network APIs, which is written in Python
and capable of running on top of TensorFlow2. It was developed with a focus on enabling
fast experimentation, and provides support for implementing neural networks, including
recurrent networks. It can run both on CPU and GPU. With a focus on user friendliness
and easy extensibility, aspects such as neural layers, optimizers, and cost and activation
functions are all standalone modules that can be combined to create new models, which
can be defined in Python code. Keras is backed by Google, Microsoft, Nvidia, and as
of TensorFlow 2.0 it will be the primary TensorFlow API. In addition to its popularity
and focus on neural network implementation, it is also an API the author has previous
experience with using, and it will therefore be used for implementation in this thesis
(described in chapter 5). Another possibility for implementation is using TensorFlow
without Keras.

1https://keras.io/
2https://www.tensorflow.org/

15

2 Background Theory

2.4.2 Natural Language Toolkit

The Natural Language ToolKit (NLTK)3 is a leading platform for building Python
programs for processing human language data. It provides interfaces to many useful
corpora and lexical resources, and a suite of text processing libraries for classification,
tokenization, stemming, tagging, parsing and semantic reasoning. Several of the resources
available in NLTK are used in this project.
The process of tokenization and tagging of the data set (chapter 4 and 5) is done

using NLTK, including the use of POS-tagging. Another resource available with NLTK
is the CMU Pronouncing Dictionary (CMUdict)4. This an open-source pronunciation
dictionary originally created by the Speech Group at Carnegie Mellon University (CMU),
that provides a phonetic mapping for American English word pronunciation. Commonly
used to generate representations for speech recognition, it has also been used for generating
rhymes in generated text (Ghazvininejad et al., 2017).
WordNet5 is another resource available with NLTK that is relevant for this project.

It is a large lexical database of English, where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonym (synsets), each expressing a distinct concept.
Synsets are interlinked by means of conceptual-semantic and lexical relations. This
network of meaningfully related words and concepts can for example be used for finding
related words to a single given word. ConceptNet (Liu and Singh, 2004) is another
resource similar to WordNet, but consists of a knowledge graph derived from a semantic
network, where the relationships are connected differently from WordNet, making it
another valuable source of information.

2.4.3 Vader

Vader (Hutto and Gilbert, 2015) is a model used for text sentiment analysis, that
is also available with NLTK. It is sensitive to both polarity (negative/positive), and
intensity (strength) of the emotion. Vader uses a human-centric approach, which combines
qualitative analysis with empirical validation by using human raters. For calculating the
sentiment score of a given text, it combines a dictionary that maps lexical features to the
intensity of an emotion, and five simple heuristics which encode how contextual elements
increment, decrement or negate the sentiment of the text.
Vader scores the input words or sequences of words with a number, which represents

one of three different areas. Neutral words are words with no sentiment value, given a
score of 0.0, while negative words have a score that is of a negative value, and positive
words have a score which is larger than 0.0. For scoring individual words, Vader provides
a score between -4.0 and 4.0. When scoring a text, a sequence of words, Vader provides
a score between -1.0 and 1.0. The scoring of a text is done by summing each Vader-
dictionary-listed word in the text, and then normalizing the scores to create a score
within the -1.0 to 1.0 boundary. In addition to summarizing word scores in a text, Vader

3https://www.nltk.org/
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
5https://wordnet.princeton.edu/

16

2.5 Evaluation of poetry

also takes into account other contextual elements, like punctuation, capitalization, etc.,
by considering five simple heuristics. The effects of these heuristics are, like the score for
each dictionary-listed word, quantified using human raters. These five heuristics are:

• Punctuation.

• Capitalization.

• Degree of modifiers (VADER maintains a booster dictionary which contains a set
of boosters and dampeners. Booster and dampeners are words that can be seen as
intensifiers or degree adverbs, that express a particular degree to which the word
they modify applies).

• Shift in polarity (due to “but”).

• Examining the tri-gram before a sentiment-laden lexical feature to catch polarity
negation (Tri-gram refers to a set of three words. VADER maintains a list of
negator words, and negation is captured by multiplying the sentiment score of the
sentiment-laden lexical feature by an empirically-determined value -0.74.).

Vader is chosen to be used for sentiment analysis of both individual words and poetry
text, described in chapter 5 in this project, both due to its accessibility through NLTK,
and its superior dictionary for intensity scoring, and scoring of text.

2.5 Evaluation of poetry
One of the challenges of automatic poetry generation is evaluating the poetry that is
generated. Machine-based approaches have been used for evaluation generated poetry
of poetry, namely two methods called Bilingual evaluation understudy (BLEU) and
METEOR. BLEU (Papineni et al., 2002) is a method for automatic evaluation of machine
translation. By taking two different system translations of a sentence, it compares them
to multiple reference lines that are written by humans to find the better one. This
is done by comparing the n-grams of the system translations with the n-grams of the
human-written lines. The METEOR (Banerjee and Lavie, 2005) evaluation was designed
to address several weaknesses with the previous BLEU evaluation. It is based on the
harmonic mean of unigram precision and recall, where recall is weighted higher than
precision. In addition, it includes stemming and is able to find synonyms, as well as
including standard exact word matching. It also differs from the BLEU metric by finding
correlation at a sentence level, as well as corpus level, while BLEU is just at corpus level.

Another solution is using human evaluation of generated poetry. A problem with the
machine-based evaluation approaches is that they have little correlation with human
evaluation (Liu et al., 2016), but also that they lack the diversity of human evaluation
(Mou et al., 2016). For this reason, human evaluation will be used to evaluate the poetry
generated in this project. For human evaluation, three criteria are commonly used:
grammaticality, meaningfulness and poeticness (Manurung, 2004). These three criteria
are specified as:

17

2 Background Theory

• Grammaticality: The poem must obey linguistic conventions that are prescribed
by a given grammar and lexicon. This refers to text being both lexically and
syntactically correct enough, to the point where the reader is able to both read and
generally understand the text. Several traits such as grammatical errors, or vague
or surreal use of grammar or words can often be intentional in poetry, so the point
of this criterion is to rule out random sequences of words.

• Meaningfulness: The text must intentionally convey some conceptual message
which is meaningful under some interpretation. This can involve the poem containing
a sentiment, but this is not the sole focus of this criterion, as sentiment will be
evaluated separately, shown in chapter 6.

• Poeticness: The poem must exhibit poetic features. This refers to phonetic
features such as rhymes, but also form, etc.

These have been similarly defined and used by others, e.g. Zhang and Lapata (2014),
often with minor differences or additional criteria. One example is the criterion of
coherence (Yan, 2016), which evaluates whether the poem is thematically coherent
across lines. A criterion that has been used instead of poeticness is fluency (Yi et al.,
2018), which evaluates whether the lines are fluent and well-formed. Another is the
evaluation of overall quality (Yi et al., 2016, 2018), which is defined as the reader’s
general impression of the poem. As these other criteria all differ from each other and
have various definitions, the three common criteria presented earlier — grammaticality,
meaningfulness and poeticness — will be used in this thesis.

18

3 Related Work
This chapter covers the related work that has been done on poetry generation, and
presents state-of-the-art approaches. In the first section, several different approaches
that have been applied through the years are presented, to give an overview of the
different possibilities and solutions that exist. The second part of the chapter covers
more recent approaches that implement neural networks, and these approaches represent
the state-of-the-art solutions to date. Finally, the last section shows how some of the
related work have incorporated sentiment in poetry generation, which is relevant to the
goal of this project (section 1.2).

3.1 Different Approaches to Poetry Generation

This section covers the different approaches that have been implemented for poetry
generation through the years, excluding the neural network approaches, which are
presented in the next section. The approaches presented in this section are:

• Template-Based Poetry Generation.

• Generate and Test Approaches.

• Evolutionary Approaches.

• Case-Based Reasoning Approaches.

• Corpus-Based Approaches.

• Blackboard Architecture.

The earlier approaches to poetry generation could be divided into four different general
methods, according to Gervas (2000), and those are the first four approaches mentioned
in list above. In addition to these four, Corpus-Based approaches and Blackboard
Architecture approaches have also been implemented for generating poetry. The theory
behind all these different approaches is presented, including examples of systems that
have implemented them.

3.1.1 Template-Based Poetry Generation

Template-based poetry generation makes use of a basic, incomplete template which is filled
out by the program, following certain rules and constraints — typically syntactic and/or

19

3 Related Work

rhythmic constraints — and using words or phrases from a set dictionary. This approach,
while fairly simple, can produce poetry of high quality, but will lack in originality. The
possibilities during the generation process of this approach are very limited, compared to
other approaches presented later in this chapter, which allow for modification and the
generation of every word in the text that is created.

PoeTryMe (Gonçalo Oliveira, 2012) is a newer system using template-based generation.
The template for this system contains the poem’s structure, including the number of
stanzas, the number of lines per stanza and the number of syllables of each line. The
poem is then generated according to a set of seed words, which are used to get sentences
from a sentence generator. Several heuristics can be included to find better sentences for
each line of the poem, which consider features like meter, rhyme or coherence between
lines.

The sentence generator is the core module of the PoeTryMe architecture, which creates
meaningful sentences. It uses both a semantic graph, where nodes are words and edges
are relation types, and generation grammars containing textual templates for generation
of grammatical sentences denoting a semantic relation. The generation process of a
sentence starts with a set of seed words, which are used to select a subgraph from the
main semantic graph. The process proceeds by selecting a random triple in the subgraph,
and a random grammar rule matching its relation type. After inserting the arguments of
the triple in the rule body, the resulting sentence is returned.

3.1.2 Generate and Test Approaches

Generate and test is another approach that is fairly simple. It is based on generat-
ing a random sequence of words that are produced in accordance with certain formal
requirements such as defined metrics and semantic constraints.

One of the earlier systems that implemented this method was the Wishful Automatic
Spanish Poet (WASP) by Gervas (2000). The WASP system is a forward reasoning
rule-based system that takes a set of words and a set of verse patterns as input, and then
returns a set of verses. It draws on prior poems and a vocabulary selection provided
by the user, to generate a new metrical combination according to line patterns from
prior poems. The basic algorithm for generation starts with selecting an appropriate
verse pattern, based on criteria designed to ensure a minimum of coherence across verse
boundaries. From this pattern an empty draft of the current verse is generated. A
generation cycle is run, by randomly choosing a word from a vocabulary that matches the
first category of the current verse pattern, followed by appending the word, eliminating
the corresponding category from the current verse pattern, and testing if the resulting
verse draft satisfies the conditions of the strategy being used. Verses that either violate
the conditions or miss an accepted number of syllables, are rejected. The system was able
to produce poetry that followed the metrics of rhythm and rhyming, but did not obey
general linguistic conventions, resulting in a text that was both lexically and syntactically
incorrect.

20

3.1 Different Approaches to Poetry Generation

3.1.3 Evolutionary Approaches

Evolutionary algorithms are based on the computing technique of trying to mimic the
process of biological evolution, such as natural selection or genetic inheritance. As
defined in Michalewicz (1996), an evolutionary algorithm is a multi-point stochastic
search algorithm, which means it is a form of heuristic search that simultaneously explores
several points in a search space. A main evolutionary algorithm generally consists of
five steps, which have been defined several different ways. One definition was done by
Manurung (2004), where these five steps are described as:

• Initialization: Construct a new population which represents a set of starting
points to explore the search space. Ideally, the distribution of points is evenly
spread out across the space.

• Evaluation: Each solution is evaluated to give some measure of its “fitness”
(a fitness function is applied to each individual, yielding a numerical score that
indicates its suitability as a solution to the problem at hand).

• Selection: A new population is formed by stochastically selecting individuals,
usually with a bias towards fitter individuals.

• Evolution: Some members of the new population undergo transformation by
means of “genetic” operators to form new solutions.

• Repeat: Repeats the steps for evaluation and evolution until termination, which
is achieved after a given number of iterations, or a given fitness score is reached, or
the algorithm has converged to a near-optimal solution.

One system using the evolutionary approach is POEVOLVE (Levy, 2001), that gener-
ates limericks. The system contains several parts: the generator module, the evaluator
module, the workspace, the lexicon, the conceptual knowledge base and the syntactical
knowledge base. It operates over a representation of a lexicon of phonetic information.
Evaluation is done by a neural network that is trained on judgements given by human
evaluators. An initial population is randomly generated and allowed to evolve by applying
a set of operations (mutation, crossover and direct copy), which in general terms are
restricted to substituting one word for another. A problem with the system is that it
fails to take syntax and semantics into consideration.

3.1.4 Case-Based Reasoning Approaches

Case-Based Reasoning (CBR) is the process of solving a problem (which is the case)
based on the solutions of similar problems or cases. In the use of this approach for poetry
generation, a system first retrieves an existing poem and then adapts this retrieved poem
based on input from the user to fit the content.

A system using this approach is the ASPERA (Automatic Spanish Poetry Expert and
Rewriting Application) system (Gervás, 2001), which is an evolution from the previously

21

3 Related Work

described WASP system (Gervas, 2000). ASPERA is a forward reasoning rule-based
system, where the generation starts with getting input from the user that will be used as
features, like rhyme structure, mood and the length of the poem. Additionally, the input
also includes an intended message by the user. The initial target of the generation is
the intended message, and it retrieves a case to later use the solution as seed structure
which to fill in. The intended message is used as main source for the words required to
fill in the case, and the case itself as default source. An additional vocabulary that is
also provided by the user is used as intermediate source.
Case-based reasoning is generally formalized as a four-step process, first defined by

Aamodt and Plaza (1994). In the context of poetry generation, the process is used to
generate each line of the poem, where the four steps can be defined as:

• Retrieve: The retrieve step takes each sentence from the intended message (target
for generation), and retrieves a specific verse from a corpus.

• Reuse: The reuse step uses the verse template to construct a line based on the
part-of-speech structure of the verse.

• Revise: The revise step asks the user to validate the produced draft.

• Retain: The final step analyzes and stores the validated poems, making it possible
to use them later.

ASPERA also includes additional control features in the form of system parameters.
These control how the system splits the target content over the number of lines in a
chosen stanza, the similarity employed by the system to retrieve cases to use as a seed for
the construction process, the number of syllables per line, number of lines in the stanza,
and the amount of variation in relative position of a word between the target content
and the final result. This way, the system is provided with a certain degree of freedom
that can be controlled and set by the user, by either producing general versions that
replicate an important portion of the inspiring set, or more innovate versions that try to
depart from the inspiring set.

3.1.5 Corpus-Based Approaches

A different approach, outside of the four general presented by Gervas (2000), is the
corpus-based method. This method is based on using the structure of a set of poems to
generate new ones. It can use multiple corpora, and often substitutes words based on
their POS-tag and relevance.

An example system that uses this approach is Full-FACE Poetry Generation (Colton
et al., 2012). It is a corpus-based poetry generation system that uses templates to
construct poems according to given constraints on rhyme, meter, stress, sentiment, word
frequency and word similarity. It constructs a mood for the day by analysing newspaper
articles, and uses this to determine both an article to base a poem on and a template for
the poem. The algorithm behind the generation consists of four steps:

22

3.1 Different Approaches to Poetry Generation

• Retrieval: The system mines similes from the internet depending on the sentiment
and evidence.

• Multiplication: Objects, words and phrases are substituted to create variations
of these similes.

• Combination: Similes and their variations extracted are plugged into a template
given by the user.

• Instantiation: Random phrases are then chosen from an elaborate set to fill the
fields of a user-given template.

Key phrases of the chosen newspaper articles are extracted and denoted to words,
and the key phrases are given a relevancy score. The mood of the day will be projected
through the use of the extracted words in the poem. This process includes the use of
sentiment analysis, and is described in depth in section 3.3. It also creates an aesthetic
based on relevance to the article, lyricism, sentiment and flamboyancy, and searches for
an instantiation of the template which maximises the aesthetic. These four measures
create more variety by giving the software the possibility to choose from any of following
measures, which are defined as:

• Appropriateness: The distance between the average sentiment of the words in
the poem measured against the chosen mood of the day.

• Flamboyance: Use of words that did not appear in the extracted set of words, or
word that already have appeared in the poem

• Lyricism: The proportion of linguistic constraints adhered to in the poem.

• Relevancy: The average of the relevance over the words in the poem — words
that appeared in a chosen article.

Commentary is provided during the whole process, to add value to the creative act.
Colton et al. (2012) argue that it is the first poetry system which generates examples,
forms concepts, invents aesthetics and frames its work.

3.1.6 Blackboard Architecture

The Blackboard Architecture is a model visualized by a metaphor (Corkill, 1991) of
a group of independent experts with diverse knowledge who are sharing a common
workspace (the blackboard). The workspace contains partial solutions, including other
information about the given problem, and the workspace is iteratively updated by the
different experts, who can be seen as specialist knowledge sources. Each expert updates
the blackboard with a partial solution when its internal constraints match the blackboard
state.

One system that uses this approach is Misztal and Indurkhya (2014). In their system,
the blackboard consists of the input text used as inspiration for the poem, the initial

23

3 Related Work

constraints and information about the poem, key phrases, a topic, an emotion, a pool of
ideas that is a part of the blackboard used as a workspace for experts, and a poem draft.

The poetry generation algorithm can be divided into several phases. The first phase is
where the blackboard is initialized with the text input by the user. The form of the poem
is selected from a set of templates, and grammar constraints are defined for stylistic
consistency. The poem-making experts and the emotional expert are initialized. The
next phase selects the topic, chosen by finding the key phrase with the highest inspiration
score, and the emotional expert also finds the emotional state for the poem (described
in depth in section 3.3). Then words are generated by the relevant experts, followed by
the generation of phrases using these words, by another expert. When the generation is
finished, selection experts select the phrases that best fulfill the line constraints.
Using the general criteria of grammar, meaningfulness and poeticness, the results

showed poems that generally satisfy these constraints, with possibilities of improving the
aesthetic measure by defining more stylistic constraints for the poem. More attention
could also be paid to the context of analyzed words. While the poetry generation system
itself is not the best solution to date, the solution for adding emotional personality to
the generated poems is still relevant.

3.2 Recent Approaches that implement Neural Networks

This section covers the more recent state-of-the-art approaches that have been imple-
mented for poetry generation in the last few years. In this period, neural networks have
proven to be powerful for poetry generation, and have become increasingly popular. All
approaches and systems in this section include the use of neural models. First, several
systems that have implemented neural models, and the advancement of this approach, are
presented. Afterwards, several systems using neural models with additional techniques for
enhancing poetry generation are presented, to give an overview of the possibilities that
have been implemented. While the newer approaches presented in this section include
the use of neural networks, they still implement and use elements from the previously
presented approaches in section 3.1.

3.2.1 Advancement of Neural Models

One of the earliest attempts at generating poetry using deep learning was Zhang and
Lapata (2014), who used a Recurrent Neural Network (RNN) to generate Chinese
quatrains (stanzas with four lines). This system is also built on the user providing
input (keywords in this instance) highlighting the main concepts around which the
poem will revolve. The keywords are restricted to those attested in the ShiXueHanYing
poetic phrase taxonomy. The generator creates the first line of the poem based on these
keywords. The subsequent lines are generated base on all previously generated lines,
subject to admissible tonal pattern and structural constraints.

The process of generation includes starting with a convolutional sentence model (CSM)
for converting lines into vector representations that will be used in the system. A recurrent

24

3.2 Recent Approaches that implement Neural Networks

context model (RCM) then calculates the context of each of the words. The output
from the RCM is used as input in a new recurrent generation model (RGM) to find the
next character. While the results showed that the machine-generated poems still lagged
behind the human-generated ones, it scored better in both a BLEU-2 evaluation and a
human evaluation than other state-of-the-art systems.
A newer system, using the sequence-to-sequence model with attention mechanism

(Bahdanau et al., 2014) with an RNN Encoder-Decoder, was created by Yi et al. (2016).
This system uses a bi-directional RNN with gated units, instead of the simple RNN as
in Zhang and Lapata (2014). The system generates Chinese classical quatrains, where
there is a close semantic relevance between two adjacent lies. The RNN Encoder-Decoder
learns the relevance which is then used to generate a poem line given the previous line.
For utilizing context information, three poem line generation blocks are created. First
the user inputs a keyword as the topic to show the main content and emotion the poem
should convey. Then the Word Poem Block generates a line relevant to the keyword
as the first line. Followed by the Sentence Poem Block taking the first line as input
and generating a relevant second line. Finally, the Context Poem Block generates the
third line with the first two lines as input. Yi et al. (2016) conclude that the RNN
Encoder-Decoder is also suitable for learning tasks on semantically relevant sequences.

Another system, implemented by Wang et al. (2016a), used an attention-based LSTM
model for Song iambics generation. It accepts a set of keywords as the theme and
generates poems by looking at each keyword during the generation. It also uses the
sequence-to-sequence model with attention mechanism as the main component of the
system (similar to the system of Yi et al. (2016)), but it additionally has a bi-directional
LSTM model as the encoder, and another LSTM model for the decoder, which alleviates
the quick-forgetting problem associated with the conventional RNN models. The process
of generation includes the input being converted by the encoder to a sequence of hidden
states to represent the semantic status at the position of the input. These hidden states
are then used to regulate the decoder that generates the target sequence. The decoder
then generates the whole poem character by character. The prediction for every next
character is based on the current status of the decoder as well as all the hidden states of
the encoder. In addition to the implementation of bi-directional LSTM, other techniques
such as character vector initialization, attention to input, and hybrid-style training were
included for further improvement.

3.2.2 Format Constraints

Hafez (Ghazvininejad et al., 2017) is a poetry generation system that combines hard
format constraints with a deep learning recurrent network. It generates 14-line classical
sonnets with a specific rhyme scheme, in iambic pentameter. The system first gathers a
large vocabulary, computing stress pattern for each word. Then it is given a user-supplied
topic, which is used to retrieve a large set of related words, using word2vec (Mikolov
et al., 2013). Ghazvininejad et al. (2017) state that the training corpus for word2vec
has a crucial effect on the quality of the related words. The word2vec model (which
are pre-trained on the English Gigaword corpus and the first billion characters from

25

3 Related Work

Wikipedia) were additionally trained on a song lyrics corpus. Rhyme words are then
found by the system, and put at the end of each line so that they match each other
(to make a rhyme). Using the CMU Pronouncing Dictionary, the system tries to find
rhyming words with related words. If this is not successful, adding fixed pairs of often
used words makes the system find rhymes in rare topics. In addition, the system includes
a Finite-state acceptor (FSA). It is built with a path for every conceivable sequence of
vocabulary words that obeys formal rhythm constraints, with chosen rhyme words in
place. Finally, a recurrent neural network is used for scoring, to select a fluent path
through the FSA.

Ghazvininejad et al. (2017) state that the results of this system show that with strong
conditions on rhyme, meter, repetition and ambiguously-stressed words, the plagiarism
that is common for optimal-searching RNNs to repeat large sections of the training data,
is reduced.

Another system based on format constraints was implemented by Benhart et al. (2018).
They also combined a deep learning recurrent network with specific format constraints
constituting the sonnet format of poetry, but in addition implemented Part-of-Speech
restrictions based on the observed errors and wrong word choices the system generated
during the early stages before the final system was complete. Benhart et al. (2018)
also implemented dynamically trainable word embeddings, where in the early stages
of training the language model used fixed word embeddings as input, but in the later
stage they were made trainable. This meant that the language model was able to learn
some grammar before adjusting its word representations to suit the training corpus. By
including these novel elements in their poetry generation system, Benhart et al. (2018)
state that they were able to improve over the state-of-the-art, leading to rhythmic and
inspiring poems. The system was also the winner of the 2018 PoetiX Literary Turing
Test Award for computer-generated poetry.

3.2.3 Planning Schema

Wang et al. (2016b) implemented neural networks in a system with a special planning
schema, which plans some sub-keywords in advance by a language model and then
generates each line with the planned sub-keyword to improve coherence. The generation
can, therefore, be split into two phases, the first being the poem planning phase. Here
written intent from the user is taken as input, which is transformed into a specific number
of keywords, which relates to the number of lines in the poem. Each of the keywords is
assigned to an individual line, resulting in each line having a sub-topic assigned to it. The
planning schema features keyword extraction and keyword expansion. The TextRank
algorithm (Mihalcea and Tarau, 2004) is used to evaluate the importance of the words in
the written user input, which can be a document of text. TextRank is a graph-based
algorithm where each candidate word is represented by a vertex in the graph, and edges
are added between two words according to their co-occurrence.

After the planning stage, the generation stage proceeds by using all previously generated
text and the keyword belonging to the current line as input, for generating the poem
sequentially line by line according to the sub-topic and all preceding lines. The poem

26

3.2 Recent Approaches that implement Neural Networks

generation part uses the encoder-decoder structure with GRU models ((Cho et al., 2014)),
that is similar to Wang et al. (2016a), modified to support multiple sequences as input
from the user. The sub-topic is encoded to a sequence of hidden states, and the preceding
text into a bi-directional GRU model.

3.2.4 Polishing Schema

Unlike the traditional one-pass generation for previous neural networks models, Yan
(2016) proposes a new generative model with a polishing schema called iPoet, which
refines the poem that is originally generated in one pass, over several iterations. The
poem is therefore generated incrementally and iteratively by refining each line. This is
inspired by the fact that the generation model is more like a real human poetry composing
experience, with re-thinking and re-wording during the process.

The system is based on using recurrent neural networks (RNN) for language generation,
which has previously been done by Zhang and Lapata (2014). The iPoet system takes a
large collection of poems, and learns the representation of individual characters and their
combinations into one or more lines as well as how they mutually reinforce and constrain
each other. Human written intent is used as input for the system framework. The
representation of the written intent is created by using a CNN or RNN on the characters
to capture the meaning of a particular keyword term. The information of different terms
is integrated by a pooling layer, thus obtaining a single vector representation of the user
intent. The encoded input is then decoded via recurrent neural networks with hierarchical
structure, i.e., representations of “characters” and “lines” in two hierarchies. Concretely,
one RNN represents global information for each line: the global information vector impacts
on all character generations in the line. In addition, another RNN based on the global
RNN represents local information: it guides the generation of a single character within
a line. Finally, the iterative polishing schema process resembles sequential generation,
with the difference being that the information representation of the previous draft of
generated text is utilized as input and serving as additional information of user intention,
as well as facilitating the overall semantic coherence for the whole poem.
Conducting experiments on perplexity and BLEU scores, and human judgement of

four criteria — to evaluate the performance of the poetry — produced results that the
iPoet neural model could generate poems that outperformed a specific baseline defined
by Yan (2016). By also generating poetry without the use of the polishing schema
or hierarchical structure, Yan (2016) showed that both the polishing schema and the
hierarchical structure make prominent contributions to the performance of the iPoet
system.

3.2.5 Memory Component

Zhang et al. (2017) describe another system that uses the same attention-based RNN
generation model as Wang et al. (2016a). Here the neural model is also a sequence-to-
sequence model, with GRU encoders. The training for the neural model component
also follows the scheme defined in (Wang et al., 2016a). The difference compared to the

27

3 Related Work

system of Wang et al. (2016a) is an additional memory component that is combined
with the neural model. It can be regarded as an effective regularization that constrains
and modifies the behavior of the neural model, resulting in generated text with desired
properties. It involves a set of ‘direct’ mappings from input to output, and therefore can
be used to memorize some special cases of the generation that cannot be represented by
the neural model. The memory is created after the neural model is trained, by running
the decoder of the neural model. At run time, the memory elements are selected according
to how they fit the present decoder status, and then the outputs of the selected elements
are averaged as the output of the memory component.
The results of using this method demonstrated that implementing the memory com-

ponent can boost innovation of the poetry generated from two opposite directions,
either by encouraging creative generation for regularly-trained models, or by encouraging
rule-compliance for overfitted models.

3.2.6 Author-Stylization

Tikhonov and Yamshchikov (2018b) created a system for generating author-stylized
poetry. An LSTM-based language model was used to predict the next word based on a
previous word sequence of inputs, in addition to other parameters of the modeled sequence.
Tikhonov and Yamshchikov state that one of the most widespread approaches for passing
the needed parameters to the network is to use the initial state of the parameters as
input, but a general weakness of this approach is that the network ‘forgets’ the general
parameters of the document as the generated sequence gets longer. Their system supports
the model at every step with the embeddings of the document that is currently being
analyzed, differentiating their approach from a classical word-based LSTM model.
A schematic picture of the model is shown in Figure 3.1, document information pro-

jections are highlighted with blue and black arrows. An LSTM with 1152-dimensional
input and 512 dimensional state space was used. The projections on a state space of
the corresponding dimension is achieved with simple matrix multiplication of document
embeddings. Another key feature of the proposed model is a concatenated word repres-
entation. Information about the document is included at every step. Final states of two
character bidirectional LSTMs are also concatenated into a word embedding. The first
of these two LSTMs works with letters from a char-representation of the word whereas
the other uses phonemes of the International Phonetic Alphabet, employing a heuristic
to transcribe words into phonemes. The approach of using bidirectional LSTM for this
purpose is new according to Tikhonov and Yamshchikov.
The data used to train the model consists of two datasets, one of English and one

of Russian poetry. All punctuation was deleted, and every character made lowercase.
During the training phase the beginning and ending of every text was tokenized, so that
in the generation phase the network is initialized with a special ‘start’ token, and is
conditioned on values of document parameters. The proposed mechanism for the stylized
poetry generation is tested with one categorical variable — the name of the author. The
model was trained for English and Russian, and tests run on the poetry of Shakespeare,
Edgar Allen Poe, Lewis Carroll and Oscar Wilde, as well as lyrics from the music of Bob

28

3.2 Recent Approaches that implement Neural Networks

WORD-BASED LSTM

co
nc

at
en

at
ed

 w
or

d
re

pr
es

en
ta

tio
n

co
nc

at
en

at
ed

 w
or

d
re

pr
es

en
ta

tio
n

...

co
nc

at
en

at
ed

 w
or

d
re

pr
es

en
ta

tio
n

W1 W2 Wn

document

predicted next
word

distribution

softmax

loss

O
pt

im
iz

er

... Wn + 1

D
oc

um
en

t i
nf

or
m

at
io

n
pr

oj
ec

tio
n

Figure 3.1: A Word-Based LSTM demonstrating the model of Tikhonov and Yamshchikov.
Adapted from Tikhonov and Yamshchikov (2018b), with permission from the
authors.

Marley, Nirvana and MUSE for English, and the poetry of Alexander Pushkin, Sergey
Esenin, Joseph Brodsky, Egor Letov and Zemfira Ramazanova for Russian. The results
of the tests show that the model captures the syntactic characteristics of the authors,
and a certain resemblance to their respective vocabulary.
Tikhonov and Yamshchikov (2018a) state that according to the results of BLEU

evaluation for a uniform and weighted random sampling, a vanilla LSTM, an LSTM
with author embeddings but without phonetics, and the complete model, the extended
phonetic embeddings play a significant role in the overall quality of the generalized stylized
output. In addition, on human evaluation for recognizing author style, the evaluators
were able to recognize the correct author style at least two times higher than a random
choice, for several authors. It was also shown that humans mistakenly recognize the
output of the proposed generative model for the target author as often as they correctly
attribute original texts to the author in question.

3.2.7 Mutual Reinforcement Learning

Another solution for poetry generation was described by Yi et al. (2018). All previous
existing models using neural networks for poetry generation are based on maximum
likelihood estimation (MLE), and according to Yi et al. this brings about two substantial
problems. Firstly, MLE-based models tend to remember common patterns of the poetry
corpus (Zhang et al., 2017), such as high-frequency bigrams and stop words, thus losing
some diversity and innovation for generated poetry. Secondly, based on a word-level

29

3 Related Work

likelihood, two kinds of loss-evaluation mismatch arise. One is evaluation granularity
mismatch; when evaluating, human experts usually focus on either a whole line at a time
or even the entire poem, while MLE optimizes word-level loss, which does not hold a
wider view of generated poems. The second being criteria mismatch, because humans
usually evaluate poetry in terms of some criteria, as opposed to the likelihood. With this
in mind, Yi et al. implemented reinforcement learning to a basic poetry generation model
pre-trained with MLE. By simultaneously training two generator learners with deep
reinforcement learning, the generators can both learn from the teacher (rewarder) and
from each other. By having these two learners that can explore different directions, the
one which is able to yield a higher reward can positively impact the other generator, by
sharing information throughout the exploration process. The basic model is a modified
version of Yan (2016), with the main differences being that the RNN is replaced by a
GRU, convolution is used to calculate the line representation rather than directly using
the last decoder hidden state, and the polishing schema is removed to better observe
the influence of the deep reinforcement learning. The mutual reinforcement learning
(MRL) implemented in this model uses two methods. The first is a local MRL, where if
a learner creates a significantly better poem, the other learner will learn it. This gives
the generator more high-reward instances and allows it to explore larger spaces along a
more proper direction, avoiding a local minimum. The second is a global MRL. Here
mutual learning is applied at the distribution level. Instead of individual instances, it
is measured whether one of the learners achieves higher scores than the other during
the creation history, and in that case, the learner with lesser scores should directly
learn from the superior learner, rather than learning the poem by itself. These two
methods are combined by simultaneously communicating high-reward samples and using
Kullback–Leibler divergence (a measure of comparing two probability distributions).
The training is achieved by modelling four criteria for poetry evaluation: fluency,

coherence, meaningfulness, and overall quality. Automatic rewarders corresponding to
these criteria were designed. The fluency rewarder was created using a neural language
model to find the probability of a given poem line to exist in the corpus, following that
a higher probability would mean a more fluent and well-informed poem line. Using
the probability directly as a reward was not done, since it may damage diversity and
innovation. Therefore an equation to reward moderate probabilities that fall into a
reasonable range was used.

The coherence rewarder valued the generated lines of poetry that were coherent with
the previous line of the poem. Mutual Information (MI; Cover and Thomas, 1991), was
used to measure the coherence between the generated line and the poem’s previous line.

The meaningfulness rewarder uses TF-IDF values, as Yi et al. (2018) state that TF-IDF
values for human-authored poems are shown to be significantly higher than values for
generated ones. Therefore TF-IDF was utilized to motivate the model to generate more
meaningful words. Because sampling of poems during the training process can result
in out-of-vocabulary (OOV) problems with high variance when using TF-IDF directly,
another neural network was implemented to smooth the TF-IDF values. For each poem
line in the training sets, the standard TF-IDF values for all words were calculated, and

30

3.3 Sentiment in Poetry Generation

the average was used for the TF-IDF value of the line.
For an overall quality rewarder, a neural classifier was trained to classify the poems

into three classes: computer-generated poetry, ordinary human-authored poetry and
masterpiece. The four types of rewards were re-scaled to the same magnitude, and a
total reward was found.
Comparing this system against human-authored poems, the basic model pre-trained

with MLE, and the model of Zhang et al. (2017), the result showed that the mutual
reinforcement learning method achieved significant improvement in the automatic rewards
and human evaluation scores, outperforming the other generation models in both. The
MRL system achieves better results in human evaluation on all the aspects: fluency,
coherence, meaning and overall quality. It gets a fluency metric value that is close to the
human generated poems, since fluency has been optimized. The biggest gap between the
system- and human-generated poems is in the value metric of meaning. Meaning is the
most complex criterion involving emotion expression, and while the utilization of TF-IDF
improves the use of words on diversity and innovation which increase the meaningfulness
value to some extent, there is still room for improvement.

3.3 Sentiment in Poetry Generation

Several of the systems presented earlier in this chapter have implemented a form of user
input to influence the mood of the poetry, often related to a given sentiment. This section
looks at two of these systems, and describes how they have included the use of sentiment
in poetry generation.
The corpus-based approach of Full-FACE Poetry Generation (Colton et al., 2012),

included a feature where the mood of the poem is decided by an article corpus, mainly by
the use of sentiment analysis. This process is done by having every article in the corpus
assigned a sentiment value between -5 and 5, based on the average of the sentiment of
the words in the article. When a poetry generation session begins, the system checks
the sentiment of a set N of newspaper articles posted during the previous 24 hours, and
according to the average sentiment of N , the mood is decided to be either good or bad. If
the mood is good, then one of the articles from the happiest five articles (with the highest
sentiment value) from the N set is chosen. Similarly, one of the five most melancholy
(lowest sentiment value) is chosen if the average sentiment is bad. This is how the system
chooses which article is used to extract keywords for further use in the generation process.
One of the measures used by the system to generate text is the distance between the
average sentiment of the words in the poem measured against the chosen mood of the day.
This way the sentiment extracted from the input (articles) is reflected in the generated
poetry.

The generation system of Misztal and Indurkhya (2014) included an emotional person-
ality aspect where both sentiment analysis and emotional modelling was implemented.
To be able to extract a sentiment evaluation, the Sentistrength (Thelwall et al., 2010)
sentiment analysis tool was used. It estimates the negative and positive sentiment values
in short informal texts, rating both positive and negative scores on a 1–5 value scale.

31

3 Related Work

It also considers common and slang words, emoticons and idioms. The base of the
algorithm for the system is the sentiment word-strength list containing terms with a 2–5
scale of positive or negative evaluation. The initial, manually-prepared words-sentiments
list has been optimized by a training algorithm to minimize the classification error for
some training texts. The system also considers a spelling correction algorithm, and
booster words list with terms that can increase or decrease other words’ scores (e.g. very,
extremely) as well as negating word list with terms, that may invert emotion value (e.g.
not, never). Misztal and Indurkhya (2014) also use the WordNet-Affect lexical resource
(Strapparava and Valitutti, 2004) to build a hierarchy of words describing emotional
states that are used later to generate the affective content of poems. The lexicon contains
WordNet hyponyms of the emotion word, which are a subset of synsets (a set of one or
more synonyms) suitable to represent affective concepts correlated with affective words.
An example they use is with the word compassion, it is possible to derive a correlated set
of words describing this state, e.g. forgive, merciful, affectionate, tender.
The whole process of the emotion modelling in the system of Misztal and Indurkhya

(2014) is done by the emotion expert in the blackboard architecture. It defines the
emotional state for the poem, and sets the emotion in the blackboard. Since the input
text used for emotion may be long, and the emotional attitude may vary within it,
sentiment is considered only for the sentences containing the topic of the poem. The
sentiment of the text is calculated in terms of valence, by using Sentistrength as described
earlier. To have the system represent independent emotional intelligence, an optimism
rate was introduced as parameter to bias the valence, such that the perception of the
input text may be regarded more optimistic or pessimistic than the sentiment analysis
result. In addition to the valence, an arousal value is calculated using Affective Norms
for English Words (ANEW) (Bradley and Lang, 1999). An ANEW database consisting
of nearly 2500 words rated in terms of pleasure, arousal, and dominance is used. The
algorithm combines the average ANEW arousal value for the words in the input text.
Since sentiment can be expressed with other features than just words in the text, similar
to expressing emotion with voice intonation in a spoken message, the arousal calculation
uses a punctuation-sensitive algorithm. Hence, certain types of punctuation marks can
increase or decrease the arousal value, like the examples: “That’s great...” versus “That’s
great!!!”. The emotional state for the poem is then calculated in an equation combining
valence and arousal.

32

4 Data set
This chapter covers the data set that has been used. In this instance, this refers to a
collection of texts used for training the Long Short-Term Memory network created in
this project, which is the key component for the poetry generation process. The network
uses this data set as training data, with the goal of trying to mimic the data set as
closely as possible. Therefore the contents and size of the data set are important, as this
will be reflected in the results of the LSTM network. The data set that have been used
in this master project, is the same data that was collected and used by Tikhonov and
Yamshchikov (2018b), specifically the part containing English poetry. The data consist
of poems written and published by users on a public website, which leads to a variance
in the quality of content, but both the large size and variance in content are positive
factors for training of the network, including the fact that the texts are written with the
intended style of poetry, which is what the LSTM network will be used to generate.
The data set was already cleaned by having removed all types of punctuation and

converting all letters to lowercase. The data set differed in how contracted words were
present. While some of the contracted words appeared in the data set in a joined form (e.g.
wouldve), other contracted words appeared as separate words, separated by a space (e.g.
would ve). Because of this inconsistency, all of the spaces between regular contractions
were removed, so that all the regular contractions were represented equally. This has an
effect on the later tokenization of the data set text, where the regular contractions are
represented by unique tokens. The regular contractions that were irregularly presented
and all shortened to an equal form include: ’t, ’m, ’s, ’ll, ’d, ’ve.

 was also present in the data set, to represent the line breaks in every poem.

This was removed from the data set, and every individual poem was instead represented
by single individual lines. The removal was due to the fact that the structure of the
generated poems, which includes the length of the individual lines in a poem, is decided by
different constraints in the generation process. Training the neural network on generating
break line-representations as well as words for poetry generation is of no value, as these
break line-representations will not be used. Due to the frequency of
 appearing in
the data set, and the independence it has from the words appearing before and after

, including them in the training of the LSTM network could also have a negative
effect on the result, as the network could learn to frequently prefer
 instead of other
predicted words.
The original data set contains 3,943,982 poems, with a vocabulary of over 700,000

unique tokens. Most of the unique tokens in this vocabulary come from misspelling,
alternative spellings, irregular words and unique words like names. The training data
is significantly shortened to specifically reduce the size of the vocabulary. This is done

33

4 Data set

for two reasons. The first reason is to remove words that very rarely appear in the data
set. This includes all the different rare misspellings, but also other rare words with
a low frequency of occurrence. Because the purpose of the LSTM network is to give
predictions of which words should follow a given sequence, based on the entire vocabulary,
a very large vocabulary will have a considerable amount of its contents predicted at 0,
given the amount of words that very rarely appears, or even just appears once in the
entire data set. These words will therefore be negligible in the generation process, due
to their infrequency. This could be avoided by using tools such as smoothing, which
would give all the possible words a prediction value that is not zero, but this would be
counterproductive regarding the second reason; concerning the training of the LSTM
network. As the size of the matrix representation of data used in training the network
directly relates to the size of the vocabulary, a larger vocabulary increases the size of the
training matrices. This affects the training process by demanding more memory, and
increasing the training time of the network.

To reduce the vocabulary and the data set, tests were run on different sizes of vocabulary,
finding how many of the total poems that only included words within the given vocabulary.
By choosing a vocabulary size N, only the most N frequent words found in the data
set are deemed as relevant, and poems containing any word outside of this vocabulary
were disregarded. The results can be seen in Table 4.1, which shows the different data
sets with differing vocabulary sizes, including the size of the original data set. Since
larger vocabulary will result in more possible words that can be generated, but will
negatively effect training time and be reliant on how much the hardware used for training
can handle, a simple test was run on a GeForce GTX 1070 graphics card. Creating a
bidirectional Long Short-Term Memory network using Keras with a single hidden layer of
1024 neurons, and training on a random sample size of the 5,000,000 tokens, with different
vocabulary sizes, resulted in the GPU component experiencing memory problems when
exceeding a vocabulary size of 30,000. The upper limit of vocabulary size was therefore
set at 30,000, while the lower limit was set at 10,000, as vocabularies smaller than this
will result in a very limited number of different words that can be used for generating
poetry, impacting the results.

Table 4.1: Size of data set based on vocabulary
Data set 1 Data set 2 Data set 3 Data set 4 Original

Vocabulary size: 10 000 15 000 20 000 30 000 708 727
No. of poems: 205 230 306 942 395 057 530 121 3 943 982
No. of tokens: 15 847 356 25 883 608 35 178 076 50 505 342 155 066 504

34

5 Architecture
This chapter introduces the architecture for the system implemented in this project. The
first section describes the long short-term memory network that was implemented, and
the second section describes the complete poetry generation process.

5.1 The Long Short-Term Memory (LSTM) network

The LSTM network is a main component in the poetry generation process. After being
trained on a large data set of human-written poetry, its task is to give a prediction on
the next word that should follow after a given input sequence of words. The prediction
consists of an array, with a predicted score of every unique word in the vocabulary. These
predictions are then used in the generation process. This section presents the architecture
of the LSTM network, and additional processing of the data used for training the network.
Several different approaches and details were tried during training, which is described in
chapter 6.

5.1.1 Training data

Before training the neural network, a decision had to be taken on which of the data
sets and what vocabulary size should be used, and more pre-processing of the data was
also necessary. An important aspect of the vocabulary size is the inclusion of unique
words with a sentiment value, since they would be generated to add sentiment value
to the poetry. Using Vader (section 2.4), the different data sets presented in Table 4.1,
excluding the original data set, were all investigated for how many unique words they
contained with a sentiment value that was not neutral, i.e. either having a positive or a
negative sentiment value. The results are present in Table 5.1. Due to the increasing
number of unique sentiment words in the increasing vocabulary sizes, but also due to
the memory restrictions and larger vocabularies resulting in greater training times, the
vocabulary size for training of the neural network was chosen to be 10 000 and 20 000,
and experiments on training with both these data sets are presented in section 6.3.

Table 5.1: Number of unique sentiment words in data sets based on vocabulary size
Data set 1 Data set 2 Data set 3 Data set 4

Vocabulary size: 10 000 15 000 20 000 30 000
Unique sentiment words: 1 849 2 424 2 900 3 519

35

5 Architecture

After the two data sets for training were chosen, more pre-processing was done. As
shown in Table 4.1 the number of individual tokens in the data set with a vocabulary size
of 20 000 is over 35 million, which is too large to be able to train on, simply concerning
the time it would take. The data sets were therefore reduced to new data sets, here
referred to as training data sets, which only contain 10% of their original size, respectively.
Since the original data sets had all poems ordered after the user name of the person that
published it, every tenth poem was selected for creating training data, to get poems from
as many different authors as possible in the training data. The size of the training data
sets are presented in Table 5.2.
The training of the neural network is done by creating input sequences to be fed

through the network, but also creating the correct output which is then compared to the
output of the network. The input and output is therefore created by choosing a sequence
of the training data with a given length as input, and the token following that sequence
as the correct output. For creating training sequences out of the training data, a sequence
length of 5 was chosen for several reasons. The first being that longer sequences result in
larger matrices that need to be stored in memory for training, and will be limited by
memory and greatly increase training time. Therefore the sequence length is limited to
the length of 5. The second reason is that the length of 5 is decided to be the shortest
possible length of a single line of poetry that will be generated. This is described in
section 5.2. It is not desirable to train the network on sequences longer than possibly
complete lines of generated poetry. Lastly, an additional idea behind this sequence length
of 5 for training is that the network will then predict the next words based on just a short
sequence, instead of all of the poem that is already generated. Causing the following
predictions to be more independent from the total previously generated sequence, which
could cause more variation. The network would then be predicting the following words
based on a few given keywords, or on shorter parts of longer sequences.

Table 5.2: The final training data sets
Trainig Data set 1 Training Data set 2

Vocabulary size: 9195 18 031
No. of poems: 12 273 26 873
No. of tokens: 1 300 068 3 106 347

The last step of pre-processing the data for training, is creating the training input
and output sequences, and transforming them into matrices that can be fed into the
neural network. Each unique token found in the data set is collected, and sorted based
on the number of appearances in the data set. The most common token appearing in
the training data set is the first item in the vocabulary, with index 0, the next most
common with index 1, and so on. This provides every unique token with a unique ID,
which corresponds to the index of the token in the vocabulary. Before creating the input,
every poem is reversed — with the last word being the first, and so on. This approach
was used by Benhart et al. (2018), where both the training of the network, and hence
the generation of poetry, is on text that is backwards. This is done so it is possible to

36

5.1 The Long Short-Term Memory (LSTM) network

start with the ending rhyme word of a line of poetry, and generate the rest of the line
backwards from that rhyme-word. Instead of having to find tail rhyme words that will
fit well into an already generated sequence of words, the system needs to find words
that fit with the given rhyme words, which results in more possibilities to generate good
sequences.

After creating the input and output sequences for the training data sets, these sequences
are transformed into matrices representing the input and output. Since each unique token
is represented by a unique index within the size of the vocabulary, the matrices created
have a y-length dimension equal to the size of the vocabulary. Tokens are represented
by having their index in this matrix dimension as 1, and all the other values set to 0.
For the input training data, the x-dimension of the matrices is 5, corresponding to the
sequence length of tokens. The output tokens used in training have an x-dimension of
just 1, representing the single token that is the correct token that appears after the input
sequence.
After creating the training matrices for a training data set, 10% of the matrices are

randomly chosen to be used as validation data during training, and not used for training.
The purpose of the validation data is to evaluate the LSTM performance during the
training process. Continuously measuring performance during training against validation
data that the network has not seen or trained on, gives an indication on whether the
LSTM model is overfitting on the specific training set.

Because the input matrices created from the training and validation data demand a lot
of memory, it is not possible to create and hold all the input matrices in memory before
starting the training of the network. The input matrices are therefore being continuously
created and fed to the network during the training process, by a generator method.

5.1.2 Architecture of the network model

The network used in this project is a bi-directional long short-term memory neural
network. The reason for choosing an artificial neural network is the prominent use
of these in state-of-the-art systems for poetry generation, as presented in section 3.2.
Recurrent neural networks, a sub-type of ANNs, make use of sequential information.
Because a sentence or a line of text can be regarded as a sequence, this is relevant for
text generation. RNNs possess a memory of previous input calculations in the networks’
internal state, which makes them suitable for natural language processing. The reason
for choosing a LSTM as a type of RNN, is because LSTMs are able to work with much
longer sequences than general RNNs, meaning they can utilize cases that are somehow
related, but with a larger sequence distance between the cases than a general RNN could
handle. The details behind both RNNs and LSTM specifically are described in ection
2.2. A bi-directional LSTM means that it contains two networks, where one can access
past information in a forward direction, and another access future information in the
reverse direction. By preserving information from both these networks, and using these
two hidden states combined, you are able to preserve information from both the past and
the future. This results in the LSTM understanding the context better, because using
both information of what comes before a word, and after the word, makes it easier for

37

5 Architecture

w1 w2 w3 w4 w5

Hidden layers

Input layer

Input sequence
0

0

0

1

...

0

1

0

0

0

...

0

0

1

0

0

...

1

0

0

0

0

...

0

0

1

0

0

...

0

Input matrix

Output layer

0.1

0.2

0.1

0.3

...

0.1

Output matrix

Figure 5.1: Long Short-Term Memory network prediction process

the network to understand what the next is going to be.
The neural network in this project consists of several layers, which include the input

and output layers, and also the hidden layers. The input layer represents the matrix
data given into the network, which accounts for both the data used for training the
network, and for the input during the poetry generation process, where the network
provides predictions based on this input. The output layer is the last layer, which is
a softmax activation function layer that provides the predictions on the given input.
During training, the result of these predictions will be compared to the actual following
word of a given sequence, which will update the hidden layer(s) based on a loss function,
which the network tries to minimize. The hidden layers are the layers in between the
input and output layers, and consist of LSTM cells. Figure 5.1 shows LSTM network,
with the input and output layers, as well as the hidden layers containing the LSTM cells.
It is the LSTM cells that compute the possible values for the next predictions. Details
about the LSTM cells and their calculation process are given in section 2.2.5. The figure
also show the input sequence with a sequence length of 5, that is transformed into a
matrix representation of the input sequence before being fed into the LSTM network.
The output from the last layer is the matrix representing the network predictions for all
possible words.

The loss function that the network tries to minimize during training is the cross entropy
loss. The formula for the loss is shown in equation 5.1, where N is the total training set,
p is the prediction and c is the category (the word) being looked at. The loss is the cross
entropy between the distribution of the true labels and the predictions from the network.
The network therefore tries to minimize this loss, to reward a precise prediction equal to
the true labels.

L = − 1
N

N∑
c=1

ln(pc) (5.1)

To minimize the loss function, the weights of the network are continuously being
updated throughout the training to produce predictions with a minimal loss value. This
is done by using backpropagation, which takes the error found by the loss function L while

38

5.2 Poetry generation system

training, and calculates the gradient of the loss function with respect to the weights, w,
in the network, ∂L

∂w . The gradient is fed to the optimizer, which updates the weights in an
attempt to minimize the loss function. The optimizer used for this model is the stochastic
gradient descent optimizer, which is a first-order iterative optimization algorithm. The
optimizer updates the weights proportional to the negative of the gradient calculated
by backpropagation. The use of stochastic here means that random samples from the
training data are chosen in each run to update parameters during the optimization,
within the same framework as gradient descent. This results in the error being computed
and the weights being updated in faster iterations, because only a small selection of
samples are processed in one go. This often helps to move towards an optimum more
quickly, the downside being that the path to the optimum can be much noisier. This
means larger variations in loss between each epoch, because the mean error is computed
over a stochastically selected subset from the dataset in each iteration. The learning rate
directly influences the degree of how much the weights are updated by the optimizer,
and is therefore used to avoid a local minimum. It is possible to get stuck in a local
minimum when minimizing the loss function, therefore the learning rate is initially set
higher, before decreasing during the training process to try to find the global minimum.

An additional technique used during the training of the network, is dropout (Srivastava
et al., 2014). Dropout randomly selects a number of the neurons in the network that will
be ignored, meaning they will not contribute to any calculations while the input data is
passed through the network, or any of the weight updates in backpropagation. The theory
behind this is to prevent the nodes from relying too much on the nearest weights during
the training process, and instead forcing the neurons to generalize more individually
on the training set. In addition it reduces the training time, by reducing the amount
of calculations for each run-through of training input. Srivastava et al. (2014) show
that dropout both reduces overfitting and gives improvements over other regularization
methods.

While the general architecture and theory of the LSTM have been described, there are
many possibilties for all the different parameters, variables and functions used in a LSTM
model. Experiments were therefore conducted by training LSTM networks with different
architectures, with the goal of finding the best parameters and variables of a network,
resulting in better prediction results. The training process and the final architectures of
the networks used in the experiments are described in chapter 6.

5.2 Poetry generation system

In this project, a complete system for generating poetry was created. The LSTM network
described in the previous section is a main component of the complete generation system.
The predictions generated by the network consist of an array containing the predicted
value for each word in the vocabulary, to follow the input word sequence fed to the
network. Figure 5.2 (shown on page 40) shows an example of the prediction vector for a
vocabulary of size n. These predictions scores are used in the poetry generation process
for selecting the words that will be generated. In addition to the LSTM network, there

39

5 Architecture

0.0 0.043 0.096 0.2010.001 0.010 0.0 n...

Figure 5.2: Prediction vector generated by the LSTM

are three other important components in the poetry generation system: The generation of
rhyme pairs, the algorithms for updating prediction scores, and the search tree algorithm.
The generation of rhyme pairs is used as the initial input for generating each line of poetry,
and also ensures that the generated poetry contains end rhymes. The algorithm for
updating the score values adjust and update the prediction values gained from the LSTM
network, by adding rules and different weightings on certain types of possible words, to
enhance the quality of the sequences being generated, based on different criteria. The
search tree algorithm expands the number of possible sequences that are created during
the generation process, increasing the chances of finding the best possible sequences to
create a poem from. This section presents the complete generation process, and explains
the generation system in detail, including the tree important components.
Rhyme word generation: The first part of the generation process consist of the

algorithm for generating rhyme pairs of words, which will be used to generate the rest of
the poem. Each of the rhyme pair words will be used as input for generating a line of
poetry, as the poetry is generated backwards from the ending rhyme words (described
earlier in this section). For generating rhyme pairs, unique words are randomly chosen
from the vocabulary, that have a sentiment value matching the decided sentiment. Vader
is used for this purpose, where words with a sentiment value of more than 0.0 are used
if the sentiment is decided to be positive, and less than 0.0 for negative. After the
sentiment word is chosen, the vocabulary is iterated over to find another word of the
same sentiment, and that rhymes with the first word. To find rhyming words, CMUdict
is used (see section 2.4) to find the syllables for each word. The conditions that need
to be met to complete a rhyme, do not form a perfect rhyme. This would be when the
stressed vowel sound in both words, as well as any subsequent sounds, are identical, while
the consonant preceding the stressed vowel sound is different. In this case, a form of
imperfect rhyme is rather used, where the last three syllables, including a consonant,
are equal for two words. Each of the two words in a rhyme pair make up one line of
poetry, and the rhyme form chosen to generate poetry is ABAB, so two pairs are needed
to generate four lines of poetry.

After the rhyme pairs are found, the first rhyme word is used to predict the following
words for the first line of poetry that will be generated. This first line will eventually
end up being the final line of the complete poem, since the poem is generated backwards,
so the entire poem will be reversed after it is generated. When the first line is generated,
the last four words of that sequence, plus the rhyme word for the next line, are used as
input for generating the the next line. This process is presented in Figure 5.3 (shown
on page 41), where the first rhyme word A1 is used to generate the first line of poetry,
consisting of the rhyme word and a sequence of words w to the length of n. The next
rhyme word B1 is then added on to the sequence of the four words from wn−3 to wn from

40

5.2 Poetry generation system

Generate rhyme
Pairs

Generate rhyme
Pairs

Rhyme word: A1

Rhyme word: A2

Rhyme word: B1

Rhyme word: B2

Generate poem line
A1 w1 ... wnw2 Fourth line of poetry

B1 w1 ... wnw2

A2 w1 ... wnw2

B2 w1 ... wnw2

Third line of poetry

Second line of poetry

First line of poetry

Generate poem line

Generate poem line

Generate poem line

1

2

3

4
5

6
7

Figure 5.3: A figure of how the poetry is generated by using rhyme words as the initial
input

the last sequence, to be used as input for generating the next line of poetry. The figure
shows this process being repeated until a full verse consisting of four lines of poetry with
a rhyming form of ABAB is completed. Since the poem is generated backwards and will
be reversed after being generated, the figure shows that the first line that was generated,
with the rhyme word A1, will end up being the last line of the complete poem, and so on.
The last generated line with the rhyme word B2, is the first line of the complete poem.

A distinct meter or form of the generated poetry is not implemented, as very strict
conditions limit the possible results in generating text, and can result in a reduction of
the quality of the result just to be able to uphold a certain form or structure. As the
main goal of this project (section 1.2) is to generate poetry with an inherent sentiment,
the form of the generated poetry is neglected, in favour of generating text with a focus
on the sentiment value of the text. This will likely reduce the quality of the poeticness
of the poetry. In addition, rhyming constraints do not follow the rules that result in a
perfect rhyme, and the sequence length of each line of poetry is set to 5-10, strictly to
remove the generic repetitiveness of a fixed length, and instead have it randomly mimic
a free-flow format.
Updating prediction scores: For every word that is generated in a sequence,

predictions on all the possible words are generated by the LSTM network, based on
input to the network consisting of previously generated words. But instead of deciding
the next word to be generated based solely on the predictions from the network, several
algorithms are implemented for updating and adjusting the prediction scores from the
network, based on factors chosen to improve the generated poetry. These algorithms were
similarly used in several other state-of-the-art-solutions (chapter 3), including Benhart
et al. (2018) implementing repetition and sentence structure restrictions, and Colton
et al. (2012) measuring sentiment values of poetry lines against a set value. Figure 5.4
(shown on page 42) illustrates the process of generating word predictions for a given

41

5 Architecture

w LSTM
network

0.1

...

0.3

0.2

0.1

Predictions

Update step 1

0.15

...

0.1

0.25

0.15

...

Input sequence
Step ..

0.2

...

0

0.3

0.2

Predictions Predictions

Figure 5.4: A model showing word predictions being updated through several steps

input sequence, and updating the prediction scores over several steps, starting with step
1. Each step involves a separate update algorithm. There in total four steps of specific
update algorithms that are implemented in this system for adjusting the prediction scores,
and these steps include:

• Related words (encouraging the use of related, less frequent words).

• Repetition (adjusting based on repetitiveness).

• Sentence Structure (removing possible sequences based on sentence structure).

• Sentiment (adjusting based on the sentiment value of the sequence).

Related words: Because the same words often appear in the original data set, and
therefore the training data that the network is trained on, these popular words will have a
tendency to have a high prediction value. To avoid a repetitive use of the same words, or
an unfairly high prediction value for certain words, related words are found and used to
increase variety. This is done using WordNet (section 2.4), where the Synsets (groupings
of synonymous words that express the same concept) of the original word provide related
words found in WordNet. When generating the next word in a sequence, related words
are found for the 20 unique words with the highest prediction value. Then, for all the
related words that exist in the vocabulary, the prediction values for these related words
are increased, thus increasing the probability of choosing a related, but less used word,
to achieve a better variety.
Repetition: This step is implemented to reduce the likelihood of a line of poetry

to contain repeated words, and therefore reducing repetitiveness. As discussed in the
previous step, popular words can frequently occur, and by decreasing the chance of the
same word appearing several times in a line, the use of more unique words is encouraged.
The implementation involves reducing the predicted score of a word during sequence
generation, if the word has already appeared in the previous part of the sequence.
Sentence Structure: By observing that the generated poetry consistently had obvious

part-of-speech (PoS) errors, restrictions were implemented to avoid the errors that could

42

5.2 Poetry generation system

easily be detected by a human. Sequences with obvious errors were collected, and using
NLTK (see section 2.4), PoS-tagged. These were then used to implement general PoS-
restrictions, to avoid word sequences violating these general restrictions. Restrictions
that were implemented included no pronoun directly preceding another pronoun, for
example “he it”, and no verb directly preceding another verb.
Sentiment: Based on the intended sentiment for the poems, the score value for the

possible words with a corresponding sentiment is increased. This is done by using Vader
(see section 2.4) to find all the possible next words in a sequence that have a sentiment
value corresponding to the intended sentiment (positive or negative), and increasing
their predicted score, resulting in an increased chance of choosing words with the correct
sentiment value when generating sequences. The degree of increasing predicted scores
is based of the sentiment value of each word. Words that Vader evaluate as having a
higher sentiment value of the correct sentiment (positive or negative) will have a greater
increase of their predicted score, compared to the words with a lower sentiment value. In
addition to increasing the predicted scores of words with the correct sentiment value, the
words with the opposite sentiment value get their predicted scores decreased in the same
way. For example: to generate a poem with a negative sentiment value, the words with a
negative sentiment value have an increased chance of being chosen during the generation
process, while the words with a positive sentiment value will have a decreased chance.
Search tree algorithm: To increase the chances of finding the best possible sequences

to create a poem from, a tree search algorithm is implemented to expand the number of
possible sequences that are created during the generation process. Instead of generating
a single next word based on the highest score, the tree search takes a number of the
possible words with the highest score values, and generates different possible sequences.
This is repeated for every new word in the sequence, resulting in more possible sequences
for every new word to be generated. A generalized approach of the search tree process is
presented in Figure 5.5 (shown on page 44) to refer to what page it is talking about).
The first word w1 is in this case one of the rhyme words used to generate the rest of
the sequence, but it could also be a sequence of previously generated words plus the
new rhyme word. Using this as the input to the LSTM network, we get the predictions
(score values) for the next words. These values are then updated through the different
algorithms described earlier, before 20 new sequences is created, which all consist of the
first word w1 plus one of the next words x with one of the highest score values, where
every sequence has a unique next word x. This entire step is then performed on all
the possible sequences created in the previous step, for adding the third word in the
sequence, and so on. This search tree continues with a number of steps i which is equal
to the total number of words to be generated in a given sequence. As the search tree
grows exponentially, the size of the network can drastically increase the time it takes to
complete the search algorithm, and require a large amount of memory. To combat this,
the possible sequences that are created with the lowest scores are continuously pruned
throughout the search process, by removing a major part of the possible sequences, and
only keeping the ones with the best score so far in the search process. The value score
that is attributed to each possible sequence, is based on the prediction score of every

43

5 Architecture

w1

w1 ...x1 w1 x2 w1 xn

w1 w2 x1

w1 w2 x2

w1 w2 x2

w1 w2 x1

w1 w2 x2

w1 w2 x2

w1 w2 xn

w1 w2 xn

w1 w2 xn

...

First word in sequence

Step 2: Third word in sequence

w1 w2 w3 ... wi
w1 w2 w3 ... wi

w1 w2 w3 ... wi

...

... word in sequence

Step i: Last word in sequence

...

Step 1: Second word in sequence

Figure 5.5: A general example of the search tree process for generating sequences of words

word that is added to the sequence. This value score is updated every time an additional
word is generated and added to the sequence. Figure 5.6 (shown on page 45) illustrate
how the score of a given sequence is based on the prediction scores of the words it consists
of.
When all the possible sequences are created, the sentiment value is again evaluated,

this time for each of the possible sequences. This time the sentiment value is based on
the complete sequence, where Vader considers the entire line of poetry when calculating
a sentiment value. These sentiment values are again used to adjust the score for all the
possible sequences, where the final scores are increased by a set variable that is multiplied
with the sequence’s sentiment value, thus increasing the score with an amount related to
the sentiment value (depending on the decided sentiment). After this final score update,
the sequence with the highest score is chosen, and used to generate a new line of the
current poem.

44

5.2 Poetry generation system

Figure 5.6: A general example of the value scores for a generated word sequence

The entire generation process described in this section is used to generate poems
consisting of eight lines, which make up poems of two four-line stanzas with a rhyming
scheme of ABAB CDCD. The chosen sentiment is decided before the generation of the
rhyme words, and the following generation of poetry lines. After all the lines have been
generated, the system adds commas after each of the first three lines of a stanza, while
a period is added after the last line of a stanza. A blank space is also added between
the two stanzas. This presents the end of the first stanza and the beginning of the next
stanza. The first letter of the first word of every line is capitalized, in addition to other
letters where capitalizing is grammatically correct, the most frequent example being the
standalone “i” converted to “I”. This process results in a complete poem, at which point
Vader is used to calculate the sentiment value of the entire complete poem. This final
sentiment value is used in the experiments where it is compared to the human judge
evaluations (see section 6.2).

45

6 Experiments and Results
This chapter presents the experiments conducted. This includes the experimental plan
and reason behind the experiments, the experimental setup, and lastly the results of the
experiments.

6.1 Experimental Plan

Experiments in two different areas were conducted as part of this thesis work. In the
first area, an experiment was conducted on training of the LSTM network (described
in chapter 5). The goal was to measure how well differently trained networks — both
regarding different data sets, and different parameters and network sizes — were able to
predict words. The is needed because we wanted to train a network that performed as
well as possible (at predicting words in a given data set), and to then use this network in
the further poetry generation process, as stated in research question 2 (see section 1.2).

In the second area, experiments were conducted to evaluate the generated poetry. One
of the experiments used standard evaluation metrics for generated poetry, to be able to
compare the results with other poetry generation systems. A second experiment was
conducted to evaluate the sentiment value of the generated poetry, in relation to research
question 3 (see section 1.2).

6.2 Experimental Setup

This section presents the experimental setup for all the experiments that were conducted.
There are two parts, the first presenting the experimental setup for the LSTM training,
and the second part presenting the experimental setup for evaluating the generated
poetry.

6.2.1 Training and evaluating Long Short-Term Memory networks

The first experiment was conducted to decide the final architecture of the LSTM network,
and what parameters to use in the final network implementation of the poetry generation
system. Most parameters and architecture details were decided and set beforehand,
including the data set to be used for training. Additional details previously decided are
described in chapter 5, including the optimizer function, the activation function and the
loss function. Other predetermined factors were:

• The two data sets to be used in training

47

6 Experiments and Results

• Learning rate and learning reduction

• Dropout probability

• Validation data steps and size

The creation and processing of the data sets used for training the LSTM network is
explained in chapter 4. Two different data sets having different vocabulary sizes and
different amounts of total tokens, were used in training different networks. Conducting
experiments on these two different data sets were done for two reasons, the first being that
a reduction in size and vocabulary size greatly decreases the training time which makes
it possible to conduct training experiments in less time. The second is to investigate if
there would be a significant difference in performance between the networks trained on
the different data sets.
As described in chapter 5, learning rate for the training of each network starts at

a higher value to avoid local minima, and decreases throughout the training process.
The learning rate is initially set to 0.9 for the training of all networks. A monitor is
implemented on the validation loss that is calculated on validation samples each epoch,
which reduces the learning rate after a given period when the validation loss has not
decreased. The monitor period before reducing the learning rate is set to 5 epochs, and
the reduction of the learning rate is set to 0.3, meaning that the current learning rate is
multiplied by 0.3 for each reduction. The minimum limit for the learning rate is set to
0.001, so the learning rate cannot be reduced to any value lower than that.
The dropout probability rate is set at a constant 0.6 for non-recurrent units. The

dropout rate here represents the fraction of the input units to drop. This value was
chosen based on Zaremba et al. (2014), where the dropout rate used for medium LSTM
(650 units per layer) was 0.5, and the dropout rate for large LSTM (1500 units per layer)
was 0.65. A constant rate for all networks trained in this project was therefore set to 0.6,
as the units per layer vary, with most having 512 or 1024 units per layer.
The hardware that was used for training the networks was a Tesla P100-PCIE-16GB

GPU, with a memory clock rate of 1.3285GHz. Since the training was done on an open
university computer with several active users at the same time, the amount of memory
available to use during training varied between sessions.
The different parameters tested in the experiments were:

• Two different data sets

• The number of hidden layers

• The number of units in each hidden layer

• The number of epochs

The number of hidden layers and the size of each of the hidden layers were also tested.
The size of the hidden layers represents how many LSTM units each hidden layer consist
of. In addition, the number of epochs were tested. A single epoch of training is when

48

6.2 Experimental Setup

all of the training data has been fed through the network during the training process,
one time. While the vocabulary size of the training data, and the size of the training
data itself, both impact training time, the number of hidden layers, size of the hidden
layers and number of epochs also affect training time. The possibilities for the number
of hidden layers and size of hidden layers are therefore limited, and as shown in the
experimental results (section 6.3), the maximum number of hidden layers tested was
three, and the maximum number of units per layer was 1024. The training time of the
different networks are also presented in the results.

To be able to evaluate the trained networks in the experiment, new evaluation data was
created from the original data sets. The evaluation data was created in the same way as
the previous training data (see Section 5.1.1), with the only difference being that it was
created from data that the network had not previously seen (been trained on). In other
words, created from poems in the original data set that had not been used in the final
training data sets and that only contained tokens included in the chosen vocabularies for
the training data set. The final evaluation data sets (1 & 2) are represented in Table 6.1.

Table 6.1: The final Evaluation Data sets
Evaluation Data set 1 Evaluation Data set 2

Vocabulary size: 9 195 18 031
No. of poems: 4 620 4 307
No. of tokens: 405 286 406 324

The LSTM models trained on Training Data set 1 (which consists of a vocabulary size
of 9195) was only evaluated on the Evaluation Data set 1 in the experiment, since it
consists of the same vocabulary size. The LSTM network models trained on the Training
Data set 2 on the other hand (consisting of a vocabulary size of 18031), was evaluated
on both Evaluation Data set 1 and 2 in the experiment. The reason was to be able to
compare LSTM models trained on different vocabulary sizes, both based on the exact
same evaluation data and based on evaluation data with a vocabulary size corresponding
to networks vocabulary size.
To evaluate the trained networks, evaluation data set input was fed through the

network, and predictions were measured against true values, using several measurements:
categorical accuracy, categorical cross entropy and the word perplexity. Categorical
accuracy is calculated by checking if the index of the true value (in the vector representing
the vocabulary, where each index represents each word in the vocabulary) is equal to the
index of the maximal predicted value. The prediction vector generated by the network,
gives a prediction value for each index, where each index represent each word in the
vocabulary. The maximal predicted value index will be the word that the network gives
the highest prediction result, of all the possible words. The categorical accuracy is
calculated for the entire evaluation data set, by taking the mean accuracy rate across
all the predictions. Categorical cross entropy calculates the cross entropy value, which
is the loss function used during the network training, and is described in Section 5.1.2.
The word perplexity is a measurement of how well a probability distribution can predict

49

6 Experiments and Results

a sample, and is calculated by using the loss function as exponent to the power of the
constant e, as shown in Equation 6.2.1. The lower the perplexity, the less confused a
network is about predicting the next word.

perplexity = ecross entropy loss = e− 1
N

∑N

c=1 ln(pc)

The final results from evaluating the trained LSTM network models are shown in
section 6.3.

6.2.2 Evaluating the generated poetry

Two different experiments were conducted on the poetry generated by the final system.
In the first experiment, human judges evaluated the poetry based on criteria presented
in section 2.5, including standard evaluation metrics for generated poetry. In the second
experiment, human judges evaluated the poetry based on its sentiment value, i.e. whether
they perceived the poem to have a sentiment value, and whether it is negative, positive
or neutral. They also rated the degree of the sentiment value.

Standard evaluation metrics

The goal of the first experiment was to evaluate the generated poetry on the three criteria
presented in Section 2.5. In Manurung (2004), these criteria are rated along with three
different dimensions:

• Grammaticality
1. Not correct
2. Partially correct
3. Grammatically correct

• Meaningfulness
1. Not meaningful
2. Partially meaningful
3. Meaningful

• Poeticness
1. Not poetic
2. Partially poetic
3. Poetic

These dimensions are therefore applied for this experiment, where the human judges are
asked to score each of the criteria from 1—3 on the poetry that is evaluated, 1 being
the lowest score and 3 being the highest. The result of the evaluations are presented in
section 6.3.

50

6.3 Experimental Results

The motivation behind this experiment was to to evaluate the poetry generation system
by evaluating the poetry that is generated. This makes it possible to assess the result,
both individually and compared to other systems using the same metrics.

Sentiment evaluation

The goal of the second experiment was to evaluate the generated poetry based on
sentiment value, to try and answer research question 3 (section 1.2): Will the generated
poetry be perceived by human judges to contain a sentiment value, and does this value
correspond to the value the poetry was intended to have? Human judges will evaluate the
generated poetry with three main categories:

• Negative sentiment value

• No sentiment value (neutral)

• Positive sentiment value

If a poem is evaluated as having negative or positive sentiment value, the sentiment
value will be graded with a score of 1-3, 1 being the lowest and 3 the highest. This value
corresponds to the degree of sentiment value, with the three different scores representing:

1. Slightly negative/positive

2. Quite negative/positive

3. Very negative/positive

The reason for rating the degree of sentiment is to investigate if the degree of calculated
sentiment value of the poetry by Vader (see section 2.4) is also perceived similarly by
the human judges. In other words, if Vader scores a poem with having a high degree
of sentiment, will it also be rated as very negative/positive by the human judges? The
results of the experiment are presented in Section 6.3.
To conduct the experiments on the generated poetry, a total of 20 generated poems

was used, which consists of a total of 40 stanzas, made up by 160 lines of poetry. All
of the 20 poems was used in both the experiment for evaluating the poetry based on
standard evaluation metrics, and for evaluating the sentiment of the generated poetry
(see Section 6.2). Of the 20 poems, 10 are generated to contain a positive sentiment
value, and the other 10 to contain a negative sentiment value.

6.3 Experimental Results

This section presents the results from the experiments that was conducted. This includes
the experiments on the LSTM training, and the experiments conducted on the poetry
generated by the system.

51

6 Experiments and Results

6.3.1 Training of the Long Short-Term Memory network

Table 6.2 shows the different architecture details of the LSTM networks trained on
Training Data set 1 (containing a vocabulary size of 9195). Table 6.3 shows the different
architecture details of the LSTM networks trained on Training Data set 2 (containing a
vocabulary size of 18031). The different aspects of the networks presented in the tables
are the number of hidden layers in the network, the number of hidden units per layer,
the amount of epochs that the network was trained for, and the training time per epoch
(in seconds).

LSTM 1.1 LSTM 1.2 LSTM 1.3 LSTM 1.4 LSTM 1.5
Hidden Layers 2 2 3 3 3
Hidden Units 256 1024 256 512 1024
Epochs 50 50 50 50 50
Training Time 700s 1500s 1000s 1200s 1800s

Table 6.2: The different LSTM networks trained on Training Data set 1, named from
1.1-1.5

LSTM 2.1 LSTM 2.2 LSTM 2.3 LSTM 2.4 LSTM 2.5
Hidden Layers 2 2 3 3 3
Hidden Units 256 1024 256 512 512
Epochs 75 50 50 25 50
Training Time 3000s 5900s 3500s 6600s 6600s

Table 6.3: The different LSTM networks trained on Training Data set 2, named from
2.1-2.5

The results of the LSTM network evaluation experiments are presented in Table
6.4 and 6.5, appearing on page 52 & 53. Table 6.4 presents the cross entropy loss,
categorical accuracy and perplexity for LSTM models 1.1-1.5, which were only evaluated
on Evaluation Data set 1. Table 6.5 presents the cross entropy loss, categorical accuracy
and perplexity for LSTM models 2.1-2.5, which were evaluated on both Evaluation Data
set 1 and 2. The Evaluation Data sets are explained and presented in Section 6.2.

Evaluating LSTM 1.* Networks
Evaluation Data set 1 results:

LSTM 1.1 LSTM 1.2 LSTM 1.3 LSTM 1.4 LSTM 1.5
Cross entropy loss 8.997 8.097 7.951 8.131 8.813
Categorical accuracy 0.0225 0.0238 0.0246 0.0241 0.0233
Perplexity 8077 3286 2839 3400 6722

Table 6.4: Evaluation results of LSTM networks trained on Training Data set 1

52

6.3 Experimental Results

Evaluating LSTM 2.* Networks
Evaluation Data set 1 results:

LSTM 2.1 LSTM 2.2 LSTM 2.3 LSTM 2.4 LSTM 2.5
Cross entropy loss 7.986 8.617 8.000 8.315 9.729
Categorical accuracy 0.0253 0.0238 0.0251 0.0241 0.0225
Perplexity 2939 5522 2981 4084 16 789

Evaluation Data set 2 results:
LSTM 2.1 LSTM 2.2 LSTM 2.3 LSTM 2.4 LSTM 2.5

Cross entropy loss 8.266 8.893 8.617 8.540 9.983
Categorical accuracy 0.0234 0.0224 0.0238 0.0224 0.0207
Perplexity 3888 7279 5522 5117 21 653

Table 6.5: Evaluation results of LSTM networks trained on Training Data set 2

6.3.2 Results from Evaluation of the Generated Poetry

Regarding the experiments on evaluating the generated poetry, there was a total of 30
human judges that participated, with each human judge participating in both evaluation
experiments: evaluating the standard metrics and evaluating the sentiment. Each
participant evaluated a selection of 6 or 7 poems out of the total 20, with a nearly equal
amount of both positive and negative sentiments in each selection.

All of the generated poems used in the experiment are presented in the Appendix (see
appendix 1 and 2), including the experimental results for each individual poem. The first
score matrix presented for each poem is the average score of the three evaluation metrics
(presented in Section 2.5) grammaticality, meaningfulness and poeticness, respectively.
The second score matrix presented for each poem is the percentage score of human judges
percieving the poem to have either positive, neutral, or negative sentiment value. Poem
1-10 are generated poems intended to have a negative sentiment value, and poem 11-20
are generated poems tintended to have a positive sentiment value.

Standard evaluation metrics results

Regarding the three metrics grammaticality, meaningfulness and poeticness, the experi-
ment results for these are presented in Table 6.6. The values in the first column of the
table are the average mean values from the experiment, while the second column contains
the standard deviation values for each of the metrics. Some examples of the highest- and
lowest scoring generated poems are presented and discussed in the next chapter (see 7),
including the individual evaluation results for each example.

Sentiment evaluation results

This section presents results from the sentiment evaluation. Results from the first
experiment, where the human judges classified poems based on what sentiment value they
perceived, are shown in Table 6.7 with average percent of the human judges who rated

53

6 Experiments and Results

Average Mean Standard Deviation
Grammaticality 1.488 0.0476
Meaningfulness 1.582 0.0338
Poeticness 2.012 0.0342

Table 6.6: Results from the standard metrics evaluation

the poems to contain either positive, neutral or negative sentiment. Results are shown
both for the poems generated with a positive sentiment intention and with a negative.

Rated positive Rated neutral Rated negative
Positive sentiment poems: 58.8% 36.2% 5.0%
Negative sentiment poems: 2.7% 27.6% 69.7%

Table 6.7: Results from the sentiment evaluation experiment

In addition to the classification of sentiment value, human judges rated the degree of
perceived sentiment for each poem based on a rating from 1-3 (if they had evaluated a
poem to contain a positive or negative sentiment). The poems included in the experiments
were also rated using Vader, which assigns a score for the sentiment value of the poem.
A negative sentiment value of the input text will be rated between -1 and 1, where -1
represents highest degree of negative sentiment value, 0 represents neutral sentiment
value, and 1 represents the highest degree of positive sentiment value . Table 6.8 shows
both the average sentiment degree score rated by the human judges and rated by Vader.
Human judge ratings for every poem are normalized to values between 0-1, equal to the
Vader score, before calculating the average.

Positive sentiment poems Negative sentiment poems
Average Vader rating 0.977 -0.925
Average human judge rating 0.360 -0.372

Table 6.8: Results from evaluation of the degree of sentiment

54

7 Evaluation and Discussion
This chapter contains two sections. The first section evaluates and discusses the experi-
mental results and the poetry generated by the system. The second section discusses the
results and findings in this thesis related to the goals and research questions presented in
chapter 1.

7.1 Evaluation

This section first evaluates and discusses the results from the LSTM model training
experiments. Then some of the poems generated by the system are presented, and the
features of the poetry is discussed. Afterwards the results from the poetry evaluation
experiments are presented and discussed. Some of the findings discussed in this section
are also compared to related work in the field.

7.1.1 Evaluating the Long Short-Term Memory networks

As shown in the results (Table 6.4 and 6.5), the difference in perplexity results vary
greatly for the different LSTM networks (presented in Table 6.2 and 6.3).

As the LSTM networks that are only trained on a smaller vocabulary (LSTM 1.1-1.5,
see Table 6.2) do not have significantly better perplexity scores than the best scoring
networks trained on the larger vocabulary (LSTM 2.1-2.5, see Table 6.3), the networks
trained on the smaller vocabulary are disregarded. In addition to the the perplexity
scores showing that the smaller vocabulary networks do not perform significantly better,
a smaller vocabulary also means that these networks will generate poems with fewer
possible unique words. This can reduce the variation of the poetry, and the amount of
possible unique words with a sentiment value, resulting in less possibilities for the poem
to generate poetry with a given sentiment value. In addition, Training Data set 1 only
has a third of the amount of training data compared to Training Data set 2 (see Table
5.2). This means that the networks trained on the larger vocabulary have been trained
on more data per epoch.
The possibilities for which network to implement in the generation system is then

greatly reduced, with the network with the best perplexity score being LSTM 2.1, with 2
hidden layers and 256 hidden units per layer, achieving a perplexity score of 3888 for
Evaluation Data set 2. By running a simple test of generating some text solely based on
predictions given by LSTM 2.1, this network shows clear signs of being highly overfitted,
by repeating a few select and often occurring words. This still results in a low perplexity
score compared to the other networks, as the network is less confused about predicting

55

7 Evaluation and Discussion

which words follow an input sequence, but an overfitted network is not desirable. Since
this network does not achieve perplexity scores that are significantly better than other
alternatives, the larger network with the next-best perplexity score is chosen instead,
which is LSTM 2.4. It has three hidden layers, 512 hidden units per layer, and has been
trained for 25 epochs, achieving a perplexity of 5117 for Evaluation Data set 2. The
network LSTM 2.5 as the same architecture details as LSTM 2.4, but was trained for an
additional 25 epochs, resulting in a much higher word perplexity score (21 653 compared
to 5 117). This was most likely due to the network underfitting the training data during
the training of the additional 25 epochs, as further training resulted in the LSTM 2.5
having a much harder time predicting correct words. Underfitting occurs when the model
fails to learn the underlying relationship between the input and output data, by ignoring
the lessons from the training data.

While the perplexity scores differed greatly for all the LSTM networks, the perplexity
scores were all still very high, representing poor results from the network training.
Zaremba et al. (2014) achieved a word perplexity score of 78.4 with a regularized LSTM
where dropout was used. For their model the Penn Tree Bank (PTB) data set (Marcus
et al., 1993) was used for training and testing word perplexity, which consists of a
vocabulary of 10k words. The LSTM that was used consisted of two hidden layers
with 1500 hidden units each, trained for 55 epochs with a 65% dropout probability on
the non-recurrent connections. A perplexity score of 2839 (the lowest perplexity score
achieved in this project) is very high compared to the 78.4 achieved by Zaremba et al.
(2014). While there are several notable differences that will have an impact on the results,
the vocabulary size of the data that was trained on in both cases does not differ. Word
perplexity will be greater for data with a larger vocabulary size (plainly due to the
word possibilities increasing, clearly shown in Table 6.5, where the networks yield lower
perplexity scores when tested on evaluation data with a smaller vocabulary compared to
the evaluation data with a larger vocabulary), but the perplexity scores achieved in this
project are significantly higher compared to the scores of Zaremba et al. (2014), when
networks were trained on 10k vocabulary sizes in both cases.
Even though vocabulary size is not a factor in the different results, there are several

other factors that do have an impact, one being the details of the data set. The PTB
dataset used by Zaremba et al. (2014) consist of many different text sources, including the
Brown Corpus, but who all share the similarity of being grammatically correct literature
of nonfiction, fiction and other types such as transcripts and technical manuals and
descriptions. Compared to the data set used in project (consisting of publicly written
poetry) where the data is more irregular and the texts vary to a greater degree, especially
involving sentence structure and grammaticality. This could have an impact on the
networks’ ability to train and learn patterns of the text, and also testing on the text,
resulting in a poorer word perplexity score. In addition to the data set, another reason
involved in the poor perplexity scores can be the sequence training of the network. The
networks in this project are trained on sequences with a length of 5, where such a short
sequence length can provide too little information about the data subsequent to the
input sequence, making it harder for the network to learn the connections and general

56

7.1 Evaluation

rules of the data. Depending on the data set, especially in this case where the data has
great variance and can be very irregular, a constant sequence length can also vary in its
efficiency to train the network, where it might occasionally be too long (unnecessary and
irrelevant words included in the input sequence) resulting in the network learning bad
patterns, or occasionally too short, where crucial information about the pattern in the
data is lost in sequences with only 5 words.

Another factor that impacted the network performances was the architecture decisions
and details of the LSTMs that were trained. Only a certain selection of parameters and
variables was experimented on in this master project, namely the hidden layers and hidden
units of the network, and the number of epochs in training. All the other details of the
chosen architecture were defined beforehand, explained in chapter 5 and 6, either based
on choices from other articles or the decisions taken in this project. This resulted in the
LSTM training experiments only investigating a small number of the possibilities within
the LSTM architecture, and it could be the predetermined implementation decisions of
the architecture that resulted in poorly performing LSTM models.
The motivation behind conducting the LSTM training experiments was based on

research question 2: What Neural Network architecture can achieve the best results, when
used for generating poetry? While a specific architecture was found that produced the
best results out of all the possibilities experimented on, the architecture that yielded the
best results for generating poetry was not an obvious choice when based purely on the
results. The architecture with the best word perplexity score did not yield the best results
for generating poetry, and the overall results for the architectures that were experimented
on were generally poor. Additionally, because of the limited selection of parameters and
variables experimented on in this project resulting in the experiments only investigating
a small part of the LSTM architecture, the results are not sufficient enough to answer
what type of LSTM architecture would yield the best results for generating poetry.

7.1.2 Evaluating the generated poetry

This sections covers three different areas regarding the evaluation of the poetry that
was generated by the implemented system. Firstly, some examples of the generated
poetry is presented, followed by a discussion on the notable traits and occurrences in the
poetry. Secondly, the results from the experiments based on evaluating the poetry on
three standard evaluation metrics are evaluated and discussed in detail, followed by the
results from the sentiment evaluation experiment being discussed as well.

Examples of generated poetry

Presented below are three of the generated poems, the first with one of the lowest scores
in the experiment results, and the second and third with one of the highest. Poem 8
achieves a score of 1.22 for both grammaticality and meaningfulness, which is the lowest
score when combining these two, compared to the other poems. Poem 14 achieves a score
of 1.73 for both of these, being the highest of all the generated poems. The poeticness
score for both Poem 8 and 14 is below average. Poem 3 achieves a considerable high

57

7 Evaluation and Discussion

score of 1.7 and 1.5 for grammaticality and poeticness, but the highest poeticness score
of all the poems with 2.5.

Poem 8

For worst the all sleep as hearted of unpredictable,
So most from an till sensations,
Poor tall being eye in goes horrible,
Without the when todays so most from contradictions.

Kept on humanitys your soft in night a frightening,
Amid to our so most from currently,
In unwanted of feminine with sickening,
By no lies at impatiently.

Metric evaluation scores: [1.22, 1.22, 1.89]
Sentiment evaluation scores: [0%, 56%, 44%]

Poem 14

Without the oozing in night quickly divine thin lovable,
Like non focused best gods so wearing on contentment,
Bliss most from victory like favorable,
Without the respected of your improvement.

A dusty amid to governments,
Like mother of god be will certain the exceptions,
Amid to our so most from the do innocents,
In love a feeling most which are their solutions.

Metric evaluation scores: [1.73, 1.73, 1.91]
Sentiment evaluation scores: [82%, 18%, 0%]

Poem 3

Of ravishing sin was naturally deprivation,
Of war suffering it tired than two then a situation,
And the go on no lies at finding they frustration,
Of voice are their seven then limitation.

The forest in mystic hands understood,
A trapped on must words most from your unarmed,
With wind raging to our misunderstood,

58

7.1 Evaluation

As a entire my that alarmed.

Metric evaluation scores: [1.7, 1.5, 2.5]
Sentiment evaluation scores: [0%, 20%, 80%]

A common trait among all the generated poems is an incorrect use of articles such
as a, an, the etc, in addition to the wrong use of other word classes and poor sentence
structure. Examples of this are the sequences So most from an till and Amid to our
so most from currently from lines in Poem 8. Occurrences are also found in the higher
scoring poems, one example being Poem 3 containing the line Of voice are their seven
then limitation. In addition to the incorrect use of articles, the placement of or and and
often occur at the wrong places in a word sequence, causing the word coordination to be
wrong. An example of this is in the line A one and love of great creation from Poem 20
(see appendix 1), with a missplaced and. All these examples of poor sentence structure
and word selection are the most common traits found in the generated poetry.
Another noticeable aspect is the rhyme pairs in the poetry not always rhyming, like

exceptions and solutions at the end of line 6 and 8 in Poem 14. This is due to the
architecture of the system, pairing rhyme words based on the last three syllables using
CMUdict, explained in detail in section 5.2. This does not fulfill the requirements that
would result in a perfect rhyme, and does result in the occurrence of poor rhymes in
the poetry. Another similar aspect is the consistent lack of repetitiveness found in the
poetry. As described in section 5.2, repeated use of words in the same poem, especially
in the same line, is highly discouraged by the system. The reasoning behind this is to
discourage the system from constantly using the same high predictions words, and to
encourage diversity by using different words. This results in the generated poetry lacking
an element often found in other poetry — consciously repeating words, phrases or even
lines, as a poetic technique.
Other interesting factors of the generated poetry include the misspelling of words,

and rare and special words occurring. The vocabulary of the generation system consists
of the 20 000 most frequently used words in the chosen data set, so any misspelling of
words would mean that a high frequency of those misspellings occurs in the original
data set. An example would be the word humanitys occurring in Poem 8. Special and
rare words also appear, like the names Samson and Radha (see appendix 1), and the
word la (see appendix 2). While the occurrence of rare names could be explained by
the neural network model being over-trained on specific words, causing disproportional
prediction values compared to occurrences in the data set, the word la likely stems from
the frequently occurring use of song lyric forms in the original data set, which might use
the phrase la la la, but it might also stem from the abbreviation for Los Angeles

Standard evaluation metrics

Looking at the result from the standard evaluation metric experiments (see Table 6.6
in section 6.3), we see that the scores for both grammaticality and meaningfulness is
both rather low (1.488 and 1.582, respectively), in the mid range between the value of

59

7 Evaluation and Discussion

not grammatically correct/meaningful and partially grammatically correct/meaningful.
This can be explained by the results having a direct correlation with the results from the
LSTM training. As the word perplexity scores for the LSTM networks, including the one
used in the poetry generation system, were poor, this will have an effect on the words
chosen and used in the poetry generation, creating poems that have poor grammaticality,
and therefore more difficult to perceive meaningfulness from. An example presented
earlier is the line So most from an till sensations, which shows a poor sentence structure.
It is important to note that the first five words in this sequence do not have a sentiment
value, which could greatly increase the prediction scores for certain words. This points
to the system generating poor sentence structure regardless of sentiment influence. As
mentioned earlier, the poor sentence structure is also visible through articles and other
classes often being used completely wrong. Poor lines like these likely cause the poems
to gain a poor score in both grammaticality meaningfulness.

The different variables that update the word predictions during the generation process
(explained in detail in section 5.2), could have been improved to positively impact on
the evaluation metric scores. These variable values were not experimented on, and the
optimal values were therefore not found. The most obvious limitation is the feature of the
generation system that updates prediction values based on sentence structure, to reduce
the occurrence of bad word choices or sentence structure. The feature was implemented
based on frequently occurring poor word choices or wrong sentence structures during
testing of the generation system, but we see from the final results that this feature could
be greatly improved, especially on rules regarding articles such as a and the.
Poeticness had a significantly higher score, which could result from several factors

that were not influenced by the LSTM models performance, specifically including the
generation and use of rhyming pairs and the form of the poetry. The rhyming pairs
occurring in the poetry likely positively influences the poeticness score, and these are
generated based on their sentiment value without the involvement of the LSTM model.
The form of the poetry is also not influenced by the LSTM predictions, as the length
of each line is randomly decided between two outer bounds, and proper punctuation is
added after each line, including a line break between stanzas. While a consistent rhyme
form, punctuation, and varying line lengths likely account for the poeticness results
being better than the other two evaluation metrics, possible weaknesses that might have
affected the result are the lack of perfect rhymes and the lack of known poetry forms
with consistent syllable lengths, such as sonnets. The lack of repetitiveness which is
encouraged by the system might also negatively affect the score.
Also present in Table 6.6 is the standard deviation, which was shown to be very low,

varying between 0.03 and 0.04. The standard deviation is measured between the average
score for one individual poem and the average scores for all poems, the second value being
the one present in Table 6.6. The standard deviation results represents a low variation of
the metric scores between the different poems, showing a consistency in the human judge
evaluations for each generated poem.

While other state-of-the-art systems use many different variations of evaluation metrics
for human evaluation, with varying rating degrees, it is still possible to compare some of

60

7.1 Evaluation

the state-of-the-art solutions with the results in this thesis. The human evaluation done
by Zhang and Lapata (2014) for their generation system achieved an average of 2.80 for
5-char quatrains and 2.68 for 7-char quatrains for poeticness, on a scale from 1-5, where 1
is the lowest score and 5 the highest. Normalizing these scores to a range of 1-3, which was
used in this thesis, results in the scores of 1.90 and 1.78, respectively. This score is lower
compared to the poeticness achieved in this thesis, which was 2.012. For meaningfulness
and grammaticality (other systems using similar metrics to grammaticality) on the
other hand, the system created in this project generally under-performs. Normalizing
scores to a 1-3 range shows that Zhang and Lapata achieved a score of 2.1 and Yi et al.
(2018) a score of 2.34 for meaningfulness, compared to the 1.582 achieved in this thesis.
Additionally, by comparing their scores of the fluency and coherence metric against the
grammaticality metric in this thesis, we see that their scores are substantially higher as
well. Zhang and Lapata achieves a fluency score of 2.505 and a coherence score of 2.01,
while Yi et al. achieves a fluency score of 2.525 and a coherence score of 2.405, compared
to the grammaticality of 1.488 achieved here. It is important to note that Zhang and
Lapata (2014) and Yi et al. did not use the grammaticality measure, so the comparison
is not straight forward.

Sentiment evaluation

The results for human judges evaluating sentiment (presented in Table 6.7) show that on
average the majority of judges perceived the poems to contain the sentiment value that
was intended by the system. While 58.8% of the judges perceived the positive generated
poems to contain positive sentiment and 69.7% perceived the negative generated poems
to contain negative sentiment, the rest were mostly rated as having neutral sentiment
value, as only 5.0% and 2.7% of the judges perceived the positive generated and negative
generated poems to contain an opposite sentiment value, respectively. These results
indicate that the generated poetry is often perceived to contain a sentiment value.

As presented in Table 6.8 (see section 6.3), the degrees of the sentiment value, both for
negative and positive poems, are rated considerably lower by the human judges compared
to the ratings given by Vader. One reason for this difference is the very high rating that
Vader rewards, both for negative and positive sentiment scores. This is mainly due to
the generation system greatly discouraging the use of words with an opposite sentiment
value (compared to the intended value), while highly encouraging the use of words with a
“correct” sentiment value in the generation process. This results in the generated poetry
containing only neutral sentiment words and words with the intended sentiment, with
the consequence being that Vader will rate the text with a very high sentiment degree.
The degree rating results from the human judges on the other hand, reflect that a lack of
the words with an opposite sentiment value does not result in a high degree of sentiment
being perceived, as human judges rate the sentiment degree on average to be just one
third of what Vader rates it. It is also interesting to note the consistency of the degree
ratings given by the human judges, where positive and negative sentiment poems are on
average rated with almost the same degree of sentiment.
There was still a substantial amount of poetry being perceived to have a neutral

61

7 Evaluation and Discussion

sentiment by the human judges (36.2% for positive generated and 27.6% for negative
generated poetry) and including the average degree of sentiment value rated by the
human judges also being low, these results might be tracked back to the poor LSTM
model performance. One possible reason for these results is the LSTM performance
attributing to the poor grammaticality and meaningfulness score of the poetry, and a lack
of understanding and meaning in the poetry will most likely make it harder for human
readers to perceive a sentiment value from the poetry, and especially for the poetry to
reflect a very high and substantial degree of that sentiment value.

7.2 Discussion

This section contains a discussion of the work that has been conducted and the results
achieved in the experiments, related to the goals and research questions that were
presented in chapter 1.

Goal: To generate poetry with a specific inherent sentiment that will be
experienced by readers of the poetry, by implementing and using a
state-of-the-art poetry generation system.

The goal of this Master’s thesis can be said to have been achieved, since a poetry
generation system was implemented using state-of-the-art solutions, which was able to
generate poetry with an inherent sentiment value that was generally perceived by readers
according to this thesis’ findings. Several weaknesses were also evident, as previously
presented and discussed in the last section (see 7.1). One of the main weaknesses being
the Long Short-Term Memory network component of the generation system showing
poor word prediction abilities, but limitations also exist in the other components of the
system, as there was a lack of experimentation and testing with the different variables
and functions in the other components. There is therefore no knowledge on the effect
of changing or adjusting these variables, and whether they would improve the overall
performance of the system.

While a main focus of this thesis was the sentiment aspect, the evident weaknesses of
certain components affected the general quality of the poetry, specifically the two standard
evaluation metrics grammaticality and meaningfulness, which achieved experiment results
that did not match state-of-the-art solutions. The most likely cause of this was the
frequent occurrences of poor sentence structure, one main example being the wrong
placement of specific word classes, such as articles, in the poetry lines.Another limitation
of the system was the lack of focus on poetic qualities of the poetry. Examples would be
the lack of standard poetic forms or structures based on syllables like the sonnet, perfect
rhymes, and more advanced punctuation use and placement.
Though experiments were conducted on what sentiment value the human judges

perceived from the generated poetry, no other solutions for adding sentiment value to
the text were implemented or tested, and no experiments were done on the value of the
variables in the system who affected the sentiment aspect of the text. The reason for

62

7.2 Discussion

this was due to the limitation of time and effort that was possible for this project, but
without proper methods to measure such effects, or other similar implemented systems
to compare this one to, it is difficult to state the effects any improvement could possibly
have. One possible improvement that would expand the purpose of the system would be
to develop the system to be able to generate poetry with a broader range of emotion, and
not just negative or positive sentiment. This would mean including emotional modelling
in a similar fashion to Misztal and Indurkhya (2014), where poetry is generated to convey
a more specific emotion, chosen from a greater range of emotions than just positive or
negative.

Research Question 1: What are the possible solutions and implementations
for generating poetry with an inherent sentiment?

In this thesis, a literary study was conducted on the different solutions and imple-
mentations that have been used for computer generated poetry, with a focus on the
state-of-the-art solutions that include artificial intelligence methods, specifically neural
networks, as an important part of the solutions and systems that have been implemented
and used. In addition, state-of-the-art solutions regarding sentiment and emotion model-
ling for poetry generation were also investigated. While this thesis covered a large part
of the work that has been conducted in the field, the literary study was still limited by a
given time and resources, resulting in possible solutions and implementations not being
investigated or covered. There is also no guarantee that the state-of-the-art solutions
presented in this thesis cover all the state-of-the-art solutions that have been implemented,
nor that they are completely up to date.

Research Question 2: What Neural Network architecture can achieve the
best results, when used for generating poetry?

Only a certain architecture of a bi-directional long short-term memory network was
experimented on in this project, with a limited number of factors, where the final results
did not perform as well as the state-of-the-art solutions. A possible improvement would
be to experiment on other neural networks model, but more relevant improvements would
be to experiment on other architecture details, for example other choices of parameter
values or different functions for the LSTM model.

As mentioned previously, many other solutions and implementations were investigated
during the literary study on the field of computer generated poetry, and several of
these possibilities could have been tried and experimented on to achieve better results,
especially regarding the specific details of the chosen neural network model for this thesis.
Other types of neural models could have been used, or additional implementations that
have been tested in other state-of-the-art solutions, for example mutual reinforcement
learning which was used by Yi et al. (2018). Another possible improvement regarding the
poor perplexity results of the trained networks, and consequently the lower value results
of grammaticality in the poetry evaluation, would have been to implement pre-trained
word embeddings or other language representationsuch as GloVe (Pennington et al., 2014)

63

7 Evaluation and Discussion

or BERT (Devlin et al., 2018). While these techniques show an improvement in language
modelling (Devlin et al., 2018), pre-trained models would make it more difficult to control
and manipulate the word prediction and word choice process of the poetry generation
system such as it is implemented now.

Another important factor that influences the final results is the quality of the data set
itself. The large and varied data set used in this project lacks the repetitiveness of song
lyrics and the structured sentencing of prose text, which can affect the performance of the
trained LSTM model, additionally since the data set was also used as test data for the
experiment. The chosen sequence length of 5 for training the network will also have had
an influence on the LSTM performance, and different sequence lengths or the inclusion
of a stateful LSTM training process (where the LSTM cell state are not reset at each
sequence, but all states are propagated to the next batch) could have been experimented
on to investigate whether it would result in a better performance.
An additional limitation of the training of the LSTM model was the hardware and

the limited training time. A larger number of hidden units per layer, larger number of
layers, a longer sequence length of the training data input, or more epochs trained per
LSTM model are all factors that could possibly have improved the final performance of
the LSTM models.

Research Question 3: Will the generated poetry be perceived to contain a
sentiment value, and does this value correspond to the value the poetry was
intended to have?

A limitation of the experiment that was conducted on human judges perceiving sentiment
in the generated poetry is the lack of similar work to compare these results too. It is
difficult to draw a conclusion on how good the results are, and how effective possible
improvements would be, without proper data to compare to. In addition, while the
results from the sentiment evaluation experiments were generally good, the results are
also limited by the standard evaluation metric results being quite poor. Poetry with a
higher grammaticality and meaningfulness score will consequently mean that the human
readers have a better understanding of the text and any potential meaning that might
exist within it, which could result in better results from the sentiment evaluation, but
also result in the sentiment evaluation becoming more accurate. It is therefore fair to say
that both the sentiment value results, and the validity of the results, are both impacted
by the standard evaluation metrics scores, and the poor results from the LSTM model
training. Even so, the results from the sentiment evaluation experiments were still good
enough, with a clear majority perceiving the poetry to have the sentiment value that
was intended and a very minor amount perceiving the opposite sentiment, to conclude
that the system was able to generate poetry with an inherent sentiment value that was
perceived by human judges.
As discussed in the previous section (see 7.1), the degree of sentiment value for the

generated poetry differs greatly between the Vader rating and the rating given by the
human judges. The generally poor word choices and sentence structure generated by
the system, reflected in the grammaticality and meaningfulness results, probably has

64

7.2 Discussion

an impact on the degree results rated by the human judges. A text that is difficult to
understand or comprehend some meaning from, will be difficult to perceive some clear and
definitive degree of the sentiment or emotion that is perceived. The difference between
the human judge ratings and Vader ratings are also caused by the lack of words with a
sentiment value opposite of the value the poetry was intended to have. This causes Vader
to always reward a very high positive or negative sentiment value. Implementations
could have been experimented on to investigate whether using words with an opposite
sentiment value in the poetry would have a positive impact on the experiment results.
Adding more positive sentiment words in poems that were generally negative, or the
opposite, might increase the impact or create larger contrasts of the sentiment or emotion
that is perceived. In other words, adding more words with an opposite sentiment value
might increase the emotional dynamic of the poetry.

65

8 Conclusion and Future Work
This chapter contains a conclusion of the work that was conducted, the results achieved
and the possibilities for future work and further development.

8.1 Conclusion

In this master project, a system capable of generating poetry with inherent sentiment
has been designed and implemented. A literary study on computer generated poetry
and state-of-art-solutions in this field, has been conducted and used as motivation for
the design of the complete system presented in this thesis. The system consists of
several components, with the main component being a bi-directional Long Short-Term
Memory network used for generating word predictions based on a given input sequence.
The network was trained on a data set consisting of poetry written by humans. Other
components of the final generation system are algorithms and rule-based methods for
influencing word predictions and word choices during the generation process, and a search
algorithm for expanding the possibilities of generated sequences.

The implemented system was used to generate 20 poems in total, all consisting of two
stanzas with four lines each. 10 of the poems were generated to contain an inherent
positive sentiment value, while the other 10 were generated to contain a negative sentiment
value. Several experiments were conducted as part of this project, both regarding the
Long Short-Term Memory network and on the generated poetry. The first experiment was
on training different Long Short-Term Memory networks with varying architecture details,
with the goal of training the best performing network model to use in the implementation
of the final poetry generation system. Two other experiments were conducted on the final
generated poetry, both involving human judges evaluating the generated poetry. The first
of these experiment consisted of the judges evaluating the poetry based on three standard
evaluation criteria. This enabled evaluation of the performance of the poetry generation
system, as well as enabling to compare with other works that have been conducted in
this field. In the second experiment the human judges evaluated the sentiment value they
perceived generated poetry to contain, in order to investigate whether the system was
capable of generating poetry with an inherent sentiment value that would be perceived
as intended by human readers.
The results of the different experiments varied, with Long Short-Term Memory ex-

periments resulting in a word perplexity score that did not attain the same results as
other state-of-the-art solutions. The results of some standard evaluation metrics showed
prominent results with one of the metrics achieving similar values to some state-of-the-art
solutions, while the other metrics in the experiment gained poorer results, one reason

67

8 Conclusion and Future Work

being the influence from the sub-par prediction performance of the Long Short-Term
Memory network. The experiment for evaluating the sentiment of the generated poetry
produced good results. While there is a lack of similar experiment results by others to
compare with, results show a clear trend of the human judges perceiving the poetry to
contain the intended sentiment value.
The system presented in this thesis has evident opportunities for improvement in

several areas, but overall it contains state-of-the-art solutions and the results obtained
indicate that it manages to generate poetry with an inherent sentiment value, making it
a contribution to the field of Computer Generated poetry.

8.2 Future Work

Several features and advancements are possible to either experiment on or integrate
into the existing system. The system includes several different features and modules,
which could all be elaborated and enhanced based on more experimentation to find the
most optimal parameters and values. One important feature of the system that could be
developed further is the neural network model. This involves updating and improving
details of the implemented architecture, and possibly changing the training process, for
example implementing a LSTM model with stateful training.
In addition, possible future work could be to implement additional features or other

architectures, such as word embedding models or language models like BERT (Devlin
et al., 2018) which show prominent result for language and text generation. Other
architecture implementations could include the use of mutual reinforcement as this has
shown good results in state-of-the-art poetry generation (Yi et al., 2018). Both the
development of already implemented neural network, and the possible additional features,
could all benefit with enhancing the prediction performance of the system.
The data set used to train the neural network model implemented in the poetry

generation system is something has a considerable effect on the system’s performance and
the generated poetry. Possible developments of the system could include using different
data sets, especially data containing poetry of a generally accepted higher quality, as
this probably would improve the system. The poetic form and features is also something
that could be improved with further development, as this was not focused on in the
implemented system. Adding only perfect rhymes for rhyme pair generation, or a strict
poetic form based on syllables, such as the sonnet form, could improve the poetic qualities
of the generated poetry.
The main feature of the generation system was to generate poetry with an inherent

sentiment, and this feature could also be further developed. Firstly, the system needs to
generate poetry with a wider range of sentiment value words, as the current system only
uses words with either neutral sentiment value, or a sentiment value corresponding to the
intended sentiment. Adding more words with an opposite sentiment value could increase
the emotional dynamic of the poetry. The sentiment feature could also be extended to
generate poetry with a wider range of different emotions, for example by using emotional
modelling in a similar way to Misztal and Indurkhya (2014). Optionally, the system

68

8.2 Future Work

could be adapted to generate poetry with an inherent degree of a specific sentiment, and
not just a general negative or positive value.

69

Bibliography
Agnar Aamodt and Enric Plaza. Case-based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Commun., 7(1):39–59, March 1994.
ISSN 0921-7126. URL http://dl.acm.org/citation.cfm?id=196108.196115.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014. URL
http://arxiv.org/abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. METEOR: An Automatic Metric for MT Evaluation
with Improved Correlation with Human Judgments. In IEEvaluation@ACL, 2005.

John Benhart, Tianlin Duan, Peter Hase, Liuyi Zhu, and Cynthia Rudin. Shall I Compare
Thee to a Machine-Written Sonnet? An Approach to Algorithmic Sonnet Generation.
CoRR, abs/1811.05067, 2018. URL http://arxiv.org/abs/1811.05067.

Margaret M. Bradley and Peter J. Lang. Affective Norms for English Words (ANEW):
Instruction manual and affective ratings, 1999.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.
org/abs/1406.1078.

Simon Colton, Jacob Goodwin, and Tony Veale. Full-FACE Poetry Generation. In Pro-
ceedings of ICCC-2012, the 3 rd International Conference on Computational Creativity,
2012.

Daniel D. Corkill. Blackboard systems. AI Expert, 6:40–47, 1991.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, New York, NY, USA, 1991.

Li Deng and Dong Yu. Deep Learning: Methods and Applications. Foundations
and Trends R© in Signal Processing, 7(3–4):197–387, 2014. ISSN 1932-8346. doi:
10.1561/2000000039. URL http://dx.doi.org/10.1561/2000000039.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

71

http://dl.acm.org/citation.cfm?id=196108.196115
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1811.05067
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1561/2000000039
http://arxiv.org/abs/1810.04805

Bibliography

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451–2471, 2000. doi: 10.1162/
089976600300015015. URL https://doi.org/10.1162/089976600300015015.

Pablo Gervas. WASP: Evaluation of Different Strategies for the Automatic Generation
of Spanish Verse. In University of Birmingham, pages 93–100, 2000.

Pablo Gervás. An Expert System for the Composition of Formal Spanish Poetry. In Ann
Macintosh, Mike Moulton, and Frans Coenen, editors, Applications and Innovations
in Intelligent Systems VIII, pages 19–32, London, 2001. Springer London. ISBN
978-1-4471-0275-5.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. Hafez: an Interact-
ive Poetry Generation System. pages 43–48, 01 2017. doi: 10.18653/v1/P17-4008.

Hugo Gonçalo Oliveira. PoeTryMe: a versatile platform for poetry generation. volume 1,
article 21, 08 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

C.J. Hutto and Eric Gilbert. VADER: A Parsimonious Rule-based Model for Sentiment
Analysis of Social Media Text. 01 2015.

Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521:436–44, 05
2015. doi: 10.1038/nature14539.

Robert P. Levy. A Computational Model of Poetic Creativity with Neural Network as
Measure of Adaptive Fitness. 2001.

Bing Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 2012.
ISBN 1608458849, 9781608458844.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Michael Noseworthy, Laurent Charlin,
and Joelle Pineau. How NOT To Evaluate Your Dialogue System: An Empirical
Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. CoRR,
abs/1603.08023, 2016. URL http://arxiv.org/abs/1603.08023.

H. Liu and P. Singh. ConceptNet &Mdash; A Practical Commonsense Reasoning
Tool-Kit. BT Technology Journal, 22(4):211–226, October 2004. ISSN 1358-3948.
doi: 10.1023/B:BTTJ.0000047600.45421.6d. URL http://dx.doi.org/10.1023/B:
BTTJ.0000047600.45421.6d.

72

https://doi.org/10.1162/089976600300015015
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1603.08023
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d

Bibliography

Hisar Maruli Manurung. An evolutionary algorithm approach to poetry generation.
University of Edinburgh. College of Science and Engineering. School of Informatics.,
2004.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):
313–330, 1993. URL https://www.aclweb.org/anthology/J93-2004.

Merriam-Webster. poetry, 2018. URL https://www.merriam-webster.com/
dictionary/poetry. [Online; accessed 01-December-2018].

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs
(3rd Ed.). Springer-Verlag, Berlin, Heidelberg, 1996. ISBN 3-540-60676-9.

Rada Mihalcea and Paul Tarau. TextRank: Bringing Order into Text. In Proceedings
of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004.
URL http://aclweb.org/anthology/W04-3252.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. CoRR, abs/1301.3781, 2013.

Joanna Misztal and Bipin Indurkhya. Poetry Generation System With an Emotional
Personality. 06 2014.

Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin. Sequence to Backward
and Forward Sequences: A Content-Introducing Approach to Generative Short-Text
Conversation. CoRR, abs/1607.00970, 2016. URL http://arxiv.org/abs/1607.
00970.

Allen Newell, JC Shaw, and Herbert Alexander Simon. The Processes of Creative
Thinking: Presented at a Symposium on Creative Thinking, University of Colorado,
Boulder, Colorado, May 16, 1958. Rand Corporation, 1959.

Oxford English Dictionary. poetry, 2018. URL http://www.oed.com/view/Entry/
146552? [Online; accessed 01-December-2018].

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th An-
nual Meeting on Association for Computational Linguistics, ACL ’02, pages 311–
318, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.1073135.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vectors
for Word Representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-
1162.

73

https://www.aclweb.org/anthology/J93-2004
https://www.merriam-webster.com/dictionary/poetry
https://www.merriam-webster.com/dictionary/poetry
http://aclweb.org/anthology/W04-3252
http://arxiv.org/abs/1607.00970
http://arxiv.org/abs/1607.00970
http://www.oed.com/view/Entry/146552?
http://www.oed.com/view/Entry/146552?
https://doi.org/10.3115/1073083.1073135
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Bibliography

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323:533–, October 1986. URL
http://dx.doi.org/10.1038/323533a0.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL http:
//jmlr.org/papers/v15/srivastava14a.html.

Carlo Strapparava and Alessandro Valitutti. WordNet-Affect: an Affective Extension of
WordNet. Vol 4., 4, 01 2004.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 2st edition, 2015.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. Senti-
ment strength detection in short informal text. Journal of the American Society for
Information Science and Technology, 61(12):2544–2558, 2010. doi: 10.1002/asi.21416.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.21416.

Aleksey Tikhonov and Ivan Yamshchikov. Sounds Wilde. Phonetically Extended Embed-
dings for Author-Stylized Poetry Generation. In Proceedings of the Fifteenth Workshop
on Computational Research in Phonetics, Phonology, and Morphology, pages 117–124,
2018a.

Aleksey Tikhonov and Ivan P Yamshchikov. Guess who? Multilingual approach for
the automated generation of author-stylized poetry. arXiv preprint arXiv:1807.07147,
2018b.

Qixin Wang, Tianyi Luo, Dong Wang, and Chao Xing. Chinese Song Iambics Generation
with Neural Attention-based Model. CoRR, abs/1604.06274, 2016a. URL http:
//arxiv.org/abs/1604.06274.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li, Haifeng Wang, and Enhong
Chen. Chinese Poetry Generation with Planning based Neural Network. CoRR,
abs/1610.09889, 2016b. URL http://arxiv.org/abs/1610.09889.

Rui Yan. I, Poet: Automatic Poetry Composition Through Recurrent Neural Net-
works with Iterative Polishing Schema. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’16, pages 2238–2244. AAAI
Press, 2016. ISBN 978-1-57735-770-4. URL http://dl.acm.org/citation.cfm?id=
3060832.3060934.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. Generating Chinese Classical Poems with
RNN Encoder-Decoder. CoRR, abs/1604.01537, 2016. URL http://arxiv.org/abs/
1604.01537.

74

http://dx.doi.org/10.1038/323533a0
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.21416
http://arxiv.org/abs/1604.06274
http://arxiv.org/abs/1604.06274
http://arxiv.org/abs/1610.09889
http://dl.acm.org/citation.cfm?id=3060832.3060934
http://dl.acm.org/citation.cfm?id=3060832.3060934
http://arxiv.org/abs/1604.01537
http://arxiv.org/abs/1604.01537

Bibliography

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Wenhao Li. Automatic Poetry Generation
with Mutual Reinforcement Learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3143–3153. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/D18-1353.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Network Regu-
larization. CoRR, abs/1409.2329, 2014. URL http://arxiv.org/abs/1409.2329.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang, Andrew Abel, Shiyue Zhang, and
Andi Zhang. Flexible and Creative Chinese Poetry Generation Using Neural Memory.
CoRR, abs/1705.03773, 2017. URL http://arxiv.org/abs/1705.03773.

Xingxing Zhang and Mirella Lapata. Chinese Poetry Generation with Recurrent Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 670–680. Association for Computational Linguistics,
10 2014.

75

http://aclweb.org/anthology/D18-1353
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1705.03773

Appendices

1 Poems generated with negative sentiment

In this appendix all the poems that were generated by the system to contain a negative
inherent sentiment, and used to conduct the poetry experiments (See shapter 6), are
presented. Along with every poem is their individual score results from the experiments,
where the three scores in the first array represent the grammaticality, meaningfulness
and poeticness scores, which are explained in detail in section 6.3. The second array
represents the percentage of human judges who found the poem to contain either a
negative, neutral, or positive sentiment value, in the specific order.

Poem 1

Case many Samson your heartbreak than war me this scented,
You nothing gone but he ambition,
Crime young being will disappointed,
Old stop on pain responsible it suspicion.

No lies at bane your photo the poor fateful,
Roads fear yet speak devious,
Our so protruding it hurtful,
Of grime no untouchable a envious.

Metric evaluation scores: [1.4, 1.7, 2.1]
Sentiment evaluation scores: [0%, 20%, 80%]

77

Appendices

Poem 2

Sobs every tears by no rushing in the became formation,
Most which souls completely the remain this calculation,
Are worst the be scene rush in unwanted resignation,
Sobs every tears by no rushing without the confrontation.

Our so most from the when horns,
Devils poor tall being eye in loves delivering,
So most which earth are their warns,
No rushing up Radha forgotten wavering.

Metric evaluation scores: [1.9, 1.7, 2.4]
Sentiment evaluation scores: [0%, 10%, 90%]

Poem 3

Of ravishing sin was naturally deprivation,
Of war suffering it tired than two then a situation,
And the go on no lies at finding they frustration,
Of voice are their seven then limitation.

The forest in mystic hands understood,
A trapped on must words most from your unarmed,
With wind raging to our misunderstood,
As a entire my that alarmed.

Metric evaluation scores: [1.7, 1.5, 2.5]
Sentiment evaluation scores: [0%, 20%, 80%]

Poem 4

And a gun destiny are their imitation,
Tension miss no lies at bane your mansion,
Of supply like hate two honestly frustration,
Ashamed no together life what tension.

Most from an or all soul of simultaneously,
Worries many left on earthlings,
Violent vast mm little those anxiously,
The bad blocked you crime there of pain killings.

Metric evaluation scores: [1.7, 1.4, 2.1]
Sentiment evaluation scores: [0%, 20%, 80%]

78

1 Poems generated with negative sentiment

Poem 5

And poisoned old earned so most from the waking,
Be scene rush in kids of two consideration,
Avoid your for to all meaning means two shaking,
Pain are their of your through an till the agitation.

Of nails in muddy sins fathered,
Two than violent to abandoned explanation,
An petty on must guns in them bothered,
War so most from mansion no rushing without the desperation.

Metric evaluation scores: [1.09, 1.64, 2.09]
Sentiment evaluation scores: [9%, 9%, 82%]

Poem 6

An petty no stupid my if skin before presentation,
Of war so most from their through the agitation,
I now a plains lowered accusation,
As raw steady in unwanted no market little those devastation. In avoid to

after our so most from devastation,
Of war so most from indian to decoration,
By neck most from accusation,
Amid unwritten the when no furious in unwanted too confrontation.

Metric evaluation scores: [1.18, 1.55, 2.18]
Sentiment evaluation scores: [9%, 36%, 55%]

Poem 7

Love of three never new my eternally listening,
A home be around thickening,
Violence many left on you nothing gone but a deafening,
Be will nothing gone school no together life frightening.

Empty mystery are their conflagration,
Down Radha forgotten no lies at you retaliation,
A c no lies most the flaming in yellow damnation,
No alcohol what with manipulation.

Metric evaluation scores: [1.46, 1.91, 2.0]
Sentiment evaluation scores: [9%, 27%, 64%]

79

Appendices

Poem 8

For worst the all sleep as hearted of unpredictable,
So most from an till sensations,
Poor tall being eye in goes horrible,
Without the when todays so most from contradictions.

Kept on humanitys your soft in night a frightening,
Amid to our so most from currently,
In unwanted of feminine with sickening,
By no lies at impatiently.

Metric evaluation scores: [1.22, 1.22, 1.89]
Sentiment evaluation scores: [0%, 56%, 44%]

Poem 9

Hell new nature he ovation,
Avoid your for no uncontrollable,
All sleep most from rippling damnation,
River in night declared tall as raw vulnerable.

Burdens in unwanted no halls each roasted,
By talking demand walking dreadful fortress,
So most from the sudden wasted,
Alone mind heavy in night are wealth disastrous.

Metric evaluation scores: [1.22, 1.44, 1.78]
Sentiment evaluation scores: [0%, 22%, 78%]

Poem 10

To me a old ago latent,
No lies at avoid your silver evil and participation,
Nothing gone but are their of your through unimportant,
A ink by no rushing without the try confrontation.

So most from using violent what in sin of incredible,
Amid unwritten the wicked it heard in now affirmation,
As you alone mind beyond cracked several uncomfortable,
So wearing in unwanted no recognizes above isolation.

Metric evaluation scores: [1.56, 1.44, 1.89]
Sentiment evaluation scores: [0%, 56%, 44%]

80

2 Poems generated with positive sentiment

2 Poems generated with positive sentiment
In this appendix all the poems that were generated by the system to contain a positive
inherent sentiment, and used to conduct the poetry experiments (See shapter 6), are
presented. Along with every poem is their individual score results from the experiments,
where the three scores in the first array represent the grammaticality, meaningfulness
and poeticness scores, which are explained in detail in section 6.3. The second array
represents the percentage of human judges who found the poem to contain either a
negative, neutral, or positive sentiment value, in the specific order.

Poem 11

Be vibrates I now its like gets eye formidable,
And the top in love of voice the relaxation,
Most from I now a spirit the temptation irresistible,
I now sit tree is determination.

Like voices most from peace of reliable,
Like desert in find sweet stretched portions,
As a never fondness was their honorable,
Like then a high body my attractions.

Metric evaluation scores: [1.4, 1.4, 2.0]
Sentiment evaluation scores: [60%, 40%, 0%]

Poem 12

The forest in mystic hands most from reformed,
Freedom such like then a writers that paper indelible,
Most from I now a snowy little warmed,
An would past grand steep indestructible.

Sweet quickened merry little playing you another amplified,
In love we following like want many expressing,
I showing like then a entire my that sticky unified,
As soil in love of blessing.

Metric evaluation scores: [1.4, 1.7, 2.0]
Sentiment evaluation scores: [60%, 20%, 20%]

81

Appendices

Poem 13

A food by two the la best pans implacable,
For many highly which with commits,
I happy my that thoughts most from lovable,
As a never find admits.

Enjoy like then of depicted,
As a entire to words most from advancement,
The hoof in love I attracted,
Like whoa best mental enjoyment.

Metric evaluation scores: [1.3, 1.2, 2.1]
Sentiment evaluation scores: [40%, 50%, 10%]

Poem 14

Without the oozing in night quickly divine thin lovable,
Like non focused best gods so wearing on contentment,
Bliss most from victory like favorable,
Without the respected of your improvement.

A dusty amid to governments,
Like mother of god be will certain the exceptions,
Amid to our so most from the do innocents,
In love a feeling most which are their solutions.

Metric evaluation scores: [1.73, 1.73, 1.91]
Sentiment evaluation scores: [82%, 18%, 0%]

Poem 15

For thought emotional good unspeakable,
All happily heard yesterdays like violet ended,
In night holiday times invincible,
Our so most from holiday you forgive like non recommended.

A dusty amid your if medicated,
The up contentment pleasures most from the heart by tender,
Be scene rush in kids of witness infatuated,
Wells in kids is like then splendor.

Metric evaluation scores: [1.73, 1.64, 1.91]
Sentiment evaluation scores: [64%, 27%, 9%]

82

2 Poems generated with positive sentiment

Poem 16

Be scene rush in kids of silky lovable,
So most from contentment own solve the onward politicians,
Peace like is in wish a all meaning not enjoyable,
Peace like is in love a youthful passions.

Avoid like non the great definite,
Amid to our so most from the great enchantment,
Amid to neath our so most from fortunate,
La best gods so most from their as encouragement.

Metric evaluation scores: [1.64, 1.64, 1.91]
Sentiment evaluation scores: [67%, 45%, 11%]

Poem 17

In gained on must defends,
So most from the when undeniable,
Awesome so most from chosen friends,
Be will nothing gone but are their noble something admirable.

Our so most from the respected of perishable,
Our so most from emotional good the liberation,
Amid to neath our so most from the shallow lovable,
Old earned like is its in to a adoration.

Metric evaluation scores: [1.46, 1.82, 2.18]
Sentiment evaluation scores: [82%, 18%, 10%]

Poem 18

Enjoy like stare tree is odds most from purity,
My that heaven mind most from an orchestrated,
And the senses most from an or authority,
In love a frosted to neath some has sophisticated.

In love of sweet quickened merry little those reaches predestined,
In love of sweet quickened crests to thoughtfully,
Life run on must behind grand screens I only brightened,
Like then a sand in thou the glad gratefully.

Metric evaluation scores: [1.44, 1.56, 1.89]
Sentiment evaluation scores: [44%, 44%, 11%]

83

Appendices

Poem 19

In peace on love as mysterious,
He the bended that thoughts most from lever,
Celebrating like thorns most from mouths curious,
Like voices every flesh clever.

Most from I now a freedom was purposeful,
Like then a goodness and the white fervently,
Be will every virgin that its like want useful,
From I only a ha importantly.

Metric evaluation scores: [1.44, 1.67, 2.11]
Sentiment evaluation scores: [33%, 56%, 11%]

Poem 20

Photo the hail july you into delightfully,
With means like stories the when two never adulation,
Laughter upon play you beautiful it gracefully,
A one and love of great creation.

Like non down same the just appointments,
Like clicking one vu what reservation,
Like then holiday you now commitments,
Is like dreams as you anticipation.

Metric evaluation scores: [1.78, 1.78, 1.73]
Sentiment evaluation scores: [56%, 44%, 0%]

84

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Kasper Aalberg Røstvold

Once More, with Feeling

Computer Generated Poetry with Inherent
Sentiment

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

July 2019

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Poetry
	Artificial Intelligence Methods
	Reinforcement Learning
	Deep Learning
	Artifical Neural Nets
	Recurrent Neural Nets
	Long Short-Term Memory Networks

	Natural Language Processing
	Text Processing and Representation
	Sentiment Analysis

	Frameworks
	Keras
	Natural Language Toolkit
	Vader

	Evaluation of poetry

	Related Work
	Different Approaches to Poetry Generation
	Template-Based Poetry Generation
	Generate and Test Approaches
	Evolutionary Approaches
	Case-Based Reasoning Approaches
	Corpus-Based Approaches
	Blackboard Architecture

	Recent Approaches that implement Neural Networks
	Advancement of Neural Models
	Format Constraints
	Planning Schema
	Polishing Schema
	Memory Component
	Author-Stylization
	Mutual Reinforcement Learning

	Sentiment in Poetry Generation

	Data set
	Architecture
	The Long Short-Term Memory (LSTM) network
	Training data
	Architecture of the network model

	Poetry generation system

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Training and evaluating Long Short-Term Memory networks
	Evaluating the generated poetry

	Experimental Results
	Training of the Long Short-Term Memory network
	Results from Evaluation of the Generated Poetry

	Evaluation and Discussion
	Evaluation
	Evaluating the Long Short-Term Memory networks
	Evaluating the generated poetry

	Poem 8
	Poem 14
	Poem 3
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Poems generated with negative sentiment
	Poem 1
	Poem 2
	Poem 3
	Poem 4
	Poem 5
	Poem 6
	Poem 7
	Poem 8
	Poem 9
	Poem 10
	Poems generated with positive sentiment
	Poem 11
	Poem 12
	Poem 13
	Poem 14
	Poem 15
	Poem 16
	Poem 17
	Poem 18
	Poem 19
	Poem 20

