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Abstract

Segmenting time series data is an essential problem in human activity recognition.
An increasing area of interest in this field has been automatically recognizing
and logging workouts by using data from wearable sensors like smartwatches and
phones. Using deep learning technology in these devices requires models that are
computationally efficient to conserve power. This thesis will focus on segmenting
sets and repetitions from a workout of weight lifting exercises. These segments
can further be used to count sets and repetitions from performed exercises during
a workout. Extracting the number and type of these events are significantly more
straightforward to do on a segmented sequence, compared to algorithms applied
directly on the raw data. To solve this task, a LSTM based model is proposed
that segments both the exercise activity and the repetitions at the same time.
Data from full workouts, performed in a real-life scenario, is collected to perform
experiments and show the performance of this model. The model can segment
the time series in such a way that minimal filtering would be required in order
to apply a simple algorithm to count repetitions.
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Sammendrag

Segmentering av tidsdata er et sentralt problem i menneskelig aktivitetsgjenkjen-
ning. Et omr̊ade med økende interesse er å automatisk kunne generere sammen-
drag av treningsøkter ved hjelp av data fra smarttelefoner og smartklokker. Å
bruke dyp læring i disse elektroniske enhetene krever at modellene er er effektive
slik at enhetene skal ha et minimal strømforbruk. Denne oppgaven fokuserer p̊a
å segmentere sett og repetisjoner fra styrkeøvelser utført i en treningsøkt. De
segmenterte delene kan videre brukes til å telle antall sett og repetisjoner for
øvelsene utført i økten. Å finne antall sett og repetisjoner er vesentlig enklere
å gjøre p̊a en sekvens av disse segmentene enn det er å designe algortimer som
brukes direkte p̊a r̊adataen. For å løse segmenteringsoppgaven blir det utviklet
en LSTM basert modell som samtidig segmenterer ut øvelsene og repetisjonene
som utføres. Data blir innsamlet fra treningsøkter som utføres s̊a realistisk som
mulig. Modellen blir trent og testet p̊a denne dataen for å teste ytelsen. Modellen
klarer å segmentere tidsseriene p̊a en m̊ate som gjør at minimal filtrering ville
være nødvendig for å kunne bruke en simpel algoritme for å telle repetisjonene.
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Chapter 1

Introduction

This chapter motivates the purpose and goal of this thesis. Section 1.1 gives a
brief explanation of the driving forces that motivated the research in this thesis.
In Section 1.2 it establishes a research goal and research questions to help guide
the research towards efficiently and accurately segment exercise activities and
repetitions in time series data. Then, Section 1.4 provides an overview of the
main chapters in this thesis and their contents.

1.1 Background and Motivation

Fitness tracking devices and applications are becoming a more central part of
many peoples workout regiment. Logging these workouts manually is tedious
and is required to do consistency over longer periods of time in order to pro-
vide valuable information to the user. Smartphones or wearable devices such
as smartwatches contain sophisticated and a wide selection of sensors capable
of recording high frequency time series data. These devices makes it possible
to detect exercise activities such as running, cycling and swimming. They can
automatically create entries in a workout dairy, only requiring the user to wear
the device during the activity.

Fitness trackers logging weight lifting workouts are however less common.
Endurance based activities are easy to recognize in a datastream as they consist
of a movement pattern that is continuously performed over longer periods of time.
Logging these workouts does in many cases only consist of finding the start and
the end of the activity. The activities performed during a weight lifting workout
are significantly different, and so is the requirement of details in the logging of
these activities. The lifting activities in such workouts are short events compared
to total time spent on the workout. Logging such a workout consists of counting
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2 CHAPTER 1. INTRODUCTION

the number of sets and repetitions performed, for each exercise performed.
Deep learning has proved to be a great tool in many fields due to its ability

to automatically extract features from raw sensor data. It does, however, often
require significantly more computational resources than traditional methods. To
use this technology in devices like smartphones and smartwatches, power efficient
and computationally efficient models have to be used. This thesis will attempt
to create a recurrent deep learning model able to segment exercise activities and
repetitions from time series of weight lifting workouts.

1.2 Research Goal and Questions

To reach the goal of efficiently and accurately segmenting time series from work-
outs, a research goal and a set of research questions were made to guide the
research. It is essential to get an overview of what work has already been done
to solve these tasks, and that can inspire and guide the research of this thesis.

Research Goal Segment motion data from weightlifting exercises such that sets
and repetitions can be recognized.

Automating recognizing sets and repetitions in time series data from weight
lifting workouts consist of segmenting out sets and repetitions from time
series data. The goal is to find a way to segment time series data from
weight lifting workouts into a set of predefined categories.

To create more fundamental tasks that can be solved to accomplish the goal,
two research questions are formulated. These questions are the following:

Research question 1 What are state of the art methods for segmenting time
series data of workout activities?

Research question 2 How can repetitions of a given exercise be recognized?

1.3 Research Method

To address the research questions stated in 1.2, a structured literature review will
be carried out to find state-of-the-art methods for worn sensor-based exercise and
repetition recognition. A model will be designed and tested with experiments
to quantify its performance. Data for these experiments will be collected from
various participants performing weight lifting workouts. The reason for collecting
a dataset specifically for this thesis is to have full control of the data pipeline such
that the collected data is as realistic as possible. The data collected will be from
a sensor worn by the participants while performing the workout. The literature



1.4. THESIS STRUCTURE 3

review and collected data will then jointly be the basis of which the the model and
the experiment is designed. The results from the experiments will then attempt
to answer the research questions.

1.4 Thesis Structure

This section describes the remaining structure of the thesis, and provides a brief
summary of the content in the chapters.

• Chapter 2: Background Theory And Motivation provides an in-
troduction to the theory required to understand the model used for the
experiments as well as the meaning of the results. It also explains the pro-
cess of conducting a structured literature review and how the review was
performed for this thesis. It presents the related work found from this re-
view and how the research questions stated in 1.2 can be addressed as well
as motivated the work of this thesis.

• Chapter 4: Methodology presents the approach taken to collect data,
and how to was preprocessed. It justifies the choice of a recurrent model to
solve the task of segmenting activity data both by activity type and rep-
etitions. Then, the method used for training and evaluating the proposed
model is presented.

• Chapter 5: Experiments and Results presents the experiment that was
conducted, and describes the hyperparameter values that were used for the
model in the experiment. It then presents the results of the experiment,
and an analysis is performed to evaluate these results.

• Chapter 6: Conclusion discusses the validity of the results, potential
sources of errors or bias as well as shares additional thoughts on how to
improve the data collection process. For future work, design choices that
might provide better results, as well as other ways to improve the perfor-
mance and applicability of the method used in this project are discussed.
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Chapter 2

Background Theory

This chapter present the basic theory needed to understand the methodology and
experiments conducted in this thesis. Section 2.1.1 briefly presents the difference
between artificial intelligence, machine learning and deep learning. Section 2.1.2
explains the basic function of neural networks while Section 2.1.3 talks about
how these networks often needs to be regularized in order to generalize to new
data. Then, in Section 2.1.3, some theory about recurrent neural networks are
presented.

2.1 Background Theory

2.1.1 Machine Learning

While humans through the times have been preoccupied with understanding bio-
logical intelligence, the field of artificial intelligence (AI) concerns building intel-
ligent entities. AI is a new field relative to many other scientific fields, emerging
shortly after the second world war. Today it is a growing field with active re-
search and practical applications in many domains. In Russell and Norvig [2016]
they explore AI by looking at the rational agent, which they define as an agent
that acts to achieve the best expected outcome given its perceptions.

A sub-field of AI with much traction these days is Machine Learning. Ma-
chine learning concerns learning by generalizing from examples. This is done by
learning a function from a collection of input-output pairs that try to predict
the outputs of previously unseen pairs correctly. For a classification problem,
the output is a subset of predetermined categories, while a regression problem
has continuous output values. Enabling a rational agent to learn and improve
allows it to react to changes over time that cannot be anticipated when they

5



6 CHAPTER 2. BACKGROUND THEORY

are designed. It also allows for solving some problems that humans solve intu-
itively, but human programmers might have a hard time decomposing and solving
programmatically.

Simple machine learning algorithms depend strongly on the representation of
the data provided to them[Goodfellow et al., 2016]. Representations consist of
several features describing the data. While many tasks can be solved success-
fully by designing the right set of features and giving them as input to a simple
machine learning algorithm, deciding what features to use can be a cumbersome
process. It can be challenging to know what features should be extracted and how
they should be composed. Representation learning considers approaches where
machine learning is used to discover both the mapping from representation to
output and the representation itself[Goodfellow et al., 2016].

The field of deep learning is again a sub-field of representation learning. The
solution proposed by deep learning is to allow computers to learn to represent
the world hierarchically. Hierarchies of abstractions are learned where more com-
plicated abstractions are defined in terms of simpler abstractions. These ab-
stractions can be learned from raw data, which removes the need for formal
specification and feature engineering by humans.

2.1.2 Neural networks

An example of a deep learning model is a neural network. Neural networks were a
result of loose inspiration by neuroscience and the hypothesis that mental activity
mainly consists of electrochemical activity in brain neurons [Russell and Norvig,
2016]. A neural network defines a function ŷ = f(x;θ) where ŷ is the network
output, x is the network input and θ are the parameters learned by the network
to best approximate the training data.

A neural network consists of interconnected layers of computational units.
Each unit combines its inputs xu with their associated weights wu, a constant
bias term bu and an activation function fu(z) into a single output or activation
yu = fu(xu �wu + bu). The features from the data are the inputs to the first
layer. In most network architectures, the subsequent layers get their inputs from
the activations of the preceding layer. The first layer is known as the input layer,
the last layer as the output layer, and the layers of units in between are known
as hidden layers. The number of layers gives the depth of the network, and the
term ”deep learning” arises from this terminology[Goodfellow et al., 2016]. Each
layer outputs an encoding of the input that is then given as input to the next
layer. In feedforward neural networks (FFNN), the information flows from the
input x to the input layer, through to the subsequent hidden layers and finally
to the network output ŷ with no feedback connections. More complex versions
of neural networks allow feedback connections and are called recurrent neural
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Figure 2.1: Three popular activation functions. From left: Linear activation,
sigmoid activation and ReLU activation

networks (RNNs).

Several different activation functions can be used in the network units. Pop-
ular choices are sigmoids, tanh and the rectified linear unit (ReLU). Another
possible activation function is the identity function y = x. If the identity func-
tion is used as the activation function in the entire network, all the network
calculates is a linear combination of its inputs. The other mentioned activation
functions add non-linearities to the network, which increase the expressive power
substantially.

Some popular activation functions are presented visually in figure 2.1.

During training, the network output ŷ is compared to the labeled training
output y. Any deviation of ŷ from y attributes to the cost or loss of the model.
The choice of the loss function is an vital aspect of the design of a deep neural
network, and its specifics are connected to the choice of activation function in the
last layer. Most modern neural networks are trained using maximum likelihood
estimation, where the likelihood P (y|x;θ) is maximized for all samples in the
dataset jointly by finding the optimal settings for θ. Maximizing the likelihood
is equivalent to minimizing the mean squared error (MSE) in the case where you
have a single linear output unit that produces ŷi = wThi + b for the m training
examples in X with hi as the encoding of xi in the last hidden layer [Goodfellow
et al., 2016, p. 134]. MSE is a loss function often used with regression tasks.

MSE =
1

m

m∑
i=1

(yi − ŷi)2 (2.1)

The learning in a neural network takes the form of updating the weights
and biases in the network to minimize the loss function. The loss is propagated
through the model to update all weights and biases in the direction that makes
the loss decrease. For a given weight, the update that makes the loss decrease
the most is the update in the opposite direction of the gradient of the loss in
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regards to the weights. Since the gradient specifies the direction in which the
error increases the most, the parameters are changed in the opposite direction.
How much the weights are changed depends on the size of the gradient and a
parameter known as the learning rate or step size. Thus the update to a given
weight w given a learning rate η and loss L is given by

∆w = −η ∂L
∂w

(2.2)

The method for computing the gradient for individual weights is known as the
back-propagation algorithm[Rumelhart et al., 1986], while the basis algorithm
for updating the weights is the gradient descent algorithm. The basis of the
back-propagation algorithm is the chain rule from calculus. Given the example
shallow feedforward neural net ŷ = f(x1, x2;θ) = fa(w1x1 +w2x2 + b), a general
loss function L(ŷ) and activation function fa, the loss propagates to the weight
w1 the following way:

∂L

∂w1
=
∂L

∂ŷ
· ∂ŷ
∂z
· ∂z
∂w1

= L′(ŷ) · f ′a(w1x1 + w2x2 + b) · x1 (2.3)

The z in the example above is the intermediate result z = w1x1 + w2x2 +
b. This becomes more complicated for more larger network structures, but the
principle is the same.

A problem that can come up when doing back-propagation for very deep
network structures is vanishing or exploding gradients. This comes up for deep
structures as the calculation of the gradients will involve the multiplication of
many factors. It can thus blow up if the factors are large or vanish if the factors
are small. Vanishing gradients make learning difficult as the direction to modify
the parameters becomes unknown. This is especially a problem for the first layers
as the information from the computed error vanishes as it propagates backwards
through the network. Exploding gradients make the learning unstable as the
updates to the weights will be huge. This might make the weights jump around
between updates and fail to converge. These problems are particularly prominent
in RNNs when the same weights W are applied at each time step of a long
temporal sequence.

The non-linearities introduced to the network to enhance expressive power
lead to the loss function being non-convex. This makes the training procedure
sensitive to the initial network parameters as the loss can decrease to different
local minima, or in some cases not converge at all. The initial point can also affect
the generalization of the model. Typically, biases are initialized to small constants
while the weights are set randomly[Goodfellow et al., 2016, p. 302]. Randomly
choosing the initial weights breaks symmetry in the learning, and enables the
individual units of a layer to learn different features. Often a Gaussian or uniform
distribution is used to draw the weights.
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Training in a neural network is done by feeding training examples X through
the network, comparing the model output Ŷ to the target output Y , calculating
and back-propagating the loss and updating the weights. Different choices can
be made of how many examples to feed through the model and accumulating
loss before updating the weights. The extreme endpoints are stochastic gradient
descent and batch gradient descent. While batch gradient descent computes the
updates to the weights using the whole dataset, stochastic gradient descent does
it for a subset of the dataset at a time. The subset of samples used for one update
is called a mini-batch. A pass through all of the training data is known as an
epoch, and usually, many epochs are needed.

Other design choices when constructing a deep neural network include the
number of layers, the number of units per layer, and the overall network struc-
ture. In fully connected networks, every node in the preceding layer forwards
its output to every node in the next layer. Other popular architectures are con-
volutional neural networks(CNNs) and RNNs. Gradient descent is one of many
choices of optimization algorithms for neural networks, where extensions like
Adam [Kingma and Ba, 2014] and AdaGrad [Duchi et al., 2011] exist that extend
the simple gradient descent algorithm with features like momentum and adaptive
learning rates. There is no consensus on which optimizer to prefer [Goodfellow
et al., 2016, p 309].

2.1.3 Regularization techniques

The real challenge in machine learning is not to train a model that makes perfect
predictions for the training data, but to train a model that generalizes to unseen
samples. A range of methods address this issue and aim to increase test perfor-
mance, sometimes at the expense of training performance. These methods are
known as regularization techniques.

One of the simplest and most common regularization techniques is the L2

weight penalty which is commonly known as weight decay. It is parameterised
by the non-negative coefficient λ and adds the term 1

2λ||w||
2
2 to the loss function,

which penalizes large weights.

Another option is to use L1 regularization. It also penalizes large weights, but
by the absolute value instead of the square as in L2. Formally, ||w||1 =

∑
i(|wi|)

is added to the loss function. L1 loss leads to sparse weights as many weights
will be forced towards zero.

Dropout is another regularization technique. It involves randomly removing
non-output nodes during training. During inference, all nodes are kept. The
weights going out of a node are multiplied by the probability of the node being
kept during training if using what is called the weight scaling inference rule. A
useful characteristic of the technique is that it imposes few restrictions on the
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architecture of the model. It is computationally cheap per step but reduces the
capacity of the model, which leads to needing a bigger model and might require
more iterations to train.

By stochastically masking nodes, the model is forced to learn more robust fea-
tures that are good in many contexts, as different nodes co-occur during training
iterations. The application of masking of the hidden nodes can be seen as an in-
telligent and adaptive filtering of the information in the input [Goodfellow et al.,
2016].

RNNs and LSTMs

In contrast to predictions made from a single data sample, there also exist prob-
lems in which the temporal correlation between data samples are important.
Examples of these kinds of problems are speech recognition, machine translation,
processing of audio and video, and time series forecasting. All these problems
contain sequential data. Sequential data is data on the form {x(t)}Tt=0, where x(i)

is dependent on values prior to i.

Recurrent neural networks (RNNs) are a set of neural networks that specialize
in capturing temporal behavior in sequential data. To capture these patterns,
RNNs need something that FFNNs do not have, which is memory. This memory
needs to represent the essential information from the past sequence processed
by the network. It can use this memory, combined with the information at the
current time step to predict the output values for the next time steps.

RNNs keep a cell state C of fixed length to represent memory, similar to how
the output of hidden layers in FFNNs represent features at a given layer. The
state changes throughout the sequence as new input is processed. The state at
a given time in the sequence is denoted either C(t) or h(t) in literature. The
network processes a sequence of values x(i), and predicts values o(i). The input
values at x(t) are passed through a layer with weights U and the previous state
C(t−1) is passed through a layer with weights W, to extract features used to
update the state of the network C(t). This state is used to predict values o(t) by
passing the state through a layer with weights V. A diagram of how the inputs,
layers and outputs are arranged in a recurrent model is illustrated in Figure 2.2
If the task is to do time series forecasting, x(t) would be the value of the sequence
at the current time step, and the prediction o(t) could attempt to predict the
value x(t+1).

The cell state needs to hold information about the temporal features observed
in the past sequence of values. The state of the cell works as a lossy and com-
pact summary of the past. Since values of fixed length represent the state of
the network, information about the past sequence must eventually give way to
information from more recent values in the sequence to be stored. Hence, an
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Figure 2.2: Unrolled RNN. The diagram shows the relation of inputs, weights,
outputs and target values, as well as the information flow

RNN must learn to create a compact representation of observed features, in or-
der to produce outputs that rely on patterns with long term dependencies in the
sequence.

RNNs can be seen as a computational graph that contains cycles. The cycles
go from the cell state of the previous time step to the next. One of the advantages
of having a network with a cycle is parameter sharing. This means that it is
possible to train one model with one set of weights that can process sequences of
varying lengths.

For inference and backpropagation, the cycled graph is unfolded. This is done
by copying the network k times for an input sequence of length k, where all the
weights U, W, V are the same for each copy. Each network is connected to the
state of the previous through the layer with weights W. Each copy takes its own
input value from the sequence. A RNN, both as a cycled graph and unfolded,
can be seen in Figure 2.2 as well as how the weights, inputs, and outputs are
organized. By unfolding the network, it is possible to use the backpropagation
algorithm. This backpropagation works backwards through time through weights
W, and at each copy, a loss is calculated by comparing the output values to the
ground truth. Computing gradients for the layers in each copy of the network
will result in different updates to be applied in each copy even though a layer
shares the same set of weights in all the copies. Since the purpose is to create one
model, with one set of weights for each layer, the gradients must be aggregated,
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for example by averaging, to produce one set of gradients applied to the layers.
Vanilla RNN networks have an architecture that makes capturing long term

dependencies in sequences challenging. Features from the most recent values in
the sequence quickly overwrite the features observed in earlier observations. Con-
text is essential when predicting in the temporal domain, and with the memory
of past values quickly fading, vanilla RNNs struggle to solve problems where long
term dependencies are required to make predictions.

Solving the problem of remembering features needed for long term dependen-
cies in a sequence was done with a gated architecture proposed by Hochreiter
and Schmidhuber [1997]. This architecture was called LSTM (Long-Short Term
Memory) and significantly contributed to allowing the cell state to hold and re-
tain features extracted at different timescales. The architecture of an LSTM cell
is shown in Figure 2.3. The main contributions of LSTMs are the way the gates
modify the state of the cell. The gate structure allows the network to learn how
much to add and how much to delete from the cell state based on features ex-
tracted from the previous state and the current input. By letting the output from
the gates pass through a sigmoid activation function, a filter that can be applied
over a cell state is created. It decides how much of the information in the cell
state to keep since the sigmoid will output values in the range [0, 1].

The activations from the gates are applied by pointwise multiplication. The
input gate filters the inputs, the previous cell state is filtered by the forget gate,
and they are then combined by pointwise addition in order to create the new cell
state. The new cell state is filtered by the output gate to create the output, and
then this output, as well as the next input, is fed into the LSTM cell for the next
time step.

The purpose of the input gate is to incorporate new information from the
data being processed into the cell state of the LSTM cell, which works like the
cell’s memory. The forget gate has the opposite functionality, which is removing
information from the cell state. Lastly, the output gate determines how the
cell state is used to produce an output from the cell. All these weights consist
of a fully connected layer, whose weights are adjusted during training through
backpropagation. How the different gates work is therefore dependent on the
training process and the data mapping that is being learned.
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Figure 2.3: The architecture of a LSTM cell. The arrows indicate the flow of
information. The two incoming arrows to the input and forget gate is the input
and previous output. The output from the gray circles are passed through fully
connected layers. The output from the gates use sigmoid activation function, and
the output from the input and the state use tanh activation function. The circles
with × and + apply these mathematical operations elementwise in the input to
the circle.
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Chapter 3

Related Work

This chapter present previous work related to this project. In Section 3.1 the
method used to perform a structured literature review is presented. Then in
Section 3.2 the related work found from the review is summarized and then
explained how it inspired and influenced the direction of the research in this
thesis.

3.1 Structured Literature Review Protocol

To find research relevant to the research questions, and establish state-of-the-art
in exercise and repetition recognition, a structured literature review (SLR) was
conducted. This is a systematic search performed to identify related published
work on a topic to answer a set of research questions. The advantage of per-
forming such a structured search is to help avoid biased work, identify gaps in
the research literature, and identify what can be contributed to the area Kofod-
Petersen [2015]. To make this work reproducible, the review protocol is included
here.

Search questions

To answer the research questions (RQs) stated in 1.2, a set of search questions
(SQs) was created that breaks down the RQs into more fundamental questions
that can be answered by performing SLR. Answering these SQs will collectively
give the answers to the RQs. The following set of SQs was designed to answer
the RQs and guide the literature review:
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SQ1 What methods are used for detecting activities for exercise in time
series?

SQ2 How is machine learning and deep learning used in this domain?
SQ3 What are existing methods for recognizing repetitions in exercise ac-

tivities?

Search terms

To search for relevant work, a set of search terms was created. The search terms
are put into groups of topics that are designed to retrieve different sets of lit-
erature. By intersecting the results of the different groups, related literature to
answer the SQs are found. The search terms and groups used for the search are
presented in table 3.1.

Group 1 Group 2 Group 3 Group 4 Group 5
Term 1 har deep learning weight lifting repetitive accelerometer
Term 2 motion neural network exercise repetition count gyroscope
Term 3 activity repetition wearable sensor

Table 3.1: The search terms used in the SLR, divided into groups that relate the
terms.

Google Scholar was used as a search engine. This decision was made as Google
Scholar searches across many different publication databases in one search. It also
claims to rank the results by weighing where the text was published, whom it was
written by, its citation history and the full text of the documents. The search was
performed without including patents and citations as they were not of interest.

By intersecting the related terms to create groups, and then taking the union
of these groups, the search query was created. The search returned a total of
4210 results for this query. The results were ranked in order of relevance to the
query, and the top 75 articles were included in the SLR.

Inclusion criteria

Inclusion criteria (IC) are used to select the thematically relevant articles returned
from the search engine using the search string composed by the search terms. This
is required as the search terms often need to be general enough in order to not
exclude important literature from the search results, and this results in not all
the returned results being relevant.

The inclusion criteria defined to select articles was the following:
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IC1 The main field of study of the article is computer science
IC2 The main topic of the article is activity recognition
IC3 The data used in the article is from a wearable sensor recording mo-

tion
IC4 The study focuses on segmenting time series of high-frequency data
IC5 The study focuses on counting or segmenting repetitive patterns in

the data
IC6 Empirical results are presented in the study

In order for an article to be considered as relevant, it needed to satisfy all the
inclusion criteria. To evaluate articles on these criteria, two types of screening
was performed: first title and abstract screening and then a full-text screening.
If it was clear that the article did not satisfy the inclusion criteria for the first
screening it was discarded. If there was doubt or uncertainty about inclusion
criteria being fulfilled the second type of screening was performed.

After screening the articles selected from the search query, a total of 7 articles
passed the inclusion criteria and was considered relevant for the theme of the
thesis. How this research is related to and motivated the work in this thesis is
discusses in the next section.

3.2 Motivation

This chapter is a summary of previous research related to the project and aims to
establish state-of-the-art in the area of exercise and repetition recognition. In the
previous section, the approach taken to finding related work using a structured
literature review is explained. The related work resulting from this procedure is
presented in this section.

In Shugang Zhang and Wei [2016] they perform activity recognition real-time
on sensor data from a smartwatch. They divide the data stream with a sliding
window and extract features based on accumulated difference, signal magnitude
area (SMA), accelerometer data mean value, variance in accelerometer and gy-
roscope data and trapezoidal integration area of gyroscope data. These features
are used by a SVM to perform activity recognition. In the segments where an
activity is found, they use an adaptive method for finding the main axis of the
movement and use a gyroscope-based counting method to count wave count on
the raw data.

Qi et al. [2018] first perform a recognition phase to find whether or not an
activity is a free weight or non-free weight exercise. They use data from an
accelerometer as well as electrocardiogram data. They extract statistical features
from the time and frequency domain as well as from the ECG and use this to
perform activity recognition hierarchically. The extracted features are given to



18 CHAPTER 3. RELATED WORK

a one class support vector machine to classify whether the data comes from an
activity that is using free weights or not. They then use a hidden Markov model
to classify the free weight exercises further. Recognizing repetitions inside a set
is performed by smoothing the accelerometer data, standardizing the axis value
and defining a vertical and horizontal threshold for counting peaks.

Maheedhar et al. [2016] perform feature extraction on windows from their
data streams of accelerometer and gyroscope data of popular strength workout
activities. In total, 17 features were extracted, which consisted of signal magni-
tude features, FFT based energy features and features based on peaks and valleys
in the raw sensor data. These features are given to a shallow and small artificial
neural network to classify what activity is performed in the windowed sequence.
Repetition recognition and counting are first based on a separate sensor axis for
each of the exercises, which is sent through a low pass filter and then applying a
counting algorithm that detects peaks and valleys in the filtered data.

Das et al. [2017] takes a similar approach. They use accelerometer data and
derive features based on a pairwise correlation between axes, finding dominant
axes by standard deviations, finding pairwise dominant axis factors, a stillness
factor and a signal time period. They compared results using decision trees, k-
nearest neighbor, support vector machine, and a deep neural network. The best
results were obtained using the deep neural network. To recognize repetitions,
they design thresholds based on standard deviation to the average values in the
signal and use this to count cycles in the signal.

Morris et al. [2014] uses inertial sensors worn on participant’s right hand
to segment exercise from non-exercise, classify the exercise type for the peri-
ods where exercise is detected and perform counting of repetitions. In their
experiments, they found a significant difference in results for data collected in
a laboratory environment with instructions regarding the form and execution
of the exercises by the participants. Precision and recall levels dropped from
almost perfect, down to 50 % when tested on data collected in a natural environ-
ment. Their method for exercise detection was based on that data from exercises
are more repetitive than non-exercises. Therefore they utilized autocorrelation,
which is cross-correlation of the signal with itself, and extracted some of the
features they used for classification based on peaks in the result of the autocor-
relation. In addition to correlation features, they computed statistically based
features similar to other mentioned related work. They did this for windows
in the sequence and trained a support vector machine to differentiate exercise
activity from non-exercise activity. Exercise recognition was performed extract-
ing similar features as when detecting the type of activity, and was then fed to
a multiclass support vector machine. Repetition recognition and counting were
performed based on peaks in the accelerometer data, aided by defined minimum
and maximum thresholds of how long a repetition normally take.



3.2. MOTIVATION 19

A large amount of the articles selected from the SLR used shallow machine
learning techniques, or only feature engineered algorithms. This was somewhat
surprising regarding the advancement of deep learning methods applied to signal
processing in many fields. Traditional and shallow machine learning techniques
on time series usually involves applying a sliding window to the original signal,
then extracting designed features from this time window. The features are then
given to a classifier, like a support vector machine, a hidden Markov model or
a shallow artificial neural network. This method is used in Shugang Zhang and
Wei [2016], Qi et al. [2018], Maheedhar et al. [2016], Das et al. [2017] and Morris
et al. [2014]. The main differentiating factor of how segmentation or recognition
is performed in this research is how the extracted features are generated. The
features generated are based on auto-correlation, PCA, statistical features, FFT
coefficients and by finding the main axis for the movement and emphasize this in
the detection.

These articles then analyze segments of the time series where an exercise
is performed to recognize repetitions. This is primarily done through signal
smoothing and counting peaks and valleys in the raw data. Counting peaks
is sometimes done in complex ways by regarding information about the length
of the repetitions for different exercises, finding the best axis to consider and
additional rule-based procedures. The problem with counting peaks is that there
is a need to know how the data signal of an exercise should look like and it is
dependent on the signal following this known structure This needs to be done for
every exercise, and therefore require a large amount of feature engineering. This
rule-based approach might also not generalize very well to varying executions of
the exercises.

Only one article returned from the SLR focused on segmenting exercises and
repetitions using deep learning. This work was performed by Soro et al. [2019]
and uses a convolutional neural network to process the time series data. They
regard the data streams as an image by letting the values from different sensor
streams be the height of the image, and the sequence of these samples to be the
width. This way, they can use a fixed size CNN in a sliding window approach in
order to process time series data. The best architecture of the model was found
with five convolutional layers and two fully connected layers. The model was
found to perform best on 7-second windows on the 100 Hz data they used. They
also used multiple sensors, one worn on the forearm and one on the ankle. Each
data point in their time series belonged to one of the categories of the exercises
they would detect. For each window of data used as input to their CNN, they
output labels for multiple data points, which are later used in majority voting
and then smoothing for the final category of each data point.

To segment repetitions, they reuse the same architecture they used for exercise
segmentation. They did this by labeling each half of a repetition within a set
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with different categories. The first half of the repetition would belong to category
0, and the second half category 1. If a deep learning model were able to translate
a raw data signal into this format, counting repetitions would be performed by
a simple algorithm detecting transitions between two categories in a sequence
of data points, rather than trying to deal with peaks and valleys in numerical
raw sensor data. Their method consisted of first using a CNN trained to find
and recognize segments of the different exercises. Then they trained additional
CNNs of the same architecture, for each of the exercises, to perform the binary
classification on the segment found by the exercise recognition model.

The work in this thesis is inspired by Soro et al. [2019] and the method
they used to segment repetitions. They addressed that their method mainly was
aimed to produce the best possible results while leaving methods that require
less computational resources to future work. In order to run such algorithms
on an end device, like a smartphone or smartwatch, it is crucial for the data
processing to be power efficient. This research addresses this gap and will try to
obtain comparable results by solving the task using less computationally intensive
models and a lower data frequency. Using a CNN and a sliding window require
that each data point in a sequence needs to processed multiple times. This is
because the CNN cannot accurately produce labels for every data point included
in the window it processes since patterns both before and after a data point is
valuable to determine its category. Therefore, overlap of the sliding windows is
needed. A recurrent model would allow each data point to be processed once
and allows for an overall lower computational complexity. Instead of relying on
sliding a CNN with a high overlap over a data sequence, it will rely on the ability
of recurrent models to find temporal patterns in data to classify the data points.

Using deep learning to solve the task of segmenting exercise activities and rep-
etitions appear to be the most general and overall the most scalable approach.
The advantage of using deep learning lies in automatic feature extraction. Re-
gardless of what sensors are used, how many are used, where they are placed
and what exercises are performed, deep learning will allow finding the relevant
patterns and generalize given enough data.
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Methodology

This chapter will explain the approach used to design the system to answer the
reserach questions. In Section 4.0.1 a system using segmented exercise activities
and repetitions is presented as well as how these segments can be found. Section
4.0.2 presents the process used to collect data for the experiments and some basic
statistics about the collected dataset. In Section 4.0.3 the architecture and the
design decisions for the model used in the experiments are presented. How the
collected data was preprocessed is explained in Section 4.0.4. Then, how the
model was trained is presented in 4.0.5, while how the model was evaluated is
presented in 4.0.6.

4.0.1 System

The overall goal of a weight lifting recognition system is to provide the data
processing tools required to automatically create a transcript of a workout from
raw sensor data. This transcript would consist of how many repetitions and
sets of each exercise is performed during the workout. The implemented system
will work towards this goal by creating segments in the data stream from the
workout. These segments translate to sets and repetitions of an exercise that is
being performed. A segment of a time series is a continuous sequence of data
points of the same category. The system will attempt to create the segments
by categorizing each data point in the time series. In a general perspective,
the task is to transform a sequence of numeric data from the movements during
the workout into a sequence of categories. Therefore it would be possible to
recognize when a set of an exercise is performed by finding a continuous sequence
of a category, or by finding a cluster of a category, in the transformed sequence.

The activities included in this project, with their id’s, are the following:

21



22 CHAPTER 4. METHODOLOGY

• 0 : NULL / Idle

• 1 : Squats

• 2 : Standing barbell shoulderpress

• 3 : Benchpress

• 4 : Barbell curl

• 5 : Dumbbell lateral raise

• 6 : Deadlift

• 7 : Triceps rope pushdown

The NULL category is a background category used for all other activities that
is not one of the other exercises.

In addition to segment the time series based on what activity is performed,
the system will attempt to segment the repetitions these segments consist of.
This is done by solving the problem of repetition segmentation the same way as
activity segmentation. The fact that each repetition consist of two phases is used
to create categories for the repetitions of each exercise. These phases consist of
two different movements that are required to perform a repetition. One phase
moving the weight to a different position when starting from the initial position,
and one phase moving the weight back. Each of these phases, for all of the
exercises, is given a class called the repetition phase. The NULL activity only
has one repetition phase as it is the background category.

The repetition phases used in this project are the following:

• 0 : NULL / Idle

• 1 : Squat phase 1

• 2 : Squat phase 2

• 3 : Standing barbell shoulderpress phase 1

• 4 : Standing barbell shoulderpress phase 2

• 5 : Benchpress phase 1

• 6 : Benchpress phase 2

• 7 : Barbell curl phase 1

• 8 : Barbell curl phase 2
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• 9 : Dumbbell lateral raise phase 1

• 10 : Dumbbell lateral raise phase 2

• 11 : Deadlift phase 1

• 12 : Deadlift phase 2

• 13 : Triceps rope pushdown phase 1

• 14 : Triceps rope pushdown phase 2

Each repetition consists of a segment of the first phase, followed by a segment
of the second phase. A single repetition of an exercise can be recognized by
finding a segment of phase 1, followed by a segment of phase 2. The advantage
of this approach is that the repetition counting algorithm can be applied on on
the transformed categorical sequence and be reused for all kinds of repetitive
exercises. In comparison, one would have to resort to feature engineering for
each type of exercise to be able to count repetitions from the raw data.

For a user ready version of an application automatically transcribing work-
outs, certain features would seem useful from a user perspective. One would be
for users to verify that the set they just performed was classified correctly, and
the number of repetitions was correct. This imposes both that the processing
would have to be executed on either the smartwatch or the smartphone of the
user, and the processing has to happen close to real-time. A realistic scenario
would be for a user to perform a set of an exercise, rack the weights and then
verify the recorded set. From the end of execution of an exercise to the time a
user would expect to verify it was recorded correctly, the period can be expected
to be as short as 5 or 10 seconds. Since the processing has to happen close to
real-time and have low power usage, it needs to be computationally efficient.

To handle these requirements, a recurrent network seems like the right candi-
date for the segmentation task. The advantage of using a recurrent model over a
convolutional model is the memory property of the recurrent model. This prop-
erty allows the model to process each data point in the data stream only once, as
it builds a memory of what it has previously seen. Using a convolutional model
would require to define a window of fixed length and slide this network over the
time series. A reasonable way to do this would be to predict the categories of
some of the data points in the middle of this window, as the model could observe
patterns both before and after the data points it was to categorize. By sliding this
window across the data stream to make predictions, each data point in processed
multiple times as the windows needs to be overlapping.

To expand on the research in Soro et al. [2019], which addressed future work
would include efficiently applying their method, a LSTM architecture was chosen
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as the model to process the data stream. Also, both activity segmentation and
repetition segmentation will be performed with a single trained model, in com-
parison to their work where they trained a separate model to segment repetitions
in the segments their activity segmentation model recognized exercises.

4.0.2 Data Collection

The exercises were chosen due to their popularity in weight lifting workouts for
both experienced and inexperienced lifters. The set of exercises was limited
to these exercises to reduce the time required to collect the dataset, and for
participants to be able to complete all the exercises in one single workout session.
Each participant performed 3 sets of each exercise, and the repetitions for the
sets ranged from 8 to 12.

The sensor data was collected using an Android application named Physics
Toolbox Sensor Suite on a Samsung S9 smartphone. It would be preferred to
collect data using a smartwatch, but the duration of the project made using this
application for data collection more feasible than writing a custom application.
The smartphone was mounted on top of the participant’s left forearm with a
mounting device for mobile phones. How the smartphone was attached to the
forearm is shown in Figure 4.1. The phone was mounted in the same orientation
for all participants.

The application allowed recording time series using multiple sensors on the
phone. Three types of data streams were collected. The data streams were
the g-force meter, linear acceleration and gyroscope. The g-force meter and
linear acceleration are almost the same, but the g-force meter measurements are
offset based on the orientation of the phone relative to gravity while the linear
accelerometer is only based on the acceleration of the phone. Each of these data
streams consists of measurements in three dimensions. Recorded time series could
be exported as CSV files to cloud storage directly from the application, which
made the data extraction process fast and straightforward.

In addition to the phone used for data collection and the mounting device,
a second smartphone was used as a stopwatch to collect timestamps used for
labeling segments in the time series. An assistant would use the second smart-
phone to register these timestamps. It was desirable for participants to perform
the exercises in a natural way as possible, and the participants would decide the
pace of both the repetitions and break between sets. The data was collected in a
fitness center, and the assistant performed the workout together with the partici-
pants by alternating sets. The participants were encouraged to perform activities
they usually performed during the breaks of sets. Such activities would included
loading on and off weights, drinking, walking, checking messages on their phone
and other related activities. All this data was collected and labeled as the NULL
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Figure 4.1: The phone was mounted on the participants left hand to create data
similar to what a smartwatch would.

category.

To simplify the software needed to label segments of the sequences, the par-
ticipants were asked to choose a fixed number of repetitions to perform for all 3
of the sets they performed of a single exercise. They were also asked to choose
a weight they were able to control but that was still challenging, and that they
would be able to change this weight between sets if it was to light or to heavy. The
data collection on the phone and the stopwatch was to the best ability started
simultaneously such that timestamps from the stopwatch could directly be used
to segment the sequences. The sequences collected throughout the workout were
split to contain 3 sets of each exercise, including the activities in the breaks be-
tween each set and the setup of the weight lifting equipment. This was done to
simplify the labeling software further such that each sequence would only contain
exercises of one category.

Since the goal was to label each repetition in the exercises performed, the
assistant would observe the participants and register a timestamp with the stop-
watch whenever the participant started performing a set, and for both turning
points for each repetition. Since a single sequence consisted of 3 sets of the
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Activity Duration [min] Repetitions Fraction of time
Idle 473:01 0 79.0%

Squat 19:44 378 3.3%
Shoulderpress 16:21 372 2.8%

Benchpress 16:17 390 2.7%
Curl 17:51 384 3.0%

Lateral raise 18:04 378 3.0%
Deadlift 21:38 378 3.6%

Triceps pushdown 15:33 390 2.6%
Total 598:29 2670 100%

Table 4.1: Duration, repetition count and distribution of collected data.

same exercise, with the agreed upon number of repetitions, it was easy to la-
bel the sequences later. After the sets for a single exercise were performed, the
CSV data was exported to cloud storage and the timestamps were exported to
a spreadsheet. Sometimes a timestamp was missing or was registered too late
or too early during the data collection process. These errors were corrected by
inspecting plots of the raw data and timestamps.

Statistics about the activities in the collected dataset used in the experiments
are presented in Table 4.1. This shows that most of the data collected were of
the NULL category. In summary, almost 10 hours of data were collected, where
approximately 80% consisted of activities performed between sets. The total
repetitions in the dataset were 2670 and are evenly spread across each of the
exercises.

4.0.3 Architeture

The architecture of the model used i the experiments consisted of two LSTM cells
and two separate fully connected hidden and output layers for the predictions of
the exercise recognition and the repetition recognition tasks. The output layers of
activity and repetition recognition used one-hot encoded categories and therefore
used softmax activation function on the output of nodes in this layer. In Figure
4.2, a diagram of the architecture described is shown, with the size of the vectors
as the input and output for each layer.

In total, the model had 37,079 parameters where 31,360 of the parameters
were from the LSTM cells and the remaining from the fully connected layers.
These calculations are performed on every data point in the time series only once
during predictions, which is computationally efficient compared to a convolutional
neural network being applied to highly overlapping windowed subsequences in the
time series. An empirical experiment of the difference in the computational load
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Figure 4.2: The architecture of the recurrent model. It consists of 2 LSTM cells,
and for both exercise recognition and repetition recognition, there is a separate
hidden layer and an output layer. The numbers next to the arrows indicate the
size of the inputs and outputs to each layer.

between the models created in Soro et al. [2019] is not performed in this project.
For reference, the Keras models available from the work of Soro et al. [2019] were
26 MB for the activity recognition model, and either 2 MB or 10-11 MB for the
repetition recognition models, in which they trained one for each exercise. The
integrated activity and repetition recognition LSTM based model used in these
experiments was 175 KB.

To regularize the network, L2 loss was applied on the weights of the LSTM
cells, and a dropout was applied on inputs to all layers, except the input layer
and the layers for the recurrent connections of the LSTM cells.
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Predicting categories for each data point in real-time is a strict limitation
to impose on the model. Important information about what category a data
point belongs to is also based on the data that follows it. Predicting categories
real-time caused the model to be uncertain whether the categories should be
the NULL category or an exercise near the end of repetitions during a set. By
predicting categories real-time, the model will only have processed data up to the
point in which it would make a prediction. Exercise activity is based on multiple
repetitions that are performed consecutively. These repetitions abruptly stop at
the end of the set, and the model would probably have some difficulty at the end
of each repetition whether or not to believe the exercise is to be continued or
not. This is also true for both the start of the set, the end of the set and the
transition between repetition phases. If the model is to predict the transitions
between categories in real-time, it must learn to anticipate what category comes
next, rather than just classifying the observed sequence. The problem then starts
to contain characteristics of a forecasting problem rather than a classification
task.

Since the application envisioned and discussed earlier does not require results
to be immediately available, it is possible to work around this problem by taking
advantage of the memory in the LSTM cell. This can be done by delaying the
predictions relative to the processed sequence. The introduced delay consisted
of letting the model predict categories for datapoints it had seen in the recent
past instead of predicting the categories real-time. The model is then allowed to
take into consideration the pattern in the data both before and after the data
point it is classifying. Note that this solution does not increase the computational
complexity of the model as it still only processes each data point in the sequence
once. This approach relies on the ability of the LSTM to remember in order to
deal with the delay in predictions. A solution with 1 second of delayed predictions
was chosen.

4.0.4 Data Preprocessing

The time series returned from the exported CSV did in some cases contain mul-
tiple data points with the same timestamp, and the measured values for the
different data points deviated. There were up to six duplicates for data points
on a single timestamp, but most of the time the duplicates was either two or
three. The median value of data points with the same timestamp was calculated
to remove duplicate values.

The sample rate for the collected time series in the dataset was not consistent.
Although it was possible to set a custom sample rate in the application used for
data collection, and this was set to 150 Hz, the output had a variable sample
rate. In Figure 4.3 the time between each sample to the next within a recorded
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sequence is shown, as well as a histogram showing the distribution of the sample
rate. This is the data after aggregating the duplicate measurements. The top
figure shows that a variable sample rate was used, even within a single recorded
sequence. The histogram shows that that sample rate in most cases was either
very high or in a cluster around 50 Hz (0.02 seconds between samples). The mean
sample rate for all the data was approximately 120 Hz.

Figure 4.3: Top: The time between each sample for every sequence in the dataset.
Bottom: A histogram of the sample rates in the dataset.

Some architectures, like phased LSTMs, explicitly take the time lag between
inputs into account. The models tested in this project do not do this. Therefore
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it is crucial to resample the time series such that the frequencies between each
sample are consistent. If this is not performed, the model could interpret segments
with a fast sample rate to be slowly executed movements and the opposite for
segments with a low sample rate. The histogram in Figure 4.3 proves that it
should be safe to resample the sequences to 33 Hz and below (approximately
0.03 time between samples) without losing information by having to interpolate
missing values. A sample rate of 20 Hz was chosen for the experiments, which
was believed to be sufficient for capturing data for the repetitions of the exercises
since they usually span between 2-4 seconds. Since the purpose of this project
was to process motion data efficiently, a lower sample rate is desirable as this
leads to fewer computations in order to segment a sequence.

When resampling the sequences, they were partitioned into windows of 0.05
seconds (20 Hz), and the mean of the values within these windows was used as
the final value for that timestamp. Although no smoothing was applied to the
sequences later, this does have a smoothing effect. The windows that had no
values were filled in using linear interpolation between neighboring values.

4.0.5 Training Phase

During training, the model was given subsequences of the collected data sequences
to train on with a window length of 9 seconds. That is sequences consisting of
180 data points since 20 Hz was the frequency used when resampling. The first
2 seconds in these subsequences were used to build the state of the LSTM and
did not produce predictions during training used for gradient updates. This was
performed as the LSTM needs to build its state before being able to produce
accurate predictions, and the networks started with a zero-state when beginning
the processing of each sample. A visualization of how a state is built from an
initial part of the sequence is shown in Figure 4.4. Also, the model predicted the
categories for the data points it processed with a delay of 1 second. The design
choice to predict the categories with delay was in Section 4.0.3. Therefore, each
training sample consisted of 6 seconds of predictions used for gradient updates,
and 3 seconds of data were processed before making the first prediction. Three
seconds would allow the model to process the data from a little less then one
repetition of an exercise to build its state if the sequence started during the
execution of an exercise. The samples were created with considerable overlap,
using a stride of 0.2 seconds when extracting windowed sequences for the samples
from the original sequences.

Using subsequences drawn uniformly from all the sequences would result in
almost 80% of the samples in each mini batch to be of the NULL category, as can
be seen from the dataset distribution in Table 4.1. In preliminary experiments,
the model was slow to learn the exercises performed, and would often mispredict
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Figure 4.4: Training of a recurrent model from an empty state. The first inputs
are given to the model while not producing predictions. After this set of inputs,
the model produces outputs o, which are compared to target values t to calculate
the error e, which is used to compute gradients.

exercise activities as the NULL category. It was therefore decided to balance the
training batches with regards to the categories. This was accomplished by sorting
the samples based on what categories they contained. If a sample contained one
or more data points not belonging to the NULL category, it was placed together
with other such samples of the same category. When creating a set of mini-
batches to train on, the samples were drawn uniformly across activities from
these sorted subsequences, and across the participants in the training set. This
made the model learn the categories faster and achieved higher accuracy as it
was not incentivized to overly emphasize the NULL category over the exercises.

4.0.6 Evaluation Phase

Evaluating the accuracy of the model was not performed with windowed sub-
sequences like was given as training samples. Instead, the network was given
the full-length sequences, that consisted of the three sets performed of each ex-
ercise including breaks and predicted the categories for every data point along
the sequence. The category with the highest softmax output was used as the
final prediction for each data point and this was compared with the categories
obtained from data collection.

The performance of the models on the validation set was determined based on
the mean accuracy of the categories of the repetition recognition, rather than the
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actual accuracy for all predicted categories in the full length sequences because
it was more desirable to have better recall of the sets and repetitions instead of
having high precision predicting the NULL category. Since the goal is to be able
to segment repetitions in such a way that it would be possible to count them
the accuracy on the repetitions recognition seemed like the most valuable metric.
Also, since the activity recognition should be based on repetitions, the activity
recognition should contain the same segments as a set of repetition does.

It was observed that increased accuracy on the repetition recognition did not
always correspond to higher accuracy for the activity recognition. A model that
had lower accuracy on repetition recognition than the best model sometimes had
higher accuracy in activity recognition but only by a slight amount.



Chapter 5

Experiments and Results

This chapter presents the experiments and results from the work of this thesis.
In Section 5.1 the experiment conducted is explained, as well as why this type of
experiment was chosen. Section 5.2 states the value of the hyperparameters used
for the experiments. The experimental results are presented in Section 5.3, and
the results are evaluated and analyzed in Section 5.4.

5.1 Experimental Plan

After collecting the data, the goal was to use the model proposed and shown
in Figure 4.2 to learn to segment sequences from the workouts. A leave-one-
subject-out (LOSO) experiment was conducted to investigate the performance of
this type of network on the relatively small dataset. LOSO consists of leaving all
but one of the participant in the training set and putting this participant in the
validation set. The purpose is to use the training set in order to achieve as high as
possible accuracy on the participant in the validation set. The dataset with the
one participant left out will be referenced as the validation set to emphasize that
a train/validation/test split was not performed. Although the dataset consisted
of many repetitions, the repetitions performed by the same participant are very
similar for a given exercise. In this sense, it is only 13 different patterns of each
exercise in this dataset, one for each participant. Since the dataset consists of
both large and small male and female participants at different experience levels
with weightlifting, a regular training/validation/test split of the dataset would
be highly sensitive to what participants are placed in the different splits, as the
variance among participants were high. Doing a LOSO experiment seemed most
valuable and would give insight into how well the model can learn and generalize
to unseen executions of an exercise. Considering the small size of the dataset
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would a k-fold split would be very sensitive to participant placement. A LOSO
experiment could also indicate which participants might be outliers compared to
the rest of the dataset or if specific exercises are harder to recognize than others.

5.2 Experimental Setup

The architecture used in the experiment was the one shown in Figure 4.2. The
first LSTM cell had a size of 64, the second a size of 32. The fully connected layers
between the output of the second LSTM cell and the output layers had a size of
64 for both the exercise recognition and the repetition recognition predictions.
These fully connected layers were reused for every timestep during training and
predictions, just like the layers inside the LSTM cells.

L2 loss of the recurrent and kernel weights in the LSTM cells was added with
a beta value of 1× 10−6, while bias was not regularized. Dropout was applied
to the input in all layers with a value of 20%, except the input layer for the first
LSTM cell and the recurrent connections for both LSTM cells.

Each configuration of participants in the LOSO experiment was run ten times.
At the start of these runs, the model was initialized from scratch with random
weights. Minibatches of size 32 was used to train the models, and the samples
in these batches consisted of 9-second subsequences drawn uniformly across all
activities. 100 batch updates with these mini batches were performed between
each time the model was evaluated on the validation set. The number of times this
was performed depended on the validation accuracy increasing during training.
A minimum of 50 such evaluations was performed for each run. Training of an
initialized model continued until 50 evaluations on the validation set had been
performed with no increase in accuracy.

5.3 Experimental Results

In Figure 5.1, the accuracy obtained for each activity category and repetition
category is presented for each participant when left in the validation set. The
figure only shows the accuracy for the category that should be predicted and does
not show what the false predictions were. The distribution of false predictions
is shown in Figure 5.2 which is the average of the confusion matrices for all of
the configurations of participants in this experiment when they were left in the
validation set. The confusion matrices for all the configurations of participants
in the validation set is in the appendix.

The worst results were obtained with the configuration of participant 4, 7 and
11 in the validation set. The confusion matrices for the exercise recognition and
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(a) Accuracies for the activity recognition.

(b) Accuracies for the repetition recognition.

Figure 5.1: Accuracy for each category and participant in the LOSO experiment
when that participant was in the validation set. Each entry is the percentage
of how accurate the model predicted data points with that given category. The
”avg” row is the average of all the participants for each exercise, and the ”avg”
column the average of exercises for that participant.
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(a) Confusion matrix for activity recognition.

(b) Confusion matrix for repetition recognition.

Figure 5.2: Average of confusion matrices of the best models obtained for all
configurations of participants in the validation set for the LOSO experiment.
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the repetition recognition for these participants are presented in Figure 5.3, 5.4
and 5.5.

Some of the sets of the exercises with low accuracy are visualized in Figure
5.6, 5.6, 5.8, 5.9, 5.10, 5.11 and 5.12. The segments show data from the g-force
sensor as well as predicted and true segments. The predicted segments are based
on the max value of the softmax output for each data point, visualized in the
bottom of the figures.

In Figure 5.6 the visualization show how the curl activity is confused with
the triceps rope pushdown activity for participant 4. Figure 5.6 shows the model
believing the participant stops performing the activity, and predict the NULL
category for some segments in the set instead.

For participant 7 the segments are either missing the start of the setlike in
Figure 5.8, confused with benchpress as shown in 5.9, or both like in 5.10.

Figure 5.11 and 5.12 show one of the sets of squat and benchpress for par-
ticipant 11. In these visualizations, the model struggles to predict the start of
the first repetition phase, especially for the squat activity, and predict the NULL
category instead.

Since squat was the worst performing exercise, visualizations for one of the
participants where the model was accurate is shown in figure 5.13. This visual-
ization is for one of the sets of squats performed by participant 2.

5.4 Evaluation

As can be seen from the overall accuracies for the LOSO experiment in Figure 5.1,
the activity recognition was for most participant able to recognize what exercise
is performed most of the time. For some participants, it was however not possible
to generalize to certain activities they performed with this model.

Overall the squat activity (category 1) had the lowest accuracy for the activity
segmentation, which mainly was because the model failed to obtain good results
for this activity for two of the participants. The activity recognition accuracy
for these two participants was only 64.5% and 75.1%, pulling the average for this
activity down to 94.5%.

The primary source of error in predicting what activity is performed comes
from miscategorizing datapoints as the NULL category. This sometimes happens
because the exercise is not detected at all, like for the triceps rope pushdown
exercise (activity 7) for participant 4. When the exercise was recognized, the
error mainly comes from the exact start and end of an exercise segment not being
predicted accurately. This fact can be seen from the average of the confusion
matrices for all the participants when left in the validation set in Figure 5.1.
The claim that this happened at the start and end of each set was confirmed by
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 5.3: Confusion matrices for participant with id 4 when left in the validation
set.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 5.4: Confusion matrices for the participant with id 7 when left in the
validation set.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 5.5: Confusion matrices for the participant with id 11 when left in vali-
dation set for the leave-one-subject-out experiment.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.6: Predicted activity and repetition segments for one of the sets of curl
by participant 4. The model was trained with this person in the validation set.
The colored segments above the top black line are the true segments. At the
bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.7: Predicted activity and repetition segments for one of the sets of triceps
rope pushdown by participant 4. The model was trained with this person in the
validation set. The colored segment above the top black line is the true segments.
At the bottom is the softmax output, with illustrated colored segments based on
the max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.8: Predicted activity and repetition segments for one of the sets of squat
by participant 7. The model was trained with this person in the validation set.
The colored segments above the top black line are the true segments. At the
bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.9: Predicted activity and repetition segments for one of the sets of squat
by participant 7. The model was trained with this person in the validation set.
The colored segments above the top black line are the true segments. At the
bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.10: Predicted activity and repetition segments for one of the sets of
squat by participant 7. The model was trained with this person in the validation
set. The colored segments above the top black line are the true segments. At
the bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.11: Predicted activity and repetition segments for one of the sets of squat
by participant 11. The model was trained with this person in the validation set.
The colored segments above the top back line are the true segments. At the
bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.12: Predicted activity and repetition segments for one of the sets of
bench by participant 11. The model was trained with this person in the validation
set. The colored segments above the top black line are the true segments. At
the bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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(a) Activity segment.

(b) Repetition segments.

Figure 5.13: Predicted activity and repetition segments for one of the sets of
squat by participant 2. The model was trained with this person in the validation
set. The colored segments above the top black line are the true segments. At
the bottom is the softmax output, with illustrated colored segments based on the
max value. sensor data is plotted for reference. Best viewed in color.
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observing there were few cases where the predicted category fluctuated between
the NULL class and an exercise during an actual set.

The worst accuracy for activity recognition was obtained when participant 4, 7
and 11 was in the validation set. The confusion matrix for the activity recognition
and repetition recognition for these three participants are shown in Figure 5.3
for participant 4, Figure 5.4 for participant 7 and Figure 5.5 for participant 11.
For participant 4, 7.7 % of the segments for activity category 4 (biceps curl) was
predicted to be activity category 7 (triceps rope pushdown). For participant 7,
22.7% of the segments of activity category 1 (squats) was falsely predicted to be
activity category 3 (bench press). It was observed during preliminary experiments
with fewer participants that sometimes the exercises shoulder press, bench press
and squats would be confused with each other. The reason for this is probably
that the orientation of the left forearm is similar for all these exercises, and they
all have a similar vertical motion when observing the data.

The accuracies for repetition recognition in Fig 5.1 are lower than for activity
recognition, with an average accuracy of 88.5%, but this is to be expected. For
repetition recognition, the primary source of error was not misclassifying seg-
ments of exercises as the NULL category, but misclassifications between the two
states that comprise a repetition for a given exercise. This can be observed in
the average of confusion matrices for all participants when in the validation set
in Figure 5.1b. This comes from the fact that the model is not able to accurately
predict the start and end of the two phases correctly. There are approximately
ten times as many switches between these repetition states as there are between
exercise segments and the NULL category for each set, as participants performed
8-12 repetitions each set. In addition, the error introduced when trying to capture
timestamps for labeling repetitions with the stopwatch is more significant than
for the labels created for the activity recognition even though the same times-
tamps are used to label the segments. This will cause errors in learning, and
when evaluating, since the error data collection error varied between repetitions
and participants. Since repetition phases last approximately 1.5 seconds, while
an activity lasts about 30 seconds, a 0.1 seconds mismatch between the collected
timestamps and events in data will cause 6.67 % error for each repetition phase
while only 0.3% error for the activity segment.

For the participants with the worst obtained accuracies visualizations of pre-
dicted segments are provided to investigate what specifically went wrong. For
participant 4, observe from Figure 5.6 how the model starts predicting segments
of triceps rope pushdown two places in the middle of the set of curl. The confusion
is understandable as the two movements are similar to in nature. The confusion
between two exercises also happened for some of the squat sets of participant 7,
shown in Figure 5.9 and 5.10. Here the squat exercise is confused with the bench
press exercise. Pay attention to the data plots obtained in Figure 5.8a, 5.9 and
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5.10 compared to one of the sets of squat of participant 2 in Figure 5.13, where
the accuracy was near perfect. For participant 7, the pattern in the movements
is mainly in the y-direction (orange data plot), while for participant 2, the main
pattern is found in the z-direction (green data plot). The y-direction is the verti-
cal axis, and the z-direction is one of the horizontal axes. This means participant
7 had a vertical orientation of the hand throughout most of the execution of the
exercise. Participant 2 had a hand placement more horizontal to the ground,
making the movement create the pattern in the z-direction. With a close grip on
the bar during squat and wide foot stance, it will be natural to have a vertical
hand orientation and movement. With a wide grip and narrow foot stance, the
arm will be angled more horizontally, and the upper body will also angle more
horizontally during the movement. This might explain the confusion with the
benchmarks exercise, which almost only has movement in the y-direction and is
therefore predicted instead of squat like in Figure 5.10. In Figure 5.8 there is
more movement in the z-direction by participant 7 in the squat exercise, and it
seems that the model is able to predict both the exercise type and repetition
phases correctly accurately. Note however that even though the wrong exercise is
predicted in Figure 5.6 and 5.10, the correct changed between repetition phases
are predicted, although for the wrong exercise. This mainly supports the claim
that the model can detect the two repetition patterns, and the execution of the
squat exercise for participant 7 to be predicted as the bench press exercise.

Another source of error is that the exercise is not detected altogether, like the
start of the set in Figure 5.10. Note that the first one and a half repetition in
the set has data that is not very distinctive like the other repetitions in the set.
This shows that the movement perhaps was to slow for the network to believe it
was an exercise. Observe the softmax outputs, which does indeed immediately
start to change when the set begins but does not become high enough for the
exercise to be predicted. The fact that the model seemed to be confused about
which exercise is being performed may also have contributed to not detecting an
exercise.

The last type of errors found for the participants with bad results are those
visualized in Figure 5.6, 5.11 and 5.12. Especially in 5.11, the model mispredicts
the NULL category as a part of the first repetition phase, for every repetition
throughout the set. Observe again the data for both the figures and the segments
predicted as the NULL category. The data plots in these segments show close
to no movement for these segments. Since this happens after every repetition
is finished, it probably is because the participant took a little break between
each repetition. This can also be observed by the difference in length of the two
repetition phases in the true segments. The timestamps during data collection
were created after each repetition phase is finished. If the participant waits after
finishing repetition phase 2 for each repetition before starting repetition phase 1
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again, this extra time will be given to the segment of repetition phase 1.
This could possibly be solved by letting the model predict with more delay

than 1 second. This would let the model observe that a new repetition is coming,
and therefore the previously observed data should be of repetition phase 1 instead
of the NULL category. A more basic flaw is perhaps labeling this whole time
segments as a repetition phase altogether. A correct approach would perhaps be
to label this as a break between repetitions, and only label the actual up and down
movement as the two repetition phases. This should probably be considered for
future work when labeling repetitive events with longer and that have variable
length breaks between them. For weightlifting with heavier weights, it is to be
expected this break will occur, especially late in the set as the participant becomes
tired. The participates in this study was asked to lift a weight they would control
and might have performed the exercises more in an ideal way compared to how
they would otherwise.

Lastly, it should be pointed out that even for the participants and exercises
with the worst results, except for the confusion between exercises for the sets
of squats performed by participant 7, the segmentation of repetition phases is
possible to use. If segments of the NULL category inside sets, like in Figure
5.11, are removed the repetition phases are distinct and continuous. Filtering
the outputs in this way, a straightforward algorithm could be used to count
repetitions as transition changed between the two repetition phases categories.
For participants and exercises with reasonable accuracy, which was the majority
of the results, as shown in Figure 5.1, very little filtering should be needed to use
this simple algorithm. One of the better which is shown in Figure 5.13 would
require no filtering of the output to apply such a counting algorithm.

The results show that an efficient recurrent model integrating both activity
and repetition segmentation provides useful results. The model is capable of
generalizing to new persons, and the flaws in the results are mainly believed to
be from the dataset consisting of few participants, and errors in labeling the
collected data sequences.
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Chapter 6

Conclusion

Section 6.1 discusses the work and results obtained in this project, as well as
what could have been done differently to achieve better results. Since planning,
data collection, data preparation, model building and the experiments have been
performed over the course of this project, multiple ideas have been gathered on
possible ways to improve and expand the project. These ideas are presented in
Section 6.2.

6.1 Discussion

The method used to collect data might have caused significant errors in seg-
menting the two phases of each repetition. First off, the data stream and the
stopwatch used to segment the data was started separately on two devices, al-
though attempted to be performed at the same time. This might have caused a
slight shift, but should not be very significant. A significant error was introduced
to how the repetitions were labeled. It was difficult for the assistant to time
the turning-points of each repetition as sometimes the movement transitions are
smooth, or human error caused the assistant to press the stopwatch too early
or too late. Since each phase of repetitions is around 1-1.5 seconds, a slightly
missed timing on the stopwatch might have caused significant errors in the label
data. Also, breaks between each repetition in a set were labeled as one of the
two repetition phases. For one participant, this caused significant errors in one of
the exercises when comparing the predictions to how the segments were labeled.
One could argue the predictions were more correct then what was considered the
true segments in this case, as breaks between each repetition in a set is not one
of the repetition phases.

Manually trying to label the time series by looking at the graphs is also dif-
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ficult and takes a long time. A better method would probably be to capture
video of the participants performing the workout, sync this up with the events
in the collected data, and register the time of the different events when watch-
ing the video. This would remove the human error in collecting the labels, as
well as provide very accurate segments as one could obtain frame perfect accu-
racy. It would also be possible for participants to perform the entire workout by
themselves without the need for an assistant because they could wear the data
collection device and capture a video of themselves with a smartphone.

The performance of the model would probably be better with a dataset con-
sisting of more participants. Repetition data from the same participant is highly
correlated, and only 13 participants were collected in the dataset. The leave-one-
subject-out experiment showed that some exercises were difficult to recognize for
some of the participants. In particular, these exercises was squats and triceps
rope pushdown, and for one participant, the biceps curl exercise. The errors
where the NULL category was mispredicted inside a was argued to come from
small breaks participants took between sets. Giving the model a larger look-
ahead window when making predictions might have helped remove this from the
model outputs. Cases, where two exercises were confused with each other, was
discussed as might have come from the fact that the sensor only collected data
from the participants left hand, and for some of the exercises, the execution may
produce very similar data series. This similarity in data was observed in one of
the participants where the orientation of the hand and execution of the squat
exercise almost only produced a pattern in the data in the vertical axis, making
it similar to the movement of a bench press exercise.

The breaks had some small segments of predictions that were believed to
be one or two repetitions of an exercise. In reality, these were movements like
bending down to pick up a water battle or weights or flinging arms around. The
model was sensitive to these events, indicating that it strongly emphasized recent
events. There are probably possible explanations that might cause this. One of
them is that such single events are somewhat rare in the data. Therefore, the
model had little incentive to learn the complexity of categorizing such events as
the NULL category. Another reason might be that the model only had a context
of 1 second of data ahead of the data point it is to classify. Since 1 second is not
enough time to observe if multiple repetitions are performed, the network has to
predict the event as an exercise, or it will need to discard at least the first part
of each performed set to prevent these one-time events from being categorized
as an exercise. This could show that one second of lookahead context might be
too small for such a model, and better performance could be obtained with a
larger window of context. For the solution used in this project, this might be
troublesome, as it uses only the ability of an LSTM to remember, and a longer
window of context means the network needs to incorporate new information while
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still having to keep the memory of what happened many seconds ago. A possible
solution to combat this would be to introduce the attention mechanism. Although
this significantly increases the computational complexity, it would be able to use
the built state of the LSTM from multiple positions in the sequence to determine
a category.

During this project, data was also collected with a full body suit with a total
of 16 sensors recording data from an accelerometer and gyroscope in 100 Hz.
The sensors were placed at the forearms, upper arms, shoulders, hips thighs,
shins, feet, the stomach, and the chest. The suit had both accelerometer and
gyroscope sensors. This suit consisted of proprietary hardware and software, and
a bug was discovered late in the project. The bug was caused by a sampling
rate error, causing the recorded data to shift in time relative to the time elapsed
increasingly with the length of the sequence. Since the timestamps were collected
using another device, the events in the data from the suit and the registered
timestamps did not match. To use this data, the timestamps would have to be
manually edited, which time did not allow for the remaining time of the project.

By using deep learning to transform raw sensor data into predefined cate-
gories, it was possible to segment both exercise activities and segment repetitions
into two phases, which can be further used to perform repetition counting. The
advantage of this method is not having to do feature engineering for every type
of exercise in order to count the repetitions performed during a set. This will
provide a method that scales should the types of sensors used to capture data
change, or with the inclusion of multiple sensors or sensors placed differently. In
addition, it was shown that this was possible with a small single recurrent model
solving both tasks simultaneously with only 1-second look ahead in the data se-
ries. This proves it should be possible to perform this task on end devices like
smart-watches and phones in a power-efficient manner.

6.2 Future Work

The most obvious thing that could be done to extend this work is to collect
a larger dataset and create a procedure and tool to effectively and accurately
label the collected sequences. As discussed previously, a solution with videos
of participants performing the workout would seem like an effective way to do
this. Not only would this give more quality in the labeled data, but it might
also make participants more comfortable performing the workout in the way that
they usually do. Since the goal is to create tools that could automatically log a
workout, the data should be collected as close to a real-life scenario as possible.
Such a solution would allow this.

In the extension of the dataset, it would also be useful to include multiple
worn sensors. Although the most user-friendly scenario would be only to wear
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a single device like a smartwatch, one or two sensors on the upper arm and a
foot would have the ability to capture nuances for a much more extensive set
of exercises. Since deep learning is used for feature extraction and classification
for both activity recognition and repetition recognition, the inclusion of multiple
sensors would not cause significant required changes for the model to incorporate
these new data streams, or to add additional exercises for that matter. Multiple
sensors might have given better results as was the case in Soro et al. [2019]. Their
exercises had more full body movements and therefore had the benefit of using
additional sensors attached to one of the participant’s feet. Perhaps this setup
could help the model easier to differentiate squats from bench press and shoulder
press.

The dataset could further be expanded by including more exercises. The
exercises chosen in this project were selected because of their popularity and
such that it was possible for participants to perform all of them during a single
workout. Since only a single sensor was used, it was observed that three of the
exercises tended to be confused with one another. How a more extensive set of
exercises might influence this effect would be useful to investigate, as well as if
the effect is solved by using multiple sensors at different locations on the body.
It could also be investigated how including activities where the repetitive events
are not of interest affects the results of the segmentation. Such activities might
be walking, running, or cycling.

Once a larger dataset is obtained, it should be used to evaluate model ar-
chitectures on a k-fold train, validation and test split, something that was not
performed in this project. A limitation of the work in this project was the num-
ber of participants the data was collected from, and the variance among them.
The dataset should be extended such that representative groups similar to the
characteristics of all the participants should be possible to partition into the three
splits.

Additional research can be done into the selection of model architecture and
parameters. Also, for the given architectures, a hyperparameter search should be
conducted to obtain the best possible results. A downfall of using only recurrent
networks on the raw data is that the network might struggle on data with a high
sample rate. The ability of the recurrent network to learn long term dependencies
might lack the ability to remember or learn patterns in the time series, especially
if the sample rate is high. A possible solution to solve this would be to use a
small convolutional network on the raw data in order to extract features from
nonoverlapping windows and feed these features to a LSTM. This would still
maintain the efficiency of processing each data point in the time series only once
and take advantage of convolutional layers ability to detect local patterns and the
ability for recurrent networks to remember long term dependencies to segment
the sequences. Doing this could prevent overflowing the recurrent networks with
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the high-frequency inputs since the convolutional layers can be used to transform
raw data with arbitrary sample rate into a frequency more feasible for a recurrent
network to deal with.

For more application-driven research, it would be useful to investigate how to
best filter or make use of the transformation of raw data sequences to categorical
sequences in order to count repetition and transcribe workout sessions. Most
exercises are performed with multiple repetitions and usually span more than 5
seconds. Using such rules, it would be possible to filter out false predictions of
short one-time events during breaks that looks like a movement in an exercise.
A strength of transforming the raw sensor data into categorized segments is that
it makes it easy to apply domain knowledge in order to filter the output of the
model. Therefore, general rules can be applied to categorized segments instead of
trying to compose rules for each type of exercise in order to categorize activities
or repetitions by counting peaks and valleys in the raw sensor data.



58 CHAPTER 6. CONCLUSION



Bibliography

Das, D., Busetty, S. M., Bharti, V., and Hegde, P. K. (2017). Strength training:
A fitness application for indoor based exercise recognition and comfort anal-
ysis. In 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 1126–1129.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121, 2159.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980 [cs.LG].

Kofod-Petersen, A. (2015). How to do a structured literature review in computer
science.

Maheedhar, M., Gaurav, A., Jilla, V., Tiwari, V. N., and Narayanan, R. (2016).
Stayfit: A wearable application for gym based power training. In 2016 38th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 6290–6293.

Morris, D., Saponas, T. S., Guillory, A., and Kelner, I. (2014). Recofit: Using a
wearable sensor to find, recognize, and count repetitive exercises. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,
pages 3225–3234, New York, NY, USA. ACM.

Qi, J., Yang, P., Hanneghan, M., Waraich, A., and Tang, S. (2018). A hy-
brid hierarchical framework for free weight exercise recognition and intensity

59

http://www.deeplearningbook.org


60 BIBLIOGRAPHY

measurement with accelerometer and ecg data fusion. In 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 3800–3804.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. Nature, 323:533–536.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence - a modern approach,
3rd Edition. Prentice Hall series in artificial intelligence. Prentice Hall.

Shugang Zhang, Zhen Li, J. N. L. H. S. W. and Wei, Z. (2016). How to record the
amount of exercise automatically? a general real-time recognition and counting
approach for repetitive activities. In 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 831–834.

Soro, A., Brunner, G., Tanner, S., and Wattenhofer, R. (2019). Recognition and
repetition counting for complex physical exercises with deep learning. Sensors,
19(3):714.



Appendices

61



62 APPENDICES

(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.1: Confusion matrices for participant with id 0 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.2: Confusion matrices for participant with id 1 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.3: Confusion matrices for participant with id 2 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.4: Confusion matrices for participant with id 3 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.5: Confusion matrices for participant with id 4 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.6: Confusion matrices for participant with id 5 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.7: Confusion matrices for participant with id 6 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.8: Confusion matrices for participant with id 7 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.9: Confusion matrices for participant with id 8 when left in the validation
set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.10: Confusion matrices for participant with id 9 when left in the vali-
dation set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.11: Confusion matrices for participant with id 10 when left in the vali-
dation set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.12: Confusion matrices for participant with id 11 when left in the vali-
dation set for the leave-one-subject-out experiment.
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(a) Confusion matrix for the activity recognition.

(b) Confusion matrix for the repetition recognition.

Figure 6.13: Confusion matrices for participant with id 12 when left in validation
set for the leave-one-subject-out experiment.
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