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Problem Statement

In a typical server system, there are usually latency-critical workloads which are sensi-

tive to user demands. These latency-critical workloads have a client-server interaction,

where the client will send some request, and the server side application will have to

respond within a given time frame. This time frame is typically referred to as Quality

of Service (QoS) target. A higher number of responses within this time frame results

in a higher quality of the service. The question is how to maximize the number of

times the QoS target is met, subject to maximizing the energy efficiency or resource

utilization (as a metric of Instructions per cycle, for instance).

To solve this problem, the following should be done:

1. Select one application from the Cloudsuite benchmark suite [1], and identify the

type of queries generated by this application. �

2. Design a way to collect these metrics. There are two options: �

(a) Instrument the specific workload and write the queries periodically to a

log-file.

(b) Collect metrics from the network interface card (NIC), as all requests will

have to pass through it.

The second approach is more generalizable.

3. Based on the current server system configuration (e.g., frequency of cores, number

of cores, memory bandwidth, etc.), identify why certain queries take longer to

finish. �

4. Based on the knowledge gathered from the previous points, present a prediction

model that will estimate the QoS target. �

5. Build a prediction model that will be based on a neural network function approx-

imator or some sort of mathematical formulation. �

If time permits:

1. Select one or more application and follow the same procedure as above. �

2. Build a scheduler that will meet this QoS target. �

Supervisor: Rajiv Nishtala

Co-supervisor: Magnus Själander
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Abstract

Many of the workloads running on data center servers are latency-sensitive, and de-

mand satisfactory user experience, making it challenging to reduce power consumption

due to stringent tail latency targets. Task management mechanisms are crucial mech-

anisms to reduce energy usage subject to meeting tail latency targets. This thesis

introduces Heimdall, a solution based on simple machine learning models (random

forests, and support vector machines) to understand the correlation between cores,

dynamic voltage and frequency scaling (DVFS), the load of the workload and latency.

Our experimental results for Memcached performed on an Nvidia Jetson TX1 board

show that Heimdall reduces energy consumption over two state-of-the-art task man-

agement solutions: Hipster and Heracles by 2% and 16% respectively, while improving

times the tail-latency targets is met by 11.2% and 6.1%.
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Sammendrag

Mange av arbeidsoppgavene som behandles i dagens datasentre er følsomme for forsinkelse,

og krever at brukere har en tilfredsstillende opplevelse, noe som gjør energibesparing

til en utfordring, som følge av strenge krav til forsinkelse. Oppgaveplanleggere er

avgjørende for å redusere energiforbruket samtidig som disse kravene møtes. Denne

masteroppgaven introduserer Heimdall, en løsning basert p̊a enkle maskinlæringsmod-

eller (random forest og support vector machine) for å forst̊a korrelasjonen mellom

kjerner, dynamisk spennings -og frekvensskalering (DVFS), arbeidsbelastning og forsinkelse.

V̊are eksperiment er gjennomført p̊a et Nvidia Jetson TX1 brett, med resultater som

viser at Heimdall reduserer energiforbruket med henholdsvis 2% og 16% i forhold til ek-

sisterende oppgavebehandlere som Hipster og Heracles, og møter kravene for forsinkelse

henholdsvis 11.2% og 6.1% oftere.
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Chapter 1

Introduction

According to a report from 2014 [2], the energy consumption from US data centers, in

2013, was estimated to be 91 TW h. This matches the power consumption of all the

households in New York City for two years. From an emission perspective this amount

of energy is equivalent to 150 million metric tons of carbon pollution generated by

coal-fired power plants.

Traditionally, power saving has been performed with focus on long-term perfor-

mance, suited for batch jobs [3]. However, in recent years, there has been a rise of web-

services with needs of rapid response times; latency-critical workloads. Latency-critical

workloads are common workloads being processed on today’s data center servers. These

workloads are typically generated by popular web applications such as search, social

networking, web mail, online maps, and automatic translation [3, 4].

It is quintessential for the aforementioned services to be responsive and provide

quick responses. A study conducted in 2009 found that a server-side delay of more

than 400 ms for page-rendering negatively affects user experience and advertising rev-

enue [5]. Dean and Barasso demonstrate in Tail at Scale [4] that keeping latency low

is a challenge because latency-critical applications usually operate on large scale data

sets that may be fanned out over thousands of nodes. This signifies that when a user

is sending a query, the result returned is combined of results from several individual

nodes. To exemplify, having one slow node out of 100, a user request aggregating the

results from these nodes will have a 63% chance of being slow. This urges the impor-

tance of tail-latency as a metric, the latency for which a percentage of all requests are

within, e.g. the 95th percentile. Thus, for the service to feel responsive, it is important

that requests complete within a strict quality of service (QoS)-target, typically 95th or

99th percentile of the latency distribution. It is essential that these constraints are met

in order to deliver a good and acceptable user experience.

To meet these requirements, data centers must be scaled to process requests within

1
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Figure 1.1: Power proportionality gap of Memcached on Jetson TX1

the QoS-target at maximum load. It is known that the use pattern of services like

Google follow a diurnal pattern [3, 6], with load varying from 5% to 80% throughout

the day. In addition, traffic spikes might occur due to uncommon events, like for

instance Black Friday [7]. This leaves the servers under-utilized at times of lower load.

Despite receiving a lower load, the energy consumption does not correlate linearly with

the utilization, known as the power proportionality gap.

Figure 1.1 illustrates the power proportionality gap on our setup, which is described

in section 4.1.1. We dedicate all cores, running at maximum DVFS, to Memcached,

with the load varying over time. These results show, that even running at an embedded

system utilizing power saving c-states, at 10% load, the power consumption is at 30%.

This is the same trend that we see in one of Google’s data centers, where the cluster

draws 70% of peak power at 30% utilization [3].

With the traditional power scheme mechanisms being rendered inefficient for the

demands of latency-critical workloads [3], new methods are being developed. Previous

works [3, 6, 8–14] have presented various ways to address power management of servers

running latency-critical workloads. At least two approaches have emerged for power

saving, of which one is to use ”optimal” system resources, in order to save power. The

second is collocating other workloads alongside the latency-critical workload, in order

to increase utilization of the resources available.

However, current task management policies are based either on the current load

(in requests-per-second (RPS)) or tail latency, which may result in an increase in

energy usage due to over-provisioning resources to ensure that tail latency is met.

We demonstrate that this results in undesirable ping-ponging effects across mapping

decisions for minor changes in load/latency.

To tackle the aforementioned problem, we design Heimdall, a task manager using

simple machine learning models to estimate tail latency as a function of current load,

core mapping and DVFS, and using this to drive task management decisions. The

2



Introduction 3

machine learning models deployed are: random forests (RF), Support Vector Machines

(SVM) and reinforcement learning (RL).

Specifically, first, we demonstrate that Memcached [15] load generators, in partic-

ular Cloudsuite [1] and Mutilate [16], exhibit a high degree of error when reporting

important statistical information such as tail latency. We design a sniffer that allows

for capturing of network packets between the client and server of a latency-critical

workload, and for the extraction of characteristics that may aid in prediction of the

tail-latency.

Next, we demonstrate that tail latency can in fact be estimated with a high accu-

racy using a small random data set drawn randomly from a sample set consisting of

combinations of core and DVFS and load combinations.

Finally, we show that these models can be used to make effective scheduling de-

cisions that out-perform state-of-the-art task managers such as the Linux scheduler,

Hipster [8] and Heracles [6].

Our results show that, we improve over the Linux scheduler, Hipster and Heracles in

meeting QoS by 25%, 11.2% and 6.1%, respectively, while reducing energy consumption

by 1.2%, 2% and 16%, respectively.

The report is structured as follows. Chapter 2 gives motivation for the research

and present background information and review of work related to latency-critical

workloads. In Chapter 3 we describe work developed during the research. Chapter 4

presents our experimental setup and experiments, and thereafter the results obtained

from these experiments. Finally, chapter 5 concludes the project.

1.1 Thesis Timeline

Table 1.1 shows the development and focus we have had throughout the work of this

thesis, and tries to explain where time was spent.

Initially for this project we had a stronger emphasis on capturing per-packet char-

acteristics, for instance whether a request is a get or a set, and using it to make more

precise estimates. As an additional feature to this, we wanted to make a completely

workload agnostic sniffer, that was able to automatically profile a workload and extract

these characteristics. After constructing the code with that in mind, and researching

various methods of blind packet analysis and pattern recognition, we found it to be

out of scope, and that it requires much more effort than it would benefit the thesis.

A considerable amount of time was also used configuring and setting up the load

generators. We initially started with Cloudsuite’s Memcached load generator, and

found it to be too unstable to function well with reinforcement learning in April. Due

to this, we had to setup and test several other load generators for Memcached. Effort

3
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Date Description

15 January 2019 Signe master contract

January 2019 Read up on related work

January 2019 Setup Memcached and Jetson TX1

Januray 2019 Setup and experiment with Cloudsuite

February 2019 Build and test sniffer

March 2019 Add application protocol profiling to the sniffer (unsuccessful)

March 2019 Implement reinforcement learning

April 2019 Setup and experiment with Mutilate

April 2019 Test various other load generators (Treadmill, Masstree, Mcperf)

April 2019 Setup web search, both server and load generator

May 2019 Implement estimations using conjugate gradient based on ratio of

processed request and outstanding requests (unsuccessful)

May 2019 Implement SVM and RF

May 2019 Run scheduling experiments on Memcached

28 May 2019 Write report

June 2019 Experiment on web search (incomplete)

11 June 2019 Deliver report

Table 1.1: Thesis timeline

was also put into building a web search index and setting up web search, as we had

plans to do experimental testing with that workload as well.

4



Chapter 2

Background and Literature Review

In this chapter we look into the closely related research to our topic. We also explain

the different machine learning models employed in this work, as well as explaining

network packet capturing.

2.1 Energy Efficiency

The power proportionality gap is a major problem for energy efficiency in modern

data centers. Due to static power, lower load does not necessarily result in reduced

energy usage. In order to improve power proportionality, a server should be used to

its maximum utilization. Multiple techniques have been used to manage resources in

data center servers, and we will describe two of them; core mapping and DVFS.

2.1.1 Resource Scaling

DVFS is a technique by which the processors’ power consumption can be controlled

by varying the voltage/frequency dynamically [17]. The DVFS state of the processor

is currently termed “target frequency”. The target frequency is controlled using CPU

governors. The three predominantly used CPU governors are: ondemand, userspace,

and performance. The governor ondemand sets the DVFS state based on the current

processor utilization, as seen using the tool “top”. If a threshold limit is exceeded the

frequency is scaled up to maximum. The governor userspace explicitly allows the user

the define the processors’ DVFS state, and will not scale the DVFS state based on

requirement. The governor performance sets the highest DVFS state.

Core mapping is used to allocate a specified amount of resources (i.e., cores)

to a workload by binding the workload to core(s). This is achieved by using the

Linux command line tool “taskset” or “sched setaffinity”. Core mapping is useful

5



Background and Literature Review 6

when a workload is compute bound, as it does not waste any compute cycles stalling

for memory [18].

For the rest of the thesis, we use DVFS [3, 6, 8, 9, 11, 14, 19] and core mapping [6,

8, 20] as mechanisms to control the resources (i.e., cores and the DVFS state of those

cores) for each user specified workload running on the system.

2.1.2 Collocation

Large-scale batch workloads, such as file backup and offline image processing, are not

latency-critical and have no QoS constraints. In many data centers it is desirable to

run both latency-critical and batch workloads to increase server utilization at periods

of low load, due to the power proportionality gap. However, collocation of workloads is

not trivial, and prior work [6, 8, 10, 11, 13, 14] have addressed several challenges. This

is an important approach to handling the inefficiencies of the power proportionality

gap. As collocation was not exploited in this thesis, we stop the discussion here.

2.2 Machine Learning Models

In our work, we approach the task management problem by estimating the tail latency,

and perform core mapping and DVFS decisions based on the predicted results. These

predictions are estimated by machine learning models. We investigated three types of

machine learning models: Support Vector Machine (SVM) regressor, Random forest,

and reinforcement learning.

SVM Regressor [21] is a generalisation of SVM to solve regression problems;

Random Forest Regressor [22] is a supervised learning algorithm that assembles mul-

tiple decision trees to predict a decision for a given mapping function;

Reinforcement learning is a framework for an autonomous agent to interact in a dy-

namic environment and learn the optimal policy based on reward earned at each

state and action using the exploration-exploitation dilemma. In a reinforcement

learning problem, the agent learns the optimal policy by interacting with the

environment using the Markov Decision Process (MDP). Q-learning is the most

popular form of reinforcement learning and is capable of achieving impressive

results for a wide range of problems (e.g., playing Go, Atari, etc). A single step

of the Q-learning problem is given by

Rnew(st, at)← (1− α) ·R(st, at) + α · (rt + γ ·max
a

R(st+1, a)) (2.1)

6
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The model maintains a lookup table, R(s, a), of estimated discounted rewards

for an action, a ∈ A, in state s ∈ S. At a discrete time step, tn, in state sn,

the action taken will be the one estimated to give the greatest total, discounted

reward: an = argmaxa(R(sn, a)). Upon receiving the reward, rn, R(sn, an) is

updated as illustrated in equation 2.1, based on both the old and new state, sn

and sn+1, as well as the reward, rn. The learning rate is denoted as α ∈ (0, 1].

2.3 Workloads

2.3.1 Load Generators

In a real world scenario, data center servers are loaded by requests from individual users.

However, when conducting a performance evaluation this is not a practical option. To

simulate a request stream from a client to a server, a dedicated program, called a load

generator, is used. The load generator resides on a client machine and is periodically

constructing and sending requests to achieve a desired server load, commonly measured

in RPS.

Every load generator has one of two control loops. It may either be closed loop

or open loop. A closed loop load generator will have blocking requests, meaning that

new requests are held back until the previous request on the connection is responded

to. This entails that the maximum number of outstanding requests may never exceed

the number of connections. An open loop may send requests to match target load,

regardless of response.

In this work, we have experimented with Mutilate [7] and Cloudsuite’s load gener-

ator [1]. Mutilate is closed-loop, while Cloudsuite’s load generator is open-loop.

2.3.2 Memcached

Memcached [15] is a commonly used in-memory key-value store intended to speed up

dynamic web applications. It is extensively used as a caching system by large-scale

services, such as for Facebook [23] and Twitter [24], for latency-critical workloads. It

has also been extensively studied in academia [3, 6, 8, 9]. By storing data objects in

faster memory, Memcached manages to cache frequently used data for quick access. To

alleviate database load, web servers will typically try to read values from Memcached

before accessing the slower backend databases.

Memcached has two protocol modes: ASCII string queries and binary. We use the

binary mode as it is more modern [25]. The layout of the binary header is seen in

figure 2.1. The binary packet header is always 24 bytes. There are three more fields in

7
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Magic byte Opcode Key length

Extras length Data type vbucket id/Status

Total body length

Opaque

CAS

(64 bits)

Figure 2.1: Memcached binary protocol layout

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header

(24 bytes)

Command-specific extras (as needed)

Key (as needed)

Value (as needed)

Figure 2.2: Memcached packet structure

a Memcached packet, as seen in figure 2.2, all sized as needed for each request/response.

In the header, the magic byte has two purposes. (1) it indicates whether it is

a request or response, and whether it is from the server or from the client. (2), it

will behave as a version control, as the byte values change for each version. In order

to know which operation the query is issued, the second byte contains the opcode.

There are in total 146 different opcodes, but most are not used by the load generators

tested in this work. The opcode values that are used may be seen in table 2.1. When

sending several, concurrent requests, the client must be able to recognize which request

is being responded to when the order of responses is not maintained. The opaque field

is generated when a request is sent, and is echoed back by the corresponding response

from the server, enabling the client to match request and response.

Byte value Query type

0 Get

1 Set

Table 2.1: Memcached binary opcodes

8
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Load
generator NIC Server

t0 t1 t2

t4t5 t3

Figure 2.3: Request flow between load generator and sniffer

2.3.3 Web Search

We use the benchmark provided by Cloudsuite for Web Search [26]. The server relies

on the Apache Solr [27] search engine framework.

The load generator from Cloudsuite encodes the requests with chunked transfer

encoding [28]. This way, each request may be split into chucks and transferred over

several packets, in a series concluded by a packet only containing the byte sequence

0x0d, 0x0a, 0x30, 0x0d, 0x0a, 0x0d, 0x0a. Each chunk begins by denoting the length

of the chunk in hexadecimal, followed by 0x0d, 0x0a, then the content of the chunk,

and concluded by 0x0d, 0x0a.

2.4 Networking

Current state-of-the-art task managers [6, 8, 9] depend on application performance met-

rics as input to handle latency-critical workloads. These metrics have to be collected,

and provided to the scheme. One approach to obtain these metrics is to instrument

the specific workload and write the queries periodically to a log-file. This method re-

quires manipulation of the load generator source code, which requires extra effort, and

is not generalizable. Additionally with workloads possibly generating tens to hundreds

of thousands requests per second, per-query precision will be difficult to register due

to slow I/O-operations. Another possibility is to exploit that all requests will have

to pass through the network interface card (NIC), as shown in figure 2.3. This way

we can collect the application-performance metrics in a load generator independent

way. Figure 2.3 illustrates the request flow between the load generator and the server.

With indices in increasing order, a request is sent from the load generator process (t0),

through the NIC (t1), and then arrives the server (t2). The response follows the same

route in reverse, starting at the server (t3), entering the client’s NIC (t4), before finally

reaching the load generator process (t5).

Previous work [29] has shown that queuing effects in the client can occur when de-

ploying workloads with high request rates. For user experience, the end-to-end latency

9
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Figure 2.4: Time difference between timestamp from load generator and NIC, mea-

sured per packet

is what affects the performance. This is the time from when the user sends a request

until the response is received. However, for load generators, the client-side queuing

will bias the latency measurements. Figure 2.4 shows two graphs that illustrate the

time difference between the load generator and the NIC for requests sent from the load

generator (t1-t0), and responses received by the load generator (t5-t4). We observe that

the difference between t1-t0 is less than between t5-t4, due to queuing latency.

We demonstrate in section 4.1.2 that the client-side latency for CloudSuite [1] in-

creases as the server utilization grows. Collecting the metrics from the NIC directly,

this bias is eliminated.

2.4.1 PCAP

In order to monitor the NIC, we use pcap [30], an API developed by ”The TCPdump

Group” that allows the user to capture network traffic. The library is implemented

in C/C++, with support for other languages through various wrappers [31–33]. pcap

is commonly used in packet capturing tools, like tcpdump [30] and wireshark [34].

Packets are time stamped when arriving the NIC. Along with the timestamp, the user

is provided with the entire packet frame.

In this work, we will employ this library to provide our network packet sniffing tool

with the network packets that are being exchanged between the server and client.

10
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Figure 2.5: Three-way handshake to initiate a TCP connection

2.4.2 Transmission Control Protocol (TCP)

TCP [35], transmission control protocol, is a common protocol for the transport layer

in the network stack. Its two most important properties, that sets it apart from other

protocols like for instance the user datagram protocol (UDP), is loss less end-to-end

packet exchange, and maintenance of packet order [36].

In order to keep track of the amount of data sent and successfully received over

one connection, as well as the packet order, the TCP utilizes sequence numbers and

acknowledgement numbers. At the initialization of a new connection, both the server

and the client generate their individual initial sequence number (ISN), using an initial

sequence number generator. The ISN may be an arbitrary number generated by the

ISN generator. For simplicity in this example we denote the server ISN, is, and the

client ISN, ic. These are then being exchanged between the client and server in a

three-way handshake, as seen in figure 2.5.

The client initiates the connection in what is called an active open. In an active

open, the client sends a synchronize (SYN) packet containing ic to the server. The

server responds with a synchronize and acknowledgement packet (SYN-ACK). In this

packet the server acknowledges the clients ISN with an ACK value of ic +1, and shares

its own ISN. The last step in the handshake is the client acknowledging the ISN of the

server, by sending an ACK value of is + 1. The setup is complete, and both the client

and server can communicate.

During packet exchange, the sequence number of a packet is a counter of how many

bytes (application layer data, when excluding the underlying protocols) has been sent

from the sending side up to, but not including, that specific packet. The receiving

side will acknowledge the amount of bytes received up to that point. With s being the

sequence number, a being the acknowledgement number, and l being bytes sent until

that point, the calculation of the sequence and acknowledgement number for the client

is expressed in equation 2.2

11
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sc = ic + lc

ac = is + ls
(2.2)

Reception order is ensured by enforcing monotonically increasing sequence num-

bers. If a packet has a lower sequence number than the previous, one of two things

has happened; (1) the sequence number has already been received, and it is a retrans-

mission, or, (2) it is a previously unseen packet received in the wrong order. Loss-less

communication is ensured by validating that the sequence numbers are acknowledged.

For a packet sniffing tool this is useful because it connects sending and receiving

packets. Specifically, in a closed-loop load generator, each connection has blocking

requests, forcing it to wait for the previous request to be responded before issuing a

new request. Using this, it is possible to match a client request with the server response,

as the acknowledgement number from the server will be sc + payload of the request.

2.5 Related Work

Hipster [8] is a hybrid scheme that combines heuristics and reinforcement learning to

determine mapping decisions based on the current load of the workloads. However, it

becomes limited when scaling across large server systems, as it stores a large look-up

table containing values for all state-action combinations.

Heracles [6] is a heuristic feedback-based controller that manages four isolation

mechanisms to meet the QoS-target. However, as it is designed to enable a latency

critical workload to be collocated with batch workloads, it schedules to higher frequen-

cies even at low load.

Adrenaline [9] leverages DVFS at a finer granularity than what has traditionally

been done. It uses application-specific information, like for example query type(get/set)

for Memcached, to pinpoint and boost long running queries. This makes it reliant to

prior knowledge about the application. Furthermore, it is using fine-grain voltage

boosting techniques that requires simulated hardware to achieve DVFS scaling with

nanosecond precision.

Pegasus [3] uses a feedback-based controller designed to improve energy propor-

tionality of data center servers running latency-critical workloads. It operates as a

state-machine and adjusts DVFS via RAPL registers, in response to measured tail la-

tency, and adapts to diurnal loads. However, it does not respond quickly to short-term

variability.

It is also argued in Pegasus [3] that processor utilization alone (as used by onde-

mand) is a bad metric and cannot be used to reduce energy consumption subject to

meeting the QoS targets of the latency-critical workloads. This is because, ondemand

12
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governor controls the DVFS state based only on the CPU utilization, whereas these

workloads are also network bound.

Smooth Operator [10] is a framework that analyzes temporal heterogeneity of power

consumption patters, and derives highly power efficient service placement. The power

infrastructure of many data centers is built as a hierarchy, where servers only draw

power from leaf nodes, leaving head room of the root unusable. In addition, they

have to be provisioned for peak power usage. As each service has its own power

pattern, placing complimentary services under the same power node decreases the

power peak, creates a more stable draw of power under the same node, and achieves

higher throughput in data centers without changing the existing power infrastructure.

Rubik [14] is a fine-grain power management scheme for latency-critical workloads.

It uses queue length as a measure of instantaneous load and adjusts DVFS whenever

the queue length changes. Longer queue waiting times result in higher DVFS setting.

Q-Clouds [13] is a QoS-aware control framework for tuning resource allocations

between VMs to avoid interference effects. A multiple-input multiple-output model

is built based on online feedback and describes the relationship between resource al-

locations and the QoS experienced by VMs. To utilize unassigned resources higher

QoS-levels are provided consumers that are willing to pay for it.

Bubble-up [11] is a characterization methodology that enables accurate prediction

of performance degradation when services are collocated. By measuring each service’s

sensitivity and pressure to each shared resource, e.g. shared last level caches, band-

width to memory, etc., Bubble-Up detects complimentary services. A service with high

sensitivity for a shared resource should not be placed with a service with high pressure

to the same shared resource. However, this is a static method, and requires a priori

knowledge about the workloads, it is designed to find two complimentary services, and

does not scale to collocation of more than two services simultaneously, and finally, it

is not able to adapt to phases and load changes during or across executions.

Amdahl’s Law for Tail Latency [37] investigates how focus on tail-latency affects

hardware design. Their findings suggest that heterogeneous systems perform better for

moderate QoS-targets, and bigger cores are more favorable as serialization increases.

In addition, when a service has low latency constraints, one should balance single-

thread performance and request-level parallelism. In that case very weak cores may

not handle variability in service time, and the single-thread performance of stronger

cores is needed, while several weak cores are favored when a service is throughput

bound.
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Chapter 3

Heimdall

This chapter presents Heimdall, a task manager using simple machine learning models

to estimate tail latency as a function of current load, core mapping and DVFS. It incor-

porates a dedicated sniffer to provide the task manager with application performance

data. The goal is to make effective scheduling decisions that increases energy efficiency

subject to meeting the QoS-target.

We divide our work into three parts. The first part concerns the sniffer. We explain

how it is constructed and deployed. The second part revolves around the prediction

models. The third part is combining the work from part one and two to make scheduling

decisions.

3.1 Sniffer

The sniffer is the foundation of this work, as the task manager will build on top of

it. Its main functionality is capturing the traffic between the client and server of

interest, extract characteristics and details for each request, and finally present it to

the overlaying mechanism, the task manager. It aims to have a modular, pipelined

design, see figure 3.1. Each component has a specific, isolated role.

3.1.1 Packet Sniffer

The first component is the packet sniffer. This component captures packets on a

network interface, and passes it to the packet extractor. Capturing is done using the

Packet sniffer Packet extractor Packet analyzer Delay calculator Task manager

Figure 3.1: Architecture of the sniffer
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libpcap API. Settings like what network interface to listen to, and filters on for instance

ip address and port, is set in this module. If only packet counting, and/or header

reading is of importance, one may also set a maximum buffer size. This allows the

sniffer to only store the first n number of bytes in the buffer, discarding the remaining

content of the packet. For instance, when analyzing Memcached, and only RPS and

the ratio of get requests compared to set requests is of importance, the header contains

all the information needed from a packet. By only collecting the first 80 bytes of a

request (66 bytes of underlying protocols + 24 bytes of Memcached header), we get all

the data required to calculate these metrics. This way, keys and values that may span

hundreds of bytes do not have to be stored, and the memory requirements are reduced.

After the setup is done, the program enters an infinite loop. Whenever a new

packet enters the NIC, a user defined callback is executed, with access to the bytes of

the frame, including protocols down to the link layer, length of the packet and time

stamp. This data is propagated on to the packet extractor.

3.1.2 Packet Extractor

When processing the data from the packet sniffer, the packet extractor dissects the

packet content protocol by protocol down to the payload. We add support for IPv4

and TCP. Pointers to the underlying protocols are stored as corresponding C structs

and passed to the packet analyzer along with the pointer to the payload. These structs,

as well as the time stamp and packet length, are stored in the struct packet meta data t

(see Listing 3.1).

1 typede f s t r u c t {
2 e the rne t heade r ∗ e the rne t ;

3 i p heade r ∗ ip ;

4 tcp header ∗ tcp ;

5 s t r u c t t imeval t s ;

6 u i n t 3 2 t s eq next ;

7 u i n t 3 2 t l en ;

8 u i n t 3 2 t t o t a l l e n ;

9 } packet meta data t ;

Listing 3.1: Layout of the structure packet meta data t

3.1.3 Packet Analyzer

The first two steps of the pipeline, the packet sniffer and packet extractor, are appli-

cation agnostic. The application specific analysis is performed in the packet analyzer.

In order to make it adaptable to a wider range of applications, this component is mul-
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tiplexing the data from the packet extractor to code specialized for the application.

This can be expanded by the user by providing a dedicated function.

1 void handle packet ( void ∗p , packet meta data t ∗m, const char ∗ bu f f e r ,

unsigned i n t l ) {
2 d e l a y c a l c u l a t o r t ∗d = ( d e l a y c a l c u l a t o r t ∗) ( ( s n i f f e r p a r a m s t ∗)p)

−>args ;

3

4 i f (d−>a p p l i c a t i o n i d == 0) {
5 // Cal l to custom a n a l y s i s code

6 analyze custom (d , m, bu f f e r , l ) ;

7 } e l s e i f (d−>a p p l i c a t i o n i d == 1) {
8 analyze memcached (d , m, bu f f e r , l ) ;

9 } e l s e i f (d−>a p p l i c a t i o n i d == 2) {
10 analyze unknown (d , m, bu f f e r , l ) ;

11 }
12 }

Listing 3.2: Example of protocol multiplexing

This is useful for instance when analyzing Memcached, as the analyzer is able to

read out protocol specific traits, for instance the magic byte, opcode, opaque, etc. Al-

though different workload protocols have different traits, some information can still

be extracted in a protocol agnostic manner. Consequently, the packet analyzer im-

plemented in our sniffer has a function for unknown protocols, seen in Listing 3.2 as

analyze unknown(). This function matches packets as described in section 2.4.2, using

sequence numbers and acknowledgement numbers. The unknown protocol function

determines whether a packet is a request or a response, as well as request length.

In analyze memcached, the packets are matched on opaque as well as port. As

described in Section 2.3.2, this is the field that gets echoed back from the server when

a request is sent, and should be different for requests on the same connection.

When analyzing websearch, it is required to reassemble the packets for each indi-

vidual request, due to the chunked encoding described in section 2.3.3. In order to

achieve this, we maintain a table with an entry for each active connection, storing the

packet data as they arrive until the terminating chunk is received. Only when the entire

request is received, it is concatenated into one, single packet, the packet is considered

reassembled, and packet analysis is performed. This allows us to calculate the packet

length, as well as count requests per second for web search.

3.1.4 Delay Calculator

The core functionality of the delay calculator is calculating the tail-latency and similar

statistics. It also manages these statistics at the time interval defined by the user. At
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this point in the pipeline, statistics such as load, tail-latency and workload specific

metrics are refined, and may be printed to screen, or passed on to the task manager.

Two methods were implemented for storing requests. The first method, referred to

as the naive method, is a 1-dimensional array. Each position in the array contains an

entry, consisting of an active flag and meta-data about the request. At insertion of a

new request, the delay calculator will search the array from index 0 to index l, where l

is the length of the array, until a non-active entry is found. If all entries are active, the

array will be reallocated to double size, and the new request will be stored at index

lnew/2 + 1, where lnew is the new length of the array. When performing a lookup, the

delay calculator searches the array from index 0 to index l, and compares the key and

the port of the new request for each active entry. When an active entry with matching

key and port is found, it is returned. If not found, NULL is returned. The search is

illustrated in figure 3.2

The second method of storing requests embeds a hashing table to better cope with

a higher number of simultaneous entries. While being viable at low loads, the naive

method becomes inefficient as the load and number of outstanding requests increase.

By using a uniformly distributed hash function, we can divide the requests into n

buckets. As hash functions are O(1), this reduces the complexity of every search.

Regardless, having an amount of buckets equal to the number of outstanding requests

is wasteful, as the table must be allocated at start up. We therefore combine the hash

table with a linked list, as illustrated in figure 3.3.

The key is stored in a 64-bit integer. The port is necessary as different connections

may share the same key. When matching packets based on sequence numbers and

acknowledgement numbers, as explained in section 2.4.2, each connection maintain
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their own sequence numbers individually.

When a connection is closed with an outstanding request, the server has no medium

through which it can respond. This will leave an unresponded entry in the delay

calculator database that will never be neither looked up nor removed. Over time, this

occupies memory, and gives erroneous measures of outstanding requests. To address

this, a cleaning function is implemented, that at a set time interval removes all entries

older than a predefined value. This value should be an order of magnitudes larger than

QoS-target to avoid removing active requests.

3.2 Machine Learning Models

The data collected in the sniffer is passed to the machine learning models. The main

goal of the machine learning models is predicting the tail-latency for a given state, by

taking RPS, core allocation and DVFS as input.

3.2.1 Support Vector Machine and Random Forest

We use the Scikit-learn library [38] to implement SVM and RF. Both models require a

labeled training set, and an offline training phase before predicting real-time samples

from the sniffer.

3.2.2 Reinforcement Learning

We implement the reinforcement learning problem from scratch as we could not find

any suitable libraries in C. This provided us with: (1) good insight into reinforcement

learning, (2) flexibility to our code.

Our prediction problem is translated to a MDP as follows: the state, sn, is the

core and DVFS configuration, as well as RPS in the time interval tn−1 to tn. RPS is

quantized into buckets. Based on the state, the model selects an action, an, being its

tail-latency prediction for time interval tn to tn+1. The set of actions, A, consists of

ten estimation values. The estimated values are equally sized buckets in the range of

the minimum latency to the QoS-target. All violations reside in the uppermost bucket.

The reward for an estimation, rn, is formulated as the negative, absolute error from

the measured value, see equation 3.1.

rn = −|lpredicted − lmeasured| (3.1)

In our task manager, we must predict the tail-latency for all states when scheduling,

and then choose the best state. As all these are hypothetical states, and we do not
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have an answer to them, simulated actions are done, that do not update the R-table.

The RL model is only updated for the state that is chosen by the task manager, and

is in that way continuously learning and improving.

3.3 Scheduling

We exploit the output generated by the sniffer and the prediction model to build a

task manager. The task manager is responsible for determining core mapping and

DVFS settings for the server, in order to increases energy efficiency while meeting the

QoS-target.

Figure 3.5 shows a high-level overview of Heimdall. It includes a QoS-monitor, a

prediction module and a mapper module. The QoS-monitor, i.e. the sniffer, periodi-

cally collects statistical information about application-level metrics, such as RPS and

query latency. These statistics, along with core and DVFS configurations, constitute

the state. The statistics are passed to the prediction module and used by the machine

learning model to predict the tail-latency for the next time interval. All possible combi-

nations of core and DVFS configurations are sequentially fed into the prediction model

along with the collected application-level data. As a result, tail-latency predictions for

all possible states in the next time interval are known.

The predictions are evaluated before actuating the mapper module. Due to the

power proportionality gap, it is beneficial to scale down the system resources as much

as possible while meeting the QoS-target. Figure 3.4 demonstrates tail latencies at

different loads and configurations, where bigger size of the scatter point indicates higher

tail latency. We observe a correlation between scaling down system resources and an

increase in tail latency. From this we instruct the latency evaluator to select the core

and DVFS configuration that meets as close to the QoS-target without violation.

As we demonstrate in section 4.2, the prediction models tend to underestimate the

latency. To compensate, we determine a slack value, s, from an empirical analysis, to

approximately 10%. When evaluating the predictions for all the configurations, the

slack point (QoS-target - s) will be used as target rather than QoS-target.

x′ = argmaxx(f(x))

f(x) =

l(x), l(x) < ltarget − s
ltarget − l(x)− s, else

(3.2)

The configuration selection process is expressed in equation 3.2, where x is the

state, l(x) is the tail-latency prediction for state x, and ltarget is the QoS-target. f(x)

is the evaluation function, expressing the score of a certain configuration. In short, it
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Figure 3.4: Latency at different DVFS/mapping configurations

selects the highest non-violating configuration. If all configurations violate the target,

the configuration with the lowest latency is selected.

The latency evaluator propagates the most suitable configuration to the mapper

module, which notifies the server to change core and DVFS configuration. Heimdall is

operating on a dedicated node, and a communication protocol over TCP is developed

to enable communication to the server nodes operating the workload. The protocol is

using nine bytes. The first byte contains the binary flags, and the next 8 bytes contain

the data. Only if flag seven is set, eight additional bytes are appended containing a

timestamp, making it in total 17 bytes. The effects of the flags can be seen in table

3.1. This allows Heimdall to both set DVFS and core mapping, as well as read the

current configuration and energy consumption.

On the node serving the workload, the DVFS is adjusted and the workload is

allocated to cores according to the information received from the mapper module.

Linux’ sched set affinity system call is used to specify core allocations while for DVFS

control, we select the userspace governor and adjusts the DVFS with cpufreq.
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Bit Effect

0 Unused

1 Indicates successfull request

2 Indicates that request is a set

3 Indicates that 8-byte value is a double

4 Indicates that energy is requested

5 Indicates that core count is requested

6 Indicates that frequency is requested

7 Indicates that request appends an 8-byte timestamp

Table 3.1: TCP controller protocol

21



Chapter 4

Evaluation

This chapter covers our experimental setup, both in software and hardware, and the re-

sults of experiments. The main focus is on scheduling, but evaluations of the prediction

models, as well as the sniffer, is also done.

4.1 Experimental Methodology

4.1.1 Experimental Platform

We perform the evaluation of Heimdall on an Nvidia Jetson TX1 running Ubuntu

16.04 operational system. The board employs an SOC design that incorporates a 64-

bit quad-core ARM A57 processor. The cores are capable of frequency scaling from

0.1 GHz to 1.73 GHz with steps of 0.1 GHz. The CPUs share a 2 MB L2 cache and a

4 GB LPDDR4 Memory.

The load generator for Memcached are running on an AMD Ryzen 5 2600X Pro-

cessor with 6 cores at 4.25 GHz with a shared Last Level Cache of 19 MB, and a 16 GB

DRAM. The Jetson board and the machine hosting the load generator are connected

using a 10 GB ASUS XG-C100C.

4.1.2 Benchmarks

As a starting point we selected Cloudsuite’s [1] load generator for Memcached, an

open-loop load generator, with uniform distribution. After performing a number of

experiments, we found that Mutilate [7], a closed-loop load generator, was producing

more stable results on our setup. As illustrated in figure 4.1, it deviates 3.72% from

the sniffer at high load, whereas Cloudsuite overestimates more as the load increases,

up to 32.4% at high load.
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Figure 4.1: Comparison of the load generators’ deviation to the sniffer

On the server, Memcached is running four server threads, equal to the number of

cores on the Jetson TX1 board. We dedicate 2 GB of RAM, and set an upper bound

of 5000 connections.

Due to limited access to hardware, our setup features a single-client configuration.

According to Mutilate’s recommendations, the number of worker threads should not

exceed hardware cores/threads, and as the client is operating on a hexacore CPU with

12 threads, we choose to spawn 8 worker threads for Mutilate, leaving 4 threads to

other background processes, like linux and the task manager. Following the guidelines

from Mutilate, we are using 16 connections per worker thread. It is recommended

establishing on the order of 100 connections per server thread, but our hardware limits

disallows us to reach this number. We consider 128 connections in total sufficient for

our experiments. For the distribution of key and value size, as well as inter-arrival time

distribution, we chose to use Mutilate’s built-in Facebook distribution.
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Figure 4.2: Latency for three and four cores
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To simulate a time varying load, the load is generated as a step-wise monotonic

function. The load difference between every load change is a constant change factor.

We decide this to be 20% of the load range. The load between every load change is

constant. The function starts at a minimum load and increases by the change factor

every interval until maximum load is reached. One iteration is from 0% to 100%, and

the same steps in reverse. Each load step is held 50 seconds.

When performing an experiment on 100% load, we discover a severe degradation

of 724% on 95th-percentile tail latency when running on all four cores compared to

three, and an average degradation of 273% for all load steps in the benchmark at

maximum DVFS settings. This can be seen in figure 4.2. We suspected this to be due

to interference with the Linux kernel, as well as other unrelated software running in the

background. The degradation is measured after increasing the priority of Memcached

and bringing the count of background processes to a minimum. As a consequence, we

decide to exclude the use of four simultaneous cores, leaving the maximum core setting

to three cores.

4.1.3 Tail Latency
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Figure 4.3: Tail latency and load at the knee

Figure 4.3 presents how the 95th percentile tail latency reacts to increasing load

levels for Memcached. We use this to quantify the maximum input load the server

can sustain while meeting QoS-target. The tail latency is increasing more rapidly after

exceeding a load threshold. To quantify this threshold we use the kneedle algorithm [39]

to locate the knee, marked as the intersection of the black lines in the figure. We set
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the QoS-target to the latency at the knee, and the maximum load as 95% of the load at

the knee, because the latency is unstable at 100%, as the system cannot handle more.

Our tests show that the knee is located at 33000 RPS and 1.1 ms. Hence, maximum

load during our experiments is set to be 31350 RPS, and QoS-target is 1.1 ms.

4.1.4 Energy Measurements

The power consumption of the board is obtained by reading the INA3221 register. The

register reports separately the power consumption of the GPU and CPU. The power

consumption of the GPU is not taken into account, as it is not used in our experiments.

4.1.5 Prediction Model Evaluation

We show the accuracy of the prediction models by using: the coefficient of determina-

tion, R-squared (R2), and the Percentage Absolute Average Error (PAAE) [18]. For a

given prediction function y = f(x), R2 determines how much the total variation of Y

(dependent variable) is due to X (independent variable). In other words, it is 1 − Z,

where Z is the ratio of the residual sum of squares to the total sum of squares, and is

represented as:

R2 = 1−
∑

(Yactual − Ypredicted)2∑
(Yactual − Ymean)2

(4.1)

PAAE is calculated as the average of the percentage absolute error for each sample

predicted, as shown in equation 4.2, reproduced from [40]. N is the total number of

data points, and the PAAE is the average of the absolute percentage deviation between

the estimated value, QoSpredicted,i, from the actual value, QoSactual,i.

PAAE =
1

N

N∑
i=0

|QoSpredicted,i −QoSactual,i|
QoSactual,i

(4.2)

4.1.6 Evaluation Metrics

We evaluate Memcached using two metrics: QoS-guarantee and QoS-tardiness. QoS-

guarantee is defined as the percentage of measured QoS samples that met the QoS-

target. QoS-tardiness is defined as the ratio of measured QoS to the QoS-target, and it

determines how intense the violation was. A QoS violation has occurred if the tardiness

is above 1.
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4.1.7 Machine Learning Model Parameters

In this section, we describe the parameters used for RF, SVM and RL. As a thumb

rule, we use a randomly generated seed for all experiments.

Random Forest — When running RF alongside the load generator, we see an

interference that leads to a drop in RPS of 10-15% at higher numbers of tree estimators.

In addition, at 200 tree estimators, the estimations do not finish within the one second

interval. We choose 20 tree estimators, as the overhead is minimal and the RPS close

to target.

Support Vector Machine — For SVM we choose the parameters empirically.

After testing various combinations, the following numbers obtained best results: The

normalization factor, γ, is set to 1× 10−4, the C value is set to 100, and ε is set to

0.05.

Reinforcement learning — We set the parameters of RL equal to those in Hip-

ster. This is a learning rate, α, of 0.1, a discount rate, γ, of 0.6, and ε of 0.05. As we

do not measure lower latencies than 0.6 ms, we set the lower bound to 0.5 ms to add

some margin. We allow for 10 actions, spanning from 0.5 to 1.1.

Offline models, like SVM and RF, require offline, labeled data for training. We

generate this data set by running one iteration of the benchmark at all combinations

of the three core mappings and 17 frequency steps, totalling at 51 configurations. Each

load step is held for 50 s, and is sampled each second. As a result, the entire, offline

training set consists of 30600 samples.

4.1.8 Baseline Comparisons

We compare our work against a static baseline, the Linux scheduler and two state-of-

the-art solutions: Hipster [8], and Heracles [6].

Static All resources are allocated to the latency-critical workload at the highest

DVFS setting.

Linux Both DVFS and core configuration is freely decided by Linux. The config-

uration is read out and sampled once every second. The active governor is ondemand.

Hipster is a hybrid reinforcement learning (RL) algorithm that combines heuristics

with RL to determine mapping decisions based on the current load of the workload.

The heuristic explored by Hipster is a state-machine based algorithm that orders the

mapping configuration (cores and DVFS) in increasing order of power efficiency. A

transition between states occurs when the tail latency is too close or too far away from

the target. This heuristic enables Hipster to speed-up the learning and avoid using

mapping decisions that may violate the QoS-target. The current load is quantized into

multiple buckets as part of the state. The action for Hipster is a mapping configuration
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for the latency-critical workload. We set the learning rate to 0.6 , discount factor to

0.9 , the bucket size to 4 % and the learning phase to one iteration in the benchmark

(500 s).

To determine the order of the mapping configurations by power efficiency, we or-

der by instructions per second per watt (IPS/W ). We run a stress microbenchmark

while counting instructions per second using perf and measuring power as useful en-

ergy consumption, removing the idle power, for each core/DVFS configuration. As an

experiment, we also test ordering the configurations only by power consumption, as

this results in the configuration with highest throughput last, as opposed to third to

last as for IPS/W .

.

Heracles Heracles is a heuristic mapper that aims to meet the tail latency of

latency-critical workload. Heracles maintains three levels of the feedback controllers:

(1) main (2) core and memory (3) power controller. The main controller is polled every

15 second and is responsible for suspending non-latency-critical jobs, if the latency-

critical workload either violates the QoS-target or if the load is higher than 85%. In

such cases, all resources are given to the latency-critical workload for a period of 5 min.

The core and memory controller is polled every 2 s, and is responsible allocating cores

and memory resources to the workload. If the tail latency is at 80% of the QoS-target or

if the measured memory bandwidth has increased, then the latency-critical workload is

allocated an additional core with an increase to the LLC allocation using the Intel cache

allocation technology (CAT) [41].1 In all other cases, a core is de-allocated from the

latency-critical workload. The power controller is polled every 2 s, and is responsible for

decreasing the DVFS setting when the current power is at 90% of maximum measured

power consumption.

4.2 Results

In this section we present the results obtained from the evaluation of the implemented

machine learning models, SVM, RF and RL. We also present the effectiveness of Heim-

dall when deployed with Memcached and compare the performance results to the base-

line solutions presented in 4.1.8.

4.2.1 Sniffer

From figure 2.4 we see that the sniffer eliminates the queuing latency of Memcached,

and as figure 4.1 illustrates, it shows improvements to both Mutilate and Cloudsuite of

1The Nvidia Jetson board does not offer CAT, and therefore was not used in our experiments.
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up to 3.72% and 32.4% respectively. We also successfully capture and obtain metrics

like RPS and packet length for an additional workload; web search. However, due to

time constraints, web search is not used in the evaluation of machine learning models

and task managers.

4.2.2 Machine Learning Models

Offline learning
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Figure 4.4: Violin plot and CDF of estimation error

Figure 4.4 shows the precision of the prediction models, RF and SVM. In this

experiment we use 70% of the offline data set for training, and the remaining 30% to

test the performance of the model. For each of the 51 core/DVFS configurations, we

select 30% of the samples at random to append to the test set. The remaining 70% is

put into the training set.

The lower subfigure (c) shows the prediction error as a cumulative distribution

function. The x-axis represents the relative error, where 1.0 corresponds to a 100%
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deviation. We observe that both models have a tendency of underestimating tail la-

tency, as both distributions are slightly shifted to the left of 0. On the other hand, only

around 34% of the samples are within the QoS-target, and the remaining samples are

spread up to 700 ms. We measure on average for the lowest configuration on maximum

RPS, a tail latency of more than three hundred times the QoS-target. Our hypothesis

is that this is the reason why the largest outliers for RF are overestimations. This

is also supported by subfigure (b), showing that the largest outlier of the violating

samples are more than twice of the non-violating samples.

These graphs show that it is possible to estimate tail latency with low error rate

using the prediction models. As it comes clear that RF performs slightly better than

SVM in this experiment, we expand our analysis with emphasis on RF.
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Figure 4.5: Performance of different sets of configurations

Figure 4.5 shows how training on smaller fractions of the data set impacts the pre-

diction accuracy using RF. Each line corresponds to a given number of core/DVFS con-

figurations, and the x-axis represents the fraction of the data set for those core/DVFS

configurations being used for training. After training, the model is tested on the com-

position of 100% of the data set for all 51 configurations. We select the configurations

for training randomly, with the only requirement that all unique core mappings are rep-

resented at least once. The data set fraction is chosen deterministically, where the data

is chosen sequentially for each configuration, from the beginning up to the percentage

desired.

The left subplot (a) demonstrates how the configuration count and data set fraction

used during testing affects the PAAE. Using four configurations performs poorly, with

a PAAE of around 1. However, already at 12 configurations it is stabilizing, and

the PAAE is virtually unaffected by the data set size. The difference in performance

between using all 51 configurations and only 32 configurations is minimal.

The right subplot (b) illustrates the effect on R2 for configuration count and data
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set size. We observe that R2 increases up to a data set size of around 50%, but then

flattens out. This might be explained by the fact that the data set consists of the load

steps from the benchmark, first increasing load, then decreasing down the same load

steps. In other words, from 50% of the data set size and out, the same load steps are

revisited.

Figure 4.6 extracts the line with maximum configurations in figure 4.5. It clearly

illustrates that PAAE is reduced while R2 increases, and that the benefit of increasing

data set size diminishes after passing 40%. From this we argue that we can use less

data to make predictions with high accuracy.
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Figure 4.6: PAAE and R2 score for RF

Online learning

RL is the only prediction model used in this work producing discrete estimates. Eval-

uating this model will as a consequence be slightly different from the other models.

PAAE would be an unfair metric, as RL is incapable of measuring higher values than

QoS-target, and the actual latency may be several hundred times higher.

We will therefore evaluate RL from correctness and PAAE, where the PAAE is

calculated only for the non-violating samples. Correctness quantifies the proportion of

estimates where the actual value and the estimated value reside in the same estimation

bucket, for both violating and non-violating samples.

After only one iteration of the benchmark starting from a uniform model, RL has a

correctness of 71.7% and a PAAE 0.09. When the model is trained on one iteration of

the benchmark in advance, the correctness is increased by 10.3% to a total of 79.1%.
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For the same experiment the PAAE nearly cut one third, to 0.06. Training on the same

data set more times in advance does not benefit significantly, as training on the same

data set hundred times in advance only increases correctness to 80.2% and PAAE to

0.05.

The advantage of using such online models is that it requires no data before hand,

and adjusts itself to changes, as opposed to the offline models training on data before

starting, and never being able to adapt if the work load would change. The disadvan-

tage, however, is that online learning models are initially imprecise.

For a closed-loop load generator like Mutilate, the RPS generated is limited by

the responsiveness of the server. In our case, having 128 connections and a maximum

load of 31350 RPS, the average response time must be under 4 ms to maintain the

request rate. Under lower energy core/DVFS configurations, the load generator fails

to generate requests at that rate, and the RPS deviates from target RPS.

Due to this misbehavior, states might not be consistent across actions. A mis-

prediction by our RL model might, if it underestimates the tail latency of a lower

configuration, alter the state. This has two implications: RL is learning to estimate

on wrong states. Second, utilizing RL for an exhaustive search on core/DVFS config-

urations is not valid, as the state before and after the configuration is updated may

differ.

With this in mind, we do not find it reasonable to experiment with RL beyond

latency estimations with our setup, and it is not used for scheduling.

4.2.3 Task Manager

In this subsection, we evaluate the effectiveness of the task managers when using the

different machine learning models, and how they perform compared to the baselines.

Figure 4.7 shows the results of the different task manager schemes when manag-

ing Memcached. Subfigure (a) to (d) show the performance of the baselines we are

comparing against: Linux scheduler, static, Hipster and Heracles. Subfigure (e) and

(f) shows the results of Heimdall using SVM and RF respectively. The x-axis in each

subfigure represents the time of the experiment. The first row in each subfigure shows

the load represented as RPS. The second row presents the 95th percentile latency. This

row also has a black, dashed line which marks the QoS-target. The third row shows

the DVFS setting, while the last row presents the core mapping. Figure 4.8 shows the

results of task management with Hipster, ordering by IPS/W .
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(c) Hipster with ordering on energy
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Figure 4.7: Benchmark results for task managers
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Figure 4.8: Benchmark results for Hipster with ordering on IPS/W

Table 4.1 presents the QoS-guarantee, QoS-tardiness and energy reduction for the

different task managers we tested: Static, Linux scheduler, Hipster, Heracles, Heimdall

with SVM and Heimdall with RF. The QoS-tardiness values in the table are the aver-

age of the QoS-tardiness only including violating samples. Because static utilizes all

resources at maximum DVFS independent of load, it will be the most reliable to meet

the QoS-target, but also most power hungry. Therefore we use static as a baseline and

report the energy consumption of all task managers compared to static.

QoS Guarantee QoS Tardiness Energy Reduction

Static 99.8% 1.1 -

Linux 78.1% 1.2 21.4%

Hipster ordered by energy 87.8% 2.1 20.6%

Hipster ordered by IPS/W 84.0% 1.7 22.1%

Heracles 92.1% 3.0 7.2%

Heimdall with SVM 89.9% 4.7 7.1%

Heimdall with RF 97.7% 1.1 22.3%

Table 4.1: Summary of QoS guarantees, tardiness and energy savings for Memcached

Static has a high QoS-guarantee, and the QoS-tardiness is low. This is due to

excessive resource usage, and the power consumption is consequently the highest of all

the task schedulers.

Linux scheduler dynamically schedules after the current load. This scheduler

is rather deterministic, and after running multiple times, we see similar results. By

making mapping decision only based on CPU utilization, the QoS-guarantee for this

task manager is the lowest of all task schedulers tested in this work, as it does not take
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into consideration pressure on other resources like memory or network. This is more

evident during maximum load, as the Linux scheduler attempts to run at lower DVFS,

when it is necessary to run at maximum DVFS to meet the QoS-target. Furthermore,

the context switch time of the Linux scheduler is 10 ms, one hundredth of Heimdall

and Hipster, allowing it to respond to sub second load variations, and thus reduce the

QoS-tardiness. The inconvenience is the overhead, and affects latency negatively.

Hipster The figure shows that Hipster ordered by energy exhibits a ping-ponging

effect for small variations in load, that causes violations to the QoS. Besides, the

state space expands rapidly as additional configurations are added, raising a memory

problem. Figure 4.8 shows Hipster ordered by IPS/W . This approach saves slightly

more power, but at the cost of the QoS-guarantee. During the heuristic training phase,

the static order generated from IPS/W on the Jetson TX1 board slightly favors more

energy efficient configurations for higher loads, compared to when the static order is

generated from energy consumption.

Heracles The core and memory controller periodically increases or decreases the

number of cores based only on tail latency. This leads to a high number of task

migrations compared to Hipster. The main controller is polled every 15 seconds and if

the QoS-target is violated it adjusts the number of cores and DVFS to maximum for 2

minutes. We can see that a suspension period is triggered after 140 seconds because of

QoS-violations. The mapping decisions and DVFS during these periods are the same

as for static, resulting in an absence of energy savings. It is also important to notice

that the DVFS is almost exclusively set to maximum, as it is only reduced if the energy

measured is close to the maximum measured power consumption.

The QoS-guarantee is the third highest of all task schedulers tested in this work.

However, a significant amount of QoS-violations take place between 100 and 130 sec-

onds, after a change in load. It suffers from a course-grained action space as the DVFS

is constant and the only option is increasing or decreasing cores by one. From the 100

second mark running two cores results in a latency lower than the threshold of 80%

of QoS-target, while running one core results in a QoS-violation. This causes an oscil-

lation between the two core mappings, visible as a ping-ponging effect. This persists

until a suspension is forced by the main controller.

Heimdall with SVM overestimates the latency at higher load, and in response,

the DVFS and core configuration are maximized at an early, suboptimal point, after

around 100 seconds. Using this model, Heimdall misses out on energy savings, and

only reduce energy consumption by 7.1% compared to static. Despite running mostly

on maximum configuration from 100 seconds, the prediction model gives occasionally

inconsistent predictions with high variability in the transition from low to high load,

load steps three to five, that cause a significant drop in QoS-guarantee.
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Heimdall with RF produces more precise estimates, that in turn reflects the per-

formance of different core/DVFS configurations with respect to the current load better

than SVM. Accordingly, Heimdall is able to select the lowest performing configurations

that meet the QoS-target, minimizing energy consumption while maintaining a high

QoS-guarantee.

4.2.4 Discussion

Out of the six various task managers we have tested, Heimdall with RF performs better.

With the parameters we chose for our experiments, RF provides more precise estimates

than SVM, which causes Heimdall to perform better with RF than SVM. Finer tuning

of parameters would possibly improve SVM, but our efforts in methods like 5-fold cross

validation [42] has not yielded improvements. RF could benefit from being placed on

dedicated hardware, as interference with the load generator would be eliminated.

Heracles has, despite poor energy reduction, an advantage to Hipster and Heimdall

by not requiring neither upfront data, nor any up front training period. Hipster requires

a profiling of core/DVFS configurations in advance, and Heimdall requires a training

data set of various core/DVFS configurations. From the results in section 4.2.2, we

show that this data set does not require data from all possible configurations to produce

precise estimations, but rather that an acceptable level of precision may come from a

smaller data set.
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Conclusion

In this work we have developed Heimdall, a task manager incorporating a packet sniffer.

We have shown that the sniffer we built gives estimates as good or better than those

provided by the load generators Mutilate and Cloudsuite. We also achieve reasonable

precision on estimated latency predictions from the machine learning models SVM, RF

and RL. Using these estimates, our results for Heimdall show that, we improve over

the Linux scheduler, Hipster and Heracles in meeting QoS by 25%, 11.2% and 6.1%,

respectively, while reducing energy consumption by 1.2%, 2% and 16%, respectively.
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