
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Viktor Frede Andersen

Distributed lottery on Ethereum

Implementation of a tournament based
distributed lottery on Ethereum

Master’s thesis in Computer Science
Supervisor: Letizia Jaccheri

June 2019

Viktor Frede Andersen

Distributed lottery on Ethereum

Implementation of a tournament based distributed
lottery on Ethereum

Master’s thesis in Computer Science
Supervisor: Letizia Jaccheri
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Distributed lottery on Ethereum

Preface

This is a Master’s thesis carried out during the spring semester of 2019 for the com-
pletion of the 5-year computer science program at Norwegian University of Science
and Technology, Trondheim. The idea for a tournament based lottery on Ethereum
was inspired by the works of Miller and Bentov and Bartoletti and Zunino. The
search for a thesis went over a long time during which I studied blockchain appli-
cations and learned about the blockchain space.

The readers of this report are assumed to have a background in computer sci-
ence with some knowledge of distributed systems and blockchains.

11-06-2019

Viktor Frede Andersen

i

Distributed lottery on Ethereum

Acknowledgment

I would like to thank the following persons for their great help during the thesis
work:
Mariusz Nowostawski for being an excellent supervisor and mentor with patience
and understanding.
My mom Liv Unni Andersen and dad Jan Kjetil Andersen for mental support, guid-
ance, and for pushing me when progress was slow.
All contributors to the academic work which I built this thesis on, including open
source contributors and advocates of Bitcoin, Ethereum, and associated software
projects.

V.F.A.

iii

Distributed lottery on Ethereum

Abstract

Distributed lotteries on the internet is an interesting application with uses in gam-
bling and other areas. Blockchains that function as smart contract platforms can be
used to both transfer value and enforce protocols for multiparty computing with-
out relying on a trusted intermediary. This has made it possible to design lotteries
with verifiable randomness and with a guarantee of successful completion.

One promising design of a distributed lottery on a blockchain is based on a tour-
nament of digital coin tosses. This thesis explores the feasibility of such a lottery
through making an implementation and doing measurements. The implementa-
tion is made for the Ethereum blockchain, which is currently the leading platform
for applications using smart contracts. The lottery is assessed by measuring trans-
action costs and transaction demand, as well as by discussing the security of the
lottery in the context of known security issues for blockchain applications and web
applications.

We successfully implement a lottery prototype which is likely to work for up to
about 100000 participants. Several directions of further research to improve the
scalability are identified and discussed. We find that the most concerning security
issue is transaction censorship by a powerful collusion of opportunistic miners,
which might be an issue for lotteries with a very large prize.

v

Distributed lottery on Ethereum

Abbreviations

P2P = Peer-to-Peer
PoW = Proof-of-Work
VRF = Verifiable Random Function
PRNG = Pseudo-Random Number Generator
API = Application Programming Interface
MPC = MultiParty Computation
BVM = Bitcoin Virtual Machine
EVM = Ethereum Virtual Machine
CA = Contract Account
EOA = Externally Owned Account
dApp = Decentralized Application
RPC = Remote Procedure Call
DoS = Denial-of-Service
PoS = Proof-of-Stake
HDS = Hierarchical Deterministic Secrets

vii

Distributed lottery on Ethereum

Contents

Preface . i
Acknowledgment . iii
Abstract . v
Abbreviations . vii
Contents . ix
List of Figures . xiii
List of Tables . xv
Listings . xvii
1 Introduction . 1

1.1 Thesis statement . 2
1.2 Methodology . 3

1.2.1 Literature review . 3
1.2.2 Data collection . 4
1.2.3 Data analysis . 4

1.3 Thesis structure . 4
2 Background . 5

2.1 Cryptography . 5
2.1.1 Secure hash functions . 5
2.1.2 Digital encryption . 7
2.1.3 Digital signatures . 8

2.2 Verifiable randomness . 9
2.2.1 Introduction to verifiable random functions (VRF) 9
2.2.2 Categories of VRFs . 10
2.2.3 Delay functions . 11
2.2.4 Random beacons . 13
2.2.5 Verifiable random oracles . 13

2.3 Lotteries . 15
2.4 Blockchain . 18

2.4.1 Transactions . 19
2.4.2 Mining . 20
2.4.3 Blockchain threats . 22

2.5 Trustworthy computing . 24
2.5.1 Smart contracts . 24

ix

Distributed lottery on Ethereum

2.5.2 Ethereum . 25
3 Implementation . 29

3.1 Tournament lottery outline . 29
3.1.1 Digital coin toss . 29
3.1.2 Note on the lottery being non-deterministic 31
3.1.3 Phases . 32

3.2 Code . 34
3.2.1 Master contract . 34
3.2.2 Match contract . 36
3.2.3 Lottery setup code . 39

4 Results . 41
4.1 Gas usage and transaction costs . 41
4.2 Ticket price . 45

4.2.1 Lower and upper bound on ticket prices 45
4.2.2 A ticket price of zero . 46

4.3 Security . 47
4.3.1 Loss of connectivity . 47
4.3.2 Blockchain reorganizations 47
4.3.3 Censorship and transaction blocking 48
4.3.4 Compromised client and phishing 49

4.4 Cost of a censorship attack . 50
4.5 Scalability . 52

4.5.1 Transaction throughput . 53
4.5.2 Transaction costs and max prize 55
4.5.3 Scalability limits . 56

4.6 Analysis . 58
4.6.1 Consequences of interactivity 58
4.6.2 Tournament without a full binary tree 60
4.6.3 Mitigating a censorship attack 61

5 Discussion . 63
5.1 Programming tools . 63
5.2 Blockchain security . 64
5.3 Experimentation . 64

6 Conclusion . 67
6.1 Future work . 68

6.1.1 Minimizing transaction costs 68
6.1.2 Minimizing interactivity . 68
6.1.3 Off-chain negotiation . 68
6.1.4 Formal analysis of security . 69

x

Distributed lottery on Ethereum

Bibliography . 71
A Listings . 79

A.1 Solidity contracts . 79
A.1.1 Abstract match contract . 79
A.1.2 First level match contract . 79
A.1.3 Internal match contract . 81
A.1.4 Master contract . 84

A.2 Javascript . 86
A.2.1 Simulate lottery setup . 86
A.2.2 Simulate lottery play . 86

B Simulation data . 89
B.1 Gas usage . 89

xi

Distributed lottery on Ethereum

List of Figures

1 A chain of blocks linked with hashes. 19
2 Transactions in Bitcoin. 20
3 A natural blockchain fork. 22
4 Flowchart of a digital coin toss. 30
5 Tournament tree of 8 players. 31
6 Contracts in a lottery of 8 players . 40
7 Cost ratio as a function of participants and max prize. 57
8 Prize as a function of participants and cost ratio. 57
9 Cost ratio and prize as a function of participants and ticket price. . . 58

xiii

Distributed lottery on Ethereum

List of Tables

1 Keyword search on Scopus. 3
2 Designs of lottery schemes. 4
3 Average gas usage from simulation. 42
4 Organizer gas usage. Single match contract. 43
5 Total gas usage. Single match contract. 43
6 Organizer gas usage. Two types of match contracts. 44
7 Total gas usage. Two types of match contracts. 44
8 Estimates of td if all transactions on the blockchain are used for our

lottery. 54
9 Estimates of td if 10% of the transactions on the blockchain are used

for our lottery. 54
10 Time for the entire lottery if 10% of the transactions on the blockchain

are used for our lottery. 55
11 Statistics from dual match simulation with 256 participants. 89

xv

Distributed lottery on Ethereum

Listings

3.1 Lottery master contract . 35
3.2 Lottery first level match contract . 36
3.3 Lottery internal match contract . 38
A.1 Full Solidity contract for AbstractLotteryMatch. 79
A.2 Full Solidity contract for FirstLevelMatch. 79
A.3 Full Solidity contract for InternalMatch. 81
A.4 Full Solidity contract for LotteryMaster. 84
A.5 Truffle test suite for simulating lottery setup. 86
A.6 Truffle test suite for simulating lottery play. 86

xvii

Distributed lottery on Ethereum

1 Introduction

A lottery can be defined as a random distribution of a prize fund to a set of partic-
ipants, or more generally, a random selection of a subset of winners from a larger
set of participants to receive some privilege. A lottery is often associated with its
use in gambling where one becomes a participant by contributing to a prize fund
by buying a ticket, whereupon a set of winning tickets is randomly drawn and a
part of the fund is redeemable by owning a winning ticket. Lotteries have also been
used in important societal functions such as leader election in democratic gover-
nance [1] or proof-of-stake systems, drafting of soldiers to war [2], jury selection,
and distribution of scarce goods [3], or as a game used in fundraising to a charita-
ble cause.

Since the stakes in a lottery can be quite high, as with large cash prizes or being
drafted to a war, it is crucial that the result is unpredictable and unbiased. For the
lottery to achieve its purpose of ultimately distributing the prize, it is important that
there is consensus of the result, and that the rules are enforced. Achieving unbiased
randomness and consensus is typically done in one of two ways: 1) auditing and
public verification of every step of the protocol, i.e. paper tickets being sold and
blindly drawn from a basket, as is common for small-scale charity lotteries, or 2)
trust in a central authority to conduct the lottery fairly and according to the rules,
which is typical for national lottos and government-backed lotteries. In lotteries of
very large scale, only the second way has typically been feasible.

With the advent of the internet and peer-to-peer (P2P) online communications,
it is natural to explore the possibility of porting lotteries to this domain. A lottery
is a system of several components and is conducted in a process where a set of
participants is defined, and a subset of winners is randomly chosen. Components
of the system include a random process to decide the winners, an authentication
process to decide the participants, a mechanism to distribute the prize, and often a
way to handle payments. A computerized lottery that is accessed over the internet
can be made by having an authoritative server handle the entire lottery process.
While this approach is not trivial and requires careful design [4, 5, 6, 7, 8, 9], it
assumes that the authoritative server or an auditor can be trusted to make sure
the process is conducted correctly. Lotteries where we cannot assume trustworthy
actors or a trusted intermediary will be referred to as distributed lotteries, and is
the type of lotteries this thesis is concerned about.

1

Distributed lottery on Ethereum

In a distributed lottery, all the components of the lottery must work in a dis-
tributed network setting. It should be resistant to adversarial behaviour by partic-
ipants such as sybil attacks [10] or attempts to manipulate the random process,
as well as a dishonest organizer. While there exists provably fair protocols to play
games that involve randomness between non-trusting players [11, 12, 13, 14], the
scale of a lottery makes these protocols impractical. The scaling problem can be
solved by making a random seed unpredictable with delay a function [15], or by
delegating the random process to a semi-trusted committee [16]. Even with good
approaches to the random process, other components of a lottery, such as handling
payments and enforcing the organizer to respect the result of the random process,
can be challenging to handle in a distributed setting.

Blockchain platforms with cryptocurrencies mark an important shift in P2P com-
puting, as they make it possible to transfer value and arrive at global consensus
without a trusted intermediary [17]. Due to the scripting capabilities of several
blockchain platforms, they support implementations of various financial instru-
ments and games involving money. There has been gambling and lottery appli-
cations on Bitcoin and Ethereum for some time, and the topic of lotteries has been
discussed in the academic literature [18, 19, 20, 21, 22, 23]. One class of lotteries
uses digital coin tosses organized in a tournament to fairly select a winner. This
scheme can in theory support a large amount of participants while also maintain-
ing a high degree of resistance from collusion as well as verifiability of the entire
lottery process.

A lottery of this sort has as far as we know been outlined as a proof-of-concept [22],
but not been analyzed and discussed in detail. Applications of smart contracts have
to cross a gap from theoretical soundness to practical feasibility. By analyzing an
implementation in detail, measuring the transaction costs to deploy and play it,
and discussing its security and other issues, we hope to get a better understanding
of lotteries on a blockchain.

1.1 Thesis statement

Miller and Bentov in [22] outline a fair lottery that can be implemented both on
the Bitcoin platform and on other blockchains with a more expressive scripting lan-
guage such as Ethereum. The authors note that an implementation of their lottery
on Ethereum is significantly less complex and more scalable than the same scheme
on Bitcoin. For this reason, as well as the fact that Ethereum has a rich ecosys-
tem of developer tools and user interfaces that make smart contract applications
accessible, we decided to implement a full version of the lottery on Ethereum.

Although there exists several lotteries on Ethereum already, to our knowledge
none are able to achieve fairness and resistance to manipulation to the degree of

2

Distributed lottery on Ethereum

Miller and Bentov’s lottery. The purpose of creating an implementation is to get
some insight into the viability of the lottery in a practical sense. While we will
discuss theoretical considerations for the lottery, we expect to discover new consid-
erations related to security, usability, and performance with a working implemen-
tation.

The theme of this thesis will be to assess the feasibility of a lottery similar to that
in [22] through making a full implementation. It will have an exploratory aspect
in that we expect to discover limitations and constraints for the lottery in a real
setting, and a more practical aspect in that a working proof-of-concept application
will be made.

1.2 Methodology

1.2.1 Literature review

A systematic literature review on distributed lotteries was conducted prior to writ-
ing this thesis in order to place the work in the context of published literature.
Sources were collected by conducting a keyword search in online databases for
published academic papers. The results from the search were restricted to the fields
of computer and information science, as there were many irrelevant hits from dif-
ferent fields. All papers that included a design of a distributed lottery were included
in the review. Additional relevant works were found in the reference list of papers
found through the keyword search.

Hits from the keyword search were first filtered based on their title and abstract.
Papers that were clearly about a different topic than distributed lotteries were not
included. Another round of filtering was done by reading the introduction, table
of contents, and conclusion where papers that did not include a lottery design or
something very similar were discarded.

Both the Scopus 1 and Web of Science 2 databases were queried, but the relevant
hits from Web of Science were a strict subset of the relevant hits from Scopus.

Table 1: Keyword search on Scopus.
term hits filtered hits lottery designs
Term 1 13 12 7
Term 2 44 20 14

Table of results from literature search. See terms below.

• Term 1: (bitcoin OR blockchain) AND (lottery OR lotteries)

1Scopus https://www.scopus.com/
2Web of Science v5.32 https://apps.webofknowledge.com/

3

https://www.scopus.com/
https://apps.webofknowledge.com/

Distributed lottery on Ethereum

• Term 2: (verifiable OR verifiability OR p2p OR "peer-to-peer" OR distributed)
AND (lottery or lotteries)

Table 2: Designs of lottery schemes.
from keyword search from references total
19 6 25

1.2.2 Data collection

A working implementation of a distributed lottery was implemented on a local
version of the Ethereum blockchain. This is a fully working proof-of-concept appli-
cation that can be simulated and interacted with in order to collect data and get a
sense of what a live implementation would look like. We collected data of transac-
tion costs necessary to set up a lottery of various sizes by measuring the gas usage
of simulations. We found the number of interactions a participant in the lottery
is needed to perform with the blockchain in order to complete the entire lottery
process successfully. Data for gas price, ether price, and transaction throughput on
the Ethereum blockchain was gathered from Etherscan 3 and ETH Gas Station 4.
Additional data from previous published papers are used when discussing results,
and these will be clearly referenced.

1.2.3 Data analysis

The data collected from simulations were of high quality and did not need pre-
processing. The data will be presented in Chapter 4, and is used as the basis for
analyzing certain properties of our lottery implementation.

1.3 Thesis structure

Chapter 2 introduces the reader to background material relevant to the topics dis-
cussed in the thesis.
Chapter 3 presents the implementation and design choices of the distributed lot-
tery on Ethereum this thesis investigates.
Chapter 4 is about the results generated from experiments with the implementa-
tion and an analysis of the viability and security of the implementation.
Chapter 5 is a discussion on the the work and process that was used when doing
the work for this thesis.
Chapter 6 summarizes the thesis, contains the conclusion, and presents ideas for
future work.

3Etherscan https://etherscan.io/
4ETH Gas Station https://ethgasstation.info/

4

https://etherscan.io/
https://ethgasstation.info/

Distributed lottery on Ethereum

2 Background

2.1 Cryptography

2.1.1 Secure hash functions

Hash functions are deterministic functions that take input of arbitrary finite length,
a preimage, and produce an output of fixed length, a hash [24, p. 153]. When the
length of a preimage is much larger than the output length, the hash function
is effectively a lossy compress function. A hash function can be used for various
purposes, and can be designed to have properties fit for its purpose. A secure hash
function is one that has properties that makes it useful for a range of cryptographic
uses.

Properties of secure hash functions

Collision resistance. A hash function is collision resistant if it is infeasible to find
two preimages m and m′ where m 6= m′ so that Hash(m) = Hash(m′). Such m

and m′ must exist, as the domain of arbitrary length inputs is larger than the range
of fixed length outputs. But the length of outputs in secure hash functions can be
so large that it’s computationally infeasible to find such preimages. A hash func-
tion that is collision resistant will implicitly also be preimage resistant and second-
preimage resistant. Second-preimage resistance means that given a preimage m it
is infeasible to find a m′ 6= m so that Hash(m) = Hash(m′). Preimage resistance
essentially means that a hash function is one-way.
One-way. A secure hash function is a one-way function in that it should not be
possible to find the preimage m given a hash h = Hash(m) by any other means
than guessing all possible m, i.e. a secure hash function should be infeasible to
invert. In cryptographic applications, the one-way property makes it possible to
publicly share hashes of secret preimages without risk of compromising the secrets.
We will see that this can be useful when a secret s at a later point will be revealed,
as it makes it possible to verify that a previously shared hash h is indeed the hash
of a secret by verifying that Hash(s) = h.
Avalanche effect. The avalanche effect is a term used to describe that a small
change in a function’s input will have a large effect on its output. A strict criterion
for the avalanche effect is that any change in the input of a hash function causes
each bit in the output to flip with a probability of 0.5. If similar hashes are more
likely to come from similar preimages, it would be possible to make good guesses
when attempting to reverse a hash function by employing statistical analysis, as

5

Distributed lottery on Ethereum

has been demonstrated in works such as [25].

Some applications of secure hash functions

Hashing to verify message integrity and authenticity. Hash functions can be
used to verify the integrity of a message [24, p. 158–164]. We assume one party,
Alice, has received the hash h of a long message m from a trusted party. Another
party Alice does not trust, Bob, claims to have m and offers to transmit it to Alice.
Since Alice knows the hash of the message, she can retrieve the message from Bob
and independently verify the message’s integrity and authenticity by verifying that
Hash(m) = h. This makes it possible to e.g. retrieve large files from untrusted
parties while only retrieving small hashes from trusted parties.
Hashes as digital fingerprints. The hash of any digital representation of informa-
tion, such as a file, can be considered as practically unique if the hash function is
collision resistant. This enables the hash be used as an identifier or fingerprint. This
is useful in content addressing and resource lookup in distributed file systems. This
concept is also useful for deduplication, as it provides a method for discovering
identical files within a storage system [24, p. 182-183].
Data structures linked by hashes. A block of data can be hashed and addressed
by its hash, as a data block’s hash serve as an identifier. If a data block contains the
hash of another block, we can create acyclic data structures with useful properties
in integrity and authenticity. This can be used to verify membership of some item
in a collection without knowing the entire collection.

A common data structure that uses data linked by hashes is the Merkle tree [26].
A collection of data blocks are ordered in {block0, block1, ..., blockn}. The ordered
items form the leaves of a full binary tree. The collection is padded with empty
items if the number of items is not a power of two. Each internal node is identified
by the hash of the concatenation of its children, and each leaf node by the hash of
its content. The root of any subtree will be a dependent on the data of the items
in its leaf nodes, and a change of the data in any item of the collection will cause
a change in the identifiers of the root of each subtree that contains the item. This
makes it possible to verify that an item exists in a collection if the verifier only
knows the identifier of the root node. A prover needs to provide the item as well
as the identifiers of all nodes in the branch from the root node to the leaf node of
the item.
Hash functions as random oracles. A secure hash function is collision resistant.
The implication of this is that no observer can know the preimage by seeing only the
hash, or feasibly guess the hash of a preimage without calculating it. The avalanche
effect makes it so that the mapping of inputs to outputs form a uniform distribution
of the range with all inputs being independent. This is a stronger assumption than
simply preimage and second preimage resistance, and is not formally proven by

6

Distributed lottery on Ethereum

any hash algorithm [24, p. 179-181]. Still, many applications assume that secure
hash functions’ outputs are uniformly distributed. Since this property is not for-
mally proven, a random oracle model assumption is often made for hash functions.
Under the random oracle model, a given hash function is assumed to have outputs
uniformly distributed and inhibit the avalanche effect.
Hashes in commitment schemes. A party can publish the hash of a message at
some time t to prove that it possessed the message at time t. The committing party
does not need to reveal anything about the message if we assume the hash function
is preimage resistant [24, p. 187–189]. This concept can be used in commitment
schemes [27] to create an unpredictable, but reproducible number that can be used
as a seed to a pseudo-random function. This allows untrusting parties to agree on
random numbers and can be used to implement digital coin tosses [12, 18].
Hashing in proof-of-work (PoW). Under the random oracle model, all values
within the range of a hash function are equally likely to be the output for any
given input. We can define a subspace within the range of any size and know the
probability of finding an input that maps to that subspace. E.g. if the range is all
bitstrings with length l, we can define a subspace of the range to be all bitstrings of
length l where the first z leading bits are zero. The probability of an input mapping
to this subspace will be pz = 1

2z . If we assume that calculating a hash has a cost,
we see that finding an input that maps to a limited range has an expected cost.
This makes it arbitrarily hard rather than infeasible to find a preimage that maps
to a certain subspace. While finding such a preimage may require millions of trials,
verifying that an input maps to the subspace requires only one calculation of the
hash function.

This fact has been used to enforce a price to be paid in number of expected
computations to be executed in some online protocols [28, 29]. In order to prevent
reusing of known hashes, a unique challenge c can be issued to the prover who
pays the price. The prover must produce a hash so that Hash(c||n) ∈ SS where SS
is the subspace, || is the concatenation operator, and n is a nonce which can be any
value.

2.1.2 Digital encryption

Digital encryption is realized by a set of algorithmsEncrypt(m, k)⇒ c and decrypt(c, k)⇒
m. Here, m is a message, c is a cipher and k is a key. A message is securely en-
crypted if it is computationally infeasible to decrypt the message without knowing
k. In symmetric cryptography, the same key is used for encryption and decryption,
while in asymmetric cryptography, different keys are used for encryption and de-
cryption. The former is also known as private-key encryption and is typically used
for secure communication over an insecure channel while the latter is also known

7

Distributed lottery on Ethereum

as public-key encryption and used for both secure communication and to enable
digital signatures.

Public and private key pairs

In [30], Diffie and Hellman describe an interactive protocol that makes it possible
to perform an interactive secure key exchange, often called a handshake, between
parties over an insecure channel where they can securely generate a secret key. In
addition to what became known as the Diffie-Hellman key exchange, the seminal
1976 paper also introduced the concept asymmetric cryptography, and is often con-
sidered to mark the beginning of a cryptographic revolution that made it possible
to use very strong cryptography using commodity computing devices and public
infrastructure.

In a public-key encryption scheme, a pair of keys (pk, sk) are generated so that
one can be used to decrypt messages that are encrypted by the other. The keys in
the pair serve different roles; a public key pk is widely disseminated and is used
to encrypt messages intended for the receiver who knows the corresponding secret
key sk – the other key in the pair, which can decrypt the message [24, p. 370]. This
makes it possible for parties to communicate confidentially by only knowing each
other’s public key in advance, i.e. no secure key exchange in advance is necessary.

A secure network using public-key schemes has some scaling advantages as
well. In a network of n nodes where each node wishes to communicate securely
and privately with any other node, the network would need to store n public keys
and n private keys in aggregate. With a private-key scheme, there would have to be
a key for each pair of nodes, i.e. one key for each edge in a fully connected graph of
n nodes, which is (n− 1)2 keys in aggregate. We see that the former scales linearly
and the latter scales polynomially with regards to keys stored.

2.1.3 Digital signatures

Digital signatures make it possible to prove that a message has been signed by a
certain party. A digital signature scheme consist of a set of probabilistic polynomial
time algorithms:Generate(n) which outputs an asymmetric key pair (pk, sk) where
n is a security parameter; Sign(sk,m) which outputs a signature σ; V erify(pk,m, σ)

which outputs true iff Sign(sk,m) = σ or false otherwise 1. Such a scheme can
be implemented by encrypting a message with a private key that is known to be-
long to a certain party. If we assume a network where participants are aware of
each other’s public keys, one can authenticate oneself by encrypting a predefined
message. Consider the public-private key pair (pkAlice, skAlice) and the predefined
challenge c. A signature σ is created with σ := Encrypt(c, skAlice). The signature
is verified if c = Decrypt(σ, pkAlice). The verifier will be able to authenticate Alice

1With negligible probability of this not happening.

8

Distributed lottery on Ethereum

and Alice will not be able to repudiate that she did sign the challenge. Typically, a
challenge is signed together with a nonce such as a timestamp to prevent replay
attacks, where the verifier poses as Alice by reusing the signature.

While signing predefined challenges is useful for authentication, the same prin-
ciple can also be used to sign arbitrary data such as messages generated by the
signer. Instead of encrypting the entire message and using that as a signature, typ-
ically only the hash of the message is signed and sent along with the message. The
sender, Alice, hashes the message m so that we have the hash h = Hash(m). The
signature is σ := Encrypt(h, skAlice). The receiver will hash the message and verify
its integrity and authenticity by verifying that Hash(m) = Decrypt(σ, pkAlice).

2.2 Verifiable randomness

2.2.1 Introduction to verifiable random functions (VRF)

Generating random numbers is useful in many applications. Random numbers can
be generated using pseudo-random number generators (PRNG), which take a seed
as input and produce a series of uniformly random and unpredictable bit strings.
A limitation of PRNGs is that they are not verifiable. If one is presented a random
number generated from a PRNG, one cannot verify that the number is actually ran-
dom without knowing the seed, as it could be an arbitrary number. If, however, one
knows the seed, the random number is no longer unpredictable to the verifier. In a
setting where unpredictable random numbers are needed, and we cannot assume
a trusted party to generate them, we have to be able to generate a random number
which can be verified to have been unpredictable at the time of computation.

Micali et al. in [31] define a VRF as 3 algorithms: a function generator Gen(),
a function evaluator (Fun1(), Fun2()), and a function verifier V erify(). Gen()

receives a unary string, a security parameter, as input and generates an asymmetric
key pair (pk, sk). Fun1() receives sk and an input x, and generates a random
value v, while Fun2() generates a proof proof from sk and x. V erify() takes
(pk, x, v, proof) as input and outputs either true iff proof = Fun2(sk, x)andv =

Fun1(sk, x) or false otherwise.
A set of participants that do not trust each other needs to generate a random

number that is unpredictable by all. The random number cannot come from an
outside source, as that would require the participants to trust that the source is
impartial. It must be computable, so it cannot remain unpredictable forever, as
it’s obviously not unpredictable after it has been computed. If a protocol allows
the participants to agree on an input to a random function without being able to
compute the function until a later point in time, we can use that as a VRF. If all
participants contribute something to the input, and each contribution alters the
output in such a high degree that knowing all but one of the contributions, makes

9

Distributed lottery on Ethereum

one no better to guess the output than knowing one of the contributions, then a
participant doesn’t need to trust anybody but themselves to be convinced that the
output is random.

With the exception of the explanation of random beacons, the rest of this section
will introduce some known implementations of such a protocol.

2.2.2 Categories of VRFs
N-of-N secret commitments

A two-step protocol whereN parties generate a random number that is only known
after all parties reveal a secret. In the first round, participants generate a secret
bitstring, calculate its hash, and publicly commit to the hash. In the second and
last round, participants reveal their secret bits, i.e. the preimage of the hash they
committed to. All the secret bits are aggregated, e.g. by XOR or concatenation, the
result of the aggregation being the random seed. We see that the random seed will
be unpredictable unless one knows the secrets of all the participants, and infeasible
to guess if the secret bitstrings are of a minimum length. Assuming the secrets are
chosen randomly, we will get a uniformly random bitstring as seed. This scheme is
quite simple, but has some weaknesses. It can halt if one participant does not reveal
their secret. Also, the last participant to reveal their secret can see the outcome
before they reveal their own secret, and so choose to not reveal if the outcome is
unfavorable. Participants can however be incentivized to cooperate, e.g. by losing
reputation if failing to reveal their secret. This scheme can face scalability issues, as
the risk of one participant going offline increases with the number of participants.

M-of-N secrets

A threshold multisignature scheme can be used to generate an unpredictable seed
that will be revealed after a subset of participants sign a message. A multisignature
scheme works so that the ability to sign a message is spread among N private
keys. M is a threshold parameter which represents the number of private keys that
are needed to sign the message in order to provide a valid signature. Each private
key signing a message provides a signature share and a validity proof. A combining
function takes M validity proofs and signature shares and outputs a valid signature
and a proof, or it fails. By using the valid signature from the combining function as a
random seed, we can make a verifiable random number that needs the cooperation
of at least M members of a committee of N members.

We see that the random number will be unpredictable as long as there is no
collusion of more thanM−1 members. If we assume there is no such collusion, this
scheme has several advantages from the above scheme. It will be able to provide
a random number even if N − M participants are unresponsive. When M − 1

participants have shared their signature share, any of the remaining signers can

10

Distributed lottery on Ethereum

privately see what the result is by generating the last share without sharing it. They
could then avoid sharing their share if the random seed is unfavorable, but any
one of them could continue the process by publishing their share. This is different
from the above scheme in that any one of the participants won’t be able to halt
the scheme alone – unless N = M , of course. The main benefits with the M-of-N
secrets scheme are therefore that at a collusion needs at least M participants to
succeed, and the scheme will not be halted unless at least N −M + 1 users are
unresponsive.

2.2.3 Delay functions

A delay function is an algorithm that is expected to take a predefined minimum
amount of time to calculate. If the participants can agree on an input to the delay
function whose output will be used as a random seed, it is guaranteed that nobody
will be able to know the random seed before the minimum time of the delay func-
tion has passed. Some delay functions are probabilistic in that they only have an
expected minimum time to compute. We let the variance of a delay function be the
variance of the distribution of time elapsed when calculating the delay function
multiple times, with uniformly random parameters if applicable. An ideal delay
function is inherently sequential, has low variance, is moderately hard to compute,
and is easy to verify.

To be inherently sequential, and therefore not parallelizable, is an important
quality for delay functions, since a parallelizable delay function can be calculated
arbitrary fast by an adversary with many processors. A delay function with high
variance will, with unchanged computing power, sometimes be calculated very
quickly and sometimes very slowly. This is a disadvantageous property, since a
delay function that is too easy or too hard does not achieve its purpose. A delay
function that is easy to verify saves verifiers from repeating the work of provers,
and does not discourage verification as it is easy.

Delay functions are attractive for generating unpredictable numbers when a
large amount of participants is involved. This is because all can contribute to an
input, while only one party needs to compute the function in order to get the out-
put. One disadvantage is that verifying the correctness of the output might require
as much time as computing it. The delay function needs to be so hard that even
an adversary with optimized hardware and software will not be able to compute
it before a minimum time. If its use is to be trustless, each participant, even those
with limited computing power, should be able to verify its correctness. While some
constructions such as a simple hash chain do require as much time to verify as to
compute it, there has recently appeared more complicated constructions of delay
functions that require exponentially less time to verify than to calculate [32].

11

Distributed lottery on Ethereum

Example of using a delay function

Let’s say we need a verifiable random number that should be unpredictable before
some point in time tend. In order to make sure no one is able to predict the random
number before tend, we say the random number is the result of a delay function,
and we assume the delay function is a random oracle. By making assumptions of
current hardware and algorithms, we estimate the delay function has a minimum
calculation time of tdmin. The delay function takes some input that we must agree
on, e.g. a blockchain block hash that is not available before time tstart. As long
as the input to the delay function is unknown by tstart and the assumption of
minimum time needed to calculate the delay function holds, we can be certain that
the random number is unpredictable by tend. In this example we used a block hash,
but any input that is unpredictable until tstart can be used, such as an aggregation
of commitments from multiple participants.

Hash chain as delay function

A hash chain of a certain length used as a delay function is inherently sequential,
has low variance, can be arbitrarily hard to compute, and is hard to verify. A hash
chain is a sequence of hashes that are linked by each item being the hash of the
previous item. A hash chain of length n and input h0 is the composition of a hash
function Hash() n times which we call Hashn(). What makes a hash chain se-
quential is that one cannot calculate Hashn() without knowing Hashn−1(), and it
cannot be calculated in parallel as one step’s output is the next step’s input. The
time needed to calculate a hash chain is not probabilistic, so the variance of calcu-
lation time will be negligible. It can be made arbitrarily hard as the time needed
to calculate a hash chain will increase linearly with its length. A drawback is that
a verifier would need to calculate the entire hash chain in order to validate its
correctness.

Proof-of-work as delay function

PoW is not sequential, has high variance, is arbitrarily hard to compute, and is easy
to verify. Since PoW is parallelizable and has high variance, it’s not really good as
a delay function. An adversary can get lucky and calculate the result quickly, and
thus avoid the delay. An adversary with multiple processors can calculate a PoW
multiple times faster than an honest participant with one processor. Calculating a
PoW can be seen as a probabilistic process where one makes attempts that result in
success or failure. The probability of success for each trial is equal and independent
of any other trial. If multiple parties tries to calculate the same PoW, but starting
from different nonces, the distribution of time elapsed for each party will have high
variance.

12

Distributed lottery on Ethereum

Weakly encrypted bits as delay function

Participants can weakly encrypt a secret by e.g. using a short encryption key, so that
the secret is verifiable either after the time needed to brute force the decryption, or
when the participant reveals their encryption key. This is discussed in [33], but is
not completely satisfactory as a delay function, as breaking a secret encrypted with
a short key is parallelizable. A scheme to combine a delay function with a weakly
encrypted secret is suggested in [34]. The scheme works as follows: A secret s is
encrypted with a strong key s. There is a function W () that is easy to calculate if
one knows a secret n but is inherently sequential to invert, and can be initialized
with a parameter that says how many computations are needed to invert it. This
can be used to generate unpredictable numbers by having participants commit to
a commitment (c1, c2) where c1 := Encrypt(s, k) and c2 := W (k). We assume
nobody has been able to find all k by brute forcing all W−1(c2) within some time
limit, when participants reveal their k and n. It must be verified that all c2 = W (k)

before all s are calculated and aggregated to form a random seed. If a participant
fails in revealing k, it can be calculated by eventually solving W−1(c2).

Note that Decrypt(c1, k) will provide a value for all k, so we must verify that
c2 = W (k). W−1(c2) must therefore be guaranteed to have a solution that is possi-
ble to calculate within reasonable time. Otherwise, a single anti-social participant
could halt the process by committing to a c2 that takes one year instead of, say, one
hour to brute force.

2.2.4 Random beacons

A random beacon is a service that broadcasts random numbers or provides ran-
dom numbers on request, and can be used as a public source of randomness. The
beacon can be considered a trusted third party in a transaction between untrusting
parties, so that they all have a random number they can agree on. Rabin in [35]
discuss the use of random beacons for transaction verification, but do not outline
the design of a verifiable random beacon. Using sources of randomness that are
hard to forge, such as financial data [36] and blockchain block hashes [37, 38]
has been suggested, but is not considered safe from manipulation [39, 40]. The
two organizations National Institute of Standards and Technology [41] and ran-
dom.org 2 maintain public random beacons that are accessible over a web API,
but their randomness is not verifiable and an application using it will have to trust
these organizations.

2.2.5 Verifiable random oracles

Using random oracles for randomness often involves trusting the random oracle
to act honestly. However, a random oracle can also use a random process that is

2RANDOM.ORG https://www.random.org/

13

https://www.random.org/

Distributed lottery on Ethereum

verifiable. RanDAO [42] is a random oracle that can be invoked from an application
that needs a random number. RanDAO uses an N-of-N commitment scheme, and
will output the result of that process if all N players reveal their secret or an error
otherwise. As discussed earlier, any one player in such a scheme is able to halt the
process and force an error to be returned if they fail to reveal their secret. This
makes it possible for an adversary to tactically not reveal secrets if the result is
unfavorable. To prevent – or at least discourage – such behaviour, participants of
RanDAO can be forced to make a deposit in order to join the process. The deposit
will be confiscated if a player fails to follow the protocol. Such a deposit would
have to be so high that the potential gains from halting the random process does
not exceed the amount that is confiscated. If an actor uses an N-of-N commitment
scheme with deposits that can be confiscated as a random oracle, they could to
some degree trust that the random process will not be manipulated if there is
at least one honest player – i.e. non-colluding player – that submits a uniformly
random secret.

Such a scheme with deposits makes the assumptions that: (i) there is at least one
honest, i.e. non-colluding player, and (ii) at least one honest player submits a uni-
formly random number. The former assumption is important because it makes sure
that nobody can predict the outcome. All the players could be colluding and know
each other’s secrets and thus predict the outcome. The latter is also important,
as it could be the case that players submit a secret that is not uniformly random,
and that an adversary can use this fact to predict the output. To demonstrate this,
consider if it were common that all players simply submitted a bitstring of zeroes
as their secret. The process would succeed and will be verifiable, but the outcome
would be predictable. The RanDAO scheme is spawned as a random oracle to be
used by another application, and the players in the RanDAO don’t necessarily care
about producing a uniformly random number. Even if players are compensated for
participating in the RanDAO, they would get the reward whether they submit a
uniformly random number or a predictable number.

The issue of not being able to verify that secrets in RanDAO and similar schemes
are actually random is addressed in [43]. A scheme similar to N-of-N secret com-
mitments is used with the addition of a game with a reward mechanism that favors
players submitting uniformly random numbers. For players maximizing their re-
ward, the authors prove that a quasi-strong equilibrium in a game-theoretic sense
exists when players submit uniformly random numbers. The scheme otherwise
functions as a RanDAO that will either return a random number if all players fol-
low the protocol, or an error otherwise. Players also have to deposit an amount
so high that the potential gains of halting the process is lower than the deposit. A
reward to players is paid so that any player playing the optimal game of submitting

14

Distributed lottery on Ethereum

uniformly random numbers gets an expected reward of at least reward
n_players .

The above scheme allows one to spawn a random oracle that will produce a
number that is uniformly random if players want to maximize their reward, and
that is unpredictable as long as at least one player do not prematurely share their
secret. The scheme still suffers from a principal-agent problem, in that even if the
random process scheme, the agent, is executed correctly, it may not act in the best
interest of the application that spawned it, the principal. An important assumption
made is that players are non-colluding so that no single party knows all the secrets
in the scheme. This is encouraged by rewarding players and having the process
being open for participation by anyone who can make a deposit. The players will
lose a large deposit by playing dishonestly, and the players will maximize their
reward by using uniformly random numbers as secrets.

There is a problem when the potential gains from being able to predict the
outcome is higher than what it costs to bribe players to reveal their secrets. The
randomness of the scheme assumes players will act in a way that maximizes their
reward, but players could potentially gain a higher reward by revealing their secret
to the highest bidder, than what can be gained by playing honestly and compete
for the in-game reward. This fact goes against the game theoretical aspects of the
scheme, so that the scheme ultimately relies on at least one honest participant,
as reward-maximizing participants will in some cases rather sell their secret if a
market for secrets exists. And if the assumption is at least one honest participant,
one might as well use a simpler and more flexible random oracle such as RanDAO
with deposits and rewards. If selling the secret is not punishable, then there is not
much to lose by selling it, as it could at most potentially make them lose their
fraction of the reward, which can be lower than the payment for revealing their
secret. The scheme suggested in [43] could be amended with a mechanism that
confiscates a player’s deposit if their secret is revealed by someone other than the
player themselves, but this issue is not discussed in the aforementioned work.

2.3 Lotteries

Shamir et al. in [11] introduced a protocol for two parties playing virtual card
games that involve randomness without a trusted intermediary. Playing so-called
mental poker has been studied further in [14] where the authors suggest a pro-
tocol to play any mental game that will work between any number of players at
least as there is an honest majority. Lotteries are also mental games that require
randomness, but since they typically have many participants and are susceptible to
sybil attacks, traditional mental poker protocols won’t easily work.

Syverson in [33] and Goldschlag and Stubblebine in [15] suggested using data
from sold tickets in a lottery as a source for entropy for a random function in

15

Distributed lottery on Ethereum

order to create a lottery with a verifiable random process. A lottery where only
internal information is used in the random process is called committed or closed.
Such internal information could be a number embedded in the ticket itself, chosen
randomly by the ticket owner. Both their protocols require some time to elapse
between when the last ticket is bought – which finalizes the input to the random
function – and when the result of the random function is available. Goldschlag and
Stubblebine employ a delay function that takes a minimum time to calculate to
achieve this, while Syverson include a weakly encrypted secret in each ticket that
is moderately hard, but not infeasible, to decrypt and use to calculate the random
function.

The concepts of a closed lottery and using delay functions in the random pro-
cess have been used by a number of similar schemes in subsequent works. Various
enhancements such as privacy in [44] and more use of fair exchange in [45] have
been suggested. A number of schemes use other means to generate randomness,
such as verifiable random numbers generated by a committee of semi-trusted del-
egates in [16, 46, 47, 48]. Grumbach and Riemann in [49] use a random process
inspired by distributed voting schemes – a Kademlia distributed hash table where
each participant is a node who cooperates with other players in their subtree to
generate verifiable randomness.

Although these schemes can generate randomness for a lottery without a trusted
intermediary, they don’t provide equally trustless solutions to the other aspects of
organizing a lottery. One issue is simply to have the participants agree on who
are actually participating. Most schemes solve this by having a lottery organizer
digitally sign tickets so that the signature proves that a ticket is indeed valid. Should
the lottery organizer refuse to pay the prize to a holder of a valid ticket, the ticket
owner would have to give up or complain to some other authority. The problem
of a dishonest organizer can be solved by storing the prize money with a bank or
payment processor who issues tickets and prizes based on fair exchange. But by
doing that, a bank or payment processor is involved as a trusted intermediary.

If the lottery is closed and information from the tickets are used as input to
the random process, the organizer and participants need to agree on what is the
correct set of tickets to be used. Since the organizer is the one who issues tickets,
they could choose to not issue tickets during the last part of the purchase phase,
so that the input to the random function is finalized before it is supposed to be.
Doing so, the organizer has the power to choose what input to use for the random
function, and possibly calculate the delay function before the purchasing phase is
finished, so that the organizer can predict the result and purchase a winning ticket.
This issue is identified in the literature, and can be handled in at least one of two
ways. One possible way of handling it is to require that the organizer publish the

16

Distributed lottery on Ethereum

entire ledger of tickets continuously. It doesn’t solve the issue completely, but it
allows observers to see if suspicious behaviour is going on [33]. Another solution
is to have a trusted intermediary who can also issue tickets if the organizer is
unresponsive to requests [44]. These solutions do, however, necessitate some trust
in either the organizer or another trusted intermediary, which is not desireable.

Syverson and Goldschlag et al. in [33, 50] discuss the topic of a pari-mutuel
lottery concerning the organizer’s ability to issue free tickets for themselves. If the
lottery is pari-mutuel, meaning the entire prize fund comes from purchased tickets,
the expected value of a ticket is independent on the number of tickets in existence,
as the chance of winning decreases proportionally to the increased prize. But if the
prize pool is larger than the cost of all tickets, the organizer could increase their
expected value by forging tickets for themselves. The conclusion in [33, 50] is that
a distributed lottery needs to be pari-mutuel unless it can manage sybil behaviour
by the organizer.

A number of lotteries have appeared on various blockchains. Due to the open-
ness and verifiability of blockchain transactions, anyone with some coding skills
can create a lottery or verify a lottery’s fairness on such a platform. Although cre-
ating a completely fair lottery on a blockchain platform is non-trivial, some claim
to have accomplished the feat. SmartBillions [51] is a lottery on Ethereum that
instantly pays out prizes. It’s more akin to scratching tickets in that players play
on their own without interacting with other players of the same game. One sim-
ply chooses a lucky number and finds out if one wins or not when the next block
is mined. The randomness does, however, come from a block hash which is not
considered secure for large prizes, as it can be manipulated by miners [39, 40].
FairLotto [52] is another lottery which is implemented on the Steemit blockchain.
It works as a typical lottery in that participants contribute to a prize fund by buy-
ing tickets, and one winner is selected randomly to receive a share of the prize.
It does, however, also rely on randomness from a source that can be manipulated
by miners. It combines a secret the lottery organizer has committed to, and the
transaction id of the last ticket bought to generate a random number that will be
used to select the winner. In such a scheme the organizer can potentially bribe
miners to tactically select a transaction to be the last ticket, so that a ticket owned
by the organizer will win. There are other lotteries that use cryptocurrencies such
as SatoshiDice [53], but their randomness is completely generated by the lottery
organizer, so it’s actually just an online casino that uses cryptocurrencies, and not
a distributed lottery protocol.

There has also been interest in distributed lotteries on the blockchain in the
academic literature. Andrychowicz et al. proposed a lottery implemented in Bitcoin
transactions in [20]. The authors suggest that multiparty computation (MPC) on

17

Distributed lottery on Ethereum

a blockchain can enforce honest behaviour by having participants make deposits
that will be confiscated if they fail to follow the protocol of the computation. This
can potentially solve the problem of previous lottery schemes that eventually have
to rely on a trusted third party to enforce payments and correct behaviour by the
lottery organizer. Androchowicz et al. argue that traditional mental poker protocols
cannot force participants to respect the outcome of the protocol, which might limit
their use in practice. Since blockchains typically have a valuable cryptocurrency,
funds can be deposited and later reclaimed on the condition that honest behaviour
can be proven.

Following Andrychowicz et al., more Bitcoin based lotteries have been designed,
including one concurrent by Bentov et al. [21]. These two schemes do, however,
require a deposit that grows polynomially with the amount of participants. This
makes a large lottery impractical, as prohibitively high deposits would be necessary
to play the lottery securely. Bartoletti and Zunino in [23] and Miller and Bentov
in [22] independently designed similar lotteries that require only a constant or zero
deposit, respectively. These lotteries work by constructing a tournament of digital
coin tosses where each participant is paired with an opponent in log2(N − 1) levels
for a lottery with N participants. Half the participants are eliminated in each level
until there is one winner left who can claim the prize. This scheme does a trade-off
by minimizing deposits, but increasing the number of levels from being O(1) to
being O(log2(N)), which in turn increases the interactivity of the protocol.

2.4 Blockchain

A blockchain is an append-only data structure of cryptographically linked blocks.
A blockchain has a first block of height 0 which is often called the genesis block.
Each subsequent block of height h contains a cryptographic reference to the block
of height h − 1. New blocks are appended regularly, and the most recent block is
called the tip. Blocks can contain a set of transactions, each of which represents a
transition of a global state. The global state is implicitly defined by all the ordered
transactions in the entire blockchain. Due to the links from a block to the previous
block, one block cannot be altered without altering all subsequent blocks as well. A
blockchain is typically widely distributed and blocks are hard to produce. This gives
blockchains immutability and finality properties that make them fit for purposes
such as transferring and storing value in a network of non-trusting participants.

A blockchain is commonly used as a global ledger that represents a state that
defines ownership of various digital assets, these assets primarily being cryptocur-
rencies, but also property deeds and financial instruments [54]. Blockchain systems
are also typically public and open for anyone regardless of their legal status or ge-
ographical location. A blockchain can be used for high value transfers and critical

18

Distributed lottery on Ethereum

computations because it is considered to have the properties of finality and live-
ness [55]. The term blockchain usually does not mean just the data structure, but
also the implicit state represented in its transactions, the network of stakeholders
interacting with it, and applications built on top of it. We will here consider the
blockchain network to be the interconnected nodes running the full client software
of the blockchain.

Figure 1: A chain of blocks linked with hashes.

2.4.1 Transactions

The purpose of a blockchain is to enable participants to reach a global consensus on
an ordered list of transactions. Transactions are validated and embedded in blocks,
and the set of all ordered transactions implicitly represents a state. In Bitcoin [56],
the state that is represented is who has the authority to spend which coins. The
state can be abstracted to represent a set of accounts with balances denominated in
the currency bitcoin. A transaction can specify a short script that makes some coins
spendable by executing a specific script with certain arguments – a spending policy
for coins which usually involves a digital signature. Transactions can be abstracted
to represent transfers of coins between accounts.

In the Bitcoin network, each transaction is applied to a state which results in an
altered state. Transactions are validated before they are applied to the state. The
process of validating transactions consists of multiple steps. First, the transactions
must be of a valid format. Only a limited set of instructions can be used, and the
total size of the script is limited to a maximum length. Second, the execution of a
transaction’s script must result in a specific output. Third, the transaction cannot
spend more coins than it has authority to spend.

All coins in Bitcoin begin their life as a transaction output. Each block contains
a coinbase transaction which defines some new coins, and the miner of that block
decides how those coins can be spent. We assume the miner makes it so that the
coinbase transaction coins can be spent by providing a signature with the miner’s
private key. The miner realizes this by defining the coinbase transaction’s output
script – a machine readable spending policy for those coins, which will be stored in

19

Distributed lottery on Ethereum

the block.
The output script is a list of operations that will be executed on the Bitcoin vir-

tual machine (BVM). This virtual machine is stack based with a limited instruction
set. While the coinbase transaction only has an output script, all other transactions,
which we will call ordinary transactions, have an input script and an output script.
The input script, as well as a reference to a previous transaction, must be defined
in each ordinary transaction. When an ordinary transaction is validated, the output
script of the previous transaction it references will be pushed to the stack of the
BVM. Then the input script of the transaction will be pushed to the stack of the
BVM, before the program is executed. If the stack at the end of the execution only
contains a true value, the second step of the transaction validation process has
succeeded.

In addition to the input script and a reference to a previous transaction, an
ordinary transaction also contains a new output script and the amount of coins it
spends. A valid transaction will move the coins it spends to a new output script.
And so each transaction moves coins from one output script to another, and a coin’s
entire history will be stored in the blockchain.

Figure 2: Transactions in Bitcoin.

2.4.2 Mining

Blocks are produced by miners who validate transactions and calculate a crypto-
graphic puzzle that requires large amounts of computing power to be expended.
The puzzles work as a probabilistic process where miners need to map a block’s
data to a small subspace of a function’s range. Such a mapping constitutes a valid
proof-of-work (PoW) and only blocks with a valid PoW will be accepted by other

20

Distributed lottery on Ethereum

nodes.
PoW is done to make producing blocks hard. Blocks being hard to produce has

three features: First, the network will not be flooded with new blocks. Sybil attacks
are common in unpermissioned networks, and it’s hard to distinguish real users
from sybil impersonators. Since PoW is easy to verify but hard to prove, perform-
ing a sybil attack is expensive. Second, it makes it possible to reach consensus. A
blockchain can only have a single block of a specific height, so if there are multi-
ple blocks of the same height, or even chains of blocks with the same height, the
network can simply choose to accept the blocks with the most PoW as a straightfor-
ward way to reach consensus. Miners are rewarded for each block they produce,
but only if it’s accepted by the network. This ensures that miners will only be re-
warded if they mine on the chain everybody consider to be the correct one. Third,
it makes it difficult to rewrite blockchain history. Since each block is costly to pro-
duce, replacing an accepted block with another will be costly. This makes sure that
the cost for an adversary to rewrite history is high, which again makes the network
trust the blockchain’s finality.

Since many miners are competing simultaneously, we will from time to time
encounter a situation when two or more valid blocks are produced at about the
same time. A miner who produces a valid block will broadcast it to other miners,
who will in turn propagate it through the network. When miners receive a valid
block of height h from a peer, they will start mining on top of that block to produce
the block of height h + 1. If several blocks are mined and propagated through the
network at about the same time, some miners will have different blocks of equal
height, and will need to make a decision on which block to continue mining on top
of. This situation is called a natural fork, as the chain is split at the end into more
subchains. Eventually one of the subchains will be appended more than the other,
and miners will accept whichever subchain is longest 3. The shorter subchains will
be abandoned and their transactions will not affect the state represented by the
blockchain.

Small block reorganizations happen regularly as miners can mine separate blocks
of the same height before either block has propagated through the entire network.
This does not necessarily mean that any transactions are reversed, as the two blocks
are likely to include quite similar transaction sets. Larger accidental block reorgani-
zations can also happen during software releases that may contain bugs or conflict-
ing consensus protocols [57], but this does not happen often on well-established
blockchains.

3In Bitcoin, the subchain with the most PoW will be chosen, but unless the split is very large, this
will always be the longest subchain.

21

Distributed lottery on Ethereum

Figure 3: A natural blockchain fork.

2.4.3 Blockchain threats

Since Bitcoin’s inception there has been discussions on the security and threat mod-
els to blockchains. Much of the discussion involves the role of miners and their
ability or inability to control the network. While there has been few unsuccessful
attacks on the larger blockchains such as Bitcoin and Ethereum, the threat models
and assumptions need to be continuously reconsidered for new use cases of the
blockchain.

Block reorganization

During the situation of several subchains being on the network, one view of the
blockchain might give a different state than another view. Say one observer had
a view with subchain s1 that included transaction t1, and another observer had
a view with subchain s2 that did not include transaction t1. If s1 is eventually
abandoned, as miners continued to mine on top of s2, then t1, which seemed to be
included, is no longer part of the blockchain. This phenomenon is called a block
reorganization, and can potentially reverse transactions.

A block reorganization violates the immutability property of the blockchain as
blocks can be removed. Since miners have an interest in mining on the same chain,
as only one chain’s coins will be valuable, the network tends to reach consensus on
which chain is correct quite quickly. A common heuristic for the Bitcoin blockchain
is to consider transactions in blocks that have at least 6 blocks appended to them
as final, which takes on average one hour to happen. As a general rule, the more
blocks are mined on top of a block, the stronger its immutability.

A block reorganization attack can be conducted by an adversarial miner or col-
lusion of miners who aims to replace a larger section of the most recent blocks in

22

Distributed lottery on Ethereum

order to alter the state. If blocks are replaced, transactions can also be reversed.
A block reorganization attack can be used to perform a double spend, where a
purchaser makes a payment that is reversed after they receive the goods for the
payment. Such an attack is done by secretly mining an alternative subchain while
waiting for a certain state to be reached on the main blockchain, and then broad-
casting the secret subchain in hope that the network will accept the adversary’s
alternative subchain that is more favorable to the adversary, i.e. the payment trans-
action is reversed. This allows the adversary to trick the network into believing the
blockchain is in a certain state, while it will actually change once they broadcast the
secret subchain. For the secret subchain to be accepted by the network, it needs to
be longer than the public chain. Since it’s difficult to produce blocks, this can only
be done successfully on average if the adversary controls more than 50% of the
mining power or power to produce blocks. As a consequence, block reorganization
attacks is often interchangeably used with the term 51% attack.

Censorship

Users can change the state of a blockchain by broadcasting transactions that will
be included in a block by a miner. Due to limited space in blocks on blockchains
like Bitcoin and limited computational resources on blockchains like Ethereum,
there is a limited amount of transactions that will be included on the blockchain.
Transactions can optionally include a fee that is paid to the miner who includes the
transaction in their block, and the size of this fee is the basis on which transactions
miners choose to include. If miners are merely maximizing transaction fees, such
a pricing mechanism for blockchain resources maintains the liveness and openness
properties of the blockchain, as there is a single objective criterion for participating.

Miners do, however, have the power to discriminate transactions on any other
basis than fees as well, e.g. on a political or self-interest basis. If a miner refuses
to include transactions from a specific user, then that user will only have their
transaction included if another miner includes it. If a collusion of miners all agree to
not accept transactions from a specific user, and the collusion controls a sufficiently
large portion of the mining power, they can be able to effectively censor that user.
Even if a non-colluding miner eventually includes the censored transaction in a
block, the collusion can choose to ignore that block. Such a situation will violate
the openness property, as the blockchain is no longer accessible by anyone.

Unlike a block reorganization attack, which affects the finality of many trans-
actions, a censorship attack can be targeted at a single user. One of the security
assumptions commonly made in blockchain systems is that it is not in miners’ in-
terest to launch attacks that threaten the main security properties of the system,
as miners are typically heavily invested in the cryptocurrency through e.g. capital
investments [58, 59]. An attack that affects many users might trigger a backlash

23

Distributed lottery on Ethereum

by other stakeholders and thus hurt the miners who launched the attack. Since a
censorship attack can target single users, it might have a lower disruption cost, i.e.
cost to launch the attack, than the disruption cost of a generic 51% attack. So even
if a blockchain is secure from some types of attacks, it might not be secure from
other attacks such as a censorship attack. When building applications on top of a
blockchain, it is very important to consider which types of attacks the application
is vulnerable to.

Selfish mining

Selfish mining is a type of miner behaviour that might enable some censorship by a
collusion with as little as 25% of the mining power [60]. While an altruistic miner
will mine on top of whichever block they know about with the greatest height, a
selfish miner will bias their mining towards their own blocks. A selfish miner trying
to mine a block of height hwill not immediately start to mine on the block of height
h+ 1 when receiving a valid block of height h. Instead, they will continue trying to
mine their own block of height h until they receive a block of height h+k for some
k, by when they start the same procedure again.

If the selfish miner controls a small ratio of the mining power, such a strategy
will result in loss of potential profits, as they will waste resources on subchains
that will be abandoned. As the ratio of their mining power goes up, their reluc-
tance to accept blocks from other miners might cause the network to also abandon
blocks from other miners at a more frequent rate than what their respective mining
power would say. This will in turn incentivize other miners to more readily accept
the selfish miner’s blocks, as this will decrease the chances of their blocks being
abandoned and the block reward being lost.

If such a scenario plays out like that, the selfish miner can also choose to censor
a certain type of transaction and force the network to join in on the censorship
policy. The selfish miner enforces this by refusing to accept any block that contains
a transaction of the type they censor. If the subchain the selfish miner favors is
more likely to eventually be accepted, then other miners will produce blocks they
are sure will be accepted by the selfish miner.

2.5 Trustworthy computing

2.5.1 Smart contracts

Smart contracts is the concept of using computer code to enforce and secure con-
tract law and specify other formal relationships and expectations in society [61].
Digital signatures make it possible to authenticate an owner of digital assets. A
system with an authentication mechanism and a record of digital assets that can
be transferred between owners can serve as a smart contract platform. A smart

24

Distributed lottery on Ethereum

contract is similar to any computer program in that it will execute some code, but
it is different in that the execution and the result of it represent some legal con-
cept, such as the right to vote, the ownership of something, an identity, or a more
complex construct. A smart contract is not necessarily legal in that its code has
legal status is any jurisdiction. It is rather that the smart contracts exist in an envi-
ronment where they can enforce something, or the meaning of their computation
represents something enforceable. In such a computer environment, legal entities
can be authenticated with digital signatures, and agreements, expectations, and
conditions can be written in code.

A simple example is a trust fund constructed in Bitcoin smart contracts. A
grantor wants to make a trust fund for a beneficiary. The grantor programs a series
of Bitcoin transactions {tx0, txi, ..., txn} so that each is spendable on the conditions
that a) the transaction is digitally signed by the beneficiary, and b) i years have
passed since the trust fund was created. If the smart contract platform support suf-
ficiently expressive scripts, it is easy to imagine more complicated constructs of a
smart contract. The trust fund contract could be extended with almost arbitrary
conditions, such as allowing spending if a digital certificate of hospitalization or an
acceptance letter from an educational institution is provided. In this way a legal
construct can be created and enforced without the need of a code of law or a state
apparatus to enforce the law.

2.5.2 Ethereum

Ethereum [62] is a platform for for deploying and executing smart contracts. Ethereum
has a virtual machine (EVM) with a Turing-complete instruction set and a key-
value store which forms a global singleton state. Smart contracts can be executed
by broadcasting signed messages called transactions to a network of nodes. Trans-
actions and the code they execute are processed in order by a global network of
mining nodes who run the EVM and process transactions they receive. Transactions
are stored in blocks which form a blockchain and are considered immutable after
some point in time. In addition to executing existing smart contracts, transactions
can also deploy new smart contracts or transfer a cryptocurrency called ether from
one account to another. Even though the EVM is Turing-complete, each smart con-
tract can only perform a maximum amount of instructions decided collectively by
miners and measured in a unit of account called gas. Altogether, this forms a repli-
cated byzantine fault-tolerant key-value store with an integrated currency with a
general scripting language, open to anyone.

Transactions

Transactions are the basic units of communication in the Ethereum system. Miners
validate each transaction before they include it to a block where the transaction’s

25

Distributed lottery on Ethereum

actions cause a state transition in the global state. Such a state transition may repre-
sent cryptographic secure ownership of titles, funds, tokens and more, depending
on the transaction itself and the participants involved in it. Transactions always
contain an address which identifies an account, and may contain an optional pay-
load of data which is the arguments to a function in a smart contract, and can also
optionally transfer the cryptocurrency ether.

A special kind of transaction is the one that transfers ether from one account
to another. It’s different from other transactions in that it does not need the EVM
to be processed, as it simply updates ether balances. Another special transaction is
the contract creation transaction. This transaction includes a payload of bytecode
which defines a new smart contract, and if successfully executed, such a transaction
will permanently store the contract with a newly created associated account on the
blockchain.

Accounts

Accounts are agents in the Ethereum network. All transactions must be initiated
by an account, and each account has a non-negative balance of the cryptocur-
rency ether. There are two types of accounts: contract accounts (CA) and externally
owned accounts (EOA). A contract account is a deployed smart contract with its
associated bytecode. A CA can receive and send ether and invoke other smart con-
tracts, and its behaviour will depend entirely on its code. An EOA is addressed and
represented by the public key of an asymmetric key pair. An EOA can receive and
send ether and create transactions, and all transactions it makes must be signed
with the private key of the account.

Ether

Ether is a cryptocurrency integrated into Ethereum. New ether is created in each
new block and similarly to the block rewards in Bitcoin, it is distributed to miners
in order to incentivize honest behaviour. All ether in existence is associated with an
account, and can be spent in one of two ways. For an EOA, only a valid signature
from the account’s private key is needed to spend the ether associated with the
account. CA can also send ether, but the spending conditions can be arbitrarily pro-
grammed in the smart contract’s code, which allows for a huge variety of spending
policies. Ether is also the only currency that can be used to pay for transaction fees,
which are measured in another currency internal to Ethereum called gas.

Gas

The cost of having transactions recorded on the blockchain is denominated in gas.
Each computation performed in the EVM, each byte added to the global key-value
store, and each transaction validation has a fixed gas price. The prices are care-
fully designed to reflect the effort miners consume by processing the transaction.

26

Distributed lottery on Ethereum

E.g. creating a new contract results in bytecode being permanently stored on the
blockchain and so has a high gas usage, while a simple bitwise operation on two
word-sized operands does not require much effort and so has a low gas usage.

Due to the impossibility for miners to accurately estimate the effort needed to
process a transaction by only inspecting it, each transaction includes an amount of
gas start_gas it’s willing to spend. When a miner processes the transaction, each
instruction performed will subtract some gas from this amount. If start_gas is not
enough to pay for an instruction during processing, the transaction is reverted
and its state transition is not recorded. The maximum amount of gas that can be
included in a single transaction is a global variable collectively set by miners.

Mining and gas price

Gas is a unit of account for resources on the EVM and a virtual currency within
Ethereum. It can only be bought, and can only be bought with ether. In addition
to single transactions having a maximum gas limit, entire blocks also have a dy-
namic maximum gas limit collectively set by miners. The sum of gas usage of all
transactions in a block cannot exceed this limit, and it sets a limit on the number
of transactions that can be processed in a single block.

In addition to the maximum amount of gas start_gas its sender is willing to
spend, a transaction includes a price per gas unit gas_price denominated in ether.
Enough ether to cover the maximum gas usage start_gas · gas_price is deducted
from the sender’s account when the transaction is being processed. If there is re-
maining gas when the transaction is completed, ether corresponding to the remain-
ing gas is refunded to the sender. Ether corresponding to the gas spent is transferred
to the miner of the block that contains the transaction.

The gas price is used to incentivize miners to process transactions. A higher gas
price will cause miners to process a transaction quicker, while a transaction with a
low gas price might never be processed. This mechanism forms a market between
senders of transactions and miners where senders bid a gas price which miners
might accept.

Contract development and deployment

Smart contracts are added to Ethereum by deploying a contract’s bytecode in a
special transaction. A deployed contract will always have an address and also a
namespace in the global key-value store called the contract state, where values can
be persistently stored. All executable code in contracts exist in functions that are
referenced in a hash map stored in the contract’s namespace.

Contracts are typically programmed in a high level language and compiled to
bytecode which is readable by the EVM. A developer environment usually includes
a local blockchain or a global alternative Ethereum blockchain called a testnet

27

Distributed lottery on Ethereum

where ether is not scarce, so that contracts can be tested without needing to spend
real valuable ether.

Decentralized applications

Ethereum often serves the role of a secure backend for applications accessed through
a frontend web interface. The frontend typically has the ability to read the Ethereum
state and make transactions to specific contracts. Such a system of one or more
smart contracts and a user interface is commonly called a dApp, short for decen-
tralized application. A dApp is in many ways similar to other applications on the
web, but a dApp using Ethereum has an immutable backend with value transfer
and smart contract capability included.

28

Distributed lottery on Ethereum

3 Implementation

3.1 Tournament lottery outline

3.1.1 Digital coin toss

A coin toss is a random process in which a binary outcome is decided. While a
physical coin toss is decided by a coin landing on either the heads or tails side,
a digital coin toss is determined by a function with range {0, 1}. In a coin toss in
the usual sense, the two outcomes are equally likely. While either outcome can be
biased to an almost arbitrary bias, all digital coin tosses in this thesis will have
equally likely outcomes.

We consider the case where two untrusting parties want to arrive at an unpre-
dictable outcome that is verifiable. One way of achieving this is using a two round
protocol as described in [12] where each party commit to a hash in the first round,
and then reveal the preimage in the second round. If we assume that a secure hash
function is used, then either party can see the commitment of the other player
without being able to guess what the preimage is. When the preimage, or secret, is
revealed in the second round, either party can verify that the secret is actually the
preimage of the commitment, thus making the protocol verifiable. The coin toss is
performed by doing an operation, such as XOR, with both the parties’ secrets as
operands. The result of this operation is completely unpredictable to either party,
as they do not know their opponent’s secret. For a 50-50 coin toss, we can simply
decide the outcome by something simple as whether the least significant bit of the
result is 1 or 0.

A secure implementation of this protocol would require the parties to mix in
some salt when hashing the secret, i.e. by concatenating the secret with a prede-
fined string. This is to prevent one party from committing to the same value as
their opponent, so that the preimages are equal to each other. That would result in
the outcome being predictable, i.e. always 0 if we use the XOR operation.

Say we have Alice and Bob conducting a digital coin toss with commitments
cA and cB and secrets sA and sB . The salt is a predetermined string both parties
use salt, and the hash function is Hash(). The commitments are calculated as
c := Hash(salt, s), and are verified by c = Hash(salt, s). We get the result r of the
XOR operation r = sA ⊕ sB . The outcome is then determined by if r mod 2 = 0,
then Alice wins, or if r mod 2 = 1, then Bob wins.

29

Distributed lottery on Ethereum

Figure 4: Flowchart of a digital coin toss.

Tournament of coin tosses

A digital coin toss can determine a winner out of two players, but can we use the
same mechanism to determine a winner when there are more than two partici-
pants? As outlined in [22, 23], we can construct a tournament of matches where
the winner of each match is determined by a digital coin toss. The tournament can
be represented as a full binary tree where the root node is the final match, whose
winner is the winner of the entire tournament. Winning any other match will make
one advance to a match one step closer to the final match. The players of each
match in an internal node, which we call internal matches, are determined by the
winners from each of its two children. Participants in the tournament are repre-
sented as an ordered set, and each participant is assigned as a player to exactly
one leaf node match.

Such a tournament will have N = 2L players where L is the height of the binary
tree representing the tournament. There will be N

2 leaf node matches and N − 1

matches in total. We refer to matches with the same height in the binary tree as
belonging to the same level in the tournament. Matches with the same level can
be played concurrently and independently of each other, but matches in internal
nodes of level l cannot be played before all matches in level l − 1 are determined.

It may be the case that one or both players in a match fail to complete the digi-
tal coin toss in a match. Matches of each level in the tournament will be initialized
with global time limits for when players have to have completed a certain proce-
dure, such as making a commitment or a reveal. If only one of the players fails to
e.g. reveal their secret before the relevant time limit, that will be interpreted as

30

Distributed lottery on Ethereum

a forfeiture, and the other player will win the match. If both players fail to com-
plete the same procedure, e.g. if neither player makes a commitment before the
commitment time limit, a default winner will be selected to ensure each match has
a defined winner by the last time limit. The default winner behaviour makes sure
that the lottery will always end up with a defined winner, but will not affect an
honest player who follows the coin toss protocol.

Figure 5: Tournament tree of 8 players.

3.1.2 Note on the lottery being non-deterministic
Why the tournament is not deterministic

It’s worth taking a moment to consider the implications of the timeout conditions
in the tournament. Ideally, both players in each match will perform the digital
coin toss. Since the secrets in the coin toss are committed to, if we assume both
secrets will be revealed, there is just one possible outcome of the match. However,
if either one player fails to reveal their secret by the timeout, then the other player
will win. The consequence of this being that a match is not deterministic when
commitments are made. Only when both players have revealed their secrets or the
timeout happens can the result be determined.

This means that even if all players commit to secrets for each level of the tour-
nament prior to playing a single match, any player can actually end up winning in-
dependently of the secrets, as the outcome can depend on who times out in which
matches. Note that if we assume that all players will perform the coin toss success-
fully, then the tournament is completely deterministic once all commitments have
been made, and there is just one single valid winner for that particular ordered set
of players and commitments. If it were the case that no timeouts would happen,
we could even use a single commitment and secret from each player that would
be used for each match at every level of the tournament. If players can choose
whether to reveal their secret or not, we cannot reuse secrets from one match to
another, as will be demonstrated below.

31

Distributed lottery on Ethereum

How to exploit a non-deterministic tournament

In a practical implementation of the tournament, we would have to have timeouts
to avoid the protocol halting. We must also assume that players can be colluding.
In a collusion, each player would know each other’s secret, so they would know
who would win against whom. If we simply used the same secret for matches in
all levels, then even if the result is unpredictable before all players have revealed,
a collusion could wait for all the non-colluding players to reveal, then tactically
choose which players of the collusion should reveal, so that they are guaranteed
to win matches in subsequent levels. Because of this, unless we can assume no
collusion, we must require players to commit to different secrets in each match,
and by that make the protocol more interactive.

3.1.3 Phases

We implement a lottery that uses a tournament of coin tosses to fairly determine
the winner. It will be implemented on Ethereum where smart contracts are an
important logical component. Our lottery is a system made out of smart contracts
that interact is specific ways that will be explained below. The lottery has a lifecycle
with separated phases, so it will be described according to those.

Set up phase

The tournament will be implemented as separate match contracts that each rep-
resent a match in the tournament tree. The matches are initialized with data that
allows them to determine who its players are. Internal matches are initialized with
two references to contracts in the previous level of the tournament, and it will call
a getWinner() method from these contracts to determine who its players are. Leaf
node matches, which we will call first level matches, are initialized with an index
that corresponds to a player in the ordered set of players. The leaf node matches
have a reference to a master contract, which they will call to retrieve the players
that are assigned to the match.

While the match contracts form a tournament on their own, we need a contract
to keep track of the state of the lottery and handle things such as taking deposits,
maintaining the set of participants, and verifying who can claim the prize. This is
the responsibility of the master contract. The master contract is initialized with the
number of participants the lottery can have, which must be a power of two, a price
participants must pay in order to join, and a start time tstart. To be able to verify the
winner of the tournament, the master contract needs a reference to the final match
contract. The entire lottery is set up by first deploying the master contract without
a reference to the final match, as it has not been deployed yet. The match contracts
will be deployed level for level, starting with the first level contracts. When the
final match is deployed, the lottery will be initialized by setting the final match in

32

Distributed lottery on Ethereum

the master contract.

Deposit phase

Once the master contract and all the match contracts are set up, any potential
player can verify that the contracts are set up correctly by inspecting each contract.
Players can then join the lottery by sending a deposit() transaction that sends
ether equal to the ticket price to the master contract. Making a deposit will increase
the master contract’s balance and insert the sender into a list of players, so that
players are ordered by when they joined. In a lottery ofN players, the list of players
will be indexed iplayer from 0 to N − 1. Each first level match is initialized with a
unique index iFLM from 0 to N

2 − 1. A first level match retrieves its players by
looking up iFLM · 2 and iFLM · 2 + 1 in the match contract’s list of players.

Deposits will be possible as long as the lottery is not full and a start time is
not yet reached. The lottery is full once the amount of deposits has reached the
predefined number of participants. If the lottery is not full by the start time, it will
not be able to start, and players can withdraw their deposits. If the lottery is full by
the start time, it moves into the next phase.

Playing phase

Each leaf node match contract should have a time tcommit equal to the start time
of the lottery, by when players can make commitments to the digital coin toss. The
time limit treveal is some time later when players can make a reveal transaction
with their secret which is validated in the match smart contract. The last time limit
of a match contract is tplay by when it’s no longer possible to reveal and the match is
determined. When the match is determined, the method getWinner() will return a
player address. If the current time is less than tplay, this method will raise an error.
If there is a stalemate in the match, i.e. neither player makes a commitment and
the tplay limit is passed, the getWinner() method will return a default winner. The
default winner is the first player in the match, i.e. the left player in the tournament
tree.

Internal match nodes should have a tcommit equal to the tplay limit of matches in
the level below. As mentioned, each internal match has a reference to two matches
from the previous level, in which the two winning players are eligible to play the
internal match. This way the tournament proceeds level by level with time limits
defined at contract initialization. Players will need to make transactions to the
match contracts which validate the sender and the inputs. The final match will be
played just like any other match, but the master contract will have a reference to
this match, so that it can validate the winner of the tournament.

33

Distributed lottery on Ethereum

Withdrawal phase

Players can send a transaction to the withdraw() function of the master contract.
If the final match has a winner, it will transfer the balance of the master contract to
the sender, after validating that the sender is the same account as the winner. If the
tstart time limit has passed and the lottery is not full, the lottery did not get enough
players to start. In this case, the withdraw() method will return the deposit to the
sender if they have made a deposit.

3.2 Code

The only smart contracts used in the lottery are the master contract and the two
types of match contracts – first level match contracts and internal match contracts,
all of which are implemented as Solidity programs. Solidity 1 is a high level lan-
guage that compiles to EVM bytecode. Deploying a smart contract on Ethereum
is done by making a special deployment transaction that contains the contract’s
compiled bytecode. A deployed contract is identified by a unique address that is
assigned when the deployment transaction is made.

Setting up the lottery is a multi-step process that must happen in a specific order.
In order to manage this process, we have made a script to automate it. The smart
contracts and deployment scripts also have associated unit tests and a simulation
suite.

The listings included in this chapter have been truncated somewhat by remov-
ing constructors and comments, and are not necessarily compilable code. See the
Github repository 2 and Appendix A for full working code.

3.2.1 Master contract

LotteryMaster is the smart contract responsible for registering participants, taking
deposits, and distributing the prize. It serves as a central hub in the lottery that all
players must interact with. Whoever deploys this contract is the lottery organizer,
who will be the only account with the authority to initialize the lottery by setting
the final match.

The constructor of this contract takes the number of participants N, the price of
participation price, and a start time tStart. It is only possible to make a deposit
after the final match of the lottery is set with setFinalMatch(). The finalMatch
field is a reference to a match contract which is the apex of the tournament tree of
matches. This field cannot be set on deployment, as the matches in the tournament
need a reference to a master contract, and the master contract needs a reference
to a match contract. Due to this circular dependency, either all the matches of the

1Solidity v0.5.0 https://github.com/ethereum/solidity
2https://github.com/viktorfa/lottery-truffle

34

https://github.com/ethereum/solidity
https://github.com/viktorfa/lottery-truffle

Distributed lottery on Ethereum

first level or the single master contract need a two-step initialization. Since the
gas usage of a single transaction is less than that of many, we choose to have the
two-step initialization in the single master contract.

1 contract LotteryMaster {
2
3 address [] public players;
4 mapping(address => uint256) public deposits;
5 AbstractLotteryMatch public finalMatch;
6 uint256 public nPlayers;
7
8 address public owner;
9 uint256 public price;

10 uint256 public N;
11 uint256 public tStart;
12
13 bool public isInitialized;
14 bool public isFull;
15
16 function setFinalMatch(AbstractLotteryMatch _finalMatch) public {
17 require(msg.sender == owner);
18 require(finalMatch == AbstractLotteryMatch (0));
19 finalMatch = _finalMatch;
20
21 isInitialized = true;
22 }
23
24 function deposit () public payable {
25 require(block.number < tStart);
26 require(isInitialized == true);
27 require(msg.value == price);
28 require(isFull == false);
29 require(deposits[msg.sender] == 0);
30
31 players.push(msg.sender);
32 deposits[msg.sender] = msg.value;
33 nPlayers ++;
34
35 if (nPlayers == N) {
36 isFull = true;
37 }
38 }
39
40 function withdraw () public {
41 if (block.number >= tStart && !isFull) {
42 msg.sender.transfer(deposits[msg.sender]);
43 } else {
44 address lotteryWinner = finalMatch.getWinner ();
45 require(msg.sender == lotteryWinner);
46 msg.sender.transfer(address(this).balance);
47 }
48 }
49
50 function getPlayer(uint256 index) public view returns (address

player) {
51 player = players[index];
52 }

35

Distributed lottery on Ethereum

53 }

Listing 3.1: Lottery master contract

3.2.2 Match contract

A match contract implements a digital coin toss between two players. The digital
coin toss determines a winner either by the value of the least significant bit of the
result of an XOR operation on the two players’ secrets, or by one or both of the
players failing to perform the procedures in the contract by some predetermined
time limit. Due to slightly different behaviour between matches of the first level of
the tournament and matches in internal nodes of the tournament, we split the code
between two smart contracts who both implement an interface from an abstract
smart contract.

A match has two players referenced by address in the alice and bob fields. By
a start time tCommit, the players can set a commitment of bits with the commit()
method. Another time limit is set in tReveal which is when making commitments
is no longer possible, but revealing the secret committed to is possible. This is
done with the reveal() method which verifies that the secret is the preimage of
the commitment, and stores the secret in persistent storage. The final time limit is
tPlay, after which players can no longer reveal secrets. After the final limit, the
outcome of the match is guaranteed to be determined.

The getWinner() method performs the digital coin toss if both players have
revealed their secrets. If either player has performed more steps than the other
player, e.g. made a commitment while the other has not, the player who has done
the most steps will win. If neither player has revealed their secrets, and no player
has performed more steps than the other, then the winner of the match will be
alice by default.

A match has a way to determine which players are eligible to play in it. This is
handled differently in FirstLevelMatch and InternalMatch. The former is initial-
ized with an index and a reference to a LotteryMaster contract. Each player in the
master contract is indexed so that each player is paired with another who is their
opponent in a match of the first level. The latter is initialized with a reference to
two matches, left and right, of the previous level in the tournament. All matches
will return their winner in the getWinner() method, which the internal match uses
to determine its players.

1 contract FirstLevelMatch is AbstractLotteryMatch {
2
3 address public alice;
4 address public bob;
5
6 mapping(address => bytes32) public commitments;
7 mapping(address => uint256) public secrets;

36

Distributed lottery on Ethereum

8
9 LotteryMaster public lottery;

10 uint256 public index;
11
12 uint256 public tCommit;
13 uint256 public tReveal;
14 uint256 public tPlay;
15
16 function commit(bytes32 _c) public {
17 require(tCommit < block.number);
18 require(tReveal > block.number);
19
20 alice = lottery.getPlayer(index * 2);
21 bob = lottery.getPlayer(index * 2 + 1);
22 require(msg.sender == alice || msg.sender == bob);
23 require(commitments[msg.sender] == 0);
24
25 commitments[msg.sender] = _c;
26 }
27
28 function reveal(uint256 _s) public {
29 require(tReveal < block.number);
30 require(tPlay > block.number);
31
32 require(keccak256(abi.encodePacked(msg.sender , _s)) ==

commitments[msg.sender]);
33
34 secrets[msg.sender] = _s;
35
36 }
37
38 function getWinner () public view returns (address winner) {
39 require(tPlay < block.number);
40
41 if (alice != address (0) && bob == address (0)) {
42 return alice;
43 } else if (alice == address (0) && bob != address (0)) {
44 return bob;
45 } else if (alice == address (0) && bob == address (0)) {
46 return lottery.getPlayer(index * 2);
47 }
48
49 if (commitments[alice] != 0 && commitments[bob] == 0) {
50 return alice;
51 } else if (commitments[alice] == 0 && commitments[bob] != 0) {
52 return bob;
53 } else if (commitments[alice] == 0 && commitments[bob] == 0) {
54 return lottery.getPlayer(index * 2);
55 }
56
57 if (secrets[alice] != 0 && secrets[bob] == 0) {
58 return alice;
59 } else if (secrets[alice] == 0 && secrets[bob] != 0) {
60 return bob;
61 } else if (secrets[alice] == 0 && secrets[bob] == 0) {
62 return lottery.getPlayer(index * 2);
63 }

37

Distributed lottery on Ethereum

64
65 if ((secrets[alice] ^ secrets[bob]) % 2 == 0) {
66 return alice;
67 } else {
68 return bob;
69 }
70 }
71 }

Listing 3.2: Lottery first level match contract

1 contract InternalMatch is AbstractLotteryMatch {
2
3 address public alice;
4 address public bob;
5
6 mapping(address => bytes32) public commitments;
7 mapping(address => uint256) public secrets;
8
9 AbstractLotteryMatch public left;

10 AbstractLotteryMatch public right;
11
12 uint256 public tCommit;
13 uint256 public tReveal;
14 uint256 public tPlay;
15
16 function commit(bytes32 _c) public {
17 require(tCommit < block.number);
18 require(tReveal > block.number);
19
20 alice = left.getWinner ();
21 bob = right.getWinner ();
22 require(msg.sender == alice || msg.sender == bob);
23 require(commitments[msg.sender] == 0);
24
25 commitments[msg.sender] = _c;
26 }
27
28 function reveal(uint256 _s) public {
29 require(tReveal < block.number);
30 require(tPlay > block.number);
31
32 require(keccak256(abi.encodePacked(msg.sender , _s)) ==

commitments[msg.sender]);
33
34 secrets[msg.sender] = _s;
35 }
36
37 function getWinner () public view returns (address winner) {
38 require(tPlay < block.number);
39
40 if (alice != address (0) && bob == address (0)) {
41 return alice;
42 } else if (alice == address (0) && bob != address (0)) {
43 return bob;
44 } else if (alice == address (0) && bob == address (0)) {
45 return left.getWinner ();
46 }

38

Distributed lottery on Ethereum

47
48 if (commitments[alice] != 0 && commitments[bob] == 0) {
49 return alice;
50 } else if (commitments[alice] == 0 && commitments[bob] != 0) {
51 return bob;
52 } else if (commitments[alice] == 0 && commitments[bob] == 0) {
53 return left.getWinner ();
54 }
55
56 if (secrets[alice] != 0 && secrets[bob] == 0) {
57 return alice;
58 } else if (secrets[alice] == 0 && secrets[bob] != 0) {
59 return bob;
60 } else if (secrets[alice] == 0 && secrets[bob] == 0) {
61 return left.getWinner ();
62 }
63
64 if ((secrets[alice] ^ secrets[bob]) % 2 == 0) {
65 return alice;
66 } else {
67 return bob;
68 }
69 }
70 }

Listing 3.3: Lottery internal match contract

3.2.3 Lottery setup code

The lottery setup code is written in JavaScript 3, an interpreted language that runs
in all modern web browsers and in the NodeJS runtime environment 4. Since it’s
common to make web clients for smart contract applications and modern web
apps are usually programmed in JavaScript, that language is commonly used in
the layer between user and the blockchain API. The Truffle framework 5 contains
a library that provides a useful abstraction to smart contracts and the Ethereum
RPC client, and includes tools for handling the development lifecycle of smart con-
tracts. web3.js 6 is a comprehensive library to interact with Ethereum and the EVM
in JavaScript. Ganache 7 is an Ethereum blockchain with an RPC client that can
be installed locally when developing smart contracts. Eth Gas Reporter 8 is a tool
that measures the gas used for each transaction during a Truffle test suite, and was
used to collect data on gas usage.

In order to set up a valid lottery, the master contract and match contracts need
to be initialized with correct parameters. In addition to testing and simulation, this
is the main purpose of the lottery setup code. The lottery is set up by first deploying

3JavaScript (ECMAScript 2018) https://github.com/tc39/ecma262
4Node.js v10.7.0 https://github.com/nodejs/node
5Truffle v5.0.15 https://github.com/trufflesuite/truffle
6web3.js v1.0.0-beta.37 https://github.com/ethereum/web3.js
7Ganache CLI v6.4.3 https://github.com/trufflesuite/ganache-cli
8eth-gas-reporter v0.2.0 https://github.com/cgewecke/eth-gas-reporter

39

https://github.com/tc39/ecma262
https://github.com/nodejs/node
https://github.com/trufflesuite/truffle
https://github.com/ethereum/web3.js
https://github.com/trufflesuite/ganache-cli
https://github.com/cgewecke/eth-gas-reporter

Distributed lottery on Ethereum

a master contract, then deploying, level for level starting from the first level, match
contracts that constitute a valid tournament tree, and finally initializing the master
contract with the final match of the tournament tree. The setup code finds the
correct parameters for time limits, indices of first level matches, and left and right
addresses for internal matches.

The simulation code consists of two test suites. The first does the routine a
lottery organizer needs to do in order to set up a lottery, which is creating and
deploying the master contract and all match contracts. The second does all of what
the first does in addition to simulating the lottery being played. In the second suite,
players join by making deposits and then play each level of the tournament until
one player is left as winner and withdraws the prize. The time elapsed and gas
used is recorded for each simulation for analysis.

Figure 6: Contracts in a lottery of 8 players

40

Distributed lottery on Ethereum

4 Results

This chapter will present the results from simulating the lottery being set up and
played. We primarily measure gas usage, which is the same on the local blockchain
used for simulations as the main live Ethereum blockchain used in production.
The transaction costs on Ethereum are measured in each transaction’s gas usage.
The transaction costs, which will be used interchangeably with gas costs, is the
product of the gas usage and a gas price. The gas usage is a unitless number,
while the gas price is denominated in wei, which is the most granular unit of ether.
1 wei = 1e−18 ether. It’s common to quote the gas price in gwei, which is simply a
gigawei (1e9 wei). When quoting prices in USD we operate with an ether price of
176 USD 1. Unless otherwise stated, a gas price of 1.5 gwei is used in calculations.
This is a quite low gas price, but usually high enough to have transactions included
in the blockchain within 30 minutes or so.

In addition to presenting the results from simulation, we will analyze the se-
curity and scalability of the lottery. Some calculations will be made where both
the gas usage results from the simulations and reasonable assumptions of gas price
and maximum lottery prize will be used. The last section of the chapter will discuss
the consequences of our design choices and trade-offs for the properties of the lot-
tery, and suggest some alternative designs that will result in a lottery with different
properties.

4.1 Gas usage and transaction costs

Even though all instructions in the EVM have a fixed gas cost, the gas usage of
a transaction will depend on what code is actually executed, which can vary due
to loops, external state, function arguments, and conditional statements. The gas
usage of the lottery was measured by running simulations that made all the trans-
actions necessary to (i) set up the lottery, which the lottery organizer must do,
and (ii) set up and play the lottery, which is the complete gas usage of the lottery
paid by both the organizer and the players. The lottery can be played in different
valid ways that will result in different amounts of gas used. For instance, if some
players don’t make commitment or reveal transactions in a match, that will reduce
the overall gas usage, but the lottery will still conclude successfully. In our simula-
tion of playing the lottery, all matches are played completely by all players, so that

1Price from https://etherscan.io/ at 2019-05-07.

41

https://etherscan.io/

Distributed lottery on Ethereum

the maximum amount of transactions is made. This means that the gas costs mea-
sured are the upper bound for gas usage for this lottery. Due to the default winner
logic in the match contracts, the lower bound of gas usage is when no reveal() or
commit() transactions are made, but all other transactions are made. It is the upper
bound that will be used in all calculations and analyses in this chapter’s subsequent
sections.

We found some tiny variations in average gas usage between different runs of
a simulation with the same parameters. We expected the gas usage to be equal
between runs, but the variance, which can be found in Appendix B, is so tiny we
did not account for it.

Table 3: Average gas usage from simulation.
transaction single match dual match # tx
LotteryMaster.deploy() 1087189 1087125 1
LotteryMaster.setFinalMatch() 49282 49282 1
LotteryMatch.deploy() 2472237 - N-1
FirstLevelMatch.deploy() - 1693728 N/2
InternalMatch.deploy() - 1697819 (N/2)-1
LotteryMatch.initFirstLevelMatch() 74700 - N/2
LotteryMatch.initInternalMatch() 71034 - (N/2)-1
LotteryMaster.deposit() 73925 73925 N
LotteryMatch.commit() 83548 - 2(N-1)
FirstLevelMatch.commit() - 76611 N
InternalMatch.commit() - 88675 N-2
LotteryMatch.reveal() 43035 - 2(N-1)
FirstLevelMatch.reveal() - 42884 N
InternalMatch.reveal() - 42884 N-2
LotteryMaster.withdraw() 39277 39177 1

Table 3 is a list of transactions made in a simulation with 256 participants. The
leftmost column describes the transaction made, while the rightmost column is the
number of transactions of this type needed to successfully play a lottery. The middle
columns are the average gas usage for each transaction for two different lottery
designs. In the first design, we use a single match contract for all types of matches
whether they are first level or internal, which requires an extra initialization step.
In the second design, we use two separate match contracts for first level matches
and internal matches. It is the second design that is described in Chapter 3, while
the first design is similar to that used in [22].
Table 4 and 5 show the gas usage of only setting up and setting and playing a full
lottery, respectively, for the design with a single type of match contract. Table 6
and 7 show the gas usage for the design with two types of match contracts, also

42

Distributed lottery on Ethereum

Table 4: Organizer gas usage. Single match contract.
N Gas ETH USD Gas / N ETH / N USD / N ∆ Gas / N
32 80023408 0.120 21.13 2500732 0.003751 0.660
64 161466448 0.242 42.63 2522913 0.003784 0.666 22182
128 324354704 0.487 85.63 2534021 0.003801 0.669 11108
256 650139920 0.975 171.64 2539609 0.003809 0.670 5588
512 1301701456 1.953 343.65 2542386 0.003814 0.671 2777

Table 5: Total gas usage. Single match contract.
N Gas ETH USD Gas / N ETH / N USD / N ∆ Gas / N
32 90297000 0.135 23.84 2821781 0.004233 0.745
64 182203802 0.273 48.10 2846934 0.004270 0.752 25153
128 366020720 0.549 96.63 2859537 0.004289 0.755 12602
256 733661484 1.100 193.69 2865865 0.004299 0.757 6328
512 1468940796 2.203 387.80 2869025 0.004304 0.757 3160

showing for only setting up and setting up and playing a full lottery. The dual
match design compared to the single match design uses 50% less gas to set up,
and 42% less gas to set up and play. As we can see in Table 3, the savings come
from deploying the match contracts. This is because we deploy less bytecode and
declare fewer variables with the dual match design.

As was expected from inspecting the smart contracts, the gas usage increases
linearly with the number of participants. Even though the gas per participant also
increases by a minuscule amount as the number of participants grow, this amount
goes towards zero with more participants. For simulating the entire lifecycle of a
lottery, this can be explained by the deposit() function which keeps expanding a
dynamic array as players join.

We will use the measurements for dual matches from Table 3 in calculations
later in this chapter to analyze ticket pricing and scalability. By using the amount
of transactions necessary of each type, we see that the gas usage for a lottery of N
players can be expressed as for just setting up the lottery 3391547·N

2 − 561412, and
4041505·N

2 − 785353 as the upper bound, i.e. all matches are played completely, for
setting up and playing the entire lottery, while the lower bound, i.e. all matches
are forfeited, is 3539397·N

2 − 522235.
The bulk of the transaction costs of a lottery is from setting up all the contracts,

which must be done by the lottery organizer. The setup cost is 84% of the total
transaction costs for the 512 player simulation for dual match contracts, and would
be even more if not all players completed their matches. We see that by far most gas
is spent on deploying each individual match contract, which must be done N − 1

43

Distributed lottery on Ethereum

Table 6: Organizer gas usage. Two types of match contracts.
N Gas ETH USD Gas / N ETH / N USD / N ∆ Gas / N
32 53690344 0.081 14.17 1677823 0.002517 0.443
64 107956984 0.162 28.50 1686828 0.002530 0.445 9005
128 216490200 0.325 57.15 1691330 0.002537 0.447 4502
256 433556696 0.650 114.46 1693581 0.002540 0.447 2251
512 867690392 1.302 229.07 1694708 0.002542 0.447 1127

Table 7: Total gas usage. Two types of match contracts.
N Gas ETH USD Gas / N ETH / N USD / N ∆ Gas / N
32 63896706 0.096 16.87 1996772 0.002995 0.527
64 128557218 0.193 33.94 2008707 0.003013 0.530 11934
128 257880692 0.387 68.08 2014693 0.003022 0.532 5986
256 516523956 0.775 136.36 2017672 0.003027 0.533 2979
512 1033816570 1.551 272.93 2019173 0.003029 0.533 1501

times. This cost was significantly decreased by splitting the match contracts into
two types, the FirstLevelMatch and InternalMatch contracts. This is because
each variable and each bit of bytecode contributes to the gas usage when deploying
contracts, and the match contracts in the single match design contain code that is
not necessary. Decreasing the number of methods, decreasing the number and size
of variables, and decreasing the number of instructions, i.e. roughly lines of code,
will decrease the gas usage. Since each match contract is not interacted with much
– at most four times, two commits and two reveals – it seems wasteful to spend
so much gas on deploying them on the blockchain permanently. This is a well-
known issue, and it is possible to deduplicate common behaviour by using patterns
involving library contracts and proxy contracts. The article in [63] demonstrate that
gas usage for deploying contracts can decrease as much as 50% by using these
patterns. It could also be possible to do away with the dedicated match contracts
completely, and handle everything in the master contract, but we leave that to
future work or a practical implementation.

While the price of ether and by extension gas is known to fluctuate heavily in fiat
currency terms, we choose to primarily consider the cost of running the lottery only
in the context of ether and gas price, even though we will also mention the price
in USD in some cases to provide context. The transaction costs depend entirely on
gas usage and gas price, and can be made an arbitrarily low fraction of the ticket
price if we can set the ticket price arbitrarily high. The gas price is also known for
fluctuating somewhat in terms of ether, but it is simply a result of market demand
for resources on the EVM.

44

Distributed lottery on Ethereum

4.2 Ticket price

Since setting up and playing the lottery requires transaction fees to be paid in ether,
a lottery with low ticket prices relative to the transaction costs is not feasible. As we
saw in Section 4.1, most of the transaction fees are paid by the lottery organizer.
It is reasonable to assume that in a real implementation of the lottery, there would
be support for the organizer to take a fee of the total prize – a house edge, as a way
to cover the costs for organizing the lottery. The fee should be at least so large that
the transaction costs for deploying the contracts are covered. Since there is a risk
that not enough players will join the lottery, and the organizer can claim no fee, it
should be larger than only the transaction costs.

For simplicity, we will in subsequent calculations assume that the organizer fee
is equivalent to the transaction costs for setting up and playing the entire lottery.
Even though the cost of playing the lottery is paid by participants and not the
organizer, we use it in the calculations, as it is at least related to the transaction
costs of the lottery. An alternative could be to speculate on the risk of the lottery not
starting, and account for that in the organizer fee, but since it involves speculation,
we prefer to use the concrete total transaction costs of the lottery.

4.2.1 Lower and upper bound on ticket prices

Most common casino games have a house edge of about 1-10% [64], while large
lotteries often have a higher house edge of 40-50% [65]. We therefore consider
the organizer taking a 10% fee of the prize reasonable for both the players and the
organizer. Since the prize is simply the sum of all the deposits, i.e. the income from
ticket sales, and the transaction cost per participant is fixed, there is a lower bound
on the ticket price if a 10% fee is to cover the transaction costs.

By setting a ratio r of what the organizer will take of the prize, and a gas price
gas_price, we can find a minimum ticket price ticket_pricemin by using the gas
usage gas_usage for 512 players from Table 7 for setting up the lottery per player.
The expression is simply ticket_pricemin =

gas_price·gas_usage
r . If the ticket price is

lower than this, the fee is not large enough to cover the lottery’s transaction costs.
In our design, with a 10% organizer fee and a 1.5 gwei gas price, this results in
a minimum viable price of each ticket at about 0.03 ether, which at the time of
writing is about 5 USD. That’s a price we consider acceptable, even though the
dollar price can change by at least an order of magnitude within months, as the
ether price fluctuates a lot.

While the ticket price can be set arbitrarily high to make the necessary organizer
fee arbitrarily low, it will be discussed in Section 4.4 that a high prize could be a
security concern. If we assume a maximum acceptable prize as a security parame-
ter, the ticket price will also have an upper bound ticket_pricemax. This bound will

45

Distributed lottery on Ethereum

be dependent on the organizer fee r and the number of participants N . The prize
of the lottery is expressed as prize = ticket_price ·N(1 − r). If the prize is bound
to a maximum value for security reasons, it follows that the maximum acceptable
ticket price will be ticket_pricemax = prizemax

N(1−r) .
The upper bound on ticket price is dependent on both the amount of partici-

pants and the organizer fee. If we assume that the organizer fee will not be higher
than about 50%, we see that a maximum acceptable prize entails a maximum
amount of participants, and is hence a scalability issue. The implications of this
will be discussed further in Section 4.5.

4.2.2 A ticket price of zero

Even though we think of our lottery as a gambling game where participants pay a
small ticket price in order to compete for a large prize, the protocol of our lottery
could be used as a more general leader election scheme. Doing this, we essentially
remove the monetary incentives of each player to select a winner, and exchange it
with incentives to select a leader who gains some responsibility. A simple variant
of the lottery as a leader election scheme would just remove the cost of tickets and
the prize, as the conditions for participation is something else than paying for a
ticket, and the winner is not paid a share of the ticket fund.

If we assume that participants are willing to pay for the transaction costs of
playing, a lottery with a ticket price of zero would technically work exactly as one
with money involved. However, an important property of our lottery with money
incentives is that there is no advantage in colluding. It is the case that any single
player has a 1

N probability of winning, and any collusion of n players has a n
N

probability of one of its players winning. However, a collusion will have a better
possibility to predict the result than any single player. If two players of a collusion
are to play against each other in a match, they can choose secrets so that they
can tactically choose who should win. If the result of the final match is used for
something external, then two colluding players in the final match could arbitrarily
choose the outcome and who wins the tournament. Finally, if the lottery is used
as a leader election scheme, the possibility of a collusion being able to predict the
outcome – which could be the case in our protocol – is usually not desirable. This
is not the case in another leader election scheme such as RanDAO [42], where a
collusion of N −1 players are no better able to predict the outcome than any single
player.

Another important property of our lottery is that it is pari-mutuel, meaning the
prize is not higher than the sum of all ticket purchases. If the ticket price were zero,
this would not be the case, which would incentivize sybil behaviour, as controlling
all participants would be advantageous if the expected value of participation is

46

Distributed lottery on Ethereum

higher than zero [33]. This does not necessarily make the lottery protocol itself
bad at a not pari-mutuel lottery, but the conditions for participation might have to
account for sybil resistance in a different way than charging a price for a ticket.

4.3 Security

Most applications on a blockchain will more or less inherit the blockchain’s own se-
curity model. There is always a risk of censorship, loss of connectivity, block reorga-
nization, and more, but open blockchains could still be the most secure computing
platform we have for MPC without a trusted intermediary. A lottery is special in
that the prize can be incredibly high, and for that reason it might attract more
motivated attackers than applications that do not handle large amounts of value
in a single transaction. By viewing security from an economics perspective, where
an attack has a cost c, a chance of success p, and an exposed value v that the at-
tacker will gain if successful. If the expected reward c · v is so high that c < v · p,
the risks of an attack are too high. The profit potential for successful attack on a
large lottery can be so high that extraordinary measures might be taken by adver-
saries to succeed. We must therefore review the most common security concerns
such as censorship, network attacks, and block reorganizations when discussing
the security of a lottery.

4.3.1 Loss of connectivity

The lottery is inherently interactive in that participants need to make commitments
and reveal secrets during the lottery playing phase. Since players who don’t make
a commitment or reveal within the time limits will lose, loss of connectivity is an
issue. Since the lottery protocol requires interactivity, there is little we can do to
mitigate this other than using longer time intervals between the steps (tcommit,
treveal, tplay) in the match contracts, so that players have a chance to reconnect
before a time limit is reached.

While players could mitigate against losing connectivity by outsourcing the in-
teraction with the lottery to some third party service, that would entail sharing
of secrets with a third party, which is a security consideration of its own. Players
could run the lottery from servers under their control in data centers at different
geographical locations than their web browser, and thus be quite safe against los-
ing connectivity with minimal risk of leaking the secrets, but this is complicated for
many users.

4.3.2 Blockchain reorganizations

A block reorganization attack is a concern in that the results of a lottery can be
reversed if a corrupt powerful miner is not happy with the result. Reversing the
entire lottery, however, is probably not possible as block reorganization attacks are

47

Distributed lottery on Ethereum

very expensive and difficult to perform on long subchains. A cheaper attack would
be to wait for one’s opponent in a match to reveal their secret, and then reorganize
the blockchain if the result is not favorable. While it’s certainly difficult to do so,
we don’t know exactly what the expected reward and cost would be for such an
attack if the lottery prize is extremely high.

This concern can be mitigated by using longer time intervals between steps in
the matches, as block reorganization attacks get more expensive the more blocks
are involved. The production of blocks is quite inherent to the blockchain platform
itself, and there is not much an application on the blockchain can do about that.
One way of decreasing the risk of a block reorganization happening is using a
blockchain that has a high mining power and much decentralization among miners,
so that coordinating an attack is harder.

4.3.3 Censorship and transaction blocking
Network attacks

While blocking of the network and eclipse attacks are relevant for all network
applications, it is commonly assumed that long lasting attacks of this type will
not happen. Even though there’s always a risk of it happening, we can choose
security parameters that minimize the consequences of such attacks. Again, with
an interactive lottery, we can’t do much more than to increase the time intervals
between time limits in matches, so that the chance of getting one message through
during that interval is high even when under attack. For targeted attacks on the
network, players can also hide their location by accessing the network with privacy
enhancing tools. Due to general network attacks being quite peripheral to the topic
of this thesis, they are not discussed in detail, and the blockchain is assumed to be
fairly resistant to these kinds of attacks.

DoS attacks

A denial-of-service attack (DoS) is done by flooding a network with bogus mes-
sages so that it is incapable of responding to legitimate messages. This can be done
on a blockchain by broadcasting a large number of transactions with high transac-
tion fees, so that miners will only include the bogus transactions in the blocks and
ignore other transactions with normal transaction fees. Such an attack is costly to
withhold over time, as transaction fees must be paid. But if the expected value of
successfully blocking an opponent in a match in a lottery is high, it can very well be
worth it. Such a transaction flooding attack can easily be countered by broadcast-
ing a transaction with even higher transaction fees. This fact makes the relationship
between attacker and defender asymmetric, as the defender only needs one trans-
action to go through, while the attacker must block all other transactions. A lottery
client should take this into account and be ready to make transactions with high

48

Distributed lottery on Ethereum

transaction fees if it suspects a DoS attack is under way.

Censorship

For a blockchain to have a high degree of liveness, i.e. transactions will be recorded
rather quickly and reliably, we must assume that miners will include transactions
by no other discrimination than the size of the transaction fees. However, miners
are free to choose which transactions they include in the blocks they produce. They
could for any reason refuse to include a transaction from or to a certain address,
including from certain participants in a lottery. The main concern is an adversary
paying miners bribes on the condition that transactions from certain participants
are not included, or that miners themselves play in the lottery with the intent of
abusing their power to censor. We see from how the tournament tree looks like that
one would only need to block transactions from log2(N) participants to make sure
that one wins each match by the other player failing to make a commit or reveal
transaction.

While it’s likely that a non-corrupted miner will include transactions censored
by other miners, and that the likelihood of that happening increases with time,
corrupted miners can also choose to ignore blocks that are produced by honest
miners, i.e. the selfish mining strategy. Such a situation could have the corrupted
miner cause a block reorganization where blocks including censored transactions
are replaced by the corrupt miner’s blocks. Such a combination of censorship and
block reorganization can be quite powerful if the corrupt miner or collusion of
miners controls a large share of the mining power.

While a combined censorship and block reorganization attack backed by a large
portion of the mining power is very hard to mitigate, less powerful censorship at-
tacks can be mitigated in several ways. One is again to make sure the steps in the
match contracts are sufficiently long. Another is to make the lottery less interactive
and somehow reduce the amount of transactions that are necessary for comple-
tion. Another is to use anonymous transactions in which miners cannot know what
the result of the transaction will be at mining time, but this cannot be accom-
plished without major changes to either the lottery design or the way mining on
the Ethereum blockchain works. The issue of censorship is discussed in more detail
in Section 4.4.

4.3.4 Compromised client and phishing
Compromised secrets

If secrets are generated on a client such as a web browser, an adversary could trick
participants to using a compromised client that leaks secrets to them. While this
security consideration is quite broad, as an attack would go through a player’s com-
puter and there is little we can do about a compromised computer when designing

49

Distributed lottery on Ethereum

the lottery. Following standard practices for designing secure applications can be
done in the application layer of the dApp.

Compromised client

Since it is up to players to verify that the lottery is set up correctly by validating
all the smart contracts, a compromised client could falsely validate a lottery that is
set up in an adversary’s favor. We assume that each player is capable of verifying
that the lottery and tournament is set up correctly. An adversary could make it look
like the lottery is set up correctly by luring players into a fake site with phishing.
Verifying that the lottery is set up correctly is done by the client, as the smart
contracts cannot do this on their own in our current design. E.g. the reference to
the final match contract is set in the master contract after initialization. The master
contract does no more validation than verifying that the final match contract is
a an Ethereum address. A malicious lottery organizer could make a bogus final
match contract in which they are guaranteed to win, and which is not related to
the actual tournament at all. Even if the final match is unfair, unknowing players
can make deposits to the master contract, and the master contract will pay the
prize to whoever is the winner of the match contract it was set up to use.

4.4 Cost of a censorship attack

The most concerning attack is probably one where miners tactically censor the
transactions of one participant’s opponents through the entire lottery. If a partici-
pant is not able to make their commit and reveal transactions, they lose that match.
From the miners’ perspective, a block reorganization attack is risky and expensive
as it might fail, but a censorship attack is almost cost-less for a powerful collusion
of miners, as failing does not necessarily have a cost. This means that if a miner is
completely unconcerned with keeping the network healthy, even a marginal bribe
would make it worth to censor someone. One could counter a small bribe by in-
creasing the gas price in a transaction, so that the miner will be paid more in
transaction fees than what the bribe is worth, but a briber would still have an
advantage, as the rewards of a successful attack would fund their activity.

In practice, not many miners are willing to take bribes for censorship, as they are
either idealistic or have an interest in maintaining the reputation of the blockchain
as a secure computing platform. At least, the latter point is the case if miners
have skin in the game of the blockchain, such as owning mining hardware spe-
cific for that chain or having large holdings of the currency of that blockchain. If a
blockchain gets a reputation for being susceptible to censorship, the demand of the
chain’s cryptocurrency might decrease significantly, and thus indirectly hurt miners
who engage in censorship. Nonetheless, it’s still useful to assess the feasibility of
a censorship attack, as the value at stake in a large lottery can be extraordinarily

50

Distributed lottery on Ethereum

high.
A lottery has L levels in its tournament and N = 2L players and a prize of

pr2L where r is the ratio of ticket deposits that go to the prize and p is the ticket
price. Ideally, each player has a 1

2L
chance of winning, so that the expected value

of participation is pr2L

2L
= pr. For each round an adversary can successfully censor

their opponent, they double their chance of winning and thus double their expected
value. Note that the expected value doubles for each round, so that in the first
round the expected return is pr, while in the last round it’s 2L−1pr. So if bribing
miners to censor one’s opponent is barely worth it in one round, it’s certainly worth
it in the next round.

A censorship attack has a probability of succeeding for each block produced. If
we assume there is not a powerful selfish miner that has the power to both cen-
sor transactions and force the network to abandon blocks that include transactions
targeted for censorship, there is a probability that an honest miner will include the
targeted transactions. Since a coalition of selfish miners can be effective with as
little as 25% of the mining power, and certainly at 50% of the mining power, we
assume that in the worst case only 50% of the miners are honest. If the fraction of
honest miners is any less than that, then censorship by selfish miners dominates the
threat model. We see that even with just half of the miners being honest, the like-
lihood of a transaction being included in a block gets very high after just a dozen
blocks. pincluded = 1 − 0.512 = 99.9756%. Therefore, the time limits in matches
should be sufficiently large so that the risk of a successful censorship attack with-
out the selfish miner strategy is negligible.

We can measure the reward of censoring a participant in one round by the
increase in expected return for the adversary. As noted before, this reward will
increase exponentially as we get closer to the final match in the tournament. This
also means that the reward in large lotteries will be correspondingly large. If we as-
sume a dollar value of a ticket be to 10 USD and we have 216 = 65536 participants,
the reward of censoring your opponent in the last match will be 10·216

2 = 327680

USD, which at today’s ether price makes it well worth it for a miner to risk losing
some block rewards in order to get a chunk of the prize 2.

As the adversary’s opponent in a match reveal their secret by broadcasting a re-
veal transaction to the network, the adversary and the colluding miners, or anyone
with knowledge of the adversary’s secret, will know what the result of the match
will be after the reveal transaction is broadcast. Since the match consists of a digi-
tal coin toss, in 50% of the cases there will be no need for censorship at all for the
adversary to win. The adversary can choose to censor only when they will not win
honestly. This puts the honest participant at a disadvantage, as even though they

2The block reward in Ethereum is as of 2019-05-07 2 ether or 352 USD (https://etherscan.io/).

51

https://etherscan.io/

Distributed lottery on Ethereum

can counter the bribe by making a transaction with a high gas price, they won’t
know whether they will win or not until the adversary has made their transaction.

This means that in the case of an honest player playing a match against an
adversary engaging in censorship, the adversary would be willing to spend double
the amount to bribe miners of what the honest player is willing to pay in transaction
costs to counter such a bribe. An honest participant would only be willing to spend
the entire expected value at that level, while the adversary is willing to spend
double that if they know they would lose by playing honestly.

As to whether miners would accept bribes to censor, we don’t know of any esti-
mates of how large a bribe must be for miners to collude in such a way. Assuming
it is possible to bribe a powerful miner to censor transactions at all, the possible
rewards of doing so increases as the lottery gets larger, so it will eventually be high
enough. An opportunistic collusion of miners could also perform such an attack on
their own by participating in the lottery – removing the necessity of bribing.

Based on the analysis in this section, we conclude that our proposed lottery
is only secure under the assumption that there is no successful selfish miner be-
haviour on the blockchain. This is because a selfish miner collusion with about a
third of the mining power can in some cases effectively censor transactions, and
our lottery requires transactions to be included in blocks within reasonable time.
A selfish miner collusion with less than 25% of the mining power is very unlikely
to succeed, while the likelihood of success increases the higher their fraction of
mining power is. If such an attack can happen in practice, participants in the lot-
tery ultimately have to trust the miner collusion to act honestly, and introducing a
trusted intermediary goes against the entire purpose of distributed lotteries.

This can only be partly mitigated by having more time between time limits in
matches. Such a censorship attack is essentially costless if we ignore indirect costs
such as the blockchain’s reputation being hurt, and can be sustained indefinitely as
long as the collusion of miners is powerful enough. We instead would recommend
to not hold large lotteries or lotteries with very high prizes, and to be vary if the
blockchain has powerful miners or high risk of miner collusion.

4.5 Scalability

It’s common for lotteries to have millions of participants. Their large scale is an
important characteristic, so it’s natural to explore the scalability of our implemen-
tation. While the Ethereum platform has no problem with having any amount of
connections to participants all over the world, it has a limited amount of transac-
tions that can be processed per time unit. Even if transaction costs can be overcome
by making them low relative to ticket prices, the limit on transaction throughput
will stay the same. The stakes involved in the lottery will also get higher the more

52

Distributed lottery on Ethereum

participants join. This fact might create incentives for miners to censor transactions
as described in Section 4.4. Both the limits on transaction throughput and the se-
curity exposure of a higher prize will put a limit on the scalability of the lottery.
The former is a consequence of the limited resources on a global blockchain, while
the latter is due to the possibility of an attack, and is thus a matter of security. The
scalability of the lottery will be analyzed from both perspectives below.

4.5.1 Transaction throughput

Our lottery has clearly defined limits for the amount of transactions that need to be
made for each participant. The amount of transactions of each type and its average
gas usage is listed in Table 3. Setting up the lottery requires N + 1 transactions,
each participant joining takes one transaction for a total of N , playing each of the
N − 1 matches takes at most 4 transactions each, and the winner needs a single
transaction to withdraw the prize. So the maximum amount of transactions for a
successful lottery will be 6N − 2.

The time interval in which the transactions need to be made is important, as
the intensity of transaction demand will vary during the lifecycle of the lottery. We
expect a ticket purchasing period that lasts for several days where the demand for
transactions will not be high per time unit. Right after the deposit phase, when
the matches on the first level can be played, there are N

2 matches that all need to
be interacted with at the same time. If the time interval between match phases of
these matches is too low, the blockchain will not be able to handle all the transac-
tions that need to be made. The demand for transactions after the first match will
exponentially decrease for each level as the amount of matches is halved for each
level in the tournament tree.

The amount of participants is 2L and there are 2l−1 matches for each level if
we count l from L at the first level matches to 1 for the final match. The commit
step and reveal step for each match require two transactions each. The amount of
transactions needed for each step at each level will then be txs_stepl = 2 ·2l−1 = 2l

– one for each remaining player. Ethereum has a transaction throughput capacity
of roughly some amount of transactions per block tpb. The space for transactions
in an Ethereum block is actually limited by the sum of gas used by its transactions.
The commit transactions needed to play our lottery use on average approximately
80000 gas per transaction, which is the number we will operate with. Since blocks
are mined on average at a fixed rate, transactions per block is equivalent to trans-
actions per time unit. Each step in a match lasts for a number of blocks td which
is set when each match contract is deployed. For it to be theoretically possible to
perform all the transactions for each match, td must be set so that td > 2l

tpb .
Ethereum currently has a capacity for about 100 transactions of our type per

53

Distributed lottery on Ethereum

block 3. Using this value for tpb, we can chart some values of what td ought to be
in the first level matches for various amounts of participants.

Table 8: Estimates of td if all transactions on the blockchain are used for our lottery.
L N td td in s td in m td in h
8 256 3 45 0.8 0.01
10 1024 11 165 2.8 0.05
12 4096 41 615 10.3 0.17
14 16384 164 2460 41.0 0.68
16 65536 656 9840 164.0 2.73
17 131072 1311 19665 327.8 5.46
18 262144 2622 39330 655.5 10.93
20 1048576 10486 157290 2621.5 43.69

Table 9: Estimates of td if 10% of the transactions on the blockchain are used for our lottery.
L N td td in s td in m td in h
8 256 26 390 6.5 0.11
10 1024 103 1545 25.8 0.43
12 4096 410 6150 102.5 1.71
14 16384 1639 24585 409.8 6.83
16 65536 6554 98310 1638.5 27.31
17 131072 13108 196620 3277.0 54.62
18 262144 26215 393225 6553.8 109.23
20 1048576 104858 1572870 26214.5 436.91

The most realistic scenario is that only a small fraction of all the transactions
in a block are used for the lottery. We also see that for a lottery of any size, there
will probably be a quite high demand for transactions, which will in turn raise gas
prices. This has implications for what the minimum viable ticket price should be, as
it cannot be assumed that the gas price will be low for the first level of the lottery
unless td is very high. We that the bulk of transaction costs comes from deploying
the lottery contracts, so thee increased gas price during the playing phase will have
a limited impact on the total transaction costs.

Although td can be set arbitrarily high, we probably don’t want the lottery to
drag on for weeks before a winner is determined. It seems the lottery will face
scalability issues in the order of 100000s or from 217 participants if it is to be com-
pleted within days. The number of transactions needed will decrease exponentially
with higher levels, so the first two levels will account for 75% of the total time of
the playing phase.

3As of 2019-05-07, the gas limit is 8000000 gas per block (https://etherscan.io/).

54

https://etherscan.io/

Distributed lottery on Ethereum

Table 10: Time for the entire lottery if 10% of the transactions on the blockchain are used
for our lottery.

L N total time time in s time in m time in h
8 256 110 1650 27.5 0.46
10 1024 420 6300 105.0 1.75
12 4096 1650 24750 412.5 6.88
14 16384 6568 98520 1642.0 27.37
16 65536 26230 393450 6557.5 109.29
17 131072 52446 786690 13111.5 218.53
18 262144 104876 1573140 26219.0 436.98
20 1048576 419450 6291750 104862.5 1 747.71

There are plans for Ethereum to increase the number of transactions it can
handle by implementing proof-of-stake (PoS) and sharding. While this might make
our lottery capable of handling more participants, we don’t know whether such a
change in the protocol might introduce a new threat model that makes the lottery
less scalable in other ways.

4.5.2 Transaction costs and max prize

Due to the size of the prize increasing linearly with the number of participants, a
censorship attack by miners gets more profitable the more participants there are,
which puts a limit on scalability. Even if a censorship attack is unlikely to succeed,
it cannot be ignored when it can give high rewards to dishonest miners. Since the
lottery prize is decided by the ticket price as well as the number of participants, the
ticket price can be set so low that the total prize is not high enough to encourage
manipulation by miners. The ticket price, however, is bound to a minimum value
where the transaction costs for playing the lottery get prohibitively high compared
to the ticket cost. Using a gas price of 1.5 gwei and the gas usage for setting up and
playing a dual match lottery found in Section 4.1, we will present various charts to
illustrate the scalability of our implementation of the lottery.

The maximum prize is a security parameter used in this analysis. A higher max-
imum prize exposes more value to be lost in case of a successful attack, and so
the security risk increases with a higher maximum prize. The lottery organizer and
participants can judge what their tolerance for a max prize is, and we will oper-
ate with values up to 3000 ether for illustration. Another important variable is the
transaction cost ratio. This is the ratio o f ticket price to transaction costs for set-
ting up and playing a lottery, i.e. r =

gas_usage·gas_price
ticket_price . The prize is also entirely

dependent on the ticket price, as the calculations for simplicity’s sake assume the
organizer takes a fee equal to the transaction cost ratio times the sum of all de-
posits, i.e. prize = ticket_price ·N(1− r) and fee = ticket_price ·Nr where N is

55

Distributed lottery on Ethereum

the number of participants. The ticket price is implicitly used in the charts, as any
transaction cost ratio is mapped bijectively to a price when the transaction costs
are fixed.

Figure 7 shows the ratio of the ticket price going to transaction costs as a func-
tion of number of participants and a max tolerable prize. Figure 8 show the prize
for the lottery for a given number of participants and ratio of transactions costs to
ticket price. The charts show us the maximum scale of the lottery under different
conditions for maximum tolerable prize and ticket price going to transaction costs.
With the assumptions that the transaction costs can be as much as 20% of the
ticket price, and the maximum prize being about 1500 ether, this scalability limit
in terms of number of participants approaches that of the analysis of transaction
throughput.

Figure 9 shows the transaction cost to ticket price ratio on the left y-axis which
the thick blue line plots. The right y-axis shows the total prize for a given ticket
price and is plotted by multiple thin lines that each represent a specific number
of participants. The chart gives some idea of which tickets prices can be used for
different amounts of participants and different maximum prizes. For instance, if a
cost ratio of 0.1 is required, the thick blue line indicates that the ticket price will be
0.03 ETH. At that price, only lotteries with less than 32768 = 215 will have a prize
of less than 1000 ETH. If we start from the other direction and consider a lottery
with 8192 = 213 participants, plotted by the thin pink line, it can handle ticket
prices of slightly more than 0.1 ETH if the prize is to be less than 1000 ETH, and a
ticket price of 0.06 if the prize is to be below 500 ETH. Furthermore, it shows that
lotteries with few participants can handle quite high ticket prices without risking
too much exposure by a high prize, while lotteries with more than 216 participants
can barely handle ticket prices so low that the cost ratio is nearly prohibitive unless
a very large prize is acceptable.

4.5.3 Scalability limits

It’s difficult to say anything authoritative on the scalability in terms of maximum
prize, as it is unknown how high a sensible maximum prize should be. If a large
prize and organizer fee is acceptable, then the main scalability bottleneck will be in
the transaction throughput of the Ethereum blockchain. If the transaction through-
put were to be increased, or the number of necessary transactions to complete the
lottery can be decreased, the bottleneck could be in the maximum acceptable prize.
The discoveries in this section allows a lottery organizer to make informed choices
on setting a ticket price, fee, and amount of participants, but do not help in figur-
ing out how high a sensible max prize should be. We also see that the interactivity
of the lottery design has consequences for the scalability in that it requires many

56

Distributed lottery on Ethereum

transactions.
If the lottery playing phase is to be concluded with days and not weeks, and we

assume that 10% of all transactions on Ethereum can be related to the lottery for a
while, the scalability limit of the current design is 217 = 131072 participants. If we
only consider ticket prices where the ticket price to transaction costs ratio is less
than 0.2, 217 participants is acceptable from a maximum prize perspective if the
max prize is at least 1587 ether or 279312 USD.

Figure 7: Cost ratio as a function of participants and max prize.

Figure 8: Prize as a function of participants and cost ratio.

57

Distributed lottery on Ethereum

Figure 9: Cost ratio and prize as a function of participants and ticket price.

4.6 Analysis

4.6.1 Consequences of interactivity

Based on the implementation choices of the lottery and the above results and dis-
cussion, it is possible to get an insight into important properties and trade-offs of
the lottery. The lottery is interactive in that participants have to make several trans-
actions in order to complete it successfully. The interactivity is a trade-off made in
this design as opposed to the other blockchain lotteries of [20, 21], where fewer
transactions are necessary, but upfront deposits are needed from all participants.
We found that in our design, this has consequences for the scalability for several
reasons. One is that the amount of transactions needed to play the lottery will be
so high that it will start to congest the entire Ethereum network. Another reason
is that the transaction costs set a lower bound on the minimum viable ticket price.
As we operate with a maximum lottery prize for security reasons, this means that
lotteries with higher ticket prices will have less capacity for participants.

What is gained by the interactivity of the scheme is that the lottery is guaranteed
to complete. Deposits are not needed as it seems a player has nothing to gain
by not following the rules. A collusion of participants will not be able to predict
the outcome of the randomness other than the outcome of the matches between
players in the collusion. Due to secrets being committed to and not revealed until
both players of a match have finalized their commitments, a collusion will not have
any advantage over a single honest player.

58

Distributed lottery on Ethereum

We found that it is the cost of setting up the lottery by deploying contracts
that is the most significant transaction cost. Since this cost directly influences the
minimum viable ticket price, reducing the transaction cost of setting up the lot-
tery would make the lottery capable of having more participants. It is likely that
reducing the transaction costs can be done by using different design patterns in
the smart contracts. Simply optimizing the length of the variables may also save
some transaction costs. The current implementation only uses uint256 types for
numbers, but most of the numbers will never be so big that they need 256 bits to
represent them. However, reducing variable length by itself won’t save gas, as the
EVM operate with a 32-byte (256 bits) word size. Gas could be saved by packing
variables of lesser length into structs of 32 bytes, but we leave this optimization to
future work.

The number of transactions needed to play the lottery has consequences for
both the scalability of the lottery and the total transaction cost. This number can
be reduced by playing the digital coin tosses off-chain. Off-chain means that some
part of a protocol is handled between the players over another communication
channel than directly on the blockchain. Consider the digital coin toss after the
commitments are made. As the outcome at that point is determined if both players
reveal their secrets, it’s not actually necessary to do that on the blockchain. The
players could simply reveal their secrets to each other in private, and then one
player would not need to make an actual transaction, as the losing party would
not gain anything but still pay a transaction fee. If only the winner makes a reveal
transaction, they will win regardless of what the loser does, as not making a reveal
transaction is interpreted as forfeiture. Doing this requires no change in the smart
contracts from what they are in the current implementation.

It is possible that this idea of negotiating the matches off-chain could be taken
even further by using hierarchical deterministic secrets (HDS) [66]. The idea is
that participants make a single commitment to a public key at the beginning of
the tournament. In each match of level i, players derive a private key of index i
from the committed public key. This private key will serve as the secret in a normal
digital coin toss protocol. The way HDS work is that a parent asymmetric key pair
(skp, pkp) can generate deterministic child key pairs with specific indices. By know-
ing just the public parent key, one can generate child public keys {pk0, ..., pki}, and
by knowing the private parent key, one can generate child private keys {sk0, ..., ski}
which correspond to public keys with the same index. This means that a single
public key can serve as a series of commitments by using its child public keys. The
secrets will be verifiable as it is possible to verify that a private key corresponds
to a public key if one knows both. Using this idea, a lottery could be negotiated
off-chain once all players have made their one commitment to a parent public key.

59

Distributed lottery on Ethereum

Since it must be necessary to enforce the rules in case participants do not engage
in the off-chain negotiation, all the contracts in the tournament would still have
to exist, but would not necessarily be used. If commitments are made during the
purchasing phase, the spike in transaction demand when playing the first matches
could be drastically reduced, hence improving the scalability of the lottery. But
implementing this would require significant changes from our current implemen-
tation.

4.6.2 Tournament without a full binary tree

The design of the lottery uses a tournament that is required to be a full binary
tree which must be set up before players join. This limits the amounts of players
in the lottery to those that is a power of two. While this limitation might make
the lottery impractical, it makes it easier to reason about its properties in theory. If
one were to allow for more flexible amounts of participants by allowing a non-full
binary tree in the tournament, one would have to make sure that players would still
have the same probability of winning, or at least the same expected outcome. For
instance, if one handles a tournament with 2L + 1 players by having one player in
a separate subtree, that player would advance to the final match without playing
a single match. Should that player then be eligible for a smaller prize, or pay a
higher ticket price?

One option to handle lotteries with any amount of participants is to make the
prize proportional to the number of matches the winner has won. Say, if there are
12 participants, so that the tournament is a not complete binary tree of height
4. The first 8 players form a complete binary tree of height 3 – the left subtree,
while the last 4 participants form a not complete binary tree of height 2 – the
right subtree. The final match has the roots of the two subtrees as children. If a
player from the left subtree wins the tournament, they will get the entire prize. If a
player from the right subtree wins, they will only get half the prize, as they played
one match less. This design raises the question of what should be done with the
remainder of the prize if a player from the right subtree wins. It could be given to
the other player in the final match. This would keep the essential property of each
participant having equal expected value from participating, but participants in the
right subtree will not have the opportunity to win the complete prize. If instead of
12 players, there are e.g. 24 + 1 = 17 players, the only player in the right subtree
would be guaranteed to enter the final match, but will only play one match, and
thus only be entitled to 2

17 of the prize. Whether this design is sound and whether
it has any non-obvious vulnerabilities would be interesting to explore.

Another possible solution is to have some matches consisting of three players
instead of just two. Unfortunately, due to the time limits, this can give an advantage

60

Distributed lottery on Ethereum

to two players in the same match colluding. In a match with three players, each
player would ideally have a 1

3 probability of winning, so that in a match with two
colluding players, they would have a 2

3 probability of winning. But if the secret
of the non-colluding party Alice is revealed first, the colluding parties Colin and
Lucy have three options. (i) Only Colin reveals, (ii) only Lucy reveals, and (iii)
both reveal. Assuming each player who reveal has an equal probability of winning
and that their secrets are uniformly random, the first two options each have a
1
2 probability of either Colin or Lucy winning, while in the third option there’s a
2
3 chance of either winning. The slim probability that Alice wins in all the three
options is just 1

2·2·3 = 1
12 , making the either Carol or Lucy win in 11 of 12 cases.

It is possible that there is a design in which a tournament with any amount of
participants can be played fairly, but it would involve some considerable design
changes from our lottery that is beyond the scope of this thesis.

4.6.3 Mitigating a censorship attack

A possible vulnerability in censorship of transactions was discovered. Even though
the risk of a censorship attack is unknown, if we assume the possibility of a miner
or collusion of miners with a majority hashing power, it would at some size of the
lottery prize be in their economic interest to launch such an attack. A censorship
attack is possible because of the time limits of matches, because a player unable
to make transactions will lose. The time limits are however necessary to prevent a
single participant halting the entire process.

A possible way of mitigating a censorship attack is to annul the result of the
tournament if the winner won a certain fraction of their matches by forfeiture.
This could possibly do some collateral damage in that an honest winner could risk
being suspected of cheating. It could also make the off-chain negotiation mentioned
earlier in this section impractical.

However, increasing censorship resistance is a too broad topic to be in the scope
of this thesis. We operate with the common assumption that a blockchain system
such as Ethereum is censorship resistant to a certain degree, and we can only cau-
tion lottery organizers and participants to judge the risk by the size of the lottery
prize.

61

Distributed lottery on Ethereum

5 Discussion

5.1 Programming tools

We were generally able to use existing tools to our advantage for development
and simulation. Truffle was used to compile and manage smart contracts. We used
Truffle’s testing environment and smart contract abstraction to successfully run unit
tests and simulations on our code. Ganache is a program that starts an Ethereum
RPC server and blockchain on your local computer. This allows one to quickly
deploy contracts, make transactions, mock behaviour, and measure performance
without using something out of the developer’s control such as the main Ethereum
network or even a global testnet.

By limiting ourselves to using the smart contract abstraction that comes with
Truffle, we were not able to overcome some shortcomings when simulating and
testing. Truffle’s smart contract abstraction is designed to be used in web clients
of dApps that interact with the Ethereum blockchain. Since each interaction with
the blockchain involves an RPC, such interactions are handled with JavaScript
promises – a language feature that facilitates making asynchronous applications.
For every transaction RPC that is made, Truffle will wait until it is confirmed in
the blockchain before it performs the next RPC. This limits how we can use Truffle
when simulating, as a simulation may involve thousands of transactions, many of
which can be made in parallel. In our code, we have to wait for each transaction
to be confirmed before the next one is made, even though waiting for confirma-
tions should in many cases ideally be done in parallel. As our simulations require
some transactions to be made in specific order, such as making commitments be-
fore revealing secrets, we have to use promises in some cases. We could avoid this
limitation by making all our transaction RPCs by using web3js directly, but that
would involve a more complicated simulation program. This limited out simula-
tions to use no more than 512 participants, as using more would take a long time.
However, we don’t think simulations with more participants would provide much
more useful data.

Our smart contracts are highly dependent on timing conditions. The time lim-
its are specified in fields that denominate block height. E.g. a match contract is
initialized with three limits: tCommit, tReveal, and tPlay. These are essential for
security in a real deployment, but testing and simulating with many time conditions
can be hard. In our testing environment we run a local blockchain using Ganache.

63

Distributed lottery on Ethereum

Due to the issue with Truffle discussed above, we have to enable feature called auto
mining in Ganache, so that a new block is generated with each transaction. This is
not how the blockchain would behave in a live situation, so instead of altering our
smart contract code to fit into our testing environment, we chose to not use time
limits in the contracts when testing and simulating. We could configure a much
more complicated testing environment where we can control which transactions
are mined at which block heights etc., but chose to not spend time doing it as we
were nonetheless able to run useful simulations and tests.

5.2 Blockchain security

The common security assumptions, attack vectors, and threat models of the under-
lying blockchain can be essential to understand and consider when deploying ap-
plications on top of the blockchain. Blockchain security, however, is a complex and
not well understood topic. Researchers and practitioners in the space have identi-
fied various attack scenarios and concerns related to the security of a blockchain.
We have discussed some of these, such as selfish mining, censorship, and block
reorganization. We consider these issues important to discuss when developing an
application on top of a blockchain, but since we lack real data on what happens
during such an attack, as it has not happened on a major blockchain, discussing it
is somewhat speculative.

Our analysis on the security of our implementation is based on uncertain as-
sumptions and speculative attack scenarios. While something like censorship of
transactions by miners certainly is possible, there is no research indicating that it is
common or even in rational miners’ interest to do so. On the other hand, blockchain
platforms for smart contracts is a relatively new phenomenon, so it may well be a
latent threat that will be a more real concern in the future. While we think that
discussion on theoretical attacks is useful, we admit that the results from such
discussion cannot give a concrete results that are applicable in all cases. However,
when designing protocols that handle large amounts of money, a prudent approach
should be taken as it’s better to fail on the side of being too cautious rather than
too reckless. With that in mind, our analysis on potential attacks is indeed useful.

5.3 Experimentation

Experimentation within a real setting is something we were not able to do in this
project. The plan was to limit the scope to only make a proof-of-concept imple-
mentation, but the lack of experience from a real deployment makes it difficult
to answer whether Ethereum is a good platform for a distributed lottery. While
some properties of the blockchain and applications built on top of it can be ana-
lyzed by merely using theory and assumptions, the live version of a blockchain like

64

Distributed lottery on Ethereum

Ethereum is a complex system with many stakeholders and participants, many of
whom are opportunistic or right out malicious. One infamous example of some-
thing unexpected going wrong is the DAO and reentrancy bug exploit which re-
sulted in a hardfork of Ethereum [67].

Not only is a dApp likely to face unexpected issues when deployed on a live net-
work, but users of the dApp might have various expectations and mental models
that can make a theoretically sound app not usable by its intended users. There are
to date few actively used dApps on any smart contract platform, and this might be
because of a failure to communicate the platform’s advantages to the broader audi-
ence. Our lottery scheme is an interactive one where users are required to be online
and send transactions over a period of time, and possibly enact countermeasures to
attacks by adversaries. This is much more complicated than traditional online gam-
bling sites where one typically performs one transaction and is then automatically
able to withdraw the potential earnings.

65

Distributed lottery on Ethereum

6 Conclusion

The work of this research project has been to implement a distributed lottery in
Ethereum and analyze its properties and viability by gathering data through sim-
ulations and discussing adversarial threats. We found that a lottery similar to that
of [22] can easily be implemented in smart contracts on Ethereum. Measurements
on the transaction costs and demand for resources on the blockchain for setting
up and playing the lottery were made, and this was used to estimate limits for
the scalability and ticket prices of the implementation. Several common security
concerns for blockchains were discussed in relation to the lottery, and we found
the most concerning to probably be transaction censorship by a powerful miner or
collusion of miners, particularly if they follow a selfish mining strategy.

Taking the current transaction throughput of the Ethereum blockchain into ac-
count, we found a limit to how many participants a lottery of this type is able to
handle if it is to finish within a reasonable time period. This limit can be expressed
as a linear function of the duration of the lottery, the total number of transactions
in each block, and the ratio of total transactions on Ethereum that are addressed
to the lottery. By setting the time limit to a few days and assuming that 10% of
all transactions on Ethereum are addressed to the lottery, we found the limit to be
about 100000 or 217 participants.

The security of the lottery was discussed in the context of several known attack
vectors for blockchain applications and web applications. We found that censorship
of transactions from a powerful collusion of miners is likely to be the most concern-
ing threat. Due to the interactivity and time limits of the lottery protocol, we found
that if miners successfully block transactions from one account for each level of
the tournament, they have the power to select an arbitrary willing participant to
win the entire lottery. We discussed mitigating this issue, but were unable to find a
satisfactory solution other than not playing the lottery with high stakes if there is
an adversarial powerful miner collusion in the blockchain network.

Simulations of setting up and playing the lottery were executed on a local
Ethereum blockchain to get insight into gas usage and whether our proof-of-concept
implementation worked as expected. We found that the implementation does work
as expected on a local blockchain, but attempts to deploy it on a global blockchain
were not made. Gas usage was dominated by the smart contract deployment trans-
actions needed to set up the lottery, which is all paid for by the lottery organizer.
From this fact we assume that the lottery is viable only if the lottery organizer can

67

Distributed lottery on Ethereum

take a fee of the total prize that at least covers the expense from setting it up.
Based on the transaction costs, we found a way to estimate a minimum ticket price
as a function of gas price and organizer fee. We found that transaction costs can
be reduced by 42% by splitting code into two separate match contracts, and that
additional savings can probably be made by deduplicating code.

A shortened version of this work was submitted to the 2nd International Work-
shop on Future perspective of decentralized applications 2019 and is at the
time of submitting this thesis awaiting review.

6.1 Future work

We have identified several directions for further research on implementing lotteries
on smart contact platforms.

6.1.1 Minimizing transaction costs

We were able to reduce gas usage by 42% by splitting up the match contract to
two separate contracts. As we mentioned earlier, it should be possible to reduce
gas usage even further by deduplicating code by using patterns such as library
contracts and proxy contracts. As of our implementation, the organizer has to take
a risk when setting up the lottery, as there is a chance the lottery will fail to start by
not enough participants joining. By reducing transaction costs, the potential losses
from this risk will be lower, and the lottery might be played with lower ticket prices
or lower house edge.

6.1.2 Minimizing interactivity

The lottery implemented in this thesis requires participants to interact by sending
transactions several times. Other blockchain lottery schemes such as [20, 21] re-
quire less interaction, but do need a high deposit from all players. In our discussion
on security we identified a vulnerability in attacks from miners censoring transac-
tions. We also found that with the current transaction throughput in Ethereum, our
lottery will need a very long time to finish if it scales to hundreds of thousands of
participants. It might be possible to come up with a design that both require few
interactions and does not need high deposits from participants to avoid halting.

6.1.3 Off-chain negotiation

Even though the smart contracts in our lottery must have the capability of enforc-
ing the protocol, they don’t necessarily need to process all the transactions as we
laid out. In order to reduce gas usage and number of interactions, matches can
be negotiated between opponents off-chain. For instance, when both players have
made their commitments, they can reveal their secrets over another communica-
tion channel. By seeing one’s opponent’s secret, one knows what the outcome of

68

Distributed lottery on Ethereum

the match will be if both players were to reveal the secret on the blockchain. In-
stead, only the winner can reveal their secret while the loser forfeits by not making
the reveal transaction. Even though the gas usage from playing the matches is rel-
atively low compared to the overall gas usage, the number of transactions needed
to play the matches is quite high. Decreasing the number of transactions needed to
complete a match could improve the scalability as the blockchain has limited space
for transactions per time unit.

It would be interesting to explore if hierarchical deterministic secrets could be
used to avoid making a commitments for each match. HDS is a scheme where
a private key can generate child private keys and a corresponding public key can
generate child public keys. Since the algorithm used is deterministic, the generated
secrets can possibly be verified at a later stage. While the original HDS scheme
proposed in [66] might be unfit for the purpose, as leaked child keys can make
it possible to derive the parent private key, the scheme proposed in [68] does not
have this vulnerability and might be better suited.

6.1.4 Formal analysis of security

While we have discussed security issues in this thesis, we believe a more rigorous
analysis is needed. As the blockchain space matures, more research and experi-
ence is likely to appear. This can be used to arrive at better estimates on what
assumptions and conditions are needed to make our lottery secure. Perhaps most
important is more knowledge on the topic of censorship of transactions. Both mod-
els that allow us to find under what conditions censorship is likely, as well as tactics
to avoid censorship would be interesting to explore in the context of a distributed
lottery on a blockchain.

69

Distributed lottery on Ethereum

Bibliography

[1] Sintomer, Y. 2010. Random Selection, Republican Self-Government,
and Deliberative Democracy. Constellations, 17(3), 472–487. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8675.
2010.00607.x, doi:10.1111/j.1467-8675.2010.00607.x.

[2] Nixon, R. M. November 1969. Executive Order 11497—Amend-
ing the Selective Service Regulations to Prescribe Random Selec-
tion. URL: https://web.archive.org/web/20180922121238/http://www.
presidency.ucsb.edu/ws/?pid=106002.

[3] Economist, T. April 2018. Why a licence plate costs more than a car in
Shanghai. The Economist. URL: https://www.economist.com/china/2018/
04/19/why-a-licence-plate-costs-more-than-a-car-in-shanghai.

[4] Sako, K. 1999. Implementation of a Digital Lottery Server on WWW. In
Secure Networking — CQRE [Secure] ’ 99, Baumgart, R., ed, Lecture Notes in
Computer Science, 101–108. Springer Berlin Heidelberg.

[5] Konstantinou, E., Liagkou, V., Spirakis, P., Stamatiou, Y. C., & Yung, M. 2004.
Electronic National Lotteries. In Financial Cryptography, Juels, A., ed, Lecture
Notes in Computer Science, 147–163. Springer Berlin Heidelberg.

[6] Konstantinou, E., Liagkou, V., Spirakis, P., Stamatiou, Y., & Yung, M. 2005.
"Trust engineering:" from requirements to system design and maintenance - A
working national lottery system experience. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 3650 LNCS, 44–58.

[7] Chen, Y.-Y., Jan, J.-K., & Chen, C.-L. 2005. Design of a fair proxy raffle
protocol on the Internet. Computer Standards and Interfaces, 27(4), 415–422.
doi:10.1016/j.csi.2004.11.002.

[8] Kuacharoen, P. 2012. Design and Implementation of a Secure Online
Lottery System. In Advances in Information Technology, Papasratorn, B.,
Charoenkitkarn, N., Lavangnananda, K., Chutimaskul, W., & Vanijja, V., eds,
Communications in Computer and Information Science, 94–105. Springer
Berlin Heidelberg.

71

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8675.2010.00607.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8675.2010.00607.x
http://dx.doi.org/10.1111/j.1467-8675.2010.00607.x
https://web.archive.org/web/20180922121238/http://www.presidency.ucsb.edu/ws/?pid=106002
https://web.archive.org/web/20180922121238/http://www.presidency.ucsb.edu/ws/?pid=106002
https://www.economist.com/china/2018/04/19/why-a-licence-plate-costs-more-than-a-car-in-shanghai
https://www.economist.com/china/2018/04/19/why-a-licence-plate-costs-more-than-a-car-in-shanghai
http://dx.doi.org/10.1016/j.csi.2004.11.002

Distributed lottery on Ethereum

[9] Chen, C.-L., Chiang, M.-L., Lin, W.-C., & Li, D.-K. 2016. A novel lottery
protocol for mobile environments. Computers and Electrical Engineering, 49,
146–160. doi:10.1016/j.compeleceng.2015.07.016.

[10] Douceur, J. R. 2002. The sybil attack. In International workshop on peer-to-
peer systems, 251–260. Springer.

[11] Shamir, A., Rivest, R. L., & Adleman, L. M. 1981. Mental poker. In The
mathematical gardner, 37–43. Springer.

[12] Blum, M. 1983. Coin flipping by telephone a protocol for solving impossible
problems. ACM SIGACT News, 15(1), 23–27.

[13] Broder, A. 1985. A provably secure polynomial approximation scheme for
the distributed lottery problem (Extended abstract). 136–148. doi:10.1145/
323596.323608.

[14] Goldreich, O., Micali, S., & Wigderson, A. January 1987. How to play ANY
mental game. 218–229. doi:10.1145/28395.28420.

[15] Goldschlag, D. & Stubblebine, S. 1998. Publicly verifiable lotteries: Appli-
cations of delaying functions. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 1465, 214–226. doi:10.1007/BFb0055485.

[16] Fouque, P.-A., Poupard, G., & Stern, J. 2001. Sharing decryption in the
context of voting or lotteries. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 1962, 90–104.

[17] Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. 2016.
Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-
10), 71. URL: https://j2-capital.com/wp-content/uploads/2017/11/
AIR-2016-Blockchain.pdf.

[18] Back, A. & Bentov, I. February 2014. Note on fair coin toss via Bitcoin. URL:
https://arxiv.org/abs/1402.3698v1.

[19] Andrychowicz, M., Dziembowski, S., Malinowski, D., & Mazurek, L. 2014.
Fair two-party computations via bitcoin deposits. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8438, 105–121. doi:10.1007/
978-3-662-44774-1_8.

72

http://dx.doi.org/10.1016/j.compeleceng.2015.07.016
http://dx.doi.org/10.1145/323596.323608
http://dx.doi.org/10.1145/323596.323608
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1007/BFb0055485
https://j2-capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf
https://j2-capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf
https://arxiv.org/abs/1402.3698v1
http://dx.doi.org/10.1007/978-3-662-44774-1_8
http://dx.doi.org/10.1007/978-3-662-44774-1_8

Distributed lottery on Ethereum

[20] Andrychowicz, M., Dziembowski, S., Malinowski, D., & Mazurek, L. 2014. Se-
cure multiparty computations on bitcoin. 443–458. doi:10.1109/SP.2014.
35.

[21] Bentov, I. & Kumaresan, R. 2014. How to use Bitcoin to design fair protocols.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8617 LNCS(PART 2), 421–
439. doi:10.1007/978-3-662-44381-1_24.

[22] Miller, A. & Bentov, I. 2017. Zero-collateral lotteries in Bitcoin and Ethereum.
4–13. doi:10.1109/EuroSPW.2017.44.

[23] Bartoletti, M. & Zunino, R. 2017. Constant-deposit multiparty lotteries on
bitcoin. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 10323 LNCS, 231–
247. doi:10.1007/978-3-319-70278-0_15.

[24] Lindell, Y. & Katz, J. 2014. Introduction to modern cryptography. Chapman
and Hall/CRC.

[25] Wang, X., Lai, X., Feng, D., Chen, H., & Yu, X. 2005. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In Advances in Cryptology – EUROCRYPT 2005,
Cramer, R., ed, Lecture Notes in Computer Science, 1–18. Springer Berlin
Heidelberg.

[26] Merkle, R. C. 1988. A Digital Signature Based on a Conventional Encryp-
tion Function. In Advances in Cryptology — CRYPTO ’87, Pomerance, C., ed,
Lecture Notes in Computer Science, 369–378. Springer Berlin Heidelberg.

[27] Brassard, G., Chaum, D., & Crépeau, C. 1988. Minimum disclosure proofs of
knowledge. Journal of computer and system sciences, 37(2), 156–189.

[28] Dwork, C. & Naor, M. 1993. Pricing via Processing or Combatting Junk Mail.
In Advances in Cryptology — CRYPTO’ 92, Brickell, E. F., ed, Lecture Notes in
Computer Science, 139–147. Springer Berlin Heidelberg.

[29] Back, A. 2002. Hashcash-a denial of service counter-measure.

[30] Diffie, W. & Hellman, M. 1976. New directions in cryptography. IEEE trans-
actions on Information Theory, 22(6), 644–654.

[31] Micali, S., Rabin, M., & Vadhan, S. October 1999. Verifiable random func-
tions. In 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), 120–130. doi:10.1109/SFFCS.1999.814584.

73

http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1109/EuroSPW.2017.44
http://dx.doi.org/10.1007/978-3-319-70278-0_15
http://dx.doi.org/10.1109/SFFCS.1999.814584

Distributed lottery on Ethereum

[32] Boneh, D., Bonneau, J., Bünz, B., & Fisch, B. 2018. Verifiable Delay Func-
tions. In Advances in Cryptology – CRYPTO 2018, Shacham, H. & Boldyreva,
A., eds, Lecture Notes in Computer Science, 757–788. Springer International
Publishing.

[33] Syverson, P. 1998. Weakly secret bit commitment: applications to lotteries
and fair exchange. 2–13.

[34] Rivest, R. L., Shamir, A., & Wagner, D. A. Time-lock Puzzles and Timed-release
Crypto. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1996.

[35] Rabin, M. O. October 1983. Transaction protection by beacons. Jour-
nal of Computer and System Sciences, 27(2), 256–267. URL: http://
www.sciencedirect.com/science/article/pii/0022000083900429, doi:
10.1016/0022-0000(83)90042-9.

[36] Clark, J. & Hengartner, U. 2010. On the Use of Financial Data as a Random
Beacon. EVT/WOTE, 89.

[37] Bentov, I., Gabizon, A., & Zuckerman, D. May 2016. Bitcoin Beacon. URL:
https://arxiv.org/abs/1605.04559v2.

[38] Yajam, H., Ebadi, E., Badakhshan, M., & Akhaee, M. 2019. Improvement on
Bitcoin’s Verifiable Public Randomness with Semi-Trusted Delegates. 53–57.
doi:10.1109/ISTEL.2018.8661008.

[39] Bonneau, J., Clark, J., & Goldfeder, S. 2015. On Bitcoin as a public random-
ness source. IACR Cryptology ePrint Archive, 2015, 1015.

[40] Pierrot, C. & Wesolowski, B. 2018. Malleability of the blockchain’s en-
tropy. Cryptography and Communications, 10(1), 211–233. doi:10.1007/
s12095-017-0264-3.

[41] NIST. May 2019. NIST Randomness Beacon | NIST. URL:
https://web.archive.org/web/20190509161828/https://www.nist.
gov/programs-projects/nist-randomness-beacon.

[42] Randao. URL: https://github.com/randao/randao/commits/master.

[43] Chatterjee, K., Goharshady, A. K., & Pourdamghani, A. February 2019.
Probabilistic Smart Contracts: Secure Randomness on the Blockchain.
arXiv:1902.07986 [cs]. arXiv: 1902.07986. URL: http://arxiv.org/abs/
1902.07986.

74

http://www.sciencedirect.com/science/article/pii/0022000083900429
http://www.sciencedirect.com/science/article/pii/0022000083900429
http://dx.doi.org/10.1016/0022-0000(83)90042-9
http://dx.doi.org/10.1016/0022-0000(83)90042-9
https://arxiv.org/abs/1605.04559v2
http://dx.doi.org/10.1109/ISTEL.2018.8661008
http://dx.doi.org/10.1007/s12095-017-0264-3
http://dx.doi.org/10.1007/s12095-017-0264-3
https://web.archive.org/web/20190509161828/https://www.nist.gov/programs-projects/nist-randomness-beacon
https://web.archive.org/web/20190509161828/https://www.nist.gov/programs-projects/nist-randomness-beacon
https://github.com/randao/randao/commits/master
http://arxiv.org/abs/1902.07986
http://arxiv.org/abs/1902.07986

Distributed lottery on Ethereum

[44] Zhou, J. & Tan, C. 2001. Playing lottery on the internet. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2229, 189–201.

[45] Chow, S., Hui, L., Yiu, S., & Chow, K. 2005. An e-lottery scheme using Verifi-
able Random Function. volume 3482, 651–660.

[46] Lee, J.-S., Chang, C.-C., & Fellow, I. February 2009. Design of electronic t-
out-of-n lotteries on the Internet. Computer Standards & Interfaces, 31(2),
395–400. URL: http://www.sciencedirect.com/science/article/pii/
S0920548908000731, doi:10.1016/j.csi.2008.05.004.

[47] Liu, Y., Lin, D., Cheng, C., Chen, H., & Jiang, T. 2014. An improved t-out-of-n
e-lottery protocol. International Journal of Communication Systems, 27(11),
3223–3231. doi:10.1002/dac.2536.

[48] Xia, Z., Liu, Y., Hsu, C.-F., & Chang, C.-C. 2019. An information theoretically
secure e-lottery scheme based on symmetric bivariate polynomials. Symme-
try, 11(1). doi:10.3390/sym11010088.

[49] Grumbach, S. & Riemann, R. 2017. Distributed random process for a large-
scale peer-to-peer lottery. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 10320 LNCS, 34–48. doi:10.1007/978-3-319-59665-5_3.

[50] Goldschlag, D., Stubblebine, S., & Syverson, P. 2010. Temporarily hidden bit
commitment and lottery applications. International Journal of Information
Security, 9(1), 33–50. doi:10.1007/s10207-009-0094-1.

[51] SmartBillions. SmartBillions ICO. https://www.smartbillions.com/. URL:
https://www.smartbillions.com/.

[52] Fairlotto. July 2018. Fairlotto V2: Provably Fair
STEEM Blockchain Based Lottery - All New Front-End
+ Features. https://steemit.com/lottery/@fairlotto/
fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features.
URL: https://steemit.com/lottery/@fairlotto/
fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features.

[53] SatoshiDice. Satoshi Dice Bitcoin Games | Bitcoin Dice Game |
SatoshiDICE. https://web.archive.org/web20190401184324/http://
satoshidice.com/. URL: https://web.archive.org/web20190401184324/
http://satoshidice.com/.

75

http://www.sciencedirect.com/science/article/pii/S0920548908000731
http://www.sciencedirect.com/science/article/pii/S0920548908000731
http://dx.doi.org/10.1016/j.csi.2008.05.004
http://dx.doi.org/10.1002/dac.2536
http://dx.doi.org/10.3390/sym11010088
http://dx.doi.org/10.1007/978-3-319-59665-5_3
http://dx.doi.org/10.1007/s10207-009-0094-1
https://www.smartbillions.com/
https://www.smartbillions.com/
https://steemit.com/lottery/@fairlotto/fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features
https://steemit.com/lottery/@fairlotto/fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features
https://steemit.com/lottery/@fairlotto/fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features
https://steemit.com/lottery/@fairlotto/fairlotto-v2-provably-fair-steem-blockchain-based-lottery-all-new-front-end-features
https://web.archive.org/web20190401184324/http://satoshidice.com/
https://web.archive.org/web20190401184324/http://satoshidice.com/
https://web.archive.org/web20190401184324/http://satoshidice.com/
https://web.archive.org/web20190401184324/http://satoshidice.com/

Distributed lottery on Ethereum

[54] Tschorsch, F. & Scheuermann, B. 2016. Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies. IEEE Communications Surveys
Tutorials, 18(3), 2084–2123. doi:10.1109/COMST.2016.2535718.

[55] Garay, J., Kiayias, A., & Leonardos, N. 2015. The Bitcoin Backbone Protocol:
Analysis and Applications. In Advances in Cryptology - EUROCRYPT 2015,
Oswald, E. & Fischlin, M., eds, Lecture Notes in Computer Science, 281–310.
Springer Berlin Heidelberg.

[56] Nakamoto, S. 2008. Bitcoin: A peer-to-peer electronic cash system. doi:
https://bitcoin.org/bitcoin.pdf.

[57] Andresen, G. March 2013. March 2013 Chain Fork Post-Mortem. original-
date: 2013-11-19T17:18:41Z. URL: https://github.com/bitcoin/bips/
blob/master/bip-0050.mediawiki.

[58] Buterin, V. June 2015. The Problem of Censorship. URL: https://blog.
ethereum.org/2015/06/06/the-problem-of-censorship/.

[59] Wuille, P. May 2019. security - 51% attack - apparently
very easy? refering to CZ’s "rollback btc chain" - How to make
sure such corruptible scenario can never happen so easily?
URL: https://bitcoin.stackexchange.com/questions/87652/
51-attack-apparently-very-easy-refering-to-czs-rollback-btc-chain-how-t/
87655.

[60] Eyal, I. & Sirer, E. G. June 2018. Majority is Not Enough: Bitcoin Mining is
Vulnerable. Commun. ACM, 61(7), 95–102. URL: http://doi.acm.org/10.
1145/3212998, doi:10.1145/3212998.

[61] Szabo, N. September 1997. Formalizing and Securing Relationships on Pub-
lic Networks. First Monday, 2(9). URL: https://firstmonday.org/ojs/
index.php/fm/article/view/548, doi:10.5210/fm.v2i9.548.

[62] Wood, G. 2018. Ethereum: a secure decentralised generalised transaction
ledger. byzantium version (2018-06-05).

[63] Lu, A. May 2018. Solidity DelegateProxy Contracts. URL: https://blog.
gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201.

[64] Walsh, J. The House’s Edge In Lotto | Easy Money | FRONTLINE | PBS.
URL: https://www.pbs.org/wgbh/pages/frontline/shows/gamble/odds/
house.html.

76

http://dx.doi.org/10.1109/COMST.2016.2535718
http://dx.doi.org/https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://bitcoin.stackexchange.com/questions/87652/51-attack-apparently-very-easy-refering-to-czs-rollback-btc-chain-how-t/87655
https://bitcoin.stackexchange.com/questions/87652/51-attack-apparently-very-easy-refering-to-czs-rollback-btc-chain-how-t/87655
https://bitcoin.stackexchange.com/questions/87652/51-attack-apparently-very-easy-refering-to-czs-rollback-btc-chain-how-t/87655
http://doi.acm.org/10.1145/3212998
http://doi.acm.org/10.1145/3212998
http://dx.doi.org/10.1145/3212998
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
http://dx.doi.org/10.5210/fm.v2i9.548
https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201
https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201
https://www.pbs.org/wgbh/pages/frontline/shows/gamble/odds/house.html
https://www.pbs.org/wgbh/pages/frontline/shows/gamble/odds/house.html

Distributed lottery on Ethereum

[65] Shackleford, M. House Edge of casino games compared. URL: https://
wizardofodds.com/gambling/house-edge/.

[66] Wuille, P. February 2012. Bitcoin Improvement Proposals. Contribute to
bitcoin/bips development by creating an account on GitHub. original-date:
2013-11-19T17:18:41Z. URL: https://github.com/bitcoin/bips.

[67] Dhillon, V., Metcalf, D., & Hooper, M. 2017. The DAO Hacked. In Blockchain
Enabled Applications: Understand the Blockchain Ecosystem and How to Make
it Work for You, Dhillon, V., Metcalf, D., & Hooper, M., eds, 67–78. Apress,
Berkeley, CA. URL: https://doi.org/10.1007/978-1-4842-3081-7_6,
doi:10.1007/978-1-4842-3081-7_6.

[68] Gutoski, G. & Stebila, D. 2015. Hierarchical Deterministic Bitcoin Wallets that
Tolerate Key Leakage. In Financial Cryptography and Data Security, Böhme, R.
& Okamoto, T., eds, Lecture Notes in Computer Science, 497–504. Springer
Berlin Heidelberg.

77

https://wizardofodds.com/gambling/house-edge/
https://wizardofodds.com/gambling/house-edge/
https://github.com/bitcoin/bips
https://doi.org/10.1007/978-1-4842-3081-7_6
http://dx.doi.org/10.1007/978-1-4842-3081-7_6

Distributed lottery on Ethereum

A Listings

A.1 Solidity contracts

A.1.1 Abstract match contract

1 pragma solidity >=0.5.0 <0.6.0;
2
3 /**
4 * Match as a digital coin toss between two players.
5 * A tournament is made from a tree of these matches.
6 **/
7 contract AbstractLotteryMatch {
8
9 /**

10 * Have a player commit to a value for the digital coin toss.
11 */
12 function commit(bytes32 _c) public;
13
14 /**
15 * Have a player reveal the value previously commited to for the

digital coin toss.
16 */
17 function reveal(uint256 _s) public;
18
19 /**
20 * Implicitly calculate the winner by performing the digital coin

toss.
21 */
22 function getWinner () public view returns (address winner);
23 }

Listing A.1: Full Solidity contract for AbstractLotteryMatch.

A.1.2 First level match contract

1 pragma solidity >=0.5.0 <0.6.0;
2
3 import { LotteryMaster } from "./ LotteryMaster.sol";
4 import { AbstractLotteryMatch } from "./ AbstractLotteryMatch.sol";
5
6 /**
7 * Match as a digital coin toss between two players.
8 * A tournament is made from a tree of these matches.
9 **/

10 contract FirstLevelMatch is AbstractLotteryMatch {
11
12 address public alice; // Player 1 of the match.
13 address public bob; // Player 2 of the match.
14
15 mapping(address => bytes32) public commitments; // Commitments

alice and bob have made.

79

Distributed lottery on Ethereum

16 mapping(address => uint256) public secrets; // Secrets , which are
preimages to the commitments , alice and bob have made.

17
18 LotteryMaster public lottery; // The master lottery contract.
19 uint256 public index; // Matches on the first level are indexed

so that they map to specific players in the lottery.
20
21 uint256 public tCommit; // Block height after which making

commitments is possible.
22 uint256 public tReveal; // Block height after which making

reveals is possible. And commitments no longer possible.
23 uint256 public tPlay; // Block height after which deciding the

winner is possible. And reveals no longer possible.
24
25 constructor(uint256 _tCommit , uint256 _tReveal , uint256 _tPlay ,

LotteryMaster _lottery , uint256 _index) public {
26 require(_tCommit < _tReveal , "Invalid time limits. tCommit not

before tReveal.");
27 require(_tReveal < _tPlay , "Invalid time limits. tReveal not

before tPlay.");
28
29 tCommit = _tCommit;
30 tReveal = _tReveal;
31 tPlay = _tPlay;
32
33 lottery = _lottery;
34 index = _index;
35 }
36
37 /**
38 * Have a player commit to a value for the ditial coin toss.
39 */
40 function commit(bytes32 _c) public {
41 require(tCommit < block.number , "Too early to commit.");
42 require(tReveal > block.number , "Too late to commit.");
43
44 alice = lottery.getPlayer(index * 2);
45 bob = lottery.getPlayer(index * 2 + 1);
46 require(msg.sender == alice || msg.sender == bob , "Wrong

player for this match.");
47 require(commitments[msg.sender] == 0, "Player has already

commited to this match.");
48
49 commitments[msg.sender] = _c;
50 }
51
52 /**
53 * Have a player reveal the value previously commited to for the

digital coin toss.
54 */
55 function reveal(uint256 _s) public {
56 require(tReveal < block.number , "Too early to reveal.");
57 require(tPlay > block.number , "Too late to reveal.");
58
59 require(keccak256(abi.encodePacked(msg.sender , _s)) ==

commitments[msg.sender], "Secret not preimage of
commitment.");

80

Distributed lottery on Ethereum

60
61 secrets[msg.sender] = _s;
62 }
63
64 /**
65 * Implicitly calculate the winner by performing the digital coin

toss.
66 */
67 function getWinner () public view returns (address winner) {
68 require(tPlay < block.number , "Too early to determine a winner

.");
69
70 // Check if any player is missing
71 if (alice != address (0) && bob == address (0)) {
72 return alice;
73 } else if (alice == address (0) && bob != address (0)) {
74 return bob;
75 } else if (alice == address (0) && bob == address (0)) {
76 return lottery.getPlayer(index * 2);
77 }
78
79 // Check if parties have made commitments.
80 if (commitments[alice] != 0 && commitments[bob] == 0) {
81 return alice;
82 } else if (commitments[alice] == 0 && commitments[bob] != 0) {
83 return bob;
84 } else if (commitments[alice] == 0 && commitments[bob] == 0) {
85 return lottery.getPlayer(index * 2);
86 }
87
88 // Check if parties have revealed.
89 if (secrets[alice] != 0 && secrets[bob] == 0) {
90 return alice;
91 } else if (secrets[alice] == 0 && secrets[bob] != 0) {
92 return bob;
93 } else if (secrets[alice] == 0 && secrets[bob] == 0) {
94 return lottery.getPlayer(index * 2);
95 }
96
97 // Both parties have revealed , let’s toss the coin.
98 if ((secrets[alice] ^ secrets[bob]) % 2 == 0) {
99 return alice;

100 } else {
101 return bob;
102 }
103 }
104 }

Listing A.2: Full Solidity contract for FirstLevelMatch.

A.1.3 Internal match contract

1 pragma solidity >=0.5.0 <0.6.0;
2
3 import { LotteryMaster } from "./ LotteryMaster.sol";
4 import { AbstractLotteryMatch } from "./ AbstractLotteryMatch.sol";
5
6 /**

81

Distributed lottery on Ethereum

7 * Match as a digital coin toss between two players.
8 * A tournament is made from a tree of these matches.
9 **/

10 contract InternalMatch is AbstractLotteryMatch{
11
12 address public alice; // Player 1 of the match.
13 address public bob; // Player 2 of the match.
14
15 mapping(address => bytes32) public commitments; // Commitments

alice and bob have made.
16 mapping(address => uint256) public secrets; // Secrets , which are

preimages to the commitments , alice and bob have made.
17
18 AbstractLotteryMatch public left; // One of the matches for

qualifying to this match. A contract address.
19 AbstractLotteryMatch public right; // One of the matches for

qualifying to this match. A contract address.
20
21 uint256 public tCommit; // Block height after which making

commitments is possible.
22 uint256 public tReveal; // Block height after which making

reveals is possible. And commitments no longer possible.
23 uint256 public tPlay; // Block height after which deciding the

winner is possible. And reveals no longer possible.
24
25 constructor(uint256 _tCommit , uint256 _tReveal , uint256 _tPlay ,

AbstractLotteryMatch _left , AbstractLotteryMatch _right)
public {

26 require(_tCommit < _tReveal , "Invalid time limits. tCommit not
before tReveal.");

27 require(_tReveal < _tPlay , "Invalid time limits. tReveal not
before tPlay.");

28
29 tCommit = _tCommit;
30 tReveal = _tReveal;
31 tPlay = _tPlay;
32
33 left = _left;
34 right = _right;
35 }
36
37
38 /**
39 * Have a player commit to a value for the ditial coin toss.
40 */
41 function commit(bytes32 _c) public {
42 require(tCommit < block.number , "Too early to commit.");
43 require(tReveal > block.number , "Too late to commit.");
44
45 alice = left.getWinner ();
46 bob = right.getWinner ();
47 require(msg.sender == alice || msg.sender == bob , "Wrong

player for this match.");
48 require(commitments[msg.sender] == 0, "Player has already

commited to this match.");
49
50 commitments[msg.sender] = _c;

82

Distributed lottery on Ethereum

51 }
52
53 /**
54 * Have a player reveal the value previously commited to for the

digital coin toss.
55 */
56 function reveal(uint256 _s) public {
57 require(tReveal < block.number , "Too early to reveal.");
58 require(tPlay > block.number , "Too late to reveal.");
59
60 require(keccak256(abi.encodePacked(msg.sender , _s)) ==

commitments[msg.sender], "Secret not preimage of
commitment.");

61
62 secrets[msg.sender] = _s;
63 }
64
65 /**
66 * Implicitly calculate the winner by performing the digital coin

toss.
67 */
68 function getWinner () public view returns (address winner) {
69 require(tPlay < block.number , "Too early to determine a winner

.");
70
71 // Check if any player is missing
72 if (alice != address (0) && bob == address (0)) {
73 return alice;
74 } else if (alice == address (0) && bob != address (0)) {
75 return bob;
76 } else if (alice == address (0) && bob == address (0)) {
77 return left.getWinner ();
78 }
79
80 // Check if parties have made commitments.
81 if (commitments[alice] != 0 && commitments[bob] == 0) {
82 return alice;
83 } else if (commitments[alice] == 0 && commitments[bob] != 0) {
84 return bob;
85 } else if (commitments[alice] == 0 && commitments[bob] == 0) {
86 return left.getWinner ();
87 }
88
89 // Check if parties have revealed.
90 if (secrets[alice] != 0 && secrets[bob] == 0) {
91 return alice;
92 } else if (secrets[alice] == 0 && secrets[bob] != 0) {
93 return bob;
94 } else if (secrets[alice] == 0 && secrets[bob] == 0) {
95 return left.getWinner ();
96 }
97
98 // Both parties have revealed , let’s toss the coin.
99 if ((secrets[alice] ^ secrets[bob]) % 2 == 0) {

100 return alice;
101 } else {
102 return bob;

83

Distributed lottery on Ethereum

103 }
104 }
105 }

Listing A.3: Full Solidity contract for InternalMatch.

A.1.4 Master contract

1 pragma solidity >=0.5.0 <0.6.0;
2
3 import { AbstractLotteryMatch } from "./ AbstractLotteryMatch.sol";
4
5 /**
6 * The lottery master contract which individual 1v1 matches reference.
7 */
8 contract LotteryMaster {
9

10 address [] public players; // All players who have made a deposit.
11 mapping(address => uint256) public deposits; // The value of

deposits players have made.
12
13 address public owner; // Owner of this contract.
14
15 uint256 public price; // Price in wei for buying a ticket.
16 uint256 public N; // Max number of players in the lottery.
17
18 uint256 public nPlayers; // Number of players currently joined.
19
20 uint256 public tStart; // Start block height of the lottery.
21
22 AbstractLotteryMatch public finalMatch; // Reference to the final

match which decides the winner.
23
24 bool public isInitialized; // Whether the lottery is ready to

take deposits.
25 bool public isFull; // Whether the lottery is full and ready to

play.
26
27 constructor(uint256 _N, uint256 _price , uint256 _tStart) public {
28 require(_tStart < block.number , "Time limits invalid start

time is in the past.");
29
30 N = _N;
31 price = _price;
32 tStart = _tStart;
33
34 owner = msg.sender;
35 }
36
37 /**
38 * Set the final match of the lottery.
39 * The lottery should not be able to start before this is set.
40 * It’s up to participants to validate that this final match is

the correct contract.
41 */
42 function setFinalMatch(AbstractLotteryMatch _finalMatch) public {
43 require(msg.sender == owner , "Only owner can set final match."

);

84

Distributed lottery on Ethereum

44 require(finalMatch == AbstractLotteryMatch (0), "Final match is
already set.");

45 finalMatch = _finalMatch;
46
47 isInitialized = true;
48 }
49
50
51 /**
52 * Players can make a deposit to join the lottery. This is
53 * equivalent to buying a ticket.
54 */
55 function deposit () public payable {
56 require(block.number < tStart , "Too late to deposit now.");
57 require(isInitialized == true , "Final match not set. Lottery

not initialized yet.");
58 require(msg.value == price , "Transaction value is not equal to

ticket price.");
59 require(isFull == false , "Lottery is full");
60 require(deposits[msg.sender] == 0, "Player has already

deposited to this lottery.");
61
62 players.push(msg.sender);
63 deposits[msg.sender] = msg.value;
64 nPlayers ++;
65
66 if (nPlayers == N) {
67 isFull = true;
68 }
69 }
70
71 /**
72 * After the predetermined end time of the lottery has passed ,

then either
73 * (a) the winner can withdraw their prize , or (b) there is no

winner and
74 * participants can withdraw their deposit.
75 */
76 function withdraw () public {
77
78 if (block.number >= tStart && !isFull) {
79 // Lottery did not get enough participants , so

participants can withdraw their deposit.
80 msg.sender.transfer(deposits[msg.sender]);
81 } else {
82 // The winner can withdraw their prize.
83 address lotteryWinner = finalMatch.getWinner ();
84 require(msg.sender == lotteryWinner , "Player is not winner

of lottery.");
85 msg.sender.transfer(address(this).balance);
86 }
87 }
88
89 function getPlayer(uint256 index) public view returns (address

player) {
90 player = players[index];
91 }

85

Distributed lottery on Ethereum

92
93 /**
94 * The only way to get an array is to make a function to get it.
95 */
96 function getPlayers () public view returns (address [] memory

_players) {
97 _players = players;
98 }
99 }

Listing A.4: Full Solidity contract for LotteryMaster.

A.2 Javascript

A.2.1 Simulate lottery setup

1 contract(’Simulate lottery build ’, (accounts) => {
2 it(’Should build master contract and match contracts for n players ’,

async () => {
3 const L = 2;
4 const N = 2 ** L;
5
6 const organizerAddress = accounts [0];
7 const organizerInitialBalance = web3.utils.fromWei(
8 await web3.eth.getBalance(organizerAddress),
9 ’ether’

10);
11
12 console.log(‘Organizer has ${organizerInitialBalance} ether‘);
13
14 console.log(‘Building lottery with ${N} players.‘);
15 const startTime = new Date();
16 const lotteryBuilder = new LotteryBuilder(N, price , tStart , tFinal

, td);
17 await lotteryBuilder.start();
18 console.log(‘Built lottery in ${new Date() - startTime} ms‘);
19
20 const organizerFinalBalance = web3.utils.fromWei(
21 await web3.eth.getBalance(organizerAddress),
22 ’ether’
23);
24
25 console.log(‘Organizer has ${organizerFinalBalance} ether‘);
26 console.log(
27 ‘Organizer used ${organizerInitialBalance -
28 organizerFinalBalance} ether for gas.‘
29);
30 });
31 });

Listing A.5: Truffle test suite for simulating lottery setup.

A.2.2 Simulate lottery play

1 contract(’Simulate lottery play’, (accounts) => {
2 it(’Should play correctly ’, async () => {
3 const L = 2;
4 const N = 2 ** L;

86

Distributed lottery on Ethereum

5
6 console.log(‘Simulating lottery with ${N} players.‘);
7 let startTime = new Date();
8 let tempTime = new Date();
9

10 const lotteryBuilder = new LotteryBuilder(N, price , tStart , tFinal
, td);

11 await lotteryBuilder.start();
12
13 console.log(‘Built lottery in ${new Date() - tempTime} ms‘);
14 tempTime = new Date();
15
16 const lottery = new LotteryContract(lotteryBuilder.lottery.address

);
17 await lottery.init();
18
19 console.log(
20 ‘Initialized lottery playing contract in ${new Date() - tempTime

} ms‘
21);
22 tempTime = new Date();
23
24 const matches = await lottery.getAllMatches ();
25
26 console.log(‘Got all lottery matches in ${new Date() - tempTime}

ms‘);
27 tempTime = new Date();
28
29 const players = generatePlayers(N, accounts);
30 const playerMap = players.reduce(
31 (acc , x) => ({ ...acc , [x.address]: x }),
32 {}
33);
34
35 for (const { address } of players) {
36 await lottery.deposit(address);
37 }
38
39 console.log(‘All players joined in ${new Date() - tempTime} ms‘);
40 tempTime = new Date();
41
42 const contractPlayers = await lottery.getPlayers ();
43
44 let winners = contractPlayers.map((address) => playerMap[address])

;
45 let level = 0;
46
47 while (winners.length > 1) {
48 console.log(‘Playing level ${level }.‘);
49 for (const [i, { address , commitment }] of winners.entries ()) {
50 await matches[level][i >> 1]. commit(commitment , { from:

address });
51 }
52 for (const [i, { address , secret }] of winners.entries ()) {
53 await matches[level][i >> 1]. reveal(secret , { from: address })

;
54 }

87

Distributed lottery on Ethereum

55 winners = await Promise.all([
56 ... matches[level].map(async (match) => {
57 return playerMap[await match.getWinner ()];
58 }),
59]);
60 level ++;
61 console.log(‘Played level ${level} in ${new Date() - tempTime}

ms‘);
62 tempTime = new Date();
63 }
64 console.log(‘Played lottery in ${new Date() - startTime} ms‘);
65
66 const winner = await lottery.getWinner ();
67 assert.notEqual(winner , ZERO_ADDRESS);
68 assert.equal(winner , winners [0]. address);
69
70 await lottery.lotteryContract.withdraw ({ from: winner });
71
72 console.log(
73 ‘Winner is ${winner} who now has ${web3.utils.fromWei(
74 await web3.eth.getBalance(winner),
75 ’ether ’
76)} eth‘
77);
78 });
79 });

Listing A.6: Truffle test suite for simulating lottery play.

88

Distributed lottery on Ethereum

B Simulation data

B.1 Gas usage

Steps to replicate

Using Git repository located at https://github.com/viktorfa/lottery-truffle.
git. Dual match simulations from Git commit 36ee7818. Single match simula-
tions from Git commit 63747577. Variable L in tests/Lottery.simulate.js set
to 8 for both simulation suites. Simulations run with command truffle test
./test/Lottery.simulate.js with a Ganache Ethereum RPC client running.

Results

Table 11: Statistics from dual match simulation with 256 participants.
Stats n=5
Contract Method Mean Stdev Range Stdev/Mean
FirstLevelMatch commit 76611 0 0 0
FirstLevelMatch reveal 42883 0.8367 1.25 0.00001951
InternalMatch commit 88672 2.51 7 0.00002831
InternalMatch reveal 42883 1.673 4 0.00003902
LotteryMaster deposit 73925 0 0 0
LotteryMaster setFinalMatch 49282 0 0 0
LotteryMaster withdraw 39171 5.477 10 0.0001398
Deployments
FirstLevelMatch 1693715 28.62 64 0.0000169
InternalMatch 1697002 1830 1026 0.0010785
LotteryMaster 1693664 0 0 0
Total set up 433555262 3534 2288 0.00000815
Total set up and play 516524423 3428 2917 0.00000664

89

https://github.com/viktorfa/lottery-truffle.git
https://github.com/viktorfa/lottery-truffle.git

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Viktor Frede Andersen

Distributed lottery on Ethereum

Implementation of a tournament based
distributed lottery on Ethereum

Master’s thesis in Computer Science
Supervisor: Letizia Jaccheri

June 2019

	Preface
	Acknowledgment
	Abstract
	Abbreviations
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis statement
	Methodology
	Literature review
	Data collection
	Data analysis

	Thesis structure

	Background
	Cryptography
	Secure hash functions
	Digital encryption
	Digital signatures

	Verifiable randomness
	Introduction to verifiable random functions (VRF)
	Categories of VRFs
	Delay functions
	Random beacons
	Verifiable random oracles

	Lotteries
	Blockchain
	Transactions
	Mining
	Blockchain threats

	Trustworthy computing
	Smart contracts
	Ethereum

	Implementation
	Tournament lottery outline
	Digital coin toss
	Note on the lottery being non-deterministic
	Phases

	Code
	Master contract
	Match contract
	Lottery setup code

	Results
	Gas usage and transaction costs
	Ticket price
	Lower and upper bound on ticket prices
	A ticket price of zero

	Security
	Loss of connectivity
	Blockchain reorganizations
	Censorship and transaction blocking
	Compromised client and phishing

	Cost of a censorship attack
	Scalability
	Transaction throughput
	Transaction costs and max prize
	Scalability limits

	Analysis
	Consequences of interactivity
	Tournament without a full binary tree
	Mitigating a censorship attack

	Discussion
	Programming tools
	Blockchain security
	Experimentation

	Conclusion
	Future work
	Minimizing transaction costs
	Minimizing interactivity
	Off-chain negotiation
	Formal analysis of security

	Bibliography
	Listings
	Solidity contracts
	Abstract match contract
	First level match contract
	Internal match contract
	Master contract

	Javascript
	Simulate lottery setup
	Simulate lottery play

	Simulation data
	Gas usage

