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Abstract

Our planet is changing, now more than ever before. Understanding these changes and
how they impact the environment is crucial for preserving the Earth for the coming gen-
erations. Improvements in remote sensing technology and data collection allows us to
harvest more data than ever. Hyperspectral remote sensors gather data about electro-
magnetic radiation reflected off the Earth in nearly the entire spectrum of light emitted
from our sun. This data can enable the classification and monitoring of changes in veg-
etation, agricultural areas, water contents, human habitation, natural disasters and so
much more. However, the high dimensionality and redundancy of this data provides a
unique challenge for machine recognition. This work presents a new technique for do-
ing unsupervised spectral band selection of hyperspectral data, based on clustering bands
in highly correlated subspaces and multi-objective evolutionary search using NSGA-II.
Experiments show promising results on several popular hyperspectral datasets compared
to other similar recent methods, indicating that this is an interesting avenue for further
research.
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Chapter 1

Introduction

Hyperspectral images provide high dimensional data able to detect and classify surface
feature to a high degree of certainty. Instead of relying primarily on the spatial shape
of materials, which would require a high spatial resolution, it records images in a large
number of spectral bands, so that different land covers can be recognized according to
their shape in the spectral dimension. This technology allows aircraft and satellites to
cover large areas that can be used for many applications like agriculture, environmental
change observation, urban evolution, mineral mapping and more. The high dimensional-
ity of these images in the spectral dimension provide not only an unprecedented recog-
nition ability but large challenges to data storage, transmission and processing. Since
spectral bands close to each other in the electromagnetic spectrum share properties,
much of data volume collected is redundant and leads to difficulties for classification
algorithms such as the curse of dimensionality. For this reason, much research has been
done in the field of dimensionality reduction of hyperspectral images. Specifically band
selection, which aims to pick out some selected bands from the available has been a
popular technique. Band selection techniques need a measure of the information content
and redundancy between bands to select the best ones accordingly, which can be either
supervised or unsupervised. While supervised techniques are great for optimizing the
bands selected for a specific application, it needs already labelled data samples to func-
tion, which require expert knowledge to acquire. Unsupervised techniques require only
the information present in the image itself to select the best bands and is therefore good
both since it requires no expert knowledge and because it is not tailored to a specific
application and can thus be more generalizable.

This thesis explores the use of evolutionary algorithms for doing unsupervised band
selection of hyperspectral images. It establishes a state-of-the art within the field and
proposes a new algorithm that makes use of the redundancy between bands in order to

1



2 CHAPTER 1. INTRODUCTION

create clusters of similar bands where a single band can be chosen as the representative.
It is done through a multi-objective genetic algorithm that provides a set of optimal so-
lutions with a different number of selected bands that can be chosen between in order to
support different needs. The proposed algorithm is experimentally evaluated and com-
pared with other recent evolutionary band selection algorithms, and shows competitive,
stable performance on several different hyperspectral datasets.

1.1 Goals

The goal of the thesis is to provide insight into the following research question:

How can low redundancy band clustering be used together with multi-objective
evolutionary search in order to select representative bands from a hyper-
spectral image in an unsupervised manner?

The goal is decomposed into the following research questions will be employed to
guide the experiments conducted:

Research questions

RQ1 How good is NSGA-II at selecting band subsets of different lengths that provide
stable and predictable results?

RQ2 What divergence measure best captures the different information captured in ad-
jacent spectral bands?

RQ3 How do the number of subspaces affect classification accuracy?

RQ4 What is the relative importance of individual band informativeness compared to
the redundancy between selected bands?

RQ5 How does the presence of noisy bands affect classification accuracy?

1.2 Methods

There are two primary methods used in this thesis, a literature review establishing state
of the art, and experimental studies. The purpose of the literature review is to provide an
insight into the motivation of choosing the research goal and to present relevant recent
work that is used as a comparison to the proposed model. The experimental studies



1.3. PRE-PROJECT 3

are conducted in order to evaluate how the proposed model can answer the research
questions and ultimately the research goal.

1.3 Pre-project

In the fall of 2018 a pre-masters project was undertaken for TDT4501 entitled Hardware
optimization of remote sensing imaging spectrometers: A review. It was supervised by
Professor Haddow at NTNU and Dr Keymeulen at JPL, NASA. The goal of the project
was to establish the state of the art for the online configuration optimization of push-
broom hyperspectral sensor hardware. The goal was to identify how evolutionary tech-
niques could be applied to the optimisation of the focal plane array with the intention to
continue the project as a masters thesis at JPL in Los Angeles. Unfortunately, restric-
tions imposed by NASA regarding both access to documentation and hardware involved
prevented continuation of the project to the experimental phase, despite much effort by
Dr Keymeulen. As such, the project was stopped and a new masters topic was identified.

While this thesis shares some of the theoretical background, particularly the basic
theory of remote sensing, the project has moved to hyperspectral data processing rather
than hyperspectral sensor hardware.

1.4 Outline

The thesis is organized as follows. Chapter 2 gives an introduction to the theoretical
background used in the work. It is separated into four sections: Remote sensing, evolu-
tionary algorithms, information theory and classification. Then, chapter 3 describes the
literature review work done in establishing the state of the art in band selection of hy-
perspectral imaging. It gives an overall discussion of what techniques have been applied
and their strengths and weaknesses, as well as an in-depth discussion of some selected
related work. Chapter 4 presents the proposed model used for band selection. It also
introduces the simulator implemented in order to test and verify the model. Chapter 5
presents the plan and results of the experiments done to explore and verify the properties
and quality of the model and how it compares to the other related work. Lastly, 6 will
be a discussion of the results, the main contributions and recommendations for future
work.
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Chapter 2

Background and Theory

This chapter gives an insight into the theoretical background of the work done in the
thesis. The background can be separated into four different fields, in the intersection
of which this thesis lies. The source of the data used comes from the field of remote
sensing, described in section 2.1. This section describes the basics of electromagnetic
radiation and how it is used to record information and gain knowledge about the Earth’s
surface. It also discusses the novel challenges with processing hyperspectral data, to lay
the basis for the methods used in the rest of the thesis.

Then, section 2.2 provides an introduction to evolutionary optimization and search,
both for single-objective and multi-objective problems, and describes some of the algo-
rithms used. In order to facilitate the discussion of how evolutionary computation is fit to
solve some of the challenges in the processing of hyperspectral data, the section includes
a discussion of the advantages and disadvantages of using evolutionary optimization.

Since the task at hand is unsupervised processing of hyperspectral data, there is a
need for establishing inherent quality metrics for recorded hyperspectral data. This is
covered in section 2.3, where information theory is used to create measures of informa-
tion content in an image and measures of the difference between images.

Finally, one of the basic and useful applications of hyperspectral data, is land cover
classification. Section 2.4 describes classification as a machine learning task and what
challenges hyperspectral data provide for this task.

5



6 CHAPTER 2. BACKGROUND AND THEORY

2.1 Remote Sensing

Remote sensing can be defined as the act of gathering information about a target without
direct contact. In the broadest form the information to be gathered can be anything, and
the target can be anything, but usually when discussing remote sensing, the information
comes from electromagnetic radiation and the target is the Earth, observed from either
airborne or on-orbit platforms. Therefore, remote sensing is also often referred to as
Earth observation. As such, remote sensing is a remarkably powerful and interesting
tool for gathering information about how the surface of our planet is changing and how
human civilization is affecting it. The application areas are widespread, from observing
changes in rain forest density, agriculture, disaster relief, mineral mapping and certainly
to surveillance applications. This theory section will describe the basics of remote sens-
ing, starting with a description of the information source, electromagnetic radiation, and
a summary of different types of sensors used in remote sensing and their advantages and
disadvantages.

This section will describe the basics of hyperspectral imaging. First it the basic
principles of spectroscopy, and then give an overview of how it is being used within
remote sensing.

2.1.1 Electromagnetism

Electromagnetism is one of the most basic and omnipresent phenomena in physics. It is
used to study both vast cosmological events and the tiniest atomic ones. Most objects
that have mass interact with electromagnetism in one way or another, either through
transmission, emission or reflection. This interaction is a useful tool for understanding
the composition of the object. It is established that electromagnetic radiation can equiva-
lently be thought of both as a wave and as a stream of particles called photons. The wave
representation is useful since it allows the radiation to be classified according to wave-
length or frequency. Since the speed of light is a constant c, the relationship between the
wavelength λ and the frequency ν can be expressed as

ν =
c
λ

(2.1)

Since the wavelength and frequency are inversely proportional, the two properties
can be used interchangeably to describe the radiation. The wavelength places it some-
where in the electromagnetic spectrum, as shown in Figure 2.1.

Most electromagnetic signals observed are not composed of a single wavelength, but
rather a mixture of many component wavelengths with different intensity. The view of
electromagnetic radiation as a stream of photons is useful to describe this intensity. Since
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Figure 2.1: The electromagnetic spectrum

Source: EM spectrum, used under CC BY 3.0

the photon energy, contained within a single photon, is proportional to the wavelength of
the radiation (h being the Planck constant), the energy of the radiation is, in a sense, the
number of photons, same as the number of electrons defines the current in a circuit. The
energy of an electromagnetic signal is measured in joules (J), and by differentiating with
regards to time, the resulting quantity is called the radiant flux of the system, denoted
Φ and having the unit of watts (W).

Electromagnetic radiation has a source, being an object that either transmits the ra-
diation from another source, emits it through some process, or reflects it. Based on the
properties of the object, the radiant flux of the signal coming from the object may vary
based on the direction it is viewed from. The directional quantity that describes the radi-
ant flux differentiated by the viewing direction is called the radiance of the object. Con-
versely, when an object receives electromagnetic radiation the quantity used to denote
the energy present is called irradiance. This is the spectral flux received differentiated
by the area of the surface.

Considering that all light consists of several wavelengths, the quantities of radiant
flux, radiance and irradiance can also be differentiated with regards to the wavelength
of the light, in which case the quantities are called spectral flux, spectral radiance and
spectral irradiance.
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2.1.2 Sources of electromagnetic radiation

Figure 2.2: Electromagnetic radiation from the sun. The black line shows the spectral
signature of the reference blackbody with the same temperature as the sun. The yellow
area shows the received sunlight above the atmosphere, while the red area is received
sunlight at sea level.

Source: Solar spectrum by Wikipedia user Nick84, used under CC BY-SA 3.0

The unarguably most important source of emitted electromagnetic radiation in the
universe are stars. Stars are dense balls of hot plasma that emit electromagnetic radiation
due to fusion of hydrogen and helium at its core. The frequency of the initially produced
light is in the gamma ray part of the spectrum, but as the light works its way towards
the surface it interacts with the material in the sun and is converted into lower frequency
light. A useful model for describing solar radiation is the black body model. The black
body model assumes that all the radiation coming from an object is from emitted energy.
It is black in the sense that it absorbs all light it receives. In the early 20th century,
physicist Max Planck discovered that the spectral radiance emitted by a blackbody is
dependent on its absolute temperature T . This discovery is formalized in Planck’s law,
which is be used to determine the radiance of emitted solar radiation, by modelling the
Sun as a black body with a temperature of 5778 K. Using the distance between the Sun
and the Earth, this enables determining the irradiance of solar radiation at the Earth.
The black curve in Figure 2.2 shows the predicted solar irradiance using the black body
model. The yellow area shows observed spectral irradiance of sunlight at the Earth
above the atmosphere. The black body curve pretty closely determines sunlight without
factoring in the atmosphere. It shows that sunlight consists of wavelengths from around
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200 nm in the ultra violet (UV) part of the spectrum, through visible (VIS, 380 nm-
740 nm), near-infrared (NIR, 740 nm-1400 nm), to some parts of the short wavelength
infrared spectrum (SWIR, 1400 nm-3000 nm).

The Earth itself also emits electromagnetic radiation according to its black body
equivalent, but at wavelengths a lot higher than the Sun, due to the Earth having a much
lower temperature than the Sun.

2.1.3 Electromagnetic interactions in the atmosphere

Figure 2.3: Electromagnetic transmittance through the atmosphere of the Earth.

Before the sunlight reaches the Earth’s surface, it has to be transmitted through the
atmosphere. The atmosphere of the Earth is composed of many different gases, like
nitrogen (N), oxygen (O2), carbon dioxide (CO2), ozone (O3) and water (H2O). The
transmittance of sunlight through the atmosphere is thus dependent on its interaction
with these gases and their absorption spectra. The transmitted radiant flux can be denoted
Φt . The transmittance of the medium is then

T =
Φt

Φ

where Φ is the incident radiant flux. An approximate model of the transmittance
of sunlight through the atmosphere is shown in Figure 2.3. The figure shows transmit-
tance in microns (micrometers). It is the part of the figure that is between 0.2 and 2.4
microns, the solar emitted wavelengths that are interesting for this study. Ultra violet
(UV) rays of wavelengths most dangerous for life on Earth, 200 nm to 300 nm, are
absorbed by the layer of ozone in the stratosphere. The other atmospheric gases, most
notably oxygen, carbon dioxide and and water vapour also close off the atmosphere for
some wavelengths. This closing off is shown by the low transmittance values at some
parts in the spectrum. In the solar emitted wavelengths, it is especially water vapour that
is the most troublesome, blocking out large parts of the NIR and SWIR spectra. This
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phenomenon can also be seen in Figure 2.2 where the red area shows the sunlight that
reaches the surface. Water vapour content is additionally notoriously difficult to model,
since it can have large local variations, both in time and space.

The sunlight that has been so lucky to get through the atmospheric windows are
ready to be reflected off the surface of the Earth. Although different kinds of material
reflect the light in different ways, its reflection can usual be modelled as Lambertian
(Figure 2.4). A Lambertian reflection off a surface means that the radiance is constant
in any direction.

Figure 2.4: A Lambertian surface has a constant radiance across any viewing angle θ

Source: Cropped from Lambertian reflection by Wikipedia user Panjasan, used under
CC BY 3.0

This kind of reflection is also called diffuse reflection, and is a good approximation
since most surfaces are rough and will therefore reflect light in many directions. Non-
diffuse surfaces are for example mirrors, which are specular reflectors.

However, depending on the material the incident radiant flux Φ is distributed be-
tween reflection Φr, Φa absorption and transmission Φt . Thus,

Φ = Φr +Φa +Φt

It is also useful to define reflectance as

R =
Φr

Φ

As with Φt , Φr is also a function of wavelength. This function indicates the ratio
of the incident light to the reflected light of each wavelength, and is essentially what
the human eye interprets as the color of the material in the visible spectrum. Figure 2.5
shows the reflectances of some materials.
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Spectral signatures
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Figure 2.5: Reflectance signatures across solar emitted wavelengths of some different
materials. Data fetched from Kokaly et al., 2017

Since different types of material have significantly different spectral reflectances,
they can be used as a "signature" to identify the material. The figure shows that the three
different materials have significant differences in reflectance values across the entire
range of solar emitted wavelengths. So it is not only what is visible light to humans (0.4
- 0.7 microns) that is useful for recognizing a material, but infrared light also. Visible
light has no physical significance apart from the fact that it is in the wavelengths the sun
emits the most energy of, so eyes sensitive to those wavelengths will see better.
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2.1.4 Remote Sensor Technology

Figure 2.6: Sentinel-1B and Sentinel 2. Two ESA satellites used for remote sensing.
Sentinel-1B uses active radar technology to observe the Earth, while Sentinel-2 uses a
passive multispectral sensor.

Source: ESA

A remote sensor system must minimally consist of the sensor itself, capable of recording
incoming light, a platform the sensor is mounted upon, a storage unit that can store the
data, and usually some communication device that can transmit the data to the ground.
The following will briefly describe some these components, focusing on the deployment
platforms, the sources of radiation that can be used, and sensor technologies. It will not
be a thorough study but will provide enough information needed for the thesis work.

Cross-swath

Landscape

Field of view

Instananeous field of view

Figure 2.7: Simple model of a remote sensor
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Platform deployment In its simplest form a remote sensor can be modelled as in
Figure 2.7. It shows a remote sensing platform, the grey circle, moving in the t direction
at a certain height across a landscape.

A big difference between remote sensing and conventional photography is that re-
mote sensing platforms are "scanning" the surface as it moves, gathering row by row
of information instead of forming an entire image with the camera standing still. The
remote sensor has has a field of view (FOV), which is the angle that determines the area
that is visible for the sensor at a particular point in time. On the surface, this angle
forms the swath width (also called cross-swath in the figure). The instantaneous field of
view (IFOV) is the angle available to one sensor element in the remote sensor, which on
the surface becomes the spatial resolution of the sensor image. The concept of sensor
elements will be explained further.

Remote sensing platforms can be deployed either on aircraft or in orbit mounted on
a satellite. Aircraft mounted remote sensors have the advantages that they are easy to
deploy to a specific location, and since they are closer to the surface they are sensing, a
sensor with the same IFOV will have a higher spatial resolution. On the other hand, a
satellite mounted sensor both moves a lot quicker in the t direction, and will have a much
wider swath width. The orbit chosen for the satellite determines to a large degree how
effective it can be at recording data. Remote sensors usually want to cover the entire
surface of the Earth in a shortest possible amount of time. To do this, they are normally
deployed in a polar orbit. This is an orbit that is rotated 90 deg from the equator of
the Earth, and means that for each revolution of the orbit, the Earth will have rotated
underneath the sensor so it covers new ground every orbit.

Radiation source Remote sensing platforms can be either active or passive. Active
remote sensors, like the Sentinel-1B in Figure 2.6 have light emitting devices attached.
Examples of active sensor technologies are RADAR which emits radio waves, and LI-
DAR which emits visible or infrared light. Active remote sensing has the advantage that
it can observe a target at any time of day, without requiring direct sunlight on the target.
Additionally, active sensors that use high wavelength radiation such as radio waves for
RADAR, are uninterrupted by atmospheric conditions. However, active sensors require
a significant amount of energy to operate.

Passive remote sensing, on the other hand, usually gets the radiation it measures
from the sun. For observing surface features on the Earth, using solar emitted radiation
is the most useful. Being dependent on the sun may reduce the availability of data from
the sensor, but there are also solutions to this problem. For example, the ESA satellite
Sentinel 2, shown in Figure 2.6 is placed in a sun-synchronous orbit, meaning the ground
below it will have equal daylight at all times.
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Figure 2.8: Hyperspectral imaging compared to multispectral. Hyperspectral images
consist of narrow, contiguous bands, with each pixel a continuous function of wave-
length, while multispectral images are discrete.

Source: NASA

Sensor array Although all remote sensors have some sensor array to capture the in-
coming light, the nature and configuration of this sensor array will vary greatly, both in
terms of what light it gathers and how it functions. Generally though, it exists of a set
of mirrors and lenses that disperse the light into wavelength bands and focuses the light
on light sensitive devices such as a diodes. The diodes create electric currents which can
be integrated with a capacitor or other processes. At equal intervals, called the exposure
time, the charge in the capacitors are read and they are discharged. The charge recorded
is then proportional to the radiance of the light received.

The lenses in the sensor disperse the light into bands, consisting of light in a small
part of the spectrum, but how wide these bands or how many there are will vary greatly
from sensor to sensor. If the light is dispersed into only a few bands which are not
adjacent, the sensor is called Multispectral. One such sensor was the Landsat-1, one of
the first remote sensing platforms deployed for Earth observation. The attached MSS
(NASA, 2019a) sensor gathered radiation in four different discrete wavelength bands,
making it a multispectral sensor.

While multispectral sensors are useful, they only gather information about a few
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bands in the spectrum, as shown in the left side of Figure 2.8. This means that its
capability to recognize spectral signatures such as the ones shown in 2.5 is limited.
Often the bands in a multi-spectral system are chosen to recognize specific materials.

For improving the capabilities of the system to recognize a wide range of spectral
signatures, Hyperspectral sensors were developed. These sensor disperse the light into
much smaller bands which are adjacent to each other. This means that the data recorded
from the sensor is able to approximate the real spectral signatures of a wide range of
materials and land covers to a much larger degree. A model of a hyperspectral sensor is
shown in Figure 2.9.

Figure 2.9: A hyperspectral sensor with a focal plane array (FPA)

Source: NASA

Light is dispersed and focused upon a two-dimensional array called the focal plane
array, in which one dimension is the spectral and the other is one of the spatial dimension.
As the platform scans the surface it produces a two-dimensional array of radiance values
at each time interval, which taken together forms a hyerspectral image cube like the one
shown on the right side of Figure 2.8.

One of the first and definitely most important hyperspectral sensors is the AVIRIS,
the Airborne Visible-Infrared Imaging Spectrometer, developed by NASA in the 1980’s
and still in use today (NASA, 2019b). The sensor has a swath width of 11 km when
deployed to an airplane a height of 20 km. The AVIRIS gathers data in 220 adjacent
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wavelengths, from 400− 2400nm, which is across the entire range of solar emitted
wavelengths, as seen in Figure 2.2.

2.1.5 Data processing

Recognizing land covers and surface features on the Earth is useful for many applica-
tions. However, recognizing detailed features only based on their shape in the spatial
dimension might in some cases require an unfeasibly high resolution. This is one of
the main motivations for using hyperspectral sensors in data analysis, as described by
D. Landgrebe (2002), as it allows the recognition of land covers based on their spectral
"shape" rather than their spatial. Still, hyperspectral sensors also require large amounts
of data due to its generality, and for a specific application much of this data would be
redundant and even counterproductive. Therefore, much research in hyperspectral imag-
ing have focused on techniques to select the necessary and desired features for a specific
task, as a form of dimensionality reduction. See Chapter 3 for a discussion of the state
of the art.
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2.2 Evolutionary Optimization

Evolutionary optimization is a sub-field of evolutionary computation, whose purpose
and goal is to design optimization algorithms inspired by natural, biological processes
such as evolution, genetics or animal behavior. Since the prevailing theory of how hu-
mans and the other life forms have been shaped throughout the ages can be interpreted as
a continuous and heuristic optimization of our ability to survive in the environment, it is
both tempting and almost obvious to try to harness this power on our own optimization
tasks. Due to this sub-symbolic and model-free nature, evolutionary algorithms may be
readily applied to a wide range of problems.

Evolutionary computation has a long history of research, stretching almost as far
back as information theory and modern computing itself. One of the first developed
and most well-known algorithms in evolutionary computation is the Genetic algorithm
(GA). The genetic algorithm will be the main search framework implemented for the
work in this thesis, and so a significant portion of this chapter is devoted to explaining
how it works, as well as advantages and limitations. Another evolutionary algorithm that
will be briefly described is the Artificial Bee Colony (ABC), implemented in this thesis
so as to compare the proposed method against another work that uses ABC.

2.2.1 Optimization problems

An optimization problem is a task where the purpose is to find an x that maximizes (or
minimizes), a function f (x). The function f is often called an objective function. x can
be anything, such as a number, a vector of numbers or even a string. The set of allowed
values for x is usually called the set of feasible solutions to the problem, while the do-
main of x on f is called the search space. The maximum value of f across the entire
domain is called the global maximum. f might also have several local maxima, defined
as a point where all neighboring points have a lower value. Conversely, f will have local
and global minima, which would be the targets for optimization if minimization is the
goal.

An optimization algorithm has to search through the search space of x in order to find
the value that maximizes f . The size and shape of the search space has a large effect on
what optimization algorithm should be used for the problem. If f is a simple continuous
mathematical function defined over all real numbers, calculus can provide a provably
global maximum. However, most real world problems can not be easily modelled as
such a continuous, differentiable function. In these cases it might be difficult to find
provably optimal solutions in reasonable (polynomial) time, and the only feasible way of
solving the problem is to find a solution that is "good enough", given some constraints.
A well-known class of such problems are the NP-hard problems. In simplified terms,
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NP-hard are problems where finding an optimal value of f is difficult, but verifying the
value of f for a given x is easy. The definition of "easy" in computational complexity
theory is that the number of computations required to solve the problem is bounded by
a polynomial expression with regards to the size of the input problem.

In order to illustrate and explain the optimization algorithms described in this chap-
ter, the famous NP-hard travelling salesman problem (TSP) will be used. The goal of the
TSP problem is to find the shortest route to visit all cities, once and only once, and then
return to where one started. It can be represented as a graph, where the nodes represent
cities and the edges are paths between them. The edge weights are the distance between
the cities. A feasible solution as described above is then called a Hamiltonian cycle.
Figure 2.10 shows the problem instance that will be used.
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Figure 2.10: An instance of TSP. The starting and ending city is A

In TSP, x is a route between the cities, and its feasible values are all Hamiltonian
cycles in the graph, and f is the total weight of all the edges visited. The search space of
the TSP problem will grow exponentially as the number of cities and paths between them
increases, and therefore finding an optimal solution is generally infeasible. However,
finding the length of a given route, calculating f , is an easy procedure.

2.2.2 Genetic algorithm

The genetic algorithm is one of the most well-known kinds of evolutionary algorithms,
and has been studied extensively, in many variations, since it was first proposed in the
1950’s. A simple genetic algorithm is illustrated in Figure 2.11. The basic premise
is to investigate the search space guided by a meta-heuristic inspired by evolution and
natural selection. The algorithm operates on a set of candidate solutions, called the
"population". At every iteration of the search, also called "generation", the algorithm
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combines and mutates solutions in the population to form new ones, and then selects
the next generation based on the fitness of the individuals. The selection procedure can
be implemented in many different ways. This process is done until some termination
condition is met, which can be either a fixed number of generations, or that a good
enough solution has been found.

Create and
evaluate
initial

population

Crossover Mutation Evaluate
Select
next

generation

Terminate?
Pick best

solution in
populationYesNo

Figure 2.11: Genetic algorithm

The next paragraphs will introduce the various steps in a genetic algorithm.

Representation

When designing a genetic algorithm, the programmer has to decide on how to represent
a solution to the problem at hand. How the solution is represented has a great effect
on both the performance and efficiency of the algorithm. From terms used in genetics,
the representation of the problem used for performing genetic operators is called the
"genotype". It is often a fixed-length string of numbers, to make it easy to apply general
genetic operators. However, depending on the problem to be solved, it might be any-
thing. For TSP, a naive representation for a solution would a string of all the cities to be
visited. An example is:

S = ACEDB

S = 13542

Since the algorithm should to be able to combine and mutate solutions in order to
create new and better solutions, it is desirable that sub-strings of the genotype in some
sense represents a solution to a sub-problem. If this is the case, recombination should be
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able to take good parts from different solutions to create an even better one. This can be
easily seen in the TSP example above, as it may be that visiting city C after city A is a
good solution, but not the rest.

Initialization

The first thing that needs to be done when starting a run of a genetic algorithm is to
initialize the population. The simplest way to do this is to initialize them all at random.
Since the algorithm does not yet have any data on the viability of each solution or the
topology of the problem space, random initialization should make sure the initial popu-
lation is well spread out in the space. However, using heuristics based on the problem
domain to initialize the population might lead to better initial conditions for the search
and therefore also a quicker convergence to the optimum. For the TSP a heuristic for
initialization could be a nearest neighbor approach, where cities are iteratively added
based on the one nearest to the previously added. Heuristic initialization can also ham-
per the search, though, by limiting the exploration of the search space and converging
prematurely on suboptimal solutions.

Genetic operators

The technique genetic algorithms use to discover new solutions in the search space is to
apply genetic operators. There are two primary kinds of genetic operators, crossover and
mutation. Crossover operators have two solutions as its input, while mutation operators
only have one. The genetic parallel to crossover is reproduction, where the two inputs are
the parents and the output is the child, while mutation is supposed to represent random
genetic switches. It is widely believed that evolution could not happen without mutation,
since without it there would be no way of generating entirely new combinations. In this
way, it can be said that mutation operators are needed in order to exploit already existing
good solutions, while crossover is needed to explore the search space for novel solutions.

In order to select which individuals should be chosen for the genetic operators, a
standard procedure is called tournament selection. In tournament selection, k individuals
are chosen randomly from the population, and the one with the best fitness value is
chosen for the genetic operator. This allows for a good trade-off between exploiting
good solutions by further improving them, and allowing exploration.

Crossover operators The n-point crossover is a standard crossover operator. It chooses
n random points in the genetic string and then alternately selects subsets from each par-
ent from each substring divided by the random points. For many applications though,
this crossover will generate infeasible solutions, and new operators have to be designed.
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For the TSP problem, a crossover operator could be the following. Select a random
chunk from one of the parents, and place it in the same position in a new solution, the
child. Then, sequentially add the cities not already added from the other parent. Two
generate two new solutions, the same procedure could be done selecting a chunk from
the second parent.

Mutation operators Mutation operators generally make a single simple change to a
solution. If the genetic string is a bit string, it could involve just flipping a random bit.
In TSP, being a combinatorial problem, a mutation operator could involve choosing two
random cities and swapping their positions.

Selection

After the algorithm has applied operators in order to create new solutions, as well as
evaluated their fitness, it needs to select which solutions that should be used as the pop-
ulation in the next iteration. This is the equivalent of the famous term "survival of the
fittest". Selection operators can differ greatly in different genetic algorithms, but gen-
erally, only choosing the solutions with the highest values of the objective functions
is a recipe for premature convergence into local optima. There usually needs to be a
mechanism for letting some randomness into the process, so that the search space can
be explored more widely.

A method for selecting the next generation is called roulette-wheel selection, in
which the probability of each individual to be chosen is proportional to its fitness. This
means that good solutions are more likely to be chosen, but suboptimal ones also has a
chance. A variation is the rank selection, in which the probability is based on an individ-
uals rank within the population, instead of the absolute fitness value. This ensures that
large differences in fitness values does not mean that some solutions will have extremely
low/high probabilities of being chosen.

There might however, be an advantage to retain some of the best solutions in each
iteration. This is called elitism and is often used to ensure that good solutions are not
lost as the algorithm progresses.

Termination

The termination of a genetic algorithm is usually done either after a fixed number of
iteration, or if no improved solutions are created, indicating that the algorithm has con-
verged.
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Hyperparameters

The genetic algorithm has several parameters, called hyperparameters, that can be tuned
to optimize its performance. The optimal values of these parameters are generally deter-
mined by the dataset although some sensible defaults are available.

The population size of genetic algorithms can influence its performance greatly.
Generally the population size should be at least big enough that a diverse population
can be kept. When it is large enough can depend on the dimensionality of the problem
and the topology of the search space, and must often be established through trial-and-
error. Large population sizes might often lead to better results, but also require more
computational power.

For applying genetic operators, there needs to be established the parameters crossover
rate and mutation rate. These rates determine how many of the individuals are selected
for the application of crossover and mutation operators. It is understood through expe-
rience that the crossover rate should be significantly higher than the mutation rate, so a
value of 0.9 to crossover and 0.1 for mutation is usually a good starting point. Like the
population size, the values should be explored in trial-and-error.

2.2.3 Artificial Bee Colony

Artificial Bee Colony (ABC) is another metaphor based heuristic optimization algo-
rithm, that takes its inspiration from the behavior of foraging honey bees. The candidate
set of solutions ABC works on, is a population of honey sources that the bees are at-
tracted to. The bees are divided into three types, the employed bees, the onlooking bees
and the scout bees. The employed bees attach themselves to the best food sources in the
population and try to improve them, by exploring neighboring food sources. The onlook-
ing bees look at the food sources attached to the employed bees and randomly chooses
one to improve based on its fitness, while the scout bees replace stale food sources with
entirely new sources. These three steps, as well as a recording of the currently best
solution, happen at each iteration of the algorithm.

2.2.4 Multi-objective optimization

While many problems can be modelled using one objective function, there are also prob-
lems in which there are several, competing objectives that are not easily weighed against
each other or chosen between. These problems are called multi-objective optimization
problems (MOP).

The goal of multi-objective optimization is to extend optimization algorithms to han-
dle the optimization of more than one objective function simultaneously. It means that
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Figure 2.12: A Pareto front between objectives f1 and f2. A and B are in the Pareto front
since no other solution is better in both objectives, while C is not, since both A and B
have better values in both objectives.

Source: Front pareto, used under CC BY 3.0

the objective F(x) = { f1, ..., fn} if n is the number of objective functions. This is useful
particularly when these objective function represent competing axes of optimization and
a suitable trade-off between them is difficult to establish. In this type of problem, an op-
timal solution is not represented by a single parameter, but rather by a set of parameters
that provide an optimal value for different trade-offs between the objective functions.
This set of solutions is known as the Pareto front of the given problem. Any single solu-
tion along the Pareto front has the property that it is impossible to improve the solution
by putting more weight on one of the objective-functions, since it will lead to a decrease
in optimization for one of the other objective-functions. From this, it can be said the
multi-objective optimization attempts to approximate the Pareto front of the problem as
close as possible. An example Pareto front is shown in Figure 2.12

While multi-objective optimization can be applied in many contexts, the focus here
will mainly be how it can be used in order to extend genetic algorithms to handle multi-
objective problems. Since the calculation of fitness is essential for a genetic algorithm,
there needs to be a way to express the "Pareto fitness" of a given solution, and to compare
solutions in a way that makes selection and evolution approach the Pareto front. It is also
desirable that the solutions are as evenly spread out across the Pareto front as possible
to give access to as many different unique trade-offs between the objective functions as
possible.
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Non-domination and NSGA-II

Non-domination is a technique for solving MOO problems with evolutionary optimiza-
tion. It is based on building a set of non-dominated solutions to constitute the Pareto
front. A solution is dominated by another if it has a better value in every objective func-
tion. Using this notion of domination, the EA can sort the individuals in the population
by the number of solutions it is dominated by.

The most well-known and used non-domination based evolutionary algorithm is
NSGA-II, proposed by Deb et al. in 2002. NSGA-II is based on the genetic algorithm,
and uses non-domination sorting to determine the most fit solutions in the population.
The main improvement of NSGA-II over earlier non-domination based genetic algo-
rithm is that it requires fewer hyperparameters in the algorithm. Earlier algorithm for
example necessitated determining a sharing parameter to ensure the even spread of so-
lutions in the Pareto front. Having fewer parameters means the algorithm is easier to
generalize.

NSGA-II differs from the general GA process shown in Figure 2.11 only in the
"Select next generation" step. The selection is based on a non-dominated sort process,
shown in Figure 2.13. In iteration i with the population Pi of length N, the genetic
operators create new solutions Qi based on Pi. NSGA-II combines these two into Ri =
Pi ∪Qi. Then Ri is sorted using the non-dominated sort and crowding distance sort
algorithms, and the N best individuals are chosen as the next generation.

Ri

Pi

Qi

Non-dominated
sorting

F1

F2

F3

F4

Crowding
distance
sorting

Pi+1

F3

Figure 2.13: Selecting the next generation in NSGA-II. Adapted from Deb et al., 2002

The non-dominated fronts Fi in Figure 2.13 are created by sorting the individuals
according to how many other individuals they are dominated by. The individuals in F1
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are not dominated by any solutions, while F2 are dominated by 1 other solution and so on.
The non-dominated front that lies in the cutoff line where solutions should be included
in the next generation, F3 in the example, is internally sorted using the crowding distance
sorting algorithm. This algorithm sorts the individuals based on their distance in all of
the objectives to the other individuals, so the most diverse set of individuals is sorted
first and thus selected for the next generation.

When the termination condition has been met the Pareto front is the first non-dominated
front.

Decomposition

Decomposition-based MO is based on decomposing the problem into a set of single ob-
jective optimization problems. This decomposition is done by creating a set of trade-off
weights between the objectives and assigning a weight to each individual in the pop-
ulation. Then, the fitness of the individual is determined based on the weighed sum
between the objectives. The weights ensure that each individual exists in an even distri-
bution across the Pareto front.

A popular multi objective decomposition technique, that is used in the literature, and
implemented as a comparative method in this thesis, is the Tchebycheff decomposition
method. In the Tchebycheff optimization method, the fitness value of each subproblem
in the population is defined as

gtch(F(x),w,z∗) =
n

max
i=1

wi( fi(x)− z∗i )

where w is the weights between the objective functions and z∗ are the ideal points of
the objectives. The ideal point of each objective is the minimal value found so far.

The Tchebycheff decomposition applies genetic operators only through a crossover
operation where a subproblem is crossed with one of its neighboring subproblems. The
neighborhood of a subproblem is defined as the k solutions with the closest weight values
in Euclidian distance. k is a tunable hyperparameter. When the crossover operator is
applied, the solution is replaced by the new one, if it has a better fitness value.
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2.3 Information Theory

Quantity Formula

Entropy H(X) =−∑
x∈X

P(x)log2 p(x)

Kullback-Leibler divergence DKL(P,Q) = ∑
x∈X

P(x)log2
P(x)
Q(x)

Joint entropy H(X ,Y ) =−∑
x∈X

∑
y∈Y

P(x,y)log2Q(x,y)

Mutual information MI(X ,Y ) = ∑
x∈X

∑
y∈Y

P(x,y)log2
P(x,y)

P(x)Q(y)

Disjoint information DI(X ,Y ) = H(X ,Y )−MI(X ,Y )

Table 2.1: Information theoretic quantities. X and Y are discrete random variables
taking values {x1, ...,xn} and {y1, ...,yn}. P(X) is the probability mass function of X ,
and Q(Y ) is the probability mass function of Y . P(X ,Y ) is the joint probability mass
function of X and Y .

Information theory is a field that concerns the basic aspects of how information is stored
and transmitted. It revolves around a very general term called information entropy,
which describes the expected number of bits required to store or transmit a message,
based on the probability distribution of message values. Information theory was in-
troduced by Claude Shannon (Shannon, 1948), and can be applied to a wide range of
applications. For this project, information theory will be used to quantify the amount
of information present in hyperspectral images, both in absolute term and the relative
overlap of information that exists between bands. The relevant quantities are listed in
Table 2.1 and will be discussed in the following sections.

2.3.1 Information entropy

Information entropy measures how much information is expected to be gained by ob-
serving a value of a random variable. When using 2 as base for the logarithm, the unit
for the entropy H is in bits, which is obviously useful from a computer science perspec-
tive.

To consider some simple examples, one can look at the flipping of a coin and the
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rolling of a dice. For flipping a coin, X can take the values {Heads,Tails}, and P(X) =
0.5. That means that

H(X) =−(0.5× log2(0.5)+0.5× log2(0.5)) = 1

So the act of flipping a coin has an information entropy of one bit. The interpretation
of this can be that if the person flipping the coin were to communicate the result of the
flip to another person, he would have communicate the answer to one binary (Yes/No)
question. A related example is rolling a dice. The entropy of that action is H(X)≈ 2.584.
In that case the person rolling the dice would expect to need, in average, to answer 2.584
questions. For example, if the result of a roll is 4:

1. Is it larger than 3? YES

2. Is it larger than 5? NO

3. Is it 5? NO

In the example, the number of required questions was three, but if the answer had
been 6, there would only be two required questions. This is why Shannon entropy is
considered to be the expected, or average, information content in a message.

Another interesting and relevant interpretation of information entropy, is as an upper
bound for the lossless compression of data. If a receiver of a file knows and expects a
file to be a long string of one of two characters (with equal probability), a sender only
has to transfer one bit of data. On the other hand, if each character in the message can
be on of many, with a given probability function, the entropy would be much higher.

2.3.2 Kullback-Leibler divergence

Kullback-Leibler divergence (KL divergence) is another measure in information theory,
introduced by Solomon Kullback and Richard Leibler (Kullback and Leibler, 1951).
It also sometimes called relative entropy, and is used to measure the difference between
two probability distributions defined over the same value space. A popular interpretation
of the Kullback-Liebler divergence is that it represents the number of additional bits one
would need if the person receiving the message thinks it is comes from the distribution
Q, while it actually comes from P.

KL divergence is not symmetric, so D(P,Q) 6= D(Q,P). This makes the KL diver-
gence unfavorable for use as a distance metric, and for this reason it is usually sym-
metrised. Symmetrised KL divergence is simply Dsym(P,Q) = D(P,Q)+D(Q,P). The
symmetrised KL divergence will be zero if P and Q is the same distribution, and non-
negative.
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2.3.3 Mutual information

Mutual information (MI) is quantity that akin to the KL divergence, describes a relation-
ship between two distributions. While KL divergence is defined over one variable with
different distributions, mutual information is defined over two different variables. It uses
the joint probability distribution between them. Mutual information is a measure of the
similarity between the two variables, and can be interpreted as how much information is
gained about Y by observing X .

2.3.4 Disjoint information

Disjoint information (DI) is a quantity defined from the joint entropy and mutual infor-
mation, that describes the information in Y and X that are not mutual between them.
As such it is related to the KL divergence since it describes a divergence rather than a
similarity.

H(X) H(Y )

M
I(

X
,Y

)

DI(X ,Y )

Figure 2.14: Venn diagram showing how different quantities relate. The red circle
shows the entropy of variable X , H(X), while the blue circle shows H(Y ). The entire
colored area is the joint entropy, H(X ,Y ) The overlapping area, in purple, is the mutual
information MI(X ,Y ), which means the divergent information DI(X ,Y ) is the colored
area excluding the purple area.

2.3.5 Correlation coefficient

The correlation coefficient is not strictly a information theory measure, as it does not use
probability measures. Instead it draws on samples of any two variables. In any case it
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is a useful measure that similar to KL divergence, MI and DI can describe the similarity
between two variables. The correlation coefficient between to variables bi and b j each
taking n different values, can be defined as

R(i, j) =
∑

n
k=1(bi,k− b̄i)(b j,k− b̄ j)√

∑
n
k=1(bi,k− b̄i)2

√
∑

n
k=1(b j,k− b̄ j)2

(2.2)

where b̄i and b̄ j are the average values of the two variables.

2.3.6 In image processing

Information theoretic quantities can be applied to any message as long as its probability
mass function (pmf) P can be established. In order to apply it to hyperspectral images,
there must be established a way to find the pmf of an image. Since a hyperspectral image
can be considered to be an image with N channels, where N is the number of spectral
bands, each band can be considered a one channel grey scale image. The pmf of each
channel can then be found using the normalized grey level histogram. The grey level
histogram is found by putting all the pixels of the image in one of N bins. For an exact
histogram, N should be the number of grey levels in the image, so 2d where d is the bit
depth of the image. If the bit depth is one byte there should be 28 = 256 bins.

To illustrate, this chapter will use the Indian Pines dataset recorded by the AVIRIS
sensor.
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Figure 2.15: Two bands from the Indian Pines dataset together with their probability
mass functions.

Entropy Figure 2.15 shows two bands from the Indian Pines dataset. The first image
shows the 111th band, which has high entropy. This can be visually confirmed by seeing
that the images has little noise and high contrast, and that the features can be easily
distinguished. The pmf is well distributed across all of the bands, which in turn explains
the high entropy. The second image shows band number 199, which has low entropy. As
the image shows, it has high noise and it is difficult to distinguish the same features as in
the other image. The pmf shows that the intensity levels are concentrated in a few bins
with high probability, which is why the entropy is low. These two images confirm that
entropy is a good measure for describing the quality of a hyperspectral image. Figure
2.16 shows the entropy of all the bands in the Indian Pines dataset. The two example
bands used in Figure 2.15 shows that band 111 and 199 are respectively one of the
highest and lowest entropy bands in the image.
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Figure 2.16: Entropies of all bands in the Indian Pines dataset.

Divergence measures This chapter has introduced several quantities that can be used
to compare information content of different random variables and pmfs. Most of them
measure divergence, except for mutual information which measures the similarity. To
visualize these measures on hyperspectral images, the adjacent bands in the image will
be compared as shown in figure 2.17.

These tables show the divergence measures applied to adjacent pair of bands, so be-
tween bands (0,1), (1,2), (2,3) and so on. The KL-divergence measure shows a topology
with a minimum value of zero where there are quite a few "spikes" in the spectrum where
there is divergence between the bands. The maximum value is between bands 0 and 1
and the reason for this is that these are both low entropy bands (see Figure 2.16). Since
low entropy bands usually means they are noisy, they difference between them will natu-
rally be higher. The MI graph is "upside-down" compared to the others since it measures
similarity rather than divergence. It shows a similar topology to the KL divergence in
the way that bands near the edge shows low mutual information (so high divergence).
Generally, the local extremes are at the same points in the spectrum, but the relative im-
portance in between them is different. DI is closely related to MI. The main difference
that can be seen between them is that DI has higher values in extremes that are at bands
with high entropy. This is the main purpose of introducing the DI. For example, the
edges of the spectrum does not have nearly as high relative values as in the other mea-
sures. Lastly is the correlation coefficients. This measure is unrelated to the information
theory measures and only uses statistical measures on the band samples themselves. It
is therefore natural that this measure is significantly different from the others. Most of
the local minima in the correlation coefficient graph lies between band 70 and 110. It is
not obvious why this is the case by looking at the available visualizations.
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Figure 2.17: Four comparison measures visualized on adjacent bands of the Indian Pines
dataset.

2.3.7 Summary

This section has introduced the measures that will be used to identify the information
content in hyperspectral images. Several competing measures have been introduced to
describe the relative information content between bands. See Chapter 3 for how these
have been applied in the literature, and Chapter 5 for experiments on the comparison of
using the measures as objective functions for the proposed algorithm.
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2.4 Classification

Classification is an important problem in statistics and data analysis that seeks to place
data points into discrete sets, called classes (y). A data point is simply a vector of scalars
x, or any other property that can be meaningfully represented as such. The basic premise
of classification is that there exists some f , so that

f (x) = y

for every x in the domain, where y is one of the classes. This f might be arbitrarily
complex, but a mapping must exist for predictive classification to be meaningful. By
using existing, labelled examples taken from f , a classification algorithm, or classifier,
is supposed to "learn" an approximation of f , which can be called f̂ , given the data
it has available. Then, previously unseen data can be fed into f̂ . Algorithms that use
prelabelled data points are called supervised, while techniques that do not require this
are called unsupervised.

For the work in this thesis, classification will be used as an example application for
hyperspectral data, used for performance verification in experiments. This section will
give some insight into the unique challenges with classification in such high-dimensional
data as hyperspectral images are. It will also give a brief introduction to the classifier
that will be used in the experiments, the support vector machine (SVM), as implemented
in the eminent LIBSVM (C.-C. Chang and Lin, 2011).

2.4.1 High-dimensional data

When the feature vector x has a high dimensionality, many classifiers suffer from a prob-
lem known as the "curse of dimensionality" or alternatively called Hughes phenomenon.
This problem involves that the achieved classification accuracy (number of correctly la-
belled classes) will start to decrease as the number of features reaches a certain value.
The reason why this problem occurs is that the space of feature values increases dramat-
ically for each new dimension is introduced, so the amount of labelled data needed to
properly estimate f also increases.

In order to alleviate this problem, the dimensionality of the feature vector should
be lowered somehow. There are two main techniques to do this, feature selection and
feature extraction. Feature selection tries to find a subset of the features in x that ensures
that as much as possible of the information of the original features are retained. Feature
extraction, on the other hand, seeks to map the feature space to a new, lower dimensional
space.
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2.4.2 Support vector machines

Support vector machines (SVM) is a classification algorithm that is based on finding the
hyperplane in the feature space that can split the data into two classes with the widest
possible margin. A hyperplane is any vector

w∗x−b = 0

Figure 2.18: A maximum margin hyperplane separating data points belonging to two
different classes. This hyperplane is the output model of an SVM classifier.

SVM finds the maximum margin hyperplane by using two additional hyperplanes

w∗x−b = 1

and

w∗x−b =−1

The goal of SVM is then to find w and b to maximize the distance between the two
margin hyperplanes, without any of the data points falling in between the two planes.
Since not all data is linearly separable, the algorithm has a "soft margin" version which
allows data to fall inside the margins at the penalty of some loss function. Then the soft-
margin SVM should optimize based on a trade-off between maximizing the margin and
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ensuring that as few as possible of the data points are inside the margin. This trade-off
is often encoded as a parameter C in the algorithm.

In this most basic form it is a binary linear classifier, meaning it can classify linear
data into one of two classes. However, many extensions of the algorithm exists to allow
it to handle both multi-class problems and non-linear data.

Non-linear data is handled through the use of feature space mappings called ker-
nels. The kernels transform the original feature space into a higher dimensional space
in which the data is linear. Then the maximum margin hyperplane can be found for the
transformed space, even if none can be found in the original space. One such popular
kernel is the radial basis function, the RBF kernel. This kernel transforms the space
based on the euclidean distance between the data points, and requires the specification
of another parameter, often called γ .

For multi-class classification, SVM can be applied by training a set of classifiers,
each trained on two classes. LIBSVM implements the "one-against-one" one method.
It involves training one classifier for each pair of classes. When the classifier is do
determine the class of a new, unseen point, all of the classifiers vote on which class they
think it belongs to, and the class with the highest vote count wins.
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Chapter 3

Motivation and State of the Art

This chapter will establish the state of the art within the field of band selection of hyper-
spectral images. First it will go through the literature review protocol to describe which
publications are important to the field and how papers were reviewed and selected. Then
there will be a general overview of the various techniques that have been applied for
band selection to get an idea about the current state of research. Then there will be a
more thorough discussion of two applied techniques that are used as the basis for the
work conducted in this thesis. Finally there will be a summary of the findings.

3.1 Literature review protocol

Important publications

• IEEE International Geoscience and Remote Sensing Symposium

• IEEE Transactions on Geoscience and Remote Sensing

• IEEE Geoscience and Remote Sensing Letters

• Applied Soft Computing

Keywords

• Unsupervised

• Hyperspectral

37
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• Band selection

• Multi-objective

• Evolutionary optimization

• Subspace decomposition

• Shannon entropy

• Mutual information

• Kullback-Leibler divergence

Search engines

• IEEE Xplore is the publisher of most of the important publications identified
and has a powerful search engine for search entire database or within a given
publication

• Web of Science is used for exploring relationships between papers, finding either
parent or child references

Research paper criteria Papers found using the keywords, important publications on
the search engines are chosen based on whether they meet some criteria

• They should either

1. Describe a relevant unsupervised objective function, or

2. Describe an evolutionary algorithm, preferably multi-objective, for solving
band selection

• They should describe a new technique that is not been applied to hyperspectral
band selection before

• They should report competitive results compared with other similar band selection
algorithms
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3.2 State of the art

Dimensionality
reduction

in HSI

Band
extraction

Band
selectionSearch

Clustering
Ranking
Iterative

Evolutionary

Criteria

Supervised

Class separability

Unsupervised

Entropy
Correlation
Divergence

Figure 3.1: Overview of techniques. The thick lines follow the main line of focus.

With the introduction of multispectral and hyperspectral sensors for remote sensing in
the 1970’s and 1980’s, for example the AIS developed by NASA (Vane, Goetz, and
Wellman, 1984), it was established that there were several new challenges with this type
of sensor. Wiersma and D. A. Landgrebe, 1980 identifies that dimensionality reduction
is necessary in order to decrease computational load, lower the amount of training data
needed for classification, and to optimize general purpose sensor hardware for specific
problem domains. Since multi-and hyperspectral sensors are complex and expensive to
build and launch, it would be desirable that sensors could be built for general purpose,
with many spectral bands available, and that the useful bands for a specific applica-
tion can be chosen thereafter. And although this optimization can be done by sensor
configurability, Wiersma and D. A. Landgrebe, 1980 also concludes it is useful in the
post-processing and classification of the data.

In hyperspectral imaging especially, in which the spectral bands collected are adja-
cent to each other in the spectrum, dimensionality reduction is furthermore important
due to the large redundancy between adjacent bands.
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A large and varied set of techniques for selecting representative bands from hy-
perspectral images have emerged over the years. Many early efforts were focused on
component analysis for feature extraction. Since bands are highly correlated, Principal
component analysis (PCA) (Harsanyi and C.-I. Chang, 1994) and related methods such
as Independent component analysis (Jing Wang and Chein-I Chang, 2006) have been
applied in order to extract a small set of uncorrelated features.

Several authors, such as Ye Zhang et al., 1999, have criticized feature extraction
methods for not retaining the original radiance values of the bands, and thus losing
possibly crucial information about the observed scene. An important contribution in the
effort to mitigate this was Ye Zhang et al., 1999, who proposed a method to adaptively
separate the hyperspectral bands into similar subspaces and run PCA on each of the
subspaces. They used the correlation coefficient metric to describe the similarity of
bands. Although this helps in retaining local structures in the data, feature extraction
methods still makes the data less useful for further processing and physical modelling
(Petrie, Heasler, and Warner, 1998). Therefore, band selection methods are useful.

Band selection methods attempt to pick out the bands in the image cube that contain
the most representative information about the observed scene. Several challenges appear
in band selection, and the literature describes a varied set of ways to solve them.

Band selection is a special instance of the general feature selection problem, which
seeks to select the best features in any given feature vector. Feature selection algorithms
usually consist of two components. The first component is how the method judges the
amount of information present in a feature or a set of features. This is a measure of
the quality of a feature, and determines whether or not it should be present in the se-
lected feature subset. The second aspect of feature selection algorithms is the search
procedure. The search procedure determines how the algorithm navigates the space of
possible feature combination in order to find the one that maximizes the information
content.

3.2.1 Band quality measures

For measuring the quality of a band or set of bands, methods can primarily be either su-
pervised or unsupervised. Supervised quality measure take into account already labelled
training data, and select bands that maximally discriminate between the target classes,
for example using Bhattacharyya distance (Serpico and Bruzzone, 2001), a measure of-
ten used in feature selection for determining the distance between variables belonging to
different classes. These methods are great at targeting a specific problem area, since the
bands can be optimized for the given labels exactly, but consequently are also not very
generalizable and require manual labelling of data.

On the other hand, unsupervised quality measures are based on the inherent infor-
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mation present in the hyperspectral data, and are usually based on information theo-
retic measures such as Shannon entropy, mutual information and Kullback-Leibler di-
vergence, or statistical measures such as correlation coefficients. Since these methods
do not require any manual labelling of data, they are much less dependent on expert
knowledge.

The use of information theoretic measures for band selection of hyperspectral images
has been considered since the early 1990’s (Conese and Maselli, 1993; Sotoca, Pla,
and Klaren, 2004) and used together with many different search algorithms. There are
two main approaches to using information theory. Some authors choose to approach
it via the entropy of selected bands (Gong, M. Zhang, and Yuan, 2016), while some
approach it from redundancy and mutual information between the bands (Guo et al.,
2006). Approaching from the entropy side of things will make sure that only the most
representative bands are selected, but will not guarantee that the selected bands have
different information contained in them. The mutual information approach, however,
does not guarantee that the bands selected have a high entropy.

This is especially apparent when using the standard mutual information measure.
Several authors (Hossain, Jia, and Pickering, 2012; R. Yang et al., 2017) point out that
it does not work as a distance metric properly. Its inadequacy as a measure can fur-
thermore be shown by considering the Venn diagram of information measures, shown in
Figure 2.14. Since it only measures the overlap between the two variables, a high mu-
tual information can either happen for very similar low entropy variables, or less similar
high entropy variables. In the context of HSI, this means that bands with high noise and
therefore low entropy will score high on the mutual information scale and encourage the
selection of these bands. Hossain, Jia, and Pickering, 2012 proposed to use a measure
called the normalized mutual information (NMI) to handle this. NMI divides the mutual
information by the product of the marginal entropies of the two variables, to remove the
dependency on entropies of the individual variables. Another measure was proposed in
R. Yang et al., 2017 called the disjoint information (DI), which instead of dividing by the
marginal entropies, takes the joint entropy of the two variables and subtract the mutual
information. This way, the measure will always favour variables with large individual
entropies, a favorable property for band selection. Figure 2.17 shows visualizations of
the various measures on hyperspectral data.

Many authors choose to consider the problem as a combination between the two
properties of redundancy and information content (Feng et al., 2016; Lorencs, Med-
nieks, and Sinica-Sinavskis, 2018; M. Zhang, Gong, and Chan, 2018), as a way to ensure
that high entropy bands with high mutual information are not used together. Lorencs,
Mednieks, and Sinica-Sinavskis, 2018 solved this in a greedy band selection algorithm
by normalizing the entropy on their correlation with already selected bands, while M.
Zhang, Gong, and Chan, 2018 proposed a criterion called maximum information, mini-
mum redundancy (MIMR). Using a combination of the two measures helps to make sure
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that the selected bands have low redundancy, plus ensuring that no noisy, low-entropy
bands are chosen.

3.2.2 Search techniques

Since band selection is established to be a computationally difficult problem to solve
optimally, most methods use a heuristic search technique based on its quality mea-
sures. Some techniques are based on greedy selection of bands (Lorencs, Mednieks, and
Sinica-Sinavskis, 2018; Du and H. Yang, 2008). These techniques sequentially choose
the best bands (Lorencs, Mednieks, and Sinica-Sinavskis, 2018; Du and H. Yang, 2008)
based on their relation with previously selected bands. Another class of techniques is
clustering (Martinez-Uso et al., 2007; Wang, F. Zhang, and Li, 2018; Xie et al., 2019), in
which adjacent bands are clustered together in highly correlated subsets. These methods
take advantage of the redundancy of adjacent spectral bands by selecting representative
bands from different subspaces in the spectrum.

The algorithm proposed in Martinez-Uso et al., 2007 is based on a hierarchical clus-
tering method, where clusters are iteratively merged based on their similarity. They start
the algorithm with all bands in their own cluster and then iteratively merges clusters one
by one. They propose variations using several different measures of similarity between
bands, including the KL-divergence and mutual information. For selecting the represen-
tative band for each cluster, they select the band with the highest average similarity to
the other bands in the cluster. R. Yang et al., 2017 uses a k-means clustering based ap-
proach based on the disjoint information measure. Selection of the representative band
for each cluster is based on an iterative procedure that maximizes similarity with bands
in the cluster and minimizes similarity with selected bands from other clusters. Both
these methods suffer in the presence of noisy bands, since the selection of representative
bands are only based on similarity and not information content, and can therefore risk
the selection of noisy bands to represent clusters. Datta, S. Ghosh, and A. Ghosh, 2015
proposed an algorithm that combines the features of clustering and ranking algorithms.
They first do clustering as a way to remove redundant bands, and then rank the bands
according to their informativeness to select the best ones. They also introduce the pos-
sibility of having bands not included in any cluster at all, and rather defined as noisy
bands not belonging in any cluster. This helps the algorithm perform better than the
other methods.

Another class of algorithms use evolutionary techniques that optimize some objec-
tive function of the selected bands through heuristic search procedures. Evolutionary
techniques are of interest in this domain due to their search capabilities and ability to
find solutions in complex spaces. For high-dimensional problems which hyperspectral
images are, evolutionary search have favourable properties since it is able to find good
solutions without an exhaustive search of the search space. L. Zhang et al., 2007 used a
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artificial immune system (AIS) and clonal selection based algorithm for supervised band
selection. A solution was represented as a binary string where value i indicated whether
or not the ith band should be selected, and search was based on antibody cloning and mu-
tation. Particle Swarm Optimization (PSO) has also been applied to the supervised band
selection problem in Su et al., 2014. They designed a two-level PSO algorithm that was
capable of both selecting an optimized band combination and the number of selected
bands. Since it is supervised however, it either needs labelled examples or reference
spectral signatures. The algorithm will then optimize a solution for the given labels or
reference spectra, which is not the same goal as for unsupervised band selection.

Paul et al., 2015 use a genetic algorithm combined with spatial clustering for unsu-
pervised band selection. They first use a clustering algorithm in order to cluster pixels
in the spatial dimension and find the mean of each cluster for each band, resulting in
a matrix. They then apply a genetic algorithm where the representation is the numbers
of the bands to be selected, with a fixed length N. As an objective function, they use
the sum of the Kullback-Leibler divergences between adjacent bands in the individual.
Since the Kullback-Leibler divergence can have high values for noisy bands, this might
be a downside. The genetic algorithm is based around a crossover operator that merges
two random parents and selects N random bands from either. It has no mutation oper-
ators, which means that no new bands can ever be added. This means that the genetic
algorithm might be sensitive to the random initialization, as that decides what bands
"can" be chosen.

In 2016 it was proposed for the first time to use multi-objective optimization for
band selection, in Gong, M. Zhang, and Yuan, 2016. It is difficult to determine the num-
ber of bands that is needed in the subset selected, and for an unsupervised algorithm, it
might not even make sense, since it should be deferred to the actual use of the data. For
one dataset there might be several different applications, according to how many classes
it should differentiate between, or how similar these classes are. Therefore, Gong, M.
Zhang, and Yuan, 2016 proposed a multi-objective algorithm they called MOBS that
resulted in a set of optimal solutions, each with a different number of selected bands.
They used a Tchebycheff decomposition based approach, so each individual in the pop-
ulation is evaluated based on a given weighed sum between the objectives. For objective
functions, they used the number of bands in the solution and the sum of the entropies in
the selected bands. The achieved trade-off is thus between preserving the information
among the bands and reducing the number of bands selected. They do not include an
objective function for ensuring the redundancy between bands, but do include it when
doing crossover. Their crossover operator works in such a way that two children are
created, and the solution with the highest Kullback-Leibler divergence between them is
selected. This will only guide the search to a small degree, as solutions are still selected
and discarded based on their objective functions. The algorithm also only includes a
crossover operator, making it potentially sensitive to initialization conditions.
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Another multi-objective band selection algorithm was reported in Xu, Shi, and Pan,
2017, termed IRMoBS. This algorithm is also based on Tchebycheff decomposition, but
still differs somewhat from the goal of MOBS. IRMoBS does not focus on outputting
a set of solutions with different number of bands for decision makers, but constructs a
variation of the decomposition approach that aims at converging to one specific solution.
Therefore, they also require an user input on how many bands that should be selected.
Therefore, in IRMoBS, multi-objective optimization is only a tool to reach one specific
solution, rather than a technique to generate many.

The authors of Gong, M. Zhang, and Yuan, 2016 proposed a new multi-objective
algorithm in M. Zhang, Gong, and Chan, 2018. Instead of trading off between number
of bands and information content, this algorithm, termed BOMBS, trades off between
redundancy and information content. They argue that different datasets and different
applications have different requirements between the two objectives. So BOMBS again,
similar to IRMoBS, leaves the concept of selecting band subsets with different lengths
simultaneously, and encodes the subset length as an input parameter instead. BOMBS
uses a non-domination based AIS algorithm for optimization. In order to select a solution
from the Pareto front, they use a trial-and-error-approach.

Lastly, an evolutionary algorithm was proposed in Xie et al., 2019. Their algorithm,
ISD-ABC, is based on a two step-process, where the spectrum is first decomposed into
a number of subspaces using a modified version of the ASD algorithm (Ye Zhang et
al., 1999). Then, equal number of bands are selected from each subspace using the
Artificial Bee Colony (ABC) algorithm, with the entropy sum of the selected bands as
the objective function. Therefore they achieve a use of both the redundancy reduction,
through the subspace decomposition, and maximizing information content through the
ABC algorithm. Neither the subspace decomposition algorithm nor the ABC is based
on multi-objective optimization however, which might lead to less optimal trade-offs
between the two.

3.3 Selected related work

For this thesis, two of the algorithms from in the literature will be studied more in-
depth and used as a comparison for the herein proposed algorithm. Since the proposed
algorithm is based on a multi-objective algorithm capable of selecting band subsets of
different sizes simultaneously, the MOBS algorithm will be used as the first comparison.
The second algorithm that will be used is the ISD-ABC algorithm, since it is also based
on evolutionary optimization, and makes use of subspace decomposition. The next two
sections will describe these algorithms.
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3.3.1 MOBS

The MOBS algorithm (Gong, M. Zhang, and Yuan, 2016) is built around a Tchebycheff
decomposition multi-objective genetic algorithm and two competing objectives in order
to solve the band selection problem. The algorithm is capable of finding a set of optimal
bands subsets with different lengths in a single run.

The follow sections will describe how the MOBS algorithm works.

Representation

The MOBS algorithm uses a direct representation where a chromosome is the set S of
bands that should be selected. Each value x in S is then an integer value ranging from
0 to N− 1 where N is the number of bands in the hyperspectral image. If S includes a
value 42 that means that the 42nd band of the image is selected.

Objective functions

Since MOBS is a multi-objective algorithm, it uses two competing objective functions
to guide its search. They are the total entropy of the selected bands

f1 = ∑
x∈S

1
H(x)

and the number of selected bands

f2 = ||S||

Subject to minimization, f1 seeks to ensure that information rich bands are retained,
while f2 limits the number of bands. Since H is a non-negative function, it can be seen
that using only f1 would select all bands, while only using f2 would select no bands at
all. This means that the Pareto front between them should spread out to include many
different number of bands between 0 and N.

Search algorithm

The multi-objective algorithm used in MOBS is based on the genetic algorithm us-
ing Tchebycheff decomposition to decompose the multi-objective problem into a set
of single-objective problems. See chapter 2.2 for a description of the Tchebycheff de-
composition method for solving MOO.



46 CHAPTER 3. MOTIVATION AND STATE OF THE ART

Crossover MOBS generates new solutions by the application of a crossover algorithm
between two solutions. The crossover is based around creating difference sets between
the bands selected by the two parents, and taking bands from each difference sets to
generate two new solutions. Then, in order to choose which of the two solutions should
replace the old in the population, the KL divergence between every pair of bands in the
solution is calculated, and the solution with the maximum value is chosen. This is done
to preserve the non-redundancy of information between the bands.

Discussion

The MOBS algorithm introduces a novel technique for selecting band subsets of sev-
eral different lengths in one run of the algorithm. It is based on a trade-off between the
number of selected bands and the entropy sum, and uses a decomposition approach to
ensure that solutions are evenly distributed on the Pareto front. It uses a divergence mea-
sure in its crossover selection where two children are created and the solution with the
largest divergence between every pair of selected bands is chosen. Still, the central ob-
jective functions are only centered around choosing the maximal informative bands for
a certain subset length, and gives little guarantee that the information contained within
the selected bands is non-redundant. Additionally, since the genetic algorithm is only
based on a crossover operation selecting bands from the two selected parents, there is
no random mutation able to add bands not present in the initial population. This may
potentially make the algorithm sensitive to the initialization conditions, which in MOBS
is done randomly.

3.3.2 ISD-ABC

ISD-ABC is an unsupervised band selection algorithm proposed in 2019 by Xie et al. It
is based on the combination of two techniques. First, the spectral bands of the hyper-
spectral image are decomposed into a number of subspaces, and then the Artificial Bee
Colony algorithm is used to select a number of bands from each subspace.

ISD

The first phase of the algorithm, Improved subspace decomposition (ISD) is based on
the Adaptive subspace decomposition (ASD) method, proposed in Ye Zhang et al., 1999.
The ASD method was used as a decomposition step in order to improve the performance
of PCA for band extraction, by making sure spectrally local features were retained. To
do this, it splits the spectrum into subspaces by using local minima in the correlation
coefficient matrix of the bands. Two bands are defined to be in the same subspace if
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the correlation coefficient between them is more than a defined threshold value. The
ASD method was criticized by Xie et al. for using only the correlation coefficient. They
improved upon the ASD method by using the shape of the reflectance spectrum. To illus-
trate this improvement they use the Indian Pines dataset which was introduced in chapter
2.3. The correlation coefficients between adjacent bands and irradiance spectrum of this
dataset is shown in Figure 3.2. They argue that even though the correlation coefficient
technique would split up the bands between 75 and 103 into many small subspaces, it
should actually be only one subspace, considering the shape of the irradiance spectrum.
As far as can be understood from the paper, the irradiance spectrum was used to manu-
ally merge the subspaces. This means that the ISD method requires a manual processing
step for every dataset the algorithm should be applied to.

Band adjacency correlation coefficient

0 20 40 60 80 100 120 140 160 180 200

Band

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

35 1027460 143

Irradiance

0 20 40 60 80 100 120 140 160 180 200

Band

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

35 1027460 143

Figure 3.2: Correlation coefficients and irradiance spectrum of the Indian Pines dataset,
with ISD-calculated subspace boundaries.
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ABC

The second phase of the algorithm involves running the ABC algorithm to select k bands
to be used as representatives for each subspace. For the ABC algorithm, the authors use
a representation where each honey source is k selected bands from each subset. The
maximum entropy

f = ∑
x∈S

H(x)

is used as the objective function f for the selected bands.

Discussion

Since this is only single-objective optimization, the algorithm needs to run several times
with different values of k in order to produce different numbers of selected bands. Since
k is also the same for each subspace, the number of bands selected can only be multiples
of the number of subspaces produced by the ISD method. The results show that the
number of subspaces can vary greatly from dataset to dataset. On the Pavia University
dataset, the number of subspaces is two, in comparison to Indian Pines where there are
six subspaces.

When the ISD method has found the subspaces, the ABC method disregards any
notion of redundancy or correlation between the bands selected. The only measure is the
total entropy of the selected bands. This effectively means that the algorithm establishes
that there are no more subspace structures in the dataset than those found by the ISD
method, and the best bands within each subspace is simply the ones with the highest
information content. Using the sum of the entropies is similar to the MOBS algorithm.

3.4 Summary

There have been developed a wide range of algo The use of multi-objective evolutionary
algorithms for unsupervised band selection is a relatively new idea. The MOBS algo-
rithm was the first proposed such algorithm, and had as a goal to be able to co-evolve
solution with different band subset sizes in one run. Later multi-objective algorithms
have not continued on this track, rather focusing on multi-objective optimization com-
bined with a decision making strategy in order to only select one solution, for a specific
number of bands. The main drawback of MOBS is that it does not focus very much on
the redundancy between the selected bands, and so risks selecting highly informative
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but redundant bands that do not provide any additionally useful information for classi-
fication or other tasks. Therefore it would be of interest to look into how one can use
the ideas from band clustering and subspace decomposition algorithms in order to take
advantage of the redundancy between adjacent bands and select a better set of bands for
each subset size. Additionally, since non-dominated evolutionary algorithms are also ca-
pable of creating diverse Pareto fronts, it is interesting to look into applying the NSGA-II
algorithm to the problem, to alleviate some of the problems of the decomposition algo-
rithm in MOBS like the sensitivity to the initialization. An algorithm proposed in this
thesis to look into this research avenue, called DUMB, is introduced in the next chapter.
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Chapter 4

Model and Implementation

This chapter will give an overview of the architecture of the proposed algorithm. It
will describe the properties of the genetic algorithm, including the novel representation,
objective functions used, crossover and mutation operators, and several other considera-
tions.

4.1 Model: DUMB

The algorithm proposed for doing unsupervised band selection of hyperspectral data,
DUMB (Decomposition-based Unsupervised Multi-objective Band selection), is primar-
ily based around its novel indirect representation used for search. Its other components
are the multi-objective search framework based on NSGA-II and the objective functions
used to determine fitness. This section will describe each of these components and how
they interact.

4.1.1 Representation

One of the novel properties of the DUMB algorithm is the way the problem is rep-
resented. Contrary to the representation in MOBS and ISD-ABC (See Sections 3.3.1
3.3.2) DUMB uses a unique cluster based representation.

The representation is based on the subspace decomposition technique, where the
idea is that the spectrum consists of adjacent clusters of bands that contain similar in-
formation. This is similar to the ISD approach. However, while ISD determines exactly
how many subspaces the spectrum of a specific dataset contains and sets up to select-

51
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ing several bands from each subspace, DUMB will only select one representative band
from each subspace, and rather adjust the number of subspaces to choose the number of
bands. More concretely, a candidate solution for a band selection problem with N bands
in the DUMB representation can be expressed as

S = {b0, ...bM}
where:

• xi ∈ [1..N−2]

• M ∈ [0..N−2]

This means that each bi represents a boundary between subspaces. For example, hav-
ing a band selection problem with N = 200, Figure 4.1 illustrates the solution S =
{21,79,130,180}. This solution produces five subspaces. The first and the last sub-
spaces implicitly start and end at the first and last band, so there is no need to include
them in the representation.

0 20079 130 18021

Figure 4.1: Example solution using the DUMB representation

This way, it can be seen that S can also be expressed as a set set of subspaces

Ssub = {T0, ...TN−1}

where Ti is a set of adjacent bands, disjoint from every other Tj.

In order to convert this genotypic representation of the problem into the selected
bands, there should be picked one representative band from each subspace. So,

B = {argmax
x∈T

f (x) : T ∈ Ssub}

where f (x) is a function describing the "representativeness" of band x. DUMB will
use the information entropy H(x), as described in chapter 2.3.

This representation has a variable length and the same properties as a set, since it has
no concept of ordering and can only include unique elements. The lowest cardinality
possible is the empty set in which case all bands are in the same subspace, while the
highest is equal to the number of bands in the image minus two, when all bands have
their own subspace.
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4.1.2 Objective functions

Along with this novel, indirect representation, there must also be devised new objective
functions to capture the fitness of a given solution. An important consideration when
choosing objective functions is having them trade off in the length of the solution. This
is, after all, the purpose of viewing the problem as a multi-objective one. Decision
makers are presented with a set of optimal solutions of different lengths to choose from.
And while earlier algorithms like MOBS explicitly encoded this trade-off, this algorithm
will do it indirectly through its objectives.

The problem is defined for simplicity as a minimization problem, which means that
lower values of a given objective represents a more optimal solution. Since the algo-
rithm should be unsupervised, the objective functions should only be based on inherent
information present in the images. See chapter 2.3.

Objective function 1: Internal divergence ( fINT )

fINT (S) = ∑
T∈Ssub

|T |−1

∑
i=0

divergence(xi,xi+1)|T | (4.1)

The purpose of this objective function is to minimize the internal divergence within
each subspace of the solution. This will make sure that the bands in each subspace con-
tains the same information, so that one band can be chosen to represent the information
within the entire subspace with minimal loss. Studying this objective function it can be
seen that alone it would tend towards putting every band into its own subspace, in which
case the value would be zero. Conversely, the maximum value is reached when all the
bands are in one subspace.

The divergence value of each subspace is multiplied by its length. This is done to
penalize really large subspaces, and guide the search towards creating subspaces that are
more evenly spread out across the spectrum.

Objective function 2: Boundary divergence ( fB)

fB(S) =
|S|

∑
i=0

1
divergence(xi,xi +1)

(4.2)

The purpose of this objective function is to maximize the divergence between the
subsets, so they all contain different kinds of information. It does this by summing up
the divergence between all the subspace borders. Looking closer into the properties of
this objective function, it can be seen that it tends toward the opposite as fINT . Here,
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when there is only one subspace, there would be no borders, so the value would be zero,
while the maximum value is reached when every band has its own subspace.

Divergence measure Both the objective function use a divergence function that takes
two bands. There are several possible functions that can be used here, based on infor-
mation theoretic measures:

• Kullback-Leibler divergence DKL(X ,Y )

• Mutual information 1
MI(X ,Y )

• Correlation coefficient 1
Corr(X ,Y )

• Disjoint information DI(X ,Y )

In the experiments section there will be a discussion of these measures of divergence
and how they affect the subspace search.

4.1.3 Search algorithm

The search algorithm in DUMB is based on NSGA-II, a non-domination sorting based
multi-objective genetic algorithm. See Chapter 2.2. NSGA-II is chosen as the search
algorithm since it is a well established algorithm in the literature showing good perfor-
mance and generalizability. No big alterations have been made to NSGA-II as a frame-
work, so the main components of the search algorithm that is unique for the application
is the genetic operators designed to handle the subspace representation. The values for
the parameters of the genetic algorithm such as the crossover rate, mutation rate and
population size have been established through trial-and-error using sensible default val-
ues.

Genetic operators

Given the properties of the representation there need to be designed genetic operators
for crossing and mutating solutions. The operators designed are relatively simple, based
on one-point crossover and random mutations.

Crossover The crossover operator used in the proposed algorithm is a adapted version
of the one-point crossover. Given two parents S1 and S2, a random boundary in S1 is
selected. The new solution C is constructed by taking the left side of the boundary from



4.1. MODEL: DUMB 55

S1 and the right side from S2. Using this crossover aims to retain good subspace decom-
positions from parts of the spectrum, and combining them with others. An example is
illustrated below.

S1

0 20021 79 130 180

S2
0 41 62 102 119 156 200

C
0 21 79 102 119 156 200

Figure 4.2: Example crossover operation. The crossover point chosen from the first
parent is band 79.

The example crossover operation in Figure 4.2 will in addition to combining the sub-
spaces of the parent solution, create a new subspace between bands 79 and 102 resulting
in a new selected band.

Mutation While crossover can combine parts of different solutions into new and better
ones, the algorithm also needs a way to exploit good solutions with local search. This
is done through mutation. The mutation operator chosen for the algorithm will either
add a boundary at a random band in the solution, splitting a subspace in two, or remove
an existing boundary to merge two subspaces. It chooses between these two operations
with equal probability.

Selection Individuals are selected for mutation and crossover by using tournament se-
lection, as described in 2.2. The winner of the tournament is chosen by sorting the
individuals by the non-dominated sort algorithm.

Termination

The search is terminated either if a predefined max number of iterations have been
reached, or if no new solutions have been introduced into the non dominated front after
100 iterations.
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4.2 Implementation

The proposed model is implemented in a simulator using the Java programming lan-
guage. The implementation is architected in such a way that it is simple to swap out
objective functions, representations, multi-objective frameworks and datasets. This way
the program lays the groundwork for doing thorough comparisons of how different com-
ponents and aspects of the band selection algorithm work together to produce results, and
enables the comparison to previously proposed band selection methods. Visualizations
are produced for both information theoretic quantities in the dataset, Pareto fronts and
classification results, using the JFreeChart library (cite?).

Dataset

Calculate dataset
properties

Information quantities

Multi-objective
band selection

Search
framework

Representation

Objectives
Pareto front

Classification

Results

Figure 4.3: Overview of implementation architecture. Elliptical nodes are calculation
steps, while the rectangular nodes are input/output data.
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4.2.1 Representations

There are two implemented problem representations. The first is the direct represen-
tation, as used in the MOBS model (Gong, M. Zhang, and Yuan, 2016), called band
representation. The second one is the newly proposed indirect representation based on
subspaces, called the subspace representation, introduced in the previous section.

4.2.2 Objective functions

The objective functions that are implemented are the ones used in the algorithms that
are compared between. They are listed below, together with the algorithms that employ
them.

• Boundary divergence (DUMB)

• Internal divergence (DUMB)

• Number of bands (MOBS)

• Total entropy (MOBS, ISD-ABC)

4.2.3 Search frameworks

Several search frameworks are implemented in order for a comparison to be made be-
tween them.

NSGA-II The NSGA-II algorithm is implemented based on the original paper (Deb
et al., 2002), and has several configurable parameters, which are

• Maximum number of iterations

• Population size

• Tournament size

• Crossover rate

• Mutation rate
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Tchebycheff decomposition The decomposition based multi-objective framework is
implemented as described in the MOBS algorithm (Gong, M. Zhang, and Yuan, 2016),
explained in section 3.3.1. The configurable parameters are

• Maximum number of iterations

• Population size (Number of subproblems)

• Neighborhood size

Artificial Bee Colony Since ABC is a single objective search algorithm, it requires the
specification of a k, how many bands to select. ABC is used as a part of the ISD-ABC
algorithm, together with ISD. The configurable parameters are

• Maximum number of iterations

• Population size

• Number of bands to select

• Stale food source limit

ISD based search The ISD approach proposed by (Xie et al., 2019) decomposes the
spectrum into a number of subspaces. The ISD based search method can then apply
the other search frameworks on each individual subspace and then combine them to
achieve one solution. When merging the solutions from the subspaces, the algorithm
will combine them so that there are the same number of bands selected in each subspace.

4.2.4 Pruning of selected solutions

Due to the indirect nature of the representation, there is no guarantee that the algorithm
will produce exactly one solution per number of bands. Considering there is no mean-
ingful way for a decision maker to choose between two solutions with the same number
of bands, the algorithm should prune the solutions so there is only one per number of
selected bands. Since the algorithm should be unsupervised, the achieved classification
accuracy can not be used. Since all of the solutions with a given number of bands are
found using the same algorithm, they should both include a diverse set of bands. Given
this assumption, a good way to choose between the solutions is to pick the one with
the maximum total entropy between all the selected bands, maximizing the information
content.



Chapter 5

Experiments and Results

This chapter contains the experimental work conducted to evaluate the performance of
the DUMB algorithm. Firstly, it reviews the research goal introduced in the introduc-
tion of the thesis and constructs a series of research questions that is used to guide what
experiments should be conducted. Secondly, it introduces the experimental plan. It in-
cludes a description of the datasets that will be used, the classification algorithm and the
metrics used for evaluating classification performance. Lastly, the results are presented
and briefly discussed. A more through discussion of the experimental results and their
relation to the research questions can be found in 6.

5.1 Research goal

The research goal introduced in Chapter 1 is as follows:

How can low redundancy band clustering be used together with multi-objective
evolutionary search in order to select representative bands from a hyper-
spectral image in an unsupervised manner?

For this research goal, an algorithm called DUMB has been proposed as described in
Chapter 4. In order to evaluate how the algorithm can answer the research goal, several
research question have been formulated. These questions are also listed in Section 1.1.
The research goal states that the goal is to select "representative" bands. The experiments
will judge the representativeness on how well it performs on a supervised classification
task. This is not mentioned in the research goal since the algorithm is unsupervised and
the representativeness is unrelated to the task the selected bands should be applied to.

59
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For running experiments however, classification is used as the task.

5.2 Experiment Setup

5.2.1 Datasets

Name Sensor Bands Samples Labelled samples # classes

Indian Pines AVIRIS 220 (0.4 µm - 2.4 µm) 145 ·145 10249 (49 %) 16
Botswana HYPERION 145 (0.4 µm - 2.5 µm) 256 ·1476 3248 (0.9 %) 14

Pavia University ROSIS 103 (0.43 µm - 0.96 µm) 340 ·610 42776 (20 %) 9

Table 5.1: Three hyperspectral datasets used for experiments

Experiments will be conducted on three popular hyperspectral datasets, all of them avail-
able online at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes. They are recorded by three different sensors at three differ-
ent locations, to explore the generalizability of the algorithm for various spatial, spectral
and geographical conditions. The three datasets include two artifacts; the hyperspectral
image itself, and the ground truth. The hyperspectral image is a three dimensional ma-
trix consisting of the irradiance values received at the sensor focus point. Each pixel of
the image is considered to be a vector of the irradiance values at a specific spatial coor-
dinate across the available band. This vector does not form a reflectance signature like
the ones shown in Figure 2.5. The irradiance signature is affected by the solar intensity
at each band (Figure 2.2) and the atmospheric interaction (Figure 2.3), in addition to
the reflectance of the surface. However, since the datasets are collected in local time and
space, it is reasonable to assume that both the atmospheric interaction and solar intensity
is constant across all pixels, so the only meaningful difference between the pixels is due
to the surface reflectance. Notice also that the numeric values of the spectral irradiance
have no meaningful unit.

The ground truth of the image is expert labelled by mapping the pixels to discrete
labels. The ground truth includes class labels on a subset of the pixels in the image.
Following is a description of each of the three datasets and their unique features.

In addition to the hyperspectral data itself, a set of artifacts is produced that is used
by the algorithms. These are

• Entropy The entropy value of each band

• Correlation coefficients The correlation coefficient between adjacent bands

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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• KL-divergence The Kullback-Leibler divergence between adjacent bands

• MI The mutual information between adjacent bands

• DI The disjoint information between adjacent bands

and are graphically displayed in Appendix A.

Indian Pines

The Indian Pines dataset was captured by the AVIRIS NASA, 2019b sensor in an area in
Indiana, USA. The image contains different agricultural crops, forests, and some human
infrastructure. The image itself consists of 145 by 145 pixels, but the available ground
truth mapping only labels 10249 (49 %) of the pixels. Ground truth and class sample
numbers are shown in Figure 5.1, and spectral irradiance in Figure 5.2.

The Indian Pines dataset is likely the most widely used test dataset for classification
of hyperspectral data, used all over the literature. It has some interesting challenges for
classification. The number of labelled examples are relatively low, and the number of
samples vary greatly from class to class. The class "Oats" for example, only has 20
samples, which means that with a training set size of 10 % there are only 2 instances
available for training. Since the different classes have different spectral signatures, the
number of bands needed in order to classify them all correctly could be high.

The dataset is also interesting because it is available in two variations. One variation
is with all the 220 recorded bands from the sensor. However, some of the bands in the
spectral range that AVIRIS records in are known water absorption bands (See figure 2.3).
These bands are at indexes [103-107], [149-162] and 200. This enables experimenting
on how well the band selection algorithms can handle the presence of noisy bands, by
comparing the achieved results with and without the noisy bands removed. Experiments
done on the Indian Pines dataset will be marked "Indian Pines (All)" if it is done on the
dataset without manual band removal.

Botswana

The Botswana dataset was captured by the Hyperion sensor (Pearlman et al., 2003)
aboard the NASA EO-1 satellite. The data depicts a location on the Okavango Delta
in Botswana. It is a much larger image than Indian Pines, with a size of 1476 by 256
pixels. The Hyperion sensor records data in 220 spectral bands, but the dataset only has
145 of the bands, which is without noisy and uncalibrated bands. The dataset with all
bands is not available, as it is with Indian Pines. Class sample numbers and ground truth
is shown in Figure 5.3, and irradiance values in Figure 5.4.
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Class Samples

Alfalfa 46
Corn-notill 1428

Corn-mintill 830
Corn 237

Grass-pasture 483
Grass-trees 730

Grass-pasture-mowed 28
Hay-windrowed 478

Oats 20
Soybean-notill 972

Soybean-mintill 2455
Soybean-clean 593

Wheat 205
Woods 1265

Building-Grass-Trees-Drives 386
Stone-Steel-Towers 93

Figure 5.1: Indian Pines dataset
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Figure 5.2: Irradiance values of 200 random pixels in the Indian Pines (All) dataset

Pavia University

The Pavia University image was captured by the ROSIS sensor (Kunkel et al., 1988)
and depicts part of the Pavia University campus in Northern Italy. Classes and their
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Class Samples

Water 270
Hippo grass 101

Floodplain grasses1 251
Floodplain grasses2 215

Reeds1 269
Riparian 269
Firescar2 259

Island interior 203
Acacia woodlands 314
Acacia shrublands 248
Acacia grasslands 305

Short mopane 181
Mixed mopane 268
Exposed soils 95

Figure 5.3: Botswana dataset
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Figure 5.4: Spectral irradiance values of 200 random pixels from the Botswana dataset

quantities are shown in Figure 5.5, and irradiance values in 5.6.

The ROSIS sensor is different from AVIRIS and HYPERION in the spectral dimen-
sion. While the two former records data in the entire visible spectrum and some of the
infrared, ROSIS only uses 430 nm to 960, which is the visible spectrum and slightly
into IR, as shown in Figure 2.1. Since it uses a different spectral range, the shapes of
the information theoretic quantities (Figure A.3 in) are also significantly different. The
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entropy diverges little from band to band, and the irradiance spectrum does not show
the distinct shape of water absorption bands like present in both Indian Pines and the
Botswana datasets. Therefore, also the band similarity quantities like KL-divergence
and mutual information show such different properties from the two other datasets to
warrant the investigation of this dataset.

In the spatial dimension, the Pavia University differs from the others in that it has
a large number of labelled samples, at least in absolute terms, and that there are fewer
classes.

Class Samples

Asphalt 6631
Meadows 18649

Gravel 2099
Trees 3064

Painted metal sheets 1345
Bare soil 5029
Bitumen 1330

Self-blocking bricks 3682
Shadows 947

Figure 5.5: Pavia University dataset
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Figure 5.6: Spectral irradiance values of 200 random pixels from the Pavia dataset
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5.2.2 Classification

Classifier Soft-margin SVM (one-against-one)
Kernel RBF
Hyperparameters C and γ established through five-fold cross valida-

tion on training data
Training set size 10 % of each class
# runs per experiment 10
Max band subset length 50
Evaluation Overall accuracy (OA), Average accuracy per class

(AA)

Table 5.2: Properties of the classifier used for experiments

Classification of the dataset using the selected bands is done in order to evaluate the
selected subset. For classification, each pixel in the dataset is considered to be a sample,
and the given ground truth is the supervised label of that sample. This means that classi-
fication is only done using structures in the spectral dimension. In the spatial dimension,
each pixel is considered an independent sample with no relation to each other.

Since the focus is on the band selection algorithm and not on the classifier itself,
optimizing the classifier for performance will not be the main focus. SVM has the favor-
able properties that it works well with small training sets, has an existing high quality
implementation (C.-C. Chang and Lin, 2011) and that it is not extremely computation-
ally heavy. Therefore it is chosen as the classification algorithm. The SVM algorithm
will be using the radial basis function as the kernel, and the kernel parameters C and γ

will be established using grid search and five-fold cross validation of the training set.

For each band set received from the band selection algorithm, the classifier will do
10 evaluation runs, where a random 10 % of each class in the dataset will be picked
out as the training set each run. Selecting the same percentage from each class ensures
that the training set is weighed equally to the test set with regards to the amount of
data in each class. The data will also be normalized per feature to a value between 0
and 1, a recommended preprocessing step for the SVM algorithm that ensures that each
of the features have equal weight in the classification. Preliminary tests indicate that
when a large number of bands are added, there is little improvement to the classification
accuracy. This is likely due to how the SVM algorithm works, since it does not suffer the
curse of dimensionality by losing classification accuracy, but it does hit a ceiling where
adding more bands does little to increase the accuracy. For this reason, and to preserve
computation time, the max number of bands that is classified for each run is set to 50.

The performance of the classification algorithm will be evaluated based on two met-
rics. First is the overall accuracy (OA). This is simply the number of correctly labelled
test samples divided by the number of test samples. Both the mean and standard devi-
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ation of this value will be recorded. Second is the average accuracy (AA). This is the
average number of correctly labelled test samples of each class. This can reveal infor-
mation about how the selected bands might be good at classifying some classes but bad
at others. In some experiments, the accuracy for each class may also be listed.

5.2.3 Hyperparameters

Several hyperparameters are used in the algorithms implemented for these experiments.
For the recent state of the art methods, the hyperparameters were based on recommenda-
tions from the original authors, while the parameters to DUMB were established through
trial and error.

MOBS

• Number of iterations: 100

• Population size: 200

• Neighborhood size: 30

ISD-ABC

• Number of iterations: 150

• Population size: 30

• Stale honey source limit: 5

DUMB

• Max number of iterations: 1000

• Population size: Same as number of bands in the dataset

• Crossover rate: 0.75

• Mutation rate: 0.05

• Tournament size: 5
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5.3 Results

5.3.1 Classification accuracy with all bands

Since the purpose of the experiments is to determine the performance of the band se-
lection algorithm, rather than the classification algorithm, an initial experiment was run
that uses all the bands in the hyperspectral image in order to determine a baseline clas-
sification accuracy. The results of this experiment is shown in Table 5.3.

Dataset Overall accuracy Average accuracy

Indian Pines (All) 0.76 ±0.003 0.63 ±0.02
Indian Pines 0.79 ±0.006 0.70 ±0.01

Botswana 0.90 ±0.01 0.91 ±0.01
Pavia university 0.94 ±0.002 0.91 ±0.005

Table 5.3: Classification accuracy using all bands

Class Classification accuracy

Alfalfa 0.21 ±0.13
Corn-notill 0.72 ±0.03

Corn-mintill 0.61 ±0.06
Corn 0.53 ±0.07

Grass-pasture 0.85 ±0.04
Grass-trees 0.97 ±0.01

Grass-pasture-mowed 0.74 ±0.15
Hay-windrowed 0.99 ±0.01

Oats 0.16 ±0.12
Soybean-notill 0.70 ±0.03

Soybean-mintill 0.86 ±0.03
Soybean-clean 0.63 ±0.05

Wheat 0.97 ±0.02
Woods 0.96 ±0.02

Building-Grass-Trees-Drives 0.43 ±0.05
Stone-Steel-Towers 0.85 ±0.07

Table 5.4: Classification accuracy for each class using all bands on the Indian Pines
dataset.

This results clearly shows that the Indian Pines and Indian Pines (All) datasets are
the hardest to classify. It is obvious that Indian Pines (All) is worse, since it includes
the water absorption bands, which are just noise. To explore why these datasets are
harder to classify, there will follow a more thorough examination of the classification
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Figure 5.7: Irradiance values for the two classes "Corn" and "Wheat" in the Indian Pines
dataset

performances of each individual class, shown in Table 5.4. Firstly, the "Oats" class has a
very low accuracy. This is easily explained by the fact that there are only 20 samples of
the class, so only two samples available for training. However, the two classes "Corn"
and "Wheat" have almost the same amount of samples, but still have a large difference
in accuracy. This discrepancy can be explained by looking at the irradiance signatures of
all samples of the two classes (Figure 5.7). This shows that the irradiance values in the
"Corn" class vary much more than in the "Wheat" class. Naturally the classifier struggles
more with it. This result shows that the "Corn" class might actually be several distinct
classes. This is a weakness of hand labelling data like done here, and cannot be avoided.

5.3.2 Multi-objective Search Algorithm (RQ1)

The search procedure in DUMB is guided by NSGA-II producing a set of solutions along
the Pareto front.
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Figure 5.8: Convergence of Pareto front
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Figure 5.9: Achieved Pareto front of solutions

The results shown in Figures 5.9 and 5.8 show that the non-domination model is
capable of creating a diverse set of solutions along the Pareto front. At the beginning
of the run, there are fewer solutions with a unique number of bands, since there are
more "holes" in the front. As discussed in Chapter 4, DUMB only chooses one solution
per number of selected bands. After only some hundred iterations of the algorithm the
solutions spread out better, as well as having more optimized values.

Figure 5.9 also show that the trade-off between the two objective functions creates
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band subsets with different sizes. The numbers indicated on each point in the front in-
dicates the length of the subset. High values of internal divergence create small subsets,
while the other end of the front has large subsets.

Although all the figures only show the subsets selected with fewer bands than 50,
interesting results can also be gleamed from looking at the entire Pareto front. Particu-
larly the fact that the front consists of 100 solutions, on a dataset with 200 bands. Below
50 there are 41 unique solutions which means that the density is higher on subsets with
fewer bands. This indicates that there is more to gain in terms of the objective functions
when there are fewer bands selected.

Tables B.1 and B.2 show that to a large degree, having one more band in the subset
equals adding a band to the subset with one less band. This matches intuition since the
objective functions are designed around finding local minima/maxima in the spectrum.
However, it is not always the case, which might both be a result of premature conver-
gence of the search, or that the objective functions favor towards spreading the subsets
evenly across the spectrum has an effect.

5.3.3 Divergence Measure for DUMB (RQ2)

The decomposition into subspaces by DUMB is driven by the measure used to quantify
the divergence between a pair of adjacent bands. There are several options for divergence
measures from the information theoretic background, as described in section 4.1.2, and
these will be compared experimentally to select the most fit one.

Divergence measures
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Figure 5.10: A comparison between the difference divergence measures considered for
DUMB on the Indian Pines dataset.



5.3. RESULTS 71

Divergence measure Subset boundaries Selected bands Overall accuracy

Correlation coefficient 12, 35, 59, 74, 90, 102,
118, 143, 159, 175, 186

8, 30, 41, 59, 74, 101, 111,
118, 155, 163, 176, 186

0.78±0.005

KL divergence 1, 2, 3, 4, 35, 59, 60, 73,
104, 142, 184

0, 1, 2, 3, 30, 41, 59, 71, 73,
111, 155, 185

0.68±0.01

Mutual information 15, 36, 57, 77, 93, 103,
119, 142, 150, 171, 195

14, 30, 41, 59, 77, 101,
111, 119, 149, 155, 173,
196

0.77±0.01

Disjoint information 12, 30, 36, 57, 78, 101,
111, 143, 156, 172, 188

8, 29, 30, 41, 59, 100, 110,
111, 155, 163, 173, 188

0.77±0.01

Table 5.5: The solutions for the four different divergence measures for 12 selected bands,
on Indian Pines dataset.
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Figure 5.11: A comparison between the difference divergence measures considered for
DUMB on the Botswana dataset.

The results of using different divergence measures as objective functions for DUMB
are shown in Figure 5.10 for the Indian Pines dataset and in Figure 5.11 for the Botswana
dataset. Indian Pines show larger differences and is therefore more interesting to anal-
yse. The figure shows that there is quite large differences in the achieved classification
accuracies using the different objective functions. The values of the different divergence
measures on adjacent bands for Indian Pines can be viewed in Figure A.1.

The objective function that achieved the worst result was the Kullback-Leibler diver-
gence. It starts promising with only a few bands, but then starts to dip quickly. Looking
at the selected bands in detail, shown for a subset size of 12 in Table 5.5, the KL diver-
gence quickly wants to add many of the low-wavelength bands. These are low entropy,
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noisy bands, and since the KL-divergence between them is significant, they are heavily
favored by the search algorithm. Not only are they favored early, but they form several,
one-band subspaces. Since so many of these noisy bands are added early the classifica-
tion accuracy falters. It rises steadily after these bands have been added, but never quite
reaches the best functions.

The other objective functions show more similar performance, but the disjoint infor-
mation (DI) seems to perform a slight bit better. This is due to its preference for high
entropy bands. While both the correlation coefficient and mutual information start to
consider the low entropy bands at the ends of the spectrum quite early, disjoint infor-
mation stays away from it until around 35 bands, where the graph in Figure 5.10 has a
small dip in accuracy.

On the Botswana dataset, the differences are much smaller. This might be due to the
Botswana dataset being easier to classify and that the differences between the divergence
measure values are smaller. See Figure A.2 for the information theoretic properties of
the Botswana dataset. Since the dataset has been cleaned up and a good subset of bands
that does not include noisy and bad bands has already been done, there is less to gain in
selecting the exact best bands. The algorithm fares well with either measure since it is
more important that the bands selected are well spread out across the spectrum, which
DUMB favors in any case. The removal of noisy bands from the full set of 220 bands
down to 140 also means that the bands that are adjacent in the dataset are not actually
adjacent wavelengths. This means that the adjacent wavelength redundancy has less
meaning.

5.3.4 Using manual band removal (RQ5)

In order to evaluate how DUMB handles noisy image bands, experiments have been
run on both the Indian Pines and the Indian Pines (All) datasets. Results of this test is
shown in Figure 5.12. This figure shows that while the two datasets rise quite similarly
in classification accuracy in the first few subset sizes, the dataset with noisy images starts
to falter after 15 bands. After this it lies steadily a few percent below the accuracy of
the dataset with the noisy bands removed. This indicates that DUMB creates subspaces
in which it is forced to select a noisy band. The main method it has to avoid selecting
bands with noise is that it selects representative band through the max entropy criterion,
which does not properly work if all the bands in a subspace have low entropy.
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Figure 5.12: DUMB on the Indian Pines and Indian Pines (All) dataset. "No-MBR"
indicates that no bands are manually removed

5.3.5 Comparison with other recent methods (RQ3, RQ4, RQ5)

In order to evaluate the performance of DUMB, it was compared with other recent band
selection methods, namely MOBS and ISD-ABC. The comparison was run on all three
datasets.

Figures 5.13, 5.14, 5.15 show that DUMB improves much faster than ISD-ABC.
The difference between the methods is primarily that DUMB will partition the band into
more subspaces, while ISD-ABC will select several high entropy bands from the fixed
subspaces determined by the ISD method. So the subspace model seems to work well
for low number of branches, and DUMB reaches a classification accuracy that compares
with using all bands early. However, for all three datasets the improvement more or less
stops there. Since SVM does not suffer much from the curse of dimensionality it might
be difficult to reach a much higher classification accuracy than for all bands with any
subset. This is particularly true for the Botswana and Pavia University datasets, which
do not contain many low-entropy, noisy bands. For Indian Pines, on the other hand,
there might be something more to gain, since quite a few of the bands are noisy. The
DUMB algorithm misses out on these improvements however, as when the number of
bands increases past 30, it starts to decompose some of the noisy parts of the spectrum
and is forced to choose some of the noisy bands. The classification accuracy falters
accordingly.

The algorithms can also be compared on the average entropies of the selected bands,
shown in Figures 5.13, 5.14 and 5.15. This should give an indication of how important it
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Figure 5.13: A comparison between DUMB and two other recent methods on the Indian
Pines dataset.

is that the bands selected has a high entropy. The graphs show some different properties
for the different algorithms and the different datasets, and provide a good framework for
discussing the different approaches of the three algorithms. MOBS has a main focus
on selecting high entropy bands, slightly guided to ensure divergence is retained. The
results show that the classification accuracy can vary greatly from one number of bands
to the next, unlike DUMB which is more stable as more and more bands are added. The
entropy values have the same tendency and surprisingly maybe, the entropy is not much
higher than DUMB, particularly on Indian Pines. The fluctuations in accuracy may be
attributed to the sensitivity to initial conditions, discussed in 3.3.1. On Botswana, MOBS
selects bands with quite a bit higher entropy than DUMB without it leading to any higher
classification accuracy, which may indicate that non-redundancy is more important on
the Botswana dataset. That may be explained by the fact that Indian Pines contains more
noisy bands, and thus avoiding them is as important as ensuring the non-redundancy
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Figure 5.14: A comparison between DUMB and two other recent methods on the
Botswana dataset.

between the bands.

On all three datasets, DUMB starts with selecting high entropy bands, but the average
entropy drops fast, together with the increase in classification performance. This shows
that it is more important to select bands that are evenly spread out in the spectrum early,
even though they might have a lower entropy. The ISD-ABC algorithm has an average
entropy that decreases steadily, and the classification accuracy shows the same tendency
in increasing.

ISD-ABC shows very stable performance on all three datasets. The tendency, how-
ever, is that the accuracy grows much slower than both MOBS and DUMB. On all three
datasets it starts off equal, when it only selects one band from each subspace. However,
while DUMB creates more subspaces and MOBS has mechanisms to ensure more even
spread, the ABC algorithm optimizes very well towards its entropy sum objective func-
tion, and thus often selects adjacent, high entropy bands within each subspace. This is
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Figure 5.15: A comparison between DUMB and two other recent methods on the Pavia
University dataset.

shown in the entropy graph for the Indian Pines dataset, and provides very little addi-
tional classification power. It should be noted that the authors of the ISD-ABC algorithm
(Xie et al., 2019) did not report the same behavior and so did not discuss the issue. In
any case, it does show some of the optimizing ability of ABC.

5.3.6 Achieved subspaces compared to ISD (RQ1, RQ3)

Since ISD separates the spectrum into a specific number of features using the correlation
coefficients and the irradiance spectrum, it is interesting to compare the achieved sub-
spaces with DUMB, which uses disjoint information. For the Indian Pines subset, the
ISD method produces six subspaces. Figure 5.16 shows the comparison between these
six subspaces and the six subspace solution produced by DUMB. The figure shows that
four of the boundaries are almost at the same points in the spectrum, which corresponds
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Figure 5.16: Six subspaces generated by ISD and DUMB on the Indian Pines dataset.

to the points where the correlation coefficient and disjoint information share local ex-
tremes. It is also worth noting that DUMB does not require the use of the irradiance
spectrum in order to determine that there is only one subspace between band 77 and
109, which seems to indicate that the disjoint information is a more useful measure than
the correlation coefficients. ISD and DUMB do not agree on where to put the fifth sub-
space, however. ISD places it at band 60, which is indeed also a local maximum in the
disjoint information, while DUMB chooses to put one at 171. This does not make sense
for the correlation coefficient, which is very flat in that area. Its not entirely obvious
why its placed there based on the DI either, but it can explained by the fact that the fINT
objective function leans towards favouring solutions which splits the spectrum into more
equally sized subspaces. However, one does not need to go further than the solution with
one more subspace for DUMB to place a boundary at band 58.
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Chapter 6

Discussion and Conclusion

This chapter will provide a discussion of the results yielded by the work in this thesis. It
will start with a discussion of the experimental results in relation to the research ques-
tions, and how the proposed model stands up to other recent similar models. Then there
will be a discussion on the limitations of the model, in terms of its applicability and
generalizability. Then there will be a wrap-up of the most important contributions of the
work, as well as a discussion of how it can be continued and improved in future projects.

6.1 Discussion of Results

The research goal and research questions that were introduced in Chapter 1 have served
as a guide for the experiments conducted and described in Chapter 5. The following
section discusses how the experiments provide insight into each of the research questions
and lastly the overall research goal.

RQ1 - How good is NSGA-II at selecting band subsets of different lengths that
provide stable and predictable results? NSGA-II was chosen as the multi-objective
framework of choice due to it being a popular and widely implemented algorithm. The
results show that it is capable of generating a diverse set of solutions across the trade-off
between the two objective function, and that this trade-off corresponds to different subset
lengths. The results are predictable in the sense that the bands included in a subset of
length k one extra band compared to the subset of length k−1.

79
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RQ2 - What divergence measure best captures the different information captured
in adjacent spectral bands? The experiments conducted to answer this question show
that it has a dependence on the dataset, particularly in relation to the noise conditions. It
highlights a problem with the model and relying so heavily on measures of divergence
between adjacent bands. Since noisy bands will obviously show some differences be-
tween them no matter the measure used, the algorithm will at some point be forced to
select the bands. Using disjoint information does alleviate the problem somewhat, since
it will favour high entropy bands first, but this only means that the low entropy bands
will be chosen as boundaries at a higher number of subspaces.

RQ3 - How do the number of subspaces affect classification accuracy? The main
finding the experiments show for this question is that the subspace model of DUMB
is good at quickly reaching a high classification accuracy but that the model starts to
break down or lose its meaning at some point. This may be because there exists no
more meaningful local features in the adjacency divergence graph, or because it chooses
subsets including only noisy bands. The exact position it starts to lose its usefulness
depends greatly on the properties of the dataset.

RQ4 - What is the relative importance of individual band informativeness com-
pared to the redundancy between selected bands? Experimental results show that
this question also has different answers depending on the dataset. This question is also
the most interesting to discuss when there are only a few bands selected since that is
where there is a significant difference in the methods considered, both in terms of clas-
sification performance and average entropy. Generally, the results show that with few
bands, higher average entropy does not necessarily equal higher classification accuracy.

RQ5 - How does the presence of noisy bands affect classification accuracy? The
presence of noisy bands may affect the DUMB method more than the other models,
according to the results, which can be explained by the fact that the other methods puts
a higher emphasis on entropy. DUMB will, at some point, start so select noisy bands
since the measures it uses to select non-redundant bands also indicate noise.

Research goal The goal of the research undertaken in this thesis was to investigate
if clustering of bands in hyperspectral images could be used together with evolutionary
techniques in order to select representative bands. The outset of the research was always
to employ multi-objective evolutionary algorithms, both since the author finds it an in-
teresting topic, and since early literature review indicated promising results in the field.
The results of the experiments show that using a representation and objective functions
that are based around the divergence between adjacent bands in the image is capable of
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achieving similar and in some cases better results than other evolutionary techniques that
has been applied. It is of particular importance that it is able to select good and stable
bands that maximizes the potential of the data at a low number of bands, where each
individual band is significant. The downside of the clustering technique is that it relies
most heavily on the divergence measure, a quantity that will inevitably be high for noisy
bands, so that noisy bands present in the image are often selected, degrading the perfor-
mance. Although several efforts were made in order to limit this effect, such as using
the disjoint information quantity and a subspace length coefficient in the objective func-
tions, these only mitigate the problem rather than eliminating it. The algorithm showed
good results, apart from the noise issues, on several datasets with different spectral and
spatial properties showing robustness and generalizability.

6.2 Contributions

The main contribution of this thesis is the algorithm proposed for band selection in
hyperspectral images. It continues a research avenue of the application of evolutionary
algorithms for band selection, by showing that it can be effectively combined with the
clustering idea, another part of the band selection field.

There has also been implemented a configurable and flexible band selection frame-
work that can be easily extended to explore other objective functions, search frameworks
and representations. The code is currently not open, but could be open sourced in the
future.

This thesis has also been the first project at NTNU in the application of evolutionary
techniques for hyperspectral imaging, and has as such laid the groundwork in the form
of establishing theoretical knowledge, state-of-the-art, and provided a starting point for
further research.

6.3 Further Work

Multi-objective optimization within the field of band selection of hyperspectral images
is a young research path. This thesis explored using a non-domination sort genetic al-
gorithm, in favor of one using decomposition, but there are many other search algo-
rithms available. The Artificial Bee Colony showed good convergence rates for a single-
objective version of the problem, so research into a multi-objective adaptation would be
interesting.

One of the pain points of the clustering representation chosen for the algorithm was
that it inevitably chose noisy or otherwise undesireable bands. Further work could in-
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vestigate ways to extend the representation in order to handle gaps between clusters so
that noisy bands can be handled better. It would also be interesting to employ the use of
not only divergence measures between adjacent bands in the image, but between bands
across the spectrum from each other, so clustering could be improved. Furthermore, the
technique for choosing cluster representatives in this work was based on selecting the
band with the maximum entropy in the cluster. This was done to ensure high entropy
bands were chosen, but also led to bands that were outliers in a cluster being selected as
representatives. Other clustering methods make use of other techniques such as mutual
information in order to select representatives, and this could be further investigated.

Lastly is the topic of using these techniques for the real-time optimization of hyper-
spectral sensors. In the specialization project that was done in the Fall of 2018 is was
established that one of the promising way of doing optimization of the sensors during
flight was to do band merging. This would combine the incoming light of several adja-
cent wavelength to increase the value of the signal so the ratio to the noise is smaller.
Since an intermediate output of the band selection algorithm proposed in this thesis is a
clustering of adjacent bands, these clusters could be used for band merging. The algo-
rithm would need a few adaptations to for it to work in this setting. Firstly, there needs to
be done more research into the performance of the algorithm if it is to be executed in an
online, continuous fashion. Secondly, the basis of the objective functions are measures
based around a probability distribution that requires an entire image to function. Re-
search must be done into how this probability function can be measured and estimated
when there is a continuous stream of data flowing into the system. Lastly, for such an
application it is not enough to output a set of Pareto optimal solutions, since a decision
about how many clusters to use must be made. Therefore it would be useful to look into
systems to support this decision making process, either by using the raw data acquired
or some preferences on the desired separability between materials or what target is to be
looked for.

This project only lasted for six months and has only begun to uncover the possibil-
ities of evolutionary optimization in this field. Hopefully, more research will be made
into the subject, at NTNU or elsewhere, so that the capabilities of hyperspectral images
to give detailed data about how humanity best can cultivate, take care of, and make use
of this Earth can be utilized to its fullest extent.
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Dataset properties

A.1 Indian Pines
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Figure A.1: Information theoretic properties of the Indian Pines dataset
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A.2 Botswana
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Figure A.2: Information theoretic properties of the Botswana dataset
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A.3 Pavia University
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Figure A.3: Information theoretic properties of the Pavia University dataset
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# Bands selected Boundaries

2 30, 111 104
3 30, 33, 111 33, 104
4 30, 33, 111, 155 33, 77, 143
5 30, 33, 107, 111, 155 33, 77, 109, 149
6 30, 41, 107, 111, 155, 173 36, 77, 109, 143, 171
7 30, 33, 59, 107, 111, 155, 173 33, 58, 77, 109, 143, 171
8 30, 33, 59, 107, 111, 155, 168, 185 33, 58, 78, 109, 143, 166, 184
9 30, 33, 59, 100, 107, 111, 149, 155, 178 33, 58, 78, 101, 109, 143, 151, 177
10 30, 33, 59, 100, 107, 111, 149, 155, 168, 185 33, 58, 78, 101, 109, 143, 151, 167, 184
11 8, 30, 41, 59, 77, 107, 111, 149, 155, 168, 183 12, 36, 58, 77, 101, 109, 143, 151, 167, 183
12 8, 29, 30, 41, 59, 100, 110, 111, 155, 163, 173, 188 12, 30, 36, 57, 78, 101, 111, 143, 156, 172, 188
13 8, 29, 30, 41, 59, 100, 107, 111, 121, 155, 163, 173, 188 12, 30, 36, 57, 78, 101, 109, 121, 143, 156, 172, 188
14 8, 29, 30, 41, 59, 100, 107, 111, 128, 155, 163, 173, 180, 191 12, 30, 36, 57, 78, 101, 109, 127, 143, 156, 171, 180, 189
15 8, 29, 30, 41, 46, 59, 76, 101, 110, 111, 128, 149, 155, 168, 185 12, 30, 36, 45, 57, 75, 90, 102, 111, 127, 143, 151, 166, 184
16 8, 29, 30, 41, 46, 59, 76, 101, 110, 111, 128, 155, 163, 173, 180, 191 12, 30, 36, 45, 57, 75, 90, 102, 111, 127, 143, 156, 171, 180, 189
17 8, 29, 30, 41, 46, 59, 76, 101, 110, 111, 128, 149, 155, 163, 173, 180, 194 12, 30, 36, 45, 57, 75, 90, 102, 111, 127, 143, 151, 161, 172, 180, 192
18 8, 29, 30, 41, 46, 59, 76, 84, 101, 110, 111, 128, 149, 155, 163, 173, 180, 194 12, 30, 36, 45, 57, 75, 84, 90, 102, 111, 127, 143, 151, 161, 172, 180, 192
19 6, 18, 30, 33, 41, 46, 59, 76, 101, 110, 111, 122, 135, 149, 155, 163, 173, 180,

194
7, 19, 32, 36, 44, 57, 75, 90, 102, 111, 122, 135, 143, 151, 161, 172, 180, 192

20 6, 18, 30, 33, 41, 46, 59, 76, 101, 105, 110, 111, 122, 135, 149, 155, 163, 173,
180, 194

7, 19, 32, 36, 44, 57, 76, 90, 102, 106, 111, 122, 135, 143, 151, 161, 172, 180,
192

21 6, 18, 30, 33, 41, 46, 59, 76, 83, 101, 105, 110, 111, 122, 135, 149, 155, 163, 173,
180, 194

7, 19, 32, 36, 44, 57, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151, 161, 172, 180,
192

22 7, 18, 30, 33, 41, 46, 59, 71, 76, 83, 101, 105, 110, 111, 122, 135, 149, 155, 163,
173, 180, 194

8, 19, 32, 36, 44, 57, 63, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151, 161, 172,
180, 192

23 6, 18, 30, 33, 41, 46, 59, 71, 76, 83, 101, 105, 110, 111, 122, 135, 149, 155, 163,
173, 180, 191, 194

7, 19, 32, 36, 44, 57, 63, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151, 161, 172,
180, 189, 194

24 6, 18, 30, 33, 41, 46, 50, 59, 71, 76, 83, 101, 105, 110, 111, 122, 135, 149, 155,
163, 173, 180, 191, 194

7, 19, 32, 36, 44, 49, 57, 63, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151, 161,
172, 180, 189, 194

25 6, 18, 27, 30, 37, 41, 46, 52, 59, 71, 76, 83, 101, 105, 110, 111, 122, 135, 149,
155, 163, 173, 180, 191, 194

7, 19, 28, 36, 39, 44, 52, 57, 63, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151,
161, 172, 180, 189, 194

26 7, 18, 20, 30, 33, 39, 41, 46, 52, 59, 71, 76, 83, 101, 105, 110, 111, 122, 135, 149,
155, 163, 173, 180, 191, 194

8, 19, 26, 32, 36, 41, 44, 52, 57, 63, 76, 82, 90, 102, 106, 111, 122, 135, 143, 151,
161, 172, 180, 189, 194

27 6, 18, 27, 30, 37, 41, 46, 52, 59, 71, 76, 83, 91, 101, 106, 110, 111, 122, 135, 142,
153, 155, 163, 173, 180, 191, 194

7, 19, 28, 36, 39, 44, 52, 57, 63, 76, 82, 88, 94, 104, 107, 111, 122, 135, 141, 147,
155, 161, 172, 180, 189, 194

29 6, 18, 27, 30, 37, 41, 46, 52, 59, 71, 76, 83, 91, 101, 106, 110, 111, 122, 135, 142,
153, 155, 163, 168, 176, 178, 180, 191, 194

7, 19, 28, 36, 39, 44, 52, 57, 63, 76, 82, 88, 94, 104, 107, 111, 122, 135, 141, 147,
155, 159, 168, 174, 177, 180, 189, 194

31 7, 18, 20, 30, 33, 39, 41, 46, 48, 59, 71, 76, 83, 91, 100, 101, 106, 110, 111, 122,
135, 142, 153, 155, 163, 168, 176, 178, 180, 191, 194

8, 19, 26, 32, 36, 41, 43, 48, 58, 63, 76, 82, 88, 94, 101, 104, 107, 111, 122, 135,
141, 147, 155, 159, 168, 174, 177, 180, 189, 194

Table B.1: Bands selected by DUMB on the Indian Pines dataset (length 2-31)
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32 7, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 71, 76, 83, 91, 100, 101, 106, 110, 111,
122, 135, 142, 153, 155, 163, 168, 176, 178, 180, 191, 194

8, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 76, 82, 88, 94, 101, 104, 107, 111, 122,
135, 141, 147, 155, 159, 168, 174, 177, 180, 189, 194

33 7, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 71, 72, 76, 83, 91, 100, 101, 106, 110,
111, 122, 135, 142, 153, 155, 163, 168, 176, 178, 180, 191, 194

8, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 72, 76, 82, 88, 94, 101, 104, 107, 111,
122, 135, 141, 147, 155, 159, 168, 174, 177, 180, 189, 194

34 8, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 71, 76, 83, 91, 100, 101, 106, 110, 111,
122, 128, 135, 142, 153, 155, 163, 168, 173, 176, 178, 180, 191, 194

10, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 76, 82, 88, 94, 101, 104, 107, 111, 122,
128, 135, 141, 147, 155, 159, 168, 170, 174, 177, 180, 189, 194

35 0, 5, 8, 18, 20, 30, 33, 39, 41, 46, 48, 59, 71, 76, 83, 91, 100, 101, 106, 110, 111,
122, 128, 135, 142, 153, 155, 163, 168, 173, 176, 178, 180, 191, 194

2, 6, 10, 19, 26, 32, 36, 41, 43, 48, 58, 63, 76, 82, 88, 94, 101, 104, 107, 111, 122,
128, 135, 141, 147, 155, 159, 168, 170, 174, 177, 180, 189, 194

36 0, 5, 8, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 71, 76, 83, 91, 100, 101, 106, 110,
111, 122, 128, 135, 142, 153, 155, 163, 168, 173, 176, 178, 180, 191, 194

2, 6, 10, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 76, 82, 88, 94, 101, 104, 107, 111,
122, 128, 135, 141, 147, 155, 159, 168, 170, 174, 177, 180, 189, 194

37 0, 5, 8, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 65, 71, 76, 83, 91, 100, 101, 106,
110, 111, 122, 128, 135, 142, 153, 155, 163, 168, 173, 176, 178, 180, 191, 194

2, 6, 10, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 66, 76, 82, 88, 94, 101, 104, 107,
111, 122, 128, 135, 141, 147, 155, 159, 168, 170, 174, 177, 180, 189, 194

41 0, 5, 8, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 65, 71, 76, 83, 91, 100, 101, 106,
110, 111, 114, 122, 135, 137, 146, 149, 155, 163, 168, 173, 176, 180, 182, 185,
189, 191, 196, 197

2, 6, 10, 19, 26, 32, 36, 41, 43, 48, 54, 58, 63, 66, 76, 82, 88, 94, 101, 104, 107,
111, 114, 122, 135, 137, 143, 147, 151, 158, 167, 171, 176, 180, 182, 184, 189,
191, 195, 197

42 0, 5, 8, 18, 20, 30, 33, 39, 41, 46, 48, 54, 59, 61, 68, 71, 76, 83, 91, 100, 101, 106,
110, 111, 114, 122, 135, 137, 146, 149, 155, 163, 168, 173, 176, 180, 182, 185,
189, 191, 196, 197

2, 6, 10, 19, 26, 32, 36, 41, 43, 48, 54, 58, 60, 65, 69, 76, 82, 88, 94, 101, 104,
107, 111, 114, 122, 135, 137, 143, 147, 151, 158, 167, 171, 176, 180, 182, 184,
189, 191, 195, 197

44 2, 6, 14, 15, 20, 27, 30, 32, 33, 39, 41, 46, 48, 54, 59, 61, 68, 71, 76, 83, 91, 98,
101, 106, 110, 111, 114, 122, 135, 137, 146, 149, 155, 163, 168, 173, 176, 180,
182, 185, 189, 191, 196, 197

3, 7, 15, 16, 22, 28, 32, 33, 36, 41, 43, 48, 54, 58, 60, 65, 69, 76, 82, 88, 94, 99,
104, 107, 111, 114, 122, 135, 137, 143, 147, 151, 158, 167, 171, 176, 180, 182,
184, 189, 191, 195, 197

48 0, 5, 8, 11, 13, 17, 20, 27, 28, 30, 33, 39, 41, 46, 48, 54, 59, 61, 68, 71, 74, 76, 77,
84, 91, 98, 101, 106, 110, 111, 114, 122, 135, 137, 146, 149, 155, 163, 168, 173,
176, 180, 182, 185, 189, 191, 196, 197

2, 6, 9, 12, 14, 18, 23, 28, 29, 33, 36, 41, 43, 48, 54, 58, 60, 65, 69, 74, 76, 77, 84,
88, 94, 99, 104, 107, 111, 114, 122, 135, 137, 143, 147, 151, 158, 167, 171, 176,
180, 182, 184, 189, 191, 195, 197

Table B.2: Bands selected by DUMB on the Indian Pines dataset (length 32-48)


