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Abstract

A novel area of research is the task of computing similarity on heterogeneous at-
tributes, as well as transforming between categorical and numerical values. The
research portrayed in this report will address the field of Artificial Intelligence,
and more specifically similarity measures in the context of the Retrieval step of
Case-based Reasoning. The purpose of this study is to advance understanding of
both similarity measures and of transformation methods for attributes of mixed
data types in classification problems. The research will naturally have appli-
cations outside the scope of Case-based Reasoning as well. Our work will be
conducted with a theoretical study supplemented by an applied research experi-
ment in collaboration with Trollhetta, an AI company located in Trondheim. A
working demo that employs k-NN is proposed to handle classification of mixed
attributes composed of categorical and numerical values. We contribute to the
scientific community with an evaluation of optimal strategies when it comes to
employing categorical vs continuous similarity measures on a data set with mixed
attribute types. A new technique for learning the mutual translation between
categorical and numerical values is also introduced.
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Chapter 1

Introduction

This chapter will give an introduction to the research and work to be presented
in this master’s thesis. Section 1.1 will introduce the problem at hand and the
driving forces motivating our research. Section 1.2 will go into details on the
goals and research questions we aim to answer. Section 1.3 will lay out the
research method used. Section 1.4 will briefly summarize the contributions of the
work within the field of Case-based Reasoning (CBR) and the scope of similarity
measures. And lastly, Section 1.5 introduces the remainder of the thesis.

1.1 Motivation

The study of our work is derived from the following application-driven problem
scenario derived in collaboration with Ketil Bø, the CEO of Trollhetta1 and co-
supervisor to this master’s project.

Problem scenario: Medical personnel operate under varying
circumstances and with different resources available to them at any
given time. A robust support tool for decision-making for medical
diagnosis that can be utilized under various conditions, and with

input values of mixed data types such as both qualitative and
quantitative data is desired.

This is a broad initial problem description that can be interpreted in a number
of ways. For the purpose of conducting research, we have put emphasis on the

1Trollhetta is a software company offering solutions or added functionality to existing systems
based on its proprietary development tools for machine vision, artificial intelligence and dynamic
modelling. https://www.trollhetta.com/

1

https://www.trollhetta.com/
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aspect of handling and accepting mixed data types in our input parameters for
such a support diagnostic tool. And this is what our research will be centered
around. As such, the remainder of this section will be dedicated to further
elaborate on our understanding and interpretation of this problem scenario, as
well as introduce related work within the scope of our research topic. We start
off with a use case to exemplify and describe a situation where our work applies.

Use case: In a thriving welfare state, where the hospitals and
healthcare system is organized publicly, under an umbrella

organization, there is an ambition to utilize smart support tools for
diagnosing breast cancer in patients across geographic location and
establishment. This means a unified tool should be equally available

in a wealthy, well-equipped hospital as well as in a general
practitioner’s office with limited medical appliances. That is to say

the same system, with the same data available must be able to
handle precise numerical input parameters as well as imprecise

categorical input parameters, and confidently give a more or less
accurate diagnosis.

From our initial problem description and the above-mentioned use case, on
which our work is based, we define the core of our work to be the use of mixed
data for the same variable in classification problems. Not only is this uncharted
territory for me, but existing research on this topic is rather modest. Hopefully, it
is not that the idea behind our work is futile which is the reason existing work on
this particular research problem is so scarce. In any case, we hope our work will
shed new light on a novel area, or inspire further research in the field of study. As
described above, this can have great impact on real-world applications, especially
in the future as society and technology advance. An argument might be made
that our software tools are better off being specialized for one narrow task rather
than accommodate for uncertainties when translating fuzzy categorical concepts
into numerical values. For this reason, our main angle will be from a research
perspective, and our motivation is hence mostly technique driven rather than
application driven. Broadly speaking, our motivation is to enrich the knowledge
in the field of artificial intelligence with regards to the aforementioned challenge
in the pursuit of technological advancement.

Measuring similarity has many different qualities and uses as is illustrated by
Cunningham [2008] in his attempt to organize a taxonomy for similarity mech-
anisms in CBR. In the simplest and most commonly used sense similarity is a
simple distance metric for numerical feature-value data. However, not all data
is homogeneous. How can for example the variable color be compared if one
instance describe said variable textually, another in RGB color code, and a third
in wavelength of light waves as seen in Table 1.1. Similarity measures for mixed
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Instance Color Shape Weight
Object 1 red Rectangle 503 g
Object 2 #D01212 Circle 1000 g
Object 3 700 nm Rectangle 31 g

Table 1.1: Example of different data types for same variable.

data type variables as described above is the essence of what we are going to
research. To be able to measure similarity, the domain on which the comparison
takes place has to be homogeneous. That is to say that from our previous exam-
ple with the colors, ’red’ cannot be compared to #D01212 directly. They need
to be translated into a common representation on the same domain in order to
mathematically measure their similarity.

What representation data is stored as can also matter for the outcome of the
similarity measure, as well as the process of gathering the data. It might be
easier to identify the color as ’red’ instead of obtaining the precise measurement
of 700 nm (in collecting the data), but the output of the algorithm might yield
better results with the 700 nm value because the translation from 700 nm to ’red’
loses some information2. Therefore, to be able to compute similarity between dif-
ferent data types, we need to investigate the translation – or transformation –
between different data type domains. We are also interested in the performance
of different similarity measures on different data representations, namely contin-
uous similarity measures and categorical similarity measures—which will both
be further explained in Chapter 2.2. Another consideration when attempting to
translate between continuous and categorical values is that continuous values are
more rigid and exact, while categorical values more often than not have an un-
certainty and impreciseness to them. Another way to put this is that categorical
values have an underlying abstract meaning to them. This is well illustrated in
Figure 1.1 that we have borrowed from Willems et al. [2019].

Our work include a literature study in order to place our work relative to
existing scientific research. This was done in Chapter 3. During this part of
our project we have learned – due to the lack of existing literature – that the
problem we are tackling is a novel one with a lot of potential for further study.
We therefore divided our problem into two sub-problems that we researched to
the best of our ability in our literature study. We studied papers by Boriah
et al. [2008], Cheung and Jia [2013] and Bahari and Van hamme [2014] when
researching Categorical Similarity Measures; and papers by Harwell and Gatti

2Translation from ’red’ to 700 nm assumes a generalization of the color red to be approxi-
mately the range of light wave wavelengths between 700 and 635 nm.
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Figure 1.1: Density plots and mean values of the numerical interpretations of
categorical values.
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Possible object combination Similarity policy

Two quantitative variables
Categorical similarity measure
Numerical similarity measure

Mixed quantitative and qualitative variables
Categorical similarity measure
Numerical similarity measure

Two qualitative variables
Categorical similarity measure
Numerical similarity measure

Table 1.2: Different similarity measure policies depending on variable types.

[2001] and Zdravevski et al. [2015] when researching Transformation Techniques.
The study of similarity measures was helpful, but our study of transformation
techniques bore no fruits for the purpose of our work. This goes to show our use
of transformation techniques in our context is a novel one.

1.2 Goals and Research Questions

The overall goal of this thesis is to research efficiency and implications of classi-
fication on data with mixed type variables.

Goal Research and explore implications of classification on data with mixed type
variables, and performance with regards to different techniques used for sim-
ilarity computations.

There are two main aspects that will be investigated: (1) transformation
techniques and (2) the use of categorical vs numerical similarity measures. With
respect to transformation techniques we want to explore different options and
compare their performance. And with respect to similarity measures we want
to compare performance based on the policy of choosing categorical similarity
measures vs choosing numerical similarity measures depending on the instances
to be compared. The different possibilities of this policy is illustrated in Table 1.2.
We will not investigate every possible combination, but rather four of the possible
eight combinations. These will be further substantiated later, in Chapter 4.1.

We aim to answer the following Research Questions in line with our goal.

Research Question 1 What transformation techniques exist to handle input
parameters of both quantitative and qualitative form?

Research Question 2 How can suitable techniques be implemented in a work-
ing demo that accepts and handles input parameters of both quantitative
and qualitative form?
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Research Question 3 How do techniques for using categorical vs numerical
measures, based on the training data, compare with respect to performance
differences?

1.3 Research Method

We are addressing our goal and research questions in a few ways. Firstly, we
do a light theoretic background study to investigate different technologies and
methods that already exist out there in the vast sea of knowledge and infor-
mation. Upon having gathered sufficient useful information, we will develop a
demo to perform analytical tests and present our findings in a scientific manner.
This methodology is chosen to introduce a novel area of similarity research into
the scientific community in a modest way. The architecture and design of our
experiments and demo will be introduced in Chapter 4.1.

In terms of researching similarity, CBR is a prime platform to conduct our
experiments. Similarity measures arise naturally in one of the core steps of the
CBR cycle—Retrieval3. And since CBR is divided into separate steps, we will
be able to deploy tests on the relevant step in isolation and thus circumventing
unnecessary implementation of a full-scale application. With regards to our prob-
lem scenario and use case, CBR also makes sense as it is a methodology where
reasoning and transparency is vital. That is to say a user of the tool must not
blindly accept the output of the tool as if it were a black box 4, but needs to see
the reasoning behind the decision-making. Unarguably, it is an important point
for medical personnel to be able to confidently utilize the output of the tool in
situations where human lives are on the line. This question is raised in this CNN
Business article [Lewis, 2019] that refers to another study on classifying breast
cancer – but with a deep convolutional neural network – by Yala et al. [2019].

To conduct our experiments and perform our tests we will utilize the pro-
gramming language Python. Python is both a strong and dynamic language
with high readability, as well as strong support and commonly used in scientific
and research environments. For our data set, we will use a publicly available
open data set from the UCI Machine Learning Repository [Wolberg, 1992]. This
data set is a collection of 699 instances with classifications of breast cancer oc-
currences in patients. No personal patient information is attached to the data,
and the data is already normalized and complete. As all data in the data set is
numerical we will prepare the data set to simulate mixed data types. This will

3The life cycle of CBR is described generally by Aamodt and Plaza [1994] to have four REs
(RETRIEVE, REUSE, REVISE, RETAIN), whereas retrieve fetches the most similar cases to
the problem case from the case base. More on this in Chapter 2.1.2.

4In science, a black box is a closed system in which you can see the inputs and the outputs,
but it is not known what is going on inside the system.
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be explained in detail in Chapter 4.2.

1.4 Contributions

This section provides a brief summary of the main contributions of the work. The
contributions in their entirety is disclosed and fully listed in Section 6.1. Below
we give the shortened version of our contributions:

1. Introduction of a novel research area to the scientific community.

2. A working demo for a classifier on heterogeneous attributes.

3. Comparison of continuous vs categorical similarity measures on mixed data.

1.5 Thesis Structure

In this section we provide the reader with an overview of what is coming in the
next chapters.

Introduction In this chapter we have given an brief introduction to the work
we are presenting in this master thesis. Our motivation, goal and research ques-
tions, our research method, and contributions have been presented.

Background Theory This chapter introduces relevant terminology, as well
as establishing relevant topics related to our study. Case-based Reasoning, k-
Nearest Neighbor, Model Evaluation, both Continuous and Categorical Similarity
Measures, Transformation Techniques, and Fuzzy Logic are introduced.

Related Work In Chapter 3 we detail the Structured Literature Review Pro-
tocol used to find existing relevant literature. Relevant literature with respect
to similarity measures, and transformation techniques are reviewed and summa-
rized.

Methodology In this chapter we declare our plan driving the experimental
research in the first half, and in the second half the experimental setup is revealed
together with the introduction of our data.

Results and Discussion In Chapter 5 we present and visualize the results, we
evaluate the results, share our main findings, we share our thoughts and discuss
regarding merits and limitations of our work.



8 CHAPTER 1. INTRODUCTION

Conclusion Finally, in Chapter 6 we conclude our thesis by disclosing the
contributions of our work, as well as suggest future work in our field.



Chapter 2

Background Theory

In this chapter we will go through various terminology and concepts that will pro-
vide the reader with a deeper understanding and greater intuition when reading
through the rest of this document. In Section 2.1 there will be an introduc-
tion to useful terminology, a brief summary of what Case-based Reasoning is,
and a presentation of k-Nearest Neighbor—the method we use in our supervised
classification problem. In Section 2.2, Section 2.3, and Section 2.4 we will ade-
quately introduce similarity metrics, transformation techniques and fuzzy logic,
respectively.

2.1 Machine Learning

Machine Learning (ML) is the scientific study of algorithms and statistical models
that computer systems use in order to perform a specific task effectively without
using explicit instructions, relying on patterns and inference instead. Tradition-
ally, the difference between human and computer has been our ability to learn
and adapt to new information and new problem scenarios. Until recently, most
computers have been explicitly programmed to perform narrow and specific tasks.
Although the term Machine Learning has been around for a long time, it is not
long ago since a surge in activity and popularity around Machine Learning has
happened. Even if we are not conscious about it, data on us is continuously
processed by Machine Learning systems on a daily basis to influence us, get a
hold of our attention, and ease our lives. Entertainment services like Spotify and
Netflix are recommending personalized content based on our engagement history
and interactions with their platforms. We are so lucky to live in a world with
free access to content and information, but is it really free? We are constantly
bombarded with tailored advertisements that ultimately influence our purchases

9
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and fuels consumerism. This personalized advertisement is of course also powered
by machine learning systems. We could keep going on and on about this, but
the point is that Machine Learning has become inevitable. Machine Learning is
increasingly present in our everyday lives, but it was not more than 60 years ago
the name machine learning was coined by Samuel [1959] in his article where he
investigated machine learning procedures in the game of checkers. He described
it as:

”The field of study that gives computers the ability to learn without
being explicitly programmed.”

Some 40 years later Mitchell [1997] provided the widely quoted, and more
formal definition below:

”A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with

experience E.”

In this section we will introduce the various relevant Machine Learning terms
and concepts that will be used throughout the remainder of the thesis.

2.1.1 Terminology

Some of the terms defined here are used unambiguously in the field of machine
learning, while others are used in several, often related ways. The definition given
here is how the term should be interpreted for the rest of the thesis.

Features/Attributes These are the data points from the data instances used
by our algorithm. These can be used interchangeably. These features takes on
discrete numerical values or categorical values.

Parameters The variables we manually tune in order to get a accurate model.
These can be chosen by different heuristics like static analyses, or trial and error.
The parameters for k-NN are for instance the k -value, the number of neighbors
we consider, or our distance functions.

Supervised Learning This is a kind of learning where both the data variables
and the classes are known to the learner during training. That is to say both input
and output are known, and the learnt model learns a function that maps from
input to output. The other types of learning are called Unsupervised Learning
and Reinforcement Learning. [Norvig and Russell, 1994, p. 695]
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Figure 2.1: Bias-variance tradeoff illustrated.

Variance Variance, in the context of Machine Learning, is a type of error that
occurs due to a model’s sensitivity to small fluctuations in the training set. This
can be seen illustrated in Figure 2.1. [Mitchell, 1997, p. 129]

Bias The bias is an error from erroneous assumptions in the learning algorithm.
High bias can cause an algorithm to miss the relevant relations between features
and target outputs. This can be seen illustrated in Figure 2.1. [Mitchell, 1997,
p. 129]

Overfitting If the model fits the data set too well, and fails to map the general
pattern of data it is said to overfit. Data with a lot of variance is sensitive to this.
Too few data instances can also influence if the model might overfit. In k-NN,
overfitting is usually connected with having a too small k -value. Overfitting is
depicted in Figure 2.2a. [Norvig and Russell, 1994, p. 705]

Underfitting Underfitting occurs when a statistical model cannot adequately
capture the underlying structure of the data. An underfitted model is a model
where some parameters or terms that would appear in a correctly specified model
are missing. This is to say they have a high bias. In k-NN, underfitting is linked
with a very high k -value. Underfitting is illustrated in Figure 2.2b. [Norvig and
Russell, 1994, p. 709]

Leave-One-Out Cross-Validation This approach leaves one data point out
of the training data, i.e. if there are n data points in the original sample, then
n− 1 samples are used to train the model and one point is used as the validation
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(a) Overfitting (b) Underfitting

Figure 2.2: Illustrating overfitting and underfitting in context of regression.

set. This is repeated for all combinations in the original sample set, and the error
is averaged across all trials to give performance effectiveness. [Han et al., 2012,
p. 253]

Prediction/Classification This is the problem of predicting to which discrete
category or class a given observation belongs. This can also be referred to by
target value.

2.1.2 Case-based Reasoning

Case-based Reasoning [Richter and Weber, 2013] is a machine learning method-
ology first brought to light by Schank [1983] when he proposed the dynamic
memory theory. For more than three decades CBR has been a flourishing field
that has attracted researchers, practitioners and entrepreneurs alike. It is the
process of solving new problems based on the solutions of similar past problems.
The CBR methodology aim to provide a computational model that is very close
to human reasoning. The name consists of three words deserving a short expla-
nation. A case is basically an experience of a solved problem, and a case base is
a collection of such cases. The term based merely emphasizes that the cases are
the original source for the reasoning. Reasoning, the term most characteristic
of the approach, means that the system shall draw conclusions using cases. It
encompasses four famous steps known as the four Rs introduced by Aamodt and
Plaza [1994], and further conceptually formalized and specified by Stahl [2005].
These four Rs are retrieve, reuse, revise and retain.

1. Retrieve fetches the most similar case or cases.

2. Reuse takes the information and knowledge in that case and uses to solve
the problem.
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Figure 2.3: The Case-based Reasoning cycle.

3. Revise reviews the proposed solution.

4. Retain incorporates the parts of the experience likely to be useful for future
problem solving.

A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on
reusing a previous case, and retaining the new experience by incorporating it
into the existing case base. Aamodt and Plaza [1994] illustrates this cycle in
Figure 2.3.

2.1.3 k-Nearest Neighbors

The k-Nearest Neighbor (k-NN) [Mitchell, 1997, p. 231] is a widely used machine
learning algorithm. It is an instance-based – also known as lazy – learner. This
means it does not generalize a model based on the data before receiving a query,
but instead compares new problem instances with the instances stored in memory.
The algorithm assumes all instances correspond to points in the n-dimensional
space. It classifies a new instance by computing the distance between the new
instance with all other known instances, and uses the k nearest neighbors to
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determine the predicted classification for the new instance. k-NN is advantageous
in that it is very intuitive and simple to implement, there is no training step,
it responds quickly to incorporating new data. But on the flip side it is slow
compared to eager learners1, it scales badly when the sample size increases, and
is sensitive to outliers. The algorithm is typically executed with numerical values,
and the distance function is typically defined to be d(xi, xj):

d(xi, xj) ≡

√√√√ n∑
r=1

(ar(xi)− ar(xj))2 (2.1)

where ar(x) denotes the value of the r th attribute of instance x. It is also pos-
sible to extend whatever distance function to also weigh the attributes according
to importance as shown below:

d(xi, xj) ≡

√√√√ n∑
r=1

wrd(air, ajr) (2.2)

where d(air, ajr) symbolizes the distance between attribute ai and aj for at-
tribute r according to the chosen distance metric, and wr is the weight of attribute
r such that:

0 ≤ wr ≤ 1 and

n∑
r=1

wr = 1 (2.3)

Upon collecting all k nearest neighbors, the algorithm classifies the new in-
stance based on the these closest data instances given a predetermined voting
method. This voting method can be a simple majority voting where the class of
the majority of the k neighbors are chosen. Table 2.1 is a table of the voting meth-
ods we experiment with in our implementation. In the table, distance is the actual
distance in question, distancemax is the maximum possible attribute distance in
the data collection according to the distance function, distancenearest is the dis-
tance between the nearest instance and the new instance, likewise distancefarthest
is the distance of the farthest instance (in the selected k nearest neighbors), and
i is the i th nearest neighbor in k.

2.1.4 Model Evaluation

An important part of Machine Learning is being able to evaluate the performance
of the model. There are several reasons why the model evaluation is extremely

1An eager learner is a learning method which tries to construct a general, input-independent
target function during training of the system, as opposed to lazy learners.
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method formula
majority 1

inverse 1
1

distancemax
+distance

logarithmic 1
1+distance

uniform 1
i

standard
distancefarthest−distance

distancefarthest−distancenearest

new standard 1
i

distancefarthest−distance
distancefarthest−distancenearest

Table 2.1: The different voting methods we use up against each other.

useful when working with machine learning algorithms. The ones we feel are
most important are listed below:

• Estimating the performance is helpful for picking the best learning algo-
rithm for the problem.

• Tuning the parameters to best classify unseen data.

• Estimate predictive performance when the model performs classification on
unseen data.

In any case, the most important aspect of model evaluation is determining the
actual usefulness and performance of the model on unseen data. It is undesirable
to use the same data to train the model and to test the model. A model that
is given the same data for training and for testing purposes is likely to end up
unreliably being evaluated as performing really well. If this is not the case, either
there is likely some problem with the data, the algorithm might fail to capture
the pattern of the data, or there might not be any inherit pattern to learn in the
data. Anyhow, the desired action is to test the model on unseen data. There
are various ways to do this. The most simple and sensible way is perhaps the
Hold-Out method. This method is best used on large data sets, and the data set
is randomly divided into two or three subsets (depending on the model we are
evaluating):

1. Training set is the subset in which the model is trained on to improve its
predictive nature.

2. Validation set is a subset of the data set used to assess the performance
of the model built in the training phase. It provides a platform for fine
tuning of the model’s parameters, and selecting the best performing model.
Not all modeling algorithms need a validation set.
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Figure 2.4: Type-I and Type-II errors.

3. Test set is the subset used to test the final and ultimate performance of
the model on data instances not seen during training. If a model performs
much better on the training set than on the test set, then that is a strong
indication the model is overfit.

The other method for evaluating models is Cross-Validation. This model
is more commonly used when the data set is not sufficiently big to split into
subsets. Cross-Validation is also known as k -fold cross-validation because the
data is divided into k subsets of equal size. It then builds k models, each time
leaving one of the subsets out for testing. If k equals the sample size it is called
”leave-one-out”.

There are two types of errors whose importance depends on the application
of the classification algorithm. These errors are simply called type-I error and
type-II error. Type-I errors occur when the null hypothesis is rejected when it in
fact should not be, and type-II errors occur when the alternate hypothesis is true,
but the null hypothesis was not rejected. This is analogous to the story about
the boy that yelled ”wolf, wolf”. The first time the boy yelled, the villagers came
to his rescue even though there actually was no wolf. The villagers mistakenly
believed him. The second time he yelled there actually was a wolf there, but
the villagers, this time again, mistakenly did not believe the boy. The balance
between these two types of errors is depicted in Figure 2.4. The interesting thing
about this balance is that you have to make a deliberate design choice regarding
what type of error is more important to reduce. Sometimes one type of error is
more important to minimize, but doing this will result in an increase in the other
type of error. For instance is it preferred to reduce the number of ill patients
that are not classified as being ill (type-I error), even though this increases the
number of healthy patients classified as ill (type-II error).

For model evaluation there are many different performance metrics commonly
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Table 2.2: A confusion matrix for classification of negatives and positives.

used. Many of them can be understood in relation to the confusion matrix, which
in itself can also be considered a good measure for model performance. Type-I
and type-II errors can also be interpreted from this matrix. Table 2.2 shows the
confusion matrix for the common 2-class classification problem of positives and
negatives. The four different boxes correspond to the following:

• tp = true positives, the number of correctly classified positives.

• tn = true negatives, the number of correctly classified negatives.

• fp = false positives, the number of erroneously classified positives.

• fn = false negatives, the number of erroneously classified negatives.

Following these terms, we will define the performance measures we have used
in our thesis.

Accuracy is the percentage of correctly classified instances across all classes,
negatives or positives. In the definitions of possible classifications of the confusion
matrix in Table 2.2 it corresponds to the following:

accuracy =
tp + tn

tp + tn + fp + fn
(2.4)
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And for the general case of classification with any number of classes the fol-
lowing formula, where ŷi is the actual class for data point i ; yi is the predicted
class for data point i ; and n is the number of data points, gives the accuracy:

accuracy =
1

n

∑
i

(yi = ŷi) (2.5)

This is a very natural performance measure to use, but in general is not suf-
ficient on its own as a measure of a models performance. If one class is severely
over-represented it can correctly classify that class near 100 percent of the time,
but still be useless. One way to determine this is to compare the model accu-
racy to the performance of a model that always classifies the most prominent
class. Just imagine an algorithm that classifies fatal illness that only 0.1% of the
population has. An algorithm that classifies 99% of the illnesses and 5% of the
healthy as having the illness would have about 95% accuracy, but an algorithm
that only classifies as healthy would have a 99.9% accuracy. But it is pretty clear
the algorithm with 99.9% accuracy would be completely useless, while the model
with 95% accuracy would have singled out a group for further testing.

Precision is a performance measure that might be more useful in the previous
example where one class might be underrepresented, but also actually the crucial
class to correctly classify. In terms of the confusion matrix in Table 2.2 the
precision is the ratio of correctly classified positives over all classified positives.

precision =
tp

tp + fp
(2.6)

For the general case of any number of classes we can only calculate the preci-
sion of one class at the time. The precision being all correct classification of that
class divided by all classifications of that class.

Recall , also called sensitivity, is in relation to Table 2.2 the percentage of
correctly classified positives over all actual positives. This corresponds to:

recall =
tp

tp + fn
(2.7)

Just like with precision we can only calculate the recall of one class at the
time in the general case. The recall is calculated by true classifications of that
class divided by the number of actual samples of that class. In the two class
problem in Figure 2.2 the sensitivity of the negative class is called the specificity.
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F-measure , or f1-score, is the combination of precision and recall. For the
two-class problem illustrated in Table 2.2 this corresponds to:

F1 = 2
precision ∗ recall
precision + recall

(2.8)

It is the harmonic mean between the precision and recall, and like the three
previously mentioned performance metrics has values ranging from 0 to 1. The
f1-score is a value that punishes skewed classifications. The f1-score can be con-
sidered a measure for how balanced the classification is.

2.2 Similarity Metrics

Similarity metrics, similarity measures, distance, and proximity measures are
different terms used to describe similar things. When we want to compute the
distance between two instances, the concept of distance depends entirely on the
data we work with. Different types of data have different ways to calculate the
similarity or distance. Intuitively, we consider similarity to be the logical inverse
of the distance when we are required to compute this, although we use some tricks
to circumvent running into division by zero and infinity values. Data attributes
can be categorized in many different ways, some of which that are relevant and
will be mentioned here.

Categorical attributes are categorically discrete attributes that consists of
names only, and are finite in numbers. There is no real distance between them,
and they are abstract concepts with a fundamental underlying meaning behind
them that we humans might be able to infer distance from. Traditionally, the
term similarity is used to determine if two categorical instances are equal or not.
There are two types of categorical values:

• Nominal attributes have no inherent ordering to them, and only differ
in being similar or not (=, 6=). Consider a simple example of weather cat-
egories. We can have many different categories in this particular scenario
without any concept or notion of order (windy does not always occur be-
fore sunny nor is it smaller or bigger than sunny). Similarly movie, music
and video game genres, country names, food and cuisine types are other
examples of nominal categorical attributes.

• Ordinal attributes are attributes that on the other hand do have a natural
order to them, but we cannot directly define a distance between them. For
instance can the height variable have the following values: ’tall’, ’average’,
and ’short’. The distance can not be given in number (without any sort of
method to learn this). We can apply <, >, =, 6= to them.
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Numerical attributes are real numbers, R, where a meaningful distance can
sensibly be computed between different values. The following operations (not
limited to only these) can be performed on them: <, >, =, 6=, +, -.

Another way to categorize attributes is between qualitative and quantitative
data.

Qualitative attributes are categorical attributes usually expressed as cate-
gory names by means of natural language. They can have order or no order
between their values. Nominal and ordinal attribute-data are its two types de-
pending on if its values can be ordered.

Quantitative attributes are expressed as numerical values. They describe
the value as a measurable quantity. This value can be exactly measured in terms
of numbers. However all numbers are not measurable like the social security
number, therefore only measurable attributes are called quantitative attributes.

Lastly, we will introduce homogeneous data and heterogeneous data.

Homogeneous data is data in which all the attributes are of the same type.
For instance all attributes are numerical value types.

Heterogeneous data (or mixed data) is data where the attribute data types
are not the same. For instance the attribute velocity can be given with both
numerical values and categorical values like ’fast’ or ’slow’.

Following we will introduce well-known methods to compute similarity or
distance among the various kinds of attribute categorizations and data types.

2.2.1 Continuous Similarity Measures

Continuous similarity measures are measures we define for computing the dis-
tance or similarity of numerical (quantitative) attributes. As mentioned before,
this computation is trivial because of the numerical nature that allows for mathe-
matical calculations. The most common continuous similarity measures, or rather
distance metrics, are listed below:

Minkowski distance This distance is a metric in a vector space. It can be
considered the generalization of the Euclidean/Pythagorean distance and the
Manhattan distance.

The Minkowski distance of order p between two points:
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X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) (2.9)

is defined as:

d(X,Y ) =

( n∑
i=1

| x1 − y1 |p
) 1

p

(2.10)

An important observation is that the bigger the power p is, the more are
big attribute differences reflected in the final distance. In this thesis Minkowski1
distance (Minkowski distance of order 1) is used interchangeably with Manhat-
tan distance, and Minkowski2 distance (Minkowski distance of order 2) is used
interchangeably with Euclidean distance.

2.2.2 Categorical Similarity Measures

Inherently, categorical values have no difference between values in terms of quan-
titative numerical values. Usually, they do not even have an ordering to them and
even if they do, finding the distance or quantitative similarity might not be easier
than for nominal categorical values. In literature there are many attempts to im-
prove categorical similarity measures [Cunningham, 2008], but they turn out to
be highly specific for the application and the actual data set in question. It is in-
tuitively easier to define similarity instead of distance for categorical values. For
our intents and purposes we do not find any issue with this as translation between
these two terms can be done fairly easily. More on this in Chapter 4. Below are
the different categorical similarity measures we have considered, experimented
with, and worked with.

Overlap similarity is a similarity measure that comes from the overlap coef-
ficient below, where X and Y are sets.

overlap(X,Y ) =
| X ∩ Y |

min(| X |, | Y |)
(2.11)

Simplified, this is the overlap similarity at the attribute level:

similarityoverlap
(
xi, xj

)
=

n∑
r=1

sim
(
ar(xi), ar(xj)

)
(2.12)

where ar(xi) is the r th attribute of instance xi, and ar(xj) equivalently for
instance xj, n the number of attributes, and the similarity function sim(ar(xi),
ar(xj)) is:
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sim(ar(xi), ar(xj)) =

{
1, if ar(xi) = ar(xj)

0, otherwise
(2.13)

This is the logically and intuitively most sound similarity measure. It is
simple, yet elegant and nicely incorporates the concept of being equal.

2.3 Transformation Techniques

While a lot of advancements have been made in various machine learning frame-
works to accept complex categorical data types like text labels. Typically any
standard workflow in Machine Learning involves some form of transformation of
these categorical values into numeric values. In our particular case we are able to
also work with categorical values, but as we aim to compare performance based
on using categorical or continuous similarity/distance measures we need some
way to transform, translate, or map values from one domain into the other. We
are going to employ an educated incremental trial-and-error -based method to
learn a mapping structure between our categorical and numerical values. We call
this the Incremental Step method. The learning steps are as listed below:

1. Initiate a categorical-to-numerical mapping table with an arbitrary value.
We chose the mean of the lowest and highest possible value which is 5.0 for
every attribute.

2. For each location in the (categorical value of each attribute) in the categorical-
to-numerical mapping table:

(a) Run the classification algorithm on the data, translating categorical
values into numerical values and measuring distance using a continuous
similarity measure.

(b) Incrementally change the value in the mapping table in either direc-
tions and rerun the classification until a peak performance is found.

(c) Repeat for each location in the mapping table.

3. Next initiate an empty numerical-to-categorical mapping table.

4. For each location in the numerical-to-categorical mapping table:

(a) Go to the current attribute in the categorical-to-numerical mapping
table and read all mapping translations.

(b) Whichever categorical value that has the translation with the short-
est difference is the categorical value for the numerical value in the
numerical-to-categorical mapping table.
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Figure 2.5: Fuzzy logic temperature.

Note that step (3) - (4) can be done in an ad-hoc2 fashion in the case of
continuous numerical values.

Although our proposed transformation method is only conceptually described
above, the actual implementation can be inspected in Appendix B. This is an
early working prototype of the method that has a few downsides and limitations,
but it gets the job done.

2.4 Fuzzy Logic

The term fuzzy logic was first introduced in a paper on fuzzy set theory by
Zadeh [1965]. It is based on the observation that people make decisions based
on imprecise, non-numerical and subjective information. They are meant to
mathematically capture vagueness and imprecise information—hence the term
fuzzy. This entails that there are no clear limit between adjacent classes, but
rather a gradual and fuzzy transition between classes. This can be seen in the
illustration of a fuzzy categorization of temperature in Figure 2.5 we borrowed
from Wikipedia [2019]. In this figure it is evident that the terms are not mutually
exclusive, and you can have partial membership of multiple classes.

Fuzzy logic is a form of many-valued logic in which the truth values of variables
may be any real number between 0 and 1 inclusive. It is employed to handle the
concept of partial truth, where the truth value may range between completely true
and completely false. By contrast, Boolean logic has truth values that may only
be the integer values 1 or 0 as illustrated in Figure 2.6. In 2.6a the membership
of the ’hot’ class is 0 until 15◦ where it jumps to 1, it is either one or the other.
In 2.6b the membership of the ’hot’ class is more fluid and gradual, it is more on
par with the real world.

2When necessary or needed. Ad-hoc is a Latin phrase meaning literally ”for this”.
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(a) Boolean logic (b) Fuzzy logic

Figure 2.6: Membership functions for Boolean and Fuzzy logic.



Chapter 3

Related Work

In this chapter we will tie existing scientific and academic literature to our re-
search area. In Section 3.1 we will unfold our Structured Literature Review
Protocol to disclose how and where we acquired majority of the related arti-
cles. Section 3.2 will review relevant literature related to Similarity Measures,
and Section 3.3 will visit somewhat relevant literature related to Transformation
Techniques.

3.1 Structured Literature Review Protocol

The purpose of this Structured Literature Review (SLR) protocol is to help orga-
nize the search for existing literature that are relevant to our research questions.
It is not a guarantee of finding all relevant literature, but there are several ad-
vantages to it anyhow. It can map out existing solutions before the researcher
attempts to reinvent the wheel, it helps avoid bias, and it also benefits the com-
munity by placing the current study relative to existing research; helping identify
gaps of knowledge; and it highlights where additional research is required.

The scope of our search for literature and existing relevant research is summed
up in Table 3.1. More articles than is included in this chapter have been studied
and explored, however only the ones considered most relevant are included here.
Initially we were looking for scientific literature related to similarity of heteroge-
neous attributes, but we must concede that we were unable to find existing scien-
tific work related to this overall research topic. Instead we divided our search into
two sub-searches: similarity measures and transformation techniques—described
in Table 3.1. When we used the search terms in our searches, we also tried
combinations of the synonyms listed in the synonyms column. When we per-
formed the searches we also used different conjugations for the terms. Moreover,

25
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search terms RQ synonyms search engine
similarity mea-
sures

RQ3 (categorical ∨ mixed ∨ ordinal
∨ qualitative) ∧ (distance ∨ dis-
similarity) ∧ (metric)

Google Scholar,
CORE

transformation
techniques

RQ1 (ordinal ∨ numerical ∨ categor-
ical ∨ quantitative ∨ qualita-
tive) ∧ (translation ∨ mapping)
∧ (methods ∨ functions)

Google Scholar,
CORE

Table 3.1: Systematic literature review protocol.

most articles were found using the structured literature review protocol, but ad-
ditional articles were introduced to us by other means such as recommendations
by supervisors or found in article references.

3.2 Similarity Measures

The notion of similarity for continuous data is relatively well-understood, but
for categorical data, the similarity computation is not straightforward. It is of
utmost interest to us to calculate similarity between categorical data instances.
In this section we will summarize related work that has done this to some extent.

In their paper on a comparative evaluation of similarity measures for categori-
cal data, Boriah et al. [2008] employ 14 different data-driven categorical similarity
measures and compare their results on 18 different data sets. They aim to evalu-
ate the performance of these different similarity measures relative to each other
in the context of outlier detection. From this paper we will consider various cate-
gorical similarity measures and investigate whether any can be applicable to our
efforts. In short, this article investigates variations of the overlap similarity with
regards to frequency distribution and other statistical observations. Overlap sim-
ilarity is criticised in being too simplistic by giving all matches and mismatches
equal importance. They differentiate the various similarity measures into three
groups: (1) diagonal entries only, (2) off-diagonal entries only, and (3) both diag-
onal and off-diagonal entries. They finally conclude that they all perform better
in their own particular applications, and they make the observation that those
who often perform well in one application and bad in another have counterparts
with the opposite performance. Picking the ultimate categorical similarity mea-
sure is an optimization problem in itself, but nevertheless this paper can serve as
inspiration for future work for our project.

Next we take a look at an article that delves into the territory of a unified
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similarity metrics for clustering on mixed data [Cheung and Jia, 2013]. They note
it is nontrivial to perform clustering on mixed data composed of categorical and
numerical attributes, and continuing with that there is an awkward gap between
the similarity metrics for categorical and numerical data. In their paper they pro-
pose a unified clustering approach for both categorical and numerical attributes.
Their unified approach is simply a formalization of the categorical similarity in
the specific case of clustering where categorical occurrences are counted, and com-
bined with normal continuous distance measure. Their solution solves their case
elegantly, but in the context of our problem they lack any regard to mixed at-
tributes where the same variable is constituted of both categorical and numerical
values.

A normalized ordinal distance for classification problems are introduced by
Bahari and Van hamme [2014]. They look at existing application-driven solutions
and come up with a new application-independent performance metric for ordinal
classification problems—probabilistic-ordinal and partial-ordinal. They first in-
troduce the ordinal distance between arbitrary vectors in Euclidean space, before
proposing a new normalized ordinal performance metrics based on the introduced
ordinal distance. This new performance metric is conceptually simple, compu-
tationally inexpensive, and application-independent. They cover five existing
application-dependent solutions and note their shortcomings and disadvantages.
They look at Mean Zero-One Error :

Emzo =
1

M

M∑
m=1

1ŷm
6= ym (3.1)

where M is the total number of test set data points, ŷm is the predicted label
of the mth test set data point and ym is the true label of the mth test set data
point. They praise it for its simplicity, but note that it does not suffice because
it doesn’t consider the order of the categories.

Mean Absolute Error of Consecutive Interger Labels (ECIL
MA ) that transforms

both true and predicted labels into consecutive integers so that the dth column
of the label vector is 1 means then the transformed label is equal to d :

ECIL
MA =

1

M

M∑
m=1

| Ûm − Um | (3.2)

where Ûm is the transformed predicted label of the mth test set data point
and Um is the transformed true label of the mth test set data point. They note
this approach takes the order of categories into account, however it cannot be
applied to evaluate ordinal classification problems nor is the range of output
application-independent.
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They also look at Percentage of Correctly Fuzzy Classified Instances (PCFCI)
that has been applied to fuzzy classifiers. It is calculated as follows:

PCFCI =
100

M

M∑
m=1

(1− 1

2

D∑
d=1

| ŷm,d − ym,d |) (3.3)

But they note that it can be inferred from the above equation that the order
of categories is not considered here either.

Their fourth investigation is Average Deviation (EAD) that evaluates classi-
fiers in fuzzy ordered classification problems, calculated as follows:

EAD =
1

M

M∑
m=1

D−1∑
d=1

|
d∑

i=1

ŷm,i −
d∑

i=1

ym,i | (3.4)

This also suffers from being application-dependent and hence difficult to in-
terpret.

Lastly they review Averate Ranked Probability Scores (ERPS). A ranked prob-
ability to score the output probabilistic classifiers, defined as follows:

RPSY (Ŷ ) =
1

D − 1

D−1∑
d=1

(

d∑
i=1

ŷi −
d∑

i=1

yi)
2 (3.5)

and extended to measure performance of classifiers in ordinal classification
problems, partial-ordinal classification problems and probabilistic-ordinal classi-
fication problems using the following relation:

ERPS =
1

M(D − 1)

M∑
m=1

D−1∑
d=1

(

d∑
i=1

ŷm,i −
d∑

i=1

ym,i)
2 (3.6)

They note this approach may lead to erroneous interpretations due to a weak
conservative assumption that that the maximum of the nominator of ERPS is
M(D − 1).

Their proposed Normalized Ordinal Distance (EP
NOD) performance metric,

based on the notion of the Minkowski distance of order p as introduced in Sec-
tion 2.2.1 is defined as:

EP
NOD =

∑M
m=1 || Ym − Ŷm ||OD

p∑M
m=1 Ψp

Ym

(3.7)

where Ψp
Ym

is the upper bound of || Y − Ŷ ||OD
p for any possible Ŷ in its

defined range. ΨY is defined as follows:



3.3. TRANSFORMATION TECHNIQUES 29

Ψp
Y , max

t
|| Y − T ||OD

p (3.8)

where T = {t1,...,td,...,tD} is an arbitrary vector with the same specifications
of Ŷ mentioned in relation:

ŷm,j =

{
1, j = d

0, otherwise
(3.9)

In Ep
NOD ordinal distance is used to take the order of categories into account

while also normalizing along the largest possible ordinal. This normalization en-
sures the ordinal distance becomes trivial to interpret. They conclude by show-
ing this newly introduced ordinal distance’s performance and advantages using a
number of numerical examples.

These related articles give valuable insight into the similarity measures we
are performing, and also give context to our work in relation to the existing
scientific literature. We acknowledge that this is more specific than what our
novel introduction have use for, but nevertheless can be an interesting extension
of our scientific contribution for future work.

3.3 Transformation Techniques

In this scientific literature search we are looking for useful introductions or def-
initions of techniques that help us transform our ordinal categorical data into
numerical data. This was mentioned as trivial in several articles, but the lack of
any definition or explanation of how to implement it was surprisingly not present
in the literature we encountered. In contrast to the existing papers we investi-
gated, our use is very narrow and specific in that we want to learn an existing
transformation relationship between ordinal and numerical data when the do-
mains of both these spaces are already defined and populated. Nevertheless we
present here a few articles that research similar concepts of what we aim to do.

Harwell and Gatti [2001] show in their article how Item Response Theory
(IRT) can be used to rescale ordinal data to an interval scale. This is advan-
tageous because it allows arithmetic operations like addition/subtraction and
multiplication/division to be applied allowing for trivial distance computations.
They, like us, also commented on the observation that rescaling (transformation)
in the context of IRT is lacking in educational research. It is emphasized that
the complexity of applying IRT transformation models involves rigorous assump-
tions where failure to satisfy these assumptions makes using IRT inadvisable. To
rescale ordinal data using IRT it is necessary to perform the following four steps:

1. Identify an appropriate IRT Model
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2. Estimate Item Parameters

3. Estimate Proficiency Parameters

4. Assess Model-Data Fit

Their approach is complex and narrow in use, and goes to show that trans-
forming ordinal data is no trivial task. It does not cover our need because it
approaches the problem from a statistical stand point, rather than a machine
learning stand point that we require.

Zdravevski et al. [2015] propose transformation based on the Weight of Ev-
idence (WoE) parameter for nominal-to-numerical transformation. They also
note that transformations of nominal and categorical data are not extensively
researched, and they additionally highlight that the conventional way of utilizing
nominal features is by converting them into a binary membership vector. This is
expensive and complex because of the linear relationship between the size of the
resulting vector and the size of the domain of the categorical features. Addition-
ally, in the context of calculating distance in k-NN it is equivalent to performing
the simple overlap similarity. Their experiments show a reduction in memory
complexity, increase in accuracy and a shortening of execution time. Their ap-
proach is extensive and the reader is directed to their paper to implement this
transformation. In any case, they generalize the original WoE to overcome some
limitations that applies to it. Their solution is not applicable to our problem
because the numerical domain that the nominal values are transformed to has to
initially be empty. In addition they don’t take advantage of the order that are
present in our ordinal categorical features.



Chapter 4

Methodology

In this chapter we will present the architecture and design used to implement
our demo and to run our scientific experiments and analyses. In Section 4.1
the experimental plan will be unveiled, and towards the end of the section we
will talk about what behaviour and output we expect from our tests. We will
thoroughly explain which steps we have taken in each stage of our development,
as well as the decisions behind them. We will also include what experiments we
have planned, and which Research Questions the experiments aim to answer. In
Section 4.2 we will introduce the data we have used, all parameters, and how we
generated it from our initial data. Thereby, the experiment setup and procedures
will be explained in detail as to allow for these same experiments to be replicated
and repeated for scientific peer reviews.

4.1 Experimental Plan

Recall from the introduction in Chapter 1 that we are going to handle mixed input
and perform prediction in a working demo. We will implement transformation
methods to be able to compare attributes of different data types, and we will
compare various distance metrics, both categorical and continuous, with respect
to performance accuracy. In terms of similarity, we are looking at similarity in
relation to the retrieval step of CBR as mentioned earlier. We have decided to
measure similarity with the supervised learning algorithm k-NN because it is
simple to implement, straightforward to use, reliable in terms of performance,
and directly encompasses the concept of similarity (or rather distance, which
is considered the inverse of similarity). To take it a step further we have also
implemented a simple, yet effective algorithm to train feature weights to gain
insight into which attributes have more influence on the prediction, as to enable
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us to better make an educated decision for attribute selection when engaging in
data transformation and similarity measures.

Our first step was to implement k-NN and tune its parameters to achieve a
satisfactory level of accuracy. Initially we used a uniform weight distribution with
a combined weight of 1. With this simple setup as default, we looped through
plentiful of parameter combinations to observe different performance for indi-
vidual parameter configurations, as well as the accumulated performance with
respect to each parameter configuration. We tried out odd k -values ranging from
1 to 19, 5 different distance functions, and 6 different voting methods. Note
that we only chose odd k -values as to guarantee no ties when voting. This of
course only applies because our target class is binary. A sampling of the top per-
forming parameter configurations can be observed in Table 4.11 and Table 4.2.
With this information we went for some tuned parameters that are empirically
more accurate (although the performance variations were minimal) before pro-
ceeding to training weights to learn which attributes have a higher significance
with the chosen parameters. Keep in mind that we perform this on the original
quantitative data set so that the achieved performance are considered to be the
potential accuracy for when we perform similar tests on our diluted data2 in our
final experiments. Contrary to normal procedure, we employ leave-one-out cross-
validation during our various iterations of preparation and experiments. This is
because k-NN is an exception to the general workflow for building supervised
machine learning models. This is to say k-NN is not trained, rather all the data
is kept and used at run-time. The model created by k-NN is just the available
labeled data placed in a metric space, unlike traditional machine learning models
where there is a training step when building the model. After this we generated
the new data set to be used in our experiments by using a fuzzy logic approach
when translating the numerical values into categorical values. Furthermore we
implemented and incorporated categorical similarity measures into our existing
distance measure, as well as transformation techniques to handle mixed data
types, and finally different similarity measure policies. Relevant parts of the final
code can be viewed and inspected in Appendix B.

With this approach we hope to get valuable insight into the overall success
of implementing a working demo for combined data types in accord with RQ2,
our second research question. This will be evaluated based on: (1) the overall
accuracy we achieve and the accuracy compared to our initial accuracy on the
original quantitative data, and (2) a conversation about observations, limitations
and considerations. Our first research question is already introduced and inves-

1Some performance metrics are omitted to fit the table, address Appendix A for further
reading.

2By ’diluted’ we mean that there is a loss in information contained by the data after preparing
and modifying it to simulate our mixed data.
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k voting distance correctly erroneously accuracy
11 uniform Euclidean 681 18 0.9742
9 uniform Euclidean 680 19 0.9728
13 uniform Euclidean 680 19 0.9728
15 uniform Euclidean 680 19 0.9728
3 majority Manhattan 679 20 0.9714

Table 4.1: Top 5 individual (unweighted) parameter configurations.

voting method accuracy
logarithmic 0.9644
inverse 0.9645
uniform 0.9649

distance accuracy
minkowski3 0.9627
minkowski2 0.9658
minkowski1 0.9660

k accuracy
9 0.9646
15 0.9648
19 0.9654

Table 4.2: Top 3 accumulated parameter configurations.
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tigated in Chapter 2.3, and RQ3 will be evaluated in our experiments based on
performance accuracy when comparing categorical vs numerical similarity mea-
sures. We will perform a series of experiments aimed to answer our research
questions, especially RQ2 and RQ3. Our experiments will consist of running
through multiple cycles of training (of both transformation methods and weight
training) and with different combinations of policies of similarity measures and
transformation methods. All three research question will be discussed accordingly
in the following chapter.

From our experimental results we expect the following. With respect to RQ2
we expect a significant drop in accuracy when carrying out our experiments on
the mixed data compared to measuring similarity using the k-NN algorithm on
the original quantitative data. We suspect the number of erroneous predictions
will more than double. But the overall accuracy will not be unacceptable. We
expect an accuracy for the prediction on the mixed data to lie somewhere between
80% and 90%. Regarding the performance of categorical vs numerical similar-
ity measures and the choice of similarity policy, we expect a significantly greater
performance when transforming to quantitative values, and using continuous sim-
ilarity measures. With this, we mean to say that between the different policies
we employ, the policy that favors the use of quantitative data and continuous
similarity measures in most cases will have the highest accuracy.

4.2 Experimental Setup

The original data set used is from the open UCI Machine Learning Repository
as introduced in Section 1.3. This data set consists of 699 instances of breast
cancer occurrences classified as either ’benign’ or ’malignant’. Each record has
11 attributes, one of which is the id number, 9 the feature variables, and the
last one is the class attribute (2 corresponds to benign, and 4 malignant). All
in numerical values, and the feature variables normalized between 0 and 10. In
Table 4.3 the attributes are listed and described in an orderly fashion. For a
data scientist the description column is not of immediate importance and can be
discounted, unless a particular interest or a profound curiosity is present in the
reader. The domain column is more relevant for the experiments we will run. In
any case the table as a whole gives insight into the data we are using.

For our purpose the data is required to be a mix of numerical and categorical
values. To achieve this we therefore generated a new data set from the original
one, simulating this through a clever algorithm using fuzzy set logic. First we
generated an entirely new data set consisting of only categorical values for the
feature variables. The algorithm we designed to do this iterated over each feature
variable of each record assigning it a generic categorical value (level0, level1,
level2, level3 ) according to a fuzzy rule depicted in Figure 4.1. Basically what
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attribute description domain
sample code number id number N
class binary target class stating benignity or

malignity
2, 4

clump thickness assesses if cells are mono- or multi-
layered

0 - 10

uniformity of cell size evaluates the consistency in size of the
cells in the sample

0 - 10

uniformity of cell shape estimates the equality of cell shapes and
identifies marginal variances

0 - 10

marginal adhesion quantifies how much cells on the outside
of the epithelial tend to stick together

0 - 10

single epithelial cell size relates to cell uniformity, determines if
epithelial cells are significantly enlarged

0 - 10

bare nuclei calculates the proportion of the number
of cells not surrounded by cytoplasm to
those that are

0 - 10

bland chromatin rates the uniform texture of the nucleus
in a range from fine to coarse

0 - 10

normal nucleoli determines whether the nucleoli are
small and barely visible or larger, more
visible, and more plentiful

0 - 10

mitoses describes the level of mitotic (cell repro-
duction) activity

0 - 10

Table 4.3: Attribute information of original data set.
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Figure 4.1: Fuzzy logic approach for translating data from numerical values to
categorical values.

the algorithm does is to translate the numerical value into the corresponding
categorical value of the box of which its numerical value lies within on the x-
axis. In the case of overlapping boxes a stochastic function determines which
categorical value the variable will take. That is, for each potential categorical
value a number between 0 and the y-value of the respective box is randomly
assigned, and the target categorical value is determined by the highest rolled
random number between the boxes. For instance if the value 2.2 were to be
translated to a categorical value (either ’level0’ or ’level1’), a number would
be randomly generated between 0 and 0.3 for level0, and likewise for level1 a
number would be generated randomly between 0 and 0.7. Repeating this example
would obviously result in a majority of ’level1’ translations, but there would
still occur some ’level0’ translations. Due to the inherited randomness, this is
deemed sufficient to encapsulate the messiness that our real world entails in our
generation of categorical values from numerical values. After generating this
data set of categorical values we combined the numerical and categorical data
sets to get a mixed one. This was done simply by choosing a ratio value, 0.5 in
our case, and randomly copying either the corresponding categorical value into
the original data set if a randomly generated number between 0 and 1 exceeded
our ratio value. The code snippet for this data translation can be viewed in
Appendix B.

Our experiments were built around testing different parameters configura-
tions, transformation techniques and similarity measure policies to perform clas-
sification and determine the strength and effectiveness of said variations by our
performance measures. The steps we took in the process of conducting our ex-
periments were as follows:

1. Train weights for each parameter configuration.

2. Select parameter configurations.
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k-value 5, 11
voting method new standard

continuous distance metric manhattan, euclidean
categorical similarity measure overlap

Table 4.4: The different parameter configurations used in our tests.

3. Run our k-NN classification algorithm using the leave-one-out method with:

• Different transformation methods

• Different similarity measure policies

4. Collect results and repeat from Step (2) with new parameter configurations.

In the first step we trained the feature weights for each of the parameter
configurations mentioned in Section 4.1 on the original quantitative data. This
was done by iteratively adjusting each attribute weight and performing classi-
fication on the data set until a performance peak was found, similarly to how
our Incremental Step transformation method works. As weight training is not
the focus of this project this approach was deemed adequate even though this
method could only guarantee a local maximum. This almost halved the number
of errors across the different parameter configurations. One would think that the
attribute weights across different parameter configurations would tend to gravi-
tate towards similar weight distributions—to an actual objective importance of
each variable. But it was interesting to see how attributes with high and low
importance for one parameter configuration could swap for the next. We note
that this can be because of overfitting (due to a relative small number of data
records), that our simple k-NN algorithm doesn’t capture the proper causation
that determines the class, or any other unforeseen cause.

In step two we chose the best performing parameter regarding the voting
method; namely ’new standard’, the competing top performing continuous dis-
tance metrics; Manhattan and Euclidean distance, and finally the top performing
k-value of 11. In k-NN, choosing a too low k -value may result in overfitting, and
likewise a too high k -value likely results in underfitting. The rule of thumb is
to be in the ballpark of log(samplesize), and the k -value we found to be best
coincides with this. Overfitting and underfitting in k-NN also depends on the
level of noise in samples and number of classes. In retrospect we also ran the
experiments on the k -value of 5 to get some variation over this parameter as well.
When we ran our tests we made sure to use the particular weights trained for
the parameter configuration in question as to have an equal playing field when
comparing results up against each other. The parameter configurations we used
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in our tests can be seen in Table 4.4. Note that we needed a way to convert the
categorical similarity measure to a distance metric (to be compatible with the
distance computation in k-NN). Normally this is done by the self-explanatory
Formula 4.1.

similarity =
1

1 + distance
(4.1)

Although this has the inherit inconvenience that calculating the distance from
a similarity of 0 is beyond the bounds of possibility because of division by zero.
However, since our algorithm measures the distance of each attribute indepen-
dently, our conversion from similarity to distance is reasonably done by exploiting
the property that our attributes are normalized between 0 and 10. Formula 4.2
and Formula 4.3 below encapture this:

similarity = 1− distance

10
(4.2)

distance = 10(1− similarity) (4.3)

In this implementation the similarity, that is 1 for matches and 0 for mis-
matches, is correctly translated into minimum distances of 0 for similarity values
of 1 and maximum distances of 10 for similarity values of 0. Following, our sim-
ilarity measure assign a similarity value between two data instances X and Y
belonging to the data set as follows:

S(X,Y ) =

d∑
k=1

wkSk(Xk, Yk) (4.4)

Here S is the similarity function, X and Y are the data instances, d the data
variables, wk is the attribute weight for the k th variable, and X k and Y k are the
k th variable for the data instances X and Y, respectively.

For step three we simply ran the k-NN classification algorithm according to the
different parameter configurations in Table 4.4 on the techniques in Table 4.5 that
we are comparing with respect to the research questions. The explanations for the
different similarity measure policies can be seen in Table 4.6. For our proposed
transformation method Incremental Step we trained the transformation method
on each individual parameter configuration to get a tailored mapping table with a
customized and optimized performance. The cycle of our experimental procedure
is depicted in the flowchart in Figure 4.2.
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similarity measure policy all cont, mixed cont, mixed cat, all cat
transformation method incremental step

Table 4.5: The different techniques we are comparing against each other.

data types
policy

all cont mixed cont mixed cat all cat

both continuous
quantitative
measure

quantitative
measure

quantitative
measure

qualitative
measure

mixed types
quantitative
measure

quantitative
measure

qualitative
measure

qualitative
measure

both categorical
quantitative
measure

qualitative
measure

qualitative
measure

qualitative
measure

Table 4.6: Explanation for the different similarity measure policies we test.

Figure 4.2: An overview of the procedural flow in our experiments.
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Chapter 5

Results and Discussion

In this chapter we will present the results in an orderly way, visualized with
graphical tools, and make statistical observations in Section 5.1. We will evaluate
said results and share some thoughts in Section 5.2, and finally discuss merits
and limitations of our work and give remarks to our results with the research
questions in mind in Section 5.3.

5.1 Results

In our work we have used a data set of clinical breast cancer diagnostic cases. In
this data set there were two classifications we were predicting, namely malignant
and benign cases of breast cancer. There were 241 and 458 instances of each
class, i.e. malignant and benign respectively—totaling 699 instances as shown
in Table 5.1. As can be seen in the same table, this makes roughly 1/3 of the
instances malignant and 2/3 benign. This is a circumstantially fair distribution
in terms of class representation.

Furthermore, we ran our classification algorithm to predict these classes com-
paring categorical against continuous similarity measures using different policies

instances percentage
benign 458 65.5%
malignant 241 34.5%
total: 699 100%

Table 5.1: Breast Cancer data set class distributions.
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k cont policy cor err acc pre rec f-1
5 min1 all cont 675 24 .966 .972 .976 .974
5 min1 all cat 659 40 .943 .947 .967 .957
5 min1 mix cont 655 44 .937 .935 .972 .953
5 min1 mix cat 640 59 .916 .905 .974 .938
5 min2 all cont 674 25 .964 .972 .974 .973
5 min2 all cat 649 50 .928 .936 .956 .946
5 min2 mix cont 658 41 .941 .948 .963 .956
5 min2 mix cat 644 55 .921 .909 .978 .942
11 min1 all cont 680 19 .973 .972 .987 .979
11 min1 all cat 652 47 .933 .938 .961 .949
11 min1 mix cont 648 51 .927 .936 .954 .945
11 min1 mix cat 617 82 .883 .918 .902 .910
11 min2 all cont 673 26 .963 .974 .969 .972
11 min2 all cat 661 38 .946 .957 .961 .959
11 min2 mix cont 668 31 .956 .967 .965 .966
11 min2 mix cat 650 49 .930 .927 .969 .948

Table 5.2: Results of prediction, comparing different similarity measure policies
on different parameter configurations.

to elect in which cases we used which similarity measures. As covered in Chap-
ter 4, this was done with different parameter configurations in order to compare
performance under different circumstances. Our main results are listed in Ta-
ble 5.2. In this table the header labels are the following labels shortened (in
order): k-value, continuous similarity measure, similarity measure policy, (N◦

of) correctly classified instances, (N◦ of) erroneously classified instances, accu-
racy, precision, recall, and f1-score. Also, min1 and min2 stands for Minkowski1
(Manhattan distance) and Minkowski2 (Euclidean distance). For the meaning
of the terms in the pol (similarity measure policy) column, refer to Table 4.6 in
Chapter 4.2. For all of these tests we used the voting method ’new standard’, and
the Overlap categorical similarity measure. The Incremental Step transformation
method is used across the board. These techniques were introduced in Chapter 2.
From Table 5.2 it can be seen that the similarity policy ’all cont’ performs better
on all accounts except where, surprisingly, ’mixed cat’ has a higher performance
score with regards to the recall measure when the parameter distribution is k -
value = 5 and the Euclidean distance is used.

In Table 5.2 the results are very dense and it is hard to immediately and easily
extract useful information. Therefore a bar graph that simplifies the results and
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Figure 5.1: Bar graph visualizing error distributions.

visualizes the performance can be seen in Figure 5.1. Since the number of erro-
neously classified instances is small relative to the total number of instances, we
are showing the number of erroneously classified instances to better represent the
relative performance difference. The results are grouped into four groups, each
group showing the performance for a unique parameter combination. The red,
pink, blue, and green column indicate the number of errors for the All Continu-
ous, All Categorical, Mixed Continuous, and Mixed Categorical similarity measure
policy, respectively (from left to right). From this graph it can be observed with
respect to accuracy that: (1) the All Continuous similarity measure policy is
performing better than all the others, and (2) the Mixed Categorical similarity
measure policy performs worst within each individual group. It can also be seen
that even the worst performance of the All Continuous similarity measure policy
performs better than the best performing non-All Continuous similarity measure
policy among all groups.

In Figure 5.2 we have separately visualized the four different performance
measures: accuracy, precision, recall, and f1-score of the similarity measure poli-
cies across the parameter configurations. Figure 5.2a shows the accuracy, Fig-
ure 5.2b the precision, Figure 5.2c the recall, and Figure 5.2d the f1-score. All
these graphs seem to reflect each others behaviour, except for the recall graph
where the Mixed Categorical similarity measure policy suddenly exhibits some
unusual characteristics compared to the other three graphs. Namely it is shar-
ing the top performance with the All Continuous similarity measure policy, until
suddenly it drops momentarily for the parameter configurations k -value = 11 and
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policy
performance

correct error accuracy precision recall f1-score

all cont 675.5 23.5 0.9665 0.9725 0.9765 0.9745
all cat 655.25 43.75 0.9375 0.9445 0.9613 0.9528
mixed cont 657.25 41.75 0.9403 0.9465 0.9635 0.955
mixed cat 637.75 61.25 0.9125 0.9148 0.9558 0.9345

Table 5.3: Mean performance for the different similarity measures policy.

Minkowski1.

Following we have computed the mean performance for each of the similarity
measure policies by the accumulated parameter configurations. This is shown in
Table 5.3. It can be seen in this table that the mean performance of each similarity
measure policy is strictly better or strictly worse than their counterparts across
all performance measure. Namely:

all cont > mixed cont > all cat > mixed cat (5.1)

Furthermore, this is neatly visualized in Figure 5.3. Here each performance
metric is grouped together and compared between each similarity measure policy.

5.2 Evaluation

We had a data set with 699 classified instances of breast cancer occurrences.
As Table 5.1 shows there is an acceptably even distribution of classes with 241
instances being classified malignant and 458 instances classified benign. With this
fairly even class distribution it is not possible to have one class poorly classified
without this being reflected in the plain accuracy performance metric. In general
for medical prediction the recall performance measure is the most important,
because it is the measure that tells us how many of the patients with the sickness
we actually are able to correctly identify. Thus allowing for further testing if
many healthy people also got classified with the sickness. Recall alone can be
misguiding on its own in the case all instances are classified as malignant, because
then the recall would actually be 100% even though the prediction algorithm gives
absolutely no useful new information. That’s why recall should be observed in
tandem with the f1-score. However, as our choice of data set is arbitrary and we
only wish to academically measure the objective usefulness regardless of which
data set is used, we will mostly consider the accuracy score together with the
f1-score to ensure no class predictions are unevenly bad.
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 5.2: Accuracy, Precision, Recall, F1-score of results over the different
parameter distributions.
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Figure 5.3: Bar graph visualizing mean performance.

In the graph in Figure 5.1 the error distribution is shown across the four pa-
rameter configurations. As mentioned in Section 5.1 the All Continuous similarity
measure policy compares better, and the Mixed Categorical similarity measure
policy compares worse, for each parameter configuration grouping. If we cal-
culate the mean and variance over the parameter configurations as shown in
Table 5.4, we see that the variance for the parameter configuration k -value = 11
and the Manhattan distance is less stable than the other parameter configura-
tions. At the same time, the opposite behaviour is exhibited by the Euclidean
distance for the same k -value. This indicates that with a higher k -value the
performance fluctuates more depending on the continuous distance metric used.
This is an interesting observation as Minkowski1 (Manhattan) distance places
equal importance on attribute distances, while Minkowski2 (Euclidean) punishes
when individual attributes have a greater distance. This indicates that the high
variance mentioned earlier can be caused by imprecise distances resulting from
an inaccurate transformation method. Thus, inaccurate distances that get ab-
normally large are not properly punished by the Manhattan distance. This is
more evident for higher values of k because more nearest neighbors are included
that increases the chance of including these abnormalities. The same behaviour
is seen for k -values of 5, but on a much smaller scale. This is of course merely
speculations—can be correlation and not causation.

In Table 5.5 it can be seen that the All Continuous similarity measure policy
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k distance mean variance
5 minkowski1 41.75 155.2
5 minkowski2 42.75 130.2
11 minkowski1 49.75 498.7
11 minkowski2 36 74.5

Table 5.4: Mean and variance over
parameter configurations.

sim. meas. policy mean variance
all continuous 23.5 7.25
all categorical 43.75 24.19
mixed continuous 41.75 51.69
mixed categorical 61.25 156.19

Table 5.5: Mean and variance over
similarity measure policy.

outperforms the other similarity measure policies. Following, in terms of mean
accuracy performance we have All Mixed Continuous, All Categorical, and lastly
Mixed Categorical. This is illustrated in the first group of the graph in Fig-
ure 5.3. The same order is also evident for the other performance measures as
can be seen in the same graph. It seems that the similarity measure policy that
favors transformation to numerical values to then perform continuous similarity
measure tends to have a better performance, but the two worst policies contra-
dict this tendency—namely All Categorical and Mixed Categorical. Although
Mixed Categorical uses continuous similarity measures for when both instances
are numerical, it still is outperformed heavily by All Categorical that translates
both numerical values into categorical ones before performing categorical simi-
larity measures on them. So if the apparent rule was that the preference is to
always use categorical similarity measures or always use continuous similarity
measures on homogeneous values, then All Categorical should have scored higher
than Mixed Continuous. That is not the case either. The performance of both
All Categorical and Mixed Continuous are very close to each other, and which
performs better actually depends on the parameter configuration.

From the tendencies of the performance mean in Table 5.5 there are two domi-
nant behaviours that can be drawn: (1) is that continuous similarity measures are
preferred to categorical similarity measures, and (2) not translating homogeneous
values is also preferred. This explains the similar performance of All Categorical
and Mixed Continuous because they both satisfy one of the behaviours that are
preferred. This can be seen in Table 5.6. In this matrix better performance is
toward the upper left corner, and worse performance is toward the lower right
corner.

This behaviour is also clearly visible in three of the four performance measures
graphed in Figure 5.2. Figure 5.2a, Figure 5.2b, and Figure 5.2d all clearly show
All Continuous as the top performer, All Categorical and Mixed Continuous
with a similar performance, and Mixed Categorical with the worst performance.
Figure 5.2c exhibits odd behaviour for the Mixed Categorical measure. This shows
that for three of the four parameter configurations Mixed Categorical performs
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Table 5.6: Matrix of preferred behaviour.

on par with All Continuous with regards to classifying benign cases as benign.
It is hard to imagine that it boils down to coincidental randomness, but at the
same time the behaviour depicted in Table 5.6 is evident for three out of the
four parameter configurations. What makes this even more bizarre is that for the
fourth parameter configuration, it actually drops down to performing significantly
worse than all three other policies. This odd behaviour directly contradicts the
preferred behaviour observation in Table 5.6 we drew from the results in Table 5.5.
However as seen in Figure 5.3, recall is still the worst performer on average for
Mixed Categorical as well because the recall performance drop for one of the
parameter configurations is so substantial.

5.3 Discussion

The evaluation of our results demonstrate that the All Continuous similarity
measure policy clearly yields the best performance. Our initial expectations,
mentioned in Section 4.1, that the similarity measure policies that prefer con-
tinuous similarity measures would turn out superior was only partially correct
though. While the absolute strongest method was All Continuous, the All Cate-
gorical performed better than Mixed Categorical even though the Mixed Categor-
ical employs continuous similarity measures for homogeneous numerical values.
We also said we expected the number of errors to more than double. In Table 5.7
we list the number of errors on the quantitative vs mixed data set with regards
to the same parameter configurations. We see that on two accounts the number
of errors more than doubled, although surprisingly just barely. For the other
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k cont. sim. measure quantitative data set mixed data set
5 Minkowski1 14 24
5 Minkowski2 12 25
11 Minkowski1 11 19
11 Minkowski2 12 26

Table 5.7: Errors with quantitative data against mixed data.

two parameter configurations the number of errors did not double, although on
all four accounts the number of errors was very close to doubled. The pattern
here is that with regards to relative performance between quantitative data and
mixed data, the Minkowski1 distance has a percentagewise smaller increase in
number of errors compared to Minkowski2 distance. Our final prediction was
that the accuracy would fall to between 80% and 90% on the mixed data set.
Although this was a fairly uninformed estimate, we are positively surprised to see
that we achieved an average accuracy of a whopping 96.7% for All Continuous.
The average of all the similarity measure policies were all above 90% as seen
in Table 5.3. Only in one individual case, which can be seen in Table 5.2, did
the accuracy drop below 90%, and that was for the Mixed Categorical similarity
measure policy for the parameter configurations: k -value = 11 and Minkowski1
distance. From Table 5.3 it can be calculated that the number of errors of All
Continuous is approximately 44%, 46% and 62% lower than the number of errors
for respectively Mixed Continuous, All Categorical and Mixed Categorical.

There are a few limitations to our work. In our attempt to compare similarity
measures we used a simple, but time consuming classification algorithm that
limited the number of test runs we could afford to carry out. On a similar note our
solution has very many parts that could be tweaked and tuned to empirically test
more variations—each part with considerably complex optimisation challenges.
Lastly, we used an nominal approach for the categorical similarity measure where,
for our data set, a ordinal approach could be used. With this we didn’t fully take
advantage of the ordinal property of our data, however this was compensated with
our transformation method that learned this ordinal relationship in the data. In
our experiments it is also a considerable challenge to identify in which of the
many parts in our implementation there exists a potential for improvement. For
instance if we employed an unsuitable categorical similarity measure, it could
negatively impact the validity of our results. Taking all this into account, we are
nevertheless satisfied that our efforts have introduced a novel problem area into
the scientific community where there now is a lot of potential for advancements.
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5.3.1 Research Questions

Lastly we will conclude this chapter by summarizing and commenting our findings
in the context of our Research Questions.

Research Question 1 What transformation techniques exist to handle input
parameters of both quantitative and qualitative form?

Because of the novelty of the problem we are working with, useful techniques
in existing research were not found. We accept this failure to implement multiple
transformation techniques, but leave this topic for future work in this field. We
did however define a simple working technique that got the job done—that can
be used as a basis or comparison for future alternative techniques.

Research Question 2 How can suitable techniques be implemented in a work-
ing demo that accepts and handles input parameters of both quantitative
and qualitative form?

We have employed various techniques including continuous and categorical
similarity measures, and different similarity measure policies to implement a
working demo – with surprisingly acceptable results – that handles mixed data
types. We implemented a weighted k-NN classification algorithm that utilizes
either Manhattan and Euclidean distance with the Incremental Step transforma-
tion method to achieve a staggering 96.7% accuracy for mixed, heterogeneous
data.

Research Question 3 How do techniques for using categorical vs numerical
measures, based on the training data, compare with respect to performance
differences?

As reported in Section 5.1 and Section 5.2 we found that the All Continu-
ous similarity measure policy clearly outperforms the alternatives with regards
to either of the performance measures accuracy, precision, recall, and f1-score.
In Table 5.6 we speculate which behaviour is preferred with regards to similar-
ity measure policy. This was shown with both the Euclidean distance and the
Manhattan distance compared to the Overlap similarity. The average number
of errors were reduced by 44% - 62% for the All Continuous similarity measure
policy depending on which alternate policy it is compared to.



Chapter 6

Conclusion

In this chapter our study is concluded by summarizing our contributions and
proposing future work. Section 6.1 lists our contributions in the research area of
similarity measures on heterogeneous attributes, while in Section 6.2 we propose
the natural next steps to further advance the research field we have been working
in.

6.1 Contributions

Our overarching contribution has been the introduction of a novel area of re-
search into the scientific community. Although our study has only been of a
shallow nature with regards to the different sub-areas it has touched upon, we
are confident our contributions constitutes a meaningful initial step on uncharted
territory. Our main contributions are listed below:

• We have introduced a novel research problem in this respective field, par-
ticularly in the context of similarity measures in CBR. However, also ap-
plicable outside the scope of CBR.

• We have built a working demo as a proof of concept with respect to similar-
ity measures on data with heterogeneous attribute types by transforming
between categorical and numerical values.

• Finally we have evaluated and compared performance of different strategies
that uses categorical contra continuous similarity measures when confronted
with mixed data types on classification tasks.
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6.2 Future Work

With regards to future work in the domain of this novel problem area, there is
frankly a lot of potential advancements waiting to be made. We were surprised
to find so little existing literature on this specific topic, and because of this
we were unable to meet our initial expectations that we had for this project.
Consequently we invite other researchers and scientists to continue exploring this
topic. Specifically we propose the three directions listed below as natural next
steps:

1. We hope our contributions will motivate further investigation, implemen-
tation and comparisons of transformation techniques to allow for mutual
translation between categorical and continuous data. Both for nominal and
ordinal data types. A minor improvement with regards to the transforma-
tion is to consider the merging of categories that have negligible impact over
the classifications. However, this should not be dependent on the parameter
configurations.

2. We welcome iterations of improvements to our proposed Incremental Step
transformation method.

3. Because of the novelty of our work, we encourage the generation of more
empirical data by running further experiments with new categorical/contin-
uous similarity measures, weight learning methods, and especially on other
machine learners than k-NN, etc.
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Appendices

A Detailed results and data

Top and bottom 10 unweighted parameter configurations

All the 300 parameter configurations that were tested are too many to include,
but below the top 10 and bottom 10 (in terms of accuracy) is shown.

k voting distance correct false accuracy precision recall f1-score

11 uniform minkow2 681 18 0.9742 0.9846 0.9760 0.9803
9 uniform minkow2 680 19 0.9728 0.9824 0.9760 0.9792
13 uniform minkow2 680 19 0.9728 0.9824 0.9760 0.9792
15 uniform minkow2 680 19 0.9728 0.9824 0.9760 0.9792
3 majority minkow1 679 20 0.9714 0.9824 0.9738 0.9781
3 inverse minkow1 679 20 0.9714 0.9824 0.9738 0.9781
3 logarithmic minkow1 679 20 0.9714 0.9824 0.9738 0.9781
5 uniform minkow1 679 20 0.9714 0.9803 0.9760 0.9781
7 inverse minkow2 679 20 0.9714 0.9803 0.9760 0.9781
7 uniform minkow1 679 20 0.9714 0.9803 0.9760 0.9781

3 standard minkow9 663 36 0.9485 0.9587 0.9629 0.9608
3 standard minkow10 663 36 0.9485 0.9587 0.9629 0.9608
3 new standard minkow9 663 36 0.9485 0.9587 0.9629 0.9608
3 new standard minkow10 663 36 0.9485 0.9587 0.9629 0.9608
5 new standard minkow9 663 36 0.9485 0.9587 0.9629 0.9608
5 new standard minkow10 663 36 0.9485 0.9587 0.9629 0.9608
9 new standard minkow9 663 36 0.9485 0.9587 0.9629 0.9608
9 new standard minkow10 663 36 0.9485 0.9587 0.9629 0.9608
11 new standard minkow9 663 36 0.9485 0.9587 0.9629 0.9608
11 new standard minkow10 663 36 0.9485 0.9587 0.9629 0.9608
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’minkow’ is short for the minkowowski distance.

B Python code

Code snippet for Fuzzifier for categorical data generation

def f u z z i f i e r ( va lue ) :
v = int ( va lue )
c l a s s e s = [ ’ th in ’ , ’ normal ’ , ’ t h i ck ’ , ’ very th i ck ’ ]
c l a s s 1 = random . uniform (0 , min(1 , max(0 , 1 . 5 − v ) ) )
c l a s s 2 = random . uniform (0 , min(min(max(−1.5 + v , 0) , 1 ) ,

max(min ( 5 . 5 − v , 1 ) , 0 ) ) )
c l a s s 3 = random . uniform (0 , min(min(max(−4.5 + v , 0) , 1 ) ,

max(min ( 8 . 5 − v , 1 ) , 0 ) ) )
c l a s s 4 = random . uniform (0 , min(max(−7.5 + v , 0) , 1 ) )
winner = max( c l a s s 1 , c l a s s 2 , c l a s s 3 , c l a s s 4 )
i f winner == c l a s s 1 :

return c l a s s e s [ 0 ]
e l i f winner == c l a s s 2 :

return c l a s s e s [ 1 ]
e l i f winner == c l a s s 3 :

return c l a s s e s [ 2 ]
else :

return c l a s s e s [ 3 ]

Code snippet for Incremental Step transformation learner

def l e a rn mapp ing s t ruc tu re ( ) :
global mapping table , k , parameters

for record in b r e a s t c a n c e r d a t a :
for index , a t t r i b u t e in enumerate( record [ 2 : ] ) :

i f type ( a t t r i b u t e ) == str and a t t r i b u t e not in \
mapping table [ 0 ] . get (

f i l e r e a d e r . headers [ index + 2 ] , [ ] ) :
mapping table [ 0 ] [

f i l e r e a d e r . headers [ index + 2 ] ] [
a t t r i b u t e ] = 5 .0

min step = 0 .1
c a t e g o r i e s o r d e r e d = sorted ( l i s t (enumerate( weights ) ) ,
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key=lambda x : x [ 1 ] )

parameters [ ’ p o l i c y ’ ] = ’ a l l c o n t ’
for v a r i a b l e in c a t e g o r i e s o r d e r e d :

v a r i a b l e = f i l e r e a d e r . headers [ v a r i a b l e [ 0 ] + 2 ]
for domain in mapping table [ 0 ] [ v a r i a b l e ] :

print ( v a r i a b l e + ’ : ’ + domain )
p o s s i b l e s = [ f loat ( i ) for i in range ( 1 1 ) ]
for x in p o s s i b l e s :

mapping table [ 0 ] [ v a r i a b l e ] [ domain ] = x
f a l s e = 0
for t e s t o b j e c t in b r e a s t c a n c e r d a t a :

p r e d i c t i o n = k n e a r e s t n e i g h b o r (
b r ea s t cance r da ta , t e s t o b j e c t )

i f p r e d i c t i o n != t e s t o b j e c t [ 1 ] :
f a l s e += 1

p o s s i b l e s [ int ( x ) ] = f a l s e
print ( p o s s i b l e s )
new candidates , f a l s e s = [ i for i in

range ( len ( p o s s i b l e s ) )
i f
p o s s i b l e s [ i ] == min(

p o s s i b l e s ) ] , [
p o s s i b l e s [ i ]
for i in
range ( len (

p o s s i b l e s ) )
i f
p o s s i b l e s [

i ] == min(
p o s s i b l e s ) ]

f i n a l c a n d i d a t e s = [ ]
for index , candidate in enumerate(

new candidates ) :
mapping table [ 0 ] [ v a r i a b l e ] [

domain ] , f a l s e = candidate , f a l s e s [
index ]

lowest , turned , l i m i t h i t , step , accumulated step adjustments , l i m i t s = −1, False , False , 1 . 6 , 1 , [ ]
while len ( l i m i t s ) < 2 :

o l d v a l u e = mapping table [ 0 ] [ v a r i a b l e ] [
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domain ]
mapping table [ 0 ] [ v a r i a b l e ] [

domain ] = min(max(0 ,
mapping table [ 0 ] [

v a r i a b l e ] [
domain ] + step ) ,

10)

n e w f a l s e = 0
for t e s t o b j e c t in b r e a s t c a n c e r d a t a :

p r e d i c t i o n = k n e a r e s t n e i g h b o r (
b r ea s t cance r da ta , t e s t o b j e c t )

i f p r e d i c t i o n != t e s t o b j e c t [ 1 ] :
n e w f a l s e += 1

print (
mapping table [ 0 ] [ v a r i a b l e ] [ domain ] )

print ( n e w f a l s e )

i f n e w f a l s e > f a l s e :
mapping table [ 0 ] [ v a r i a b l e ] [

domain ] = o l d v a l u e
i f not turned :

step , accumulated step adjustments = −1 ∗ s tep ∗ accumulated step adjustments , 1
turned = True

else :
l i m i t h i t = True
i f abs ( s tep / 2) < min step :

i f f a l s e < l owest :
l i m i t s . pop ( )

l i m i t s . append (
mapping table [ 0 ] [

v a r i a b l e ] [ domain ] )
lowest , step , accumulated step adjustments = f a l s e , −1 ∗ s tep ∗ accumulated step adjustments , 1
l i m i t h i t = Fal se

else :
step , accumulated step adjustments = step / 2 , accumulated step adjustments ∗ 2

else :
i f not turned and n e w f a l s e < f a l s e :

turned = True
i f abs ( s tep / 2) < min step or \
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mapping table [ 0 ] [ v a r i a b l e ] [
domain ] == 0 or \

mapping table [ 0 ] [ v a r i a b l e ] [
domain ] == 10 :

turned = True
i f f a l s e < l owest :

l i m i t s . pop ( )
l i m i t s . append (

mapping table [ 0 ] [ v a r i a b l e ] [
domain ] )

lowest , step , accumulated step adjustments = new fa l s e , −1 ∗ s tep ∗ accumulated step adjustments , 1
l i m i t h i t = Fal se

e l i f l i m i t h i t :
step , accumulated step adjustments = step / 2 , accumulated step adjustments ∗ 2

f a l s e = n e w f a l s e
f i n a l c a n d i d a t e s . append (

( f a l s e , l i m i t s . copy ( ) ) )

f i n a l c a n d i d a t e s , counter , min candidate = sorted (
f i n a l c a n d i d a t e s , key=lambda x : x [ 0 ] ) , 0 , 0

print ( f i n a l c a n d i d a t e s )
for cand in f i n a l c a n d i d a t e s :

i f cand [ 0 ] == f i n a l c a n d i d a t e s [ 0 ] [ 0 ] :
min candidate += ( cand [ 1 ] [ 0 ] + cand [ 1 ] [

1 ] ) / 2
counter += 1

min candidate /= counter

d i s t , min cand2 = 10 , None
for cand2 in f i n a l c a n d i d a t e s :

i f cand2 [ 0 ] == f i n a l c a n d i d a t e s [ 0 ] [ 0 ] :
i f abs ( ( cand2 [ 1 ] [ 0 ] + cand2 [ 1 ] [

1 ] ) / 2 − min candidate ) <= d i s t :
d i s t , min cand2 = abs ( ( cand2 [ 1 ] [ 0 ] +

cand2 [ 1 ] [
1 ] ) / 2 − min candidate ) , \

cand2 [ 1 ]

mapping table [ 0 ] [ v a r i a b l e ] [ domain ] = ( min cand2 [
0 ] +

min cand2 [
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1 ] ) / 2
print ( str (

mapping table [ 0 ] [ v a r i a b l e ] [ domain ] ) + ’ \n ’ )

for key in f i l e r e a d e r . headers [ 2 : ] :
for i in range ( 1 1 ) :

s m a l l e s t d i s t a n c e = None
for cat , va lue in mapping table [ 0 ] [ key ] . i tems ( ) :

i f abs (
i − value ) < s m a l l e s t d i s t a n c e or s m a l l e s t d i s t a n c e i s None :

mapping table [ 1 ] [ key ] [ i ] = cat
s m a l l e s t d i s t a n c e = abs ( i − value )

with open( ’ mapping . csv ’ , ’w ’ ) as new mapping f i l e :
new mapping f i l e . wr i t e (

str ( mapping table [ 0 ] ) . r e p l a c e ( ’ [{ ’ , ’ ’ ) . r e p l a c e (
’ } ] ’ , ’ ’ ) + ’ \n ’ )

new mapping f i l e . wr i t e (
str ( mapping table [ 1 ] ) . r e p l a c e ( ’ [{ ’ , ’ ’ ) . r e p l a c e (

’ } ] ’ , ’ ’ ) )
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