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Abstract

Social media services have seen an increase in unintended content, such as abusive
and hateful expressions. As a result, automatic detection and removal of such content
have become a vital task to reduce the number of inappropriate instances on online
platforms. In recent years, the field has proposed various advanced language models that
can be pre-trained on an unlimited amount of online text to obtain general language
understanding. The language models have already surpassed state-of-the-art in nearly all
language tasks tested so far, but the task of hate speech detection is still untested.

This thesis explores the effects of transferring knowledge from huge pre-trained language
models to classifiers undertaking the downstream task of separating offensive, hateful, and
normal language. Distinguishing hate speech form non-hate offensive language is found a
challenging task, as hate speech not always includes offensive slurs and offensive language
not always express hate. This thesis focuses on solving this task through three main
parts. First, a thorough literature review was carried out to obtain insights into feature
and model selection and also to investigate previous solutions to the task. Secondly, a
preliminary study was performed to experiment with different features and models and
in addition, to acquire baseline results from traditional machine learning approaches.
Finally, four deep learning systems based on the Bidirectional Encoder Representations
from Transformers (BERT) language model were implemented and tested against two
datasets containing tweets labelled as either “Hateful”, “Normal” and “Offensive”. The
results indicate that the attention-based models profoundly confuse hate speech with
offensive and normal language. However, the key finding from the experiments is that
the pre-trained models with either general or domain-specific language understanding
outperform state-of-the-art results in terms of accurately predicting hateful instances.
This finding demonstrates the massive potential of transferring knowledge from language
models, but more research in the field of hate speech detection is required to create a
practical usable system.
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Sammendrag

Sosiale internettjenester har sett en økning i uønsket innhold slik som fornærmende eller
hatefulle ytringer. Som et resultat har automatisk filtrering av slikt innhold blitt en
vesentlig oppgave for å redusere antallet upassende meldinger på nettplattformer. I løpet
av de siste årene har feltet presentert flere avanserte språkmodeller som kan trenes opp
med store mengder data for å oppnå generell språkforståelse. Disse modellene har allerede
utklasset tradisjonelle metoder på flere språkoppgaver, men har foreløpig blitt lite brukt
til å detektere hatytringer.
Målet med forskningen i denne oppgaven var å undersøke effektene av å overføre

kunnskap fra enorme, forhåndstrente språkmodeller, til klassifiserere som foretar seg
oppgaven å separere språk som kan være støtende, hatefullt eller nøytralt. Å separere
støtende og hatefulle ytringer på nett er sett på som en utfordrende oppgave ettersom
ikke all netthat innholder støtende ord og støtende meldinger heller ikke alltid ytrer
hat. Denne oppgaven fokuserer på å løse denne utfordringen gjennom tre hoveddeler.
Først ble en studie av relevant litteratur gjennomført for å få innsikt i egenskaper og
modeller brukt i tidligere løsninger. Deretter ble en forhåndsstudie gjennomført for å
eksperimentere med ulike egenskaper og modeller, samt samle resultater fra tradisjonelle
maskinlæringsalgoritmer. Til slutt ble fire systemer basert på språkmodellen Bidirectional
Encoder Representations from Transformers (BERT) implementert og testet med to
datasett som inneholdt tweets annotert som enten “Hateful”, “Normal” og “Offensive”.
Resultatene indikerer at modellene ofte forveksler hatytringer med støtende og normalt
språk. Det viste seg imidlertid at modellene er betydelig bedre til å nøyaktig klassifisere
hatefulle ytringer enn systemer fra tidligere forskning. Dette funnet demonstrerer det
massive potensialet som ligger i å overføre kunnskap fra språkmodeller, men det er likevel
behov for mer forskning innenfor feltet for å lage et system som er brukbart i praksis.
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1 Introduction

Social network platforms today are enormous, and billions of people are expressing their
opinions through them. In June 2018, Facebook reported that 2.23 billion active users
access their platform each month (Facebook, 2018). Twitter rarely share how many
tweets that are posted each day but in their last update (Twitter, 2014) five years ago,
they stated that 500 million tweets were posted every day. Managing unintended content
among all user-generated content online is a challenging task. Some of the biggest firms
invest heavily in automatic detection of abusive and offensive language, as well as hate
speech. In June 2017, Instagram announced a new tool against offensive language in
comments (Systrom, 2017). A year later, they upgraded this tool to filter comments that
attack a person’s appearance or character (Systrom, 2018). Google’s Jigsaw incubator has
developed a cutting-edge Application Programming Interface (API) called Perspective1

which gives text input a percentage of how likely it is to be perceived as toxic. However,
these and other existing tools share a common flaw of not distinguishing between offensive
and hateful language. One important reason to keep these two separate is that hate
speech is considered a felony in many countries. As a result, the companies behind the
platforms have in recent years received increasing pressure from legal instances to detect
and remove inappropriate content. The task of separating offensive and hateful language
has shown to be demanding and is not considered a solved problem. However, with the
recent scientific breakthroughs in the field and the concept of transfer learning, we can
take huge steps in the right direction. This thesis will focus on the task of distinguishing
offensive and hateful tweets by utilizing a pre-trained language model together with a
deep learning approach.

1.1 Background and Motivation

The majority of the tweets on Twitter or posts on Facebook are harmless and often
posted purposefully, but some of them can utter hatred towards a targeted individual or

1https://www.perspectiveapi.com
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1 Introduction

minority group and members. These posts are intended to be derogatory, humiliating
or insulting and are defined as hate speech by Davidson et al. (2017). Different from
offensive language, hate speech is usually expressed towards group attributes such as
religion, ethnic origin, sexual orientation, disability or gender (Founta et al., 2018b).
Although there is no formal or legal definition of hate speech, the field of research seems
to agree that the above descriptions are suitable when defining hateful language. Hate
speech is seen as a social problem that can have significant adverse effects as it easily
can be posted online and reach a large number of people. Hate speech is not a new
phenomenon, but the availability of social media can explain the increased use of hate
speech as it is a useful tool for spreading such speech.

Today, most of the online communities have different approaches for removing content
that violates their terms and conditions. They often depend on their users to report
disturbing content, which is then reviewed by moderators who decide if the content
should be removed or not. This manual approach scales poorly and is quickly becoming
infeasible as the amount of user-generated data grows larger every day. Although systems
that can detect unintended content automatically solve the scalability problem, it is
crucial that online communities preserve freedom of speech. This is one reason why
the separation between offensive and hateful language is crucial as not all instances of
offensive speech violate a platform’s terms and conditions.
The legal aspect the online communities face may be the most significant factor

why the field has received increased attention lately and why firms invest heavily in
automatic detection systems. There are different efforts from governments around the
globe when confronting the problem of hate speech. Some countries demand the removal
of disturbing content within a certain time limit while others have a very high threshold
before hate speech is considered a crime. However, online communities share the apparent
responsibility to keep their platforms safe and encourage civil interactions between users.
Offensive and hateful language can be difficult to distinguish due to the many nuances of
natural language, and many existing automatic detection systems merge the two forms.
To have a system that can detect pure hate speech in real-time as comments and posts
are posted to social network platforms is vital as such speech intimidates people and can
be discouraging for people who want to speak publically. Such a system can give great
value to companies trying to ensure safe environments on their platforms.

This thesis investigates whether transferring knowledge from the Bidirectional Encoder
Representations from Transformers (Devlin et al., 2018), or BERT for short, language
model has an effect when distinguishing hateful, offensive and normal language. BERT
is a colossal language model trained on some of the Internet’s largest available text

2



1.2 Goals and Research Questions

corpora. It can be fine-tuned with a domain-specific text corpus which may increase
the performance of the final model. BERT has shown state-of-the-art results in many
Natural Language Processing (NLP) tasks, including the competitive Stanford Question
Answering Dataset (SQuAD v1.1). This thesis will fine-tune the pre-trained BERT
language model with data containing hateful and offensive language and investigate if a
model with transferred knowledge can outperform the state-of-the-art in two accessible
datasets widely used in the field of hate speech detection.

1.2 Goals and Research Questions

Goal Investigate how to accurately detect and distinguish hateful, offensive, and normal
language.

The goal of this research is to improve the detection of true hate speech and to separate
it from offensive and normal language. With the concept of transfer learning and a
language model pre-trained on a large corpus, this may be done by fine-tuning the model
with domain-specific data and investigate how well the model can tell the difference
between hateful, offensive and normal language. The goal is set to be achieved through
theoretical literature studies, a preliminary study, and practical experiments as described
in the research questions below.

Research question 1 Which features and representations of text, as well as models, are
effective when detecting hateful, offensive, and normal language?

For effective hate speech detection, the choice of features and text representation, in
addition to model selection, is important. To gain insights into how to best make these
choices, a review of previous literature of related studies and a preliminary study will
be conducted. From this review, the findings will be thoroughly evaluated to gain an
understanding of which features, text representation, and methods that are most effective
when detecting hate speech. The survey and preliminary study will also investigate the
difference between offensive and hateful language to understand better how to separate
them in the experiments.

Research question 2 How well does a deep learning model based on a large pre-trained
language model distinguish between hateful, offensive, and normal language?

To possibly improve the current state of hate speech detection, the recently released
pre-trained language model BERT together with a deep learning model will be applied

3



1 Introduction

to the task of detecting hate speech. BERT is trained with two separate pre-training
tasks where each task inputs a vast amount of raw text data. This strategy has shown
remarkable results in many NLP tasks, though the task of hate speech detection is yet
to be thoroughly tested. The experiments designed to answer this question will use the
originally released BERT language models which are pre-trained on two huge corpora
to gain general language understanding. The experiments will investigate if the models
successfully can distinguish between hateful, offensive, and normal language.

Research question 3 What are the effects of further pre-training a language model with
hate speech corpora?

This research question is closely related to Research Question 2 and will explore the
effects of further pre-training the original BERT language models with raw text data
from the hate speech domain. The intention of this extended training is for the model to
gain more domain-specific language understanding and to possibly improve the overall
accuracy when separating hateful, offensive, and normal language.

1.3 Research Method

Several research methodologies were used to answer the research questions, as well as
the overall goal for the research in this thesis. For answering the first research question,
the research method followed an exploratory approach, namely, secondary research. A
qualitative analysis of previous research was conducted by reviewing existing literature in
the field of hate speech detection. This was to get theoretical insights into how existing
solutions try to solve the problem and to find relevant features and representations
of text that could be utilized in the experiments. The experiments were constructed
primarily to answer the second and third research question, with implementing and
testing a fine-tuned pre-trained language model on two popular datasets in the field of
hate speech containing offensive, hateful and normal language. However, the results
from the experiments were also be compared to already existing solutions’ results mainly
found in the literature review in Chapter 4 and in the preliminary study described in
Chapter 5. To sum up, the work in this thesis consisted mainly of exploratory research
with the intention of to gain experience and insights into how well pre-trained language
models can distinguish between hateful, offensive, and normal language.
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1.4 Contributions

The exploratory work conducted in this thesis contributes to the area of hate speech
detection. The experiments were designed to focus on separating hateful, offensive,
and normal language with the use of two popular hate speech datasets. The main
contributions can be listed as follow:

C1 A thorough literature review of existing studies focusing on transfer learning in the
field of hate speech detection.

C2 An overview of how to implement the BERT language model to a downstream task
such as hate speech detection.

C3 A preliminary study with baseline results on datasets separating between hateful and
offensive language.

C4 The implementation of two systems based on the BERT language model pre-trained
on a large corpora, as well as the implementation of two systems further pre-trained with
domain-specific data from BERT’s checkpoints.

C5 Experiments with the above-mentioned four systems on two hate speech datasets.

1.5 Thesis Structure

Chapter 2 introduces relevant technologies and methods used in the work of this thesis
or related work.

Chapter 3 presents various datasets used in related work and this thesis. It will mainly
focus on the two datasets used in the experiments.

Chapter 4 explores previous literature and gives an overview of existing related work in
the field of hate speech detection.

Chapter 5 gives a brief overview of a preliminary study. The study’s purpose was to
investigate how different features, representations, and machine learning models can
detect offensive, hateful and normal language.

Chapter 6 provides a detailed overview of the overall architecture of the implemented
system.

5



1 Introduction

Chapter 7 presents details around the experiments, including experimental plan, setup,
and results.

Chapter 8 evaluates the results obtained in the experiments and discusses the research
questions.

Chapter 9 lastly concludes the thesis and presents suggestions for future work in the
field of hate speech detection.
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2 Background Theory

This chapter consists of relevant theory within the fields of Natural Language Processing
NLP and Machine Learning, along with basic concepts of methods and techniques. It
will present the technology, architectures, tools, and libraries used in the thesis and in
the papers presented in the related work described in Chapter 4.

2.1 Transfer Learning

Humans are experts on transferring knowledge obtained from one task to another. For
instance, imagine you can play guitar, then you will use a lot of your knowledge about
playing guitar if you were to learn how to play bass. This is an inherent ability humans
have and use every day to easier encounter new tasks. Transfer learning in the field
of machine learning is something that has been around for many years and is used to
improve the performance of models drastically, for example, in computer vision. Even
in NLP, word embedding techniques like word2vec (Mikolov et al., 2013b) and GloVe
(Pennington et al., 2014) are examples of transfer learning. However, transfer learning in
NLP has not proven to improve the performance of models as much as in other areas of
machine learning.

A new task that improves learning through transferring knowledge from a related task
already learned, is utilizing the core concept of transfer learning. Figure 2.1 shows a
comparison between traditional machine learning and learning with transfer. In NLP,
for example, a language model trained on one or more tasks with a large corpus of
raw text can be fine-tuned to solve many of the subtasks in NLP. In this example, the
task used to train the language model is commonly referred to as source task(s) while
the target task is the task-specific problem to be solved. Torrey and Shavlik (2010)
propose three ways transfer learning may improve the learning rate of a model. Firstly,
the initial performance is higher at the start of the training due to the transferred
knowledge from the source task. Secondly, transfer learning may use less time to get fully
trained compared to models starting training from scratch. Lastly, the final achievable
performance of a model with transfer is higher than models without transfer. However,
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Different Task Source Tasks

Learning System Learning System Learning System Learning SystemKnowledge

(a) (b)

Target Task

Figure 2.1: Two different learning processes with (a) traditional machine learning and (b)
learning with transfer. Illustration from Pan and Yang (2010) with permission.

if the data used in the target task is very different from the data the source task was
trained on, then the overall learning may be worse. Transfer learning is undoubtedly
exciting, especially with the recent progress that shows it successfully applied to many
NLP tasks. This thesis will investigate previous solutions with transferred knowledge
and the effects of applying transfer learning to the task of hate speech classification.

2.2 Natural Language Processing

If you try to input raw text into a computer system, the result would probably not be as
you expected. This is because the raw text needs some processing and representation
for the computer to interpret it correctly. Natural Language Processing — or NLP for
short — is the field in computer science that presents methods and techniques for making
natural language readable and understandable for computers. This section will introduce
a few relevant theories and methods widely used in the field of NLP.

2.2.1 Refining Written Text

Textual communication between humans online tend to be mediocre in terms of gram-
matical and lexical correctness. Words are regularly misspelled, periods and commas are
omitted and sentences can be messy. This generally results in a lot of noise that makes it
complicated for the computer to extract the necessary information. This is why preparing
written text for representation is an important step in NLP. The most favored steps
in preprocessing written text are tokenization, stemming, lemmatization and removal
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of common words like “I” and “not”. The latter technique is referred to as removal of
stop-words and these terms are usually the most frequent in a document. They are
generally filtered out because to reduce the dimensionality of the vectors. Tokenization is
when text gets split into a sequence of characters, called tokens. In this process, certain
characters and symbols can be thrown away. A token can be any sequence of characters
like “me”, “dog” or “:-)” and a document is just a sequence of tokens. The goal of
stemming and lemmatization is to reduce different grammatical forms of a word to a
common base form. Stemming is using rules to reduce a word into its root form, e.g.
“buses” to “bus”. Lemmatization is using a dictionary to retrieve the base of a word,
commonly called a lemma. Stemmers and lemmatizers are built from many different
algorithms and rules, where some of the more well-known are the Porter (Porter, 1980)
and Lancaster (Paice, 1990) stemmers and the WordNet lemmatizer1. Tokens can further
be refined by converting them into lowercase, performing spell-checks and discarding
characters such as question or exclamation marks. All the above is done so the computer
more efficiently can create a good numerical representation used as input to machine
learning algorithms.

2.2.2 Representing Text

A vast number of different techniques can achieve numerical representation of unstructured
text documents. The main reason for this process is to make a group of tokens, commonly
called a document, mathematically computable. This section will present some of the
different ways to represent text numerically.

Vector Space Model

The Vector Space Model (VSM) is a traditional text representation model which is used
to compute similarities between documents. The main idea of this model is to construct
numerical vectors that can be compared in terms of their similarity by utilizing concepts
such as Cosine similarity. A popular VSM is the Bag of Words (BOW) model which
represents a set of every word appearing in a collection of documents. Each document
then gets represented by a set of terms and whether or not these terms occur in the
document. This representation uses binary vectors to represent a document, while other
forms of document representation count the occurrences of each term or using a weighting
form called Term Frequency-Inverse Document Frequency (TF-IDF). The TF-IDF model
is described in the next section. The BOW model is a common way to represent text as

1https://wordnet.princeton.edu/
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• D1: People say nothing is impossible, but I do nothing every day.

• D2: Every day I think about nothing.

Terms D1 D2
people 1 0
say 1 0
nothing 2 1
is 1 0
impossible 1 0
but 1 0
i 1 1
do 1 0
every 1 1
day 1 1
think 0 1
about 0 1

Figure 2.2: Bag of Words vector representation with two documents.

numerical vectors as it provides good accuracy and efficiency, as well as being simple to
implement. A clear disadvantage of this model is that it is not able to represent the word
order. This can result in two equal vectors representing two documents with a completely
different context as long as the same words appear in both. In NLP, a collection of
documents is commonly known as a corpus. As BOW represents each document by every
word in the corpus, sparse data with mostly zeros and vocabularies with potentially
millions of terms are possible scenarios for larger corpora. The latter scenario shows that
the BOW model faces scalability challenges. Figure 2.2 illustrates the BOW model on
two documents.

Term Frequency-Inverse Document Frequency

When analyzing documents, it is important to find keywords that can describe the subject
of the document. Havrlant and Kreinovich (2017) state that the TF-IDF heuristic is one
of the most widely used techniques for keyword detection in documents. The IDF part
of the weighting scheme was first presented by Spärck Jones (1972) as “term specificity”.
TF-IDF is a multiplication of two statistics. The first part is term frequency (TF), and it
represents how many times a word occurs in a specific document; hence it is an important
keyword for that document. However, if a term frequently appears in many documents,
this word might not be that distinguishing after all. Stop-words can be such terms. To

10



2.3 Machine Learning Models

account for this, the second part, inverse document frequency (IDF), downscales the
weight for the less informative terms and increases the weight on terms that occur in a
smaller portion of the document set. To sum up, a word’s TF-IDF score is higher when it
appears many times in few documents, lower when the word appears in many documents
or fewer times in one document, and lowest when the word occurs in nearly all of the
documents in the corpus.

2.3 Machine Learning Models

Some computer programs can use their experiences to learn and improve their perform-
ances on a specific task. Such programs are called machine learning models, and they
have shown to be a crucial component in the field of text classification because of their
simplicity and versatility. They usually perform on labeled data, also known as supervised
learning, but can also be used in cases where data is unlabeled, known as unsupervised
learning. Hate speech detection approaches typically use labeled data and thus fall under
the category of supervised machine learning. The following sections will briefly present
three conventional machine learning models used in the field of text classification. They
are all successfully adapted to a variety of NLP tasks with satisfying performance.

2.3.1 Naïve Bayes

Naïve Bayes (NB) is a set of methods that are simple, yet powerful supervised learning
algorithms based on Bayes’ theorem. They all share the “naïve” assumption that every
pair of features is conditionally independent given the value of the class variable. The
Naïve Bayes classifiers differ mainly by the decision rule they chose to use. Given class
variable y and a set of features x1 through xn, Bayes’ theorem states that:

P (y|x1, ..., xn) = P (y)P (x1, ..., xn|y)
P (x1, ..., xn) (2.1)

Described in words, Bayes’ theorem states that the probability of class y given the
features x1 through xn is equal to the probability of class y times the opposite probability
divided by the probability of the features x1 through xn. Applying the naïve assumption
of conditional independence between feature pairs and removing the P (x1, ..., xn) term
as it is a constant independent of y yields:

P (y|x1, ..., xn) = P (y)
n∏
i=1

P (xi|y), (2.2)
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which is the equation used by Naïve Bayes classifiers to calculate the probability of a
class given a set of features. The class with the largest probability is assigned to the set
of features or a document in a text classification task. Although the naïve assumption
made by the classifiers is highly simplified, the models have proven to perform well on
real-world situations, and they are the preferred classifiers for spam filtering. Naïve Bayes
classifiers are also a popular choice when classifying text documents because they are
suitable for classification with discrete values (e.g., word counts). They require only a
small amount of training data, are easy to understand and can be fast compared to more
complex neural network models. One problem the classifiers can stumble upon is that
if the naïve assumption is not met, they will probably perform poorly. However, for
hate speech and offensive language detection, Naïve Bayes classifiers are a popular model
choice that has achieved great results.

2.3.2 Support Vector Machine

Support Vector Machine (SVM) is a set of supervised learning algorithms used for both
classification and regression. They are based on a simple concept and has proven useful
for text classification tasks. Given data points in an n-dimensional space (n is the number
of features) that belong to one of the classes, the concept involves finding a hyperplane
with the largest margin to the nearest data points of each class and thus separates them.
These nearest data points are called support vectors, and an optimal hyperplane has
the maximum margin between the support vector(s) of each class and the plane. An
illustration of a SVM hyperplane two-dimensional feature space is shown in Figure 2.3.
The careful reader should notice that for SVMs to work, they require the data to be
linearly separable. However, SVMs can be used when data is not linearly separable by
applying functions commonly known as kernels. These kernels transform the input space
into a higher dimensional space so that the data become linearly separable. The option to
use different kernels on different input spaces makes SVMs versatile. After finding support
vectors of each class, the algorithm uses only them and the hyperplane to determine the
class of new instances. As a result of this, the rest of the data points can be omitted,
which makes SVMs quite memory-efficient. They also perform well in high-dimensional
feature spaces but can be subject to overfitting the training data, especially if the data
contains noise. Basic SVMs are designed for use in binary classification, but by utilizing
techniques like any-of or one-of, they can be used for multi-class prediction.
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Support Vectors

Class A Data Points

Class B Data Points

Optimal Hyperplane

Maximum Margin

Figure 2.3: SVM hyperplane in two-dimensional space.
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2.3.3 Logistic Regression

Logistic Regression (LR) is yet another supervised machine learning algorithm used for
binary classification. As with Naïve Bayes, LR uses straightforward statistics to predict
the class of some input variables. LR is simple to implement and often used as a baseline
for a variety of classification problems, including document classification. LR uses a
prediction function called the sigmoid function, shown in Equation 2.3.

f(x) = 1
1 + e−x (2.3)

This function is also known as the logistic function and is an S-shaped curve that maps
any real-valued number into a number in the range [0, 1]. The output of the logistic
function can be read as the probability where values closer to 1 or 0 indicate the classifier’s
confidence towards one of the two classes. Given a threshold (generally 0.5 in binary
classification), the LR algorithm uses the probability to determine which class the input
belongs to. When LR is used for machine learning, a parameterized version of Equation
2.3 is used, shown in Equation 2.4. Here, the input vector x has n features and for each xi,
there is a corresponding coefficient parameter θi. The θ vector is found using maximum
likelihood approaches, like gradient descent, and optimized based on the training data.
The dot product between the θ and x vector is called the decision boundary and can be a
line or a hyperplane in higher-dimensional feature spaces. Regularization can be applied
to prevent overfitting and to improve the generalization performance of a LR model, i.e.,
how well it performs on new, unseen data.

hθ(x) = 1
1 + e−θT x

(2.4)

2.3.4 Deep Learning

Machine learning consists of several subcategories, including supervised and unsupervised
methods discussed in the last section. Deep learning is another subfield of machine
learning which, unlike supervised and unsupervised learning, automatically extract
features during the training session. Thus, deep learning is able to learn representations
of data through multiple abstraction levels. Deep learning has been around for many
years, with varying interest in the field through time. Recently, deep learning has been
embraced by the field and successfully applied to many machine learning tasks probably
due to its scalability, flexibility, and the fact that more data is available. It requires a
sufficient amount of data for deep learning models to perform well, and they are often
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likely to overfit training data easily and require a lot of computing power. However,
enough data is rarely a problem these days, and techniques like regularisation can help
prevent overfitting. In addition, with the massive amounts of computational power
available today, deep neural networks are becoming more and more used to solve machine
learning problems. These three factors, data availability, regularisation, and computing
power, are probably essential to the recent massive interest in the field. Deep learning
networks exist in many shapes and forms, from simple linear artificial neural networks to
more advanced and complex non-linear deep neural networks. This section will briefly
present popular types of neural networks commonly used in natural language processing.

Artificial Neural Networks

Artificial Neural Network (ANN) is a set of networks that consist of connected nodes,
commonly called artificial neurons or just neurons for short. In the earlier days of ANNs,
these neurons were known as perceptrons. The simplest type of ANN is the feedforward
neural networks. They have directed graphs which means that the information in the
network only flows in one direction. Feedforward networks have one input layer, at least
one hidden layer and one output layer, as shown in Figure 2.4. The hidden layer is located
between the input and output layer, and Multilayer Perceptron (MLP) can have several
hidden layers. Each neuron in the network receives input and based on an activation
function, defines an output. The activation function is the non-linear transformation
a network performs and are an important feature of ANNs. This feature allows the
network to learn both linear and non-linear functions. A network’s learning is based
on the backpropagation algorithm which iteratively adjusts the weights between each
node using gradient descent. Gradient descent is a popular method for optimizing a

Input Layer Hidden Layer

Output Layer

Figure 2.4: The architecture of a fully connected feedforward neural network with one
input layer, one hidden layer and one output layer.
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function and is commonly used in machine learning and deep learning. Its optimization
strategy is to find weights that minimize a loss function. The loss function is based on
the difference between a predicted value and the actual label. A popular loss function
used for both binary classification and multi-classification is the Cross Entropy. Cross-
entropy works by measuring the difference between two probability distributions. If the
cross-entropy value is substantial, it means that the gap between the two distributions is
vast while if the cross-entropy value is small, it means the two distributions are similar in
value. Feedforward networks described in this section solve many linear and non-linear
machine learning problems and are popular as they are easy to understand and implement.
However, more complex types of ANNs exist and are the topic of the next section.

Deep Neural Networks

A Deep Neural Network (DNN) is a variant of neural networks that consist of multiple
layers of nodes where each extra layer increases the complexity of the networks and allows
them to represent more complex functions. DNNs are usually designed with two to ten
hidden layers, but they can consist of hundreds of hidden layers, making them deep. The
deeper the networks are, the more resources a computer needs in order to process all
data flowing through the network.

Convolutional Neural Network (CNN) (LeCun, 1989) is a feedforward network where
the information flows in only one direction, as with the ANNs. Unlike traditional ANNs,
CNNs consist of one or more convolutional units which perform linear transformations,
known as a convolution operation, on the input before passing it to the next layer. A
convolutional network may also include pooling layers. These are layers that reduce the

Convolutional Layer Pooling Layer Fully Connected Layer

Figure 2.5: Simplified architecture of a Convolutional Neural Network with one convo-
lutional layer, one pooling layer, and a fully connected layer often used for
classification.
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dimensions of the input either locally or globally. Convolutional or pooling layers are
great features of the network as they allow the network to capture more local information,
for example, surrounding words in a sentence or pixels in an image. They also reduce
the dimension of data, i.e, making the models less complex, which gives faster training
sessions and less chance of overfitting. A typical CNN consists of convolutional and
pooling layers fully connected to a ANN as seen in Figure 2.5. CNNs are particularly
powerful for image recognition and classification due to the digital structure of images,
but they are also successfully applied to tasks within the natural language processing
field.

Recurrent Neural Network (RNN) (Rumelhart et al., 1986) is another set of artificial
neural networks that allow information to flow in cycles. These kinds of networks contain
loops that sequentially pass the information from one step to another. Looking at Figure
2.6, we can see that RNNs can be structured as multiple copies of the same network put
in sequence and thus the architecture of RNNs makes them very suitable for sequential
data such as text. RNNs are said to have internal memory due to the loops in the
network. As a consequence of this, future outputs are dependent on past and present
decisions, which make the network remember past sequential information that is preserved
in the network’s hidden state. However, recent inputs have a more noticeable effect on
the network than older ones. RNNs are applied with great success to many tasks in
NLP, but their shortcoming of forgetting long-term dependencies may leave out valuable
information. Therefore, a more complex network based on a recurrent architecture with
long short-term memory was developed.

=

xt

ht h0 h1 h2 ht

x0 x1 x2 xt…

Figure 2.6: Simplified architecture of a Recurrent Neural Network with one input layer,
one hidden layer, and one output layer. The unfolded version on the right of
the equal sign shows the steps, or time steps, of a recurrent neural network.

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) networks are
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a variant of RNNs that were designed to address the key problem of traditional RNNs.
The special feature of LSTM networks is that they contain a more complex node. This
node is composed of a cell, an input gate, an output gate, and a forget gate. The cell can
store temporal information that has been written into it, and the network can read the
stored information. The flow of information into and out of the cell is regulated by the
three gates, which also ensure that the information stored in the cell is relevant. This
gated cell allows the recurrent network to access information outside the normal flow of
information in the network. LSTMs have greatly expanded what we can achieve with
RNNs, especially on tasks with long-term dependencies. They are, not surprisingly, a
popular model choice when tackling tasks within the field of NLP and have shown great
performance.

Attention and Transformers

When humans read a sentence or look at an image, they do not perceive the whole scene
in its entirety at once but focus on smaller parts until they have systematically understood
the context. Neural networks, on the other hand, base their decision making on the
entire input at once. For long input sequences, this may lead to the network forgetting
earlier parts of the chain once the whole sequence is processed. Neural networks with
attention mechanism may overcome this problem by carefully focus on certain parts of
the sentence. The overall idea with the attention mechanism is to learn a vector that
captures global information over all the items of an input sequence.
In the field of NLP, the attention mechanism was first proposed in two papers from

Bahdanau et al. (2014) and Luong et al. (2015) which used the technique to improve the
quality of Neural Machine Translation (NMT) systems. These systems use deep learning
models, commonly referred to as sequence-to-sequence (seq2seq) models. Seq2seq models
take as input a sequence of items and output another sequence of items, for example,
an English sentence as input and a French sentence as output. A typical seq2seq model
consists of an encoder and a decoder where the encoder compiles the information from the
input sequence into a vector, commonly known as a context vector. The context vector is
sent to the decoder, which iteratively produces the output sequence. Both encoders and
decoders tend to be RNNs, but other sequential network architectures are also suitable.
The context vector summarizes all the information about one sequence into the final
hidden state, with the more recent observations more dominant than the earlier ones.
The attention mechanism helps distribute information over several hidden states. In a
seq2seq model with attention, the encoder passes all the previous hidden states to the
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decoder instead of just the last one. The decoder then uses the hidden states to decide
which parts of the input sequence that are relevant at each decoding time step. The
decoder chooses which hidden state to use and which to ignore by weighting the hidden
states. Models with attention have proven successful in many NLP tasks, especially in
NMT systems, and the attention mechanism has gained a lot of interest in the field lately.
Vaswani et al. (2017) proposed in the famous paper “Attention Is All You Need” a

novel network architecture, named the Transformer, which is solely based on attention
mechanisms. This architecture, as opposed to traditional attention-based models, does
not include any recurrence or convolutions, which allows models to be more parallelizable
and use less time during training sessions. The architecture focuses only on attention
and thus avoids the problem of long-range dependencies within the input and output
sequences. Vaswani et al. (2017) developed a model based on the Transformer architecture
which achieved state-of-the-art results on several translation tasks, but more importantly,
the paper created a lot of interest for attention-based models and how they could be
utilized in other NLP tasks. The Transformer architecture is vital for the work in this
thesis as it is a fundamental concept for BERT, which is a trained Transformer Encoder
stack.

2.4 Tools and Libraries

Many open-source libraries (set of code previously written) and tools are developed
for working with text data. They are easily accessible, often have understandable
documentation, and make the job more convenient rather than reinventing the wheel over
and over again. This section will briefly describe the tools and programming libraries
available when working with text and how they were used in this thesis. The programming
language of choice for the experiments is Python mainly because of its extensive support
for (machine learning) libraries.

2.4.1 Twitter Developer and Tweepy

Twitter provides an application programming interface API for third-party developers to
access content on their platform, e.g., tweets. A Twitter developer account is required
to take advantage of the Twitter API. This account has some level of access to either
get, insert, delete, or update information about tweets, users, or timelines on the Twitter
platform using the API’s endpoints. This kind of API style is commonly called REST,
which is an acronym for representational state transfer. Working directly with the Twitter
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REST API can be cumbersome, so it is beneficial to have a layer on top of the Twitter
REST API for easy access to its data. Tweepy is a Python library that provides a ton of
handy functions for accessing the Twitter REST API easily. Tweepy was used to retrieve
tweets based on a long list of tweet IDs. As mentioned, these tweets have substantial
metadata attached to them that can be helpful features for hate speech detection.

2.4.2 Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper are leading the community-driven Natural
Language Toolkit (NLTK) (Bird et al., 2009) project which began in 2000. The NLTK
library, together with the Standford CoreNLP2 and CMU Twitter NLP3, is a leading text
processing platform that provides access to more than 50 corpora and lexical resources.
Various contributors help the library evolve and make sure it stays up-to-date. NLTK
contains tools for tasks mentioned earlier in the chapter like tokenization, stemming,
stop-word removal, and more. After retrieving the tweets, NLTK was used to tokenize
and remove common words and special characters. NLTK can help with the burden of
classifying text and provides implementations of popular machine learning algorithms.
However, the optimization and efficiency of these implementations can be insufficient,
and other more machine learning specialized frameworks are preferable.

2.4.3 Scikit-learn

Scikit-learn, commonly referred to as sklearn, is a tool for data mining and data analysis.
It features machine learning algorithms for classification, regression and clustering such as
Naïve Bayes, Support Vector Machines, K-means, and many more. As with many favored
libraries, scikit-learn is community-driven and open-source and depends on contributors to
evolve. As of 2018, Pedregosa et al. (2011) have the leadership of the popular framework
and ensure that it stays up-to-date and well-maintained. Some parts of the experiments
in this thesis are implemented with the help of methods and modules from the sklearn
framework. After extracting the features and creating feature vectors from the datasets,
sklearn makes the model selection an easy task as it is quite simple to try several machine
learning models and observe how they perform.

Some concepts from the sklearn framework that were applied in the experiments were
transformers, pipeline, and grid search. Datasets transformations can be done by using a
set of transformers, to clean the data, scale features, or reduce the dimensionality of the

2https://stanfordnlp.github.io/CoreNLP/
3http://www.cs.cmu.edu/ ark/TweetNLP/
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vectors. If a dataset requires a series of these transformers to be applied, the pipeline
class is designed purposefully for this effort. It works by applying a series of transformers
followed by an estimator, which makes it a useful tool for the machine learning workflow.
The last concept, grid search, is designed to deal with the fact that many of the machine
learning algorithms have a huge parameter space. Instead of tweaking the parameters by
hand (which would be an exhaustive task), grid search helps to tune the parameters to
their very best. Even this tuning can be comprehensive, so the grid search class provides
the functionality of inserting a range to the parameters that should be used to limit the
possible values. All in all, scikit-learn is a useful framework when working with machine
learning.

2.4.4 Pytorch

One of the most popular open-source machine learning libraries for Python is called
Pytorch, originally released with a paper from Paszke et al. (2017). Pytorch is easy to
grasp, fast, flexible, and commonly referred to as a research-first library. It is often used
for deep learning implementations and contains a lot of useful high-level features. One
compelling benefit with Pytorch compared to, for example, Scikit-learn, is its ability to
use the power of a machine’s one or more graphics processing unit (GPU) that supports
CUDA. This allows for quicker matrix and vector operations to be computed compared to
running only on the central processing unit (CPU), hence very suitable for deep learning
neural networks, which require a lot of computations. Building deep neural networks
is intuitive and straightforward with this framework and, along with the GPU support,
this was one of the main reasons why this library was selected for the work in this thesis.

2.5 Performance Metrics

In statistical analysis, there exist several different ways to measure the performance
of a test. When measuring the performance of a classification model, the notations
true positives (TP ), true negatives (TN), false positives (FP ) and false negatives (FP )

Prediction
Positive Negative

Actual Positive True positive False negative
Negative False positive True negative

Table 2.1: Two by two confusion matrix often used for binary classification.
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describe the outcome of a classifier’s prediction. The terms positive and negative indicate
the classifier’s prediction on an instance, while true and false indicate whether or not
that prediction resembles the actual class. Table 2.1 shows a typical confusion matrix
commonly used for binary classification. For multiclass classification, additional entries
for each class are added to the confusion matrix. A simple evaluation of a classifier’s
performance is to calculate its accuracy, shown in Equation 2.5.

Accuracy = TP + TN

TP + TN + FP + FN
(2.5)

However, achieving a high accuracy does not equal a great model due to a possible
imbalance in the dataset. To compensate for this imbalance, three types of measures
that are popular in information retrieval, classification and natural language processing
are precision, recall and F1-score. Precise evaluation of a classifier’s performance is an
important part of understanding how the model performs on a certain dataset and to
distinguish weak and strong classifiers. If a task involves predicting multiple classes, three
different ways of computing the average precision, recall and F1-scores exists: micro,
macro and weighted averaging. Micro averaging will sum the contributions of each class
to compute the overall average while macro averaging will compute the average for each
class unweighted. Weighted average calculates metrics for each label and uses the support
of each label to calculate their weighted average.

2.5.1 Precision

The precision metric can be calculated by dividing the true positive instances with true
and false positive instances. If a model achieves high precision, it means that most of the
predicted positive instances were correctly classified. Precision is defined in Equation 2.6.

Precision = TP

TP + FP
(2.6)

2.5.2 Recall

Recall can be calculated by dividing the true positive instances with all of the true
positive and false negative instances. With high recall, a model has identified most of
the actual positive instances correctly. Recall is defined in Equation 2.7.

Recall = TP

TP + FN
(2.7)
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2.5.3 F1-score

Both recall and precision should be examined when evaluating a model, and several
different metrics have been developed using them, such as the F1-score. Using statistical
terms, the F1-score can be seen as a harmonic mean of the precision and recall values.
So if an algorithm achieves perfect precision and recall, the F1-score will be 1 or between
0 and 1 otherwise. Combining the precision and recall yields the F1-score as denoted in
Equation 2.8.

F1 = 2 · precision · recall
precision+ recall

(2.8)
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As stated in Section 2.3, machine learning consists of models that are able to learn
from their experiences. In supervised learning, these experiences consist of labeled data
which is used to train a model. Datasets should be of proper size for the models to
generalize the training data well. Creating and labeling such datasets can be a large
and time-consuming task; therefore the work in this thesis will use existing datasets.
When creating a dataset, the creators need to decide which labels that best describe
the different data samples and how to annotate them correctly. In NLP, many existing
datasets containing hate speech are publicly available for use and consist of data from
several sources online, mainly Twitter. While searching for datasets, it became clear that
there only exist two datasets that make the distinction between hateful and offensive
language, others have two classes, either hate and none hate or offensive and non-offensive.
Both of these datasets consist of tweets from Twitter but differ in size and how the classes
are distributed over the datasets. Section 3.1 will present some existing datasets used
in prior research. Section 3.2 will go further into the development and content of the
selected datasets for the experiments in this thesis.

3.1 Hate Speech Datasets

One important factor when attacking the problem of hate speech detection is how the
datasets are constructed. Which labels are used to annotate the samples? Are the labels
distributed well over the dataset? What kind of hate speech knowledge do the annotators
possess and what definition of hate speech do they use? Almost every relevant dataset
available is labeled by humans, which results in different approaches taken when creating
and annotating the datasets. Some researchers use expert annotators (Waseem and Hovy,
2016), others use majority voting among several amateur annotators using platforms
like CrowdFlower (Davidson et al., 2017). A combination of both experts and amateurs
annotators has also been studied by Waseem (2016) with promising results. In the latter
research, Waseem compares expert annotations against majority voted annotation by
amateurs and finds that the experts perform equally well classifying binary class, but
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underperform on multi-class classification. Waseem showed that amateurs are more likely
to annotate samples as hate speech than experts due to the amateurs’ subjective idea of
what hate speech is defined as. However, when the amateurs fully agree that a sample
is hate speech, they outperform the expert annotators. This can greatly reduce the
annotation work for the expert annotators by asking them only to consider the samples
not fully agreed upon by the amateurs.
The findings in the research above demonstrate that annotating a corpus as hate

speech or not is a difficult task. This is in line with the work of Ross et al. (2016) who
researched how to annotate a dataset containing Twitter threads reliably. To measure
reliability, they used Krippendorff’s α. Their approach involved asking two groups to
answer three different questions. Only one group was given Twitter’s definition of hateful
conduct. The first question was simply to decide if a tweet was hateful or not, and
the second question was to determine whether or not a tweet should be banned from
Twitter. Finally, the groups were asked to rate a tweet as offensive on a scale from 1 (not
offensive) to 6 (very offensive). The group that was given a definition of hateful conduct
partially combined their own subjective meaning of hate speech with the definition from
Twitter, although this did not improve the reliability. Ross et al. conclude the paper by
claiming that hate speech is a vague concept that needs a standard definition with better
guidelines for annotators. They also raise the question if hate speech is best suited as a
classification problem or a regression problem. So instead of a binary yes-or-no outcome,
a score between zero and one can be assigned to a sample representing how hateful it is.
Chatzakou et al. (2017) had a goal of detecting users with bullying or aggressive

behavior on Twitter. They created a dataset were around 10k tweets distilled from a
larger set of 1.6 million tweets. The larger set consisted of 1 million random tweets and
650k tweets collected using 309 different hashtags related to hateful speech. The hashtags
were used to increase the chance of collecting tweets showing aggressive or bullying
behavior. After some preprocessing, the tweets were ready to be labeled. Chatzakou et al.
did some experiments to find the optimal batch size of tweets for each worker to work
with. They found an optimal batch size of 5-10 tweets which gave a total of 1500 batches
for five CrowdFlower workers to label as either “Aggressive”, “Bully” or “Normal”. These
labels are not often seen in hate speech datasets, although they are an important type
of hateful language. Founta et al. (2018b) did use similar labels as initial annotations
in their construction of a large dataset, but chose to merge them with other types or
eliminate them as the annotators selected them only a few times. Section 3.2 will discuss
this further.

Due to the lack of a large corpus of messages containing explicit harassment, Golbeck
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et al. (2017) set out to build one themselves. They first tried to get blocked comments or
messages from media houses but were not able to collect enough data and thus turned to
Twitter. Like Chatzakou et al., hateful search words and hashtags were used to identify
tweets containing the level of harassment the authors searched for. The first 35000
tweets retrieved from this query process were to be labeled as either “Harassing” or
“Non-Harassing”. Following strict coding guidelines, two coders were used to label the
data. If they disagreed on whether a tweet was harassing or not, a third coder would be
used to break the tie. All coders were trained on the coding guidelines for three weeks,
and the tweets in the corpus took three months to annotate. The final dataset contains
5495 positive examples and 29505 negative examples, thus being one of the larger hate
speech datasets in the field. However, the dataset does not contain any offensive language
and is therefore not relevant for the work in this thesis.

Most of the dataset above contain either tweets or comments, de Gibert et al. (2018)
wanted to create a dataset on sentence-level. Their source was Stormfront, a white
supremacist online forum. A total of 10568 sentences were obtained from the forum,
separated into ten batches and manually annotated by four coders. Sentences with less
than three words or more than 50 words were discarded, the rest were to be labeled as
either “Hate”, “Non-Hate”, “Relation” or “Skip”. The “Relation” label is for a sentence
that not contain hate speech on their own but together with other sentences. As there are
many types of hate speech, de Gibert et al. constructed labeling criteria and guidelines.
The final annotated dataset is unbalanced with 1287 positive examples and 8537 negative
examples. However, this unbalance is not necessarily a bad feature as it represents the
distribution of real-world examples where there is a lot more content without hate speech
than with.

Over the years, several hate speech datasets have been produced with data from online
sources. Table 3.1 shows an overview of some existing datasets in the field. Datasets
can either be published to the public or available upon request and vary in labels, size,
and language. However, unlike other NLP tasks, the task of hate speech detection lacks
a shared benchmark dataset that can be used to measure the performance of different
machine learning models. The lack of a benchmark dataset is a major limitation when
comparing state-of-the-art. In a survey on hate speech detection by Schmidt and Wiegand
(2017), the authors argue that the community would benefit from a benchmark dataset for
the task of detecting hate speech. Until a benchmark dataset is created and agreed upon,
the field needs to utilize the existing datasets to create the best possible classification
models.
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3.2 Selected Datasets

As stated above, not many existing datasets have a clear separation between offensive and
hateful language. The two datasets presented in this section are the only two datasets
found in the literature study that separates between offensive and hateful speech. Even
for humans, choosing a label (e.g., hateful, abusive, cyberbullying, offensive) to describe
a particular language is a difficult task (Chatzakou et al., 2017). Castelle (2018) states
that hate speech is linguistically nuanced and therefore, detecting such speech is one
of the hardest tasks in the artificial intelligence field. Some studies, such as Waseem
and Hovy (2016), choose to merge offensive and hateful language and treat them as one
class when detecting abusive language. This makes it difficult to decide if the classifiers
truly are classifying hate speech or “just” text containing derogatory terms. Without
any formal definition of hate speech other than the social platforms’ privacy policies and
definitions made in other studies, it can be difficult for classifiers to separate hate speech
from other forms of abusive language. Nevertheless, the fact that hate speech targets
minority groups in a potentially harmful manner seem to be a consensus in the field
(Davidson et al., 2017) where offensive language is often considered as text that contains
slurs or unflattering terms. This section will present the development approaches and
dataset statistics for the two datasets selected for the experiments in this thesis.

3.2.1 Davidson et al. (2017)

Davidson et al. (2017) focus on creating a dataset for the task of classifying tweets with
both a hateful and an offensive class. They claim that previous work using supervised
learning yields low precision because the detection methods tend to classify all texts
containing slurs as hate speech. The dataset consists of 24783 English tweets and their
label along with some information including the number of annotators and which label
the annotators chose for the specific tweet. The authors are anonymized as the dataset
only contains the plain text of each tweet. The inter-annotator agreement score between
the annotators was 92%. The number of CrowdFlower annotators range from three to
nine, and majority voting was used when deciding the final class for a tweet. “Hate
Speech”, “Offensive Language” or “Neither” were the labels the annotators could choose

Class labels Normal Offensive Hateful
Number of tweets (%) 4163 (17) 19190 (77) 1430 (6)

Table 3.2: Label distribution of retrieved tweets from Davidson et al. (2017).
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# of Annotators Hate Speech Offensive Language Neither Class Tweet
3 0 3 0 1 bitch plz whatever

Table 3.3: Random sample from the Davidson et al. (2017) dataset showing how the data
are represented in the dataset.

from to best describe a tweet. The label distribution can be seen in Table 3.2, while
an example of a row from the dataset can be seen in Table 3.3. The majority of the
tweets in this dataset are labeled as either offensive or hateful language (83%). This
can be explained by the process Davidson et al. (2017) used when collecting the data.
They searched for tweets with known hate speech phrases collected from a hate speech
repository1, which resulted in around 33K tweets. They then extracted the time-lines
from each author of these tweets, which resulted in a corpus of 85.4 million tweets. The
final 25K tweets are random samples from this corpus. Some of the 25K tweets were
not annotated as there was no agreement between the annotators. As a result, the final
number of tweets in the dataset is 24783.

Davidson et al. tried several machine learning classifiers to observe which performs best
on the dataset. They landed on a model using Logistic Regression with L2 regularization
because it has performed well in previous work. The classifiers were to predict each tweet
with either the class “Hateful”, “Offensive” or “Neither”. Davidson et al. were able to
minimize the number of offensive samples classified as hateful due to their multi-class
framework. However, almost 40% of human-coded hate speech is misclassified by the
classifier as either “Offensive” or “Neither” (as in neither “Hateful” or “Offensive”).
Taking a closer look, they find that certain terms are useful when differentiating between
hate speech and offensive language. While these terms surely matter when detecting hate
speech, Davidson et al. also specify that datasets should include hateful text without any
offensive language. Another fact that the researchers point out is that the annotators
tend to make decisions based on their own subjective bias when labeling a dataset. Sexist
language is more commonly considered offensive while racist or homophobic slurs are
recognized as hateful. This observation is consistent with prior findings from Waseem
and Hovy (2016). Davidson et al. round off saying that in future work these biases should
be corrected as they are likely to enter the classification models.

1https://hatebase.org/
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3.2.2 Founta et al. (2018b)

Recently, Founta et al. (2018b) set out to create a large and highly accurate annotated
dataset. They created a huge dataset compared to already existing hate speech datasets,
containing over 100 thousand annotated tweets. They performed comprehensive studies
to select which labels that best describe abusive behavior on Twitter. After collecting and
processing data, at least five CrowdFlower workers annotated tweets as either “Normal”,
“Spam” or “Inappropriate”. If they mark a tweet with the “Inappropriate” label, the
workers were asked to select the most describing label for the tweet, either “Hateful”,
“Offensive”, “Abusive”, “Aggressive” or “Cyberbullying”. Each label was defined using
previous acclaimed work and provided to the workers beforehand, for example, hate
speech was defined by the authors as “Language used to express hatred towards a
targeted individual or group, or is intended to be derogatory, to humiliate, or to insult
the members of the group, on the basis of attributes such as race, religion, ethnic origin,
sexual orientation, disability, or gender.” The annotation process resulted in “Offensive”
and “Abusive” as the most popular categories, followed by “Hateful” and “Aggressive”.
Cyberbullying rarely occurred according to the annotators.

After the first round of annotating the tweets in the dataset, Founta et al. created a
subset of the dataset containing only the tweets labeled as “Inappropriate”. This subset
was then used in a second round with even more workers (10–20) to strengthen the
confidence in the results from round 1. After two rounds, the results from round 2 were
quite similar to the ones in round 1. However, the “Abusive” label was slightly more
popular in round 2. Comparing the results from the two rounds and calculating the
Cosine Similarity between two labels, Founta et al. find that some of the labels correlate,
especially the “Abusive” and “Offensive” label. The “Hateful” category does not seem
to correlate with any of the other “Inappropriate” labels. After carefully examining the
correlations, they chose to omit the “Cyberbullying” label completely and merge the
“Offensive” and “Aggressive” class into the “Abusive” class. They retained the “Hateful”
label separate as its correlation with the other labels is not significant enough. With the
four labels, “Normal”, “Spam”, “Hateful” and “Abusive”, Founta et al. selected some
annotators based on basic demographic information to annotate the final dataset.

The outcome of the final round was similar to the preliminary rounds with the “Normal”
category as the most popular while the two “Inappropriate” categories “Abusive” and
“Hateful” covers around 20% of the dataset. The dataset can at first appear quite
imbalanced with a fraction of only 4% hate speech, but this is not necessarily bad as
it is a fair representation of the real world where hate speech is only a small portion
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Class labels Normal Offensive Spam Hateful
Number of tweets (%) 53790 (54) 27037 (27) 14024 (14) 4948 (5)

Table 3.4: Label distribution of tweets from Founta et al. (2018b).

out of all user-generated data online. Davidson et al. (2017) and Burnap and Williams
(2015) report that they found 5% and 11% hate speech in their data collection process.
Table 3.4 shows the label distribution for Founta et al.’s dataset. Not only did Founta
et al. provide a large, high quality and publically available hate speech corpus, they also
detailed their annotation methodology for others to follow. As future work, they plan on
enriching the dataset with more boosted data to decrease the imbalance in the dataset.
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In this chapter, other research in the field of hate speech detection will be presented.
This includes work related to implementation and comparison of models, construction of
a hate speech dataset, as well as approaches using the concept of transfer learning. The
chapter will finish with a brief overview of the current state-of-the-art methods to the
task of hate speech detection. Some of the challenges regarding hate speech detection
that will be explored in this chapter include the lack of a precise definition of hate speech,
why hate speech should be separated from offensive speech and how to produce datasets
that correctly represent the nuances of the natural language.

4.1 Transfer Learning in NLP

Transfer learning has recently gained interest in the field of NLP, probably due to the
advantages described in Section 2.1. This section will widely present work related to
transfer learning in several NLP tasks. This section will begin with a presentation of an
early transfer learning technique used in NLP, namely word embeddings. Then, more
recent and complex language models will be surveyed.

4.1.1 Word Embeddings

Word embeddings are numerical vector representations of words that use a word’s context
so that similar words have similar vector representations. These vector representations
of words can be trained on a large amount of unlabeled data and used as initializations
for the word vectors of deep learning models to transfer knowledge between two different
tasks. The use of word embeddings as a representation of words is an early example of
transfer learning in NLP that achieved higher accuracy on certain tasks, such as named
entity recognition (Turian et al., 2010).
Mikolov et al. (2013b) created a word embedding model, commonly referred to as

word2vec, that uses the Skip-gram model (Mikolov et al., 2013a) to train distributed
representations of words and phrases. The model consists of a shallow two-layer neural
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network that can be trained to capture the linguistic contexts of words. The model
produces a high-dimensional vector space based on the corpus given as input. In the
vector space, words with similar contexts will be positioned closer to each other by the
model. At the time of release, the word2vec model architecture was very computational
efficient, which allowed it to be trained on much larger corpora than previous models,
thus outperforming them by a great margin.
Pennington et al. (2014) later created a word embedding model named GloVe, short

for global vectors. GloVe is a count-based method that also is able to capture the
meaningful linear substructure from prediction-based methods such as word2vec. The
model architecture consists of a global log-bilinear regression model that is suitable
for creating a vector space with meaningful substructure. GloVe and word2vec are
fundamentally similar as they both capture local word-word co-occurrence statistics from
a corpus. However, GloVe also captures global word-word co-occurrence statistics by
training on the non-zero entries in a global word-word co-occurrence matrix. This can be
computationally expensive when training a large corpus, but it is only necessary to train
this once. GloVe outperformed word2vec and other previous word embedding models on
tasks like word analogy and named entity recognition.
In the task of hate speech detection, pre-trained word embedding models are not

present in many existing solutions. However, Kshirsagar et al. (2018) recently fine-tuned
a 300-dimensional GloVe Common Crawl Embeddings (840B Token) to detect hate speech
in three popular hate speech datasets. The transformed word embedding model, named
TWEM, consists of a combination of pre-trained word embeddings and max/mean pooling
from a simple, fully-connected transformer. Although Kshirsagar et al. did minimal
hyper-parameter tuning and text pre-processing, the transferred knowledge from the
pre-trained word embedding model in combination with the pooling showed promising
results.

4.1.2 Language Models

Given a sequence of words, a language model is a statistical model that is able to predict
the next word of the sequence. N-grams is the most fundamental language model that
by grouping word in a continuous sequence of length two (bigrams), three (trigrams) and
observe how frequently these groupings appear in a document, tries to predict the next
word. This can be taken a step further by utilizing neural networks to create neural
language models. These models can be trained on a task, such as machine translation,
with large amounts of training data available online to create contextualized word vectors.
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Furthermore, a pre-trained model can be applied to a variety of downstream NLP task
to improve learning by a considerable margin even with smaller labeled datasets. A
pre-trained model can also be fine-tuned with domain-specific data as the data the model
is pre-trained with often is different from the data in the target task.
Inspired by the successfully applied transfer learning in computer vision, McCann

et al. (2017) developed context vectors (CoVe) by training a deep LSTM encoder from an
attentional sequence-to-sequence model. The encoder is trained on the task of machine
translation to contextualize word embedding vectors. These context vectors are created
by feeding GloVe word embeddings to a standard, two-layer, bidirectional, LSTM network.
GloVe captures the global co-occurrences while the network is able to capture contextual
information from the sentence as a whole. For downstream tasks like question answering
and classification, McCann et al. propose to concatenate each vector in GloVe with its
corresponding vector in CoVe. The study shows that when these context vectors are used
as initialization vectors for a classification, the model improves the accuracy in many
NLP tasks such as sentiment analysis (SST, IMDb), question classification (TREC),
entailment (SNLI), and question answering (SQuAD). However, one major limitation of
CoVe is that it is bounded by the number of machine translation dataset available to the
supervised pre-training of the language model.

To overcome the above-mentioned limitation, Peters et al. (2018) introduced a new type
of language model that is pre-trained in an unsupervised way. ELMo is short Embeddings
from Language Model and are word representations that are deeply contextualized. ELMo
uses a bidirectional Language Model (biLM) to create the word representations, and they
are deep because they are a function of all the internal layers of the biLM. The language
model is learning to predict the next word by using the history of input received. This
task is done in two phases, in the first phase the history contains all words before the
target word while the second phase, the history includes all the words after the target
word. Both the forward and backward phase is modeled by a multi-layer LSTM where the
networks’ hidden layers are concatenated together to create contextualized embeddings.
These context vectors can then be used to transfer textual understanding to downstream
NLP tasks. Peters et al. state that ELMo representations alone considerably improves
the state-of-the-art in language understanding problems. ELMo outperformed the above
mentioned CoVe in all of the task where direct comparisons were possible. However, both
CoVe and ELMo require carefully engineered custom architectures for each task, which
makes it difficult and cumbersome to find a suitable architecture for every task.

Howard and Ruder (2018) proposed a language model called Universal Language Model
Fine-tuning (ULMFiT) that introduced the concept of fine-tuning the language model.
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ULMFiT performs three steps to achieve state-of-the-art results in several classification
tasks, first by training the language model on general domain data, then fine-tuning
to language model with a task-specific corpus and finally training the classifier. The
first step is straightforward and similar to other pre-training of language models where
large corpora such as Wikipedia are used to obtain general textual knowledge. Step
two involves fine-tuning the language model on task-specific data. ULMFiT introduces
two techniques called discriminative fine-tuning and slanted triangular learning rates,
both dynamically changing the learning rate in order to learn task-specific features. In
the third step, the pre-trained language model is augmented with two additional linear
layers to fine-tune the classifier by using concat pooling and gradual unfreezing. ULMFiT
brought methods to effectively fine-tune a language model to various tasks, solving the
custom architecture problem from previous language models. The ULMFiT model also
enables classifiers to learn using far fewer labeled examples than before, making it possible
to predict on tasks where labeled data is limited.

Inspired by the idea of an unsupervised language model from ELMo, OpenAI’s Gener-
ative Pre-training Transformer (GPT) created by Radford et al. (2018a) is a language
model that expands the amount of text the language model can be trained on. GPT
is built by using two existing ideas: a combination of unsupervised pre-training (Dai
and Le, 2015) and transformers (Vaswani et al., 2017) with attention. However, GPT is
only utilizing the decoder part of a transformer as the language model and thus discards
the encoder part. The decoder is built to mask future tokens and therefore makes a
reasonable basis for a language model where the task is to predict future words. GPT
stack twelve decoder layers where each has masked self-attention as described by Vaswani
et al. (2017). This type of language model is capable of learning from a massive corpus
with unlabeled data by predicting future words. Also, no task-specific model architecture
is needed, for example, a multiple choice task would need three transformer stacks, one
for each choice, in order to work properly. Since GPT’s pre-training technique only
consists of predicting future words, a limitation is that it is unidirectional and only learns
left-to-right context. ELMo used LTSM to capture both the left and the right context,
but the transformer is not able to perform backward language modeling. However, the
GPT language model was able to beat state-of-the-art in 9 out of 12 tasks studied. An
improved version of GPT, named GPT-2, was recently released by Radford et al. (2018b).
This model introduced a few modifications and additions to the original GPT such as
more extensive vocabulary and context size. Given a starting word or paragraph, the
model also showcased some impressive text generating without any task-specific training.
Even without fine-tuning the model for downstream tasks, such as summarization or
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translation, GPT-2 showed promising results. However, the exploration of what GPT-2 is
capable of has just started, and due to concerns of it being used to generate unintended
or malicious content, Radford et al. have not released the largest pre-trained language
model to the public.
Bidirectional Encoder Representations from Transformers (Devlin et al., 2018), or

BERT for short, is a direct descendant of GPT although instead of using a stack of
transformer decoders, BERT uses a stack of transformer encoders. While GPT only trains
a forward language model, BERT is a bidirectional language model which means the
model considers context on both left and right of the target token. Devlin et al. state that
this bidirectional nature of BERT is the single most important new contribution. BERT’s
language model is not trained on the traditional language model task of predicting future
word; instead, Devlin et al. trains the language model on two separate tasks. The first
procedure is what they call “masked LM” (MLM) where 15% of the tokens in each input
sequence are randomly masked with either a placeholder, a random word or the original
word. Without knowledge about which words it will be asked to predict, the language
model is to only predict the missing words rather than constructing the entire input. The
second task is similar to the traditional language model task, but instead of predicting
future tokens, the language model is asked to predict whether a sentence is the next
sentence of another sentence. So given two sentences, A and B, there is a probability of
50% that B does follow A and a probability of 50% that B does not follow A. This task
allows BERT to better understand the relationship between sentences which is essential
knowledge in most NLP tasks. Devlin et al. pre-trains the language model Wikipedia
and a book corpus of 7000 books. Like GPT, BERT only requires a few parameters to
be fine-tuned for downstream tasks. The paper presents state-of-the-art results of BERT
fine-tuned on eleven NLP tasks, including many of the same tasks done by ELMo and
GPT. BERT has received a lot of interest in the field due to these results, and with the
release of two pre-trained language models, BERTBASE and BERTLARGE , BERT can
be used as a language model for other language understanding tasks such as hate speech
detection.

4.2 Machine Learning Model Selection

Due to the massive amount of user-generated content online and the motivations for the
task of detecting hate speech automatically, both an academical and industrial interest
has arisen in the field. Many challenges remain unresolved, and poor consistency in
features indicative of hate speech across different datasets is one of them. In the paper
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“All You Need is ‘Love’: Evading Hate Speech Detection”, Gröndahl et al. (2018) compare
five modern state-of-the-art model architectures with three datasets well-known within
the field. The models’ features are either character-based or word-based and are set
to predict either two or three classes. Gröndahl et al. show that when the models are
trained with one dataset and tested against another, they perform poorly. They also
state that hate speech detection is independent of model architecture after examining
that all models perform equally well if they are trained and tested within one dataset. In
addition, when each two-class model was tested against offensive language, the models
tended to identify the offensive samples as hate speech. This substantiates the claim that
consistency in features indicative of hate speech is a real problem. Given the lack of any
academical or legal definition of hate speech, annotation in datasets differ, which results
in models assigning ordinary offensive text as hate. This is referred to as a false positive,
as described in Section 2.5.

Lee et al. (2018) did a similar comparative study, surveying the most frequently studied
classical machine learning models as well as recurrent neural networks. They used
the recently published dataset from Founta et al. (2018b) containing 100k tweet IDs
distributed on four labels: “Hateful”, “Offensive”, “Spam” and “Normal”. Lee et al. state
that the dataset has not been studied to its potential and their goal was to achieve a
reliable baseline for this dataset. They used five popular machine learning algorithms:
Naïve Bayes, Logistic Regression, Support Vector Machine, Random Forest, and Gradient
Boosted Trees. They also included the two neural network based models Convolutional
Neural Networks and Recurrent Neural Networks. Each algorithm was used to create
multiple classifiers with different types of features and parameters. Each algorithm was
implemented twice, with either word- or character-level features; however, the results
showed that neither of them is an improvement over the other. As for the total metric
scores for the word-level representations, the models performed more or less equally
well. The lowest F1-score was 73%, and the highest was 80.5% yielding a difference of
7.5%. This gap agrees with the conclusion reached by Gröndahl et al. (2018) that the
architecture used does not remarkably improve the model. Lee et al. also surveyed how
well the neural network models perform given some context to the tweets as they assumed
a reference to the context would result in better results. In some of the labels, spam,
and hateful, the results showed some improvements; however, the results did not show
any gain in performance in the total perspective. As a conclusion, Lee et al. created a
baseline for this recent dataset and expected that ensemble models of variant models
and features could improve the results further.
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4.3 Hate Speech Detection Approaches

As mentioned, the field of hate speech detection has gained a lot of interest in the recent
decade, and several approaches to detect hate speech have been presented. However,
hate speech detection is still considered as one of the most challenging machine learning
problems and is far from being a solved problem. Nobata et al. (2016) mention some
challenges within hate speech, e.g., that the abusive language with time evolves new slurs
and clever ways to avoid being detected. As a result, they performed a longitudinal study
over one year to see how trained models react over time. The model employed different
features such as n-grams, word embeddings, and other linguistic and syntactic features.
The experiments performed by Nobata et al. focus on features rather than model selection
and how well the models perform with different sets of features. The data were collected
from two domains, finance, and news, and contained some noise according to the authors.
All features combined yielded the best performing model; however, looking at individual
features, the character n-grams performed best. Waseem and Hovy (2016) also found
that their model performed well with character n-grams as features. They experimented
with extra-linguistic features such as gender and location, although such demographic
features brought little improvements to a model’s performance.
Over the last few years, transferring knowledge from word embeddings to be used as

input to neural networks has been a common technique used by researchers in the field.
Gambäck and Sikdar (2017) experimented with character n-grams in combination with
word embeddings from word2vec. They trained four CNNs, one character based with
4-grams, one with word vectors from word2vec, one with randomly generated word vectors
and finally one with a combination of character n-grams and word embeddings from
word2vec. All models were trained on data from Waseem (2016). The best performing
neural network, with an F1-score of 0.783, was the model with transferred knowledge
from word2vec word embeddings. Adding the character n-grams to this system boosted
the precision, but lowered the recall yielding a lower F-score. Gambäck and Sikdar, along
with Wulczyn et al. (2017), propose a LSTM neural network as a possible deep learning
approach to detect hateful language for future work.

Badjatiya et al. (2017) experimented with a lot of different traditional machine learning
models and neural networks, including LSTMs. In addition, word embeddings from
GloVe were used to possibly increase the overall performance, as discussed in Section 2.1.
Their best performing model was a LSTM neural network with random word vectors
where the output of the neural network was used as input to a Gradient Boosted Decision
Tree (GBDT). This system yielded an F1-score of 93%, increasing the state-of-the-art
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by roughly 18 F1 points. However, these results have shown to be difficult to reproduce
correctly (Mishra et al., 2018; Fortuna et al., 2019). Pavlopoulos et al. (2017a) and
Pavlopoulos et al. (2017b) tested word embeddings from both GloVe and word2vec in
their RNN based neural network and found this model to be effective for comment
moderation. The conclusion is based on a comparative study where their recurrent neural
network was tested against CNNs and other types of RNNs. Actually, the RNN based
neural network with transferred knowledge from word embeddings outperformed previous
state-of-the-art methods based on character and word n-gram features.
Pitsilis et al. (2018) showed similar findings with their ensemble RNNs, although

without the use of word embeddings. Instead, they converted tweets into vectors using
word-based frequency. This approach is advantageous because it is independent of the
language used in the message. They fed standard vectorized word uni-grams to multiple
LSTM networks and used two mechanisms for aggregating the classifications, namely
Voting and Confidence. Majority voting is the preferred mechanism, but if all classifiers
disagree, then the classifier with the highest confidence is given preference. The approach
taken by Pitsilis et al. showed the potential of ensemble methods to detect hate speech
and outperformed previous state-of-the-art with an F1-score of 0.932.

Park and Fung (2017) created a hybrid system that tried to capture features from two
input levels. Their system includes two CNNs where one is character based, and the other
is word based. These two parts are connected at a deeper level of the network where
the classification is performed. Park and Fung created multiple datasets by combining
samples from Waseem and Waseem and Hovy. Their goal was to explore a two-step
classification approach where the first step is to classify a sample as either abusive or
normal. Given that the sample was classified as abusive, the second step would further
classify the sample as either “Sexist” or “Racist”. The two-step approach was compared
to one-step multi-class classification, although the results were quite similar. However,
the hybrid CNN did outperform an LR and SVM model in the one-step multi-class
classification. Park and Fung showcased the potential of two-step classification and will
continue to explore this approach. They propose training the two classifiers with separate
datasets, e.g., a large general one for the first classifier and a more task-specific dataset
for the second classifier. This approach is not unlike the idea behind language models
described earlier in Section 4.1.2.

Meyer and Gambäck (2019) proposed an optimised architecture where they combined
components with CNNs and LSTMs into one systems. One part of the system used char-
acter n-grams as input while the other part used word embeddings as input. The output
of each part was merged to produce the final classification. Meyer and Gambäck used the
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dataset from Waseem and Hovy and obtained greater results than previous comparable
solutions. They state that different convergence rates in the system’s components may
have reduced the performance and suggests utilizing dynamic convolutions as future
work.

As mentioned, the task of hate speech detection does not have a commonly accepted
benchmark dataset. Most of the research discussed so far in this section use the popular
dataset from Waseem and Hovy or the slightly modified dataset from Waseem. These
datasets use the labels “Sexist”, “Racist” or “Neither” and one can argue if these labels
are sufficient enough to represent hate speech. Another dataset widely used in recent
research is the one from Davidson et al. They separate hateful language from offensive
and normal language and thus make the task harder than separating hateful language
from just normal speech. Zhang et al. (2018) used this dataset, along with others, to
test the performance of their model, which consists of a combination of LSTM and CNN.
However, they merged the offensive class with the normal class, so the final dataset only
contained two classes, namely hateful and normal language. The system works by feeding
word embeddings from word2vec into the CNN to produce input vectors for the LSTM
network with GRU cells which perform the final classification. The model outperformed
the state-of-the-art on 6 out of 7 datasets and shows again that deep neural networks are
good at detecting hate speech.
Founta et al. (2018a) also used the dataset from Davidson et al., but chose not to

merge the offensive samples with the normal ones and thus took on the challenge of
separating hateful and offensive language. Their system consists of two networks, one
RNN based with text input and one feed-forward ANN with metadata as input. The
two networks run in parallel with a concatenation layer and finally a classification layer.
Founta et al. tried many combinations of these two network with different features and
training strategies. Their best performing model achieved an F1-score of 0.89, which is
slightly below the baseline LR model from Davidson et al. Unfortunately, the paper did
not include metrics for each class, which would be interesting to analyze to see how well
the model classified true hate speech samples.

Kshirsagar et al. (2018) created a model that surpasses Davidson et al.’s baseline. The
model, named Transformed Word Embedding Model (TWEM), consists of pre-trained
word embeddings as input to multiple MLP layers. The simple network architecture allows
for few parameters and minimal feature preprocessing compared to previous methods.
The model achieved a total F1-score of 0.924, where the baseline model achieves 0.900.
However, the increase in F -score is only due to better performance on the “Normal”
and “Offensive” class, actually performing worse on the “Hate” class with F1-score of
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0.49, which is two F -score points below the baseline. This agrees with Malmasi and
Zampieri (2018), who state that a key finding of their study is the noticeable difficulty
of distinguishing hateful language from profanity. They implemented a few supervised
machine learning algorithms along with more advanced ensemble classifiers and tested
them on the dataset from Davidson et al. (2017). The classifiers were tested with different
sets of features, including n-grams and word representations based on clustering. The
best accuracy was obtained by an RBF kernel SVM meta-classifier yielding a F1-score of
79.8%. The hardest class to classify was the “Hate” class which was often confused with
the “Offensive” class.

Malmasi and Zampieri did an extensive analysis of the experiments and the results in
an attempt to explain why it is so difficult to separate hateful language from offensive
language. The study shows that the tweets with the highest probability of being tagged
as hate usually are targeted at a specific social group. The key finding in the report was
that the standard features are not sufficient enough to successfully distinguish hateful and
offensive language. Malmasi and Zampieri state that context and features with the ability
to obtain a deeper linguistic understanding of documents may be required to improve
the performance. They also mention that the variability of labels in the annotated data
can be a reason for the classifiers’ weak performance on the “Hate” class.
However, a recent study by Gaydhani et al. (2018) showed remarkable performance

by their model on a combination of datasets from Davidson et al. and Waseem (2016).
They used n-grams as features and fed the TF-IDF values of these into typical machine
learning classifiers like Support Vector Machine, Naïve Bayes and Logistic Regression.
Logistic Regression outperformed the other two models obtaining a final F1-score of 96%.
The proposed model is near perfect misclassifying only 0.035% of the true hate speech
samples. However, these results have shown difficult to reproduce even though their code
repository is available at GitHub1. Analyzing the final train and test data supposedly
used by the model shows that 74% of the test data is either duplicate or already in the
training data which results in a highly biased test set as pointed out by another user in
the repository’s “issues” page.
Many of the studies mentioned in this section used word embeddings to transfer

knowledge to their models. 2018 was the year of language models, and more hate speech
detection approaches with this type of transfer learning are being published at the
time of writing. Zampieri et al. (2019) presented results and findings from the recent
SemEval-2019 Task 5 and 6 competition which consisted of three subtasks. Pérez and
Luque (2019) and Indurthi et al. (2019) were the top teams in Task 5, and they used

1https://github.com/adityagaydhani14/Toxic-Language-Detection-in-Online-Content
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ELMo together with LSTM neural network to achieve great results. Liu et al. (2019)
used BERT Base with default parameters to deliver some of the best results in Task
6. Zampieri et al. observed that state-of-the-art deep learning models, in particular,
BERT, were used by the top teams in all subtasks endorsing the rise of advanced transfer
learning in NLP.
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This chapter will present a preliminary study done prior to the work in this thesis. The
purpose of the study was to investigate how different classical machine learning models
perform on the two datasets described in Section 3.2. The study also gave insights
into various techniques for preprocessing and feature selection and in general, a good
understanding of the field of hate speech detection. The first section will present how
the classifiers were implemented while the second section will present the experiments
and results for the preliminary study.

5.1 Implementation

This section will present how the study was implemented from collecting the data to
classifying tweets. The implementation consists of three different machine learning
algorithms trained on one dataset and tested with another to get an insight into how well
the models generalize and if they are able to distinguish hateful and offensive language.
The first section will describe the two different datasets and how they are created, while
the final sections will present how the data were collected and prepared for the classifiers,
as well as how the classifiers were implemented with modules and functions from the
scikit-learn framework.

5.1.1 Data

The datasets used in the preliminary study are the same two as used in this thesis, both
described in Section 3.2. The notation dataset D will be used for the dataset from
Davidson et al. (2017) while the notation dataset F will be used for the dataset from
Founta et al. (2018b). This preliminary study did some experiments with training with
dataset F and testing with dataset D to investigate how well a model would perform on
data outside the original dataset. However, these results are not relevant to the work
in this thesis and will be omitted. The models’ performance on both datasets will be
presented separately and serve as a baseline for the models implemented in this thesis.
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5.1.2 Collecting Tweets

Dataset F provided a comma-separated values (CSV) file of tweet IDs and their corres-
ponding labels. So to make use of this dataset, it was necessary to utilize the Twitter
API to retrieve the tweets. The Twitter API requires some keys and tokens which can
be provided by creating a Twitter developer account and initiate a Twitter platform
app. To access the Twitter API, a Python package called Tweepy1 was used, which
makes this process less cumbersome. Tweepy offers functions for handling Twitter’s rate
limits2. Tweepy includes a function called status_lookup() which takes in a list with a
max length of 100 tweet IDs and returns a JSON array with tweets as JSON objects.
These JSON objects contain the tweets and their attached metadata. Since tweets in
this dataset had a fair chance of being deleted (due to the possible abusive content), the
JSON objects were fetched in chunks of one hundred at a time and stored in a large
JSON array. However, only the original tweet text and label were relevant for use later in
the study. Dataset D provided a CSV file with the tweets and some additional annotator
information, but again, only the original tweet and their labels were used.

5.1.3 Pre-processing Data

Since text data online can be from several sources, cleaning online user-generated text is a
problem specific task. There are many choices to be made and trade-offs when processing
natural language, which makes it a complicated task. It can be beneficial to start with a
simple processing approach that produces a simple vocabulary and gradually increase
the complexity to see if it results in a better performing model. Tweets tend to contain a
lot of Internet slang, which results in several abbreviations per tweet, emoticons, and
links to websites. Threads are also commonly used on Twitter, which results in users
mentioning each other in the tweets. Cleaning data is an essential task as it lays the
foundation for feature extracting. Removing too much can result in the loss of valuable
features while retaining too much can result in a complex vocabulary. As described in
Section 2.4.2, the NLTK framework provides many different tokenizers that can be used
in various domains. For this study, the TweetTokenizer was applied to the tweets from
both datasets. This tokenizer features the options for preserving the casing, emoticons,
and user mentions. A decision was made about using the tokenizer’s default settings
except for the “preserving the casing” parameter which was set to false. Reducing all
letters to lowercase is a common strategy to avoid duplicate word entries with the same

1http://www.tweepy.org/
2https://developer.twitter.com/en/docs/basics/rate-limiting.html
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meaning and to reduce the dimensionality of the features. However, some proper nouns
are derived from common nouns, and reducing them to lowercase can result in the loss of
proper nouns. Finally, stop words were filtered out using NLTK’s list of English stop
words as they might not be distinguishing enough in the tweets. Scikit-learn requires
a specific folder structure to load the data correctly, so after cleaning the data, each
tweet was written to a plain text file and stored in one of the three folders: “Hateful”,
“Offensive”, “Normal”.

5.1.4 Feature Extraction

A machine learning algorithm cannot interpret text data, so constructing numerical
feature vectors that can be used as input to the machine learning algorithms is necessary.
This process is commonly known as feature engineering and is a crucial step in order to
get well-performing models. Careful feature extraction is important for the classifiers
to generalize beyond the training data and thus be able to predict new, unseen data.
Scikit-learn includes a function called CountVectorizer which builds a dictionary of
features and transforms the tweets into feature vectors. It represents the tweets as a
matrix of token counts, i.e., as a bag of words, described in Section 2.2.2. The function
accepts a wide range of parameters and customization such as n-gram range and minimum
document frequency. However, the default values are reasonable. The feature vectors
consist of word-level unigrams (individual words) with a minimum document frequency
of two. Experiments with other n-grams such as bigrams and trigrams were tried, but
none of them gave a significant increase in model performance. After creating the bag of
words representation, the TF-IDF weighting scheme was applied to weight the feature
vectors. This is to highlight less common terms that occur in many tweets and are likely
to be less informative.

5.1.5 Classifiers

After the process of feature engineering, the feature vectors are ready to be used as input
to different classifiers. When loading in data, due to the specific folder structure described
above, scikit-learn is able to infer the label of each tweet as well as the three classes used
for prediction. Scikit-learn provides implemented versions of popular machine learning
algorithms with high functionality. Three supervised learning algorithms, described in
Section 2.3, were chosen to be implemented: Naïve Bayes (NB), Support Vector Machine
(SVM) and Logistic Regression (LR). They all have built-in support for multiclass
classification and were trained to classify tweets as either “Hateful”, “Offensive” or
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Figure 5.1: Overall architecture for each of the three model implementation.

“Normal”. While Naïve Bayes has multiclass classification inherently, the Support Vector
Machine and Logistic Regression use a one-vs-all or one-vs-rest approach. This approach
is a commonly used strategy for multiclass classification and the default parameter for
the algorithms. Selecting the right parameters can have a significant impact on a model’s
performance.

Although this study does not aim at achieving the best performing model, the classifiers
were tested with different parameters until a satisfying set of parameters was found. For
the SVM, the hinge loss function with L2 regularization was implemented, which results
in a linear SVM. Linear SVM requires scaling of the feature vectors, so scikit-learn’s
normalizer module was used to normalize the feature vectors. LR was implemented with
the liblinear solver with L2 regularization. A multinomial version of the NB was used
where the distribution of each feature is assumed to be multinomial as opposed to, for
instance, Gaussian. This assumption works well for discrete features as word counts in text
and hence an appropriate choice for both datasets. More advanced methods for selecting
the optimal hyperparameters can be achieved by using a grid search. Nevertheless, the
models from scikit-learn perform well out of the box with little parameter tuning as we
shall see in Section 5.2.2. Figure 5.1 presents the overall architecture of each of the three
model implementation.

To evaluate the performance of a model, several metrics were produced, including the
ones explained in Section 2.5. For each of the models, built-in functions from scikit-learn
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were used to calculate the accuracy, confusion matrix, precision, recall, and F1-score.
The latter three are computed for each class and then used to calculate micro, macro,
and weighted averaged scores. All these metrics provide valuable insights into the models’
overall performance for each class.

5.2 Experiments and Results

In order to carry out an experiment and receive some results, it is crucial to have a
reasonable hypothesis that one could prove true or false. This study hypothesized that
a classifier should be able to distinguish hateful, offensive, and normal language. The
intention behind the hypothesis was to get an insight into how model selection affects the
performance on each dataset and create a baseline for the work in this thesis. By training
three models, the statement from Gröndahl et al. (2018) that model architecture is less
important than the type of data and annotation process, could be further investigated.
This experiment also gains many insights into challenges in the field of hate speech
detection, which is valuable for the work in this thesis. The first section will explain the
experiment plan while the second section will present the results.

5.2.1 Experiment Plan

Datasets D and F will be used to test the performance of three classical machine learning
algorithms. This experiment is divided into two parts; the central part is to check
how well models perform on each dataset while the second part is to observe if model
architecture affects the performance. In addition to examining the overall performance,
how well the models distinguish hateful language from normal and offensive language is
an interesting part of this experiment to observe. This observation gives insights into
how the models classify hate speech compared to human coders. When the models are
trained on such large dataset which can contain noise, overfitting the training data is
a possibility. Both datasets D and F are split into a training set and a test set. Both
datasets were split into two sets, the training set of size 80% of the original dataset and
test set of size 20% of the original dataset.

5.2.2 Results

As this experiment is divided into two parts, the following two sections will present the
results obtained from each part. The metrics precision, recall and F1-score, described
in Section 2.5, were used to evaluate the models’ performance. The results from the
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Model Normal Offensive Hateful Total (macro)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Naïve Bayes 0.84 0.74 0.79 0.89 0.96 0.92 0.35 0.11 0.17 0.69 0.61 0.65
Support Vector Machine 0.80 0.91 0.85 0.93 0.96 0.94 0.61 0.08 0.14 0.78 0.65 0.71

Logistic Regression 0.83 0.90 0.86 0.93 0.95 0.94 0.46 0.22 0.30 0.74 0.69 0.71

Table 5.1: Precision, recall and F1-score of each class for the three models performing on
dataset D (scores in bold are for the best performing model for each metric
and class).

Predicted
Normal Offensive Hateful

Actual
class

Normal 737 81 2
Offensive 106 3669 73
Hateful 41 185 64

Table 5.2: Confusion matrix for the LR model performing on dataset D.

three classifiers’ performance on datasets D and F are presented in Table 5.1 and 5.3,
respectively. Table 5.2 and Table 5.4 show the confusion matrices for the best performing
model which were the LR model on both datasets.

5.2.3 Performance on Dataset D

Looking at Table 5.1, we can see that all three models overall perform well for the
“Normal” and “Offensive” class while the recall score on the “Hateful” class is quite
bad. The SVM model performs best on the “Offensive” class while the LR model clearly
performs best on the “Hateful” class. The SVM and LR models outperform the NB
model with a total F1-score of 0.71, which is a notable increase over the NB model’s
F1-score of 0.65. The results in the “Hateful” columns show that the models are not able
to classify hate speech in this dataset. With F1-score of 0.31, the LR was the model with

Model Normal Offensive Hateful Total (macro)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Naïve Bayes 0.93 0.92 0.92 0.77 0.87 0.82 0.18 0.08 0.11 0.63 0.63 0.63
Support Vector Machine 0.92 0.99 0.95 0.88 0.86 0.87 0.80 0.11 0.19 0.87 0.65 0.74

Logistic Regression 0.94 0.98 0.96 0.88 0.89 0.88 0.59 0.21 0.31 0.80 0.69 0.74

Table 5.3: Precision, recall and F1-score of each class for the three models performing on
dataset F (scores in bold are for the best performing model for each metric
and class).
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Predicted
Normal Offensive Hateful

Actual
class

Normal 8208 135 34
Offensive 260 2491 56
Hateful 127 205 270

Table 5.4: Confusion matrix for the LR model performing on dataset F.

the highest score on the hateful class. However, this low F1-score is not sufficient enough
to correctly classify hate speech. Taking a closer look at the confusion matrix computed
for the LR model predicting on datasets D in Table 5.2, we see that the model predicts
tweets as less hateful than the annotators. 64% of true hate speech is misclassified as
“Offensive” and 14% as “Normal” and the model was only able to classify 22% of the true
hateful samples correctly. This pattern occurs in the confusion matrix for the other two
models as well. Similar findings were shown by both Davidson et al. (2017) when they
tested an LR model and Malmasi and Zampieri (2018) when they tested an RBF kernel
SVM model on dataset D.

5.2.4 Performance on Dataset F

Table 5.3 shows the results of the three models performing on dataset F. We immediately
see by the bold scores that the LR model outperforms the other two models in almost
all classes except a few where the SVM model is better. However, as with dataset D,
the overall performance of the SVM and LR models are similar with F1-scores of 0.74.
For the “Normal” and “Offensive” class, the models are able to classify the examples,
but for the “Hateful” class, the models’ ability to predict the class is poor. With an
F1-score of 0.31, the LR model is not able to recognize hateful samples even though it
achieves nearly twice as good scores as the other two models on this class. Lee et al.
(2018), as described in Section 4.2, created a baseline for the newly released dataset F
testing several models with different complexity. They obtained a similar macro-averaged
F1-score of 0.30 when using a recurrent neural network model. Looking at the confusion
matrix in Table 5.4, we see that the same pattern occurs as with dataset D. That is, 55%
of the true hate speech samples are misclassified as either “Normal” or “Offensive”. They
are most often recognized as “Offensive” by the model with 34% of the true hate speech
samples predicted as offensive. This is also the case in the offensive row where 9% of the
true offensive samples were classified as “Normal” and only 2% as “Hateful”.
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5.2.5 Performance of Different Models

The second part of this experiment was to examine the performance of different models
to see if model architecture does matter when classifying hate speech. Looking at the
F1-score for each class, the models perform highly similarly with few exceptions. Table
5.1 shows that LR outperforms both of the other models with F1-score of 0.86 for the
“Normal” class, 0.94 for the “Offensive” class and 0.30 for the “Hateful” class. However,
the performance of the SVM and LR models are overall quite similar even though the
LR model is better at classifying hateful samples. The similar F1-score of 0.71 can be
explained by the SVM model’s high precision on the “Hateful” class. This is similar for
dataset F in Table 5.3 where both the SVM and LR models achieved an F1-score of 0.74
due to the SVM’s high recall on the “Hateful” class. Further investigation in the three
models’ confusion matrices computed for each dataset shows that they tend to learn the
same features, hence model architecture does not seem to affect the models’ ability to
learn the features significantly. This is in line with the conclusion from Gröndahl et al.
(2018).

52



6 Architecture

As pointed out in Section 4.3, many previous attempts at classifying hate speech with
transfer learning use word embeddings from either word2vec or GloVe. Word embedding
techniques only capture the semantic relations among words, whereas language models
are more complex and can capture the meaning of a word in a sentence, i.e., the word’s
context. The work in this thesis will focus on such language models and explore the effect
of transferring knowledge from a substantial pre-trained language model to a classifier
predicting hateful and offensive expressions from online communities. Despite many
available language models, as discussed in Section 4.1.2, BERT is the language model of
choice for the work in this thesis. BERT has shown excellent results on a wide variety
of NLP tasks (Devlin et al., 2018), but has only been initially tested on the task of
hate speech detection. This chapter gives a detailed overview of the system architecture
implemented in this thesis. The first section will present the preprocessing techniques
while the second section will explore BERT in more detail. The final section concludes
the architecture with an overview of the final classifier.

6.1 Collecting Data

The two datasets used for the work in this thesis are the same used in the preliminary
study and are introduced and discussed in Section 3.2 and 5.1.1. The two datasets were
selected as they were the only ones found in the literature review that separate between
hateful and offensive language. As in the preliminary study, the notation dataset D and
F will be used throughout the rest of the thesis to represent the datasets from Davidson
et al. (2017) and Founta et al. (2018b), respectively. Both datasets were collected early in
the preliminary study through the Twitter API, as discussed in greater detail in Section
5.1.2. As the authors of dataset F only provide tweet IDs for researches to retrieve tweets
through the Twitter API, some tweets may for several reasons not be retrievable, e.g., a
tweet or the user account behind a tweet may have been deleted. This is, in fact, the
case for many of the tweets in dataset F; of the 99799 provided tweet IDs, 68299 tweets
were retrievable. The label distribution of the retrieved samples compared to the original
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Dataset version Normal Offensive Spam Hateful
Original 53790 (54) 27037 (27) 14024 (14) 4948 (5)
Available 41784 (61) 14202 (21) 9372 (14) 2941 (4)

Table 6.1: Label distribution of retrieved tweets from Founta et al. (2018b). Number in
parenthesis represents the percentage of the total dataset.

label distribution for dataset F is shown in Table 6.1. Although more data is preferable
for a deep neural network, the data retrieved should still be sufficient enough for a model
to learn the features. As for dataset D, the authors provided the anonymized tweets
directly in a comma-separated values (CSV) file along with some annotation data.

6.2 Preprocessing

Neural networks, as with other machine learning algorithms, are not capable of taking
raw text as input, so some text preprocessing of the data is necessary. This process is a
difficult task, as the natural language contains a lot of noise, especially online. Twitter
has set a strict limit of 280 characters per tweet, which often leads to the authors making
use of abbreviations and internet slang. Additionally, many tweets contain retweeted
content, mentions of other users, URLs, hashtags, emojis, etc. Although most of these are
commonly removed from the tweets, preprocessing is a domain-specific task that should
be done with care so that essential features do not get lost in the process. As language
models can capture context between words and prefer complete sentences, only a simple
preprocessing technique was used to clean the data. The NLTK library, introduced in
Section 2.4.2, provides a flexible Twitter-aware tokenizer, TweetTokenizer, that was
used to remove URLs, numbers, mentions and an ‘RT’ symbol often used to mark that a
tweet is a retweet of another tweet. However, the tokenizer was only used to clean tweets
and not to tokenize them, and this is done later by another tokenizer specialized for
BERT. Stop words were not removed even though that is a commonly applied technique
in previous solutions. This choice was made to keep as much context as possible in each
tweet for the language model to capture. As BERT takes sentences as input, the goal of
the preprocessing was to create complete sentences out of the tweets without too much
noise.
The specialized tokenizer for BERT, named BertTokenizer, follows two steps to

convert the cleaned data to input that BERT is able to understand:

• Basic tokenization performing both text normalization and punctuation splitting.
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The first convert all whitespace characters to spaces, lowercase the input, and strip
out accent markers. The latter add whitespace around all punctuation characters,
which is any character that is not a letter, number or space.

• WordPiece tokenization performing whitespace tokenization, i.e., split each
word on whitespace, to the output of the above procedure. Then, WordPiece
tokenization is applied to each of these tokens to format the input correctly for
BERT.

The WordPiece tokenization step above is a technique to segment words into subword-
level and used for several NLP tasks. For example the different tenses “looking”, “looks”
and “looked” will all be segmented into “look ##ing”, “look ##s” and “look ##ed”.
This segmentation allows the model to not treat these words completely different as any
other count-based technique possibly would. The model will also observe the segmented
part “look” more and possibly learn more about it. Out of vocabulary (OOV) words are
never possible with word segmentation like WordPiece because any word that does not
occur in the vocabulary is segmented into subword units. BERT’s English vocabulary
consists of 30,522 segmented words that are learned beforehand. Some of the entries
in this vocabulary are placeholders that can be replaced with words not already in
the vocabulary. ElSherief et al. (2018) created a list of keywords commonly used as
hate speech, and most of those keywords were placed in the unused placeholders in the
vocabulary. This modified vocabulary was only used in the process of further training
BERT from its checkpoints, as described in Section 6.5 below.

After WordPiece segmentation, the preprocessing of the data is finished. As discussed
in Section 2.2.1, other preprocessing techniques, like stop-word removal, stemming and,
lemmatization, can be used to refine the data further. However, as the BERT language
model takes sentences as input, most of the preprocessing in this approach focused on
creating complete sentences.

6.3 BERT Model Architecture

BERT is a recently released language model that is the first unsupervised, deeply
bidirectional system for pre-training a general-purpose understanding of language. Section
4.1.2 introduced the language model along with other recent work that BERT is built
upon. BERT’s language models can be pre-trained from scratch using only a plain
text corpus or fine-tuned with a domain-specific corpus. Although pre-training is a
one-time procedure, it is relatively expensive requiring a large amount of crawled text
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and computational power. Along with the paper, Devlin et al. (2018) released several
pre-trained models for researchers to use. Among the released pre-trained models, the
experiments used these two models:

• BERT Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters

• BERT Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters

The two models used in this thesis were trained on the English Wikipedia and Book-
Corpus1 for 1M update steps. BERT Base consists of a stack of twelve encoder layers
with 768 hidden units and twelve attention heads while the larger model, BERT Large
consists of a stack of twenty-four encoder layers with 1024 hidden units and 16 attention
heads. Attention and transformers are discussed in Section 2.3.4. Both of these models
are lowercased and pre-trained checkpoints that can either be trained with more data
or fine-tuned with task-specific data. Both of these approaches were implemented and
tested in the experiments.

Model Input and Output

After preprocessing, it is important to construct an input representation that BERT
accepts. BERT takes a sequence of words as input, just like any encoder of the transformer.
The models are trained with sequence length up to 512, but when fine-tuning, the sequence
length can be shorter to save substantial memory. Each encoder in the stack applies
self-attention and then passes the results through a simple feed-forward network. The
output of the feed-forward network is finally handed over to the encoder above. As we
can see in Figure 6.1, the first token is a special [CLS] token. The token’s purpose will
become clear later on, but it is necessary to add it to each input sequence. BERT is able
to represent both a single sentence or a pair of sentences, for example, a question and an
answer. Thus BERT can be used for sentence pair classification tasks and another special
token, [SEP], that separates these sentences needs to be added between two sentences.
However, for single sentence classification tasks, the token only needs to be added at the
end of each input sequence. A final input sequence may look like this:

[CLS] i do nothing every day [SEP]

We know by now that a computer does not understand plain text as input, so some
numerical representation of the sentences is needed. Most language models pass each

1https://yknzhu.wixsite.com/mbweb
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Figure 6.1: Simplified model architecture of BERT’s input representation.

input token through a token embedding layer to achieve a numerical representation.
BERT solves this by passing each token through three different embedding layers and
summing the results from each layer. Each of these three layers converts an input sequence
of tokens to a vector representation of size (n , 768), where n is the number of tokens in
the input sequence.

• The token embedding layer transforms each WordPiece token into a vector repres-
entation of a fixed length. This fixed length is 768 and 1024 for BERT Base and
BERT Large, respectively. Our example sentence above would be of shape (7 , 768)
after passing through this embedding layer, assuming BERT Base is used.

• Segment embeddings are mostly relevant for sentence pair classification where BERT
needs to distinguish the tokens in each input pair. This layer consists only of two
vector representations, namely zeros and ones. The vector that consists of zeros is
assigned to the first input sequence, i.e., every token left of the [SEP] token. The
other vector with ones is assigned to the second input sequence, that is, every token
right of the [SEP] token. In cases with only one input sentence, the whole vector
is filled with only zeros. The length of these token vectors is the same as for token
embeddings.
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• The final layer consists of positional embeddings. BERT’s design allows for input
sequences up to length 512. Without too much detail, Devlin et al. inform that
BERT uses learned positional embeddings which means that this layer works like a
lookup table of shape (512 , 768) for BERT Base. The first row is a fixed, learned
positional vector embedding that is always assigned to the first token of the input
sequence. The second row is always assigned to the second token, so on and so
forth.

These three vector representations are summed element-wise to construct a single vector
representation. The final vector is used as an input representation for BERT’s encoder
stack. The architecture up until now is no different than a typical transformer’s encoder;
however, the model output is where BERT separates itself from a traditional transformer.

Each token position in the input sequence outputs a hidden vector with length of 768
for BERT Base and 1024 for BERT Large. Each encoder outputs hidden vectors that can
be used as contextualized word embeddings that can be fed into an existing model. This
means that BERT can be used in the same way as the ELMo language model discussed
in 4.1.2. Devlin et al. did achieve results not far behind the fine-tuning approach on
some of the NLP tasks with contextualized word embeddings. The paper also explores
different ways the hidden vectors can be used to achieve the best embeddings. However,
it is the fine-tuning approach that is the focus of the experiments. For this, only the
hidden vectors from the final encoder in the stack are relevant. As a matter of fact, it
is only the hidden vector in the first position that is used for the downstream task of
sentence classification. As we can see in Figure 6.1, the hidden vector from the special
[CLS] token mentioned above is the only output relevant for single sentence classification
tasks. This output vector can then feed into a final classifier, such as a simple feedforward
neural network discussed in Section 2.3.4.

6.4 Final Classifier

For a single sentence classification task, only the final hidden state vector at the first
position is relevant. By design, this output vector corresponds to the special [CLS] word
embedding. This vector can be used as input to any classifier. Although Devlin et al.
achieved great results with their models only using a single-layer neural network, the final
systems used in the experiments are slightly modified with a more complex architecture.
An additional linear layer of size 2048 was added to increase the complexity of the model.
An RNN model, introduced in Section 2.3.4, was also implemented and tested, but later
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Figure 6.2: Overall system architecture. The final classifier includes a feedforward neural
network with one input layer, one hidden layer, one output layer and one
softmax layer.
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omitted as the learning did not improve.
For fine-tuning, only the number of labels needs to be added as a new parameter,

three and four for the systems used in this thesis. All BERT parameters and the final
classifier network parameters are fine-tuned jointly to maximize the systems’ ability to
predict the correct class. The logits from the final linear layer are then passed through
a standard Softmax layer to calculate the final label probabilities. Between BERT’s
pooled output and the first linear layer, and between the first and second linear layers,
dropout is utilized to regulate the systems to reduce the risk of overfitting by the model.
During training, dropout is randomly applied to some connections between the neurons to
prevent them from co-adapting too much. In addition, cross entropy is used to calculate
the classification error of each sample. A specialized version of the Adam optimizer is
used to update the whole network’s weights iteratively based on the training data. An
extended version of Figure 6.1 is shown in Figure 6.2, which gives an overall overview of
the entire architecture of the systems implemented for the experiments.

6.5 Further Language Model Training

Starting from BERT’s Wikipedia and BookCorpus checkpoint, it is possible to further
train the language model with domain-specific corpora. This will likely be beneficial to
the final performance of the whole system as the domain language is quite different from,
for example, general Wikipedia articles. This technique of using unlabelled data from the
same domain as the target task to train the language model further using the original
pre-training objective(s) was first seen in the ULMFiT paper by Howard and Ruder
(2018). This additional step helped the model improve the performance significantly, even
with less than 1000 labeled training examples. Since the taken approach in this thesis
only uses two datasets, we can see from Table 3.1 that there are still a lot of datasets
from the target domain available. Remember, the pre-training only requires the raw text,
and so the labels are irrelevant. All available datasets, except the two used for the target
task, in Table 3.1 were collected and used to further train BERT on domain data.

One of BERT’s pre-training objectives is next sentence prediction in which the model
predicts whether one sentence follows another sentence or not. This is further discussed
in Section 4.1.2. As a result, the input format for further training BERT is a single
file with untokenized text and one sentence per line. Each document, i.e., a tweet, is
separated by a blank line. NLTK’s sent_tokenizer was used to split documents into
sentences of at least one word. Since tweets rarely consist of multiple complete sentences
due to Twitter’s 280 character limit, some tweets were split in the middle to construct
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BERT Encoder Stack

Unlabelled Domain Data
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Masked LM Head
Next Sentence Classification Head

Figure 6.3: Simplified architecture of the pre-training process.

two sentences instead of discarding them. Other datasets were formatted more easily, for
example, the Stormfront forum data from de Gibert et al. (2018) contained a large folder
where each text file was a sentence. As mentioned, when further training BERT only a
single file with all documents is required. Therefore, all text data from the datasets were
merged into one file yielding one large text file with nearly 170,000 lines. This file was
then used to further train two language models from BERT Base and Large checkpoints
on the two original pre-training objectives, masked LM and next sentence prediction
as described in Section 4.1.2. The pre-training process is illustrated in Figure 6.3. The
output of this process, two language models, trained on Wikipedia, BookCorpus, and
domain data was used in the experiments to investigate the effect of further training the
language model with domain-specific data.
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As a part of the research in this thesis, some experiments were carried out with an aim
to answer questions related to the research questions and the overall goal of the thesis.
This chapter presents the experiments conducted to investigate if a large pre-trained
language model can separate between hateful, offensive, and normal language in two
popular hate speech datasets. The first section presents the overall plan for carrying
out the series of experiments. The second section provides the reader with an overview
of each experiment, together with the information necessary to reproduce individual
experiments. The final section presents detailed results obtained from each experiment.

7.1 Experimental Plan

In order to keep a series of experiments effective and in a structured fashion, an ex-
perimental plan is crucial. The plan for this research’s experiments consists of two
parts, one for each dataset described in Section 3.2. In both parts, the two pre-trained
language models BERT Base and BERT Large will be used to investigate the effect of
transferring knowledge from a language model to the downstream task of hate speech
detection. These experiments are related to Research Question 2 as described in Section
1.2. In addition to the two original pre-trained language models from Devlin et al. (2018),
two language models further trained with domain-specific data from BERT Base and
Large Wikipedia and BookCorpus checkpoints will be used to investigate the effect of
utilizing domain data to improve the models’ domain-specific language understanding.
This strategy relates to Research Question 3, but also to Research Question 1 as these
experiments explore different features. All four language models are connected with a
final deep learning classifier, as described in Chapter 6. The difference between BERT
Base and BERT Large is the size of the network as presented in Section 6.3. The four
systems can be summarized as:

• BERT Base pre-trained on Wikipedia and BookCorpus.

• BERT Large pre-trained on Wikipedia and BookCorpus.
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• BERT Base* pre-trained on Wikipedia and BookCorpus and fine-tuned with
unlabelled domain-specific text data.

• BERT Large* pre-trained on Wikipedia and BookCorpus and fine-tuned with
unlabelled domain-specific text data.

Each of the four systems’ performance will tested with the two selected datasets from
Davidson et al. (2017) (dataset D) and Founta et al. (2018b) (dataset F). Dataset F
originally annotates tweets as either “Hateful”, “Offensive” “Spam” or “Normal”, so
to correctly compare the results with results from previous research, experiments with
dataset F with original annotations were carried out. However, when separating hateful,
offensive and normal language, the “Spam” class is redundant and omitted in the second
part of the experiments. This part uses dataset F without the “Spam” class which will be
denoted as dataset F*. Dataset D is only annotated with either “Hateful”, “Offensive” or
“Normal” and thus the four systems are only tested once with dataset D. Each dataset is
used to experiment with two different pre-training approaches in order to investigate the
effect of transferring knowledge from language models with general and domain-specific
language understanding. The analysis of these experiments may answer questions related
to the research questions formulated in the introduction of this thesis. In addition to the
experiments presented in this chapter, several other experiments were conducted during
the exploration phase to gain insights into which preprocessing techniques, classifier
architectures, and hyperparameters that worked best with the language models.

7.2 Experimental Setup

In all of the experiments, only a few hyperparameters differentiate the four systems.
This section will present data, hyperparameters, and other configurations necessary to
run the experiments. As described in Section 6.3, BERT Base and Large only differ in
network size. They consist of 110M and 340M parameters, respectively, and thus require
a sufficient amount of memory. Therefore, all experiments were run on devices with at
least 64GB RAM, the same amount recommended by the creators of BERT. The input
sequence length and batch size during training are factors that affect memory usage a
lot. The two original language models were pre-trained with a sequence length of 512
and a batch size of 256. The two fine-tuned language models were fine-tuned with a
sequence length of 128 and a batch size of 32. All four language models were trained with
the Adam optimizer; however, choosing a more memory efficient optimizer may reduce
memory usage as the Adam optimizer is quite memory hungry. The learning rate for
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the Adam optimizer that was found to be optimal was 3e-5 for the fine-tuning process
and 2e-5 for the classification process. These learning rates were found after doing an
exhaustive search with parameters suggested by Devlin et al. (2018). Other parameters
shared by the four systems are a dropout probability of 10% on all layers, the number
of training epochs which was 3 and an evaluation batch size of 8. Dropout and early
stopping are applied to reduce the risk of overfitting the model. When the number of
epochs surpasses five, there is a clear tendency that the difference between the training
and validation error increases, which usually is an indication of overfitting. Both datasets
were split into a training set containing 80% of the total samples and a test set containing
the remaining 20% of the samples. The better alternative here, cross-validation with
multiple folds, was not implemented due to framework limitations. As the datasets were
fairly imbalanced, Scikit-learn’s stratified splitting function was used to ensure that the
classes are equally balanced in each set. Shuffling of the samples was also applied each
run. All text data in the experiments were lowercased as the cased versions of BERT
are recommended for tasks such as named entity recognition. The fine-tuning of the
language models took around 3 hours on two Nvidia V100 GPUs with 32GB RAM each,
while classification with BERT Base and Large took on average around 1 hour and 2
hours, respectively.

7.3 Experimental Results

This section will present the results of each experiment. The results from the two datasets,
dataset D and F, will be presented separately. The results on dataset D from each of the
four systems will be given in one table while the results on dataset F will be given in two
tables, one for each multiclass classification. The slightly modified dataset F without the
“Spam” class will be denoted as F*. The performance of the systems will be measured
by the metrics described in Section 2.5, namely Precision, Recall, and F1-score. These
metrics will be calculated for each class as this gives more detailed insights into how the
models classify each sample. The macro averaged and weighted averaged total for each
metric will also be presented for comparison reasons although micro averaged total may
be more suitable for unbalanced datasets. Each of the four systems will be denoted as
BERT Base, BERT Large, BERT Base* and BERT Large* where the asterisk denotes the
further pre-trained language models described in Section 6.5. The following two sections
will present the results obtained by the four models on each of the two selected datasets.
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7.3.1 Dataset from Davidson et al. (2017)

The first dataset the four models were tested on was from Davidson et al. (2017) and
contained a total of 24783 tweets. The dataset is quite unbalanced with 77% of the tweets
being annotated as “Offensive” and only 6% being labeled as “Hateful”. The collection
approach taken by the authors is the reason for this unbalance. This approach consisted
of crawling tweets from authors known for hateful expressions, as discussed in Section
3.2. As we can see in Table 7.1, all four models perform more or less equally in almost
all metrics. The obvious observation here is that all four models are able to correctly
classify tweets as “Normal” and “Offensive” fairly well. BERT Large is the model that
performs best with a final macro averaged F1-score of 0.759, with the other three models
not far behind. This is in line with Devlin et al. (2018) who found that BERT Large
outperforms BERT Base across all tasks tested.
Out of the four models, BERT Large is also the model that obtains the best scores

for the “Hateful” class with precision, recall and F1-score of 0.520, 0.364 and 0.428,

Model
BERT Base BERT Large BERT Base* BERT Large*

Normal
Prec. 0.867 0.889 0.883 0.883
Rec. 0.906 0.888 0.893 0.888
F1 0.886 0.888 0.888 0.885

Offensive
Prec. 0.941 0.938 0.929 0.932
Rec. 0.953 0.959 0.965 0.961
F1 0.947 0.948 0.947 0.946

Hateful
Prec. 0.497 0.520 0.477 0.460
Rec. 0.343 0.364 0.213 0.259
F1 0.406 0.428 0.294 0.331

Micro avg.
Prec. 0.910 0.913 0.909 0.908
Rec. 0.910 0.913 0.909 0.908
F1 0.910 0.913 0.909 0.908

Macro avg.
Prec. 0.768 0.782 0.763 0.758
Rec. 0.734 0.737 0.690 0.703
F1 0.751 0.759 0.725 0.729

Wgt. avg.
Prec. 0.903 0.905 0.895 0.897
Rec. 0.910 0.913 0.909 0.908
F1 0.906 0.909 0.902 0.902

Table 7.1: Precision, recall, and F1-score of each class for the four models performing on
dataset D (scores in bold are for the best performing model for each metric
and class).
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respectively. Out of all the examples the model predicted as hateful, 52% of them were
correctly classified. Only 36% of the total true hateful tweets were classified correctly,
yielding a low recall score. The two models with general language understanding, BERT
Base and Large, outperform the two models with domain-specific language understanding
on the “Hateful” class. On this class, BERT Base* obtains a F1-score of 0.294 compared
to BERT Large’s F1-score of 0.428. This gap in F1-scores is unexpected as the intention
of further training the language models with domain-specific data was to increase the
hateful language understanding.

7.3.2 Dataset from Founta et al. (2018b)

The dataset from Founta et al. (2018b) is nearly three times the size of the one from
Davidson et al. The label distribution is also more balanced with roughly half of the
samples labeled as “Normal” and the other half distributed between the “Offensive”,
“Spam” and “Hateful” labels. Although only 6% of the tweets are annotated as “Hateful”,
this is a fair representation of the real world where only a small portion of the content
posted online is hate speech. This dataset is first tested with all the original labels even
though “Spam” samples are not relevant for the research in this thesis. The “Spam”
samples are included to correctly obtain results that can be compared to previous research
such as the baseline from Lee et al. (2018). To compare the models’ performance with the
traditional machine learning models’ performance carried out in the preliminary study, a
slightly modified version of this dataset without the “Spam” samples is also produced.
This dataset, denoted F*, is more relevant for the work in this thesis which focuses on
the task of separating hateful, offensive, and normal language.

Dataset F

The best scores for each metric are more spread across the four models when performing
on this dataset, and there is no clear difference between the models. We observe from
Table 7.2 that all four models would obtain the same F1-score of 0.67 if two decimal
precision were used. As with the previous dataset, the models are able to correctly
classify tweets as “Normal” and “Offensive” quite well while misclassifying most of the
true “Hateful” and “Spam” tweets. The best F1-scores for the “Normal” and “Offensive”
class are 0.869 and 0.884, respectively. Although they are both obtained by BERT Base*,
we observe that the other models are only a few thousandths points away from the same
score. The only telling difference between the models is the scores on the “Hateful” class.
BERT Base is the clear winner on this class with the highest precision, recall and F1-score.
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Model
BERT Base BERT Large BERT Base* BERT Large*

Normal
Prec. 0.850 0.860 0.855 0.863
Rec. 0.887 0.871 0.883 0.868
F1 0.868 0.865 0.869 0.865

Offensive
Prec. 0.848 0.850 0.848 0.845
Rec. 0.919 0.920 0.924 0.923
F1 0.882 0.884 0.884 0.882

Hateful
Prec. 0.562 0.513 0.543 0.500
Rec. 0.279 0.269 0.270 0.279
F1 0.373 0.353 0.361 0.358

Spam
Prec. 0.567 0.556 0.567 0.555
Rec. 0.473 0.536 0.495 0.542
F1 0.516 0.546 0.529 0.548

Micro avg.
Prec. 0.811 0.810 0.812 0.809
Rec. 0.811 0.810 0.812 0.809
F1 0.811 0.810 0.812 0.809

Macro avg.
Prec. 0.707 0.695 0.703 0.691
Rec. 0.640 0.649 0.643 0.653
F1 0.672 0.671 0.672 0.671

Wgt. avg.
Prec. 0.798 0.801 0.800 0.802
Rec. 0.811 0.810 0.812 0.809
F1 0.804 0.805 0.806 0.805

Table 7.2: Precision, recall, and F1-score of each class for the four models performing on
dataset F (scores in bold are for the best performing model for each metric
and class).

However, this model perform similar to the other three with a total macro averaged
F1-score of 0.672. This is the highest total F1-score which were obtained by BERT Base
and Base*. We observe again that these models are not able to recognize true hate speech
and misclassify most of the hateful samples as either “Normal” or “Offensive”. This is
represented by the poor recall scores in the “Hateful” column in Table 7.2.

Dataset F*

Removing the “Spam” class from the original dataset, we immediately see an increase
in the models’ scores for all three classes as shown in Table 7.3. The increase is most
noticeable for the “Normal” class going up from an F1-score of 0.869 to 0.962; however,
this is expected as the “Normal” class was highly confused with the “Spam” class in the
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Model
BERT Base BERT Large BERT Base* BERT Large*

Normal
Prec. 0.956 0.956 0.956 0.957
Rec. 0.968 0.967 0.967 0.964
F1 0.962 0.961 0.961 0.960

Offensive
Prec. 0.865 0.861 0.860 0.865
Rec. 0.920 0.926 0.921 0.919
F1 0.892 0.892 0.889 0.891

Hateful
Prec. 0.573 0.574 0.531 0.485
Rec. 0.299 0.264 0.264 0.284
F1 0.393 0.362 0.353 0.358

Micro avg.
Prec. 0.923 0.922 0.921 0.919
Rec. 0.923 0.922 0.921 0.919
F1 0.923 0.922 0.921 0.919

Macro avg.
Prec. 0.798 0.797 0.782 0.769
Rec. 0.729 0.719 0.717 0.723
F1 0.762 0.756 0.748 0.745

Wgt. avg.
Prec. 0.915 0.914 0.912 0.911
Rec. 0.923 0.922 0.921 0.919
F1 0.919 0.917 0.916 0.915

Table 7.3: Precision, recall, and F1-score of each class for the four models performing on
dataset F* (scores in bold are for the best performing model for each metric
and class).

previously presented results in Table 7.2. The increase is less notable for the “Hateful”
class although BERT Base outperformed the other models by quite a margin with a final
F1-score of 0.393. BERT Base is surprisingly the model that performs best overall on
dataset F* beating the other three models on nearly every metric and with a final macro
averaged F1-score of 0.762.

Remarkably 97% of the tweets labeled as “Normal” were correctly classified by the
model. Only 30% of true hateful samples in the dataset were correctly classified meaning
70% of the total samples were misclassified as either “Normal” or “Offensive”. Again,
the models seem to recognize true hate speech as less hateful than the annotators. This
trend is also seen the other way around with only a small portion of the normal and
offensive samples classified as more toxic by BERT Base. From Table 7.3 we observe
that the two models trained with domain-specific data, BERT Base* and BERT Large*,
performed worse on the “Hateful” class than the other two models with F1-scores of
0.353 and 0.358, respectively. Again, this is an interesting observation as more training
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with domain-specific data has shown to increase the performance of models in previous
solutions.
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The first part of this chapter interprets and evaluates the experiments presented in
Chapter 7. The second part discusses the findings in light of the research questions
formulated in Section 1.2. Relevant comparisons to previous literature, important results,
and limitations of the experiments will also be discussed throughout the whole chapter.

8.1 Evaluation

The experiments in this thesis consisted of four system setups where each of them
used a different version of BERT as a backbone. Two hate speech datasets were used
together with a slightly modified version of one of the datasets, to test each system. The
experiments were carried out by following the experimental plan presented in Section 7.1.
This section will evaluate several aspects of the experiments and the results obtained by
the four systems on the three datasets.

8.1.1 Datasets

During the literature review presented in Chapter 4, only two datasets were found to
separate between offensive and hateful language. Other datasets either merge these
two types of abusive language or chose only to use one of them as their negative class.
This separation between offensive and hateful language is essential to include in any
dataset as models should be trained to preserve freedom of speech and correctly moderate
unintended content. Although we in the experiments can see likeness and trends in the
results obtained for each dataset, a comparison of these results should be avoided as they
can lead to misconclusions. Also, the datasets are produced differently with varying size,
annotators, type of data, and label distribution, which make any comparison of results
unreliable. The lack of a shared, precise definition of hate speech results in annotators
receiving different annotation guidelines, and thus, two assumably similar datasets may
contain different interpretations of, for example, the hate class.
As a reminder, the datasets form Davidson et al. (2017) and Founta et al. (2018b)
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are denoted D and F, respectively. The modified dataset without the “Spam” class is
denoted F*. The main difference between the two datasets used in the experiments is the
size and label distribution. The size of dataset F allows for more training samples than
dataset D although systems transferring knowledge from pre-trained language models
have shown that even small datasets can achieve similar performance (Howard and Ruder,
2018). The four models’ overall performance on datasets D and F are the same despite
the fact that the latter dataset allows for more language model fine-tuning. The label
distribution in dataset F is more realistic than dataset D, where a large portion of the
samples is labeled as “Offensive”. However, this unbalance of dataset D does not seem
to affect the models’ performance noticeably. The reason is probably that dataset D
contains a sufficient amount of class samples for the models to learn the other two classes.
This ability to learn with a few training examples is, in fact, one of the main advantages
of using language models instead of traditional word embeddings. The unbalance of
dataset D could be resolved with one of several resampling techniques, but was chosen
not to for comparison reasons. Enriching datasets F and F* with more nuances of hate
speech samples could also improve the models’ ability to separate hateful language from
offensive and normal language. This sample boosting of the original version of datasets
F and F* is mentioned as future work by the authors of the dataset, Founta et al.

8.1.2 Language Model Selection

Although datasets without the distinction between offensive and hateful language were
irrelevant for testing the models in the experiments, they were used as unlabelled data
to further pre-train two BERT language models. This additional training is intended
to give the language models domain-specific language understanding and has shown to
increase the overall performance in other NLP tasks (Devlin et al., 2018). However, the
results obtained from the experiments show that the two models with domain-specific
language understanding performed worse or equal to the language models with general
language understanding. As we can see in Table 7.1, the worst performance of the two
extended BERT models was on dataset D. BERT Base* and Large* obtained macro-
averaged F1-scores of 0.725 and 0.729, respectively, while the original BERT models
obtained F1-scores of 0.751 for BERT Base and 0.759 for BERT Large. The difference
between these scores is a result of the models’ performance on the “Hateful” class as
the performance on the “Normal” and “Offensive” classes are near identical for all four
models. BERT Large outperforms the other three models on the “Hateful” class with a
F1-score of 0.428. This is in line with the original BERT paper where Devlin et al. (2018)
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found that BERT Large outperformed BERT Base on several NLP tasks. BERT Large’s
increased performance may be due to the larger model size, as increasing the models’
size has in recent years shown to lead to improvements on large-scale tasks.
However, this is not the case for the results obtained by BERT Large on dataset F*.

Looking at Table 7.3, we observe that the smaller model BERT Base outperforms BERT
Large on nearly every metric. The most compelling difference can again be seen in
the “Hateful” row, where BERT Base achieved an F1-score of 0.393 compared to BERT
Large’s F1-score of 0.362. This difference is a result of better recall obtained by BERT
Base, which means that the model correctly predicted more true hate speech instances
than BERT Large. The datasets are randomly shuffled before divided into two fractions,
which add some randomization to each run, and this may explain why BERT Base
was the best performing model on dataset F*. Cross-validation would be the preferred
training and testing strategy, but due to framework limitations, this strategy was not
feasible to implement.

Surprisingly, there is no telling difference when comparing the two models with general
language understanding to the two models with domain-specific language understanding.
Further training with large domain-specific corpora is expected to be beneficial and
increase the performance on downstream tasks like hate speech detection. However, the
results from the experiments do not reflect this assumption, and it seems like all four
models are able to capture similar features, thus performing equally well, as seen in,
for example, Table 7.2. As described in Section 6.5, next sentence prediction is one of
two pre-training objectives performed by BERT during training. So in order to further
pre-train the language model, it is necessary to obtain documents containing at least two
sentences. Obtaining such documents became a limitation, as the domain-specific data
used in the experiments mostly consist of tweets, as seen in Table 3.1 on page 28. Tweets
often consist of only one single-sentence and omitting every single-sentence tweet would
lead to a much smaller training corpus. So in order to include single-sentence tweets
in the training corpus, they were split at the middle word to construct two sentences.
This strategy is not optimal and may be one of the reasons why BERT Base* and Large*
did not perform as expected. After the experiments were carried out, an update to
the framework’s repository was released where several improvements to the pre-training
process were suggested. Example code to pre-generate the input data from raw documents
following the methodology used in the original BERT paper was one of the improvements.
This algorithm may not solve the problem with single-sentence documents, but it is
certainly recommended as future work to investigate this new methodology and explore
if further pre-training with domain-specific data can improve the overall performance.
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8.1.3 Misclassifications

Generally, the results from each dataset indicate that it is hard to separate hateful
language from offensive and normal language. This was also the key finding stated by
Malmasi and Zampieri (2018) and Davidson et al. (2017) when testing their models’
performance on dataset D. Analysing the confusion matrices for the best performing
model on each dataset, shown in Table 8.1, Table 8.2 and Table 8.3, we see indeed that
the “Hateful” row contains most misclassifications. The models highly confuse true hate
speech with offensive and neutral speech. For dataset D, most of the annotated hateful
samples are confused with the “Offensive” class, and this may be due to the skewed
dataset where the “Offensive” samples dominate. With datasets F and F*, there is
roughly an equal distribution of misclassifications between the “Offensive” and “Normal”
class. This indicates that neither of the tested models using features from the pre-trained
language model is capable of distinguishing hateful language from offensive and neutral
language with acceptable accuracy.

To investigate BERT Base’s predictions on dataset F* deeper, some correctly and
incorrectly classified instances were sampled. The sampled instances with their annotated
and predicted labels are summarized in Table 8.4 on page 76. Instances 1, 2, and 3 from
this table are all annotated as “Hateful”, but predicted as “Normal” by the model. None
of these samples strikes as clear hate speech and are perhaps mislabelled by the human
coders and correctly predicted by the model. Instances 4, 5, and 6 were predicted to be
offensive, but were all annotated as “Hateful”. Instance number 5 is tricky to annotate
as it depends on what the author means are “nasty as hell”: either the referred people or
their opinions. In the case of the latter one, this sample should most likely be annotated
as “Offensive” while the former one is perhaps recognized as “Hateful”. Instance 6 was
found four times in the original dataset with different authors, and the text resembles a
news headline. The four instances were annotated two times as “Hateful” and two times
as “Offensive” by the human coders. The model predicted the correct label on one of
the instances but chose the opposite label for the other three instances. As stated by

Predicted
Normal Offensive Hateful

Actual
class

Normal 740 79 14
Offensive 76 3680 82
Hateful 16 166 104

Table 8.1: Confusion matrix for the BERT Large model performing on dataset D.
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Predicted
Normal Offensive Hateful Spam

Actual
class

Normal 7413 223 56 665
Offensive 150 2612 68 11
Hateful 224 198 164 2
Spam 937 46 4 887

Table 8.2: Confusion matrix for the BERT Base model performing on dataset F.

Predicted
Normal Offensive Hateful

Actual
class

Normal 8087 212 58
Offensive 154 2614 73
Hateful 216 196 176

Table 8.3: Confusion matrix for the BERT Base model performing on dataset F*.

Chatzakou et al. (2017), annotation is even hard for humans and instance 6 is a good
example that the gold standard is not perfect even though the dataset from Founta et al.
(2018b) is thoroughly constructed. Although cases where the model predicts an instance
as more hateful than the annotators are rare, instances 7 and 8 show two examples of
these cases. Instance 8 is correctly annotated as “Normal” and the model is probably
confused by the phrase “hate it”. Instance 7 is a perfect example of how thin the line
between offensive and hateful expressions is and thus, how hard it is to separate them
correctly. The model tends to predict instances containing clear racist or homophobic
slurs as hate speech, although this is not always the case. However, obvious hate speech,
shown in instances 9 and 10, appears more straightforward for the model to understand
and accurately predict.

8.1.4 Comparison to State-of-the-art

Even though the experiments in this thesis were developed mainly to explore the effect
of transferring knowledge from language models, it can be beneficial to compare the
obtained results to previous solutions in the field of hate speech detection. As presented
in Chapter 4, several studies have been performed on the dataset from Davidson et al.
(2017). The dataset from Founta et al. (2018b) was recently released, and as a result,
there exist far fewer results on this dataset. Luckily, Lee et al. (2018) created a baseline
for this dataset presenting several detailed results from a chunk of machine learning
algorithms’ performance. In addition to this baseline, the results from the preliminary
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System Prec. Rec. F1
BERT Large 0.91 0.91 0.90
Davidson et al. (2017) 0.91 0.90 0.90
Founta et al. (2018a) 0.89 0.89 0.89
Kshirsagar et al. (2018) – – 0.92

Table 8.5: Comparison of systems performing on dataset D. All scores are weighted
average as confirmed by Kshirsagar et al. (2018).

study presented in Chapter 5 will be compared against experimental results from the
best performing model on each of the three datasets.

Table 8.5 shows the results obtained on dataset D by BERT Large compared to results
from other previous solutions. Although dataset D is a popular used dataset in the field,
some researchers, like Zhang et al. (2018), chose to merge the “Offensive” and “Normal”
classes into one non-hate class and thus, the results from these papers are not considered
to be comparable to the results carried out in the experiments. All four systems in
Table 8.5 perform equally well with F1-scores around 0.90. BERT Large is outperformed
by Kshirsagar et al. (2018)’s Transformed Word Embedding Model (TWEM) which is
discussed in Section 4.3. BERT Large outperforms the solution from Founta et al. (2018a)
and obtains similar results as the baseline from Davidson et al. (2017).

Lee et al. (2018) tested several machine learning algorithms on dataset F intending to
create a baseline for this dataset. Table 8.6 shows two selected models from this baseline
together with the two extended BERT models, BERT Base* and BERT Large*. We
observe from the table that the two BERT models and Lee et al.’s word-based RNN-LTC
model performs similarly on this dataset. However, BERT Base* achieves an F1-score of
0.361 on the “Hateful” class, which is an increase compared to the RNN-LTC model’s
F1-score of 0.302. This indicates that BERT Base* is undoubtedly better at separating

System Prec. Rec. F1
BERT Base* 0.800 0.812 0.806
BERT Large* 0.802 0.809 0.805
Lee et al. (2018) (CNN word) 0.789 0.808 0.783
Lee et al. (2018) (RNN-LTC word) 0.804 0.815 0.805

Table 8.6: Comparison of systems performing on dataset F. All scores are weighted
average. The last two F1-scores are reported wrong by Lee et al. according to
Equation 2.8 on page 23. The correct score for these entries should be 0.798
and 0.809, respectively.
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System Prec. Rec. F1
BERT Base 0.80 0.73 0.76
Naïve Bayes 0.63 0.63 0.63
Support Vector Machine 0.87 0.65 0.74
Logistic Regression 0.80 0.69 0.74

Table 8.7: Comparison of systems performing on dataset F*. The three traditional
machine learning systems are from the preliminary study. All scores are
macro-averaged.

hateful language from the other types of language compared to other solutions. The
RNN-LTC model outperformed BERT Base* on the “Spam” class resulting in the similar
total weighted average scores.

Dataset F* is without the “Spam” class, and the experimental results on this dataset
are compared to the three baseline systems tested in the preliminary study. This is
because no other research was found during the literature review. The macro-averaged
scores from all systems are shown in Table 8.7. Out of the four tested models, BERT Base
was the best performing model with an F1-score of 0.76. This score is high enough to
outperform the three other tested models comfortably. Again, BERT Base’s performance
on the “Hateful” class is compellingly better than the best performing Logistic Regression
model from the preliminary study. BERT Base obtain an F1-score of 0.393 while the LR
model achieves an F1-score of 0.310. The improved performance on the “Hateful” class
on both datasets F and F* implies that models transferring knowledge from pre-trained
language models are able to distinguish the nuances of abusive language more accurately.

8.2 Discussion

Section 1.2 formulated an overall research goal, along with more specific research questions
aimed at reaching this goal. The goal of this thesis was to investigate how to accurately
distinguish between hateful, offensive and normal language. Three different research
questions were formulated as sub-goals, and these will be addressed in this section.

Research question 1 Which features and representations of text, as well as models, are
effective when detecting hateful, offensive, and normal language?

There have been numerous attempts at creating predictors that can detect hate speech
and other types of abusive speech accurately. The various approaches use task-specific
preprocessing techniques, input features, models, etc., and therefore hard to generalize

78



8.2 Discussion

which features and models that work best for every task. However, studying the different
approaches is important to gain insights into the possible techniques and models that
can be utilized. Previous studies on abusive language detection were found during
the literature review and are summarized in Section 4.3. The set of features and text
representations examined in previous solutions varies while supervised learning is the
preferred classification method. In the early studies on hate speech detection, most
features were constructed by looking at simple surface features in the language such as
bag-of-words and TF-IDF, which are described in Section 2.2.2. Burnap and Williams
(2015) and Waseem and Hovy (2016) used a set of features containing bag-of-words
combined with unigrams or n-grams, and these features are found highly predictive on
their own. However, Nobata et al. (2016) reported that models combining both character
and token-level n-grams achieved the highest performance in their experiments. This
observation agrees with Meyer and Gambäck (2019) who used character n-grams and
word embeddings as input to their dual-stranded CNN-LSTM system and achieved great
results. Gaydhani et al. (2018) achieved remarkable results on separating hateful and
offensive language by combining n-grams with TF-IDF. The models implemented in the
preliminary study also use TF-IDF to form numerical vectors, although the models from
Gaydhani et al. greatly outperform the models in the preliminary study. However, the
results from Gaydhani et al. have shown challenging to reproduce as discussed in Section
4.3.

Although surface features have shown great results, syntactic features and word order is
ignored with these kinds of features. In addition, they are highly dependent on predictive
words in the documents to work well. This is not always the case with hate speech as
hateful expressions can be uttered without offensive slurs. Several recent works use word
generalization as a technique to counter this problem. Distributed representations of
words or word embeddings, presented in Section 4.1.1, is such a technique commonly
used by researchers. The first popular embeddings technique in NLP, word2vec, was
proposed by Mikolov et al. (2013b). Gambäck and Sikdar (2017) used word embeddings
from word2vec to capture semantic information and found that the CNN model using
these word embeddings outperformed the other three models tested including a model
using character n-grams. This is the opposite of Badjatiya et al. (2017) who used word
embeddings from GloVe, but found that an LSTM model using randomly generated word
vectors outperformed the models using transferred knowledge from GloVe. However,
Pavlopoulos et al. (2017a) and Pavlopoulos et al. (2017b) also used word embeddings
from Glove and word2vec and found their RNN based model to work well for comment
moderation.
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Word embeddings are capable of capturing many different properties of a word in a
document such as a word’s context. However, these word embeddings are static in the way
that the context of a word is always the same regardless of the overall context where it
occurs. Contextualized word embeddings address this problem of polysemy by capturing
a word’s semantics in different contexts. Language models are trained on predicting
the next word given a sequence of words and the LSTM neural network architecture
is commonly used to learn this ability. The ELMo language models created by Peters
et al. (2018) use the hidden states of these trained LSTM models to generate deep
contextualized word representations for each token. ELMo and other language models are
further discussed in Section 4.1.2. These techniques for generating numerical vectors are
recently discovered, and few existing solutions using them are proposed. Pérez and Luque
(2019) and Indurthi et al. (2019) used ELMo embeddings to obtain some of the best
results on the hate speech dataset from Task 5 sub-task A in the recent SemEval-2019
competition. Similarly, for the offensive detection Task 6 sub-task A, among the top-10
ten teams, seven of them chose to use BERT as their language model. Liu et al. (2019)
was the top-performing team and used BERT Base with default parameters. This is in
line with BERT Base used in the experiments where the model achieves some of the best
results on each dataset.

Regarding model selection, early research in NLP used traditional machine learning
algorithms as the ones presented in Section 2.3. Waseem and Hovy (2016) found a
logistic regression model to be most effective when performing on their own dataset. An
LR model was also the best performing model in the experiments carried out in the
preliminary study. Today, these classical classification algorithms are mostly used as
baselines and compared against deep neural network based algorithms. Lee et al. (2018)
tested a lot of machine learning algorithms and found that the models based on deep
learning outperformed the traditional algorithms such as SVM and NB. Other researchers
chose only to implement the neural network based models as they are believed to improve
the overall performance. For instance, Gambäck and Sikdar (2017) trained four CNN
based models and achieved results above the baseline from Waseem and Hovy. Pitsilis
et al. (2018) utilized an ensemble RNN based model without the use of word embeddings
and outperformed the state-of-the-art on the dataset from Waseem and Hovy. Model
selection is important when creating a hate speech predictor; however, Gröndahl et al.
(2018) argue that model architecture is less important than the type of data and labeling
criteria. They found that the tested models, which ranged from simple Logistic Regression
to more complex LSTM, performed equally well when recreating several state-of-the-art
solutions. This is not in line with the results from the preliminary study, which show
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that the LR model outperforms both the SVM and NB models. However, Gröndahl
et al.’s results are consistent with the investigations conducted during the experiments in
Chapter 7, where changes in the final classifier’s complexity did not reflect any changes
in the results.

Although neural networks require more training data than, for example, Naïve Bayes,
several existing hate speech datasets contain a sufficient amount of samples to be effectively
used for deep learning. Howard and Ruder (2018)’s ULMFiT language model also shows
that with pre-trained language models, great results can be achieved even with small
datasets. The task of hate speech detection lacks a benchmark dataset and Schmidt and
Wiegand (2017) argue for a benchmark dataset representing all nuances of hate speech.
Although the dataset from Founta et al. (2018b) contains nearly 100k samples, Table 8.4
showed that some classes might contain overlaps, duplicates and mislabelled samples.

Research question 2 How well does a deep learning model based on a large pre-trained
language model distinguish between hateful, offensive and normal language?

The architecture and experiments presented in Chapter 6 and Chapter 7, respectively,
were designed to answer this research question. More specifically, the implemented
models BERT Base and Large were tested on two different datasets containing the three
classes “Hateful”, “Offensive” and “Normal”. Although the four systems achieve F1-
scores close to existing solutions, the performance on the “Hateful” class is undoubtedly
better for the two pre-trained models. This indicates that the language models’ general
language understanding obtained during pre-training is capable of recognizing more
hateful examples than neural network based models. However, the models’ recall on the
“Hateful” class is poor and the systems confuse true hate speech with both offensive and
normal instances. This agrees with the observations made by Malmasi and Zampieri
(2018) and Davidson et al. (2017). Thus, using this system in production would mean
that far too many hate speech utterances would slip through the system. Even though
the model rarely classifies offensive or normal instances as hateful, it is important to
preserve the freedom of speech and censoring a normal instance wrongly as hateful would
not be acceptable. With that said, the models are able to correctly classify the offensive
and normal samples on all three datasets with high accuracy. With similar accuracy on
the “Hateful” class, these systems may be used for semi-automatic moderation where
inappropriate content would need to be reviewed manually by a human.

Research question 3 What are the effects of further pre-training a language model with
hate speech corpora?

81



8 Evaluation and Discussion

Two other models, BERT Base* and Large* were implemented to help answer this
research question. These models were further pre-trained from BERT’s checkpoint with
domain-specific corpora to obtain more domain-specific language understanding and thus
improve the models’ overall performance. Although the models achieved results above
the original language models on some metrics, the overall performance of all four systems
was similar without any remarkable improvements. As mentioned above, the generation
process of the domain-specific corpora had issues with single-sentence documents, which
resulted in documents containing a single-sentence split in the middle. As most of the
existing datasets in the hate speech domain include tweets, this strategy had to be applied
to a large portion of the samples; however, the final input mostly contained documents
with several sentences. Recently, an update to the repository was released with code
aimed at generating the pre-training data with an optimal strategy. This strategy may
result in a more consistent and optimal generation of an input corpus that may allow for
the model to gain better domain-specific language understanding and thus improve the
overall performance. Also, collecting larger documents containing hateful and offensive
utterances together with neutral language, such as the dataset from de Gibert et al.
(2018), is preferable as opposed to only using tweets as pre-training data. Although not
tested during the experiments, it may also be beneficial to pre-train BERT from scratch
with only domain-specific documents.
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This chapter will provide a conclusion to the work carried out in this thesis, as well as
discuss how this thesis contributes to the field of hate speech detection. The final section
provides ideas for further exploration of transfer learning with language models and hate
speech detection in general.

9.1 Conclusion

The field of hate speech detection has gained a lot of interest in recent years by not
only NLP researchers, but also by some of the biggest social media platforms such as
Facebook, Instagram, and Twitter. These platforms allow user-generated content and
hence are responsible for handling and removing unintended content within a specific
time limit. As these platforms report millions of users who use their service every day,
an automatic detection and filtering system is highly necessary as manual moderation
is not feasible. The research field continuously explores new ways of detecting abusive
and harmful text content in order to assist in the search for practical tools. The work
conducted in this thesis aimed at exploring the effects of transferring knowledge from
large pre-trained language models to the task of separating hateful, offensive and normal
language. The exploratory research consisted of a literature review, a preliminary study,
and experiments.

An extensive literature review of related studies was performed and presented in Chapter
4. This literature review intended to gain insights into existing solutions in the field of
hate speech detection. These insights focused on which features, text representations,
and classification methods found useful when creating hate speech predictors. Word
embeddings from word2vec or GloVe and n-grams were some of the more popular set of
features used in state-of-the-art solutions. Regarding the choice of the classifier model,
some studies implemented simple classical machine learning algorithms such as SVM,
NB and LR while others chose to implement neural network based models and even
some hybrid systems. However, Gröndahl et al. (2018) argue that model architecture is
not as important as the labeling criteria and type of data in the datasets. The results
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from experiments conducted in this thesis agree with this statement to a certain extent,
although language models have shown exciting and should be focused on in future
research.
In addition to the literature review, Chapter 3 presented some of the most popular

hate speech datasets in the field. The choice of the dataset used in the experiments
is important as the models can only learn from the samples within a dataset. Due to
the lack of a shared definition of hate speech, different datasets are constructed with
different labeling criteria and classes. This makes comparisons of results across datasets
not suitable. Therefore, the field should strive to create a benchmark dataset containing
the nuances of abusive language. As Table 8.4 shows, annotating a dataset is a difficult
task. By utilizing pre-trained language models, a benchmark dataset does not need to
contain as many as possible samples, but instead contain correctly labeled samples.
To further explore the effects of applying language models to the downstream task

of hate speech detection, four systems based on the recently release BERT language
models were implemented. All four systems were trained on the English Wikipedia
and BookCorpus to obtain general language understanding. In addition, two of the
systems were further pre-trained with unlabelled domain-specific data to investigate the
effect of this strategy. However, the results did not reflect any notable improvement
with the extended language models. As discussed in the previous chapter, a flaw in
the pre-training process was that a large portion of the data contained single-sentence
documents, which is a problem as BERT is trained on a next sentence prediction task.
All four models achieved F1-scores close to or above state-of-the-art solutions on both
datasets and their ability to correctly distinguish hate speech from offensive and ordinary
language was considerably better than the compared solutions. However, the scores on
the “Hateful” class is not sufficient enough to bring the systems into practical use cases
as hateful expressions would pass through the system or more benign cases would be
incorrectly censored. Language models bring a considerable potential to understanding
all the nuances of hateful utterances, and further exploration of how to most effectively
train and transfer knowledge from them is necessary.

9.2 Contributions

This thesis contributes to the growing field of hate speech detection intending to encourage
further exploration of the massive potential of transfer learning in NLP, primarily through
language models. A thorough literature review mainly focusing on previous solutions
utilizing more or less complex transfer learning is presented in Chapter 4. This thesis
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also provides an architecture overview and implementations of one of the latest language
models, namely BERT. In addition, investigation of the effect of further training BERT
with domain-specific corpus was carried out. The implemented systems achieved similar
overall results as previous state-of-the-art solutions; however, the ability to recognize and
correctly predict hateful instances was noticeably better, but unfortunately not to such
an extent that the problem of separating hateful and offensive language is solved. More
research in the field is necessary to find effective tools able to separate the nuances of the
natural language correctly.

9.3 Future Work

In any research, there is always room for improvement, and during the work conducted in
this thesis, several new ideas came up to further improve the work. This section presents
some suggestions inspired by these ideas for others to further research and explore the
use of language models for transfer learning. In addition to the concrete suggestions
below, general explorations with language models are encouraged in order to reveal their
full potential. Although BERT was built upon recent work like ELMo and ULMFiT,
BERT is not the only language model available. Several others are presented in Section
4.1.2 and a collection of some of them is made available as Pytorch models in an excellent
open-source repository1.

9.3.1 Multilingual BERT

Hateful and abusive expressions are not only existent in the English language, although
most of the datasets and pre-trained language models are in English. Datasets in several
different languages are available for researchers, for instance, a German dataset from
Ross et al. (2016) and a Greek dataset from Pavlopoulos et al. (2017a). BERT’s official
repository2 is continuously updated with new releases of pre-trained language models, and
the repository’s contributors recently made a multilingual language model available. This
model is pre-trained with 104 different languages and can be used to create a language-
independent hate speech predictor in the same way as the implemented language models
discussed in Chapter 6.

1https://github.com/huggingface/pytorch-pretrained-BERT
2https://github.com/google-research/bert
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9.3.2 Pre-train BERT from Scratch

The four models used in the experiments were all pre-trained on the English Wikipedia
and BookCorpus to obtain general language understanding. Typically, the language
that appears in Wikipedia articles and books are somewhat domain neutral and contain
formal language, which is why these two corpora are selected as input data. Although the
intention of using these neutral corpora is good, the language may be too different from
the hate speech domain in terms of words and sentences. Therefore, it may be beneficial
to collect documents from hate speech datasets and create one large corpus using the
updated method for generating input data for BERT. This corpus can then be used
as input data to pre-train BERT’s encoders from scratch, which may be beneficial and
improve the overall performance of the models. However, be prepared that pre-training
is reasonably computationally expensive. Also, a new WordPiece vocabulary may be
necessary to train as well.

9.3.3 Hyperparameter Optimization

Hyperparameters are values that are chosen and set before the learning process. As the
research in this thesis consisted of exploring the effects of language models applied to the
task of hate speech detection, extensive hyperparameter tuning was not carried through.
Instead, the recommended number of epochs, values for learning rate, sequence length,
etc. were tested manually to find the final values used in the experiments. If the highest
possible scores are desirable, it may be beneficial to run a more exhaustive grid-search
to find the optimal parameters that maximize the models’ performance. In addition,
cross-validation during the training process is favorable to reduce the probability of
overfitting and create models that generalize well.
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