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Abstract

This thesis investigates the energy dispersion and damping mechanisms in ice floe-
floe collisions and flow buoyancy oscillation in order to gain better understanding
of the diffusion of surface waves entering the marginal sea ice zone. We derive
some mathematical models motivating preliminary laboratory work in which we
perform added mass and collision characteristic time investigations. These experi-
ments lead to an in-situ field work on the sea ice during which characteristic ice-ice
collision times will be measured in the air and in the water, as well as buoyancy
oscillation characteristic damping times. We find characterizing values of 0.003 [s]
and 0.015 [s] respectively in the air and in the water for ice-ice interactions and of
13.63 [s] for buoyancy oscillations.
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Chapter 1

Introduction

"Mad Hatter: Why is a raven like a
writing-desk?

- Have you guessed the riddle yet?
the Hatter said, turning to Alice
again.

- No, I give it up, Alice replied:
What’s the answer?

- I haven’t the slightest idea, said
the Hatter"

Lewis Carroll

1.1 Motivation

The objective of this thesis is the study of ice floe-floe interactions and floe buoy-
ancy oscillations. Through a set of developments, we will display the very wide
range of tools from a physicist’ skillset this project motivated and stimulated :
physical theory, mathematical modeling, coding and programming, systematic
laboratory work and arctic fieldwork. We would be very honoured if this thesis
reveals to be comprehensive for both a motivated student with a background in
physics, mathematics or engineering and a long-time scientist from the field. It
is very exciting to realize from the young age of the publication used that this
project allowed to grasp the evolutions and discoveries that happen at the level of
contemporary research.



2 Introduction

1.2 Context

The physics of wave action work to reduce the ice in the Arctic through a coincid-
ence of phenomena : the Arctic being mostly ice-covered during the winter season,
wave action primarily develops in the warmer summer months. When fracturing
the ice, the waves increase the lateral surface area, which in turn accelerates the
melting rate of the ice zone due to the resulting smaller floe sizes. But an increase
in the fraction of open water in those areas also leads to an increase of the albedo
feedback effects and an increase of fetch. The latter induces a further potential for
the development of bigger and more damaging waves, amplifying this loop from
the start over. This transition zone between this sea-ice and the ice-free waters is
called the Marginal Ice Zone.

As the waves create a permanent action on the marginal ice zones, they set the
floes in motions, which in turn will cause the ice-ice interactions that we will study
here. We would therefore like to remember how sea ice moves on the sea surface.
Although the motion of drift ice is two-dimensional, we derive its equation of
motion in all three dimensions. The starting point shall be Newton’s second law :

du =
m-— =F 1.1
T (1.1)
where @ = (u,v,w) is the velocity vector with w the vertical velocity, and F
represents the forcing on the ice.

Following the assumptions of [1], we consider normal continuum mechanics :

o the mass field of continuum particles is given by density in kg/m3.

e the thermal stress field forcing is V-3, using the internal stress tensor ¥ =
7 — [pa + pwgD] - I with & the internal ice stress, Pq the hydrostatic pressure
from air, p,,g D the hydrostatic pressure from sea water (D being the depth
of the water) and I the unit tensor. Hydrostatic pressure compresses the
particle normal to the surface and is equal in all directions.

The equation of motion for a continuum therefore is the Cauchy equation:

p-<?§+ﬁ-€u>:§-i+ﬁext (1.2)

where Fe,; represents the external forcing on the ice in terms of force per unit
volume.
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The author [1] also introduces geophysical effects in the equation of motion, which
add up to:

oi s\ e S s
po | G +a Vur20x @ | = (7= lpa+pugD] 1) - p¥8 (13

Coriolis gravity

where ) is the Coriolis vector and ® is the geopotential height of the sea surface.

Integrating the equation of motion through the thickness of ice, we assume the
surface boundary condition to be that the ice shear stress must match the shear
stresses of air 7, and water 7, on ice, but also that the horizontal Coriolis accel-
eration arising from vertical motion is very small compared with the part arising
from horizontal motion. This reduces the Coriolis acceleration to f k x @ where
f = 2Qsin ¢ is the Coriolis parameter (with ¢ the latitude). Our general form of
the equation of motion of sea ice on the sea surface plane then becomes:

i . N - . o
oh- <£+ﬁ.vu+kaﬁ> =V G+t T — phgf - hVp.  (14)

where pghg is the sea surface tilt and comprises the slope of the sea surface 5 .

1.3 Investigations

This thesis presents a work built upon a logical progression of thoughts, skills
and motivations. The chapter on Theory will introduce all necessary physical and
mathematical tools both for the understanding of the intellectual context and for
the preparation of the following personal work. The main fluid dynamics equations
relevant to our research will be derived. The chapter on Modeling will produce and
present a set of theoretical models on which the applied work will be based. With
those we will at the same time support and motivate the laboratory and field invest-
igations. The chapter on the Experimental setup presents the software, hardware as
well as the protocols to work with them in our different experiments. It also com-
putes most theoretical values that we will compare our experimental results with.
The chapter about the Data analysis and discussion brings the work into this thesis
and explains the processing of the data from our investigations. It communicates
our findings and results and discusses them with comments and comparisons with
publications of peers.



Chapter 2

Theory

"The only thing that you absolutely
have to know, is the location of the
library."

Albert Einstein

This chapter aims at presenting the underlying physics to our investigations and
will summarize the most important theoretical elements that would be required to
follow the upcoming development of mathematical models for the studied sea-ice
and ice-ice interactions.

As our experiments bring together solid bodies and fluids, the study of the former
can’t be consistent without an understanding of the latter. We will therefore present
the quantities describing the flow of a fluid ; the laws of physics governing its
evolution are derived from the general principles of the conservation of mass and
momentum. A summary of the main derived equations is presented in the Table
2.1.

2.1 Conservation of mass

2.1.1 The continuity equation

We consider a fixed volume V' of fluid with mass :

m:/ pdV (2.1
1%
4
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Continuum Hypothesis Equation Ref.
Compressible Continuity
Do 20 9 1V - (pi)) =0 23)
Incog:)pr_essible Més? EaEnz)ce Navier-Stokes
\]?itsc;us Momenthjm_balance Dit 9o - 213)
Fluid p#0 PRI v . g ph PDr = HVE VR
Inviscid L, Duler (2.12)
pPo: = —Vp+pb
n=20 Unsteady Bernoulli
— (2.18)
Rotatonalty P2+ 1[Vo +p= £(1)

Table 2.1: Summary of the presented laws of fluid motion with their hypotheses

where p is the density of the fluid.

To study its variation in time, we follow the intuition of [2] and look at the mass
flux density pu flowing through the surface S enclosing the volume V. By taking
the surface element dS to be aligned with the 72 normal to the surface, which
translates into d.S = 7idS , We can write :

dm

%pu ds

(21)&716 /apdV— /V-pﬁdV
1%

& /V<at+v-pu>dV:O

Since (2.2) is true for every volume, we can neglect the integral-self and obtain the
continuity equation :

(2.2)

op
—+V- =0 2.3
o+ V- (01) 3
or with the material derivative presented in 7.1.7 :
D
P _pv-a 2.4)

Dt
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2.1.2 The mass balance equation

If we assume that the variations of the densities are small enough because the fluid
is incompressible, we would have :

Dp
|
Dt

which transforms (2.4) into the mass balance equation :
V-u=0 2.5)

2.2 Conservation of momentum

2.2.1 The momentum balance equation

The development of the balance of momentum equation is motivated by the con-
sideration of the acceleration of a fluid particle. Since the fluid particle is moving
along a vector field @ (¢, z(t),y(t), z(t)) in cartesian coordinates, we require the
use of the material derivative here as well and express the acceleration as :

Du
a(t) = — 2.6
) =3 26)
The forces acting on an fluid element can be of two kinds : they can either be body
forces affecting the continuum per unit volume (such as gravity or electromagnetic
fields) or they can be stress forces acting on the surface of element due to the other
elements around it (forces represented through stress tensors of the form o;; such

as hydrostatic pressure or viscosity).

With the theorem 7.1.6, we can write the orthogonal stress forces exerted on the
fluid inside a volume V through the stresses on the boundary S of V as :

—

Fress , viscous — 7{ Uijnjds = / (v : U)dV 2.7)
S \%4

where the Einstein summation is used for the repeated index j and n; are the
vectors normal to each of the 3 surfaces.

For generic body forces per unit mass 5(75, x,y, z), the total body force on the fluid
in the volume V' would be :
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Fhody = / pbdV (2.8)
\4

The total force per unit volume is therefore the sum of (2.7) and (2.8) :

ﬁotal, unit volume = V + 0 + pg (29)

Applying Newton’s second law (1.1) brings together (2.6) and (2.9), and yields the
momentum balance equation :

Du -
— =V b 2.10
PDr V.-o+p (2.10)

2.2.2 The Euler equation

Considering an ideal fluid where the stress forces are always orthogonal to the
surface so that 0;; = —pd;;, with ¢;; the Dirac delta function, we reduce our study
to a situation in which the absence of tangential forces means that flow along a
surface is non-viscous and irrotational [3]. The difference with (2.7) show in :

—

F‘stress , non-viscous — épﬁds - —/ (Vp)dV (21 1)
\4

where p = pg + pg(zo + 2) is the water pressure with the shallow water approxim-
ation that the density is considered to be constant, z the depth, 2 a reference point
(for instance the sea level) and pg = p(z = zp) the pressure at the reference point
(for instance the atmospheric pressure at sea level).

The equation momentum balance equation (2.10) then transforms accordingly into
the Euler equation :

Du -
— =-V b 2.12
PDi p+p (2.12)

2.2.3 The Navier-Stokes equation

We will derive the Navier-Stokes equation by combining the mass balance (2.5)
and the momentum balance (2.10) equations. In fact, the Navier-Stokes equation
describing the motion of every viscous fluid, we introduce a strain rate of the form
€;j (such as viscosity or shear) in function of the velocity field  :
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_ 1 8ul 8uj
€ =5 <8xj - 8%) (2.13)

Viscous fluids are characterized by a direct relationship between the stress and this
strain rate, this simplest of which is linear [4] :

Uij = 2/1,62']' — 6ijp (214)

where we split the shear and bulk components such that the viscosity i only ex-
presses the resistance to shear motion.

The Navier-Stokes equation being computed for an incompressible fluid, we make
the assumption V - & = 0. Furthermore, by inserting (2.14) into (2.10) using the
strain rate definition of (2.13), we can rewrite the divergence of the stress tensor in
coordinates as :

doij _ 0Q2peij)  0(6ijp) 0 (Ou;  Ou op
81‘j (%cj 81'3' o Maxj

- ox g 8%’2 B 8951

Formulating the equation in this way allow us to swap the partial derivatives in x;
and xj, which leads us to the elimination of one of the derivatives in the velocity
term :

_ v u=0 O 2,
- 8a;j 8$j + 8.%'2 6$j (%cj 81’]' v Ui

9 (O Oy 0 Oui | 9 Ouj va=o 9 Ju
5'3,’]' 8a:j 6901

which now allows us to come back to (2.10) and express the Navier-Stokes equa-
tion for every u; component :

Du; 0%u;  Op

— — b,
Ppi =H 81‘? ox; P
or in an equivalent, vectorial form :
Di -
pDit‘ = V% — Vp + pb 2.15)

This equation is a reformulation of Newton’s second law (1.1) for fluids : the dens-
ity of the fluid times its acceleration composed of time-dependent and convective
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elements is equal to the sum of hydrostatic effects, the diffusion of momentum
through viscosity and body forces on the fluid elements.

2.3 Potential flow theory

A potential flow is an irrotational flow in which the fluid particles do not rotate,
their angular velocity therefore being null.

The angular velocity of a flow is defined in terms of the flow velocity @ as :

and hence, if the angular velocity is zero, then V x @ = 6, which induces that
in such irrotational flows, we can define a velocity potential function ¢(z, z,t)
verifying :

i=Ve (2.16)

and making sure that w = 0 by virtue of the vector identity 7.1.1.
2.3.1 The Laplace equation

As explained by [5], the flow velocity & must still satisfy the mass balance equation
(2.5). If we substitute our potential function from (2.16) into it, we arrive to the
Laplace equation :

V-i=V-(Vp)=V-Vop=V2p=0 (2.17)

2.3.2 The unsteady Bernoulli equation

The unsteady Bernoulli equation is derived from Newton’s second law (1.1) for
fluids in inviscid conditions, which corresponds to the Euler equation (2.12), but
within the frame work of potential flow theory [6]. In fact, decomposing the ma-
terial derivative in the Euler equation yields :

o .
p (87: + (ﬁ-V)ﬁ) = —Vp+ pb

Two specifications arise for irrotational flows however :
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e V x @ = 0, which means that (7 - V)& = 3V(@ - @) with respect to the
vector identity 7.1.2

e we can use the velocity potential (2.16) instead of the flow velocity

and thus we can write, assuming no body forces b :

<av¢>
ot

& TaV(Ve V¢)> —Vp

v[ gf+ ~p(Vé- V¢)+p] )

An integration through all the spatial derivatives gives us the unsteady Bernoulli
equation :

9¢

1 9 B
P T3P Vo™ +p = f(t) (2.18)

where f(t) is a time-dependent function working as the constant of integration.



Chapter 3

Modeling

"All models are wrong but some
are useful.”

George Box

The series of performed experiments motivates us to develop a few models to de-
scribe the phenomena at play during the interactions of bodies. We establish a
description of pendulum interactions ; first alone with the fluids they oscillate in
and then with one another, motivated by the work carried out during the laboratory
work. After describing how to compute the collision pressure force between two
bodies, we investigate the interactions of a submerged ice block moving towards
a wall as it recreates an experiment carried out during the field work. At last, we
approach the oscillations of a buoyant ice cube with energy dissipation through its
lateral faces in water ; first by describing the dynamics of a viscous fluid between
two plates and then through the damping equations affecting the velocity amplitude
of the oscillations, a phenomenon observed during another experiment carried out
during field work.

The Table 3.1 summarizes the models presented in this chapter for the reader to
gain a better overview and access into the mathematical developments hereunder.

3.1 Physical pendulum and added mass

3.1.1  Simple pendulum

To work with a physical model for a pendulum, we need to derivate the adequate
equations of motion first. For that, we will work in a rotational system with circular

11
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Experiment Model Name Inputs Outputs Ref.
- _ mglem
Pendulum Phy§1cal pendulum Wa Ig = W (3.8)
. . in air
1nteractions .
Physical pendulum Ig, wy Madd = l% (mji% — Is) (3.10)
in water b
Collision pressure 7, Upe, Vay  Feot = — 52 (v% — v3) (3.11)
force
TN =2
Ice block Ice block and wall  ho, kY h(t) = ho (1 - 372) (3.19)
interactions in water
Buoyant ice Viscous fluid w, 1 u(z,t) = ugF (A, z,1)e™!  (3.20)
cube between two plates
Buoyancy  oscil-  w,, h; up(ts) = nhe™ - (3.35)
lations of an ice
cube

Table 3.1: Summary of the developed models supporting the various experiments

coordinates as introduced in Figure 3.1.

Using the definition of the torque about the pivot point P, we have :

Fp:Fp,meg“

= I x mg(cos OF — sin 66) (3.1)

= —mygl sin 0k

where m is the mass of the simple pendulum, g is the gravitational acceleration, [
is the length of the pendulum and 6 is the angular displacement.

The E—component of the torque about P is :

(tp)r = —mglsin 6

But using another definition for the torque that introduces the angular momentum,

T = ‘é—f, and knowing that for a point particle L = I& where I is the moment of

inertia and w = % the orbital angular velocity, we can write :

d?0

w 3.2)

(tP)k = Ipay, = Ip
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Figure 3.1: Representation of a simple pendulum

Since the moment of inertia for a point mass about a pivot point P is Ip = mi?,
we obtain the following differential equation of motion :

d26 g .
@®o sin @ (3.3)
Small angle approximation

Assuming that the angle 6 is very small, we can use the following small angle
approximation :

. k1
sinf ~ 0

which transforms (3.3) into :
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d26
=+ %0 =0 (3.4)

Using the ansatz (t) = 0 sin wt, it follows that the solution to (3.4) is :

0(t) = 0y sin \ﬁt (3.5)

This solution describes a simple harmonic motion with amplitude y < 1 and an

angular frequency of motion wy = /7.

3.1.2 Physical pendulum in air

Figure 3.2: Representation of a physical pendulum in air

Contrarily to the simple pendulum, a physical pendulum consists of a rigid body
swinging about its fixed point S, as illustrated in Figure 3.2. This time, the gravit-
ational force acts at its center of mass but the torque analysis remains very similar
to that of the simple pendulum. The equation (3.1) rewrites as :
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TS = TS,em X Mg

= ot X mg(cos OF — sin 06) (3.6)

= —mglem sin 0k
We can then follow the same steps that led to (3.3) and obtain :

d26
IS@ = —mglem sin 0 (3.7

with Ig the moment of inertia about the fixed point S.
Moment of inertia

With the same small angle approximation as before and the ansatz 0(t) = 6y sin w,t,
we now derive a expression for the moment of inertia Ig :

mglem
1s = % (3.8)
wa

where wj, is the angular frequency of the pendulum in the air.
3.1.3 Physical pendulum in water

When submerged in water, the motion of the pendulum will be submitted to 2 addi-
tional effects : the inertia from the volume of fluid that the accelerating pendulum
will displace, formulated in terms of a mass myqq multiplied by the length of the
pendulum’s rod [ and added to the moment of inertia [7], and a drag acting against
the motion of the pendulum with respect to the fluid, coming from the Morison
formula presented in [8] :

2

d-=0
2
(IS + maddl )@

de| do
erin (3.9)

1
= —mgley sinf — §prDSl2

drag

where p,, is the density of the water, C'p the drag coefficient depending on the
shape of the pendulum and S the cross section of the displaced area in the fluid.
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Figure 3.3: Representation of a physical pendulum in water

Added mass

We here proceed to 2 approximations, the small angle and the low speed one. The
first one reduces sin 0 to 0 as before and the second one makes us neglect the drag

term containing ( ) With the ansatz 6(t) = 0 sin w,,t, (3.9) reduces to :

l
Is + magal® = mg;m
w

w

This allows for a convenient way to express the added mass m,qq as a function of
our other parameters, using the form of /g from (3.8) :

1 mglcm
Madd = 73 —Ig

3.10
mglcm 1 1 ( )
“Te T
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3.2 Collision pressure force

m
° >
Vhbefore
1
:
Fcoll m :
— P 1 >
: Vafter
1
1
1
I
<=
T

Figure 3.4: Representation of a body colliding with a displaceable plane

We build a simple model in order to be able to measure the collision pressure forces
from the interactions of physical pendulums of different shapes in the air and in
the water.

At the moment of a horizontal collision of a body with a "displaceable" (such that
the velocity after the collision is reduced by not 0) wall, we neglect the gravit-
ational force for the objects we will consider are in equilibrium with respect to
the vertical direction. We will compute the average collision pressure force over
the collision time using the work-energy principle : the work done on the body
W =F-Afis equal to its change in kinetic energy AK = %mAv2 , expressed
as:

1
W=AK <& —Fur= 5 (vgfter - Ugefore)

m (3.11)

_ 2 2
< K coll — _5 (vafter - Ubefore)
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< ---

Figure 3.5: Representation of a cylinder approaching a vertical plane

3.3 Interactions between block and wall in water

Our model for the interaction between the submerged block and the wall presents
an axially symmetric interaction between a cylinder and a vertical plane as illus-
trated in Figure 3.5.

We will approach the equation of motion for the cylinder through the mass (2.5)
and momentum balance (2.12) equations, neglecting body forces such as gravity,
for the water layer between the cylinder and the wall :

chlTh + ha(gvr) =0
t r (3.12)

ov, ovy 10p

ot + o or  por

where r is the radial coordinate, v, is the radial velocity of the water, h(t) is the
water layer thickness, ¢ is the time, p is the water pressure and p the water density.

Isolating the radial velocity in the first equation of (3.12) yields (A > 0) :



3.3. Interactions between block and wall in water 19

dh d(rvy)
T 4h =0
" + or
a(rvy) r dh
& =———
) :
L dr __rde
T Tondt
N __rdr
T T ondt

The two integration steps in (3.13) are bound to the condition 7.1.3.

We can now substitute the result of (3.13) into the second equation of (3.12) and
find an expression for the water pressure p :

O (_rdhy rdh 9 rdhy_  10p
ot \ 2h dt 2hdt Or \ 2hdt)  por
r r r 1 190p
7h,2_7h” 7h/'7h/:_77
I A TR A TATA o or

(g 3EEY _Low
< 2h<h 2h) por

(3.14)

PN r? o " §h7/2 _b—Po
4h 2 h 0
P (7’2—7’0) 7 §h7/2
I YA W= g ) T

where pg denotes the pressure on the cylinder’s surface.

The pressure force, the force created by a pressure applied over a surface, would
be formulated for the base of the cylinder as :

T0
F,= 277/ prdr (3.15)
0

By using the expression found in (3.14) in (3.15), we get a force :
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i) (2 2 3 h/2
F, = 277/0 <p(7“4h7“0) (h" - 2h> +po> -rdr

2mp " 3h/2>/m 2 2 /TO
=—|h —=— re—ri)-rdr 4+ 27 rdr
4h < 2h ), ( 0) o 0 (3.16)
—_———

Fp(]:ﬂ"r‘gpo
_ T (h” _ 3h/2> + Fy
- P

8h

From the second law of Newton (1.1) and a dimensional analysis of the result in
(3.16), it appears that p—;ﬁ has the dimensions of mass. Adding the mass of the
cylinder m to the mass created by the pressure of the water, we get an equation
describing the motion of the cylinder :

4 4
moTY I 3 TPTy 49
-h = — -h F; 3.17
<m+ 8h> 16 pz T G-17)

When approaching the vertical wall, (3.17) can be simplified as h — 0 into :

3 h/2

" —_ - 2 " — 12 '1
h 5T & hh 3h (3.18)

The equation (3.18) is a second-order nonlinear ordinary differential equation in
h(t) that has to be solved in different steps :

1. we re-write (3.18) in differential form :

2 2
bty ()

dt2 dt
2. we proceed to the change of variable v = %, which yields :

@h_d (dh) _dv dvdh _do
A2 de \dt) dt drhdt dh

3. replacing v into (3.18), we now obtain a first order separable differential

equation :
d
2h£v = 302
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4. solving it gives 2 solutions :

d'U 2 'U:O

5. the first of the two induces & being a constant, which physically corresponds
to an absence of motion. We will therefore focus on the second one and
solve this new differential equation :

h
& 2log — = 3log —
0 ho
o v n h\?2
vo Ny ho
3
dh h\?2
W=—"—=ph.[|= (3.19)
< a ~ o <h0>
hoo 5 gt
& / h_2dh—h'0h02/ dt
h() to
)
& —2(h72 —hy = hghy % (t — to)

hy 2 =0 hht\ ~2
h(t)=4ho (2 - 2(t—t =0y (1= 2o
= () 0( hO( 0)) 0( 2h0>

As we know that the initial cylinder velocity hj, < 0 and the initial water layer
thickness hg > 0 by construction in Figure 3.5, it is quite easy to check that the
rN =2

solution of (3.19), h = hg (1 — %) exists, verifies (3.18) properly and doesn’t
diverge for t > 0.

It is important to realize that although lim;_, -, h(t) = 0, there is no existing time
teol at which h(te1) = 0 ; the interactions between a submerged block and a
vertical wall don’t lead to a physical contact with our model. This no-contact

behaviour has been theoretically proven in other similar situations like that of a
rigid ball moving into a viscous incompressible fluid over a fixed plane by [9].

3.4 Wave energy dissipation

3.41 Periodic motion of a viscous fluid between two plates

When a buoyant cube oscillates vertically in a hole of water, the damping of the os-
cillations results from a dissipation of the energy in the gaps between the cube and
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Figure 3.6: Representation of a buoyant oscillating ice cube

the walls of the water hole. We can estimate it analytically computing the solution
describing the periodic motion of a viscous fluid between two plates separated by
a distance [.

The Navier-Stokes equations describing the motion of the fluid (2.15) can here be
reduced to a one-dimensional equation [10] :

ou 0%u
PwE = Mvw (3.20)
for x € (0,1) and boundary conditions :
u(0,t) =0
(0,¢) (3.21)

u(l, ) = uge™?

Here u(x,t) is the water velocity in the direction parallel to the plates located in
2z = 0 and x = [ as drawn onto the Figure 3.6 ; one of the plates (the wall of the
hole) is fixed and the other plate (the wall of the cube) oscillates with the frequency
w along its plane. Furthermore, ug,w € R.
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By defining k = %, (3.20) becomes an analog of the one-dimensional heat equa-
tion and will be resolved as such :

Ut = KUy (3.22)

To make the solution simpler, we first implement a non-dimensionalization of the
terms by defining a characteristic length, time and velocity : L,, Ty and U,. We
can then introduce our dimensionless variables :

. x
Tr=—
L,
i b
=7
- t
a@wyﬁﬁ
*

We then have to choose the right characteristic quantities. When it comes to the
length, a sensible choice seems to be L, = [ such that while 0 < z < [, we have
0 < z < 1. To find the right T}, we use the chain rule and write :

ou_dadt U, 0a
“T o T raiot T.oi
Ou . 000F U, 0a
ot T9idr L, 0%
. _ U0k
12 072

Uy

By substituting these into the heat equation (3.22), we find :

N ou  Tek 00
U = KU = s

which motivates us to choose the characteristic time scale of diffusion as T, =
2

% = % that all together and dropping the hats for the sake of convenience gives

us the dimensionless equation :

Ut = Ugy (3.23)
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with the boundary conditions (3.21) now reformulated as :

u(0,t) =0

u(1,t) = uge™

, (3.24)

The resolution of this system of equation and boundary conditions follows de-
veloped in the Section 7.4 of [11] and the author shows that the full solution bears
the form :

Ae\/g(uz')x e V5
e\/g(pri) _ e’\/%(lﬂ)

twt

u(z,t) =

In fact, in our case it is [10] :

e(1+i)>\m _ 6_(1+i)>‘$ .
ww
cOHON _ - (4N © (3.25)

u(z, t) = up

PwW

where \ = TR

3.42 Buoyancy oscillations of ice cubes

The oscillations of a buoyant ice cube in a water hole can be approached by the
energy conservation law. In fact, the energy of the buoyancy oscillations of a cube
are the sum of its kinetic and potential energies :

n?  pwgn?
E=m-|L 7 2
m ( 2 + pihi 2 > (3.26)

where m is the mass of the cube, 7’ is the vertical velocity of the cube, 7 is the
vertical displacement of the cube, g is the gravitational acceleration, p,, is the
density of the water, p; is the density of the ice and h; is the ice thickness. The
Figure 3.6 schematizes such a setup.

From the energy conservation law % = 0, we have :

d n? . pwgn? v (o, Pug
dt |:m ( 2 + pihi 2 i " + pihin ( )
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from which we discard the static case = 0. With the ansatz n(t) = n sin wt,
we are able to derive a formula for the natural frequency of the oscillations of the
cube w :

—?sinwt+ P 6inwt =0 = w=4+,/P%I (3.28)
pihi pihi

Pw 9

where we only keep the positive solution w = for physical consistency.

Inserting this frequency (3.28) into our ansatz, we express the displacement of the
buoyant ice cube by :

Pwd
pih;

n(t) = no sin t (3.29)

with 19 = 1(0) the initial arbitrary value of the position of the cube.

In the configuration illustrated by the Figure 3.6, the energy dissipated over the
unit area of the plates is given by [10] :

Hou|?

Mo
D=t hidhed
2 ox

dx (3.30)

As we have computed the velocity of a viscous fluid between two plates in (3.25),
we can substitute the solution into (3.30) and obtain :

D_ Hv 9 (1+i))\x _ 6—(1+i))\x it
o SOHIN _ o—(1+)N
2“1} zwt 1+z T _ e—(1+i))\x 2
‘ / al’ l—H _ e—(l—‘ri)/\l
ew} = 1 and therefore :

o [ e+re _ o~ |?
9z \ (N _ o—(1+)N

2
dx

dx

_D 2/‘LU

U dx

(3.31)
= uvMug
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o — 1 sinh 2\l4sin 2\
with T=13 cosh 2A\l—cos 2\l °

The oscillating plates here are the lateral surfaces of the buoyant ice cube, the
width of the gap between the walls is [ and the oscillation velocity corresponds to
the boundary condition (3.21), which means that 7' = ug cos wt. We can integrate
this expression to find the displacement 7 :

d
b= ypeoswt = n=Dsinwt (3.32)
dt w

A quick comparison between this expression for 7 and the one in (3.29) allows us
to identify that g = 2

We can now properly compute the mean buoyant ice cube energy (3.26) averaged
over a period of oscillation, with respect to 7.1.4 :

B M) pwg ()
<E>_m'( 2 +Pih‘ 2 )

27
fo (upcoswt)?dt  pug w fo© (L2 sinwt)?dt

271’ 2 pihz‘ 2 2
=\t mud (w7 I (3.33)
= — | = (coswt)“dt + — (sinwt)“dt
2 27T 0 27T 0
_ mu% w 2wt + sin 2wt i n 2wt — sin 2wt B
2 2r 4w 0 4w 0
_ mug
2

This energy dissipation over the plates will lead to a damping mechanism affecting
the amplitude of the oscillations ug. By assuming that the damping time is much
greater than the period of oscillations, in other words that the damping is overall
small, we can introduce a new "slow" time t; = et, e < 1 such that ug = ug(ts).
We also set 7, = 1'|t,=0 = uo(ts = 0)coswt and by expressing the area of

2
submerged lateral surface of the ice cube as S} = 4 (’Z—T) and remembering the
energy dissipation over the plates by unit area (3.31), we use (3.33) to write the

energy balance as :

=-5D (3.34)
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We now have everything at hand to find the exponential decrease of the velocity
amplitude, following up on (3.34) :

d(E)
=-SD
dt, :
du
& mug . = —SluvA7u3
ug(ts) ts
o / e dug :/ TS gy (3.35)
0 to 0 m

where 7 = % is the characteristic time of damping and has the same sig-
nificance as a decay mean lifetime, here being the time at which the oscillation
amplitude is reduced to % ~ 37% of its initial value.



Chapter 4

Experimental investigations

"The difficult is what takes a little
time. The impossible is what takes
a little longer."

Fridtjof Nansen

This chapter aims at introducing and preparing all the necessary devices, setups,
settings, and protocols to perform the different investigations and run the several
experiments motivated by this thesis, as well as developing the necessary program-
ming, numerical and practical tools for a successful data acquisition and analysis
of the results. As such, the chapter presents both of the software and hardware
used throughout our research and decomposes each section into parts on the ex-
perimental preliminaries, the working proceedings and the applied theory we could
extract from our models in each situation.

4.1 Accelerometer : Dytran 4400A1 Vibration Recorder

Since all our experiments feature accelerometers, we will in this section develop
a description of the devices we manipulated, how we collected, read and analyzed
the recorded data.

41.1 Hardware specifications

The accelerometers used in this series of measurements are Dytran 4000A1 triaxial
acceleration recorder operating on a range of 200 gpeak and 0 — 1000 [Hz] with a
noise floor of 0.06 gyms, produced by Dytran (Dynamic Transducers and Systems)
Instruments Incorporation and illustrated in the Figure 4.1. Further technical in-

28
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Figure 4.1: Illustration of the Dytran 4000A1 Vibration Recorder

formations and performance specifications being given in [12] but the devices be-
ing DC accelerometers, they would have an offset of 1 g if placed on a table in
the z-direction, as described by [13]. As such, an arbitrary time series of a meas-
urement along a pendular motion with the z-axis pointing upwards would produce
something like the Figure 4.2.

41.2 Software operations

To effectively use the Dytran 4000A 1, we have to download its appropriate config-
uration file onto its SD card, reformating it in the process, for it to operate accord-
ing to the specification that we will have chosen. This procedure is recommended
before every use. The configuration file is to be created through the Vibracorder
software and different options are available depending on how the data acquisition
is supposed to happen in the experiments : the sampling rate, the triggered level
and, in case of an automatic launch, the recording time.

Once the SD card is inserted into the accelerometer and the device hence set up,
we activate it through the pressure of its power button and let its configuration run
its data collection. The data retrieved is saved into a file in the Vibracorder native

]
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Figure 4.2: Graph of an arbitrary pendular motion recorded by a Dytran 4000A1

format. We have to manually create a .txt file through the software in order to
process the data with regards to our investigation. An example of .txt file that is
created from a Dytran 4000A1 measurement is presented in the Figure 4.3.

4.1.3 Data processing

Despite the data processing being in essence different for each experiment, we can
already make some general remarks about our proceeding with the data collected
from the accelerometers.

Python

Our appendix section 7.2 lists the major functions that are used for the data pro-
cessing and while some have been coded for a specific experiment, the global logic
behind the process could be summarized as follows :

1. loading and reading the data
2. calibrating, filter and cleaning the data

3. making operations on the data and then creating a graphical plot of it

or



4.1. Accelerometer : Dytran 4400A1 Vibration Recorder 31

Frequency: 1600

X Axis - Acceleration (g) Y Axis - Acceleration (g) Z Axis - Acceleration (g)
0,488281 0 1,953125
0,390625 0,097656 1,855469
0,390625 0,195312 1,5625
0,292969 0,097656 1,855469
0,488281 0,097656 1,855469
0,683594 1,855469
0,292969 1,757812
0,585937 1,757812
0,488281 097656 1,757812
0,488281 097656 2,050781
0,585937 2,050781
0,390625 ,097656 1,757812
0,488281 1,660156
0,390625 0,097656 1,757812
0,488281 0,097656 1,855469
0,292969 0,097656 2,148437
0,585937 0,097656 1,660156
0,390625 0 1,855469
0,390625 0,292969 2,148437
0,390625 0 1,953125
0,390625 0,097656 2,050781
0,390625 0,195312 1,855469
0,683594 0 1,757812
0,292969 0 1,855469
0,292969 0,097656 2,246094
0,585937 0 2,050781
0,488281 0,097656 1,953125

0
0
0
0,
0,
0
0
0

Figure 4.3: Illustration of an arbitrary .txt file generated by a Dytran 4000A1 recording

creating a graphical plot of the data and then taking measurements from it

4. saving the graphical plot and the summary informations on the data

The Figure 4.4 summarizes those steps.
Peak detection

Whenever we used two accelerometers at once, we were intrinsically inducing the
technical issue of data synchronisation, seeing that the Dytran 4000A1 doesn’t
feature an absolute clock and only collects data that from the moment the Record
button has been pressed, separating two measurements by a period inverse to the
sampling rate and not even explicitly displaying a record of time in the resulting
.txt file, as noticeable in the Figure 4.3. For this reason, we introduced a physical
method of synchronisation consisting of applying a simultaneous excitation of the
sensors through the means of a shock dispensed to both devices at the same time.
The result on the data would be a high peak virtually initializing the data collection
as an algorithm could then allow us to identify and synchronize both peaks once
we decided on how to characterize them. With the peak finding criteria discussed
in [14], we manually vary the parameters of our scipy.signal.find_peaks Python
function in each dataset in order to compute the best fit for the algorithm to detect
the peaks from both accelerometers. Once this step completed, we align the data
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Calibrating

‘ Plotting ’ ‘ Computing ’
‘ Measuring ’ ‘ Plotting ’

Figure 4.4: Diagram of the general approach for data processing with the Python functions
from 7.2

according to the peaks and cut the latter out, keeping only the data measured after
them and focus our processing on that.

Butterworth filter

As we can see from the Figure 4.4, a necessary step concerns the data filtering. In
fact, as we can choose the sampling rate of our data collection to be either 1600 or
3200 [Hz], we would respectively be considering phenomena of period 6.25x 10~*
or 3.125 x 10~ [s]. Anticipating a bit the upcoming investigations, we know from
sources such as [10] that ice block collisions usually happen during a characteristic
time scale of around 0.01 [s], which is 16 times longer than the time scales offered
by the lowest sampling range. This motivates us to use a low-pass filter to clean
the higher noise frequencies. Our choices ended on the Butterworth filter, defined
within the scipy.signal.butter Python function.

For a transfer function H (s), the gain G(w) of such an n-order Butterworth filter
is given by :
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G
e 2n
1+ ()

with w, the cutoff frequency one gives the function as an input and G the gain at
zero frequency.

G*(w) = [H(jw)* =

A more detailed mathematical approach to this calculation as well as a detailed
derivation of the transfer function can be found in [15].

One can observe that when n approaches infinity, lim,, G2 becomes a rect-
angular function where frequencies below w. will be passed with a gain G while
frequencies above w. will be suppressed. For lower values of n, the rolloff remains
quick but is less sharp and presents no ripples, contrarily to the Chebyshev or El-
liptic filters [16]. In general, the Butterworth filter is designed to have a frequency
response as flat as possible in the range of frequencies that it processes.

Optimization

Depending on the experimental situations we investigate, we will sometimes need
to perform numerical regressions in order to fit our models for different quantities.
One approach is the least squares method that minimizes the sum of the squares of
the residuals coming from the results of the different equations of our system, in
mathematical situations where there are more equations than unknowns.

The least squares problem are usually solved in the following steps :

1. welet {(t;,y;)}j—; be the n pairs of observed covariate and response data.

2. we make the modeling assumption :

yi = f(t;, )
where 3 € R is the function parameter we will optimize on
3. we finally seek to find the B that minimizes the least square distance between

y =1y, j—1and {f(t;,8) 1

n
B =argmin | > |y; — f(t;, 8
j=1

BeRK
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Numerically this optimization is performed with the Python function scypy.optimize.leastsq
and we coded a function that solves the least squares problem based on first guesses
that we give in as inputs. A more thorough mathematical treatment of the method,
a fixed point iteration on the derivative of f with respect to /3, can be found in [17].

4.2 Labwork : added mass investigation

The aim of the experimental investigations of the added mass force is to study the
effects that appear from the motions of bodies in the water compared to motions
in the air. Letting a pendulum oscillate in the air, measuring the oscillation period
and computing the oscillation frequency will provide us with the moment of iner-
tia following our model 3.1.2. A similar procedure in the water will allow us to
derivate the added mass effect with respect to our model 3.1.3.

4.2.1 Added mass investigation : experimental setup

This series of experiments was performed during the week 40 of 2018, with the
assistance of Prof. Aleksey Marchenko (UNIS) and Prof. Vladimir Markov (MSU)
in the workshop of the University Centre in Svalbard, Longyearbyen (NO). As a
matter of fact, I was supervising the students from the master level course AT-332
Physical Environmental Loads on Arctic Coastal and Offshore Structures given
by Prof. Aleksey Marchenko, guiding them through the necessary theoretical and
practical steps to perform the added mass investigations, and the measurements
were performed in a joint manner.

A pendulum following the representation of the Figure 4.5 was built and each piece
got measured in mass. The Table 4.1 summarizes all items that have been used in
the pendulum experiments. The accelerometer had to be attached to the setup with
the help of a custom-made support as pictured in Figure 4.6. The right assembly
of parts allowed to create a distribution of masses along the rod as displayed in the
Figure 4.7.

4.2.2 Added mass investigation : protocol

As we are looking to measure the oscillation periods of our pendulum first in the
air and then in the water, we mounted the setup onto a support frame that could be
placed on top of a water tank if needed. A ruler was aligned with the horizontal
axis of the support frame and a camera placed in front of the setup to record the
displacement of the pendulum over time. This data, taken and processed by the
students, would support the data collected from the accelerometer at the same time.

The pendulum would be dropped from a small angle and left to oscillate for around
5-7 periods before being manually stopped again. Measurements were taken for
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Pivot point

Figure 4.5: Photograph and representation of the added mass investigation setup

different shapes of bodies (ball, cylinder, disc) in two different continuums (air,
water)

4.2.3 Theoretical moment of inertia and angular frequency

From the construction of our pendulum, it is possible to compute the theoretical
moment of inertia Ig, eo and with that, the induced theoretical angular frequency
Wq, theo fOr oscillations in the air.

In fact, the setup is represented in the Figure 4.7 with the approximation that all
bodies are cylindrical. Remembering the calculation reasoning from (3.6) we can
write the torque about the pivot point S as :

TS = TS,em X My +T5,A X MAG + T, X mBJ + T's,.c X mgg +Ts,p X mpg

=— (m% + ma|SA| + mp|SB| + me|SC] +mDySDy> gsin Ok

where |SX| is a notation for the distance between the point S and the point X =
{A,B,C,D}.
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Category Item Mass [g]
Accelerometer Dytran 4000A1 160
Dytran with support, bolts and screws 220
Iron grip 58
Weights 3x Iron grips with screws and bolts 530
Column 316
Big ball 358
Small ball 258
Bodies Small ball with bolt 260
Disc 26
3x Discs = Cylinder 78
Rod (linear mass [gm~1]) 168

Table 4.1: Summary of the items used in the pendulum experiments

With the argument made for (3.2), we obtain :

d26 l
IS,theo@ = — <mr2 +malSA|+mp|SB| + mc|SC| + mD|SD|> gsiné

l .
=— mr§—|- Z mx|SX| | gsiné
X={A,B,C,D}

All we need here is to compute the moment of inertia Ig, heo and [18] suggests
how to sum up the moments using the Huygens-Steiner Theorem 7.1.5 :

Is theo = Isr +1Isa+Isp+Isc+ Isp

1
= *mTZQ—l- Z Icm7x—|—mx|SX|2

3
X={A,B,C,D}

1 1
= fmTZQ—I- Z 5me§(+mx|SX|2

3
X={A,B,C,D}

Following the small angle approximation, our rotational equation of motion be-
comes :

d26 (mr% + 2 X—{A,B,C,D} mX|SX|) g

dt? — gml + > x—{aB.c,p) 3Mx Ry +mx|SX|?
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Figure 4.6: Photograph of the support of the Dytran 4000A1

This equation describes a simple harmonic motion with an angular frequency
Wq, theo that is to be compared to (3.8), which we repeat here for convenience :

(myé + 2 x—{a,B,0,0} Mx|5X |> g
52+ Y x4 popy 3mx Ry + mx|SX|? 4.1)

o — mglem
o =1/ —
Is

With values collected from 4.7, R4 = 0.03 [m] from 4.1, Rp = 0.015 [m], R¢c =
0.021 [m] and Rp = 0.021 £ 0.002 [m] for all three body shapes, we get :

Wa, theo =

Wa, theo = 3.477 [rads™]

2T 1.807[s] *2)

Ta, theo =
Wa, theo

and hence, going slightly backwards by reversing (3.8) to find the theoretical mo-
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753mm
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-

Figure 4.7: Representation of the pendulum used for the added mass calculation

ment of inertia considering one has already found the angular velocity like we did
in (4.2):

7 mglem
S,theo = 5
wa, theo (43)

= 0.872 [kg m?]

With the Figure 4.7 and the linear mass of the rod from 4.1, we can also calculate
the position of the centre of mass ., :

_— 2 X—{A,B,C,D,rod} MX |SX]
o > X—{A,B,C,D,rod} MX 4.4)
= 0.748 [m]

4.2.4 Theoretical added mass of a sphere and a cylinder

While it was possible to calculate the theoretical moment of inertia and angular
frequency of our pendulum, we can also derive theoretical values of added masses
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around a sphere and a cylinder. We will approach these calculations by considering
the hydrodynamic force acting on it as it accelerates, in a framework where the
fluid is inviscid and irrotational, allowing for the use of the unsteady Bernoulli
equation (2.18).

The sphere

Figure 4.8: Representation of an accelerating sphere in a fluid

We consider a sphere of radius R accelerating at a rate %1; in the z-direction. The
Figure 4.8 illustrates the configuration with dA, = cosf#dA, dA = 27rRd# and
r = Rsin6.

The hydrodynamic force is to be found by integrating the pressure of the area
projected in the x-direction :

pd A, (4.5)

=
[
—
1

withp = —p % + % |ng5|2 and ¢ = % oS 0% for an axisymmetric flow around
a sphere [19], which leads to :
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. 1
P / [_p [(% +3 |v¢\2” 27 R? cos 0sin 040
0

ot
™ 2 T 1
= —p2ﬂR2%§ / sin 0 cos? Ad6 —p27rR2% / (sinf cos> 0 + 1 sin® 0 cos 0)d6
0 0
:573 =0
2 30U
= 3Ry

The negative sign here indicates that the force is opposing the acceleration and
thus, the body would have to exert this extra force when moving in the z-direction,
which makes the added mass for a sphere of radius R be :

2
Madd, sphere = gpﬂ'R:z (4.6)

Our case, with p,, = 1000 kg m ™3] and Ryphere = 0.021 [m], yields :

Madd, sphere = 19.4 [g] (47)

The cylinder

Figure 4.9: Representation of an accelerating cylinder in a fluid
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Following a similar thought process, we consider a cylinder of radius R and length
L, accelerating at a rate ‘9“ in the z-direction. An illustration of the configuration
can be found in the Flgure 4.9 with dA,; = cos8dA, dA = Lds and ds = Rd6.

We still invoke the the hydrodynamic force (4.5) with the same expression for the

pressure coming from the unsteady Bernoulli equation, but this time with ¢ =

uRTQ cos 6 for an axisymmetric flow around a cylinder [19], and thus :

F, = /27r [—p {&b + = |V ” RL cos6do
0

2m 2 2m
= —pRLauR/ cos? 6dA —pRLu— / cos 6df

=7 =0

ou
_ 2
= —pnR L—at

With the same comment on the sign of the force, we can extract the added mass
for a cylinder of radius R and length L :

TMadd, cylinder = pﬂ-RQL (48)
Our case, with p,, = 1000 [kg m~3], Reytinder = 0.025 [m] and Lcyinger = 0.047 [m],
yields :

TMadd, cylinder = 92.3 [g] (4.9)

For a disc, the only difference is Lgisc = 0.016 [m] and we therefore obtain :

Madd, disc = 51.4 [g] (4.10)

Both the computed values (4.6) and (4.8) are in accordance with the theoretical
added mass tables presented by [20].

Once the added masses have been obtained, a reversal of (3.10) allows us to find
an expression for the theoretical angular velocity in the water :

mgl
Wy, theo = \/ Jlem 4.11)

I S, theo T Madd, theol2
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4.3 Labwork : collision pressure force

The aim of the experimental investigations of the collision pressure force is to
extract the characteristic times of collision for interaction in different mediums
(air, water and water surface) as well as the respective accelerations that charac-
terize them. Integrating this acceleration over the collision times will provide us
with data on the velocities before and after the interactions. Using the equation
developed in the model 3.2, we will be able to present values for the collision
pressure forces at play.

4.3.1 Collision pressure force : experimental setup

This series of experiments was performed during the week 40 of 2018, with the
assistance of Prof. Aleksey Marchenko (UNIS) and Prof. Vladimir Markov (MSU)
in the workshop of the University Centre in Svalbard, Longyearbyen (NO). The
work consisted of the right assembly of the two pendulums and the building of a
correct setup allowing for the best collisions between the two devices. Many tests,
corrections of the setup, modifications of the hardware and thoughts were had
about the optimal parameters to achieve the best performances in the experiments.

Pivot point

] Accelerometer

J Cylindrical weight

Figure 4.10: Photograph and representation of the collision pressure investigation setup

Two pendulums following the representation of the Figure 4.10 were mounted
after each piece got measured in mass, with the references of the Table 4.1. The
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distances between each piece respect the indications provided by the Figure 4.11.
4.3.2 Collision pressure force : protocol

This investigation will process data from two different sources recording the col-
lisions between the two pendulums ; on one hand, we will record the interactions
between the two bodies with a camera. For that sake, a ruler is placed between
the accelerometer and the weight on the frame so that we get a length reference
when treating the video files. This data gives us information on the instantaneous
velocities of the bodies before and after the impact, as well as a computed instant-
aneous acceleration of the bodies during the impact, which we will be using for
an estimation of the collision pressure force. On the other hand, we measure the
accelerations from each pendulum through the Dytran 4000A1 installed on them
and will be using this data to characterize the collision times in the different con-
tinuums they occur. As we can also obtain the time between motions, when the
right pendulum hits the left one, the time it takes for the second one to be set in
motion, we can try to comment on the different values we get from the different
setups.

In most iterations, only the pendulum on the right would be dropped into the pen-
dulum on the left, initiated through a drop from a small angle and manually stopped
right after the collision. Measurements were taken for different shapes of bodies
(ball, cylinder, disc) in three different continuums (air, water and water surface).

4.3.3 Thales theorem and extrapolation

In this series of experiments, the camera came to be placed in two different posi-
tions : in some instances, it was placed at the same height as the bodies, allowing
us to follow their displacement frame by frame directly. In other cases, it was
placed above the setup, making us see down upon the markings of the ruler while
the pendulums would be in motion, like one can notice on the Figure 4.12. As it
is the effective motion of the bodies we’re most interested in when recovering data
from the video files, we have to find a design to extrapolate the variable distance
between, using the notation from the Figure 4.11, a pre-measured rest-position B
and an instantaneous position D from the readable variable distance between an-
other rest-position A and the dynamic points C. By making the approximation that
D remains the centre of the body initially at B and that C' is the correct rotational
projection of A on to the ruler as the pendulum moves, we create two similar tri-
angles sharing the common edge S and where AC' || BD. By virtue of the Thales
or Intercept theorem :



44  Experimental investigations

119mm /

1054mm

1=

Figure 4.11: Representation of the pendulums used for the collision pressure calculations
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where |SA| = 456 + y [mm)] can be extracted from the video analysis and |SB| =
1054 [mm] can be measured, as reported on the Figure 4.11.

4.3.4 Tracker and video analysis

The video analysis was done using the video analysis and modeling tool Tracker
created by Douglas Brown and built on the Open Source Physics Java framework.
While Tracker features the tracking of positions and can induce velocities and ac-
celerations, it also offers calibration and perspective adjustments that reveal crucial
to our different experiments.

Manipulating the software
In fact, before the extraction of data, a number of parameters have to be tuned in

order to fit the physical configuration of the setup :

1. the video file has to be loaded and the perspective should be corrected right
away. With the help of the perspective filter, an arbitrary quadrilateral, usu-
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Figure 4.12: Photographs of the camera angles when recording from the bottom (left) and
from the top (right) in the collision pressure force experiments

ally a right or obtuse trapezoidal, which edges have to be placed on two
parallel lines from the physical setup on the frame, are being reshaped into a
rectangle, correcting the optical distortion arisen from the camera angle. In
other words, it maps a distorted plane shape in the input image to a straight-
on rectangular plane shape in the output image

2. we introduce a calibration scale correlating a distance on the frame to a
physical distance. For this, we usually either use markings on the ruler or
the distance between the two pendulums, 119 [mm)] as indicated in the Figure
4.11

3. we set a reference frame origin, as well as the angle of the axes for the
measurements ; this part determines the correct reading of the positions and
induced velocities and accelerations as they are given in this reference frame

4. the video clip is identified by two frame boundaries. This is done by brows-
ing through all the frames and selecting two adequate limits, usually sep-
arated by 10-20 frames, in the case of a collision here. Tracker also auto-
matically identifies the frame rate, usually 25 [Hz] and therefore knows the
elapsed time between two frames, 0.04 [s] for two succ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>