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Abstract

Motorcycle riders are exposed to wind noise at highway speeds as loud as 110
dB. Prolonged exposure can lead to hearing loss, and the noise prevents the rider
from picking up vital traffic noise. Wind noise can be reduced using active noise
control, ANC. In this paper, the history and principle of ANC are explored, as
well as different variations on the filtered least means squared algorithm. Some
different estimation techniques are also explored, the ANC system is simulated,
and the results discussed.
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1 Introduction

For motorcycle riders, wind noise is a common encounter. Prolonged exposure
to noise can lead to loss of concentration and result in an accident, affects the
persons’ ability to hear the environment, including the motorcycle’s motor and
other road users, and can result in permanent damage to the riders hearing.

The threshold for risking permanent damage to a person’s hearing is 85 dB,
and higher volume requires less exposure for the damage to occur. At highway
speeds, the rider can encounter wind noise as loud as 110 dB, well over the
threshold for permanent hearing loss.

The volume of the wind noise is so loud that even when using earplugs or
other passive noise control solutions, the rider’s hearing is still at risk. Besides,
passive noise control, or soundproofing, hinders the riders ability to pick up
crucial traffic sounds, including sirens and other road users. Soundproofing also
takes up a lot of space, a commodity the helmet already has presses little off,
and can come at the expense of safety.

One way to mitigate the problem is by using active noise control, ANC. With
ANC, it is possible to filter out the wind noise, and still keep the vital traffic
and motor noise. ANC works by sending out noise with the same amplitude
and frequency as the noise one wants to reduce but invert the sign on the
amplitude. The noise the ANC system sends out cancels out the noise with the
same frequency. With perfect ANC the resulting noise the rider hears does not
include noise in the frequency range the ANC has been set to operate.

This paper explores the principle behind ANC, reviews several estimation
methods for estimating the changing noise pattern, explores different variations
on the filtered least means square (FxLMS) algorithm, and simulations of the
system with and without measurement noise in the estimations.
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2 Wind noise and active noise control

This section explores the properties of wind noise, its frequency in particular,
and the theory behind active noise control.

2.1 The properties of wind noise

The volume of sound is described through the amplitude of the sound. The
higher the volume, the larger the amplitude.

The wind noise a motorcycle rider experiences has very low frequency, with
the highest volume in the frequency range of 10 to 100 Hz. In comparison, the
human hearing has a range of 20 to 20 000 Hz but is most sensitive for noise in
the range of 1 000 to 4 000 Hz [1]. The threshold for hearing noise is dependent
on the frequency of the noise, as shown in figure 1.

Figure 1: The human auditory field

Depending on the frequency composition of the noise, the best user expe-
rience is not necessarily achieved by removing only the harmful high volume
noise. Although the most harmful wind noise has a frequency range lower than
100 Hz, one might want to remove noise with frequencies up to 300 Hz, or even
higher, to achieve a better user experience.

In the literature, noise with the same properties as wind noise is often called
Brownian noise after the botanist Robert Brown, who discovered Brownian
motion [2], or red noise, a term from the white noise/white light analogy. Red
noise has a higher amplitude at lower frequencies, similar to the red end of the
visible spectrum.
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Figure 2: Spectogram of the wind noise

The power spectrum of the wind noise is shown in figure 2. From the figure,
it is clear that red noise has more energy at lower frequencies than at higher
frequencies. Similarly, figure 3 shows the power spectrum density of red noise.
As the frequency increases, the power density decreases, which is consistent with
wind noise.

Figure 3: Power spectral density of the wind noise

There are several ways to simulate wind noise, all based on the properties of
red noise. Integrating white noise is a popular method, but requires care, so the
signal does not grow without bound. Another common method is by filtering
pink noise with the same filter that turned white noise into pink noise. A third
option is generating red noise with a random walk. With this method, as with
the first, one must take care, so the signal does not grow without bound. All of
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these methods take advantage of the properties of red noise to generate a noise
signal for simulating wind noise.

2.2 The history and principle of active noise control

The field of noise control can be broadly classified into two domains, passive
and active. The passive noise control, PNC, domain aims at reducing the noise
levels by using sound absorbers or barriers. Even though PNC techniques are
effective over a wide range of frequencies, the efficient implementation of these
methods at lower frequencies is costly and makes the noise control system bulky
[3]. In order to overcome the limitations of PNC techniques at low frequencies,
researchers have developed an active method of cancelling noise.

Paul Lueg patented the first active noise control system in 1934, and the
patent got approved in 1936 [4]. Figure 4 shows the patent and how Lueg
envisioned the ANC working. The patent describes how to cancel noise close to
a loudspeaker by phase-advancing the wave and cancelling arbitrary sounds by
inverting the polarity.

4



Figure 4: Paul Lueg’s patent for a system with active noise control
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In the 1950s ANC was developed for use in helicopter and aeroplane cockpits
and was quickly adopted by the United States Air Force. In 1957 Willard
Meeker developed a working model of active noise control applied to a set of
earmuffs that completely covered the outer part of the ear. This headset had an
effective attenuation bandwidth of approximately 50 to 500 Hz, with a maximum
attenuation of approximately 20 dB [5].

During their around the world flight in 1986, Dick Rutan and Jeana Yea-
ger used a set of prototype headsets built by Bose [6]. Today there is a wide
variety in commercially available headsets with ANC built-in, with Bose and
several other large companies still working on improving active noise control for
commercial use.

Antinoise or counter noise is made by inverting the amplitude of the original
noise and adding the two signals together. Figure 5 shows the principle. If the
antinoise is a perfect reflection of the original noise, the mean amplitude will be
zero, and the result will be silence.

Figure 5: Demonstration of the active noise control principle

For ANC to work, the antinoise must be close to a mirror image of the
original noise. If the antinoise is distorted compared to the original noise, for
example, with differences in amplitude or with time delay, the ANC system will
not work correctly.

The ANC system consists of a loudspeaker, an adaptive controller and one
or two microphones, depending on the methods used. If the system uses two
microphones, one is placed so that it picks up the original noise, while the other
picks up the residue noise, that is the original noise combined with the noise
from the loudspeaker. If the system uses only one microphone, it is placed to
pick up the residue noise, and the original noise is estimated.

A system with two microphones is called a feedforward ANC system. The
reference microphone sense the original noise, and the loudspeaker reproduces
the noise, but with the opposite amplitude [7]. The error microphone measures
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the level of noise cancellation achieved. Figure 6 illustrates how both the noise
x(n) and the residual noise e(n) are used to update the adaptive controller,
which drives the active loudspeaker.

Figure 6: Block diagram feedforward ANC.

A feedback ANC system does not use the a priori information provided
by the reference microphone but achieves noise cancellation utilizing an active
loudspeaker, an adaptive controller, and an error microphone. After obtaining
suitable mathematical models for the electro-acoustic components in a feed-
forward ANC system, the same may be represented in a block diagram form,
as shown in figure 6. In this figure, C(z) represents the transfer function of
the adaptive controller, P(z) denotes the transfer function of the primary path
(acoustic path from the reference microphone to the error microphone) and S(z)
is the transfer function of the secondary path (the electro-acoustic path from
the output of the controller to the output of the error microphone).

The presence of the physical path between the controller and the error sensor
leads to instability when adapted using the LMS algorithm. In order to alleviate
this problem, a filtered-x least-mean-square (FxLMS) algorithm was developed
independently by Burgess, Widrow and Stearns [3]. The FxLMS algorithm uses
x(n) filtered through a model of the secondary path Ŝ(z) as the reference signal
for the conventional LMS algorithm. In many applications, the secondary path
is time-varying, and online secondary path modelling is a requirement for active
control in such scenarios.

The ANC system in focus for this paper is a feedback ANC system with a
fixed secondary path.
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3 The filtered least means squared algorithm

The most frequently used algorithm in the world of active noise control, are
variations on the least mean squared algorithm [8]. Figure 7 shows the basic
setup for the LMS algorithm in a feedback ANC system.

The presence of the secondary path S(z), the path from the output of the
controller to the input of the error microphone, after the controller will generally
cause instability since the presence of the secondary path will cause the error
signal and the reference signal to be inappropriately aligned in time [3]. To
combat this problem, one uses estimations of the secondary path, Ŝ(z) to filter
x(n) and y(n) as seen in the figure.

Figure 7: Adaptive feedback ANC system with FxLMS algorithm.

In a feedback ANC system, there is no reference microphone to pick up the
original noise, only an error microphone to pick up the resulting noise after the
use of ANC.

A consequence of using feedback ANC is that one must estimate the original
noise d(n) by x(n). This estimate is feed into the controller that produces
the anti-noise y(n). This anti-noise travels through the secondary path, which
changes the properties of the anti-noise. This new anti-noise y’(s) is the noise
that is subtracted from the original noise, d(n).

The estimation of the secondary path must be sufficiently accurate to the
real secondary path. Inaccuracies in the estimation will affect the quality of
the ANC system. If the estimation of the secondary path is close to the real
secondary path, the ANC system can be very effective. If the estimation is
too far off, the ANC system can fail to remove the noise, or even worse, risk
amplifying it.

8



3.1 Continuous FxLMS

Figure 8 shows the basic FxLMS algorithm with an adaptive FIR filter as the
adaptive controller W(z).

Figure 8: Block diagram of FxLMS ANC system

The output of the adaptive controller at time n is given by

y(n) = w(n)Tx(n) (1)

where w(n) = [w1(n), w2(n), ..., wN1(n)]T is the controller weight vector, and
x(n) = [x(n), x(n− 1), ..., x(n−N1 + 1)]T is the signal vector [7]. The residual
noise is given by the equation

e(n) = d(n)− y′(n) (2)

where d(n) is the original noise and y’(n) is the anti-noise y(n) that has
passed through the secondary path S(z). An objective function J(n) based on
e(n) is defined as

J(n) = [e(n)]2 (3)

The objective function J(n) is minimized using the steepest descent algo-
rithm. This algorithm gives the following equation for updating the filter coef-
ficients in w(n).

w(n+ 1) = w(n)− µ

2
∇J(n) (4)
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where ∇J(n) is the gradient of the objective function with respect to the
filter coefficients of the adaptive filter, and µ is the step-size. The gradient of
the objective function can be written as

∇J(n) = 2e(n)∇e(n) (5)

From figure 8, y’(n) can be written as

y′(n) = s(n) ∗ w(n) ∗ x(n) (6)

where s(n) is a vector representing the impulse response of the actual sec-
ondary path, w(n) is a vector representing the impulse response of the adaptive
filter and x(n) is a vector of samples of the estimated reference signal. * is the
linear convolution operator. For slowly changing filters, the order of s(n) and
w(n) can be changed, and equation 6 can be written as

y′(n) = w(n) ∗ s(n) ∗ x(n) (7)

From equation 2 we see that the gradient of e(n) is defined as

∇e(n) = ∇d(n)−∇y′(n) (8)

The original noise is independent of the weights of the adaptive filter, so the
gradient of the residual noise with respect to the weights of the adaptive filter
can be written as the gradient of the secondary noise alone. Rewriting equation
8 with this in mind results in equation 9.

∇e(n) = −∇y′(n) (9)

From equation 7 the gradient of y’(n) can be written as

∇y′(n) = ∇(w(n) ∗ s(n) ∗ x(n)) (10)

which in turn results in writing the gradient of e(n) from equation 9 as

∇e(n) = −∇(w(n) ∗ s(n) ∗ x(n)) (11)

Assuming that the model of the secondary path is accurately known, s(n) in
equation 11 can be replaced with ŝ(n) where ŝ(n) represents impulse response
of the secondary path model and equation 11 can be written as:

∇e(n) = −∇(w(n) ∗ ŝ(n) ∗ x(n)) = −∇(w(n) ∗ x̂(n)) = −x̂(n) (12)

where x̂(n) is a vector of estimated samples of the filtered reference sig-
nal. Combining equations 4 and 5, the equation for updating of adaptive filter
weights can be written as

w(n+ 1) = w(n)− µe(n)∇e(n) (13)

10



With the objective to minimize the mean-square error cost function using a
gradient descent approach, the FxLMS algorithm is derived by inserting equa-
tion 12 into equation 13:

w(n+ 1) = w(n) + µe(n)x̂(n) (14)

This equation is the equation for updating the weights of the adaptive filter
in the filter least means squared algorithm.

Deriving this equation does depend on replacing the secondary path S(z)
with the estimation Ŝ(z), so this method will not work correctly if the secondary
path is poorly estimated.

Under the limitation of slow adaptation, the FxLMS algorithm will converge
within ±90◦ of the phase error between Ŝ(z) and S(z) [3]. Therefore, the offline
modelling of the secondary path using adaptive system identification with the
LMS algorithm and white noise as an excitation signal can be used to estimate
S(z) during an initial training stage before the operation of noise control for
most ANC applications.

3.2 Block FxLMS

Continuous FxLMS algorithm updates the weights of the adaptive filter after
each new sample of the residue noise. One way to reduce computing power at
the cost of storage is to update the weights of the filter after a few new samples
of the residue noise, and this can be done if the weights of the adaptive filter
change sufficiently slowly over time.

The equation for updating the weight of the adaptive filter in the Block
FxLMS algorithm is based on the equation for updating the weight of the adap-
tive filter for the continuous FxLMS algorithm from section 3.1, equation 14:

w(n+ 1) = w(n) + µe(n)x̂(n)

rewriting the equation with L instead of 1 gives the equation

w(n+ L) = w(n+ L− 1) + µe(n+ L− 1)x̂(n+ L− 1)

= w(n+ L− 2) + µe(n+ L− 2)x̂(n+ L− 2)

+ µe(n+ L− 1)x̂(n+ L− 1)

= w(n) + µ

L−1∑
i=0

e(n+ i)x̂(n+ 1)

(15)

Introduce a second time-index k such that n = kL with a fixed integer L,
equation 15 can be written as

w(kL+ L) = w((k + 1)L) = w(kL) + µ

L−1∑
i=0

e(n+ i)x̂(n+ i) (16)

11



If the parameters are changed only at the moment kL, the notation can be
changed from w(kL) to w(k).

w(k + 1) = w(k) + µ

L−1∑
i=0

e(kL+ i)x̂(kL+ i) (17)

The filter vector is updated every Lth sample.

3.3 FFT Block FxLMS

In this section, a method is proposed to more effectively adapt the value of the
convergence coefficient when frequency characteristics of the primary noise are
continuously changing. Figure 9 shows a block diagram of the proposed method.

The proposed method is explained, assuming that the primary noise consists
of a single frequency component that may vary with time. The proposed method
is comprised of two steps. The first step is predicting the frequency of primary
noise at some near time, t, in future and the second step is updating the value
of convergence coefficient to its optimum value using the information of the
frequency of the primary noise predicted in step 1. In the present work, step 1
is achieved by FFT and line-fit method [9].

In the FFT and line-fit method, the reference signal is continuously estimated
and saved in blocks of N samples. A fast Fourier transform (FFT) of a block
of estimates is carried out to determine the frequency at the mean time of that
block. In this way, two or more numbers of such blocks are analyzed to obtain
frequency information of the primary noise at different time instants. A linear
curve is fitted to the frequency-time data to predict frequency at a future time
instant.

Figure 10 shows that at intermediate time instants tm1, tm2 and tm3, the
frequencies identified by the FFTs of the blocks of time records are fm1, fm2
and fm3. This time-frequency data is fitted linearly, which allows the prediction
of frequency, f, for a continuously varying time, t. A line-fit has been considered
because many times, in practice, the variation of frequency of primary noise is
linear [9]. However, if the actual variation is not linear, then still the variation
can be tracked reasonably well through a sequence of lines as shown in figure
11.

Figure 12 explains the sequential steps of the FFT and line fitting in the
proposed algorithm using two blocks. In the beginning, two blocks of the ref-
erence signal are obtained, and their FFTs are computed. A line is fitted in
frequency-time data, and that line is used to predict frequency in the near fu-
ture. When a new block is obtained, a new line is fitted using the recent two
blocks, which now forms the basis for predicting the frequency. In this way, the
processes of computation of FFT and the prediction of the frequency using the
line fit go in parallel with the line fit being continuously updated as and when
the FFT of a new block of data is available. Due to periodic updating of the line
fit, it can closely predict any variation in the frequency of the noise. A line-fit

12



Figure 9: Block diagram of the proposed variable step-size FxLMS algorithm.
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Figure 10: Linear fit in time, frequency data to predict frequency at future time
t.

Figure 11: Several line-fits approximating a curve of frequency variation with
time
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Figure 12: Schematic diagram showing sequential steps of the proposed FFT
and line fitting method.
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further offers the advantage that it is computationally less expensive and hence,
amenable for practical implementation.

16



4 Plant model estimation

Given the structure of the model, the model response is determined by certain
constants referred to as plant or model parameters. In many applications, it
is not possible to measure or calculate the parameters using laws of physics or
the properties of materials. They have to be deduced by observing the system’s
response to specific inputs.

If the parameters are fixed for all time, their determination is more straight-
forward, especially if the system is linear and stable. In such cases, simple
frequency or time domain techniques may be used to deduce the unknown pa-
rameters by processing the measured response data off-line [10].

If the parameters are unknown and changing over time, one must provide
frequent estimates of the parameters of the plant model by suitably processing
the plant input-output data online. These estimation schemes are called on-line
estimation schemes.

In this system, the wind noise changes over time depending on the speed of
the motorcycle, the weather and other road users; therefore, it is vital to use
an on-line estimation scheme. The secondary path, on the other hand, does not
change significantly over time, and it is enough to estimate the secondary path
with an off-line method.

The essential idea behind on-line estimation is the comparison of the ob-
served system response y(t), with the output of a parameterized model ŷ(θ, t),
whose structure is the same as that of the plant model. The parameter vector
θ(t) is adjusted continuously so that ŷ(θ, t) approaches y(t) as t increases. Un-
der certain input conditions, ŷ(θ, t) being close to y(t) implies that θ(t) is close
to the unknown parameter vector θ∗ of the plant model.

The on-line estimation procedure involves three steps: 1. Select an appro-
priate parameterization of the plant model. 2. Select the adaptive law for
generating or updating θ(t). 3. Design of the plant input so that the properties
of the adaptive law imply that θ(t) approaches the unknown plant parameter
vector θ∗ as t →∞.

In adaptive control, the third step is not always required. In the case of
ANC systems, it is not necessary for the estimated plant parameters θ(t) to
approach the unknown plant parameters θ∗, only that the parameterized model
ŷ(θ, t) approaches the observed system y(t).

Many different types of plant model estimation exist. Three different types of
estimation are explored in this paper, SPR-Lyapunov design, gradient algorithm
based on instantaneous cost and Pure Last-Squares algorithm.

4.1 SPR-Lyapunov design

This approach involves the development of a differential equation that relates
the estimation or normalized estimation error with the parameter error through
an SPR (strictly positive real) transfer function [10]. Once in this form, one can
choose an appropriate Lyapunov function V whose time derivative V̇ is made
non-positive by properly choosing the differential equation of the adaptive law.
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These properties of V and V̇ are used to establish convergence for the estimation
error.

The linear parametric model of the plant is given as z = W(s)θ∗Tψ. Since
θ∗ is a constant vector, we can rewrite the model as

z = W (s)L(s)θ∗Tφ (18)

where φ = L−1(s)ψ and L(s) is chosen so that L−1(s) is a proper stable
transfer function and W(s)L(s) is a proper SPR transfer function.

Let θ(t) be the estimate of θ∗ at time t. Then the estimate ẑ of z at time t
is constructed as

ẑ = W (s)L(s)θTφ (19)

The estimation error ε1 is generated as

ε1 = z − ẑ (20)

and the normalized estimation error as

ε = z − ẑ −W (s)L(s)εn2s = ε1 −W (s)L(s)εn2s (21)

where ns is the normalizing signal which we design to satisfy

φ

m
∈ L∞, m2 = 1 + n2s

Typical choices for ns are n2s = φTφ or n2s = φTPφ for any P = PT > 0. If
φ ∈ L∞, the equation over can be satisfied with m = 1 which gives ns = 0, and
ε = ε1.

We examine the properties of ε by expressing equation 21 in terms of the
parameter error θ̃ = θ − θ∗, and obtain

ε = WL(−θ̃Tφ− εn2s) (22)

For simplicity, let us assume that L(s) is chosen so that WL is strictly proper
and consider the following state-space representation of equation 22:

ė = Ace+Bc(−θ̃Tφ− εn2s), ε = CTc e (23)

where Ac, Bc and Cc are the matrices associated with a state space repre-
sentation that has a transfer function W (s)L(s) = CTc (sI −Ac)−1Bc.

The error equation 23 relates ε with the parameter error θ̃ and is used to
construct an appropriate Lyapunov type function for designing the adaptive law
of θ. Note that the normalized estimation error ε and the parameters Ac, Bc and
Cc can all be calculated from equation 21 and the knowledge of WL, but the
state error e cannot be measured or generated because of the unknown input
θ̃Tφ.

Let us now consider the following Lyapunov-like function for the differential
equation 23:

18



V (θ̃, e) =
eTPce

2
+
θ̃TΓ−1θ̃

2
(24)

where Γ = ΓT > 0 is a constant matrix and Pc = PTc > 0 satisfies the
algebraic equation

PcAc +ATc Pc = −qqT − νLc, PcBc = Cc (25)

for some vector q, matrix Lc = LTc > 0 and a small constant ν > 0. Equation
25 is guaranteed by the SPR property of W (s)L(s) = CTc (sI − Ac)−1Bc and
the KYP Lemma or the MKY Lemma depending on whether (Ac, Bc, Cc) is
minimal or not. See the appendix for the definitions of the KYP and MKY
Lemmas.

The time derivative V̇ along with the solution of equation 23 is given by

V̇ (θ̃, e) = −1

2
eT qqT e− ν

2
eTLce+ eTPcBc[−θ̃Tφ− εn2s] + θ̃Γ−1

˙̃
θ (26)

We now need to choose
˙̃
θ = θ̇ as a function of signals that can be measured so

that the indefinite terms in V̇ cancel each-other out. Because e is not available
for measurement, θ̇ cannot depend on e explicitly. Therefore, at first glance, it
seems that the indefinite term −eTPcBcθ̃Tφ = θ̃TφeTPcBc cannot be cancelled

because the choice θ̇ =
˙̃
θ = ΓφeTPcBc is not acceptalbe due to the presence of

the unknown signal e.
Here, however, is where the SPR property of WL becomes handy. We know

from equation 25 that PcBc = Cc which implies that eTPcBc = eTCc = ε.
Therefore, equation 26 can be written as

V̇ (θ̃, e) = −1

2
eT qqT e− ν

2
eTLce− εθ̃Tφ− ε2n2s + θ̃TΓ−1

˙̃
θ (27)

The choice for
˙̃
θ = θ̇ to make V̇ ≤ 0 is now obvious:

θ̇ =
˙̃
θ = Γεφ (28)

which results in the equation

V̇ (θ̃, e) = −1

2
eT qqT e− ν

2
eTLce− εθ̃Tφ− ε2n2s + θ̃TΓ−1Γεφ

= −1

2
eT qqT e− ν

2
eTLce− εθ̃Tφ− ε2n2s + θ̃T εφ

= −1

2
eT qqT e− ν

2
eTLce− ε2n2s ≤ 0

(29)

Equation 28 is the adaptive law we have been seeking. The equation guar-
antees that θ, ε ∈ L∞, and ε, εns, θ̇ ∈ L2 [10]. In other words, the equation
guarantees that both the parameter vector and the normalized estimation error
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are bounded and that the normalized estimation error and the derivative of the
parameter vector are integrable. Therefore, the normalized error ε will tend
toward 0 as time t increases.

4.2 Gradient algorithm based on instantaneous cost

As in section 4.1, the parametric model is given as z = W (s)θ∗Tψ. Since θ∗ is
constant, the parametric model can be written as

z = θ∗Tφ (30)

where φ = W (s)ψ [10]. Using the equation above, the estimate ẑ of z at
time t is generated as

ẑ = θTφ (31)

where θ(t) is the estimate of θ∗ at time t. The normalized estimation error
ε is then constructed as

ε =
z − ẑ
m2

=
z − θTφ
m2

(32)

where m2 = 1 + n2s and ns is the normalizing signal designed so that

φ

m
∈ L∞ (33)

Typical choices for ns are the same as those in section 4.1. For analysis
purposes we express ε as a function of the parameter error θ̃ = θ − θ∗ and get

ε = − θ̃
Tφ

m2
(34)

Let us consider the simple quadratic cost function

J(θ) =
ε2m2

2
=

(z − θTφ)2

2m2
(35)

that we like to minimize with respect to θ. Applying the gradient method,
the minimizing trajectory θ(t) is generated by the differential equation

θ̇ = −Γ∇J(θ) (36)

where Γ = ΓT > 0 is a scaling matrix that we refer to as the adaptive gain.
From the cost function above we have

∇J(θ) = − (z − θTφ)φ

m2
= −εφ (37)

and therefore, the adaptive law for generating θ(t) is given by

θ̇ = Γεφ (38)
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We refer to this equation as the gradient algorithm, and this adaptive law
guarantees that ε, εns, θ, θ̇ ∈ L∞ and ε, εns, θ̇ ∈ L2.

Again, we see that the normalized error ε will tend toward 0 as time t
increases.

4.3 Pure Last-squares algorithm

The basic idea behind the least-squares is fitting a mathematical model to a se-
quence of observed data by minimizing the sum of the squares of the difference
between the observed and computed data [10]. In doing so, any noise or inac-
curacies in the observed data are expected to have less effect on the accuracy of
the mathematical model.

The method is simple to apply and analyze in the linear parametric model

z = θ∗Tφ (39)

The estimate ẑ of z is generated as

ẑ = θTφ (40)

and the normalized estimation error is generated as

ε =
z − ẑ
m2

=
z − θTφ
m2

(41)

where m2 = 1 + n2s, θ(t) is the estimate of θ∗ at time t, and m satisfies
φ/m ∈ L∞. As previously, typical choices for ns are listed in section 4.1.

We consider the following cost function

J(θ) =
1

2

∫ t

0

e−β(t−τ)
[z(τ)− θT (t)φ(τ)]2

m2(τ)
dτ +

1

2
e−βt(θ − θ0)TQ0(θ − θ0) (42)

where Q0 = QT0 > 0, β ≤ 0, θ0 = θ(0). Because z/m, φ/m ∈ L∞, J(θ) is a
convex function of θ over Rn at each time t. Hence, any local minimum is also
a global minimum and satisfies

∇J(θ(t)) = 0, ∀t ≤ 0 (43)

which results in the equation

∇J(θ) = e−βtQ0(θ(t)− θ0)−
∫ t

0

e−β(t−τ)
z(τ)− θT (t)φ(τ)

m2(τ)
φ(τ)dτ = 0 (44)

which yields the so-called nonrecursive least-squares algorithm

θ(t) = P (t)

[
e−βtQ0θ0 +

∫ t

0

e−β(t−τ)
z(τ)φ(τ)

m2(τ)
dτ

]
(45)
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where

P (t) =

[
e−βtQ0

∫ t

0

e−β(t−τ)
φ(τ)φT (τ)

m2(τ)
dτ

]−1
(46)

Because Q0 = QT0 > 0 and φφT is positive semidefinite, P (t) exists at each
time t. Using the identity

d

dt
PP−1 = ṖP−1 + P

d

dt
P−1 = 0 (47)

we can show that P satisfies the differential equation

Ṗ = βP − P φφ
T

m2
P, P (0) = P0 = Q−10 (48)

Therefore, the calculation of the inverse in equation 46 is avoided by gener-
ating P as the solution of the differential equation 47. Similarly, differentiating
θ(t) with respect to t and using equation 47 and εm2 = z − θTφ, we obtain

θ̇ = Pεφ (49)

We refer to equations 48 and 49 as the continuous-time recursive least-
squares algorithm with forgetting factor.

The stability properties of the least-squares algorithm depend on the value
of the forgetting factor β.

Setting β = 0, i.e without the forgetting factor, equations 48 and 49 becomes

θ̇ = Pεφ; Ṗ = −Pφφ
TP

m2
, P (0) = P0 (50)
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5 Simulation of ANC system

In this section, the simulation of the ANC system is explored. For ease of
reading, the ANC system diagram is shown in figure 13, and is a copy of figure
7 from section 3.

Figure 13: Feedback ANC system, copy of figure 7

The wind noise is simulated using a random walk. One of the simulations is
shown in figure 14.

In a real feedback ANC system, the original noise is not available; only the
residue noise is. The original noise has to be simulated to simulate the system
accurately.

To find out how well the ANC system works, one compares the original noise
to the residue noise. The ANC system works as long as the amplitude of the
residue noise is lower than the amplitude of the original noise.

Since the secondary path is estimated, one can see how well it is estimated
by comparing the original noise d(n) with the estimated noise x(n). The closer
x(n) is to d(n), the closer Ŝ(z) is to S(z), that is, the better the estimation of
the secondary path.

5.1 The ANC system with exact estimation of Ŝ(z)

In this section, to test how well the ANC system performs, Ŝ(z) is equal to
S(z). S(z) is represented in figure 15.

Figure 16 consists of two plots. The first plot shows the original noise overlaid
with the residue noise. The second plot shows the comparison between the
original noise and x(n).
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Figure 14: Wind noise simulated using random walk.
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Figure 15: Model of the secondary path.

Figure 16: The top plot is the original noise vs the residual noise, while the
bottom is the original noise vs the estimation of the noise, both given Ŝ(z) =
S(z)
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From the first plot in figure 16, it is clear that the residue noise has the
same or lower amplitude than the original noise. The second plot shows that
the estimation of the original noise follows the real noise perfectly.

5.2 The ANC system with flawed estimation of Ŝ(z)

In this section, the system is simulated with Ŝ(z). Ŝ(z) is not equal to S(z),
and two different Ŝ(z) are used, that is, two different estimation of S(z). Figure
17 show S(z) along with the first estimation of S(z), Ŝ(z)1.

Figure 18 consists of two plots. The first plot shows the original noise overlaid
with the residue noise. The second plot shows the comparison between the
original noise and x(n).

Again, the residue noise has the same or lower amplitude that the original
noise, as shown in the first plot in figure 18. The second plot shows that the
estimation of the original noise follows the real noise very well. It is not possible
to distinguish the real noise from the estimated noise.

Figure 19 show S(z) along with the the second estimation of S(z), Ŝ(z)2.
Figure 20 consists of two plots. The first plot shows the original noise overlaid
with the residue noise. The second plot shows the comparison between the
original noise and x(n).

Again, the residue noise has the same or lower amplitude than the original
noise, as shown in the first plot in figure 20. The second plot shows that the
estimation of the original noise follows the real noise well, as well as with Ŝ(z)1.
It is not possible to distinguish the real noise from the estimated noise.
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Figure 17: The model of the secondary path S(z) with the estimation of the
secondary path Ŝ(z)

Figure 18: The top plot is the original noise vs the residual noise, while the
bottom is the original noise vs the estimation of the noise, both given Ŝ(z) ≈
S(z)
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Figure 19: The model of the secondary path S(z) with the estimation of the
secondary path Ŝ(z)

Figure 20: The top plot is the original noise vs the residual noise, while the
bottom is the original noise vs the estimation of the noise, both given Ŝ(z) ≈
S(z)
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6 Discussion

So far, the problem of time delay has not been explored. The reason for this is
that the time delay of the ANC system does not necessarily affect the system.
The error microphone and the active loudspeaker is not placed directly adjacent
to each other. This placement results in the system being causal even if there
is time-delay in the system.

As an example, take the case where the distance between the loudspeaker
and the error microphone is 1 cm. The speed of sound is 343.2 m/s. With this
information, one can calculate the maximum time delay the system can handle:

1 cm

343.2 m/s
=

0.01 m

343.2 m/s
= 2.91 · 10−5 s = 29.1 µs.

The larger the distance between the error microphone and the loudspeaker,
the larger the time delay the system can handle, in theory. In practice, sound
distortion can occur, and the larger the distance, the more prominent this dis-
tortion is.

If the time delay is too large, the ANC system can become unstable, and
amplify the noise instead of dampening it. Figure 21 and 22 illustrates the
problem with time delay.

The problem of time-delay can be avoided altogether by using a fast con-
troller with a well-written and fast algorithm.

Time delay is not the only way the ANC system can fail. If the estimation
of the original noise is flawed, the ANC system runs the risk of amplifying the
noise.

Section 5.2 demonstrates that it is possible to estimate the original noise
well, even if the estimate of the secondary path is not exact. This result shows
that the success of the ANC system is not heavily dependent on the estimation
of the secondary path, but instead on the adaptive controller and the method
used to regulate the controller.
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Figure 21: Demonstration of the active noise control principle with time delay.

Figure 22: Demonstration of the active noise control principle with severe time
delay.
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7 Conclusion

The focus of this paper has been the feedback active noise control system with
filtered least means squared algorithm. The purpose has been to compare the
performance of the ANC system with different estimations of the secondary
path.

The original noise was estimated based on the residue noise, and the origi-
nal noise and residue noise was compared. The weights of the controller were
calculated based on the least means squared algorithm and the estimation of
the original noise.

It is found that the ANC system works very well despite the flawed estima-
tion of the secondary path. To improve the performance of the ANC system,
one can change some of the parameters in the FxLMS algorithm when updating
the weights of the controller. One can also use other algorithms. Estimating the
secondary path with other methods, including the ones explored in this paper,
might also improve the ANC system.
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8 Appendix

8.1 Mathematics

8.1.1 Kalman-Yakubovich-Popov (KYP) Lemma

Given a square matrix A with all eigenvalues in the closed left half complex
plane, a vector B such that (A,B) is controllable, a vector C and a scalar d ≥
0, the transfer function defined by

G(s) = d+ CT (sI −A)−1B

is positive real if and only if there exists a symmetric positive definite matrix
P and a vector q such that

ATP + PA = −qqT

PB − C = ±(
√

2d)q

8.1.2 Meyer-Kalman-Yakubovich (MKY) Lemma

Given a stable matrix A, vectors B,C and a scalar d ≥ 0, we have the following:
If

G(s) = d+ CT (sI −A)−1B

is strictly positive real, then for any given L = LT > 0, there exists a scalar
ν > 0, a vector q and a P = PT > 0 such that

ATP + PA = −qqT − νL

PB − C = ±(
√

2d)q

8.2 Code

1 from pyhht.visualization import plot_imfs

2 import matplotlib.pyplot as plt

3 from scipy.io import wavfile

4 from scipy import signal

5 from pyhht import EMD

6 import numpy as np

7 import acoustics

8 import csv

9

10

11 def makeNoise ():

12 array = acoustics.generator.brown (1200000)

13 return array

14

15 def getModel(fileName , array):
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16 list = []

17 with open(fileName) as csv_file:

18 csv_reader = csv.reader(csv_file , delimiter=’,’)

19 for row in csv_reader:

20 list.append(row)

21 for i in range(len(list)):

22 string = str(list[i])

23 l = len(string)

24 string = string [2:l-2]

25 array.append(float(string))

26

27 def plot(signal , frequency , signal2 = None , signal3 = None):

28 t = np.arange (0., len(signal)/frequency , 1/ frequency)

29 plt.plot(t,signal)

30 if type(signal2) == np.ndarray:

31 plt.plot(t,signal2)

32 if type(signal3) == np.ndarray:

33 plt.plot(t,signal3)

34 plt.show()

35

36 def plot2(signal , frequency , signal2 = None , signal3 = None):

37 t = np.arange (0., len(signal)/frequency , 1/ frequency)

38 plt.plot(t,signal)

39 if type(signal2) == np.ndarray:

40 plt.plot(t,signal2)

41 if type(signal3) == np.ndarray:

42 plt.plot(t,signal3)

43

44 def plotConv(signal , signal2 , frequency):

45 newSignal = np.convolve(signal ,signal2)

46 plot(newSignal ,frequency)

47

48 def initialValues(noise):

49 s,s_hat = [],[]

50 getModel(’h_5.csv’,s),getModel(’h_5.csv’,s_hat)

51 #s_hat = smoothing(s_hat)

52 #s_hat = smoothing2(s_hat)

53 shortNoise = np.array(noise [0:len(s)])

54 return np.array(s),np.array(s_hat),np.array(shortNoise)

55

56 def smoothing(a):

57 for i in range(len(a) -3):

58 a[i+1] = (a[i]+a[i+1]+a[i+2])/3

59 return a

60

61 def smoothing2(a):

62 a[0] = (a[0]+a[1]+a[2]+a[3]+a[4])/5

63 a[1] = (a[1]+a[2]+a[3]+a[4]+a[5])/5

64 a[2] = (a[2]+a[3]+a[4]+a[5]+a[6])/5

65 for i in range(len(a) -5):

66 a[i+2] = (a[i]+a[i+1]+a[i+2]+a[i+3]+a[i+4])/5

67 return a

68

69 def inital(s_hat ,x):

70 return np.convolve(s_hat ,x,mode=’same’)

71

72 def updateW(w,mu,e,x_hat):
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73 for i in range(len(w) -1):

74 w[i] = w[i+1]

75 w[-1] = w[-1] - mu*e[-1]* x_hat[-1]

76 etta = 1

77 if abs(w[-1]) >= etta:

78 w[-1] = (etta*w[-1])/abs(w[-1])

79 return w

80

81 def updateX(x,e,y_hat):

82 for i in range(len(x) -1):

83 x[i] = x[i+1]

84 x[-1] = e[-1] - y_hat[-1]

85 return x

86

87 def updateE(e,d,y_prime):

88 for i in range(len(e) -1):

89 e[i] = e[i+1]

90 e[-1] = d[-1] + y_prime [-1]

91 return e

92

93 def conv(result , first , second):

94 sum , second , l, r = 0, list(reversed(second)), len(result), 100

95 for i in range(l):

96 if i != 0:

97 result[i-1] = result[i]

98 for i in range(r):

99 sum = sum + (first[l-i-1]* second[l-i-1])

100 result [-1] = sum

101 return result

102

103 def convY(result , first , second):

104 sum , second , l, r = 0, list(reversed(second)), len(result), 1

105 for i in range(l):

106 if i != 0:

107 result[i-1] = result[i]

108 for i in range(r):

109 sum = sum + (first[l-i-1]* second[l-i-1])

110 result [-1] = sum

111 return result

112

113 def updateNoise(shortNoise ,noise):

114 first = noise [0]

115 noise , shortNoise = np.delete(noise , 0), np.delete(shortNoise ,

0)

116 noise , shortNoise = np.append(noise ,first),np.append(shortNoise

,first)

117 return shortNoise ,noise

118

119 def initiate ():

120 noise = makeNoise ()

121 s, s_hat ,shortNoise = initialValues(noise)

122 y, y_prime , y_hat , w = np.zeros(len(s)), np.zeros(len(s)), np.

zeros(len(s)), np.zeros(len(s))

123 e, x = np.array(shortNoise), np.array(shortNoise)

124 x_hat = inital(s_hat ,x)

125 XN, NN , EN , RN = np.array ([]), np.array ([]), np.array ([]), np.

array ([])
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126 return noise ,s,s_hat ,shortNoise ,y,y_prime ,y_hat ,w,e,x,x_hat ,XN ,

NN,EN,RN

127

128 def initiateW(w,mu ,e,x_hat):

129 for i in range(len(w)):

130 if i == 0:

131 w[i] = -mu*e[i]*x_hat[i]

132 else:

133 w[i] = w[i-1] - mu*e[i-1]* x_hat[i-1]

134 return w

135

136 def makeSpectogram(sampleFreq ,noise):

137 powerSpectrum , freqenciesFound , time , imageAxis = plt.specgram(

noise , Fs=sampleFreq)

138 plt.xlabel(’Time’)

139 plt.ylabel(’Frequency ’)

140 plt.show()

141

142 def makePSD(frequency ,noise):

143 f, Pxx_den = signal.periodogram(noise , frequency)

144 plt.semilogy(f, Pxx_den)

145 plt.ylim ([1e-10, 1e2])

146 plt.xlabel(’Frequency ’)

147 plt.ylabel(’PSD’)

148 plt.show()

149

150 def ANCprinciple(noise ,fs):

151 t = np.arange (0., len(noise)/fs , 1/fs)

152 fig = plt.figure ()

153 ax = fig.add_subplot (1, 1, 1)

154 ax.plot(t,noise)

155 ax.plot(t,-noise)

156 ax.plot(t,noise -noise)

157 plt.show()

158

159 def ANCtimedelay(noise ,fs,l):

160 a = np.array(-noise)

161 for i in range(l):

162 f = a[0]

163 a = np.delete(a,0)

164 a = np.append(a,f)

165 t = np.arange (0., len(noise)/fs , 1/fs)

166 fig = plt.figure ()

167 ax = fig.add_subplot (1, 1, 1)

168 ax.plot(t,noise)

169 ax.plot(t,a)

170 ax.plot(t,noise+a)

171 plt.show()

172

173 def main():

174 fs,mu = 20000 , 0.25

175 noise ,s,s_hat ,shortNoise ,y,y_prime ,y_hat ,w,e,x,x_hat ,XN,NN ,EN,

RN = initiate ()

176 makeSpectogram(fs ,noise)

177 makePSD(fs,noise)

178 for i in range (10000):

179 if i%10000 == 0:
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180 print(i)

181 w = updateW(w,mu,e,x_hat)

182 y = conv(y,w,x)

183 y_hat = conv(y_hat ,s_hat ,y)

184 y_prime = conv(y_prime ,s,y)

185 shortNoise ,noise = updateNoise(shortNoise ,noise)

186 e = updateE(e,shortNoise ,y_prime)

187 x = updateX(x,e,y_hat)

188 x_hat = conv(x_hat ,s_hat ,x)

189 XN = np.append(XN ,x[-1])

190 NN = np.append(NN ,shortNoise [-1])

191 EN = np.append(EN ,e[-1])

192 RN = np.append(RN ,y_prime [-1])

193 plot(y_prime ,fs,y_hat)

194 z = np.zeros(len(XN))

195 plt.subplot (2,1,1)

196 plot2(NN,fs,EN ,z)

197 plt.subplot (2,1,2)

198 plot2(XN,fs,NN)

199 plt.show()

200

201 main()
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