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Abstract

Noncollinear magnetic textures in contact with superconductors have been shown to
harbour Majorana modes at their edges. In this thesis we investigate new phenom-
ena related to the generation and control of the topological phase of 1D magnetic
chains proximised to superconductors. The topological phases of noncollinear mag-
netic chains deposited on s-wave superconductors and collinear magnetic chains de-
posited on p-wave superconductors were analysed in the tight-binding approximation
in both the adiabatic and sudden quench limit. For non accidental values in the para-
meters space that set the character of the magnetic and superconducting order para-
meters, these types of superconductors are gapless and any symmetry conserving and
gap-opening perturbation brings them into a topological phase. This regime in topo-
logical superconductors can open up new paths to controlling the topological phase in
the future, as arbitrarily small perturbations activates the topological phase. The to-
pological phases of the special case of an elliptical field were analysed in terms of the
synthetic dimensions given by the offset and eccentricity of the elliptical texture. When
an out-of-plane chiral symmetry breaking field reaches a critical value of É0 the energy
gap closes at general points in the Brillouin zone, effectively killing theMajorana bound
states. Under quenches in the parameters, critical values of the out-of-plane field also
led to fast decay of the survival probability of the Majorana states. We find that by
switching the helicity of the ellipse, characteristic length scales are an important factor
for the survival of the Majorana bound states.
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Sammendrag

Ukolineære magnetiske teksturer i kontakt med superledere har blitt vist å huse Ma-
jorana fermioner på kantene. I denne oppgaven undersøker vi nye fenomener relatert
til opprettelse og kontroll av den topologiske fasen i 1D magnetiske kjeder i nærhet til
superledere. Den topologiske fasen til ukolineære magnetiske kjeder lagt på s-bølge
superledere og kolineære magnetiske kjeder lagt på p-bølge superledere ble analysert
i ‘tight-binding’ approksimasjonen både adiabatisk og med plutselige endringer i para-
metrene. For tilsiktede verdier i mulighetsområdet for parametrene som bestemmer
karakteristikken til den magnetiske og superledende ordensparametrene, var disse su-
perlederne uten gap i energispekteren og enhver symmetrikonserverende og energigap-
åpnende perturbasjon ledet dem inn i en topologisk fase. Dette regimet innen topolo-
gisk superledning kan åpne nye retninger for kontroll av topologiske faser i fremtiden,
siden vilkårlig små perturbasjoner er i stand til å aktivere den topologiske fasen. De
topologiske fasene til spesialtilfellet av et elliptisk magnetfelt ble analysert i form av
syntetiske dimensjoner gitt av ellipsens eksentrisitet og av faseforskyvningen av mag-
netfeltvektorene på ellipsen. Når et kiral-symmetri-brytende magnetfelt vinkelrett på
planet til ellipsen når en kritisk verdi tilsvarendeÉ0, lukker energigapet seg på generelt
grunnlag. Derved forsvinner Majorana fermionene fra systemet. Plutselige endringer
i denne parameterer førte også til rask nedgang i overlevelsessannsynligheten til Ma-
jorana fermionene. Vi oppdaget at ved å endre helisiteten til den elliptiske teksturen i
Hamiltonian-en, var karakteristiske lengde skalaer på endringen av stor betydning for
skjebnen til de bundne Majorana fermionene.

ii



Acknowledgement

During the spring of 2019 I have had the pleasure of working closely with Mario Cuoco
at the University of Salerno on this final part of my Master’s degree in applied phys-
ics. Mario has welcomed me to the scientific community at the University of Salerno
and made sure that my stay in Italy was comfortable and that the transition was an
adiabatic one. Mario and I have continuously discussed the goals of the thesis, and dy-
namically updated them as we obtained results. I want to thankMario for the great and
interesting theoretical discussions in the course of the investigations that went into this
master’s thesis. I am grateful for helpful discussion on the topics of the thesis with Prof.
Maria Teresa Mercaldo at the University of Salerno. I also want to thank Prof. Jacob
Linder for all the help he has contributed during the research and for discussing the
ideas and goals of the thesis during the last year. Jacob also was my supervisor for the
specialisation project in the fall of 2018, which we used as a primer for the work that
was done this spring. Without his supervision I would have had a much harder time to
do the necessary investigations that went into this work. I am grateful that Jacob was
positive to the idea of writing the master’s thesis abroad, which turned out to be an
awesome experience for me.

iii



Contents

Nomenclature viii

1 Introduction 1
1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 Tight binding approximation . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Global symmetries and the ten-fold way . . . . . . . . . . . . . . . . . . . 13
2.4 Marginal topological superconductors . . . . . . . . . . . . . . . . . . . . 21
2.5 Spinless Kitaev model in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Marginal topological superconductors 34
3.1 p-wave SC and FM ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 p-wave and AFM ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 s-wave superconductor in an inhomogeneous magnetic field . . . . . . . . 47
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Elliptical magnetic chain on a s-wave superconductor 60
4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Topology in 2D and 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 High symmetry points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Chiral symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Time-dependent driving 78
5.1 Quenching (Sudden approximation) . . . . . . . . . . . . . . . . . . . . . 79
5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Summary and outlook 93

Bibliography 95

Glossary 100

iv



List of Figures

2.1 Two electrons can exchange a virtual phonon. . . . . . . . . . . . . . . . . 8
2.2 The Hamiltonian can be transformed to opposite momentum and/or en-

ergy by the global symmetry operators. . . . . . . . . . . . . . . . . . . . . 19
2.3 Graphical representation of the Altland-Zirnbauer (AZ) classes and their

symmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Schematic phase transition for ‘normal’ and marginal superconductors . 22
2.5 Schematic representation of phases of the Kitaev chain. . . . . . . . . . . 26
2.6 Energy bands as a function of chemical potential on Kitaev chain. . . . . 27
2.7 Schematic representation of Kitaev chain coiled into a ring. . . . . . . . . 28
2.8 Example of two curves with different winding number for spinless Kit-

aev model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Energy bands as a function of coiling link strength Ý. . . . . . . . . . . . . 31
2.10 A schematic representation of the general system in consideration. . . . . 32

3.1 Curves of detAk in the complex plane parameterised by k in the First
Brillouin zone (1BZ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Phase diagram in É↑↑,↓↓-space with odd winding number. . . . . . . . . . 37
3.3 Phase diagram in É↑↑,↓↓-space with even winding number. . . . . . . . . . 38
3.4 Marginal topological system with only nearest neighbour hopping. . . . . 39
3.5 Marginal topological superconductivity by varying dx . . . . . . . . . . . . 40
3.6 The superconductor can be marginal topological in one variable and

trivial in another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Open boundary energy bands as a function of dx for the parameters in

section 3.1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 The topological phase diagram for |M | = 0.15t, Þ = 0.1t. . . . . . . . . . . 45
3.9 Phase diagram in dxhz-space varying hy . . . . . . . . . . . . . . . . . . . . 46
3.10 The topological phase diagram and the energy bands for an open bound-

ary system are shown for the helical system. . . . . . . . . . . . . . . . . . 50
3.11 Schematic drawing of the case considered in example 1. . . . . . . . . . . 52
3.12 Marginally perturbing a gapless system into a topological phase. . . . . . 53
3.13 Phasediagram for the three-atom-basis SDW system. . . . . . . . . . . . . 54
3.14 Winding curves for different values of the parameter h2 shown as the

points P−, P0 and P+ in fig. 3.13. . . . . . . . . . . . . . . . . . . . . . . . . 55
3.15 Schematic drawing of the case considered in example 2. . . . . . . . . . . 55
3.16 A system consisting of unit cells with a four lattice sites which is gapless,

yet not marginally topological, as explained in example 2. . . . . . . . . . 56
3.17 Results for a marginally topological superconductor consisting of unit

cells with four lattice sites in the basis, as described in example 3. . . . . 57

v



vi List of Figures

4.1 The phase diagram for a three-atom unit cell in Ú-æ-space varying Þ and
h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 The phase diagram for a four-atom unit cell in Ú-æ-space varying Þ and h 68
4.3 Examples of curves that a winding number can be computed on. . . . . . 69
4.4 Examples of line nodes and line integrals in kÚæ-space. . . . . . . . . . . 70
4.5 Energy gap at æ = 0, Ú = 0 line varying h. . . . . . . . . . . . . . . . . . . . 73
4.6 Energy contours and winding around nodes in the Ú-k-plane. . . . . . . . 74
4.7 Comparison of phase diagram computed with the Pfaffian and winding

number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.8 Phase diagram in Ú-hz space and the energy gap. . . . . . . . . . . . . . . 76
4.9 Energy gap in the kÚ-plane for a system with broken chirality. . . . . . . 77

5.1 Phase diagram of the cases considered in this section. . . . . . . . . . . . 83
5.2 Survival probability of a Majorana state after flipping the helicity. . . . . 84
5.3 Fourier transform of the survival probability after a sudden quench in

the helicity of the magnetic texture. . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Overlap onto the new Majorana states after negating Ú0→ Ú2 = −Ú0 via

a midpoint of Ú1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 A quench in the æ parameter (a) excites a broad range of energies, which

leads to (b) a quick stabilisation of the survival probability of the ori-
ginal Majorana state without significant oscillations. The parameters
were h = −Þ = t, É0 = 0.3t, Ú = á/4, p/q = 1/3. . . . . . . . . . . . . . . . . 87

5.6 Quenching the parameter æ to a critical value æ1 = 0.197. . . . . . . . . . 88
5.7 Survival probability of one of the Majorana states after a quench which

breaks chirality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8 Long-term survival of the Majorana states for sudden quenches (a) from

the chiral symmetric system, (b) and to the critical value hz = É0. The
parameters were h = −Þ = t, É0 = 0.3t, Ú = á/4, æ = 0, NUC and p/q = 1/3. 90

5.9 Survival probability when quenching a system with a barely subcritical
out-of-plane field to a barely supercritical one. . . . . . . . . . . . . . . . 90

5.10 Bulk energy bands in the Brillouin zone for an out-of-plane field which
is supercritical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Tables

2.1 Altland-Zirnbauer (AZ) table of topological classes. . . . . . . . . . . . . 20

4.1 Unitarily connected models . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



Nomenclature

Pauli matrices

The Pauli matrices, including the identity ã0, are

ã0 =

(
1 0

0 1

)
ã1 =

(
0 1

1 0

)
ã2 =

(
0 −i
i 0

)
ã3 =

(
1 0

0 −1

)
.

The Pauli vector is in terms of the Pauli matrices

ã = ã1x̂ + ã2ŷ + ã3ẑ

Fourier transformation

Unless states otherwise, the fermion operators are Fourier transformed according to
the following equations

cjã =
1
√
N

¼
k

eikjckã ckã =
1
√
N

¼
j

e−ikjcjã (1)

Notation

The imaginary unit is the italic serif roman letter

i,

to discern from the often used running index for e.g. lattice sites, which is the sans-serif
italic letter

i .

The nearest neighbour sum,
´
⟨i j⟩, counts both ways. That is,¼

⟨i j⟩
=

¼
i

¼
j=i±1

in one dimension. At the boundaries of an open boundary system, it should be under-
stood that only one of the j values are valid.
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ix

Winding number

When a Hamiltonian has chiral symmetry, the Hamiltonian matrix is block off-diagonal
in the basis that diagonalises the chiral symmetry operator. The Hamiltonian is then
written as

H(k) =

(
0 Ak

A†
k

0.

)
The determinant of the matrix Ak is in general a complex number. The winding number
is defined as the number of times the complex determinant winds around the origin of
the complex plane as k traverses the first Brillouin zone,

W =
1

2ái

∫
C

d|Ak |
|Ak |

≡ 1

2ái

∫
1BZ

dk
dk |Ak |
|Ak |

.
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1 | Introduction

1.1 Motivation and background

Topological superconductivity is a field which has been extensively researched for al-
most two decades and has the potential to lead to decoherence free quantum computing
(Kitaev, 2003) due to the topological protection of the information carrying states. One
of the topological particles which can emerge in such systems is the Majorana bound
state. Such a particle is by definition its own antiparticle. Majorana particles are a the-
oretical solution to the Dirac equation (Majorana, 1937), but no known particle in the
standard model is known to be a Majorana particle, although the neutrinos are inter-
esting propositions (Alicea, 2012). However, in condensed matter Majorana particles
may emerge as Bogoliubov quasiparticles in superconductors, where the Majorana ex-
citations are composed of equal amounts of holes and electrons.

Kitaev (2001) theoretically demonstrated this fact by analytically solving a toymodel,
now known as the Kitaev model, which is a spinless model, and suggested ways to
obtain Majorana fermions in a realistic model. The Kitaev model has a p-wave su-
perconducting order parameter, and modeling has been brought to the level of real
system. There are three main material paths to realise the Kitaev model: Firstly, by
engineering convetional spin singlet pairing with spin-orbit coupling (SOC) and fer-
romagnetism (Alicea, Oreg, Refael, von Oppen & Fisher, 2011; Lutchyn, Sau & Das
Sarma, 2010) or with noncollinear ferromagnetism (Marra & Cuoco, 2017; Nadj-Perge,
Drozdov, Bernevig & Yazdani, 2013). Secondly, topological insulators can be combined
with superconductivity and magnetism (Fu & Kane, 2008). The third path to topolo-
gical superconductors is to use intrinsic p-wave superconductors like for instance the
Beechgard salts (Jérome, Mazaud, Ribault & Bechgaard, 1980; I. J. Lee et al., 2002),
lithium molybdenum purple bronze (Lebed & Sepper, 2013) or the more recent chro-
mium based pnictide (Bao et al., 2015). An example of an intrinsinc p-wave supercon-
ductor harbouring Majorana bound states (MBSs) is analysed by Mercaldo, Cuoco and
Kotetes (2018) There are indications that MBSs have already been achieved in experi-
ments (Deng et al., 2012; E. J. H. Lee et al., 2014; Mourik et al., 2012).

An alternative to ferromagnetism and SOC is that of noncollinear exchange fields. It
turns out that if one locally does a unitary spin rotation so that the spin-axis is aligned
with the exchange field vector, the noncollinear exchange field is transformed into a
spin-density wave (SDW) with Rashba SOC (Klinovaja & Loss, 2013; Marra & Cuoco,
2017; Sedlmayr, Aguiar-Hualde & Bena, 2015). Additionally, if the angle between
neighbouring exchange field vectors is of significant size, the resulting effective SOC
is comparable to the Hubbard hopping strength, which often is considerably larger
than SOC strengths obtained in semiconductors.

Motivated by the strong focus on the generation andmanipulation of topological su-
perconductivity and Majorana modes, we aim to investigate the topological properties

1



2 Introduction 1.1

of a quantum system where magnetism and superconductivity can have different char-
acter, symmetry and spatial patterns. Especially, we are interested in finding criteria
and non-accidental areas in the topological phase diagram where the superconductor
has a robust topological character because it is between two topological phases such
that it is gapless, yet any symmetry conserving perturbation brings it into a topological
phase. We call these types of systems ‘marginal topological superconductors’. Such
systems could potentially be of special importance since the dynamics of the MBSs can
be easily controlled by closing and reopening the gap in these areas in the parameter-
space. This way, the control can be as small as possible and still have significant impact
on the topological phase of the system, opening ways for new methods to control the
MBS in for example quantum gates. The investigation into topological spinful p-wave
superconductors is also interesting in itself, as it allows us to understand how odd
parity pairing and a vectorial order parameter can be employed to open new paths to
control the topology of superconductors.

We also aim to investigate the topological properties of s-wave superconductors sub-
ject to noncollinear exchange fields, including elliptical textures. An interesting issue
is the importance and interrelation of time reversal breaking and inversion symmetry
breaking with respect to the topology of the systems. In addition to looking at the
static limit of the topological systems, we investigate the robustness of the MBS during
sudden quenches in the model parameters, motivated by the need to understand fast
switching of parameters in potential applications.

1.2 Outline

The work presented in this thesis is divided in multiple chapters. At first, in chapter 2,
we present basic theory on the tight binding approximation, superconductivity, topo-
logy and the relation to global symmetries and the general model formulation as used
throughout the thesis. The Kitaev model is also solved in multiple ways to explain the
various paths to generate and manipulate MBSs. Each chapter after chapter 2 presents
the needed theory, results and discussions.

In chapter 3 we investigate marginal topology in three slightly different models: a p-
wave superconductor (SC) in a ferromagnetic field, a p-wave SC in a antiferromagnetic
field and an s-wave SC in a noncollinear magnetic field.

In chapter 4, we look at an s-wave superconductor in an elliptical conical exchange
field, and the topological properties are analysed in the parameter space given by the
form of the elliptic cone.

The same model is subsequently analysed with respect to time-dependent vari-
ations in the Hamiltonian in chapter 5, where quenches close to topological phase trans-
itions and quenches that do not change the topological phase are in focus.



2 | Preliminaries

2.1 Tight binding approximation

The tight binding approximation is an effective description of a system of electrons that
are tightly bound to the atomic nucleus. This type of modelling was initially proposed
by Bloch (1929) and later simplified and parameterised by Slater and Koster (1954).
One of the assumptions in the tight binding models is, as the name implies, that the
electrons are tightly bound to the nucleus of the atoms. That ensures us that the overlap
of orbitals of neighbouring atoms at large distance are negligible, as well as the contri-
bution from neighbouring nucleus potentials. Thus the atomic orbitals may be used
as the basis wave functions. The tight binding approximation, due to the assumption
of tightly bound electrons, usually works well for inner valence electrons in crystals,
while they often are not good approximations for conductance electrons since they are
less localised in the crystals (Kittel, 2005). The tight binding approximation has also
seen use in conjunction with other methods like the free wave method, thus combining
the best of both worlds.

2.1.1 Second quantisation in the tight binding approximation

A usual starting point to obtain the tight binding approximation is to with the first
quantised Hamiltonian, which in a simple model is

H =

¼
i

p̂2
i

2m
+

¼
i ,R j

V(ri −Rj ) +
1

2

¼
i j

U(ri − rj ). (2.1)

The first term is the familiar kinetic energy term with p̂i the canonical momentum of
particle i , the second is the potential energy of the electrons relative to the lattice atoms,
ri is the position of particle i , Rj is the lattice atoms’ positions. The third and last term
is the electron-electron interaction (through e.g. Coulomb potential). As we will show
later, more terms may exist in the system, like Rashba SOC or phonon-electron interac-
tions, but to keep things simple we will only consider the above terms at the moment.
The tight binding model is obtained by considering an effective number of orbitals per
atom, èß(r−Ri ), and solving the Schrödinger equation for single-electron orbitals where
just one atom potential V(r − Ri ) is considered at a time. Here Ri is the position of the
centre of the orbital and nucleus and ß is the orbital quantum number, which can be
indexing orbital momentum, radial momentum or other quantum degrees of freedom
for the bound states. The number of orbitals that are considered will vary between use
cases. For some systems, using only one orbital per atom is accurate enough due to
freeze out and filling of the other orbitals that are actually present in the system. When
multiple orbital bands cross the chemical potential, more orbitals have to be considered
in the tight binding model. In addition to orbital degrees of freedom, a spin degree of

3



4 Preliminaries 2.1

freedom, çã(s), is implied. The set of orbitals used as basis are {èß(r−Ri )}, which satisfy
the eigenvalue equation(

p̂

2m
+V(r −Ri )

)
èß(r − Ri ) = Eßèß(r − Ri ). (2.2)

That is, each orbital satisfied the hydrogen like wave equation and is located at a given
lattice site, Ri . This implies that the potentials from the other lattice sites and the other
potential terms of the Hamiltonian are treated as perturbations. Using the above set of
orbitals as the basis, we can transform the Hamiltonian to second quantised form

H2nd =
¼
i jßß′

¼
ãã′

c†ißãcjß′ã′ ⟨ißã|H
single
1st

∣∣∣jß′ã′⟩+¼
i jkl

c†i c
†
j ckcl ⟨i ; j |He-e

1st |k; l⟩ .
(2.3)

where the single particle second quantised Hamiltonian is

⟨ißã|Hsingle
1st

∣∣∣jß′ã′⟩ = ∫
d3rèß(r −Ri )

∗H
single
1st èß′ (r −Rj )

and the second quantised two-particle Hamiltonian is

⟨i1ß1ã1; i2ß2ã2|He-e
1st |i3ß3ã3; i4ß4ã4⟩ =

∫
d3rd3r′è∗ß1ã1

(r −Ri1
)è∗ß2ã2

(r ′ −Ri2
)×

He-e
1st (r, r

′)èß3ã3
(r ′ −Ri3

)èß4ã4
(r −Ri4

).
(2.4)

2.1.2 Obtaining the effective Hamiltonian

From now on we will only consider the system to have available one orbital per nucleus,
and we omit the orbital label ß. The diagonal part of the second quantised Hamiltonian
is simply the part of the Hamiltonian that defined the eigenvectorsè of the system, with
a small correction due to the potential from neighbouring atoms:

H0 =

¼
iã

c†iãciã ⟨iã|

 p̂

2m
+

¼
R j

V(r −Rj )

 |iã⟩
=

¼
iã

×c†iãciã

The Hubbard hopping term (Hubbard, 1963), is obtained similarly, but letting (i , j)
be orbitals on different lattice sites:

Ht =

¼
i ,jã

c†iãcjã ⟨iã|
¼
k,i

V(r −Rk) |jã⟩

= −
¼
i ,jã

ti jc
†
iãcjã

Here the fact that
[
p̂2

2m
+ V(r −Ri )

]
|iã⟩ = ×̃ |iã⟩ and that the overlap between neighbour-

ing orbitals are negligible was used to remove them from the sum. Although the pairs
(i , j) in principle can denote atoms arbitrary distant away from each other, one usually
only consider nearest neighbours, ⟨i , j⟩, or next nearest neighbours, ⟨⟨i , j⟩⟩, since the
overlap integrals fall off quickly in the tight binding approximation.



2.1 Tight binding approximation 5

The U term

The electron-electron interaction can give rise to various effects, including:

• Superconductivity,

• Ferromagnetism,

• Antiferromagnetism,

• Paramagnetism.

The last three magnetic effects depend on the details of the system, and can also be a
result of the relative size of U compared to the Hubbard hopping term above. A ped-
agogical introduction to the magnetic phases that can arise from the U term is given by
Claveau, Arnaud and Di Matteo (2014). Since the U-term of eq. (2.1) is a two-particle
operator (it depends on the positions of two electrons), the second quantised Hamilto-
nian must be expanded according to eq. (2.4). The details of the calculations quickly
become complicated and can give rise to effective ferromagnetic or antiferromagnetic
interactions depending on the details, so we will point the reader to more thorough
works in the field like the pedagogical introduction to magnetism by Timm (2015). A
simple approximation to the repulsive U-term in the tight binding model can be ob-
tained by assuming that the overlap integral is much bigger for electrons on the same
lattice site. In that case the the second quantised Hamiltonian is

HU = U

¼
i

c†
i↑ c
†
i↓ ci↓ ci↑ = U

¼
i

ni↑ni↓.

Rashba spin-orbit coupling in the tight binding model

Spin orbit interaction of the Rashba type (Rashba & Sheka, 1959; Bihlmayer, Rader &
Winkler, 2015) is a relativistic effect that emerges when expanding the Pauli equation
to second order in c−1. Due to the relative motion of a particle with spin in an electric
field it feels an effective magnetic field that couples to the spin. In first quantisation
the relativistic spin orbit Hamiltonian is

ĤSO =
ÞB

2mc2
ã · (E × p), (2.5)

where ÞB is the Bohr magnetic, eℏ/2me. Using the fact that E × p/mc2 has the unit
of Tesla, this can be rewritten as 1

2
ÞBã · B′, i.e. the same form as the Zeeman energy

except a factor half, known as the Thomas half (Thomas, 1926). The effective Rashba
spin-orbit coupling in a single band model is in first quantisation modelled by¼

i

(n̂ × ŝ) · {ÓR (ri ), p̂i } , (2.6)

where n̂ is a vector pointing in the direction of the electrical field, ŝ is the spin of the
electron and ÓR(ri ) is the strength of the Rashba SOC which may vary in space. The an-
ticommutator of the factors p and Ó(r) is used to ensure the hermiticity of the Hamilto-
nian. Because the Hamiltonian in eq. (2.6) is linear in p, this type of Hamiltonian can
only exist in systems with broken inversion symmetry.
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The Rashba SOC can be calculated straight forward by specifying the orbitals and
calculating the overlap integrals of the form −iℏ⟨i + Ö|

(
∇+ 1

2
[∇ÓR (r)]

)
|i⟩. The final res-

ult, written in a similar fashion as J. Linder, Amundsen and Risinggård (2017), is

HSO = i
¼
⟨i ,j⟩

ÓR (i , j) (n × ã̂ )ãã′ · dj ic
†
iãcjã′ . (2.7)

Here ÓR (i , j) = ÓR (j , i ) and is real, while dj i is a unit vector pointing from j to i with dj i =

−di j . Note that the Hamiltonians of eqs. (2.5) to (2.7) all have time reversal symmetry:
When the arrow of time is reversed, an electron jumping from i to j jumps instead from
j to i (or p→−p), while the spin of the electron also changes direction. Thus since both
ã and di j (p) changes sign, the Hamiltonians are left unchanged.
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2.2 Superconductivity

2.2.1 BCS theory

Cooper (1956) showed that an arbitrarily small attractive interaction between two elec-
trons just above the Fermi sea would create bound states between them, Cooper pairs.
This would happen even in the presence of a repulsive Coulomb potential. The isotope
effect discovered by Maxwell (1950) indicated that the attractive potential was due to
electron-phonon interactions. The interaction is a result of the dipole moment due to
oscillations of the lattice nuclei from the equilibrium position, which interacts with the
negative charge of the electrons, and is

Ĥph-e =
¼
kqã

Mq

(
a†−q + aq

)
c†k+qck (2.8)

with

Mq = i(q ·àÝ)

√
ℏ

2Mionéq,Ý
. (2.9)

Here aq are boson (phonon) annihilation operators, whereas ck are fermion (electron)
annihilation operators. As can be seen above, the amplitude of the coupling between
the electrons and phonons are mass dependent, which led Maxwell to hypothesise that
the superconducting effect was a result of coupling to massive particles — the phon-
ons. When treating eq. (2.8) as a perturbation, one has to go to second order in the
interaction strength in order to obtain an expression which is nonzero due to the first
order Feynman diagrams giving zero contribution to the electrons energy. (Sudbø, n.d.).
In doing so, the electron-phonon interaction can be written as an effective electron-
electron interaction (Bardeen, Cooper & Schrieffer, 1957; Sudbø, n.d.; Fossheim &
Sudbø, 2005).

Ĥph-e =
¼
kk′q

¼
ãã′

2ℏéq |Mq |2

(êk+q − êk)2 − (ℏéq)
2
c†k+q,ãc

†
k′−q,ã′ck′ã′ckã . (2.10)

The interaction is depicted in the Feynman diagram of fig. 2.1a which describes the
process of two electrons entering the system, which transmits a virtual phonon between
them, and leaves again. This process is similar to the Coulomb force which uses the
photon as force carrier instead. The difference between the two force carriers is that the
phonon ismassive whereas the photon is not, and that affects the form of the propagator
(the fraction in eq. (2.10)), which in the case of photons is always positive (repulsive)
while, as fig. 2.1b shows, the phonon propagator is energy dependent and gives an
effective attractive potential for small energy transferal between the electrons. The
k-dependence in eq. (2.10) is symmetric in the momentum, which means that it only
allows even wavefunctions and singlet Cooper pairing. For odd parity wavefunctions
to be allowed (symmetric in spin), the pairing mechanism for the electrons must be
anisotropic. However, spin fluctuations can be responsible for the anisotropic pairing
mechanisms, which is identified for liquid He3 (Leggett, 1975; Sigrist & Ueda, 1991).
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(a) Feynman diagram of the
phonon mediated scat-
tering between two elec-
trons.
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(b) The energy dependence of the effective potential between
two electrons.

Figure 2.1: Two electrons can exchange a virtual phonon according to the Feynman
diagram in (a). (b) The total propagator consists of the exchange of virtual
phonons and photons. The figure shows the propagator for a certain k,
which due to the photon adds a constant term to the frequency dependence,
which here is taken to be 2 (the energy is also unitless here).

2.2.2 Second quantisation

The general Bardeen-Cooper-Schrieffer (BCS) quartic superconducting Hamiltonian for
any type of superconductivity can be written in momentum (k) space as

ĤBCS = ĤN + ĤSC =

¼
kk′ãã′

×ãã′ (k,k
′)c†kck′

+
1

2

¼
kk′

¼
s1s2
s3s4

Vs1s2s3s4(k,k
′)c†−ks1c

†
ks2

ck′s3c−k′s4 . (2.11)

The derivation of the above Hamiltonian can be found in any complete textbook on
supercoductivity, but I refer the reader to the works by Bardeen et al. (1957), Fossheim
and Sudbø (2005), Sigrist and Ueda (1991) for a detailed derivation of the Hamilto-
nian. The following derivations also follow these references closely. The first sum in
eq. (2.11) is the normal quadratic terms found in most normal systems, and is particle
conserving since any annihilation operator is matched by a creation operator. The
Hamiltonian could be written in a more general way by including terms of the form
ckck′ and hermitian conjugate, which do not conserve particle number, but these terms
seldom appear by themselves in nature, furthermore they appear in the mean field su-
perconducting part, which we soon derive. The latter sum in eq. (2.11) is a very general
quartic Hamiltonian in that it couples two fermionic annihilation operators with two
creation operators. In light of the previous argument this Hamiltonian term is also
particle number conserving. By using the anticommutation relations for fermions, we
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can derive some symmetries for the electron-electron interaction potential:

Vs1s2s3s4(k,k
′) = −Vs2s1s3s4(−k,k

′) (2.12)

= −Vs1s2s4s3(k,−k
′) (2.13)

= Vs4s3s2s1(k
′ ,k) (2.14)

In practice, just a small number of degrees of freedom for a fermionic systems
renders a solution to eq. (2.11) intractable, due to the quartic term which means that
one has to consider the full Hilbert space of combinations of single particle excitations
and not just the single particle excitations independently. The solution to this is de-
scribing the particle-particle interaction in terms of mean fields. In this regard there
are multiple fields that can be used. If the interaction is attractive and superconduct-
ivity is expected, one uses the superconducting fields cc′, while if the interaction is
repulsive one used the Hartree-Fock fields, c†c. In the context of this chapter, the first
are used. Writing

cc′ = ⟨cc′⟩+

Ö︷      ︸︸      ︷
cc′ − ⟨cc′⟩ (2.15)

for any quadratic factor of same type (annihilation or creation), and by assuming that
the fluctuations in Ö are small and thus only approximating first order in Ö, the SC term
in the Hamiltonian is approximated as

ĤSC =
1

2

¼
kk′

¼
s1s2
s3s4

Vs1s2s3s4(k,k
′)
[
⟨c†−ks1c

†
ks2
⟩ck′s3c−k′s4 +

⟨ck′s3c−k′s4⟩c
†
−ks1c

†
ks2
− ⟨c†−ks1c

†
ks2
⟩⟨ck′s3c−k′s4⟩

]
,

=
1

2

¼
kãã′

c−kãckã′ ¼
k′ss′

Vss′ãã′ (k
′ ,−k)⟨c†−k′sc

†
k′s′⟩+

c†kãc
†
−kã′

¼
k′ss′

Vãã′ss′ (−k,k′)⟨ck′sc−k′s′⟩

− V
where a relabeling k → −k was done in the second equal sign, and the constant term
without fermion operators was written as V . This last term is not important when
computing the eigenvectors and energies of the Hamiltonian, but is needed when the
superconducting phase is compared to the normal phase concerning the equilibrium
phase of the system. The sign of −k in the potential can be removed by using eqs. (2.12)
to (2.14). The superconducting term is then

ĤSC =
1

2

¼
kãã′

(
Éãã′ (k)c

†
kãc
†
−kã′ −É

∗
ãã′ (−k)c−kãckã′

)
, (2.16)

with

Éãã′ (k) = −
¼
k′ss′

Vã′ãss′ (k,k
′)⟨ck′sc−k′s′⟩ (2.17)

É∗ãã′ (−k) =
¼
k′ss′

Vss′ã′ã(k
′ ,k)⟨ck′sc−k′s′⟩. (2.18)

These Order Parameters (OPs) must, using eqs. (2.12) to (2.14), satisfy

Éãã′ (k) = −Éã′ã(−k). (2.19)
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That is, it must be antisymmetric under a total exchange of spin and momentum co-
ordinates. Until now no restriction has been made on the momentum dependence of
Éãã′ (k). Writing it as ÉS

ãã′ (k) + ÉA
ãã′ (k), where superscript S and A denote symmetric

and antisymmetric k dependence, we get

ĤSC =

¼
k≥0

[
ÉS
↑↓(k)

(
c†
k↑c
†
−k↓ − c

†
k↓c
†
−k↑

)
+ÉA
↑↑(k)c

†
k↑c
†
−k↑

+ÉA
↑↓(k)

(
c†
k↑c
†
−k↓ + c†

k↓c
†
−k↑

)
+ÉA
↓↓(k)c

†
k↓c
†
−k↓ +h.c.

]
.

(2.20)

It is straightforward to show using eq. (2.19) that

ÉS/A
ãã′ (k) = ∓É

S/A
ã′ã (k) ÉS/A

ãã′ (k) = ±É
S/A
ãã′ (−k),

where ± and ∓ corresponds to S/A. From eq. (2.20) it is clear that the k-symmetric É

pairs electrons in the singlet configuration while the antisymmetric É pairs electrons
in the triplet Cooper configuration, of which there are three types (mz = 1,0,−1). We
see that the representation above for the triplet pairs is written in a specific basis: the
triplets have a well defined spin z-direction, and the representation is followingly not
invariant under SU(2) spin-rotations. Thus we seek a way to write É as in terms of a
vector that rotates under spin rotations. It turns out (Balian &Werthamer, 1963; Sigrist
& Ueda, 1991) that the triplet matrix in spin space can be defined in terms of a vector
d(k), called the d-vector, as

É̂A =

(
ÉA
↑↑ ÉA

↑↓
ÉA
↓↑ ÉA

↓↓

)
= i(d(k) ·ã )ãy =

(
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
. (2.21)

The d-vector has the properties that it always points perpendicular to the pairing po-
tential. Thus, if we rotate the system so that the d-vector points in the z-direction, only
electrons with opposite spins, e.g. c†↑c

†
↓, will be paired. These pairs do not have a net

spin in the direction of z . The singlet pair potential can be written by substituting the
dot product in eq. (2.21) by the scalar É0(k) = ÉS

↑↓(k) which gives

É̂S = iÉ0(k)ãy =

(
0 É0(k)

−É0(k) 0

)
. (2.22)

Assuming that k is a good quantum number for the normal quadratic terms in eq. (2.11),
we define the Nambu spinors è̂k = (ck↑, ck↓, c

†
k↑, c

†
k↓)

T, which allows the Hamiltonian
to be written in a compact form

Ĥ =
1

2

¼
k

è̂†k

(
h(k) É̂(k)

−É̂(−k)∗ −h(k)∗

)
è̂k . (2.23)

If the translational symmetry is altered by a spin density wave, one must consider other
bases instead when solving the Hamiltonian. For example, when there is an antiferro-
magnetic ordering in the system one can divide the fermion operators in two sublat-
tices, which leads to two ‘types’ of Fourier transformed operators on each sublattice,
each of which has a reduced Brillouin zone due to the increased lattice constant of each
sublattice.
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2.2.3 Bogoliubov-de Gennes formalism

The Hamiltonian in eq. (2.60) contains both the usual terms quadratic in creation and
annihilation operators like c†c, and terms quadratic in either creation operators or
annihilation operators, like cc. The first type conserves the particle number in the
system regardless of the type of interaction. The latter on the other hand does not
conserve particle number. This implies that the eigensolutions of the Hamiltonian can
not be a superposition of only particles, but must be a superposition of both particles
and holes. The transformation into a basis consisting of superpositions of particles
and holes for simple s-wave systems were first formalised by Bogoliubov (1958) and
Valatin (1958), the Bogoliubov-Valatin transformations. Further in the developement
of the BCS-theory was the developement of Bogoliubov-de Gennes formalism after de
Gennes (1964) and Bogoliubov (1958). In this formalism the Hamiltonian is written
with a redundant representation of the states. Defining the column vector of creation
operators

è̂ =
(
cß1 , cß2 , . . . ,cßN , c

†
ß1 , c

†
ß2 , . . . ,c

†
ßN

)T
. (2.24)

If we denote the first half of this vector as the ‘particle part’, and the lower half as the
‘hole part’, and remembering that the ä-denoted Pauli matrices operate in the particle-
hole basis, the column vector satisfies

äx(è
†)T = è, (2.25)

which demonstrates the redundancy in the representation and effectively defines a
particle-hole symmetry. Here it is assumed that the fermion operators are given in the
position basis. In themomentum basis the relationwould instead have been äx(è

†(k))T =

è(−k). In truth, these relations are only particle hole constraints due to the Fermi-Dirac
statistics (Chiu, Teo, Schnyder & Ryu, 2016, p. 7).

The Bogoliubov-de Gennes (BdG) Hamiltonian matrix is written like

è̂†HBdGè̂ = è̂†
(
H É

É† −H∗

)
è̂, (2.26)

where H is the normal part matrix connecting pairs of creation and annihilation operat-
ors, while É is the anomalous part due to superconducting pair interactions. Insertion
of eq. (2.25) into eq. (2.26) gives the requirement

äxH
∗
BdGäx = −HBdG (position basis) äxH

∗
BdG(k)äx = −HBdG(−k) (momentum basis)

(2.27)

This implies that the matrix É must equal −ÉT, therefore being an antisymmetric mat-
rix.

What is interesting about the BdG Hamiltonian is that it always has particle-hole
symmetry by its very definition. The result as described in section 2.3.2 is that the ei-
gensolutions comes in (×,−×)-pairs. For any eigenwave function Õ = (u, v), the negative
eigenenergy partner is äxÕ∗ = (v∗,u∗), where u and v are the particle and hole compon-
ents respectively. The PH symmetry is in this case defined by Ĉ èĈ −1 = äx(è

†)T, which
implies that Ĉ 2 = +1. The Bogoliubov-de Gennes (BdG) Hamiltonian apparently also
has too many degrees of freedom in its definition. If we assume that the actual system
has two internal spin degrees of freedom and N degrees of additional freedom in terms
of e.g. position, there are a total of 2N degrees of freedom for the system. However,
the Hamiltonian matrix is a 4N ×4N matrix, which implies that there are a total of 4N
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degrees of freedom. That is, the BdG Hamiltonian has twice the number of degrees of
freedom as the actual system has. The number of solutions to the Hamiltonian can not
exceed the number of degrees of freedom, else we would have a problem when chosing
the energy eigenvectors to construct a state from. The solution to this problem is to
observe that the particle-hole symmetry connecting electrons and holes by eq. (2.25)
in fact limits the degrees of freedom by half since for each solution, there must always
exist a solution with the opposite energy.

The BdG equation

The BdG equation is an eigenvalue equation on the matrix Hamiltonian which gives the
eigenenergies and eigenvectors when solved. It is

HBdGæß = Eßæß. (2.28)

Here the èß is an eigenvector of the BdG Hamiltonian with the eigenenergy Eß.

BdG formalism in momentum basis

In systemswith translational invariance, Ĥ(i+T) = Ĥ(i), fourier transforming the Hamilto-
nian from the position basis into momentum basis usually simplifies the equations that
have to be solved. We then write the Hamiltonian as a function of the momentum:
ĤBdG(k). For the following derivation, we assume that the Hamiltonian has a unit
cell with one atom and one orbital in its basis, and two spin degrees of freedom. The
Hamiltonian then completely decouples to a k-dependent 4×4 matrix of the form

HBdG(k) =

(
H(k) É̂(k)

−É̂(−k)∗ −H(−k)∗

)
, (2.29)

ĤBdG(k) = è†kHBdG(k)èk , (2.30)

where H(k) andÉ(k) are 2×2matrices, the Nambu spinors areèk = (ck↑, ck↓, c
†
−k↑, c

†
−k↓)

T,

and the particle hole symmetry is äx(è
†
k
)T = è−k. The BdG equation now takes the form

HBdG(k)æk,± = Ek,±. (2.31)

The matrix which diagonalises the Hamiltonian can then be written as

U(k) =
(
æk,+ æk,− äxæ

∗
−k,+ äxæ

∗
−k,−

)
(2.32)

which satisfies

U(k)†HBdG(k)U(k) =


Ek,+

Ek,−
−E−k,+

−E−k,−

 . (2.33)
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2.3 Global symmetries and the ten-fold way

It can often be a fruitful exercise to discover the intrinsic symmetries of a system before
looking for the solutions. The symmetries of a Hamiltonian can reveal much informa-
tion about a system and the possible phases and topological constants that it can have.
This has led to what is called ‘The Ten-Fold Way’ by the community (Chiu et al., 2016;
Ludwig, 2016; Ryu, Schnyder, Furusaki & Ludwig, 2010) which is a ‘periodic table’ of
topological systems that are classified by only three global symmetries: The Time Re-
versal (TR) symmetry, the Particle-Hole (PH) symmetry also called charge conjugation
symmetry and lastly the chiral symmetry which is the product of the first two or it can
be associated to a subdivision of the lattice such as the connectivity of the Hamiltonian
is only between two separate groups of atoms. In this chapter we review the mentioned
symmetries and explain why their combinations exhaust the topological classes. In sec-
tion 2.3.4 we summarise the symmetries and explain the meaning of the Ten-Fold Way,
which is described by the Altland-Zirnbauer (AZ) table.

A fermionic symmetry operator is an operator that commutes with the Hamiltonian
in the second quantisation formalism, that is to say that the symmetry operator, U ,
satisfies

Û ĤÛ −1 = Ĥ, (2.34)

and additionally the anticommutation relations for the fermion operators must be in-
variant (Chiu et al., 2016),

{èß,è
†
Ý} = Û {èß,è

†
Ý}Û

−1. (2.35)

By Wigner’s theorem (Wigner, 1959; Bargmann, 1964), the operator Û eqs. (2.34)
and (2.35) must be either a unitary or antiunitary transformation, the latter preserving
the size but not the phase of inner products in the Hilbert space. The unitary and
antiunitary operators are defined by the following two equations:

Û iÛ −1 = i (unitary) Û iÛ −1 = −i (antiunitary). (2.36)

The symmetry operator Û transforms the second quantised creation and annihilation
operators as

èß→ è′ß = ÛèßÛ
−1 = (Uè)ß, (2.37)

where è is the vector containing all annihilation operators (and creation operators in
the case of particle hole symmetry). Here, U is not a second quantised operator, but is
a unitary matrix (Chiu et al., 2016; Ludwig, 2016).

Asmentioned above, there exist arbitrarilymany unitary symmetries that a Hamilto-
nian may have, examples being spin-symmetries, inversion symmetries, mirror sym-
metries and (discrete) translational symmetries to mention a few. In the study of to-
pological systems three symmetries stand out, Time Reversal (TR), Particle-Hole (PH)
and chiral symmetry. The reason why they stand out is that any ‘normal’ symmetry
operator commutes with the Hamiltonian in first quantisation formalism, which is to
say that the matrix representation of the operators commute. Followingly, the Hamilto-
nian can be block diagonalised in blocks corresponding to the eigenvalues of the sym-
metry operator in question. This procedure can be repeated for each block until all
the ‘normal’ symmetries are gone, which is to say that the blocks of the Hamiltonian
matrix does not individually have the symmetries as the Hamiltonian as a whole has.
The three special symmetries mentioned above are global symmetries of the Hamilto-
nian that either are antiunitary and commutes or anti-commutes with the Hamiltonian
in first quantisation, or are unitary and anti-commutes with the Hamiltonian in first
quantisation.
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2.3.1 Time reversal symmetry

The first operator we consider in this chapter is the TR operator. The time reversal
operator, T̂ is the operator that reverses the direction of time:

T̂ : t→−t. (2.38)

The creation and annihilation operators transform under the TR symmetry operator as

T̂ ci T̂
−1 = (UT)i jcj T̂ c†i T̂

−1 = (UT)
∗
i jcj . (2.39)

Time reversal leaves the initial position invariant but flips the momentum, which im-
plies that the canonical position and momentum operators transform according to

T̂ x̂ T̂ −1 = x̂ T̂ p̂ T̂ −1 = −p̂ (2.40)

Applying eq. (2.40) to the canonical commutation relation, [x̂i , p̂j ] = iℏÖi j , we get

T̂ [x̂i , p̂j ] T̂
−1 = [x̂i ,−p̂j ] = −iℏÖi j = T̂ iℏÖi j T̂

−1. (2.41)

The latter equality sign can only be satisfied if T̂ is antiunitary, meaning that it satisfies

T̂ i T̂ −1 = −i. (2.42)

Furthermore it is useful to note that orbital momenta, which are proportional to an-
gular momentum x̂ × p̂ is also flipped under time reversal, which is an important fact
to consider for fermionic systems. Until now there is nothing that dictates how the
intrinsic spins should behave under time reversal symmetry. The most ‘physical’ case
is that the intrinsic spin of the fermion, which is also an angular momentum, should
change sign from the same argument as for the real space angular momenta. On the
other hand, this is not a requirement for the theory of symmetry operators to work, and
time reversal symmetries that do not flip the spin can exist.

Applying the TRS operator twice to a system should leave the system invariant up
to a phase factor, since the system reverses time two times and thus should represent
the same state. That is we expect that T̂ 2

∣∣∣è⟩
= eiÓ

∣∣∣è⟩
. We are therefore interested in

finding the values that the phase eiÓ can have. Equation (2.39) inserted into eq. (2.34)
and evaluated with eq. (2.42) gives

U†TH
∗UT = H, (2.43)

where H is the Hamiltonian matrix. Equation (2.43) can be rewritten by the introduc-
tion of a first quantised operator,

T = U†TK THT−1 = H (2.44)

Equation (2.43) implies that if we have an eigenwave solution u with energy ×, then
the time reversed partner U†Tu

∗ is also an eigenwave solution with the same energy.
Following the proof of Chiu et al. (2016, p. 6), we get, by using eq. (2.43) twice, that

UTU
∗
TH(UTU

∗
T)
† = H. (2.45)

From Schur’s lemma, UU ∗ must be a scalar multiple of the identity matrix, eiÓ1. Mul-
tiplying this with U ∗T from the left gives

U ∗TUTU
∗
T = e−iÓU ∗T = U ∗Te

iÓ, (2.46)

where the first equality sign comes from evaluating the product of the first twomatrices,
while the latter comes from evaluating the product of the latter two matrices. From this
fact it follows that U ∗ = e2iÓU ∗, which implies that UU ∗ = ±1. In other words, using
the TR operator twice gives the same state up to a sign.
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T 2 = −1 for spin-half systems

Any antiunitary operator can be factored into a linear and antilinear operator, L and
A respectively. The (anti)linearity of the operators mean the same as in eq. (2.36). The
form of either operator depends on the basis used, but for the position-spin basis the
antilinear operator is often the complex conjugation operator, K. This certainly satisfies
eq. (2.42). We see that the position transformation in eq. (2.40) is satisfied under this
transformation:

Kx̂ K−1è(x) = xè(x).

Similarly, the momentum relation is also satisfied:

K(−iℏ∇)K−1è(x) = iℏ∇è(x).

On the other hand, for systems with spin-1
2
the spin axes are asymmetrically treated:

Kã K−1è(x) = K


ãx

ãy

ãz

K−1è(x) =

ãx

−ãy

ãz

è(x).
If the spins are to be equally treated under the time reversal symmetry, then the two
other spin axes must be flipped. This can be achieved by a rotation of á around the
y-axis,

L = e−iáã̂y /2 = cos(á/2)I − isin(á/2)ã̂y =

(
0 −1
1 0

)
.

The fermionic operators now transform according to

T̂ ciã T̂
−1 = (−iãy)ãã′ciã′ . (2.47)

Applying eq. (2.47) twice, we see that the square of the time reversal operator with spin
flipping is T̂ 2 = −1.

Many systems do not have a time reversal operator which squares to −1. An ex-
ample of such systems is when there is a Zeeman field. When the Zeeman field is an
external field it does not change sign when time is reversed. Thus, if the spins are
flipped in such a model the energy will change. However, for some such systems with
one of the requirements being that the Zeeman field lies in a plane, time reversal sym-
metry can be recovered, but which squares to +1.

Kramer’s degeneracy theorem

Kramer’s degeneracy theorem applies to systems with half-integer spin which have an
odd number of fermions, and states that all eigenenergy solutions of such systems are
degenerate by a factor of two if there is a time reversal symmetry which squares to −1.
This can easily be proved by contradiction: Let

∣∣∣è⟩
be an eigensolution of the Hamilto-

nian. We already know that the time reversed partner T̂
∣∣∣è⟩

is also an eigensolution
with the same energy. Assume now that the time reversed partner is the initial state
itself up to a phase factor, T̂

∣∣∣è⟩
= eiÓ

∣∣∣è⟩
. Applying T̂ once more gives

T̂ 2
∣∣∣è⟩

= T̂ eiÓ
∣∣∣è⟩

= e−iÓ T̂
∣∣∣è⟩

=
∣∣∣è⟩

.

This clearly contradicts the fact that T̂ 2 = −1. Thus T̂
∣∣∣è⟩

must be an orthogonal state
to

∣∣∣è⟩
, which is what was to be shown.
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2.3.2 Particle hole symmetry

The next symmetry of interest is the particle-hole symmetry which is intrinsic to some
Hamiltonians, especially the BdG Hamiltonians.

We define the particle-hole symmetry operator Ĉ as a unitary1 operator defined as

Ĉ ci Ĉ
−1 = U

i j∗
P c†j Ĉ c†i Ĉ = U

i j

P cj .

Upon the assertion of eq. (2.34), we have

Ĥ = c†i Hi jcj

= U im
P cmHi jU

jn∗
P c†n

= −c†n(U†P)nj (H
T)j iU

im
P cm +Hi i

= −c†U†HTUc +TrH,

where the last equation is written with vector notation. Thus for a Hamiltonian to have
PH symmetry, the matrix representation of the Hamiltonian must satisfy

U†H∗U = −H, and (2.48)

TrH = 0, (2.49)

where we used the fact that the Hamiltonian is hermitian to write HT = H∗.
We see that this implies that the eigenvalue and eigenvector solutions come in pairs.

Let u be an eigen-wave solution of the Hamiltonian with energy ×, then we see with the
help of eq. (2.48) that

HU†u∗ = −U†H∗UU†u∗ = −U†(Hu)∗ = −×U†u∗ (2.50)

implies that U†u∗ is also an eigensolution with negative energy.
Note that the matrix representation of the PH symmetry operator is antiunitary:

C = U†P K, CH C−1 = −H.

Zero energy level crossings

It was just established that systems with PH symmetry have eigensolutions that come
in pairs with opposite energy. This means that any time a perturbation of a system
leads to a zero-energy crossing of one of the eigensolutions, the PH partner must also
cross zero-energy, only in the opposite direction. This means that the determinant of
the Hamiltonian can never change sign, which will constantly be (−1)N/2 where N is the
number of degrees of freedom for the system. This is a consequence of the the fact that
the determinant of a matrix is invariant to basis transformation. Followingly, in the
basis that diagonalises the Hamiltonian it is a diagonal matrix with all the energies on
the diagonal. The determinant is just the product of all the diagonal entries, and since
there are N energies, where they come in pairs of positive and negative energy, the
product of each pair can never change and followingly the determinant of the matrix
can never change. On the other hand, whenever such a zero-energy crossing occurs, the
Pfaffian of the Hamiltonian changes sign. This is a result of the fact that the Hamilto-
nian can be written in tridiagonal skew-symmetric form with the energies in the upper

1While the second quantised operator is unitary, the first quantised (matrix) operator is antiunitary, as
later derived.
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diagonal part, and the particle hole partner energies in the lower diagonal part. The
Pfaffian is in this basis a product of the elements in the upper diagonal, and as a result
changes sign when one of the energies changes sign. Furthermore, the Pfaffian of a
matrix A, Pf(A), satisfies Pf(A)2 = det(A). This further cements the understanding that
the determinant can not change sign when the Pfaffian does.

2.3.3 Chiral symmetry

The last symmetry of special significance in the tenfold way is the chiral symmetry. In
the second quantisation formalism, the chiral operator is a antiunitary2 operator. The
chiral symmetry operator can be defined as the product of the two other symmetry
operators, that is

Ŝ = T̂ Ĉ . (2.51)

The order at which the operators are applied is not important, but will give a different
but equivalent operator. Thus the operator is given by

Ŝ ci Ŝ
−1 = (U ∗

S
)i jc†j = (UCU

∗
T)

i jc†j . (2.52)

Doing the same computation that lead to eqs. (2.48) and (2.49), we get that the first
quantised (matrix) Hamiltonian transforms as

U†SHUS = −H, US = U ∗CUT (2.53)

Using eq. (2.53), we see that if the vector u is an eigenenergy solution with energy E ,
then

U†Su (2.54)

is also a solution, but with energy −E . This means that all energy bands comes in pairs
with opposite signed energy of each other.

The implications of eq. (2.53) is that whenever a zero energy crossing occurs due to
a parameter change, an energy with opposite sign also crosses zero energy. Again, this
means that the sign of the determinant is a conserved quantity of the Hamiltonian.

The topological winding number

A useful consequence of the presence of a chiral symmetry is that we are allowed to
define a winding number on the Hamiltonian. Since the chiral symmetry relation is
an anti-commutation relation, we know that when the Hamiltonian is rotated into the
basis where the chiral operator is diagonal,

US = diag(−1, . . . ,−1,+1, . . . ,+1),

it becomes an off-diagonal matrix,

H(k) =

(
0 Ak

A†
k

0

)
Subsequently, we can compute the determinant of the off-diagonal matrix Ak, which in
general is a complex number,

|Ak | = r(k)eiÚ(k).

2While the second quantised operator is antiunitary, the first quantised (matrix) operator is unitary, as
later derived.
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When k traverses the 1BZ, it follows a path in the complex plane. The argument of
the determinant, Ú(k), is defined up to a multiplicity of 2á. If we define it in such a
way that it is a continuous function, we can compute a unique and discrete topological
number in one dimension as

nW =
Ú(2á)−Ú(0)

2á
. (2.55)

Here we have assumed that the unit cell length is normalised. The number W is the
winding of the curve the determinant takes in the complex plane around the origin,
and is therefore called the topological winding number. One way to understand why
this number is a topological number and distinguishes phases from each other is by
firstly noticing that the product |Ak ||A†k | = |H(k)| =

µ
i ×i (k). Followingly, whenever |Ak |

is zero, at least one of the energies in the Hamiltonian has to be zero. Secondly, if
two curves have a different winding number, the only way to continuously transform
them into each other is by letting the curve intersect the origin at least on time. For
example, consider a CCW curve lying outside the origin, that is the winding is zero.
Now, imagine that we want to wrap the curve around the origin by doing continuous
transformation of the curve. This exercise is impossible to do without forcing a part
of the curve to pass through the origin, thereby closing the gap. This example may
not at first seem representative of all the phase transitions (like e.g. going from nW =

1 to nW = 2), but it is a fact for any change in the winding number. The facts and
example just presented imply that two Hamiltonians with different winding numbers
can only be transformed into each other by closing the gap. Thus, we say that the
topological winding number is protected by the gap as long as the chiral symmetry
remains unbroken. Lastly, we emphasise an equivalent way to compute the winding of
the Hamiltonian by an integral

nW =
1

2ái

∫
1BZ

dk
dk |Ak |
|Ak |

≡ 1

2ái

∫
C

d|Ak |
|Ak |

. (2.56)

This integral resembles the known integral
∮
C dz/z, which from Cauchy’s residue the-

orem (Kreyzig, 2011) is 2ái for each counterclockwise winding around the origin.
As a brief and final note on winding numbers, we mention that there exist yet an-

other method to compute the winding number by creating what is known as the Q-
matrix (Chiu et al., 2016; Ryu et al., 2010) which is also block off-diagonal in the chiral
basis. This matrix is constructed from the projection operator onto the occupied states
(E < 0). However, we will not give the formulas for this method as the methods men-
tioned above were the ones used throughout this paper.

2.3.4 Topological classification of systems

The symmetries as explained above can easily be summarised in terms of first quantised
operators as

T = UTK, T H T −1 = H, TRS, (2.57)

C = UCK, CH C−1 = −H, PHS, (2.58)

S = CT = UCU
∗
T, SH S−1, = −H Chiral symmetry, (2.59)

or by fig. 2.2 demonstrating how the Hamiltonian transforms under the operators in
the momentum basis. The first two symmetries can square to either +1 or −1, whereas
the chiral symmetry is always present when both of the other two are present, is never
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−H∗(−k)

H∗(−k)

−H(k)

H(k)

US

UT

US

UT

UC

Figure 2.2: The Hamiltonian can be transformed to opposite momentum and or energy
by the global symmetry operators. The unitary operators in the figure are
the same as the ones described in the text, i.e. the unitary part of the time
reversal operator UT, the unitary part of the particle-hole operator UC and
the chiral operator US. The figure also gives a visual reason for how a third
operator can be described as the combination (product) of the other two.
The lines only indicate possibilities, not all relations have to be present, cf.
table 2.1.

present when only one of the other two is present, and can be either present or non-
present when neither of the first two are present. Thus for eight of the combinations
of TR and PH the chiral symmetry is totally defined from the other two, while the last
combination of TR and PH (0 and 0) can have two values of chiral symmetry: 1 and 0.
Thus the total is 3×3−1+2 = 10 different combinations of the three symmetries of in-
terest. Altland and Zirnbauer (1997) were the first to thoroughly explain the classes of
Hamiltonian having each combination of symmetries, and defined the group of which
they belong. The resulting table is called the AZ table, and is part of a theory often re-
ferred to as the Ten-Fold Way, named after the number of different groups. The AZ table
is given in table 2.1 The symmetry operators and their accompanying transformations
on the Hamiltonian are summarised in fig. 2.2 which demonstrates how the sign of the
energy and momentum are changed by the operators, and also how the complex con-
jugation of the Hamiltonian itself is affected. The AZ classes can be arranged in a grid
on a coordinate system with one axis being T 2 and the other axis being C2 as shown in
fig. 2.3. In this representation the real classes are located on the periphery, where the
Hamiltonians with chiral symmetry are located in the corners (except one in the center).
The complex classes are then located on the origin. The representation then shows how
the classes are related to each other by difference in symmetries. In addition, by going
CCW around the figure and adding one dimension each step, the topological invariant
is the same. As an example, a one dimensional Hamiltonian in the BDI class has a �
number, and a two dimensional Hamiltonian in the D class also has a � number. The
way the topological invariants are derived are by e.g. K-theory, but this goes beyond the
scope of this thesis. However, the results by Altland and Zirnbauer (1997), Chiu et al.
(2016) as presented here makes for a great tool for evaluating if a system of interest can
be topological without going into the details of the model.

In this thesis we mainly focus on the BDI class, which consists of spinless systems
(Kitaev model) or easy-plane magnetic systems with s-wave or easy-plane p-wave su-
perconductivity (d-vector is restricted to a plane and additional realness or imaginary
restrictions are applied) with out-of-plane Rashba SOC.
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Table 2.1: Altland-Zirnbauer (AZ) table of topological classes. The first column lists
the classes, the second to fourth displays the sign and presence of the sym-
metries, while the fifth to twelfth rows displays the symmetries for a given
symmetry for the number Ö = d − D , where d is the dimensionality of the
system and D + 1 is the codimension of defects. As may be seen from the
table, the two complex classes A and AIII have a periodicity of 2, while the
8 real classes AI to CI have Bott periodicities of 8. In addition, the rows are
arranged so that only one of the TR or PH operators change between two
rows, going counterclockwise (CCW) in fig. 2.3. Created from Altland and
Zirnbauer (1997), Chiu, Teo, Schnyder and Ryu (2016).

Class\Ö T̂ Ĉ Ŝ 0 1 2 3 4 5 6 7

A � � � �
AIII 1 � � � �

AI + � 2� �2 �2

BDI + + 1 �2 � 2� �2

D + �2 �2 � 2�
DIII - + 1 �2 �2 � 2�
AII - 2� �2 �2 �
CII - - 1 2� �2 �2 �
C - 2� �2 �2 �
CI + - 1 2� �2 �2 �

T 2

C2

CII C CI

AI

BDIDDIII

AII A, AIII

Figure 2.3: Graphical representation of the AZ classes and their symmetries.
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2.4 Marginal topological superconductors

As mentioned in section 2.3, a topological system has discrete properties protected
by the gap. Followingly, any time the gap closes, the system may change the topolo-
gical number. An interesting edge case arrises from considering the following ques-
tion: what can we say about gapless systems? In two dimensions, gaplessness does
not necessarily mean that the system does not have topological phases, since the nodal
points can be protected by symmetries and give rise to topological edge states (Chiu
& Schnyder, 2014). In one dimension however, gaplessness means that even if there
were zero-energy states characterised by some topological number, they would interact
strongly with the bulk and would as a consequence gap out or be delocalised. But we
ask, what happens if we could perturb the system in a symmetry conserving way that
opens the gap? We speculate if such a gap opening will localise the potential MBS on
the boundaries of a finite size system. This could potentially also work if the gapless sys-
tem has an undefined topological number, but when the gap is opened it immediately
obtains a well defined topological number. Take for example systems characterised
by the winding number. The winding number is ill defined for any path that passes
through the origin (gapless), but is well defined for all gapfull systems where the path
does not pass through the origin. Or consider systems characterised by the sign of the
Pfaffian. Again, if the system is gapless, the Pfaffian being proportional to the square
root of the product of the energies is zero. Since it is the sign of the Pfaffian which is
of interest, the topological number is ill defined since −0 = +0 and thus −1 and +1 are
both allowed quantum numbers at the same time. When the gap is opened, the Pfaffian
can not be zero, and thus has an unequivocal sign.

We wonder, does there exist systems that a) are gapless, b) have a symmetry con-
serving small perturbation which opens the gap, c) any such perturbation will bring
the system into a topological phase, and d) does not rely on fine-tuning. The three first
requirements are quite natural considering the previous paragraph, but the last is ad-
ded to differentiate these types of systems from any topological system. The reason is
that any topological system is a) gapless when transitioning between different phases, b)
has symmetry conserving perturbations which opens these same gaps, and sometimes
c) brings the system into a topological phase independent of the specifics of perturb-
ation. In addition, including d) has the added benefit of making such systems more
easily obtainable experimentally. For a systems gaplessness to not rely on fine-tuning,
we require that the gap stays closed for a connected range of the parameters. For ex-
ample, a gapless ferromagnetic system needs to stay gapless when the amplitude of the
field changes or the electron concentration changes, which is in contrast to the usual
case where the gap closes at a specific point in parameter space. Certainly, the question
of whether a system relies on fine-tuning or not does not have a clear cut answer, and
will be a subject for discussion.

To be more specific, we consider superconducting systems with a global chiral sym-
metry which has a topological number defined by the winding number (eq. (2.56)).
When the winding number, nW, is non-zero, the off-diagonal determinant in general
encloses the origin, e.g. fig. 2.4a1). The determinant consists of a real and imaginary
part. There are two ‘ways’ that the gap may close. The first is the most general way
which discerns topologically different phases from each other, which is shown as when
some parameter, here labelled Ö, obtains the value of Öcrit. In this case the gap closes
and reopens again, with an accompanying change of the topological number. The value
of Öcrit in general depends on all the other parameters of the Hamiltonian, in which case
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(a) Schematic winding number for normal topological phase transition. At the
transition point, the winding number is allowed to change absolute value.
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(b) Schematic winding number for marginal topological phase transition. At
the transition point, the winding number may changes sign.

Figure 2.4: Schematic phase transtion for ‘normal’ and marginal superconductors. The
closed curves are the determinant |Ak | parameterised by k in 1BZ, and the
evolution with respect to a parameter Ö is shown for a normal topological
phase transition (top) and marginal (bottom) for topological superconduct-
ors.

we claim that the gap closing is dependent on fine-tuning. In fact, any time a gap closes
due to the origin passing through the path made by the off-diagonal element, the gap
closes and reopens again. On the other hand, if the origin were to move along the
curve, the gap would stay closed. In most cases, such motion along a curve requires
fine-tuning. In the case that such a curve is straight, it is much more feasible to follow
it. This leads us to consider cases were the |Ak | is purely real for all k in the 1BZ. If the
realness-criteria relies only on a subset of the parameters of the Hamiltonian (shown
as Ö in fig. 2.4b), any change in the remaining parameters will not add any imaginary
part. Followingly, if the real part has both positive and negative values, it means that
the curve must pass through the origin at some point due to the intermediate value the-
orem, which implies that the Hamiltonian is gapless. In addition, because the matrix
Ak is a continuous function in the Hamiltonian and the determinant is continuous in
the matrix, the gap will stay closed for any change in the parameters not limited by the
realness criteria. We would argue that such ‘freeness’ of some of the parameters means
that d) above is satisfied, i.e. fine-tuning these parameters is not required. The only
fine-tuning needed is in the parameters which ensures the realness of the Hamiltonian.
Thus, the fine-tuning argument should still be discussed in terms of restricted para-
meters: Are the values easily obtainable? An example of an easily obtainable value is
the value of 0, which one may claim is not a ‘fine-tuned’ value. There may exist other
cases where one can argue that the values are easily obtainable. We point out that if the
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imaginary part is odd in the perturbation, Ö, in close proximity to the critical value, we
expect the winding number to be an odd function in the perturbation in the immediate
neighbourhood. If the imaginary part is even in the vicinity, we expect the winding
number to be even in the immediate neighbourhood.

We argue that the topological systems which are gapless due to the realness of the
winding curve, which we from now on refer to as marginal topological systems, are
interesting in their own right. These types of systems may prove useful for manipu-
lating MBSs by opening and closing the gap if the gap opening parameter(s) are easily
manipulated by external measures. Since only small perturbations will bring marginal
topological systems into topological phases, we may say that the systems show a dis-
tinct response to the external perturbation which always drives the gapless phase into
a topological one.
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2.5 Spinless Kitaev model in 1D

Kitaev (2001) analysed a one dimensional toy model of spinless electrons with an an-
isotropic p-wave superconducting order parameter. This toy model has the same sym-
metries as the models we analyse later in this thesis and belong to the AZ class BDI.
Therefore we here present the work by Kitaev in his paper as a primer and introduc-
tion for the later analysis on more realistic topological superconductors.

2.5.1 Model

Consider a simple model of a one dimensional spinless p-wave superconductor with
nearest neighbour hopping described by the Hamiltonian

Ĥ = −t
¼
⟨i ,j⟩

c†j ci −Þ
¼
i

(
n̂i −

1

2

)
+

¼
i

(
Éc1ci+1 +É∗c†i+1c

†
i

)
, (2.60)

where t is the usual hopping parameter, Þ is the chemical potential and É = |É|eiÚ is
the superconducting order parameter. Such an effective spinless model can be due to
for example a freeze out of one of the electrons spins in a p-wave superconductor, or
more realistically can be achieved by creating an effective p-wave superconductor by
combining a superconductor and a semiconductor with SOC in a ferromagnetic field,
which is analysed in section 3.3

Any fermionic operator can be transformed into a superposition of two Majorana
fermions by the transformation

Õ1 =
1
√
2

(
ceiÚ/2 + c†e−iÚ/2

)
Õ2 =

i
√
2

(
−ceiÚ/2 + c†e−iÚ/2

)
(2.61)

Here c→ ceiÚ/2 is used to gauge away the phase of É, which simplifies the Hamiltonian
and of course leaves the physics unchanged. It is however useful to note that a full
rotation of the phase by 2á does not leave the Majorana fermions unchanged, but are
themselves rotated by á. Thus a full rotation of 4á is needed to rotate the Majorana
operators back to the initial point. This phenomenon is not of much importance in this
thesis, but we note that it is an important effect in systems with Josepshon junctions
(Kitaev, 2001). It can be shown that these new operators obey the anticommutator
relations

{Õi , Õj } = Öi ,j (2.62)

From the definitions of eq. (2.61) it is clear that both fermionic operators obey Õ1,2 =

Õ†
1,2, which is the requirement for Majorana fermions. A simple unitary transformation

of the Hamiltonian clearly should not change the physics of the system involved. Thus
even thoughMajorana fermions have unexpectedly appeared in the model, they are not
free, but interact in pairs.

Applying the transformations of eq. (2.61) to eq. (2.60), the Hamiltonian becomes

Ĥ = i

−Þ¼
i

Õi
1Õ

i
2 + (−t + |É|)

¼
i

Õi
1Õ

i+1
2

+ (t + |É|)
¼
i

Õi
2Õ

i+1
1

 . (2.63)

The imaginary unit which appears ensures the hermiticity of the Hamiltonian, since
a hermitian conjugation of eq. (2.63) negates the sign and interchanges the Majorana
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fermions, but otherwise keep them unchanged since they are their own antiparticles.
Therefore, when we anticommute the Majorana operators to bring the Hamiltonian to
the initial form, a new negation of the sign occurs and the total sign is the same as it
initially had.

It is instructive to consider special cases of the parameter space of the Hamiltonian
in eq. (2.63) in a finite size system before solving the system for arbitrary values of
these.

In the first case, let |É| = t > 0 and Þ=0. These parameters leaves only the term

Ĥ = 2it
N−1¼
i=1

Õi
2Õ

i+1
1

. (2.64)

Inspecting the above Hamiltonian we realise that Õ1
1
and ÕN

2
are missing, i.e. they are

unpaired. These two unpaired Majorana fermions are thus free eigensolutions to the
problem and have energies equal to 0. This case is depicted in fig. 2.5b. Furthermore,
the Hamiltonian of eq. (2.64) can be rewritten by transforming it to new fermion oper-
ators ai =

1√
2

(
Õi
2
+ iÕi+1

1

)
, giving

Ĥ = 2t

N−1¼
i=1

(a†i ai −
1

2
). (2.65)

Since we have assumed that t is positive, the systemminimises the energy when ai

∣∣∣è⟩
=

0 for all sites i . In the basis of the lattice sites, the operators ai =
i
2
(−ci +c†i +ci+1+c†

i+1
).

As Kitaev (2001) showed, there exist two ground states
∣∣∣è0

⟩
and

∣∣∣è1

⟩
with the relations

−iÕ1
1Õ

N
2

∣∣∣è0

⟩
=
1

2

∣∣∣è0

⟩
−iÕ1

1Õ
N
2

∣∣∣è1

⟩
= −1

2

∣∣∣è1

⟩
. (2.66)

These two states have opposite parity measured by the parity operator

P =

½
i

(1−2n̂i ) =
½
i

(−2iÕi
1Õ

i
2), (2.67)

where the former has even parity, i.e. an even number of electrons, and the latter has
odd parity.

In the second case, let |É| = t = 0 and Þ < 0. Now the Hamiltonian is

− iÞ
¼
i

Õi
1Õ

i
2, (2.68)

which couples all Majorana fermions on the same site in pairs, thus leaving no unpaired
Majorana fermions. This case is depicted in fig. 2.5a. Furthermore the Hamiltonian is
diagonal in the original basis of electrons located at the lattice sites, meaning that all
sites are unoccupied.

The two cases mentioned above represents two different phases of the Kitaev model,
where the former phase has unpaired Majorana fermions bound to the edges whereas
the latter does not. Until now we have only described the system for two specific points
in parameter space. Thus it is of interest to investigate whether these two phases extend
into the (|É|, t, Þ) space. As we will soon show, the unpaired Majorana fermions are
topologically protected by the gap in the bulk energy spectrum, and can not be removed
by symmetry-conserving perturbations without closing the gap. The two phases are
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Figure 2.5: The Kitaev model can have (a) all the fermions paired up or (b) can have
two unpaired Majorana fermions at the ends (b).

two distinct topological phases and can thus be described by a topological quantum
number.

As mentioned, Majorana fermions are Bogoliubov quasiparticles with zero energy,
and it is natural to look for zero energy solutions of the Hamiltonian as written in
eq. (2.63). Kitaev (2001) did look for such zero energy solutions, and the following uses
the same procedure as Kitaev. Such an eigensolution is a superposition of Majorana fer-
mions, è = AiÕ

i
1
+ BiÕ

i
2
. Inserting them into eq. (2.63), we obtain two linear equations:

Þ(AiÕ
i
2 − BiÕ

i
1) + (É− t)(Bi+1Õ

i
1 −Ai−1Õ

i
2) + (t +É)(Ai+1Õ

i
2 − Bi−1Õ

i
1) = 0. (2.69)

This gives rise to two independent equations for the A’s and B ’s

ÞAi + (t −É)Ai−1 + (t +É)Ai+1 = 0, (2.70)

−ÞBi + (É− t)Bi+1 − (t +É)Bi−1 = 0, (2.71)

where the indices are only valid for i ∈ [1,N]. Trying the ansatz Ai = xAi−1 and Bi =

x−1Bi−1 as solutions to the equations, we get a second order equation for a, which has
the two solutions

x± =
−Þ±

√
Þ2 −4t2 +4|É|2
2(t + |É|)

. (2.72)

The resulting eigenvectors are then of the form

è =

¼
i

A+x
i
+Õ

i
1 + A−x

i
−Õ

i
1, (2.73)

è =

¼
i

B+x
−i
+ Õi

1 + B−x
−i
− Õ

i
1. (2.74)

This is in correspondence with what Kitaev (2001, eq. (14)) obtained. One must be
careful with the boundaries, as some of the indices will be out of bounds and the cor-
responding terms must be omitted from the equations. In general, both boundaries
(left and right) must be satisfied, which is not possible with only two coefficients. How-
ever, if we assume that the wavefunction decays from one boundary to the other, only
one of the boundaries will contribute with boundary conditions. Still, to satisfy both
the normalisation requirement and the remaining boundary condition, we need two
degrees of freedom in the choise of coefficients. Thus both of the solutions (±) must
exponentially decrease (located on the left edge, a-solution) or increase (located at the
right edge, b-solution) together. Thus we require that |x±| < 1. As Kitaev showed, this
only happens if |Þ| < 2|t|, which can be seen from eq. (2.72).

This way of analytically finding the critical values of the parameters in a model
using the Majorana basis and solving for the nullspace of the resulting antisymmetric
Hamiltonian was easy with the Kitaev model, but in general the resulting equations are
more complicated when spin-degrees of freedom are included.
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Figure 2.6: Energy bands as a function of the chemical potential with open boundaries.
The two energy bands closest to 0 are black, while all other bands are red
(light). Here the OP is É = 0.3t. The zero-energy Majorana fermions are
present until Þ = 2t occurs, which was predicted by Kitaev (2001).

2.5.2 Symmetries of the Kitaev model

As mentioned in section 2.3, the symmetries of a Hamiltonian can reveal much inform-
ation about a system and the possible phases and topological constants. Therefore,
before solving the Kitaev model for arbitrary values of the parameters involved, I will
focus the attention on the symmetries intrinsic to the Kitaev model.

Since the Kitaev model is a spinless model (there is no spin index in eq. (2.60)), the
time reversal operator is defined in the lattice site basis as

T̂ c T̂ −1 = c, (2.75)

together with the fact that it should be antiunitary. Thus it is described simply by
the complex conjugation operator T̂ = K. This operator commutes with the Hamilto-
nian in eq. (2.60) only if the phase of the superconducting order parameter É = |É|eiÚ is
gauged away by the transformation c→ ceiÚ/2, or optionally included in the transform-
ation itself (T̂ c T̂ −1 = eiÚc). As mentioned previously, such a gauge transformation is
admissible since the overall phase of the system is not measurabe, only the probabilit-
ies, i.e. the amplitudes. Furthermore in this model we have

T̂ 2 = K2 = +1, (2.76)

since complex conjugation twice leaves all complex numbers invariant.
Written in the BdG formalism the Kitaev model also has particle-hole symmetry as

explained in section 2.2.3. The result is that the energies of the Hamiltonian comes in
degenerate pairs, (×, −×). From section 2.3.1 we could perhaps have expected degen-
erate energy eigenvalues. This, however, can only apply to systems with half-integer
spin particles. As the particles in the model at hand are spinless, Kramer’s theorem
(Kramer, 1930) does not apply after all. Since both PH and TR symmetries are present,
their product T̂ Ĉ = Ŝ which is the chiral symmetry operator, must also be a sym-
metry of the Hamiltonian. Reading from table 2.1, we can establish that the Kitaev
model belongs to the class BDI, and has a topological invariant described by �.

2.5.3 Bulk-edge correspondence

While the Majorana fermions appearing in this model are bound edge states, the model
can be extended to the periodic lattice by joining the two ends together by the intro-
duction of parameterised hopping between the two links. In other words the chain
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· · ·

tt

tÝ

Figure 2.7: Kitaev chain coiled into a ring, with a variable link strength between the
two ends, shown in the bottom middle link. The variable strength of the
connecting link allows for continuous transformation between periodic and
antiperiodic boundary conditions.

is coiled back on itself, like in fig. 2.7 where the added link has variable strength tÝ
where Ý is allowed to vary in the range [−1,1]. The reason for adding the parameter
Ý is that it allows us to continuously transform between the two cases of periodic and
anti-periodic boundary conditions. For specificity, let there be N orbital sites in the Kit-
aev ring. Periodic boundary conditions require that the allowed momentum numbers
k are given by Nk = 2ám,m ∈ [0,N −1]. Antiperiodic boundary conditions on the other
hand require that k is given by Nk −á = 2ám,m ∈ [0,N − 1]. The first boundary condi-
tion can be obtained by letting Ý = 1, while the latter can be obtained by Ý = −1. For
arbitrary values inbetween, k is no longer a well defined quantum number. At Ý = 0

we obtain the Kitaev chain again. In the special cases of Ý = ±1, the Hamiltonian can
easily be Fourier transformed by introducing the fourier transformed fermion creation
operators

ci =
1
√
N

¼
k

cke
iki ck =

1
√
N

¼
i

cie
−iki . (2.77)

Inserting eq. (2.77) into eq. (2.60) we obtain

Ĥ =

¼
k

{
(−2t cos(k)−Þ) c†kck +2i|É|c−kck sin(k)−2i|É|c†kc

†
−k sin(k)

}
−
NÞ

2
. (2.78)

Equation (2.78) can be cast into the BdG formalism to give

Ĥ =
1

2

¼
k

D†k

(
−2t cos(k)−Þ −2i|É|sin(k)
2i|É|sin(k) 2t cos(k) +Þ

)
Dk , (2.79)

with Dk being the column vector (ck , c−k)
T. The matrix representation of the Hamilto-

nian in eq. (2.79) can be rewritten as

(−2t cos(k)−Þ)äz +2|É|sin(k)äy , (2.80)
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|Þ| < 2|t|

|Þ| > 2|t|
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ẑ

Figure 2.8: The vector representation of the Hamiltonian (eq. (2.81)) creates ellipses
in the yz-plane, and a winding number about the origin can be defined.
Depending on the relative size of the absolute values of Þ and t, the winding
number is ±1 or 0.

where the ä matrices are particle-hole operators.
From here on there are two ways to categorise the topological phase the system is

in. Since the system belongs to the class of BDI we expect it to have a winding number
in � (Sticlet, 2012), while it may also have a �2 invariant due to the PH symmetry.
Looking at eq. (2.80), it appears as a sort of vector if we interpret the Pauli matrices as
components in the three dimensional space. In other words, the Hamiltonian is written
like a vector product

H = (0, 2|É|sin(k), −2t cos(k)−Þ) · ä. (2.81)

The first vector in the dot product is a vector that rotates in the y-z plane when k

changes, and creates a closed path when k goes from 0 to 2á. The winding number in
this case is defined as the number of times the vector rotates around the x-axis when k

traverses the first Brillouin zone. This number in general belongs to the group of �, yet
in this model the only allowed values are −1, 0 and 1. The winding number can only be
non-zero for certain pairs of t and Þ, as shown in fig. 2.8. For |Þ| > 2|t| the ellipses never
encloses the origin, and consequently the winding number is zero. This corresponds
with the previous results for the edge states which only existed for |Þ| < 2|t|.

The other way to classify the topological phase is to look at the previous mentioned
�2 topological charge. From the definition of Dk it is clear that the transformation
äx(D

†
k
)T = D−k is a antiunitary symmetry operation, which, following a similar proced-

ure to that in section 2.3.2, leads to the following requirement on the Hamiltonian,

äxH(−k)Täx = −H(k).

Thus, if a wave-function solution to the problem is of the form uck + vc†−k with energy
×, then the solution v∗c−k+u

∗c†
k
is also obviously a solution with the opposite signed en-

ergy ×. This implies that the energy spectrum is antisymmetric with respect to the mo-
mentum. Furthermore, the chiral symmetry implies that the energy spectrum should
also be symmetric around zero energy at the same k. Followingly we expect at least
two k-symmetric bands with opposite energy. The implications of this is that any time
an energy eigensolution changes sign of the energy, so too does the opposite k-partner
and opposite-energy partner, that is two pairs of eigenenergy-solutions become zero
simultaneously. There is an exception: At k = −k, the k-symmetric partner is itself,
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thus any time the energy eigensolutions at these points cross zero energy it happens in
pairs of two, not groups of four. Thus the Pfaffian at these points are allowed to change
under such crossings. Any time a single energy solution crosses at these points, there is
an accompanying topological phase change. Kitaev (2001) showed that the topological
charge of the system can be defined as

M(Ĥ) = sign[Pf(A(0))Pf(A(á))] (2.82)

where A is the skew symmetric matrix defined by

iA(k) =
(
1 1

−i i

)
H(k)

(
1 i
1 −i

)
. (2.83)

Now we are interested in knowing how this translational invariant system can be con-
nected to that of a system with boundaries. We note that when the system has periodic
boundary conditions, k = 0 is always a solution to k = −k. For antiperiodic boundary
conditions, k = 0 is not a solution. On the other hand, k = á is a solution to k = −k
(modulo 2á) for even N in the periodic case, or odd N in the antiperiodic case. Thus
changing Ý from 1 to −1 means that the system changes topological charge depending
on if N is even or not:

• Even N: Topological chargeM changes from sign[Pf(A(0))Pf(A(á))] to 1.

• Odd N: Topological chargeM changes from sign[Pf(A(0))] to sign[Pf(A(á))] with
a total change in sign of sign[Pf(A(0))Pf(A(á))].

Either way the topological charge changes by sign[Pf(A(0))Pf(A(á))], meaning that a
zero-energy mode appears between Ý = 1 and Ý = −1. The actual place of the crossing
happens close to Ý = 0 which is the Kitaev chain with boundaries. Thus if the topolo-
gical charge is −1 in the periodic structure, there exist a zero energy Majorana fermion
at the edges in the Kitaev chain. This is then explains the bulk-boundary correspond-
ence.

Evaluating eq. (2.83) at k = 0 and k = á, gives

A(k) =

(
0 ×k
−×k 0

)
.

Thus the topological charge defined in eq. (2.82) is evaluated to

M(Ĥ) = sign[(−2t −Þ)(2t −Þ)] .

And, as expected we see that the first product changes sign for Þ < −2t and the latter
for Þ > 2t in the case that t > 0, or opposite for opposite sign of t. The result is that
for |Þ| < 2|t| the topological charge isM = −1, while it is 1 otherwise. This is the same
boundaries as we have seen two times previously with other methods of computing the
topological quantum number.

We have thus established three methods for classifying the topological phase of a
Hamiltonian in the AZ class BDI: Computing the winding number, solving the null-
space of the Hamiltonian and look for Majorana solutions, and the third is to compute
the �2 invariant defined as the Pfaffian of the Hamiltonian in the Majorana basis. Al-
though the Kitaev model is a spinless model, the methods described here can be used
in spinfull models as we will demonstrate later in this thesis. As mentioned, one way
to achieve a realistic Kitaev model is to obtain effective p-wave superconductivity and
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Figure 2.9: Energy bands as a function of coiling link strength Ý for three values of
Þ. Only the five energy bands closest to 0 on each side is shown. The two
energy bands closest to 0 are purple (dark) while all other bands are teal
(light). Here É = 0.3t and Þ is 1.6t, 2.0t and 2.4t for left, middle and right
subfigure respectively. When Ý changes from 2t to −2t the system trans-
its from periodic to antiperiodic boundary conditions, which then gives a
interpretation of the bulk-boundary correspondence.

use magnetism to lift the degeneracy of the two spin-modes. In the later chapters,
we describe both topological intrinsic p-wave superconductors and topological s-wave
superconductors in noncollinear fields. Both of these models are examples of Kitaev
equivalent models belonging to the BDI class.
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2.6 General model

In this thesis we will consider chains of magnetically active atoms deposited on top of
a two dimensional slab of superconducting material, cf. fig. 2.10. In the analysis, only
the chain will be considered and thus be solved, while the superconducting material
acts only to impinge superconductivity into the chain via the proximity effect (Sigrist &
Ueda, 1991). Self consistency in the model is, as a consequence of this, not part of the
analysis. The electrons in the chain are allowed to hop with a spin-independent amp-
litude and a spin-dependent Rashba SOC amplitude between neighbouring atoms. In
addition, the magnetically active atoms have local exchange fields, hi , which in general
are not constrained.

É0 |↑↓
⟩ d

−tã0 −Ó ·ã −tã0 −Ó ·ã −tã0 −Ó ·ã −tã0 −Ó ·ã −tã0 −Ó ·ã

−tã0 −Ó∗ ·ã −tã0 −Ó∗ ·ã −tã0 −Ó∗ ·ã −tã0 −Ó∗ ·ã −tã0 −Ó∗ ·ã

hi hi+1 hi+2 hi+3 hi+4 hi+5

Figure 2.10: A schematic representation of the general system in consideration. The
systems consist of a chain of magnetically active atoms (orange spheres)
deposited on top of a superconducting 2D slab (red). The chain is de-
scribed in the tight-binding approximation, whereas the slab of supercon-
ductingmaterial is present only to impinge superconductivity in the chain,
and is thus not part of the equations. Inside the chain, the electrons are
in general free to move to neighbouring atoms (in some cases next nearest
neighbours etc.) with a spinindependent amplitude t and a spin dependent
Rashba SOC amplitude described by a 3D vector Ó. On each site, there is a
local exchange field given by hi . The superconducting part is described by
a s-wave superconducting OP and a three dimensional vector d describing
the (p-wave) triplet coupling. The interpretation of the d-vector is that it
points in the direction of zero net spin of the cooper pairs, which is shown
schematically as Cooper pairs (|↑↑

⟩
) lying in the plane perpendicular to d .

In the following we will consider the Hamiltonian on a lattice. Instead of explicitly
writing the spin indices on the creation and annihilation operators, we write them as
vectors, ĉi = (ci↑ ci↓)

T. The spin-independent hopping term allows electrons to ‘hop’ to
atoms in the proximity, which gives rise to an effective kinetic energy and momentum.
If there is only nearest neighbour hopping in the system, the hopping Hamiltonian is
written

ĤK = −
¼
⟨i j⟩

tj i ĉ
†
i ã0ĉj −Þ

¼
i

n̂i . (2.84)

If there is significant next nearest neighbour hopping, additional sums of the same
form can be added, but instead of ⟨i j⟩, the more distant pairs, ⟨⟨i j⟩⟩ are used. The
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spin-dependent hopping is described by

ĤSOC = i
¼
i

(
ĉ†i+1Ói ,i+1 ·ã ĉi − ĉ†i Ó∗i ,i+1 ·ã ĉi+1

)
. (2.85)

As can be seen, this term treats electrons differently depending on the direction of
motion and the spin: The effect is negative for an electron going the opposite direction
or having the opposite spin direction.

The exchange field is given by

ĤMag = −
¼
i

ĉ†i hi ·ã ĉi . (2.86)

The superconducting OPs can be condensed into a four component vector

É = (É0,dx ,dy ,dz) (2.87)

where the first component is the singlet order parameter, and the d-vector is defined
such that the expectation value of the projection of the Cooper pairs along this vector
is always zero. The same applies for the scalar É0, but since it is directionless, the
Cooper pairs have zero net spin in all directions, which is a general fact about singlet
pairs. In this thesis, we only consider s-wave (excluding extended s-wave) and p-wave
superconductivity pairing electron pairs only on neighbouring atoms. This means that
in momentum space, the É0 component is constant whereas the d-vector has is propor-
tional to sin(k), were we have assumed a lattice constant of unity. In lattice space, the
superconducting Hamiltonian is written

ĤSC =
1

2

¼
i

(
iÉ0ĉ

†
i ãy ĉ

†T
i − iÉ∗0ĉ

T
i ãy ĉi

)
+
1

2

¼
⟨i j⟩

(
ĉ†j (idi j ·ããy)ĉ

†T
i − ĉTi ãy(idi j

∗ ·ããy)ĉj

)
(2.88)

where the factor half is to compensate for double counting.



3 | Marginal topological supercon-
ductors

Any time a topological phase transition occurs in a system, effectively changing the
number of topological objects on the boundary, the gap must close. If the Hamiltonian
stays gapless, the topological invariant is in general not defined, but any perturbation
which opens the gap again will simultaneously make the invariant defined. If the gap-
lessness of the Hamiltonian is due to a realness criterion on the winding curve the
system may be a marginal topological superconductor. Any perturbation which adds
an imaginary part to the winding curve can in general open the gap and thus push
the system into a topological phase. Such types of systems are interesting to investig-
ate since they can open up new paths to obtain and manipulate topological systems
by arbitrarily small perturbations, and in addition they are easy to obtain since they
gaplessness is not dependent on fine-tuning.

In this chapter we analyse three special cases of the model presented in section 2.6,
namely a

• p-wave superconductor in a ferromagnetic field (Mercaldo, Cuoco &Kotetes, 2018),

• p-wave superconductor in a antiferromagnetic field (Mercaldo, Kotetes & Cuoco,
2018), and

• s-wave superconductor in a noncollinear exchange field, including helical fields.

All models are chiral symmetric and belong to the AZ class BDI. We look for the re-
quirements for realness of the winding curve and realisations of marginal topological
behaviour in the phase diagram.

3.1 p-wave superconductivity in coexistence with FM ordering

In this section we will consider how time reversal symmetry can be intact also in the
presence of a ferromagnetic field in a superconductor. This type of system has been
firstly considered by Mercaldo, Cuoco and Kotetes (2018). Here, we will start by re-
calling the basic topological properties of the model and the phase diagram (Mercaldo,
Cuoco & Kotetes, 2018) and then we will expand their model to consider the conditions
which can lead to a marginal topological behaviour.

34
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3.1.1 Model

Let the Hamiltonian of a p-wave superconductor in the presence of a ferromagnetic
(FM) field be given in lattice space by

Ĥ =

¼
i jã

W(i − j)c†iãcjã −
¼
iss′

(Þã0 + h ·ã )ss′c†iscis′

+

¼
iãã′

[
Éãã′c

†
iãc
†
i+1,ã′ +h.c.

]
.

(3.1)

Here W(i − j) = W(j − i ) is a real parameter describing the hopping strength between
lattice site i and j , h is the FM field strength, Þ is the chemical potential and Éãã′ = Éã′ã

are the triplet spin superconducting OPs. In the case of periodic boundary conditions,
the Hamiltonian can be simplified by introducing the Fourier transformed fermion op-
erators as given in eq. (1) in the nomenclature. Here a unit lattice constant was assumed.
Periodic boundary conditions imply that for a system of size N, the allowed k-numbers
are 2ám

N
,m ∈ [−⌊N−1

2
⌋,⌊N

2
⌋]. Inserting these transformations in eq. (3.1), we get

Ĥ =

¼
kã

×kc
†
kãckã −

¼
kss′

c†ks (h ·ã )ss′ cks′

+
1

2

¼
kãã′

(
2isin(k)Éãã′c

†
kãc
†
−kã′ +h.c.

)
,

(3.2)

where ×k is the Fourier transform ofW(i)−Þ, especially we defineW(i) = −Ö1,|i |t−Ö2,|i |t′−
Ö3,|i |t

′′, where t, t′ and t′′ are the nearest neighbour hopping strength, next nearest
neighbour hopping strength and the third nearest neighbour hopping strength respect-
ively. Thus ×k is

×k = −2t cos(k)−2t′ cos(2k)−2t′′ cos(3k)−Þ.

This Hamiltonian can be cast in tensor form by defining the Nambu spinor

èk = (ck↑, ck↓, c−k↓, −c−k↑)T,

which gives

Ĥ =
1

2

¼
k

è†khkèk (3.3)

hk = äz×k − h ·ã + (dkä+ + d ∗kä−) ·ã . (3.4)

with dk = 2sin(k)d . Notice that the hole part of the Nambu spinor has been multiplied
by the operator −iãy , which simplifies the tensor form of the Hamiltonian. Here the

superconducting OPs are defined in terms of the d-vector as É↑↑,↓↓ =
É↑↑,↓↓(k)

2isin(k) = ±idx +dy

and É↑↓ = −idz . Provided that hx = 0 and dx = −d∗x , dy = d∗y , hz = h∗z , the Hamiltonian
satisfies the symmetries in eq. (2.59) with

T = äzãz K C = äyãy K S = äxãx .

Furthermore, the PH and TR symmetries square to +1. Reading from table 2.1, we
see that this Hamiltonian belongs to the BDI class, and in 1D we expect it to have
a � number, which in this case is a winding number. One way to obtain the winding
number is to rotate the Hamiltonian into the basis where the chiral operator is diagonal,
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Figure 3.1: Curves of detAk in the complex plane parameterised by k in the 1BZ. The
insets in the figures shows a small area around the origin to clearly show
that they go around it. The common parameters between the two subfigures
were É̂ = (2.2,0,0.18)t, h = 2t, Ú = á/4 and (Þ = t′ = t, while in (a) the third
nearest neighbour hopping strength was t′′ = 3, and in (b) the third nearest
hopping strength was t′′ = −2.

S = diag(−1, −1, 1, 1), with the basis transformation U . Rotating the Hamiltonian into
the basis of the eigenvectors of the chiral symmetry operator, that is

H→ H ′ = U†HU U†SU = diag(−1,−1,1,1),

we get a block off-diagonal matrix

H =

(
0 Ak

A†
k

0

)
, (3.5)

with

Ak =

(
2iÉ↑↑ sin(k)− ×k + hz −ihy

−ihy 2iÉ↓↓ sin(k) + ×k + hz

)
(3.6)

3.1.2 The phase diagram

The next step is to compute the determinant of Ak, and define the winding as the num-
ber of times the determinant winds around the origin in the complex plane as the para-
meter k traverses the first Brillouin zone. We repeat the winding integral first given in
the nomenclature, which is

W =
1

2ái

∫
dk

dk |Ak |
|Ak |

, (3.7)

where the integral is parameterised by the wavenumber k. In contrast with the 1D spin-
less Kitaev model on the chain, the winding number in this model can vary between
-4 and 4, and a phase change can be accompanied by a difference in winding number
being

• even, for band gap closing at k , −k, or

• odd or even, for energy gap closing at k = −k.

The latter case is in general odd, but can be even in the case that k = 0 and k = á closings
happen simultaneously. The reason for why the winding number changes with an even
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Figure 3.2: Phase diagram in É↑↑,↓↓-space for Þ = t′ = t, t′′ = −2t, h = 2t and Ú = 0, Ú =

á/4 Ú = á/2 for left, middle and right subfigure respectively. As explained
in the text, the parametersÉ are not able to change the parity of the winding
number because their contribution vanish at k = 0, á.

number for gap closings at k , −k is similar as to the argument used in section 2.5:
TR symmetry and chiral symmetry dictates that when the Pfaffian of the matrix at k
changes sign, so to does the Pfaffian at −k. That is, in the BdG formalism with chiral
symmetry all energy crossings at k , −k happens in groups of 4.

What is interesting to note about the last item in the list above is that the É̂ contribu-
tion at k = −k is zero because of the sine factor. Thus for any set of the other parameters,
no amount of change in the superconducting OPs can change the parity of the winding
number. Examples of two phases with different winding number parity is shown in
fig. 3.1. What is not shown in the figures is that k = 0 and k = á are located at the
tops of the ‘flower buds’. The only difference between the two subfigures is the value of
t′′, which removes one of the ‘flower buds’, but leaves the overall shape of the ‘leaves’
intact. For instance, the variable t′′ can change the parity of the winding number.

As the absolute value of the winding number encodes the number of Majorana fer-
mions at each edge, the parity of the winding number is an important value as it decides
whether there are single Majorana fermions at the edges or if all can be paired in Ma-
jorana doublets. If some local symmetry breaking perturbation at the edges couple
Majoranas to each other, they will split in energy. The difference between an odd and
even parity winding number therefore decides if there still exist an unbound Majorana
fermion at the edge. If the number of Majoranas is odd, then there will be at least
one Majorana left on each edge, whereas in the case of an even number of Majoranas,
no such statement can be given. This can be deduced from the fact that any skew-
symmetric N × N has a Pfaffian of 0 when N is odd. Since the effective perturbation
Hamiltonian between the Majoranas at the edge has N = |W |, there exist at least one
unbound Majorana after the local perturbation is added.

The resulting phase diagram defined by the winding number is quite complex, be-
ing a function of the parameters in the Hamiltonian. The phase diagram in É↑↑É↓↓-
space is given for one set of parameters in fig. 3.2 and for another set in fig. 3.3. An
interesting difference between the two phase diagrams is that the first has solely odd
winding numbers, whereas the latter has solely even winding numbers due to the van-
ishing superconducting OP at time reversal invariant momenta. Mercaldo, Cuoco and
Kotetes (2016) showed that if one lets the superconducting OP reorganise inside the su-
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Figure 3.3: Phase diagram in É↑↑,↓↓-space for Þ = t′ = t, t′′ = 3t, h = 2t and Ú = 0, Ú =

á/4 Ú = á/2 for left, middle and right subfigure respectively. As explained
in the text, the parametersÉ are not able to change the parity of the winding
number because their contribution vanish at k = 0, á.

perconductor as a response to the applied magnetic field, the conventional bulk bound-
ary correspondence does straightforwardly apply because the states at the boundary
can change the order parameter in the inner side of the superconductor, this leading
to topological transition without gap closing. For now, we will assume that reorganisa-
tion effects are negligible, thereby not solve the Hamiltonian self consistently. There are
multiple ways one can reason that this is an admissible assumption. One way to reason
about this is that many proposed 1D Kitaev like systems capable of harbouring Major-
ana fermions rely on depositing chains of metal with the necessary properties on top of
a 2D or 3D superconductor due to the inefficiency of 1D systems to be superconduct-
ing on their own. Thus the general idea is that the Cooper pairs in the superconductor
diffuse into the 1D chains by means of the proximity effect, thereby making the chain
superconducting also. Since the superconducting OP in the chain is to a large degree
dominated by the extrinsic OP, one can argue that the competition between the bulk
and boundary of the chain has little effects on the total OP, and we can assume that
they are given and constant for the time being. This does not apply to all systems, but
is assumed here for simplicity.

3.1.3 Marginal topological behaviour

Under certain conditions, the p-wave superconductor in a ferromagnetic field can be
gapless for an extended range of parameters. Furthermore, this gaplessness can be
removed by perturbing the system in a way which opens the gap. When the gap is
opened from the gapless state, the system may end up in a topological state in which
the gap opening localizes the state(s) at the edge, thus giving MBSs. We are interested
in finding such possibilities for the system. Since the winding number determines the
topology of the Hamiltonian, we already know that whenever the winding number
changes the gap has to close. One way to ensure that the determinant is zero is by
enforcing the imaginary part to be zero. Then we only have to care about the real part.
Computing the determinant of Ak (eq. (3.5), we get

ℜ|Ak | = h2z + h2y −4sin2(k)|É↑↑É↓↓| − ×2k
ℑ|Ak | = 2sin(k)

[
hz(É↑↑ +É↓↓) + ×k(É↑↑ −É↓↓)

]
= 4sin(k)

[
hzdy + i×kdx

]
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Looking at the equations above, we see that we can ensure that the imaginary part is
zero by setting hz = 0 and dx =

É↑↑−É↓↓
2i = 0. This simultaneously gives us a tool to open

the gap by externally perturbing the system. One can either apply an out of plane
magnetic field hz , or alternatively alter the superconducting OP. The first method is
probably the simplest experimentally. As explained previously, the superconducting
OP are not able to change the parity of the winding number at all. This means that if
the parity is odd, and the gap at k = −k is far from being zero, we are guaranteed that
the system is in a marginal topological phase. Looking at fig. 3.2, we see that the line
É↑↑ = É↓↓ differentiates between topological phases for all OP combinations along that
line. Thus any system along that line is a marginal topological superconductor. One
way to guarantee that the system enters a topological state when we open the gap is by
ensuring that the topological constant

M = signℜ|A0| ·ℜ|Aá|, (3.8)

= sign
[
(−×20 + |h|

2)(−×2á + |h|2)
]

(3.9)

is negative. Sinceℑ|Ak | is odd in k, whereasℜ|Ak | is even, the system is forced to have
an oddwinding number (except in the gapless case where it is ill defined). Thus, as long
as the perturbation does not change the sign of |Ak | at either time reversal invariant
points, the gap opening immediately brings the system into a topological phase. An
example is shown in fig. 3.4 where the gap is opened by an out-of-plane magnetic field
along the z-direction. The figure consists of fig. 3.4a which shows the first 50 excited
and occupied energy bands for an open boundary system, clearly showing that as the
gap is gradually opened by the out-of-plane magnetic field, the bulk energy bands gaps
out, while a single state is left at zero energy, which according to fig. 3.4b becomes
increasingly localised at the boundaries as the magnetic field is increased. Even for a
relatively small value of hz = 0.01t (purple), the decay length of the Majorana density
function into the bulk is the order of 100 lattice sites. When the out-of-plane field is
increased to 0.1t, the decay length is even shorter, being about the order of only tens of
lattice sites.
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(a) Energy bands for open boundary system
of 1000 lattice sites as function of the per-
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(b) Probability distribution of first excited
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tice sites.

Figure 3.4: Marginal topological system with only nearest neighbour hopping. The
parameters used relative to t was t′ = t′′ = 0, Þ = 1, hy = 2, dy = 1.3, dx = 0

and hz as given in the figures.

Instead of applying an out-of-plane magnetic field as in fig. 3.4, we can change the
OP by adding a dx component. This is experimentally harder to do, but we show the
results to highlight that this is a possible way to open the gap. In the following we use
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the same values as in the last example, but perturb the OP instead of the out-of-plane
magnetic field. We hypothesise that if this perturbation is able to open the gap, then
the system will be topological with an odd winding number since the other case was
odd. We already know that adding a dx component will add an imaginary part to the
determinant |Ak |. This is clearly shown in fig. 3.5b where the winding curve is initially
flat against the real axis, but as soon as the perturbation is applied the imaginary part
becomes non-zero (red and orange curves). As seen in fig. 3.5a, the bulk band gap
(red) is opened when the dx component is increased from 0. In addition, the system
goes into a topological phase, as indicated by the presence of the zero energy state for
a range of values of dx . When the dx component reaches approximately 0.6t, the gap
closes again at some k , −k. However, although the gap closes, the system is still in a
topological phase when the gap reopens, with a winding number of |w| = 1, except that
the sign changed. This band gap closing is due to the point where the curve (fig. 3.5b)
intersects it self going through the origin. In this process, the winding direction of the
curve changes.
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Figure 3.5: Marginal topological superconductivity by varying dx . The parameters
used relative to t was t′ = t′′ = 0, Þ = 1, hy = 2, hz = 0, dy = 1.3 and dx

as given in the figures.

In fig. 3.6 we show a case where the system can be marginally topological when
perturbed in one variable, but be marginally trivial when perturbed in another. The
reason for this is that the variableM given in eq. (3.8) is positive in the case considered,
which means that the winding number can only be even as long as the gap stays open
at time reversal invariant k, i.e. k = −k. The evenness of the winding number does
include zero as a possibility, which is the actual winding number that is achieved when
the gap is opened by applying an out of plane magnetic field, hz (going from (c) to (d)
in fig. 3.6). This is in contrast to the case when the gap is opened by adding a non-zero
dx component (arrow in fig. 3.6(c)), which achieves a winding of |w| = 4, depending
on the sign of dx . This difference in the topological phase in the perturbations can be
explained by looking at paths that |Ak | takes in the complex plane in each case. As seen
in figs. 3.6a and 3.6b, the shapes of the curves are qualitatively different in each of the
cases, which is due to a difference in the dependence of the imaginary part on the per-
turbations, whereas the effects of the perturbations on the real part are negligible in the
limit of small perturbations. In fig. 3.7 the open boundary energy bands are shown as
a function of the dx component, which is moving along the arrow in section 3.1.3. This
is located at a marginal point with a marginal winding number of |nW| = 4, meaning
there are four MBS when we open the gap. Close to the marginal point, the MBS can
be seen to interact significantly with each other leading to them gapping a little, and
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(c) and (d) Phase diagram for (c) hz = 0 and (d) hz = 0.1t. The colors indicate the wind-
ing number (colorbar). The point shows the point in phase space that is perturbed, lying
between two topologically nontrivial phases, and the arrow points in the direction of dx

change.

Figure 3.6: The superconductor can be marginal topological in one variable and trivial
in another. WhenM is positive, the marginal topological nature of the sys-
tem depends on the form the parametric curve |Ak | takes when the system
is perturbed. Here, the system is marginally topological in one variable (dx)
and switched between winding numbers 4 and -4, but is trivial in another
(hz). The reason for the trivial nature of the perturbation hz can be seen in
the transition from (c) to (d), where the trivial area extends into the mar-
ginal topological area. in the phase diagram. The parameters used were
t′ = t, t′′ = 3t, Þ = 1.0t, hy = 0, dy = 1.3; and hz = 0 and dx = 0 unless stated
otherwise.
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Figure 3.7: Open boundary energy bands as a function of dx for the parameters in sec-
tion 3.1.3.

becoming extended states.
From the observations above, we note the following: When the constantM is pos-

itive, the winding number is always even. This depends on the assumption that the
determinant |Ak | = |A−k |∗. When this is the case, we can cut the curve of |Ak | in two by
cutting at k = 0 and k = á. Looking at each curve separately, it has to start and end at
the same side of the origin on the real axis, and as a result has half-integer winding num-
bers each. This means that each half has an integer winding number, and since there
are two, the winding number of the total curve can only be even. A similar geometrical
argument applies to the case whenM = −1, where each of the points are on opposite
sides of the origin on the real axis. We speculate whether the constant M, which is
computed at time reversal invariant momentum k = −k is linked to the product of the
Pfaffians of the Hamiltonian at these two momenta or not. If this is the case, then it is
no surprise that a negativeM always gives a marginal topological state. The fact that
a gapless superconductor with a positiveM can be marginally topological and trivial
at the same time implies that the topological nature of gapless systems is not as robust
as when the parity of the winding number is odd, in which case any gap opening (and
symmetry conserving) perturbation pushed the system into a topological phase. When
M is positive, we can only say for sure that the winding number is even, but it is harder
to state whether the winding number is zero or non-zero. To do this, one must evaluate
the exact dependence of the imaginary and real part of the determinant |Ak |, in which
case it is equally simple to just evaluate the winding number numerically by applying
an infinitesimal perturbation in the parameter of interest.
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3.2 p-wave superconductivity in coexistence with AFM order-
ing

The next type of topological superconductor we investigate is the p-wave supercon-
ductor in proximity to an antiferromagnetic chain. This type of system was investig-
ated by Mercaldo, Kotetes and Cuoco (2018), and we firstly recreate the phase diagram
and then expand the model to investigate possible marginal topological phases in these
types of systems. Their model is also expanded to include a ferromagnetic exchange
field, which further allows the control of the topological phases, as antiferromagnetic
exchange field are in general harder to control or to impinge on a specimen.

3.2.1 Model definition

Let a one dimensional intrinsic p-wave superconductor with a coexisting antiferromag-
netic (AFM) field be given by the Hamiltonian in lattice space

Ĥ = −t
¼
iã

(
c†AiãcB,i+1,ã + c†AiãcB,i ,ã +h.c.

)
+

¼
iÓss′

(−Þã0
ss′ − â

z
ÓÓM ·ãss′ − h ·ãss′ )c†ÓiscÓis′

+

¼
iãã′

[
Éãã′

(
c†Aiãc

†
B,i+1,ã′ + c†Biãc

†
Ai ,ã′

)
+h.c.

]
. (3.10)

Here the subscripts A and B denote two sublattices with corresponding operators, with
the mapping

cAiã = c2i ,ã cBiã = c2i−1,ã .

in terms of the original fermion lattice operators. The parameters are as before, with
an additional antiferromagnetic OP, M . Since there are two sublattices, we introduce
the sublattice space and accompanying Pauli operators, â, which operate in this space.
We introduce the Fourier transformed fermion operators by

cAiã =
1

NA

¼
k

e2ikicAkã cBiã =
1

NB

¼
k

e2ikicBkã , (3.11)

where the factor two in the exponent comes from the fact that each sublattice has twice
as big lattice constant as the original. There are equal numbers of lattice site in each
sublattice, so we set NA = NB ≡ N. In addition, the Brillouin zones are reduced to k = má

N

with m ∈ [−N
2
, N
2
]. Inserted into eq. (3.10) we get

Ĥ = −2t
¼
kã

cos(k)
(
c†AkãcBkãe

ik + c†BkãcAkãe
−ik

)
+

¼
Ókã

(−Þã0
ss′ − â

z
ÓÓM ·ãss′ − h ·ãss′ )c†ÓkscÓks

+

¼
kss′

[
2isin(k)Éss′

(
eikc†Aksc

†
B−ks′ + e−ikc†Bksc

†
A−ks′

)
+h.c.

]
. (3.12)

Defining the column vector

è̂k = (cAk↑, cAk↓, cBk↑, cBk↓, c
†
A−k↓, −c

†
A−k↑, c

†
B−k↓, −c

†
B−k↑)

T, (3.13)
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we write the BdG Hamiltonian as

Ĥ =

¼
k

è̂†hkè̂ (3.14)

with

hk = −Þäz −2t cos(k)äzâxe−ikâz − âzM ·ã − h ·ã + âxe
−ikâz (dkä+ + d ∗kä−) ·ã (3.15)

being a 8 × 8 matrix. Here it is understood that ä, â and ã operate in particle-hole
space, sublattice space and spin space respectively. Furthermore this definition means
that the OPs are defined as É↑↑,↓↓ = dy ± idx and É↑↓ = −idz . The hole part of eq. (3.13)
is transformed by −iãy to simplify the tensor notation. Provided that M lies in the
yz-plane and d lies in the xy-plane, that is

d = |d |(icosÓ,sinÓ,0) M = |M |(0,sinÚ,cosÚ) h = |h|(0,sinæ,cosæ), (3.16)

it can be shown that the Hamiltonian above has the symmetries T̂ 2 = +1, Ĉ 2 = +1 and
Ŝ given in first quantised form by

T = −äzãz K (3.17)

P = äyãy K (3.18)

S = äxãx (3.19)

Followingly, the system belong to the class BDI (table 2.1) for this restraint and should
have a � topological quantum number.

As explained in section 2.3.3, the chiral symmetry means that the Hamiltonian can
be written in block off-diagonal form, by sandwiching it between the eigenvector matrix
V of the chiral operator, defined by VTSV = diag(±1),

VThkV =

(
0 Ak

A†
k

0

)
,

which allows us to define a Winding number on the determinant of either off-diagonal
block,

W =
1

2ái

∫ á

k=0

d(det(Ak))

det(Ak)
. (3.20)

The winding number for the bulk of this system depends on both the angle Ú and Ó,
and the resulting phase diagram for this system as first obtained in Mercaldo, Kotetes
and Cuoco (2018) was recreated and is given in fig. 3.8. The phase diagram is plotted
in terms of the superconducting OPs É. The phase diagram for this set of paramet-
ers has areas of both odd and even winding numbers, and can either be trivial (0) or
topological (1 and 2 MBSs). As the figure shows, when the magnetisation axis points
considerably in the y-direction, the areas with odd winding numbers inside the visible
region disappears, somewhere between Ú = á/5 and Ú = 3á/10. In the first figure, when
the magnetisation axis is parallel with the z-axis, the topological phase boundaries are
straight lines, and there are two areas of trivial topology in the first and third quad-
rant. However, in this case with no hy component, the system has an additional unitary
symmetry:

ãzäz : hk→ hk .

This has the consequence that although the winding number is trivial in the basis as
used here, if the additional symmetry is used to block diagonalise the Hamiltonian
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Figure 3.8: The topological phase diagram for |M | = 0.15t, Þ = 0.1t.

each block may have a topological invariant, but when they are considered together
as here, they appear trivial. This is a general consideration in topological analysis, as
a symmetrie can change the AZ class. But we do not analyse this case further in this
thesis, as it is not relevant for the main points.

3.2.2 Marginal topological behaviour

Again, we look for the case when the imaginary part of the determinant of the off-
diagonal part of the Hamiltonian, Im |Ak |, is 0 for all values of k. The imaginary part
is

8t sin(2k)
[
ℑ(dx)

(
−h2 +M2 −Þ2 +4sin2(k)(d2

y −ℑ(dx)
2) + 4t2 cos2(k)

)
−2hzÞdy

]
(3.21)

A simple way to make this zero for all k is by having dx = 0 and hz = 0.
The first case we investigate is when there is only an antiferromagnetic exchange

field. First we look at the determinant at k = 0 and k = á/2 with dx = hz = 0. At these
points the real part of the determinant is

−(M2
y +M2

z −Þ2 +4)2 ≤ 0, k = 0, and (3.22)

−
∣∣∣M2

y +4iMydy +M2
z −Þ2 −4d2

y

∣∣∣2 ≤ 0, k = á/2. (3.23)

Both of the points are located on the negative side of the real axis, except when the
chemical potential is fine-tuned to the antiferromagnetic order parameter and the su-
perconducting order parameter. As a consequence, the winding number can only be
even. We were not able to find combinations of the parameters where the system was
marginal topological in this configuration, yet we can not conclude that there is no
marginal region in the pure antiferromagnetic system.

When a ferromagnetic field is present in the system in addition to the antiferromag-
netic field, the exchange field is either ferrimagnetic when they are parallel or a SDW.
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Figure 3.9: Phase diagram in dxhz-space varying hy . The parameters were Þ = −2t,
dy = 0.3t and M = 0.5tẑ

In this case there are regions in the phase diagram which are marginal in the supercon-
ducting order parameter and in the z-component of the ferromagnetic exchange field.
This should be no surprise, as in the limit of a zero antiferromagnetic order parameter
we are back to the normal ferromagnetic case which was considered in the previous
section, so we expect there to be intermediate regions between the fully antiferromag-
netic system and the fully ferromagnetic system. Figure 3.9 shows the phase diagram
around the origin in hzdx-space for various values of hy . At zero ferromagnetic field
(upper left) the origin is inside an area of trivial topology, so infinitesimal perturba-
tions around this point will not bring the system into a topological phase. However,
when the ferromagnetic order parameter is large enough, the area of trivial topology
is suppressed and the system is a marginal topological superconductor for hz = dx = 0,
surrounded by winding numbers with absolute value of 1. An interesting effect of in-
creasing the hy strength is that the sign of the winding number as a function of hz
switches as the boundary between the +1 and −1 phase rotates close to the origin.

Although an intrinsic p-wave superconductor proximised to an antiferromagnet can
not be a marginal topological superconductor, it may open up paths to realise such
systems, as external exchange fields can be used to push the system into a gapless
region and can be easily used to control the topological invariant of the system by
rotating the exchange field which quickly localises the MBSs.
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3.3 s-wave superconductor in an inhomogeneousmagnetic field

When a s-wave superconductor is combined with a semiconductor having SOC in a
Zeeman field, the Hamiltonian can for some ranges of the parameters be modelled as
an effective p-wave or p-wave like superconductor (Sato, Takahashi & Fujimoto, 2010),
which can exhibit MBS (Alicea et al., 2011; Lutchyn et al., 2010), and have also been
measured experimentally (Deng et al., 2012; E. J. H. Lee et al., 2014; Mourik et al.,
2012). Alternatively, MBS can be obtained in systems consisting of an inhomogeneous
Zeeman field impinged on a superconductor (Chen & Schnyder, 2015; Choy, Edge,
Akhmerov & Beenakker, 2011; Klinovaja & Loss, 2013; Klinovaja, Stano & Loss, 2012;
Marra & Cuoco, 2017; Nadj-Perge et al., 2013; Sedlmayr et al., 2015).

In this section we analyse the topological phase diagram of a s-wave superconductor
in an inhomogeneous and noncollinear exchange field with a focus on marginal topo-
logy. Since s-wave superconductors are more abundant than the intrinsic p-wave su-
perconductors, the results from this section can potentially lead to yet another path to
marginal topology which is easier to design in experiments.

An extensively researched example of noncollinear exchange fields in s-wave super-
conductors is that of the helical exchange field, which is equivalent to a semiconductor
with Rashba SOC in a ferromagnetic field. These systems can be unitarily transformed
to each other by doing local spin-rotations. The first type of system is an effective way
of obtaining strong SOC fields which can be comparable to the energy bandwidth. We
chose to look at systems with translational symmetry, consisting of unit cells of a gen-
eral number of lattice sites. The exchange field vectors in the unit cell are in general
independent of each other and lie in the same plane, thus not breaking the chiral sym-
metry. Again, we do not solve the superconducting order parameter self-consistently
and do not look at the free energy to compare the stability of the superconducting
phase against the normal phase. This work has been done by for example Nadj-Perge
et al. (2013), who showed that these types of system can be self consistent. However,
self consistency is a natural next step to the analysis in this section.

3.3.1 Model

The general model we consider in this chapter is given by the tight bindingHamiltonian

Ĥ =− t
¼
⟨i j⟩ã

c†iãcjã −Þ
¼
iã

c†iãciã

−
¼
iss′

c†is (hi ·ãss′ ) cis′ +
¼
i

(
É0c

†
i↑c
†
i↓ +h.c.

)
.

(3.24)

This Hamiltonian describes a superconductor at chemical potential Þwith nearest neigh-
bour hopping strength t, a varying Zeeman field hi at lattice site i , and s-wave super-
conducting OP, É0 ≡ É↑↓, which is assumed to be a constant exogenous variable in the
model. For now, we only impose the requirement on hi that it lies in the xy-plane, in
which case the model has a global chiral symmetry. This plane is arbitrarily chosen, so
the results apply to any plane. Since the model is superconducting, it also has particle-
hole symmetry, which means that it also must have TR symmetry. The symmetry oper-
ators are given by

T = äzãx K C = äx K S = äyãx . (3.25)

These operators are only valid as long as the superconducting OP is real, which always
can be achieved by a global U(1) gauge transformation. All the symmetry operators in
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eq. (3.25) square to one. Comparing this to table 2.1, we see that the system in question
belongs to the topology class BDI, which can have a � topological invariant.

3.3.2 Local spin rotation of the Hamiltonian

The Hamiltonian as given in eq. (3.24) can be transformed to a model with a collinear
magnetic field. We can do a local spin rotation around the z-axis to align all the spins
along one axis – in our case we choose the x-axis. If we define the angle the Zeeman
field at lattice site i makes in the xy-plane as Ýi , the local rotation at this lattice site is

Ri = exp

{
− i(Ýi )ãz

2

}
. (3.26)

This transformation aligns all local Zeeman fields along the positive x-axis,

R†i hi ·ãRi = |hi |ãx .

Thus, in this new basis, the magnetic field is that of a SDW. An effect of the local ro-
tations is that whenever to adjacent Zeeman fields are initially oriented in different
directions (independent on the actual size of the fields), the previous ‘normal’ hopping
parameter t between the to lattice sites is transformed to a combination of normal hop-
ping and Rashba type SOC as follows,

t→ tR†j Ri = t
(
cos

(
ÖÝj ,i /2

)
ã0 + isin

(
Ýj ,i /2

)
ãz

)
Here the angle difference is ÖÝj ,i = Ýj − Ýi . The last two terms, the spin-independent
chemical potential and the singlet OP transform trivially under this transformation.
The resulting Hamiltonian is equivalent to that of a singlet s-wave superconductor in a
collinear SDWfield with a (modulated) Rashba spin-orbit coupling. We add a subscript,
R, to the Hamiltonian to denote that the local transformation has been done,

ĤR =

¼
⟨i j⟩ss′

c†js (t(j , i )ã0 + iÓR (j , i )ãz)ss′ cis′ −Þ
¼
is

c†iscis

−
¼
iss′

c†ishi (ãx)ss′cis′ +

¼
i

(
Éc†

i↑c
†
i↓ +h.c.

) (3.27)

3.3.3 Helical magnetic field

An important special case of the the model is when the local magnetic field is helical
along the 1D wire, that is that the fields lie on a circle with a constant angle difference
between the adjacent sites. Thus, the rotated Hamiltonian describes a superconductor
with ferromagnetic field of strength h with hopping parameter t̃ cos(ÖÝ/2) and Rashba
SOC strength Ó = t sin(ÖÝ/2). This system has been solved multiple times before by
other authors (Alicea et al., 2011; Oreg, Refael & von Oppen, 2010; Sato et al., 2010),
but in this context it is important to establish the connection between inhomogeneous
magnetic fields and the collinear model with Rashba SOC. Furthermore, the results
presented in this section will serve as a baseline for the other sections of this chapter.

The rotated system is translationally invariant, which implies that the momentum
is a good quantum number and thus we do a Fourier transformation. The Fourier
transformed Hamiltonian is then

H(k) =

(
×kã0 +Ókãz − hãx i|É|ãy

−i|É|ãy −×kã0 +Ókãz + hãx

)
, (3.28)



3.3 Helical magnetic field 49

where ×k = −2t̃ cosk − Þ and Ók = −2Ósin(k). The basis is the regular Nambu spinors.
Since the Hamiltonian has a chiral symmetry given by eq. (3.25), we can block off-
diagonalise the matrix by rotating it into the basis in which the chiral operator is
diag(−1,−1,1,1). In this basis the Hamiltonian is

H(k) =

(
0 Ak

A†
k

0

)
, (3.29)

with

Ak =

(
Ók + i|É| − ×k h

h −Ók − iÉ− ×k

)
. (3.30)

The determinant of Ak is in general complex, and is thus a mapping from the torus T1
to the circle S1. As a consequence, we can define a winding number of this mapping as

nW =
1

2ái

∫
k

d |Ak |
|Ak |

. (3.31)

This integral is only non-zero when the path that the determinant takes in the complex
plane winds around the origin. Computing the determinant, we get

|Ak | = ×2k − h
2 −Ó2

k +É2 −2iÓkÉ. (3.32)

The imaginary part can only be zero at k = 0 and k = á. Thus the path in the complex
plane can only touch the origin at the point given by k = 0 or k = á. Followingly,
only the real part is necessary to determine when the winding number is non-trivial.
Inserting for k = 0 and k = á, we get the following two independent equations for when
the gap is allowed to close

(2t̃ +Þ)2 +É2 = h2 (gap closes at k = 0) (3.33)

(2t̃ −Þ)2 +É2 = h2 (gap closes at k = á) (3.34)

What is interesting to note is that the topological phase diagram does not depend on
the size of the Rashba SOC parameter at all, only on the Zeeman field strength, the
band width and the superconducting gap parameter. However, the size of the spin or-
bit coupling affects the size of the bulk band gap which again affects the robustness of
the MBSs against perturbations. This can be seen from the fact that the modulus of the
determinant of Ak is the square root of the product of the eigenenergies of the Hamilto-
nian. Take for example a superconductor which is in the topologically nontrivial regime
and let the SOC strength go towards 0. When the real part of the determinant is zero
(which it must be at some point since the path winds around the origin), the modulus
of the determinant is fully given by the size of the imaginary part at this point. Fol-
lowingly, the smaller the SOC strength is, the smaller the bulk band gap is. Some of
the same arguments applies to the size of the superconducting OP É. Although the
phase diagram is dependent on É, it also affects the bulk band gap similar to SOC. The
chemical potential decides where the band gap closes first as a function of the Zeeman
field strength. If Þ is negative then the bulk gap closes first at k = 0, and at k = á when
the chemical potential is positive. The interval of the topologically non-trivial regime
is given by

√
(2|t̃| − |Þ|)2 +É2 < h <

√
2|t̃|+ |Þ|)2 +É2. We note that when the chemical

potential is zero, the boundaries of the interval are equal and a topologically nontrival
system is not possible.

We note that when the Rashba SOC strength is zero, the determinant of Ak is

×2k − h
2 +É2

0.



50 Marginal topological superconductors 3.3

−2 0 2
µ/t̃

0

2

4
h/

t̃ 0

0
1 −1

k � π k � 0

∆

(a) Topological phase diagram for the helical
case.
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(b) Energy bands for the open boundary sys-
tem as a function of h.

Figure 3.10: The topological phase diagram and the energy bands for an open bound-
ary system are shown for the helical system. (a) The numbers in the fig-
ure denote the winding number, where 0 is a topologically trivial winding
number. The lines were computed with eqs. (3.33) and (3.34). The phase
diagram does not depend on Ó except for the case when Ó = 0, in which
case the system is trivial. (b) The energy bands for the open boundary
system of 400 lattice sites as a function of the exchange field. The h-axis
can be seen as following the red line in (a), with Þ = −1t̃ and É = 0.3t̃.

From this we see that the smallest value of h which closes the gap is obtained when
×k = 0. When −2|t̃| < Þ < 2|t̃|, the smallest value is given by |hc| = |É0|. This is of
importance in chapter 4 when the chiral symmetry is broken.

3.3.4 Marginal topological superconductivity

In section 3.3.3 we explained that a superconductor in a ferromagnetic field has a band
gap depending on the strength of the SOC. A non-zero SOC in the rotated Hamiltonian,
which indicates inversion symmetry breaking, is equivalent to a non-collinear magnetic
field in the original Hamiltonian. However, one question which arises is if a inversion
symmetry breaking collinear field is enough to achieve a topological non-trivial phase.
Since such a system has chiral symmetry, the winding number is a good topological
number to classify the system by. We obtain a winding whenever the determinant of
the off-diagonal matrix Ak winds around the origin. To do so, both the imaginary and
real parts must be non-zero for at least some values of k and have positive and negative
values as k goes from 0 to 2á. If either the real part or the imaginary part is constant
zero in the reduced first Brillouin zone, the system can potentially be a marginal topo-
logical superconductor if it is gapless. Thus one way to analyse the system is to inspect
the imaginary component of the determinant. The form the imaginary part takes de-
pends on the size of the unit cell, and is increasingly complicated when the size of the
unit cell increases. We therefore compute it for the first four unit cell sizes. We define
the Hamiltonian as in eq. (3.24) where the spins have not been locally rotated, and
where the magnetic field repeats it self after NBasis. That means that the system is com-
pletely defined by the parameters Þ, t, É and h1, . . . ,hNBasis

. The resulting expressions



3.3 Helical magnetic field 51

for the imaginary part of the off-diagonal determinants are

ℑ|Ak | = 0, NBasis = 1, (3.35)

ℑ|Ak | = 0, NBasis = 2, (3.36)

ℑ|Ak | = −4Ét3 sin(3k) |h1 × h2 + h2 × h3 + h3 × h1| , NBasis = 3, (3.37)

ℑ|Ak | = 8ÉÞt4 sin(4k) |h1 × h2 + h2 × h3 + h3 × h4 + h4 × h1| , NBasis = 4. (3.38)

After that, when the unit cell size increased the expression becomes even more com-
plicated, where in addition to the cross products, terms like hxi h

x
l
hx
k
h
y

l
appear. Thus

analytically solving for the imaginary part becomes increasingly hard and gives little
insight. We see from eqs. (3.35) and (3.36) that systems with a unit cells of at most two
lattice sites can never be topologically non-trivial since they are not able to have a non-
zero winding number. Thus ferromagnetic and antiferromagnetic systems are always
topologically trivial. In the ferromagnetic case for example (unit cell of one lattice site),
the gap is allowed to close when the magnetic field reaches

√
É2 + (2|t| −Þ)2, as can be

seen from eqs. (3.33) and (3.34) which are still valid in the ferromagnetic case (but with
zero SOC in the rotated Hamiltonian). In contrast to the helical case as discussed in the
previous section, the gap will not open again after it first closes when h is further in-
creased. Instead, the Fermi points will move between k = 0 and k = á, before it gaps
out when it reaches a time reversal invariant momentum again.

Looking at eqs. (3.37) and (3.38), we note that the imaginary part of |Ak | is propor-
tional to the area between the origin and the line segments connecting neighbouring
magnetic fields (this does not generalise past NUC = 4). A consequence of this is that
whenever the field vectors h lie on any line in the xy-plane, the total area is zero, and
the system does not wind. Based on these observations, we wondered if this could be
generalised to bigger unit cells. Thus we numerically computed the curves in the com-
plex plane made by |Ak | as k traversed the 1BZ when the magnetic field vectors were
randomly placed on common lines, and repeated this procedure for different number
of unit cell sizes. The result was that, infact, the imaginary part was always zero. Thus
we propose the first observations on s-wave superconductors in a inhomogeneous mag-
netic field: s-wave superconductors with magnetic field vectors hi which lie on a line
in hxhyhz-space will always be topologically trivial. A special case of this pattern is the
class of collinear magnetic fields.

The second empirical observation we make is that the dependence of the imaginary
part of |Ak | on the field vectors is at most a first order polynomial in each component.
That is, terms proporitonal to e.g. h1h2h3 are allowed, but terms proportional to h1h

2
2

are not allowed. This means that any time the imaginary part is purely zero, the wind-
ing number is an odd function in each perturbation of a field vector in close proximity.
However, for larger perturbations, the real part of the determinant must also be con-
sidered, which may close the gap in time reversal invariant momenta unsymmetrically
in the perturbation.

We will now consider different examples of magnetic textures which all have gap-
less Hamiltonians and may or may not be topological.

Example 1: Collinear field in a unit cell of three sites

As an example we will consider a system with a unit cell of three lattice sites where the
first lattice site has an exchange field of h1 = h1x̂, while the two other sites have zero
exchange field, h2,3 = 0. Such systems can be realised by for example having different
chemical elements in the basis. We now investigate how the system behaves when a



52 Marginal topological superconductors 3.3

h1 h2

h1

x̂

ŷ

Figure 3.11: Schematic drawing of the case considered in example 1. The arrows show
the direction of the local magnetic fields, and the dashed lines indicate
the limits of the unit cell, showing one lattice site from each neighbouring
unit cell.

magnetic field is added on the second lattice. We let the magnetic field at this site be
given by h2 = h2ŷ. Looking at eq. (3.37), we deduce that when h2 = 0, the imaginary
part of the determinant |Ak | is zero, thus the system is either gapless or gapful and
topologically trivial as h1 varies. However, for non-zero h2 the three points projected
by h1, h2 and h3 create a triangle which has an area, and thus the imaginary part is
non-zero. In fact, the imaginary part is −4É0h1h2t

3sin(3k) and is bilinear in h1 and
h2. Keeping h1 constant, we plot the energy bands for an open boundary system as h2
is varied in fig. 3.12a. The figure shows that our predictions about the behaviour of the
system bulk matches with the open boundary system. When the perturbation, h2, is
zero, the bulk band gap is closed except a small contribution from the finite size effect,
which is expected to diminish as the length of the wire is increased. As h2 is increased
(or decreased) from 0, the gap opens but the lowest lying energy state remains at 0
energy and is protected by a topological winding number of ±1 – thus being a MBS.

We computed the local density of the lowest energy state for three values of h2
as it was increased from 0 to show how the MBS candidate localises at the edge of the
system as the gap is opened. This is shown in fig. 3.12b. The figure shows that when the
magnetic field is collinear and the gap is closed, the Majorana fermion extends through
the whole superconductor, which allows the two Majorana fermions to interact and
thus aquiring energy. It further shows that a magnetic field strength of only h2 = 0.05t
(purple line), which is small compared to É (h2/É ≈ 0.17) and even smaller compared
to the magnetic field at the first site (h2/h1 ≈ 0.04), is enough to considerably localise
the Majorana fermion at the edge in a 200 unit cell system. As h2 is increased further
the MBS is even more localised at the edge (orange line).

In fig. 3.12c we show the winding curves for different values of h2, showing how
the imaginary part of the curve is considerably affected for small values, whereas the
real part is only slightly affected.

The last figure, fig. 3.12d, shows how the band gap (scanned over the whole 1BZ)
various as h2 varies. The lines are generated for different values of h1, where the smal-
lest and largest values are in the topological trivial regime, while the three middle val-
ues are in the marginal topological regime. As the figure also shows, when h2 = 0, the
gap stays closed for an extended range of h1, before it reopens to a topological trivial
phase. The last observation we make from the figure is that the speed at which the gap
opens as a function of |h2| is sensitive to the size of h1, as can be seen by the change of
the slope of the lines.
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(c) The curve made by |Ak | for h2 = 1e − 8t
(gray) and h2 = 1e −7t (black).
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(d) Bulk band gap as a function of h′ for vari-
ous values of h.

Figure 3.12: Marginally perturbing a gapless system into a topological phase. A gapless
superconductor in a collinear magnetic field can easily be brought into a
topological non-trivial phase by adding a perpendicular magnetic field at
one of the lattice sites in the unit cell. (a) The energy bands are shown in
light (red) for the bulk bands, and black for the lowest lying energy. (b)
The state with lowest energy extends through the whole system when it
is gapless (light, orange). As the gap is opened, the state becomes more
localised at the edges (dark, purple). The parameters for the plots were
Þ = −1.5t, É = 0.3t, h1 = 1.3t and h2 = h2ŷ, except for the panels that
state otherwise.

As was defined earlier, a marginal topological phase is described as a collection of
points in parameter space where the Hamiltonian is gapless and any perturbation of
the system is likely to bring it into a topological phase. The case considered in this
subsection is no different. All of the parameters as given in fig. 3.12 were perturbed,
including h2, and the resulting phase diagram is shown in fig. 3.13. As the figure shows,
the phase diagram is antisymmetric in h2, with a clear line dividing to topological
phases with different winding number nW. This line in h2h1-space is stable against
perturbations in the other parameters and is embedded inbetween topological phases.
That is, any system lying on the line will become topological when perturbed, provided
that h2 is non-zero. As we have experiences, marginal topological systems may have
an imaginary part which depends on only a small number of parameters. Here that
parameter is h2.

Example 2: Gaplessness is not a sufficient criterion for marginal topology

We just demonstrated that certain gapless systems can easily be driven into a topolo-
gical phase by perturbing the magnetic field at one site in the unit cell, thereby opening
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Figure 3.13: Phasediagram for the three-atom-basis SDW system. The system with
three atoms in the basis can be a marginal topological superconductor. If
the system lies at a point in parameter space in between the black and yel-
low areas, any perturbation will bring the system into a topological phase,
with the sign of the perturbation h2 deciding the sign of the winding num-
ber. At the boundary between nW = −1 and nW = +1, the imaginary part
of the determinant |Ak | is zero for all k, with the Hamiltonian having two
nodes at k , −k points. The figure consists of nine plots showing the phase
diagram in h2-h1-space. These nine plots are then aranged on a 3-by-3
grid, where the columns are ‘parameterised’ by the SC OP, É and the rows
are parameterised by the chemical potential, Þ. Thus the figure is a 4-
dimensional representation of the phase diagram.

the gap. However, we propose a further requirement for when the system is a marginal
topological superconductor and when it is a trivial gapless system. We believe that
the specific class of systems considered in this chapter will always have a imaginary
part of |Ak | which is proportional to sinqk. In other words, as k traverses the (reduced)
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Figure 3.14: Winding curves for different values of the parameter h2 shown as the
points P−, P0 and P+ in fig. 3.13.
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Figure 3.15: Schematic drawing of the case considered in example 2. The arrows show
the direction of the local magnetic fields, and the dashed lines indicate
the limits of the unit cell, showing one lattice site from each neighbouring
unit cell.

Brillouin zone, the imaginary part oscillates once. From this empirical observation, the
curve winds if and only if the number

M = signℜ|A0| ·ℜ|Aá/q | (3.39)

is −1, i.e. the real part has opposite sign at k = 0 and qk = á. The system described
in the previous example satisfies this criterion. To demonstrate the opposite case, in
whichM = +1, we consider a system with a unit cell consisting of four lattice sites, and
where the exchange field is given by h1 = h1x̂, h2 = h2ŷ, h3 = −h1x̂/2 and h1 = 0. This
system is depicted in fig. 3.15. The curve that |Ak | takes in the complex plane (for a
very negative h2) is shown in fig. 3.16b. As can be seen, the real part of |Ak | at k = 0

(red point) and qk = á (yellow point) have the same sign. This leads to the curve not
enclosing the origin, which means that the system is not a marginal topological super-
conductor. Thus, if the system is perturbed in a way that opens the gap, there will not
be any Majorana fermions at the boundaries. As fig. 3.16c shows, there are two excited
states that localises at the edges when the gap is opened, but as fig. 3.16a shows, these
states have non-zero energies, meaning that they are not Majorana fermions. This is in
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open system as the perturbation h2 is var-
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(b)Winding curve for the case considered in
the text for h2 = 1× 10−8t (gray) and h2 =
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(c) Local density of states (LDoS) for first
(bottom pane) and second (top pane) ex-
cited states. The system has two edge
states for h2 , 0, both of which have finite
energy and are thus not Majorana fermi-
ons.

Figure 3.16: A system consisting of unit cells with a four lattice sites which is gapless,
yet not marginally topological, as explained in example 2. The parameters
used where Þ = −0.5t, É = 0.3t, h1 = 2.5t and NUC = 200. (a) The energy
bands for an open system are computed as a function of h2, and shows
that as the gap is initially opened, the lowest lying energies have non-zero
energy. When h2/2 reaches ≈ 0.65, the gap closes again, this time at a
time reversal invariant momenum, thus leading to a non-trivial winding
number. (b) The winding curve is drawn for h2/t = 0.005 (gray curve)
and h2/t = 0.05 (black curve) demonstrating how the banana shape curve
does not enclose the origin. The two dots indicate the point on the black
curve where k = 0 (red) and qk = á (yellow, light), and show how they are
located on the same side on the real axis, givingM = +1. (c) The density
of the first excited (bottom pane) and second excited (top pane) states are
drawn for different values of the perturbation, h2/2.

contrast to the topological phase where there are two Majorana fermion edge states.

As a side note, as the perturbation h2 is further increased to around h2 = 0.65t, the
system does close the gap at a time reversal invariant momentum, which brings the
system into a topological phase. This can be seen as the regions in fig. 3.16a where the
black band is flat. In these regions, the winding number is ±1. However, this is not
considered as a marginal topological region.
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(a) Schematic representation of the magnetic
pattern in example 3. The red arrow is the
perturbation applied to the system in (b).
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(b) The energy bands as functions of the per-
turbation Öh1. The lowest lying energy
is shown in black, while the bulk energy
bands are shown in red. The inset shows
the same case, but zoomed in.

Figure 3.17: Amarginally topological superconductor consisting of unit cells with four
lattice sites in the basis, as described in example 3. The parameters used
where Þ = −1.5t, É = 0.3t and NUC = 400. Since the interaction between
Majorana fermions at opposite edges decrease exponentially with system
size (Kitaev, 2001), the system size was increased to 400 unit cells to show
the effects more clearly. (b) The bulk energy bands arNote also that the
energy bands are not symmetric with respect to the perturbation. This is
a general fact, where the two previous figures are special cases that are
symmetric due to the geometry of the patterns.

Example 3: Non-collinear marginal superconductor

In the last example of this section, we demonstrate that there exist other patterns
than collinear patterns that are also marginally topological. The case we consider
has a magnetic texture given in fig. 3.17a. This pattern is parameterised by hi /t =

cos(iá/2−á/4)x̂ + (0.5sin(iá/2−á/4) + 2)ŷ, and is part of a general pattern creating a
horizontal number 8 shape shifted along the hy-axis. One of the points is perturbed, as
shown by the red arrow. The energy bands for the open boundary system are shown in
fig. 3.17b, and the flat black band indicates that there is a Majorana fermion present at
the boundaries when the first lattice site in the unit cell is perturbed along the direction
of the red arrow. In this system, the band gap opened slower than the previous cases,
hence we had to increase the size of the finite system to 400 unit cells due to finite size
effects. As the inset in fig. 3.17b shows, when the band gap is only slightly opened, the
Majorana fermions at the ends are still interacting considerably, which leads to them
gaining energy at first. As the energy gap is opened further by the perturbation, the
interaction between the Majorana fermions at the boundaries diminishes due to the
increased inability of the Majorana fermions to propagate through the bulk. Thus as
the gap increases, the energy of the Majorana fermions approach zero. Although this
system can easily be brought into a topological phase by a very small perturbation, we
would still argue that it is not a marginal superconductor based on our definition of
such systems. This is because the magnetic texture in this example is one which is
highly fine-tuned and thus not easy to obtain experimentally.

Dependency on the perturbation

In the examples considered here, the functional form of the imaginary part of |Ak | has
been odd in the perturbation. As a result, when the perturbation is applied with a
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negative sign, one obtains a topologically different phase. Both phases have the same
amplitude of the winding number, but have opposite signs. The implications of this is
that the compatibility of two domains with the same type of perturbation depends on
the direction of the perturbation. If we for example take the case considered in example
1 above, and set the perturbation to h2ŷ in the first domain, and couple this domain
to a second domain with the perturbation −h2ŷ, two MBSs will appear at the domain
wall between them. This is a result of the bulk-boundary condition, which says that
the topology of two bulks with different topological number can not be continuously
transformed into each other without closing the gap – a clock wise oriented curve can
not be transformed into a anti-clockwise oriented curve without first squashing it and
intersecting itself, thereby forcing the gap to be closed somewhere. This can potentially
be a path to easy control and transportation of MBSs in practical systems as only small
perturbations are needed to change the topology of regions of the device. However, the
smaller the device is, the larger the perturbation needs to be since small gaps means
that the MBS extends far into the bulk and will interact increasingly with small device
sizes.

In terms of a general gapless Hamiltonian, we wonder if there may exist cases or
perturbations where the imaginary part of the determinant is even in the perturbation.
Such a system would be less sensitive to domain specific differences in the gap opening
perturbation, which again would limit the tendency of the MBSs to condence at the
boundary between the domains.

3.4 Conclusion

We analysed three different types of superconducting systems with a focus on marginal
superconductivity. The criteria in the parameters of the models which give rise to mar-
ginal topology were easily found by searching for the cases when the curve given by the
off-diagonal determinant was purely real. The realness-criteria of the winding curves
were seen to rely on just a small number of the parameters in the model, and in such
a way that the the realness was satisfied by them being zero. Obtaining a value of 0 is
in general an easily obtainable value for many parameters, thus making the marginal
topological phase easily realisable in the laboratory. In the p-wave systems the realness
criteria relied on the dx OP and the hz component of the ferromagnetic field. The mar-
ginal topology of the system with antiferromagnetic order did not rely on the the value
of the antiferromagnetic order parameter, M . We do not speculate in how a value of
dx = 0 is to be obtained experimentally, but we speculate in if using this parameter as a
driving parameter in amarginal topological superconductor is hard to dowithout using
strong magnetic fields and/or electric fields, and even so, is hard to control with these
tools. Thus we assume that experimentally driving the marginal topological phase of
p-wave superconductors is most easily done by controlling the hz component of the
exchange field, which in the case of an external field is as easy as rotating either the
source of the magnetic field around the specimen or rotating the specimen itself.

The s-wave superconductor in a noncollinear magnetic field does only depend on
one superconducting order parameter which is easier to control in contrast to the p-
wave order parameter. Thus to realise a marginal topological phase in such systems
one need only look for magnetic materials with a smallest unit cell of three or more
atoms in the basis which satisfy the equations given in the last section or equivalent
equations for unit cells of five or more atoms. If the unit cell consists of different atoms
for example, we speculate that one can use short laser pulses to change the magnetic
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moment at each lattice site individually by tuning the laser pulse frequency accordingly.
Kirilyuk, Kimel and Rasing (2010) review different methods and experiments to control
the magnetic order of materials, which may be heat effects or polarised light pulses
interacting with the electrons and the lattice.

As we saw in fig. 3.16, gaplessness is not a sufficient requirement alone to have a
marginal topological state. In the case where only nearest neighbour hopping is signi-
ficant and the winding number can only be −1, 0 or +1, the number of nodes in the
Brillouin zone are important. If the number of nodes in each half is even, the system
is trivial. On the other hand, if it is odd, the system is guaranteed to be marginal to-
pological. In fact, this applies to all 1D systems with a winding number, since the sign
difference means that the winding number can only be odd, which excludes the trivial
value of 0. We also showed that the system can be marginal topological with an even
number of nodes in each half of the Brillouin zone if there are next nearest and third
nearest neighbour hopping in the system as in section 3.1. Thus when the gap is opened
multiple MBSs appear on the edges.



4 | Ellipticalmagnetic chain on a s-
wave superconductor

In section 3.3 we reviewed s-wave systems with easy-plane magnetic fields with no
further requirements. In this chapter we analyse a more specific case, namely s-wave
superconductors with elliptical magnetic fields or elliptical conical magnetic fields. In-
deed, such textures may be found in nature in the form of for example some perovskites
(Quezel, Tcheou, Rossat-Mignod, Quezel & Roudaut, 1977; Yamasaki et al., 2007). In
addition, there may be methods to modify the characteristics of such systems that are
easily available experimentally. Such modifications may include

• increasing or decreasing the amplitude of the elliptical field,

• changing the global offset of the elliptical motion,

• changing the offset of the field at isolated points,

• shifting the whole ellipse via external homogeneous fields.

For instance, the helicity of TbMnO3 can be controlled by applying an electrical field
during cooling (Yamasaki et al., 2007) or by external magnetic fields (Kimura & Tokura,
2008), or the cycloidal nature in the material Gd1−xTbxMnO3 can be controlled by
applying an external magnetic field (Yamasaki et al., 2008). Other examples are helicity
control in Eu0.55Y0.45MnO3 (Murakawa et al., 2008, 19).

The topological nature of such systems, especially helical and conical structures,
have already been investigated by Braunecker and Simon (2013), Chen and Schnyder
(2015), Choy et al. (2011), Marra and Cuoco (2017), Nadj-Perge et al. (2013). As we
already showed, helical magnetic field can be transformed into ferromagnetism with
strong Rashba SOC, which allows MBS. By applying elliptical magnetic fields instead

Table 4.1: Unitarily connected models. The models in the same row can be unitarily
transformed to each other by spin-rotations, which means that the energies
are the same except spin-dependent observables.

Model 1 Model 2

Helical, uniform angles FM + SOC
Helical, arbitrary angles FM + nonuniform SOC
Elliptical, uniform angles SDW + SOC
Elliptical, arbitrary angles SDW + nonuniform SOC
Elliptical conical, uniform angles SDW + SOC (nonperpendicular)
Elliptical conical, nonuniform angles SDW + nonuniform SOC (nonperpendicular)

60
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of helical magnetic fields in the model, the system is parameterised by two additional
parameters: the eccentricity of the ellipse and the offset. A circle has a continuous trans-
lation symmetry in the angle, whereas an ellipse has a discrete translation symmetry
with a period of á. Thus, in contrast to the helical case, the offset is of importance and
can not be gauged away by a global transformation. Such a model is unitarily connec-
ted to systems with SDW and uniform (nonuniform) SOC when the angle differences
between the exchange fields are uniform (nonuniform) (cf. table 4.1).

One of the focus point in the investigation into these elliptical systems is the ad-
ditional symmetries that appear when we consider the ellipse parameters as synthetic
momenta. The eccentricity and offset of the exchange field vectors in the ellipse give
an additional two dimensions, and followingly change the topology of the system in
the expanded space. By treating these parameters as synthetic momenta we can un-
derstand the topology in the real 1D system more clearly by the topology in 2D or 3D.
Other questions we consider is the importance of time-reversal breaking and inversion
breaking in this system. The goals of this chapter is to evaluate the phase diagram of
the elliptical (elliptical conical) model, and assess the topological nature of it in light
of the symmetries. We also want to analyse the effects of breaking chirality. The model
is then later analysed with time-dependent parameters in chapter 5.

4.1 Model

The model we use in this chapter is derived from the one given in section 2.6. We
consider a magnetic chain on top of a 2D slab of a s-wave superconductor. There is no
spin-dependent hopping in this system, only normal hopping proportional to t. The
local magnetic field at each site is parameterized on the elliptical cone given by

hi = hi [cos(Ýi +æ)x̂ + sin(Ýi +æ)ŷ] + hz ẑ , (4.1)

where the site dependent in-plane local amplitude, hi , is given by the angle and minor
and major axis,

hi =
hab√

b2 cos2(Ýi +æ) + a2 sin2(Ýi +æ)
. (4.2)

Here h modulates the overall amplitude and a and b controls the eccentricity of the
ellipse. This parameterisation of the ellipse ensures that the angle Ýi +æ is the same as
the angle of the exchange field vectors. The ellipse minor and major axis is modulated
by the parameter Ú as a = cos(Ú) and b = sin(Ú). When sin(Ú) is negative, the angle,
Ýi is negated, and when cos(Ú) is negative, the angle transforms according to Ýi +æ→
á−Ýi −æ. These transformations can be understood by the fact that the axes flip when
sinÚ or cosÚ change sign. This way to parameterise the field allows for the reversal of
the elliptical motion, which is relevant in systems like the aforementioned perovskites
which can be electrically or magnetically tuned.

We note that whether the elliptical (or elliptic cone) spin-texture is transverse or
longitudinal is of little importance as the spins are independent of the momentum of
the electrons (no SOC), which means that any spin-plane can be chosen as the easy
plane in this model. Thus the results obtained here with the momentum along the x-
axis and the elliptical motion in the xy-plane are easily generalised to any spin-plane
and quantum wire orientation.

We now assume that the angle Ýi rotates uniformly with some offset æ, and that
it is commensurate with the lattice, that is Ýi =

2áp
q

i +æ, where p and q are coprimes.
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Followingly, the Hamiltonian has a superlattice constant of qa, where a is the lattice
constant between neighbouring lattice sites. In the following, we assume that the lattice
constant is of unit size. Equivalently, the lattice consists of units cells of q lattice sites.
The fermion operators are relabelled to include the unit cell index, i , and the intracell
index, l, as

ci ,l = cq·(i−1)+l .

The spin index is implied. We also do a local spin rotation around the z-axis in this
model to align the exchange field vectors along the x-axis (xz-plane when hz , 0), given
by eq. (3.26). We now assume periodic boundary conditions, and in this new labelling
scheme, we define the Fourier transformed fermion operators by

ci ,l =
1

NUC

¼
k

eiqkick,l . (4.3)

The momentum, k, is now limited to k ∈ (−á/q,á/q). In k space, the Hamiltonian
becomes

Ĥ = −t
¼
kss′

¼
Ù=±1

q¼
l

c†k,l+Ù,s
[
cos

(
ÖÝl+Ù,l/2

)
ã0 + isin

(
ÖÝl+Ù,l/2

)
ãz

]
ss′

ck,l,s′Ô(l,Ù)

−Þ
¼
kls

c†k,l,sck,l,s −
¼
klss′

c†kls(h(l)ãx + hzãz)ss′ckls′ +

¼
k

(
É0c

†
kl↑c−kl↓ +h.c.

) (4.4)

where the basis index l + Ù is taken modulus q. The intersite hopping phase factor

Ô(l,Ù) =


e−iqka l = q, Ù = +1

eiqka l = 1, Ù = −1
1 otherwise

was defined, which comes from the Fourier transformation when two sites lie in differ-
ent unit cells. To write this Hamiltonian in the BdG formalism, we define the column
vector

Dk =
(
ck,1,↑, ck,1,↓, . . . , ck,q,↑, ck,q,↓, c

†
−k,1,↓, −c

†
−k,1,↑, . . . , c

†
−k,q,↓, −c

†
−k,q,↑

)T
.

The Hamiltonian can thus be written as

Ĥ =
1

2

¼
k

D†kHkDk (4.5)

where the Hamiltonian matrix is

Hk =

(
hk− É̂

É̂ hk+

)
, (4.6)

with

hk± =



±Þ− h(1)ãx ±W12 0 . . . ±W1qe
−iqka

±W ∗
12

±Þ− h(2)ãx ±W23 . . . 0

0 ±W ∗
23

±Þ− h(3)ãx . . . 0

...
...

...
. . .

...
±W ∗

1q
eiqka 0 0 . . . ±Þ− h(q)ãx


(4.7)

and
É̂ = É01qã0.

Here the site and spin dependent hopping term,Wi j , was defined asWi j = t cos
(
ÖÝi j /2

)
ã0+

it sin
(
ÖÝi j /2

)
ãz .
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4.2 Symmetries

4.2.1 AZ symmetries

The next step is to consider which symmetries are present in the system. We already
know that the system has particle-hole symmetry because of the superconductivity.
This symmetry is given by C = äyãy K instead of just äx because of the spin rotated
hole sector. To find the time reversal symmetry operator in k-space, we first complex
conjugate the Hamiltonian followed by reversing the momentum. The superconduct-
ing sector is not affected by this transformation. The only affected part of the matrix
given in eq. (4.7) is the submatrices Wi j which are complex conjugated, which flips the
sign in front of the spin-operator ãz . Since this is the only term in the matrix which
is proportional to ãz , finding the TR operator is trivial: We need only find the matrix
which anticommutes with ãz and commutes with the rest, which are ã0 and ãx . Thus,
the TR operator is ãx , and does not mix particles and holes. Followingly, we find the
chiral symmetry operator by multiplying the two, upon which we arrive at S = äyãz .
Of course, a unit matrix in lattice space is implied for the operators. Thus, in the space
spanned by k, the special symmetry operators are

T = ãx K C = äyãy K S = äyãz , (4.8)

T 2 = +1 C2 = +1 (4.9)

Note that the TR operator given here is the only TR operator available in this model. A
consequence of this is that an exchange field proportional to ãz , which is not affected
by complex conjugation, will anti-commute with the TR operator. Followingly, TR and
by extension chiral symmetry is broken when the field is conical. This means that the
winding number is not defined for systems with conical exchange fields, and we must
rely on the Pfaffian to characterise the topological phases in those cases.

We want to evaluate the topological objects in this model in terms of the space
extended by the real momentum k, and the synthetic momenta Ú and æ. We remind
the reader that the chiral operator is local in momentum space. This means that in this
extended space, the chiral operator is always present as long as the exchange field is
elliptical. We begin by trying to find the symmetries which flip the direction of either
Ú or æ. When Ú is flipped, the direction of the elliptical (conical) motion is flipped by
flipping the y-component of the spin. Intuitively, we expect that if an operator which
flips Ú back exists, it must flip the y-component of the spin. Possible candidates for this
operation are the ãx or ãz matrices. The latter does not work, because it also flips the
spin in the x-direction. So the only remaing option is ãx . Again, by inspection, we see
that eq. (4.7) changes only in the Wi j matrices the same way as previously. Thus, we
reuse the previous arguments to conclude that indeed there exist a symmetry operation
defined by

ãxH(k,Ú,æ)ãx = H(k,−Ú,æ). (4.10)

If we combine this symmetry operator with the TR operator given in eq. (4.8), the result
is a new TR symmetry in the plane spanned by Ú and k, which is simply

KH(k,Ú,æ)K = H(−k,−Ú,æ). (4.11)

We conclude that in this two dimensional space, the system is a two dimensional super-
conductor belonging to the AZ class of BDI. We do not write down the PH operator in
this space, but emphasise that it can easily be found as the product of the chiral sym-
metry operator (same as before) and this new TR operator. Note that the TR operator
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in this space is not broken by a non-zero out-of-plane field hz . We then conclude that
it is the PH operator which is broken by a non-zero hz field in this synthetic 2D space.
It then follows that when the chirality is broken by a non-zero hz , the system belong to
the real class AI.

To flip the synthetic momentum variable æ by a symmetry, more work is required.
At first we note that the negation of æ is able to change the length of the local exchange
field at each atom in the basis, except the last atom in the unit cell where the length is
invariant but the y-component is negated. If we on the other hand do the transforma-
tionæ→−æ−Ý, followed by a spin rotation of á around the x-axis given by the operator
ãx , the exchange fields swap places as hi → hq−i+1. That is, the unit cell is reflected in-
ternally. If we then proceed to multiply the Hamiltonian by the lattice operator which
inverts the unit cell,

M =

NBasis︷                 ︸︸                 ︷
0 0 . . . ã0
...

... . .
. ...

0 ã0 . . . 0

ã0 0 . . . 0

, (4.12)

we expect to obtain the original Hamiltonian with the momentum inverted. In sum-
mary, we can flip the æ around −Ý by the operator

M−1ãxH(k,Ú,æ)ãxM = H(−k,Ú,−æ−Ý) (4.13)

There is also a similar antiunitary operator which does not flip the physical momentum
given by

M−1KH(k,Ú,æ)KM = H(k,Ú,−æ−Ý). (4.14)

However, none of these can combine with the TR operator in Ú-k space given above to
create a new 3D TR operator. It then follows that the system belongs to the complex
AZ class AIII in the synthetic 3D space when hz = 0 and to the complex class A when
hz is non-zero.

4.2.2 Nonsymmorphic symmetries and additional topological invariants

It is known that additional symmetries to the AZ symmetries can have implications
for the topological characterisation of systems (Chiu & Schnyder, 2014; Chiu et al.,
2016). An example of such symmetries are nonsymmorphic symmetries. In their pa-
per, Shiozaki, Sato and Gomi (2016) show that the AZ table can be extended to include
nonsymmorphic symmetries. A nonsymmorphic symmetry is a space group symmetry
which combines a point group operation with a lattice non-primitive lattice transla-
tion. That is, the system is not translated by whole unit cells at the time. The resulting
nonsymmorphic operator is k-dependent. The elliptical system does not have nonsym-
morphic symmetries when the unit cell is odd (except at Ú = á/4), but when the unit
cell is even, every local exchange field is matched in amplitude by the site which is
half a unit cell away in the chain. The other exchange field vector then points in the
opposite direction for any p/q, since we have assumed that they are coprime. Thus,
if we rotate the magnetic pattern by á around the z-axis and translate by q/2 lattice
sites, the Hamiltonian should be left invariant. However, when we translate the lattice
sites by half a unit cell, exactly half of the sites will end up in the initial unit cell while
the other half will end up in the next unit cell. When the Hamiltonian is subsequently
Fourier transformed, there will be an additional k-dependent factor which has to be
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compensated in the operator itself. The operator which translates the lattice sites by
half a unit cell and wraps the overflowing sites back to the start is the matrix

(
0 1q/2

1q/2 0

)
.

Although the spins must be rotated around the z-axis in the original basis, in the basis
where the spins have been rotated to be collinear, this is not needed. The k-dependent
nonsymmorphic symmetry operator is then

U =

(
0 −ie−iqk1q/2

i1q/2 0

)
.

According the the approach given by Shiozaki et al. (2016), this is a order two non-
symmorphic group transformation, and it is important that it squares to 1e−ik in the
following, which is the case. The nonsymmorphic operator transforms as follows under
the AZ symmetry operations

T U(k) = −U(−k)T CU(k) = −U(−k)C SU(k) = U(k)S . (4.15)

According to Shiozaki et al. (2016, tab. V), this extra symmetry allows for an extra
�2 symmetry in addition to the � winding number. If the �2 number is nontrivial,
there will be a topological edge state at a boundary parallel to the k-axis. This means
that if one were able to open up the Ú-axis in a hypothetical position representation
of the synthetic momentum variable Ú, we would have an edge state. The topological
number can be computed by block-diagonalising the Hamiltonian in eigensectors of the
nonsymmorphic operator, and compute the integral

ß± =
i
á

∫ á

−á
dÚTr{A±(k,Ú)},

where A± is the Berry connection in the sector with eigenvalue ±1 of the nonsym-
morphic operator. These topological invariants were computed for different sets of
parameters, but were not found to be nontrivial in the elliptical system for the combin-
ations computed.

4.3 Phase diagram

One of the main results of this chapter is the phase diagram with unbroken chiral sym-
metry (hz = 0), which we now present for an odd unit cell with a three atom basis in the
Ú-æ space for various sets of the amplitude of the elliptical field and for different values
of the chemical potential. In the following, we set the superconducting order parameter
toÉ0 = 0.3t. The phase diagram for a three-atom basis unit cell with p/q = 1/3 is shown
in fig. 4.1 in the space spanned by Ú and æ, and by varying the amplitude of the ellipt-
ical exchange field between the columns, and varying the chemical potential between
rows. Initially, we note that the winding number for the parameters used are only tak-
ing values in the set {−1,0,1}. The diagram clearly shows that a zero exchange field
(left column) gives a trivial topological phase everywhere in the space spanned by Ú
and æ. This is expected, since in that limiting case, the angles between the zero-length
exchange fields are arbitrary, and the system is unitarily connected to a s-wave super-
conductor with spin-independent hopping, which we know is trivial. On the other
hand, we see that when the amplitude of the ellipse is initially increased (moving east),
an increasing number of disconnected areas of non-trivial topological phases appear in
the phase diagram. This is due to an increasing number of energy bands crossing zero
energy as the average exchange field amplitude is increased. In the c5) frame, notice
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Figure 4.1: The phase diagram for a three-atom unit cell in Ú-æ-space varying Þ
and h, computed on a 151 × 151 grid. The rows represents differ-
ent values of Þ, with the row numbers (1,2,3,4,5) corresponding to
(−0.1, −1/2, −1, −3/2, −2)t for Þ, while the columns represent different
values of the ellipse amplitude, h, with the column letters (a, b, c, d, e) cor-
responding to (0, 3/4, 3/2, 9/4, 3)t for h. The maximum winding number
is +1, while the smallest is −1. The s-wave order parameter was not solved
self consistently, but set to 0.3t in all frames.

that there are both negative and positive winding numbers on the same side of Ú = 0.
This is an interesting effect in this model. Instead of flipping the direction of the el-
liptical spin, one can alter the shape and offset of the motion to change the winding
number. The phase diagram is strongly dependent on the filling factor modelled by the
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chemical potential, Þ. In fact, the superconductor is topologically trivial at half-filling
(Þ = 0) for any ellipse shape and size and any superconductor OP (not shown). This
is similar to the helical model or the s-wave superconductor with Rashba SOC in a fer-
romagnetic field, which are related by unitary transformation. Indeed, at Ú = á/4, the
magnetic order is exactly helical. In systems with a helical or conical exchange field,
the minimum value of the in-plane field needed for achieving a topological phase is ob-
tained when the chemical potential is matched to the spin-independent hopping in the
transformed collinear SDW Hamiltonian, i.e. when Þ = ±2t̃ (Nadj-Perge et al., 2013),
where t̃ = cos(Ý/2)t. In the case considered here, we have t̃ = cos(á/3)t = t

2
. This means

that we expect that Þ = ±1 gives the smallest value of the exchange field at Ú = á/4. This
is also supported by the phase diagram.

In fig. 4.2 we show the phase diagram for the even unit cell with four atoms in the
unit cell. The phase diagram is produced from the same set of parameters as in the
previous figure, except for the unit cell size parameter of course. Based on the results
of the helical model (section 3.3.3), we might except that the line Ú = á/4 would be
equal for the two unit cell sizes in all the panels, but the for instance b4) panel differs
between the two unit cell sizes. However, note that it is not the pure hopping parameter
t in eq. (4.4) which defines (together with Þ and É0) the gap closing and opening at
k = −k, but the modified hopping strength t̃ = t cosÝ/2. This means that in principle
the period of the helical texture, parameterised by Ý, can be used to drive a topological
phase, although this might be harder to accomplish than e.g. changing the shape of
the elliptical motion as in the perovskites like TbMnO3. However, in instruments that
employ nanomagnets ()

We expect that for values of Ú close to á/4 it is the fraction p/q which is most
defining for the phase diagram, since it is this number which modifies the effective
spinless hopping in the model, t̃. Closer to Ú = 0 or Ú = á/2 at the high symmetry
points of æ, we expect that the parity of the unit cell given by the number q to a larger
extent affects the phase diagram. This is because at these edge case values of Ú and
æ, the unit cell obtains a finite magnetic moments in the odd case because one of the
magnetic moments will dominate the others in size, whereas the even unit cell always
has a zero magnetic moment when q is even.

4.4 Topology in 2D and 3D

In section 4.2 we showed that the system belongs to the AZ class BDI when in 1D
spanned by k and 2D spanned by k and Ú, because of the additional unitary symmetry
which flips Ú: Ú→ −Ú. We still assume that the out-of-plane exchange field hz is zero.
As we already know, the BDI class can be topologically nontrivial in one dimension,
but looking at table 2.1, we see that the BDI class is topologically trivial in 2D and
3D. This is true when the codimension of defects is one, which is the case when the di-
mensionality of the boundary is one less than the bulk. Such boundaries are those that
distinguishes the bulk from the surroundings: i.e. the 0D end of a chain, the 1D edges
of a 2D object or the 2D surface of a 3D object. However, the two dimensional BDI sys-
tem may have topologically protected nodes off high-symmetry points and the 3D AIII
system may have topologically protected line nodes (Chiu & Schnyder, 2014). These
nodes or lines are protected by a�number which can be computed by surrounding the
node by a small closed curve, C, and computing the winding along this curve,

W =
1

2ái

∫
C

ddetAk,Ú

detAk,Ú
. (4.16)
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Figure 4.2: The phase diagram for a four-atom unit cell in Ú-æ-space varying Þ
and h, computed on a 151 × 151 grid. The rows represents differ-
ent values of Þ, with the row numbers (1,2,3,4,5) corresponding to
(−0.1, −1/2, −1, −3/2, −2)t for Þ, while the columns represent different
values of the ellipse amplitude, h, with the column letters (a, b, c, d, e) cor-
responding to (0, 3/4, 3/2, 9/4, 3)t for h. The maximum winding number
is +1, while the smallest is −1. The s-wave order parameter was not solved
self consistently, but set to É0 = 0.3t in all frames.
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Figure 4.3: Examples of curves that a winding number can be computed on. The black
curve is the curve that the regular winding number is computed along, go-
ing parallel to the k-axis, whereas the orange curves encloses Nodes in the
Hamiltonian which may change the winding number. The purple curve is
an counterclockwise curve which encloses the whole k-axis and thus gives
a winding number which is the sum of the two orange curves.

This is depicted for the 2D case in fig. 4.3 as e.g. the orange curves, but other alternat-
ives exist which wrap multiple nodes (purple) or traversed the 1BZ (black). The system
is gapfull in Úk-space when the exchange field amplitude is zero. Thus there does not
exist any closed curve which gives a nonzero winding number. As long as the gap never
closes on the curves considered, the winding number can not change by the same argu-
ments as presented previously in this paper. From this argument, whenever the gap
in the Hamiltonian closes at a point in the 2D Brillouin zone, the point must either be
characterised by a zero winding number, or it must come in pairs of nodes with oppos-
ite winding numbers. This gives rise to a conservation law for the whole Brillouin zone:
the sum of the winding numbers of the nodes must be zero for all parameters.

The physical system is extended by the momentum dimension k, which means that
the topological phase of the physical system is defined by the winding number com-
puted along curves that are constant in Ú-æ-space and traverses the k Brillouin zone,
such as the black curve in fig. 4.3 or the purple straigth curves in fig. 4.4. If we monitor
these lines as we slowly turn on the exchange field amplitude, we will see that the phys-
ical system defined by such a line is trivial as long as the gap stays closed on the line,
even when there appears nodes in the Hamiltonian in the 3D space. However, when
the parameters of the model change, the nodes will move around. When a node with a
nontrivial winding number crosses the ‘integral’-lines parallel to k, the winding num-
ber changes from a trivial zero to a nonzero winding number. As an example of this,
take the two straight lines in fig. 4.4 that we compute the winding along for different
values of æ and Ú. These lines are separated by a line node. If the circular line integral,
eq. (4.16), around this line node is nW,C , 0, the two straight integral-lines must have
a winding number difference of nW,C. Therefore at least one of the lines represents a
system with MBS at the boundaries as both can not be zero. To say it another way, the
line nodes in the 3D space are boundaries between regions with different topological
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Figure 4.4: Examples of line nodes and line integrals in kÚæ-space. The orange lines
schematically represent line nodes whereas the purple circles or lines (tra-
versing the whole 1BZ) represents line integrals that may have a nontrivial
winding number. All the purple curves are topologically different, meaning
that they can not be continuously transformed to each other without clos-
ing the gap. The straigth lines are the lines that give the topological phase
in the physical system extended by the k-dimension.

phases.

4.5 High symmetry points

Looking at the phase diagrams in figs. 4.1 and 4.2, the symmetries of the phase diagram
clearly stands out. The winding number is antisymmetric with respect to Ú = 0. This
is because the two systems obtained by Ú and −Ú are mirrored versions of each other.
When the sign of Ú is flipped, the y-component of the exchange field flips and the
elliptical pattern changes direction. Thus, an eigensolution, u, to the Hamiltonian H(Ú),
with the y-spin flipped (cf. eq. (4.10)),

u→ ãxu

will be a solution to the Ú-flipped Hamiltonian H(−Ú). This can be seen by the following
proof.

Proof. Assume that the eigensolution u satisfies the eigenvalue problem, H(Ú)u = Eu

and that the chiral symmetry is unbroken, that is, hz = 0. Then the transformed ei-
gensolution, ãxu, is an eigensolution of the Hamiltonian H(−Ú) with the same energy.
That is H(−Ú)ãxu = Eãxu:

H(−Ú)ãxu
(4.10)
= ãxH(Ú)ãxãxu

= ãxH(Ú)u

= Eãxu
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Alternatively, this transformation can be combined with the TR operator to give a
momentum-reversed and y-spin-flipped solution given solely by the complex conjuga-
tion

u→ Ku. (4.17)

which satisfies
H(k,Ú)u = Eu =⇒ H(−k,−Ú)Ku = E Ku.

Because the energies and the eigensolutions for the two different Hamiltonians ob-
tained with opposite signed Ú are unitarily connected, it follows that they must both
be topologically trivial or non-trivial at the same time. But it does not mean that they
are compatible, as is seen in the difference in sign of the winding number. This is be-
cause the operator which transforms between them does not commute with the chiral
symmetry operator.

In addition to the antisymmetry with respect to Ú = 0, the phase diagram is also
symmetric to æ = 0 (and similar points where the exchange field vectors are mirror
symmetric). This is true for any combinations p/q, not just the two which were shown
in the previous section. This symmetry in the phase diagram is related to the two
symmetries given in eqs. (4.13) and (4.14), which exists around any æ point with mirror
symmetry.

When Ú, which controls the eccentricity of the ellipse, approaches ám/2,m ∈�, the
ellipse is flat along either the x or y axis. This means that all the exchange field vec-
tors are collinear. We already know that collinear exchange fields gives rise to systems
which are either in a topological trivial region or are marginal topological and between
two topological phases with opposite winding numbers. With the exchange field para-
meterised by eq. (4.2), the system is always topological trivial for a general æ for these
extreme values of Ú except at the points

æ =

á(n − 2p

q
m), when Ú = ál

á(n + 1
2
− 2p

q
m), when Ú = á/2+ál

(4.18)

for any integers l, m and n. At all other values, the exchange field is uniformly zero.
When all exchange fields are zero, the transformation which was done to make the
exchange field vectors collinear (cf. eq. (3.26)) is then arbitrary and in principle inde-
pendent of the angles between the zero-length exchange field vectors. The system is
then equivalent to a normal s-wave superconductor. However, at the special points as
given in eq. (4.18) when Ú = má/2, the exchange field pattern has one (two) non-zero
exchange field vector in the unit cell in the odd (even) case with same (opposite) dir-
ection, whereas the rest of the vectors are zero. It is a well known fact that s-wave
superconductors in general are more compatible with AFM magnetic ordering than
FM magnetic ordering, since the momentum of the electrons in the Cooper pairs are
more compatible. Therefore, we expect that the Hamiltonians obtained in the case con-
sidered here is more able to close the gap in the odd unit cell than in the even unit cell,
since the first has a net magnetic moment. Taking a closer look at the phase diagrams
in the latter section, we see that there are qualitative differences between the two dia-
grams close to the Ú = 0, æ = 0 point. In the first phase diagram where the unit cell is
odd, this high symmetry point divides two different topological phases with opposite
winding numbers provided that the exchange field is strong enough and the system
is away from half-filling. That is, when we open the ellipse by changing Ú, the system
goes straight into a topological phase. This is no different than the marginal topological
systems we discussed earlier. Interestingly enough, this is not always true in the odd
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case. Take for instance the subfigure c5) of fig. 4.1 where the chemical potential is very
low. Here we see that close to the Ú = 0, æ = 0 point the system is trivial when Ú is
varied, whereas when Ú is varied together with æ (at an angle in the phase diagram) a
non-trivial phase can be achieved.

On the other hand, when the unit cell is even as shown in the second phase diagram
(fig. 4.2), the system obtains a trivial phase when Ú is varied from 0, as seen as the
bubble-like shapes of trivial topology in the phase diagram close to these high symmet-
ric points. When the ellipse is opened up significantly (Ú approaching á/4) however,
the system is again able to close the gap and go into a topologically non-trivial phase.

4.5.1 Marginal topological phases

When the exchange fields are mirror symmetric and collinear (Ú = æ = 0), the system
may lie between two topologically non-trivial phases with opposite winding number.
This means that the winding number, which is a path integral along lines parallel to
the k-axis in the space spanned by Úk, changes at Ú = 0. We remind the reader that
this winding number is computed from the determinant of the off diagonal part of the
Hamiltonian in the chiral basis, |Ak |. This determinant is continuous in the Úk-space,
and followingly we may define closed loops other than the ones that run parallel to the
k-axis. Indeed, if we define a curve similar to the purple curve drawn in fig. 4.3, which
goes parallel to k for an infinitesimal value Ú = 0− and through the whole Brillouin
zone, then goes from Ú = 0− to Ú = 0+, then goes back along k and in the end closes
the path, the winding number computed along this path must be exactly equal to the
winding number difference of the winding number at Ú = 0− and the one at Ú = 0+.
Here we assume that the curve does not pass through nodes of the Hamiltonian where
the integrand ddetAk

detAk
blows up and is undefined. The reason for this equivalence is that

the short sides of this path are negligible when Ú approaches zero. Also, the integral
can only change whenever the path that we integrate along passes through a node in
the Hamiltonian.

If the winding number along the purple curve is non-zero, we expect that there
are at least one source of ‘winding’ at the Ú = 0 line. Such a source of winding can
only be located at places where the Hamiltonian has nodes. Thus we expect that the
Hamiltonian is gapless at the Ú = 0 line when the system is marginally topological.
In fig. 4.3 we have schematically drawn to nodal points that each have a winding of
+1 when we integrate along CCW curves that encloses them (orange). Thus a regular
winding number nW at Ú = 0+ subtracted from the winding number at Ú = 0− is the sum
of the winding numbers on the orange curves. If the nodal points of the Hamiltonian
does not lie in the Ú = 0 line, the integral along the purple curve is zero, which means
that the regular winding number close to Ú = 0 is zero and followingly the system is
not in a marginally topological phase.

As an example, we consider the system with three atoms in the unit cell. When
the exchange field amplitude is gradually turned on, the energy gap eventually closes
at a non-zero k on the Ú = 0 line. This transition is shown in fig. 4.5. If we define a
small curve that encloses this point and compute a winding number along it, it will
be zero before the gap closes, because it can be continuously deformed into a small
point without passing a gap. When eventually the gap closes inside this curve as we
turn on the exchange field, the winding number must still be zero since the gap has not
been closed on the curve yet, only inside it. However, when the amplitude is further
increased, two nodes appear from this gap closing, as can be seen in the purple curve
in fig. 4.5. If we wrap a curve around each of the nodes, we will see that they each have
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Figure 4.5: Energy gap at æ = 0, Ú = 0 line varying h. The parameters are Þ = −1.4t,
É = 0.3t and p/q = 1/3.

a non-zero winding number and since they must sum to zero, they have opposite signs.
The determinant of the off-diagonal matrix Ak and the energy gap was computed for
the parameters used in the purple curve in fig. 4.5 for a region in Úk-space, which is
shown in fig. 4.6. The arrows in this figure point in the direction of the determinant in
the complex plane, while the contours represents the logarithm of the energy gap, with
the darkest colours being the smallest gap. By following the arrows around each of the
two nodes in this region, one can visually see how the winding takes place. Following
a CCW path around the left node, one can see that it winds one time CCW, whereas
the arrows turn one time clockwise (CW) when a CCW path around the right node is
followed. The two nodes were initially created as a pair at the same point when the
exchange field amplitude reached a certain threshold between 0.69t and 0.7t. Initially,
these nodes are created on the Ú = 0 line, both at some k = k′ and at k = −k′ due to TR
and PH.When the exchange field amplitude is further increased, the nodes in each pair
move independently of each other along the Ú = 0 line. Eventually, the nodes with the
same winding number from each pair meets at a time reversal invariant momentum,
and subsequently they are allowed to move along these fixed momentum along the Ú-
axis. This is shown in fig. 4.5, where the node pair is initially created close to h = 0.7t,
and one node moves toward k = 0 and the other moves towards qk = á, and finally
when h is large enough, the latter node disappears from the Ú = 0 line and moves into
non-zero values of Ú, as seen for the orange curve in fig. 4.5. As soon as one of the nodes
moves into non-zero values of Ú, the superconductor is marginally topological at Ú = 0:
Two nodes with the same winding numbers are located at the Ú = 0 line, while the
other two nodes with opposite winding numbers of the first two are located at (qk, Ú) =
(á, ±Ú′). Thus the line integrals along the k-axis at Ú = ±ÖÚ have different winding
numbers. The sign change in the winding is due to a sign change in the imaginary part
of the determinant, |Ak | as explained in section 3.3.

The marginal topological phase at Ú = 0 also underlines another key point for topo-
logy in magnetism coupled to superconductivity. At this line, the system is inversion
symmetric due to the lack of a hy component in the spin-texture, but has broken con-
ventional TR symmetry (T 2 = −1 is broken, but we still have T 2 = +1). As soon as in-
version is broken by a nonzero Ú value, the system becomes topological nontrivial. This
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Figure 4.6: Energy contours and winding around nodes in the Ú-k-plane. The contours
go from dark (smallest) to light yellow (largest) energy gap measured by
the logarithm of the smallest energy. The arrows point in the direction of
the complex number |AkÚ| in the complex plane. The black and red dots
are nodes in the Hamiltonian. As can be seen visually, the arrows around
each node winds opposite of each other. By following a CCW curve around
the left node, a winding of +1 will be obtained, while the right will have a
winding of −1, thus summing up to 0.

underlines the importance of both conventional TR symmetry breaking and inversion
symmetry breaking to achieve a topological phase. We also note that both symmetries
need to be broken, as we can imagine a superconductor coupled to a semiconductor
with a Rashba SOC. As we have already explained, when there is no TR symmetry
breaking (no magnetism), such a Hamiltonian can be spin-rotated to reconstruct the
inversion symmetry, where we end up with a pure conventional superconductor. How-
ever, when the conventional TR is broken by a magnetic field, the inversion symmetry
can in general not be reconstructed since the exchange field vectors will interfere.

4.6 Chiral symmetry breaking

As long as the hz component 0 the Hamiltonian has both TR symmetry and PH sym-
metry, and thus also chiral symmetry, but when the out-of-plane component of the ex-
change field is nonzero, the TR symmetry and consequently chiral symmetry is broken.
As a result, we can no longer define a winding number on the Hamiltonian. Instead
we can use the PH symmetry to compute the Pfaffian at the time reversal invariant mo-
menta as in the Kitaev model (Chen & Schnyder, 2015). Tewari and Sau (2012) showed
that the Pfaffian computed on the topological nanowires as the ones considered here
gives the parity of the winding number. Since the system only has nearest neighbour
hopping and simple s-wave superconductivity, the Pfaffian and the winding number
will always give the same topological phase. If the absolute value of the winding num-
ber were able to be larger than 1, the Pfaffian would be trivial when the winding num-
ber were ±2. As long as the chiral symmetry is conserved, the winding number would
give the correct number of MBSs at each boundary. If the chiral symmetry is broken,
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Figure 4.7: Comparison of phase diagram computed with the Pfaffian or winding num-
ber when the chiral symmetry is unbroken. The parameters were p = 1,
q = 3, h = 2.76t, É0 = 0.3t and Þ = −1.41t.

the MBSs can in general interact and as a consequence pair up and gap out. If there are
an odd number of MBSs, there will always be one MBS left after such an interaction,
whereas if there are an even number of MBSs, there is no such guarantee. This explain
how the Pfaffian is connected to the winding number even in systems with larger values
of the winding.

The Pfaffian can not change without the gap closing at a time reversal invariant
momentum, and thus we expect that the nodal points (lines) in the two (three) dimen-
sional space spanned by kÚ (kÚæ) are not only protected by the topological winding
number around these objects, but also by PH. The out-of-plane exchange field may
move the nodes, but it may only do so in a continuous manner. From this we expect
the topological phases in the chiral model to continuously develop as the chiral sym-
metry is increasingly broken. In other words, if a given Hamiltonian is located deep
inside a topological area in the phase diagram and therefore has MBS at the bound-
aries, we expect that the addition of an out-of-plane field will not remove the MBSs,
but may only do so by closing the bulk energy gap first. A comparison of the Pfaffian
and the winding number is shown in fig. 4.7 in a case which has the chiral symmetry
intact, since this is the only case where the winding number can be computed for the
comparison. As the figure makes clear, whenever the Pfaffian topological invariant is
nontrivial (signPfH = −1), the winding number is also nontrivial. However, the Pfaf-
fian being a �2 number and the winding number being a � number, the Pfaffian can
not give us the sign of the winding number.

When the chiral breaking term hz is introduced in the model, the phase diagram
is modified as shown for the specific case of an odd unit cell of three atoms in fig. 4.8.
We note a few interesting behaviours as seen in this figure. First, the phase diagram
as shown in a) changes most close to hz = É0. This is close to the point where the
s-wave energy gap is closed in a ferromagnetic field. Close to this field strength, new
nodal points are created in pairs at TR symmetric momenta k on the Ú line which
subsequently move around and may merge again with the initial nodes to gap them
out. That is, one pair is created, call the nodes A and B. A can then merge with an
initial node C and gap out, while B can merge with an initial node D and gap out. The
result is that two nodes are removed in total. Second, when hz = É0, the nodal points
in kÚ-space extend into line nodes instead, as shown in fig. 4.9. These line nodes may
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Figure 4.8: Phase diagram in Ú-hz space and the energy gap. When hz is close to the
superconducting order parameter in size, É0, the phase diagram changes
significantly. But for hz > É0 the phase diagram still has nontrivial areas.
However, these regions are gapless and can thus not support MBSs. The
parameters were Þ = −t, h = t, É0 = 0.3t, æ = 0 and p/q = 1/3.

extend into non time reversal symmetric k and at values of Ú where the Hamiltonian
has a nontrivial topological invariant. Thus at these points the Hamiltonian becomes
gapless, and the sign of the Pfaffian of the Hamiltonian is undefined. Although the
sign of the Pfaffian as computed at k = 0 and qk = á is still defined, the sign of the
Pfaffian for the Hamiltonian as a whole is not defined because of the nodes. In addition,
presence of nodes in the bulk Hamiltonianmeans that theMBS at the edges can interact
through the bulk and thus gap out. Thus we conclude that whenever the gap is closed,
but the Pfaffian at the TR invariant k is nontrivial, the system is in a trivial phase. This
is of importance later, when we investigate the effects of sudden quenches in the out-of-
plane field, hz both to subcritical values below É0, and supercritical ones.

4.7 Conclusion

The s-wave superconductor with an elliptical magnetic texture belongs to the class BDI
and has a winding number topological invariant. In addition, depending on the num-
ber of lattice sites in the unit cell, the system may have an additional nonsymmorphic
symmetry in 1D. This symmetry in principle allows an extra �2 number in addition to
the winding number. However, we did not find combinations of the parameters where
this number was nontrivial.

When the exchange field is helical, we already know analytically that the lowest
exchange field which puts the system in the topological phase is obtained when the
chemical potential is at the top or bottom of the energy bands when no field is applied.
That is, the system is either full or empty. The phase diagram indicates that the same
applies to the elliptical systems in general for other values of Ú than just á/4. The phase
diagram was also different for even and odd unit cells, where the odd unit cell could
be marginal topological at Ú = æ = 0 and equivalent points, whereas the even unit cell
has a trivial phase close to these points. This is likely due to the difference between
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points are turned into nodal lines when hz ≥ É0. The parameters are h =
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the qualitative exchange field close to these points. In the even case, the net magnetic
moment in the unit cell is always zero, whereas it is nonzero for odd unit cells close to
this point.

In the space spanned by k and Ú the system still belongs to the AZ class BDI, which
is a trivial class. But, it meant that it had symmetry protected nodes, and in the case
of the third dimension æ, there were symmetry protected lines. These nodal points
(lines) are protected by a well defined winding number due to the chiral symmetry.
Thus, these nodes generate nontrivial winding when we look along lines parallel to the
k-axis, which is the winding number which gives rise to MBSs in the 1D finite system.
Since the nodes had winding numbers, this meant that equal winding number nodes
would not interact, but opposite nodes could interact and gap out.

When the chiral symmetry breaking out-of-plane exchange field, hz , was turned on,
the nodal points did not gap out, which indicates that they are also protected by the PH
symmetry. It was also seen that the previous nontrivial winding number was connected
to a nontrivial Pfaffian invariant. As a consequence, the MBS in the chiral case do
not gap out when the chiral symmetry is broken, and still require the bulk energy
gap to close to disappear. When the hz component reached a critical value, equal to
the superconducting order parameter É0, the point nodes in the kÚ-plane turned into
connected line nodes. These line nodes extended into the Brillouin zone, and leads
to the gap closing for ranges of Ú-values. Since the line nodes in general were not
located at the time reversal invariant momenta, a Pfaffian invariant was still possible to
compute. However, since the gap closed at non-time reversal invariant momenta, this
meant that the Pfaffian invariant was meaningless, and no MBSs were present at the
edges.



5 | Time-dependent driving

Until now we have only considered static Hamiltonians, or by extension, adiabatic
changes in the Hamiltonian. Wewill now consider time-dependent Hamiltonians where
the characteristic time-scale is short enough to excite states and affect the time-evolution
of the Hamiltonian. Knowledge about the dynamical properties of topological systems
is important in practical use cases as for example in quantum computers, since the
MBSs will be quickly turned on and off and moved around in such setups. For instance,
there are suggestions of systems with quantum gates which can be turned on and off
to braid the Majorana states which rely on the behaviour during fast driving (Alicea
et al., 2011; Amorim, Ebihara, Yamakage, Tanaka & Sato, 2015; Scheurer & Shnirman,
2013). Examples of important characteristics are the robustness of the MBSs, the oscil-
lations of them after a quench or the ability to destroy them effectively by altering the
parameters.

In particular, we will consider quenches in the Hamiltonian of the elliptical model
presented in chapter 4, either within the same topological phase, to a phase boundary
or across a phase transition. This is a general problem in quantum mechanics and
in the framework of topological quantum systems has been faced by many authors
(Bermudez, Patanè, Amico & Martin-Delgado, 2009; Bonnes, Essler & Läuchli, 2014;
Pyka et al., 2013; Sacramento, 2016, 2014). During a sudden quench of parameters
within a finite size system, the fate of the edge states depends on whether the initial
and final state are both topological or if the final phase is trivial. In the first case, if
the topological invariant is the same before and after the transition the probability of
finding MBSs will in general decay to a finite nonzero and non-unity value. In the
latter case, when the system is quenched to a topologically trivial phase, the survival
probability will either oscillate as the edge state moves between the boundaries of the
finite system (Perfetto, 2013; Sacramento, 2016) or it can quickly decay to zero with
minor erratic peaks.

In general, we want to solve the time-evolution of single particle states given a
Hamiltonian that is time-dependent, H(ä). We choose to denote the time variable by
ä to discern it from the hopping strength parameter t. The characteristic equation we
need to solve is then the time-dependent Schrödinger equation,

iℏ
�

�ä

∣∣∣è(t)⟩ = Ĥ(t)
∣∣∣è(t)⟩ . (5.1)

We set ℏ to unity in the following, which effectively sets the time scale to ℏ/t (t has
the unit J and defines the energy scale, whereas ℏ has the unit Js). The time-evolution
operator is the operator that transforms the eigenstates from an initial time ä0 to a later
time ä, and is

U(ä,ä0) = e
−i

∫ t

ä0
dä′ Ĥ(ä′)

, (5.2)

78
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assuming the Hamiltonians at different times commute. The Schrödinger equation can
then be rewritten as

i
�

�ä
U(ä,ä0)

∣∣∣è(ä0)⟩ = Ĥ(ä)U(ä,ä0)
∣∣∣è(ä0)⟩ . (5.3)

The initial state can be decomposed in the eigenenergy states∣∣∣è(ä0)⟩ =¼
n

cn(ä0)
∣∣∣èn(ä0)

⟩
with

¼
n

|cn |2 = 1 (5.4)

Ĥ(ä0)
∣∣∣èn(ä0)

⟩
= En(ä0)

∣∣∣èn(ä0)
⟩

(5.5)

We write the Hamiltonian as

Ĥ(ä) =
¼
n

En(ä)
∣∣∣èn(ä)

⟩⟨
èn(ä)

∣∣∣ . (5.6)

We will only consider states of the systems in question that are given by the ground-
state plus one excitation, and assume that the system stays in the one excitation sub-
space. Thus we only need to follow the dynamics of the the excited state through the
time evolution of the Hamiltonian.

5.1 Quenching

Quenching of the Hamiltonian, also referred to as the sudden approximation, is when
the changes in the Hamiltonian happen over a time interval which is significantly
shorter than the inverse energy differences over the transition, ℏ/ |E f

n − E i
l
|, where E f

n

are the energies in the final Hamiltonian and E i
l
are the energies in the intermediate

Hamiltonian (Jacob Linder, 2017). Thus, before such a sudden change occurs in the
Hamiltonian, the systems time-evolution is given by an initial Hamiltonian, whereas
after the change the time-evolution is given by a different Hamiltonian with in gen-
eral different energies and eigenvectors. Imagine that the Hamiltonian is given by
Ĥ0 = Ĥ(à0), ä < ä0 = 0 for an initial set of parameters à0, and Ĥi = Ĥ(ài ), ä i−1 < ä < ä i
at different times for other sets of parameters, where ä i satisfies ä i > ä i−1. In each time
interval the eigenstates of the Hamiltonian are Ĥ(ài )

∣∣∣èn(ài )
⟩
= En(ài )

∣∣∣èn(ài )
⟩
. Thus, be-

fore the first quench the system has the eigenstates
∣∣∣èn(à0)

⟩
. Inside each time interval

where the Hamiltonian is constant, the time evolution operator is

Uài (ä,ä i−1) =
¼
n

e−iEn(ài )(ä−ä i−1)
∣∣∣èn(ài )

⟩⟨
èn(ài )

∣∣∣ . (5.7)

Since we are working in the sudden approximation, and the Schrödinger equation is a
linear and continuous equation, the time-evolution operator must also be continuous
on the whole time-line. Thus, the total time evolution operator is simply the time-
evolution operators ‘glued’ together at the intersecting times. For the times ä j−1 < ä < ä j
the time evolution operator is

U(ä,ä0) = Uàj (ä,ä j−1)Uàj−1(ä j−1, ä j−2) · · ·Uà1(ä1, ä0). (5.8)
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Written out, the time-evolution operator is

U(ä) =



´
m0

e
−iEm0

(à0)ä
∣∣∣èm0

(à0)
⟩⟨
èm0

(à0)
∣∣∣ , ä ≤ 0´

m1
e
−iEm1

(à1)ä
∣∣∣èm1

(à1)
⟩⟨
èn1

(à1)
∣∣∣ , 0 ≤ ä ≤ ä1¼

m2m1

e
−iEm2

(à2)(ä−ä1)e−iEm1
(à1)ä1

∣∣∣èm2
(à2)

⟩⟨
èm2

(à2)
∣∣∣èm1

(à1)
⟩⟨
èm1

(à1)
∣∣∣, ä1 ≤ ä ≤ ä2

. . . , . . .

. (5.9)

Here it can be seen that each time evolution operator projects the old states at the end
of the previous time interval onto its own states, which is then time-evolved according
to the new energies. When the time, ä, is in the beginning of an interval, say ä = ä i , we
see from eq. (5.7) that U(ä = ä i , ä i ) = 1 due to the completeness relation, meaning that
the transition from one set of parameters to another is a continuous one.

We now consider the case where we have an initial state which is an eigenenergy
state of the Hamiltonian for times ä < ä0. We denote this state

∣∣∣èm0
(à0)

⟩
, where the sub-

script 0 inm0 means that it is them0 eigenstate of the Hamiltonian with parameters à0.
We wish to inspect the probability that we observe an eigenstate,

∣∣∣èn0
(à0)

⟩
of the initial

Hamiltonian at a later time ä after the system has evolved according to the quenches
that have been applied. Thus at time ä > ä0 = 0, the system is in the state∣∣∣è(ä)⟩ = U(ä,ä0)

∣∣∣èm0
(à0)

⟩
. (5.10)

The probability to find the initial state at time t is then the overlap of the two states
squared:

Pn0,m0
(ä) =

∣∣∣∣⟨èn0
(à0)

∣∣∣U(ä,ä0)
∣∣∣èm0

(à0)
⟩∣∣∣∣2 . (5.11)

Let for example 0 < ä < ä1, then the probability to find the eigenstate labelled n0 is

Pn0,m0
(ä) =

∣∣∣∣∣∣∣⟨èn0
(à0)

∣∣∣ ¼
m1

e
−iEm1

(à1)ä
∣∣∣èm1

(à1)
⟩⟨
èm1

(à1)
∣∣∣ ∣∣∣èm0

(à0)
⟩∣∣∣∣∣∣∣
2

(5.12)

=

∣∣∣∣∣∣∣¼m1

e
−iEm1

(à1)ä
⟨
èn0

(à0)
∣∣∣èm1

(à1)
⟩⟨
èm1

(à1)
∣∣∣èm0

(à0)
⟩∣∣∣∣∣∣∣
2

. (5.13)

5.1.1 Numerical method

To proceed numerically, we choose a common basis to compute all the eigensolutions
in. The position basis is a natural choice when we are dealing with systems with finite
size. Thus, for each set of parameters and accompanying Hamiltonian, we compute the
set of eigenvectors that solve the BdG-equation (eq. (2.28)). As a reminder, the result
of such an equation is an array of energies, (E1(ài ),E2(ài ), . . .), and a matrix, Vmn, where
the columns are the eigenvectors of the BdG matrix. For a given constant Hamiltonian
the time-evolution operator, which is now a matrix, is

Ui j (ä) =
¼
n

e−iEn(ài )äVin(ài )(V(ài )
†)nj . (5.14)

The matrix product of the distinct time-evolution operators for each time interval is
computed with the newest time-evolution operator in the left and the oldest on the
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right in the matrix product. When we finally want to compute the probability to find
the system in a final eigenenergy-state mf given an initial eigenenergy-state mi , we
compute the probability matrix, given by

Pmfmi
(ä) =

∣∣∣∣(V†(àf )U(t)V(ài )
)
mfmi

∣∣∣∣2 , (5.15)

while if the initial and final states, given by the vectors vi and vf in the Hilbert space re-
spectively, are not eigenenergy-solutions but some arbitrary composed states, the prob-
ability is

P(f , i , ä) =
∣∣∣v†f U(ä)vi

∣∣∣2 . (5.16)

5.1.2 Oscillations

A possible effect that may arise from sudden quenches in finite systems is that of oscilla-
tions in the survival probability. Such oscillations can be understood in the context of
repeated reflections internally in the system. Thus, if a wave packet does not disperse
too much during the traversal of the system after a quench, it must eventually appear
back where it began with a nonzero overlap with the initial wave function and therefore
a nonzero survival probability. Depending on the degree of the dispersion of the wave
packet, the survival probability may repeat with the same peak heights or decay as the
wave packet is more uniformly distributed inside the finite system. Take for example
a MBS at the boundary of a finite system before a quench. This energy eigenstate of
the Hamiltonian is prohibited from entering the bulk because of the band gap which is
located there. However, if the system is suddenly quenched from this nontrivial topo-
logical phase to a trivial one, the in-gap zero-energy states (the Majoranas) disappears
and are now located inside the bulk-energy spectrum. In general there is nothing which
says that the Majorana modes must overlap mainly with edge states, if they still exist,
and we expect that the Majorana modes will overlap with a range of eigenenergy states
around the band gap. Since many of these eigenstates will be bulk-states in the new
Hamiltonian, the previous Majorana mode now start to move through the bulk. The
wave packet form and dispersion will then depend on the dispersion relation for the
new Hamiltonian and the details of the overlap between the Majorana modes in the old
Hamiltonian and the bulk modes in the new Hamiltonian.

We can take this analysis further and consider various forms of the dispersion re-
lation of the new Hamiltonian and the effects on the dispersion of the resulting wave
packet and thereby the behaviour of the survival probability. If we assume that the
Majorana modes mainly overlap with the eigenstates closest to zero in energy after the
quench, we can describe the result in terms of the dispersion limit close to the edge of
the energy band. In this regime, the Hamiltonian can be qualitatively described by two
types of fermions: massless (Dirac node) andmassive fermions. The difference between
the two types of dispersion relations is that the massless type has a constant phase ve-
locity and also group velocity, whereas the massive fermion one has a nonzero double
derivative of the dispersion relation with respect to the momentum,

�2kE(k) , 0. (5.17)

The difference between these dispersion relations is that the first is non-dispersive
whereas the latter is, meaning that a massive wave-packet will widen over time and
eventually be uniformly distributed in the finite system after enough reflections. Thus
if there are oscillations at all, we can expect a survival probability which is peaked with
a constant period but decaying over time.
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The long term survival probability of a Majorana mode can be approximated when
the system is quenched once such that the topological phase of the ground state is
unchanged. This probability is in most cases the constant probability value that the
survival probability oscillates around. In that case, if there are, for example, two Ma-
jorana modes in the first Hamiltonian, then there will also be two Majorana modes in
the second Hamiltonian. We refer to these Majorana modes as

∣∣∣Õ1(ài )⟩ and ∣∣∣Õ2(ài )⟩ for
the Hamiltonian with the parameter set denoted ài . These Majorana modes are numer-
ically chosen as the two eigenenergy solutions with the lowest energy, which due to PH
are the two eigenstates in the middle in a list of eigenstates sorted by energy. If we are
interested in the long term survival probability of one of the Majorana modes in the ini-
tial system, say

∣∣∣Õ1(à0)⟩, we compute the overlap of this mode onto the new Majorana
modes. Since the initial modes and final modes have 0 energy, the evolution operator
will be constant if we focus only on the subspace of states which are the Majorana states.
Thus the evolution operator is approximately

U(ä) =
∣∣∣Õ1(à1)⟩⟨Õ1(à1)∣∣∣+ ∣∣∣Õ2(à1)⟩⟨Õ2(à1)∣∣∣ , (5.18)

and the survival probability is then approximately

PÕ1,Õ1
(ä) =

∣∣∣⟨Õ1(à0)∣∣∣U(ä)
∣∣∣Õ1(à0)⟩∣∣∣2 (5.19)

=
∣∣∣⟨Õ1(à0)∣∣∣Õ1(à1)⟩⟨Õ1(à1)∣∣∣Õ1(à0)⟩+ ⟨

Õ1(à0)
∣∣∣Õ2(à1)⟩⟨Õ2(à1)∣∣∣Õ1(à0)⟩∣∣∣2 (5.20)

=

∣∣∣∣∣∣∣⟨Õ1(à1)∣∣∣Õ1(à0)⟩∣∣∣2 + ∣∣∣⟨Õ2(à1)∣∣∣Õ1(à0)⟩∣∣∣2∣∣∣∣2 . (5.21)

We also point out that the sudden approximation can be used to approximate any
time-dependent Hamiltonian by dividing the Hamiltonian evolution into small time
steps as follows

U(ä,ä′) = U(ä,ä −Éä)U(ä −Éä,ä −2Éä) · · ·U(ä − (n −1)Éä,ä′), Éä = (ä − ä′)/n (5.22)

≈ exp
{
−i Ĥ(ä −Éä)Éä

}
exp

{
−i Ĥ(ä −2Éä)Éä

}
· · ·exp

{
−i Ĥ(ä′)Éä

}
(5.23)

=

¼
m1...mn−1mn

exp
{
−i(Emn

(ä −Éä) + Emn−1(ä −2Éä) + . . .+ Em1
(ä′))Éä

}
×∣∣∣èmn

(ä −Éä)
⟩⟨
èmn

(ä −Éä)
∣∣∣ ∣∣∣èmn−1(ä −2Éä)

⟩⟨
èmn−1(ä −2Éä)

∣∣∣ · · ·∣∣∣èm1
(ä′)

⟩⟨
èm1

(à(ä′))
∣∣∣ .

(5.24)

This is actually a first order numerical method to solve a differential equation , specific-
ally the forward Euler method. Other methods may be used to solve the differential
Schrödinger equation, including higher order solvers as for example the well known
Runge-Kutta method of 4th order (Kutta, 1901; Runge, 1895). The relation between
the approximation to a continuously changing Hamiltonian and that of quenching the
Hamiltonian is that a series of quenches in short succession approximates any Hamilto-
nian, with the numerical accuracy depending on the number of steps or equivalently
the size of Éä.

5.2 Results and discussion

The model that we will consider in this chapter is the elliptical model analysed in the
adiabatic limit in chapter 4. Experimentally, the helicity of the magnetic textures of
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Figure 5.1: Phase diagram of the cases considered in this section. The parameters are
h = −Þ = t, p/q = 1/3 and hz = 0 except when stated otherwise. The lines
represent the places of quenches.

such models have been tuned back and forth by external electrical and magnetic fields
(Kimura & Tokura, 2008; Murakawa et al., 2008, 19; Yamasaki et al., 2008; Yamasaki et
al., 2007). The offset of the spin-texture may also change during transitions or external
perturbations to the system. The chemical potential (or equivalently the filling factor)
can easily be modified in 1D by the application of electrical potentials and the chiral
symmetry of the system can easily be broken by applying external homogeneous mag-
netic field. All of these methods can be used experimentally or in applications where
the control of MBS is necessary, and we will therefore evaluate the robustness of the
Majorana states for a range of quenches in these parameters.

5.2.1 Change in helicity

We previously mentioned how flipping the direction of rotation of the magnetic tex-
ture has been obtained experimentally for materials like some perovskites. In addition,
we have seen that for cases where the unit cell is odd the system can be in a marginal
topological phase, where any perturbation in the value of Ú will bring the system into
a topological nontrivial phase. Thus we want to evaluate the dynamics of the Major-
ana single particle states after the direction of the magnetic texture has been flipped
(Ú → −Ú) both close to and away from the value Ú = 0. We do this by considering
quenches along the vertical line in fig. 5.1, where the two nontrivial topological phases
are connected at Ú = æ = 0.

We consider a sudden flip of the helicity of the magnetic texture, keeping the ec-
centricity of the elliptical form and without an out-of-plane field, such that the chiral
symmetry is conserved. That is,

Ú0→ Ú1 = −Ú0.

For very small values of Ú0, close to the marginal region, the initial and final mag-
netic texture are near identical and we can expect that the initial Majorana states are
compatible with the final Majorana states. When Ú is increased, the flipping of the
magnetic texture helicity will have more significant effects on the eigenstates, since the
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y-component of the texture is increasing in size. This is confirmed in the computations
shown in fig. 5.2. For a very small value of Ú = 0.001, the survival probability barely
changes around 1, whereas for a slighly larger value of Ú = 0.012, large oscillations
in the survival probability occur. At even larger values, the oscillations become more
erratic with multiple frequency-components and the peaks no longer go to a maximum
of 1. This is also shown in the fourier spectrum of the survival probability in fig. 5.3.
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Figure 5.2: Survival probability of a Majorana state after flipping the helicity. The para-
meters were h = −Þ = t, æ = 0 and p/q = 1/3.

As the initial Ú value increased, the spectrum broadens. This is an effect of the overlap
between the initial MBS and the bulk states after the quench, which due to the energy
differences leads to oscillations in the probability.

If the process of flipping the direction of rotation in the magnetic texture takes
some time, and slowly goes from a positive value of Ú to the negative value −Ú, passing
0, the sudden approximation can be better approximated by inserting a new step of
quenching the Hamiltonian. We can e.g. approximate such a flip as the Hamiltonian
first quenching from Ú0 to Ú1 = 0 and then finally to Ú2 = −Ú0:

Ú0→ Ú1 = 0→ Ú2 = −Ú0.

By setting the parameter ä1 right, this is a better approximation then just a sudden
quench from Ú0 to −Ú0. This is because now the transitions between Hamiltonian takes
half the time since the previous time step is cut in half, and thus the sudden approxim-
ation is more accurate. In fig. 5.4 the probability of one of the single particle Majorana
modes to overlap with one of the Majorana modes in the final Hamiltonian as a func-
tion of the time spent in the middle case is shown. For small values of Ú0, the overlap
between the initial case, the middle case and the final case is for a small range of ener-
gies close to 0, which leads to the overlap probability being almost constant and equal
to 1. For larger values of Ú0 the overlap between the Majorana states in the initial
and final case is zero for immediate quenches, as can be seen as the purple and yellow
lines starting close to zero in probability. But for even short times in the middle case,
ä1, the overlap between the Majoranas is significant in isolated peaks. This overlap is
later repeated as distinct peaks with a constant period. Thus, by tuning the transition
time between the initial and final magnetic textures, or by inserting a midpoint where
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Figure 5.3: Fourier transform of the survival probability after a sudden quench in the
helicity of the magnetic texture.

the ellipse is flat, the Majoranas in the initial state can be controlled to either excite a
Majorana in the final system or not.

An even better approximation to continuous but fast changes in the Hamiltonian
would be to use eq. (5.24) which is an even better approximation that the one used
here, where we only used two time steps. A natural transition form would be to use a
linear ramp of the parameters over the course of the time ä1. It would be interesting to
see the effects on the Majorana modes by varying the ramping time. From the two-step
approximation in the previous paragraph, we have indications that such continuous
changes in the Hamiltonian and correct timing are paths to controlling MBS effectively.

5.2.2 Change in æ

In the helical case we can easily compute the overlap between the old and the new
Majorana states after a quench in æ provided that chirality is not broken. First, we
note that the Hamiltonian of the model then only includes the Pauli spin matrices ã0,
ãx and ãy . This implies that any solution to the eigenenergy problem must have a net
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Figure 5.4: Overlap onto the new Majorana states after negating Ú0 → Ú2 = −Ú0 via a
midpoint of Ú1 = 0. The parameters were h = −Þ = t, É0 = 0.3t, æ = 0 and
p/q = 1/3.

spin in the xy-plane. Second, we note that a change in the offset æ is equivalent to
an opposite rotation of the spin of the electrons – they are uniformly connected. The
overlap between a Majorana state onto itself after a sudden quench in the parameter æ
is then equivalent to computing the overlap between two spins rotated by the angle æ
relative to each other. This computation can be done in any spin-plane, so we choose
the xz-spin plain which is easiest. In the initial case we choose the state which is an
eigenstate with an eigenvalue of +1 of the operator ãz . After a rotation of æ around the
y-axis, this state becomes

u =

(
1

0

)
→ u′ = exp

(
−iæãy/2

)(1
0

)
=

(
cos(æ/2)
sin(æ/2)

)
.

Thus the overlap between the states is⟨
u′

∣∣∣u⟩ = cos(æ/2).

The long-term survival probability is then | ⟨u′ |u⟩ |4 = cos4(æ/2) = (1 + cos(æ))2/4. The
remaining question is then how the bulk energy states are exited when the phase of the
helical texture is changed, and by extension the time-dependence of the survival prob-
ability. It turns out that the spin-flipped Majorana state overlaps significantly with
most of the bulk-states, as shown in fig. 5.5a. This means that Majorana survival prob-
ability will quickly stabilise to a final value without significant oscillations, as shown
in fig. 5.5b.

When Ú , á/4 the value of æ becomes more important as seen in for example
the phase diagrams (figs. 4.1 and 4.2). Quenches in æ now not only rotates the ex-
change field vectors uniformly in the unit cell, but also changes the length of them
non-uniformly. If the initial and final phase after such a quench are the same, there
will be a nonzero overlap between the initial and final Majorana bound states (for
æ , (2n + 1)á,n ∈ �), and thus we expect the survival probability to vary around this
nonzero value. However, if the angle æ is changed such that the topological phase
changes, we expect the survival probability to decay after some time. If the final state



5.2 Results and discussion 87

−2 0 2

E

0.0000

0.0025

0.0050

0.0075

0.0100

|⟨è
n
(à

1
)|Õ

1
(à

0
)⟩
|2

(a) Overlap between a spin-flipped Major-
ana (orthogonal to itself) and the bulk-
energies in a helical system.

0 25 50 75 100

ä(ℏ/t)

0.25

0.50

0.75

1.00

P
Õ
0
,Õ

0
(t
)

(b) Survival probability of a Majorana bound
state after a change in æ of á/2. The
dashed line is given by cos4(á/4) = 0.25.

Figure 5.5: A quench in the æ parameter (a) excites a broad range of energies, which
leads to (b) a quick stabilisation of the survival probability of the original
Majorana state without significant oscillations. The parameters were h =

−Þ = t, É0 = 0.3t, Ú = á/4, p/q = 1/3.

lies between two topological phases, i.e. where the Hamiltonian has a node, the sur-
vival probability oscillates as shown in fig. 5.6. Here the system is quenched from to
initial values of æ0 which both lie inside the topological nontrivial region to a point
where the gap closes. Clear oscillations occur, similar to the dynamics obtained in Sac-
ramento (2016) for critical quenches in other systems. We also see that depending on
the amount of change in the parameter æ from initial to final state, the frequency in the
oscillations vary. In the paper of Sacramento he demonstrated that such a frequency
doubling can be explained by whether the Majorana is localised at one or both bound-
aries, which doubles the frequency in the latter case. However, as seen in fig. 5.6b,
both of the Majorana states are localised near both of the edges. When the system is
quenched to a critical point, these Majorana states will begin to move through the bulk
since the energy gap is closed. Thus, for the resulting wave packets to overlap with
their initial form with different oscillation frequencies, they must move with different
speeds through the bulk. Since the bulk states and energies are the same in the final
Hamiltonian for both cases, we must conclude that the Majoranas excite energystates
with different group velocities in the final Hamiltonian.

5.2.3 Chiral breaking

We now consider the effects of suddenly turning on out-of-plane magnetic fields in the
system, which we have seen breaks chirality. Although a winding number can not be
defined anymore, the parity of the winding number still resides in the Pfaffian of the
Hamiltonian at TR invariant momenta. Thus if we go from a nontrivial phase to another
by adding a small out-of-plane field, hz , we can expect that the Majorana bound states
at the boundaries will overlap at least somewhat with the new Majorana state. The
overlap will in general not be perfect, which means that the old Majorana states must
overlap at least partially with the bulk states and thus at of the wave function will begin
to move into the bulk of the material. Since the system is of finite size, the moving wave
will eventually reach the boundaries again and thus lead to oscillations around a finite
non-zero value, similar to the results of Sacramento (2014).

The first quench we consider is to go from a system with chiral symmetry, and
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Figure 5.6: Quenching the parameter æ to a critical value. (a) Survival probability as
a function of time, ä. (b) Unit cell density of one of the Majorana states.
Both cases of initial values of æ0 have peaked densities at each boundary.
Thus the increased oscillation frequency in (a) can only be explained by an
increase in the group velocity of the excited states. This is supported by
(c) which shows that the excited states lie at significantly different energies.
The parameters are h = −Þ = t, É0 = 0.3t, Ú = 0.1 and p/q = 1/3, and the
critical value is æc ≈ .197.

suddenly break the symmetry by adding an out-of-plane field. We do this both for
subcritical field strengths (|hz,1| < |É0|) and critical strengths and beyond. In fig. 5.7
we show the survival probability of one of the Majorana bound states after the chiral
symmetry has been broken, but without changing the Pfaffian topological invariant for
most of the lines. The system is described by a helical exchange field texture in the
chain. When the out-of-plane field is increased in strength in the final Hamiltonian,
the survival probability in general decreases (on average). For all nonzero values of
the out-of-plane field the survival probability decreases rapidly to a steady and con-
stant value, with only minor oscillations.This value is in general kept for a while until
around ä ≈ 450, where oscillation in the survival probability appears for all the cases.
This can be interpreted as the initial Majorana bound state overlaping with the bulk
states, which will then begin to propagate throught the system. Eventually it is re-
flected at the other end and comes back after about 450 time units. But interestingly,
instead of oscillation about once and then repeating the cycle, multiple oscillations ap-
pear in close succession. This means that multiple wave packets with different group
velocities propagate through the system, meaning that the oscillations are from mul-
tiple groups. The decreasing long-term survival probability can be more clearly seen
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Figure 5.7: Survival probability of one of the Majorana states after a quench which
breaks chirality. The different colours differ by the value of the chiral break-
ing field hz , and the dashed horizontal lines are the approximated long term
survival probability. The parameters were h = −Þ = t, É0 = 0.3t, Ú = á/4,
æ = 0, NUC and p/q = 1/3.

in fig. 5.8a which shows it as a function of the final out-of-plane field. We note that the
critical value of |hz | = |É0| is also a clear point in this figure where the long term sur-
vival probability goes to zero. We also point out that the Pfaffian invariant is nontrivial
still after this critical value, but the Hamiltonian is gapless which makes it irrelevant.
As the figure shows, the decrease in the survival probability is minor for small values
of hz but is increasing as hz becomes bigger. This means that the MBSs are quite ro-
bust against small perturbations in the chiral breaking field. This could perhaps also
be expected from the previous analysis in the following way. We previously explained
that the electrons must have a spin expectation value lying in the xy-plane since none
of the Pauli matrices are of the form ãz . This means that for small additions of an
out-of-plane field, the initial wave functions will still be good approximations to the
new Hamiltonian after the perturbation if |hz |2 ≪ |h|2. This is because on average the
exchange field vectors are |h|n̂∥ + hz ẑ , which creates an angle of approximately hz/ |h|
with the plane. If we then assume that the electrons are approximately parallel to the
exchange field vectors, the overlap between a purely in-plane spin and a spin with the

angle hz/ |h| from the plane will be cos(hz/ |h|) ≈ 1− h2
z

2h2 , which is approximately equal
to 1 as long as |hz | ≪ |h|. This last argument, although hand-wavy, gives a possible
interpretation of the effects of turning on small chiral breaking fields and also fits the
results as presented here, but does not explain the behaviour close to hz = É0. This is
explained by the fact that the bulk gap closes which delocalises the MBSs which then
interact and gain a nonzero energy.

Next we consider quenches beyond the critical out-of-plane field strength. We want
to investigate the effects of quenches between a topological system in close proximity to
the critical value to a value just above the critical value. The survival probability of one
of the Majorana fermions is shown in fig. 5.9, where the dashed line is the long-term
survival probability. As expected based on fig. 5.8, we see that the survival probability
is small as soon as the out-of-plane field is above the critical value, which is true even
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Figure 5.8: Long-term survival of the Majorana states for sudden quenches (a) from
the chiral symmetric system, (b) and to the critical value hz = É0. The
parameters were h = −Þ = t, É0 = 0.3t, Ú = á/4, æ = 0, NUC and p/q = 1/3.
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Figure 5.9: Survival probability when quenching a system with a barely subcritical out-
of-plane field to a barely supercritical one. The parameters were hz,0 =

0.29t, hz,1 = 0.31t, h = −Þ = t, É0 = 0.3t, Ú = á/4, æ = 0, NUC and p/q = 1/3.

if the initial system is quite close to the critical value. This leads to oscillations in the
survival probability close to zero. The oscillations are erratic which implies that the
excited states after the quench correspond to a massive dispersion relation. In fig. 5.10
the energy bands for the system is shown when the out-of-plane field strength is larger
than the critical value of |É0|. The energy bands are characterised by two sets of point
nodes in the Hamiltonian in close proximity to each other, one set in the rightmost part
of the 1BZ, and the other in the left most part. The chiral breaking is easy to see as the
fact that the transformation Ĥ(k)→− Ĥ(k) does not exist. That is, the energy spectrum
is not mirror symmetric around the k axis. However, PH symmetry can be seen by
going from k to −k which negates the energies. The red region indicates the energies
which are significantly excited in the new Hamiltonian with hz = 0.31t from the single
particle bound Majorana state in the nontrivial system with hz = 0.29t. Close to nodes
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the Hamiltonian can be approximated by a massless fermion system, however between
the two nodes of each pair the dispersion relation bends significantly, even within the
excited energy range. This means that the massless dispersion relation approximation
is not valid for this quench, and since the bending (�2

k
Ek) is significant, we expect the

resulting wave packet which is excited from the old Majorana edge state to disperse
significantly and the survival probability will not have well defined oscillations since
the edge state will only partially overlap with the (after a while) uniformly distributed
wave function.
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Figure 5.10: Bulk energy bands in the Brillouin zone for an out-of-plane field which is
supercritical. The parameters were h = −Þ = t, hz = 0.31t, É0 = 0.3t, Ú =

á/4, æ = 0, and p/q = 1/3. The red region indicates the energies which are
significantly excited in the new Hamiltonian after quenching from hz =

0.29t to hz = 0.31t, computed as the standard deviation.

5.3 Conclusion

The MBSs in the elliptical system have proven to be both robust and quite sensitive to
quenches in the Hamiltonian parameters depending on the type of perturbation, the
strength and the similarity between the initial and final state. Changing the helicity
of the magnetic texture quickly led to erratic behaviour of the survival probability for
larger values of Ú0 due to the increased significance of the y-component of the exchange
field vectors which flips when the helicity flips. By introducing an intermediate step of
Ú1 = 0 we showed that he initial MBSs can excite MBSs in the final state with opposite
helicity. However, this requires correct timing as the overlap has narrow peaks in time.
A natural next step to the dynamics of quenches in the helicity would be to analyse the
effects of a continuous ramp instead of a sudden quench in the parameter. This might
be a more realistic process. In that case the length of the ramp would be another factor
which affects the fate of the MBSs. Thus if the transition time can be experimentally
controlled, it can be a path to controlling the Majorana state in the system.

Quenches in the global offset of the magnetic texture in the material had different
effects depending on the eccentricity of the elliptical pattern. When the ellipse was
circular (helical), the overlap between the Majorana states and the bulk was very broad,
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leading to a fast decay of the survival probability as the time went, and reaching a
stable long term probability with only minor erratic oscillations. In this case the fi-
nal value of the survival probability is given by the overlap probability squared of two
spins rotated by æ relative to each other. When the ellipse was more flat, the overlap
between the MBSs and the bulk was considerably narrower, thus the survival prob-
ability in quenches in æ oscillated less erratic. The energy of the excited states were
not necessarily concentrated around 0 energy when quenched to a critical value of æ
between the trivial and topological phase, and as a result the frequency of oscillations
of the survival probability varied depending on the initial value of æ.

The MBSs were very robust against the application of out-of-plane ferromagnetic
fields which breaks the chirality, but the overlap between the initial and final MBSs
continuously decreased towards 0 as the out-of-plane field went towards the critical
value hz = É0, where the Majoranas were completely killed and overlapped heavily
with the the bulk states. This happens over a short time scale of the order of ℏ/t. Thus
the application of an external out-of-plane exchange field can prove to be a very effect-
ive control mechanism for turning on and off the MBSs states in a finite size system.

We did not check the time dependence of the MBSs after quenches in the supercon-
ducting order parameter. This has been done by for example Sacramento (2014) for
multiple types of systems, and in many cases lead to well defined oscillations in the
survival probability of the Majorana states. However, this still has to be confirmed for
this specific system.

A natural next step to the analysis in this chapter would be to investigate more nat-
ural time-dependent changes in the Hamiltonian, like for instance continuous ramping
of the potential, thereby using eq. (5.24). We have already seen implications that this
can change the dynamics of the system as in the case of an intermediate step in the
quench of Ú.



6 | Summary and outlook

We have now investigated the emergent topology in magnetic chains in contact with
conventional and unconventional superconductivity. One of the novel ideas of this
thesis has been the search for non-accidental and robust topological systems defined
as being between two topological phases such that any symmetry conserving perturba-
tion immediately drives the systems into topological nontrivial phases. These marginal
topological superconductors were obtained in p-wave superconductors in ferromag-
netic fields, but not when the magnetic field was purely antiferromagnetic. They were
also obtainable in conventional superconductors in non-collinear exchange fields when
the exchange fields vectors either were aligned on a linear line or when other geomet-
ric criteria were fulfilled. Marginal topological superconductors can potentially be an
important tool in devices where control of, creation of and annihilation of MBSs is re-
quired, as only minor changes in the parameters of the system can lead to localisation
of the MBSs on the edges. We have not investigated whether marginal topology can
exist in 2D or 3D systems or not. In 1D systems with a winding number topological
invariant, we were able to find non-accidental regions where the imaginary part of the
winding curve was zero. This is not immediately applicable to, for instance, 3D where
the Hamiltonian is a mapping to the 3-sphere and is not anymore a complex num-
ber. Also, systems with other symmetries defined by, for instance, a Pfaffian invariant,
does not easily lead to equation for when the Hamiltonian is gapless and marginal to-
pological. Therefore future research needs to be conducted into marginal topological
superconductors in more dimensions than 1D.

It is also not immediately clear how to experimentally achieve the marginal topolo-
gical phases. For instance, in the s-wave superconductor in a noncollinear and inhomo-
geneous exchange field we are dependent on a unit cell of at least three atoms where the
exchange field vectors are different enough, and the gap opening perturbations needs
to be local in the unit cells, only affecting the exchange field at a few of the sites or
affecting the sites differently.

We investigated the topological properties of conventional superconductors coupled
with elliptical exchange fields in 1D magnetic chains. The topological phases were un-
derstood in terms of the new symmetries that appear in the 2D and 3D space extended
by the synthetic momentum variables Ú and æ. The nodal points and lines in these
spaces are protected by both chiral symmetry and PH symmetry. In the case when the
chiral symmetry is present, the nodal points have nonzero winding numbers defined
on curves in kÚ-space enclosing them. The marginal topological phase in these systems
also indicated the importance of and interplay between the TR symmetry and inversion
symmetry, where both must be broken for nontrivial topological phases to emerge.

The elliptical system was then analysed in a terms of time-dependent quenches in
the Hamiltonian parameters and the dynamics of theMajorana fermions after quenches
that were subcritical, critical or supercritical. We demonstrated that quenches across
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marginal topological regions were dependent of the characteristic length scale of the
transition of the parameters. The usage of a chiral symmetry breaking term in the
Hamiltonian of the elliptical system can also be a potential tool for manipulation of
the MBSs. Since this term does not change the topological phase of the system, the
MBSs are robust against small in this parameter. However, when the out-of-plane field
reached a critical value of É0, the system is gapless in many cases and effectively kills
the MBSs.

Other time-dependent phenomena in both the elliptical magnetic chain system and
other marginal topological systems would be an interesting research topic in the future,
where for instance periodic driving is an interesting alternative to sudden quenches in
the parameters.
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Glossary

1BZ First Brillouin zone.

AFM antiferromagnetic.

AZ Altland-Zirnbauer [table].

BCS Bardeen-Cooper-Schrieffer.

BdG Bogoliubov-de Gennes.

CCW counterclockwise.

CW clockwise.

FM ferromagnetic.

LDoS Local density of states.

MBS Majorana bound state.

OP Order Parameter.

PH Particle-Hole.

SC superconductor.

SDW spin-density wave.

SOC spin-orbit coupling.

TR Time Reversal.
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