
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Thomas Benjamin Frogner

Learning from Imbalanced Data, with
a Case Study in Finance

Master’s thesis in Applied Physics and Mathematics
Supervisor: John Sølve Tyssedal

August 2019

Thomas Benjamin Frogner

Learning from Imbalanced Data, with a
Case Study in Finance

Master’s thesis in Applied Physics and Mathematics
Supervisor: John Sølve Tyssedal
August 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

This thesis investigates some of the challenges with classifying imbalanced data sets, and
logistic regression and random forests are the chosen algorithms. The main issue to deal
with when classifying imbalanced data is the fact that most algorithms tend to maximize
accuracy, which means that few of the minority class observations are correctly classi-
fied. Resampling techniques like undersampling, oversampling and SMOTE were used
to balance the data set in order to improve the performance of the classifiers. A simpli-
fied version of SMOTE was implemented and used here. The performance was measured
by balanced accuracy, and all three resampling methods seemed to yield quite similar re-
sults in many cases. For random forests, undersampling seemed to behave differently from
oversampling and SMOTE. When applied to logistic regression, the resampling techniques
all performed quite evenly.

A data set was provided by Sparebank 1 Kredittkort AS, with the aim of identifying which
customers might seek refinancing of their credit card debt from competing banks. Under-
sampling increased the balanced accuracy of random forests on this data set from 0.77 to
0.82. Logistic regression achieved a balanced accuracy of roughly 0.79 with no resam-
pling, and 0.81 with resampling. Oversampling and SMOTE appeared to be slightly more
effective on logistic regression than undersampling.

i

Sammendrag

Denne avhandlingen undersøker noen av utfordringene ved å klassifisere et ubalansert
datasett, og de valgte algoritmene er logistisk regresjon og random forests (en metode
basert på valgtrær). Hovedproblemet å håndtere når man skal klassifisere ubalanserte
datasett er det faktum at de fleste algortimer har som tendens å maksimere nøyaktigheten,
som betyr at få av observasjonene i minoritetsklassen blir klassifisert på riktig vis. Re-
samplingsteknikker som undersampling, oversampling og SMOTE - syntetisk minoritets
oversamplings teknikk - ble brukt for å balansere datasettet for å forbedre ytelsen til klas-
sifikasjonsalgoritmene. En forenklet versjon av SMOTE ble implementert og brukt her.
Ytelsen ble målt ved balansert nøyaktighet, og alle tre resamplingsmetoder så ut til å gi
veldig like resultater i mange tilfeller. For random forests så undersampling ut til å oppføre
seg ganske annerledes enn oversampling og SMOTE. Resamplingsteknikkene så ut til å yte
svært likt da de ble brukt på logistisk regresjon.

Et datasett ble gitt av Sparebank 1 Kredittkort AS, med mål om å identifisere hvilke kun-
der som kunne komme til å søke refinansiering av kredittkortgjelden sin hos konkurrerende
banker. Undersampling økte den balanserte nøyaktigheten til random forests fra 0.77 til
0.82. Logistisk regresjon oppnådde en balansert nøyaktighet på omtrent 0.79 uten resam-
pling, og 0.81 med resampling. Oversampling og SMOTE så ut til å være noe mer effektive
på logistisk regresjon enn undersampling.

ii

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
in the field of statistical learning. The thesis was written at the Department of Mathe-
matical Sciences during the spring and summer of 2019, in cooperation with Sparebank 1
Kredittkort AS. It is assumed that the reader has some knowledge of statistics, particularly
logistic regression and classificaton.

I would like to extend my thanks to Christian Meland and Jens Morten Nilsen at Spare-
bank 1 Kredittkort AS for the opportunity in writing this thesis. My supervisor John Sølve
Tyssedal has been supportive and patient with me throughout the past year, and I thank
him for his detailed and swift feedback to any questions I have had.

Furthermore, I would like to thank my parents for their never-ending support, and for my
classmates who have made these past five years an amazing time in my life.

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents vi

1 Introduction 1

2 Theory 3
2.1 Classification . 3

2.1.1 The Performance Measure . 4
2.1.2 Training, Validating and Testing 5
2.1.3 Undersampling . 6
2.1.4 Oversampling & Synthetic Minority Oversampling Technique . . 6
2.1.5 Cut-Off Probability . 7
2.1.6 Correlation in Imbalanced Data & Mixed Distributions 9

2.2 Logistic Regression . 13
2.2.1 The Logistic Model . 13
2.2.2 Estimating the Coefficients . 14
2.2.3 Model Selection . 15

2.3 Decision Trees & Random Forests . 16
2.3.1 Constructing a Decision Tree . 16
2.3.2 Bootstrap Aggregating and Random Forests 18

2.4 Sampled Data . 20
2.4.1 One Normally Distributed Covariate 20

3 Data Set provided by Sparebank 1 Kredittkort AS 23
3.1 Predicting Refinancing of Credit Card Debt 23

3.1.1 Distribution of the Covariates 23

v

3.2 Data Preparation . 25

4 Results 29
4.1 About the Results . 29
4.2 Logistic Regression on Sampled Data 29

4.2.1 One Normally Distributed Predictor 30
4.2.2 Resampling techniques on small data sets 32
4.2.3 Resampling Techniques on Large Data Sets 34

4.3 Data from Sparebank 1 Kredittkort AS 35
4.3.1 Logistic Regression without Resampling 35
4.3.2 Model Selection . 36
4.3.3 Random Forests without Resampling 37
4.3.4 Logistic Regression with Resampling 39
4.3.5 Random Forests with Resampling 42

5 Concluding Remarks 43
5.1 Summary of the Results . 43
5.2 Recommendations for Further Work . 44

Bibliography 45

6 Appendix 47

Appendix A 47

Appendix B 51
6.1 Logistic Model on all variables . 51
6.2 The Full Logistic Model . 53
6.3 The Reduced Logistic Model . 54
6.4 Random Forest . 55

Appendix C 57
6.5 usefulFunctions.R . 57
6.6 sampling.R . 58
6.7 dataPrep.R . 61
6.8 logReg.R . 63
6.9 randomForests.R . 65

vi

Chapter 1
Introduction

Today, banks have several major sources of income, credit cards being one of them. In the
US, average annual percentage rates are at one of their highest values ever of 17.71%, as
of August 22, 2019 (Dilworth, 2019). In addition to interest on unpaid balance, some com-
panies charge fees on the credit cards that can accumulate to more than 100 USD annually.
As of February 2019, the Norwegian government has imposed more strict regulation re-
garding consumer loans and credit cards, in order to reduce the amount of unsecured debt
in society (Finansdepartementet, 2019).

It sometimes happens that a customer is not able to pay off their unpaid balance. Refi-
nancing of this debt can be sought at a competing bank, making the original bank lose out
on the profits from this customer. If we are able to determine who will seek refinancing
from competitors, then the original bank has the opportunity of offering refinancing of the
debt before the customer is lost to a competitor, thereby retaining some of the interest on
the debt that is owed. This problem is one we will attempt to solve on behalf of Sparebank
1 Kredittkort AS, who have graciously provided data on more than 600 000 customers,
and this was the main topic for the project thesis that was finished in March of this year
(Frogner, 2019). Here, we will take a slightly more general approach and study imbal-
anced data in more detail as the data set provided is highly imbalanced, with less than
0.5% of the customers seeking refinancing. We will attempt to sample data from known
distributions, and see if the findings on these data correspond to the findings on the data
set from Sparebank 1.

When attempting to classify the data set provided, we will be using logistic regression
and random forests. Logistic regression is a well known approach within classification
problems with binary outcomes, while random forests are based off of decision trees and
have not been used by statisticians as much. Logistic regression is considered to be a
more standard approach from a statisticians point of view. Decision trees are thought to
mimic human behavior, and for this reason they are considered to be a good alternative
when trying to predict what a customer might do. Decision trees also have a less rigid
mathematical structure than logistic regression. Therefore, it will be interesting to see
which has the better predictive performance of random forests and logistic regression.

1

2

Chapter 2
Theory

This section will go through theory that is relevant to classification on imbalanced data
sets, and on classification in general. The methods that will be covered are logistic re-
gression and random forests, the latter being a method based on decision trees. Logistic
regression will be the primary method, as this is a method that is well understood by statis-
ticians.

Throughout this chapter we will refer to the target variable Y as the response, which
can take on the values 0 or 1. An observation where Y = 0 is referred to as a negative
observation, and when Y = 1 we refer to it as a positive observation. Index i refers
to observation number i, and the covariates of Yi are found in the k-dimensional vector
xi = (xi1, xi2, . . . , xik)T . Sometimes a ”1” will be added to this vector, when necessary.

As this thesis was inspired by my project thesis (Frogner, 2019) a lot of the theory
presented here is similar to that of the project. Some of the figures that are used to illustrate
the theory are taken directly from the project thesis.

2.1 Classification
Given an instance of a binary variable we have four possible outcomes: we can correctly
classify a negative response (true negative), we can incorrectly classify a negative response
as positive (false positive), we can incorrectly classify a positive response as negative (false
negative) or we can correctly classify a positive response (true positive). For a given data
set we can summarize the number of each of these in a confusion matrix, as per table 2.1.
Obviously, we wish to maximize the true negative rate (TNR) and true positive rate (TPR)

Prediction: 0 Prediction: 1
Reference: 0 True Negative (TN) False Positive (FP)
Reference: 1 False Negative (FN) True Positive (TP)

Table 2.1: A confusion matrix for visualizing the performance of a classification method.

3

simultaneously, which are defined by

TNR =
TN

TN + FP
, and TPR =

TP
TP + FN

. (2.1)

For a model that attempts to classify an imbalanced data set we expect the true negative
rate to be high and the true positive rate to be low, as most models will classify almost all
the observations to the minority class, including many of the positive observations. This
is due to many algorithms attempting to optimize accuracy (Rahman and Davis, 2013),
which is easily done by classifying to the majority class.

2.1.1 The Performance Measure
In order to determine what is a good classifier we must specify a suitable performance
measure. We start with one of the most intuitive loss functions, namely 0/1 Loss.

0/1 Loss

Given an observation Yi, we define the 0/1 loss by

Lossi :=

{
0 if case i is correctly classified,
1 otherwise.

(2.2)

This should be averaged over all n observations, yielding the error rate:

Error Rate =
1

n

n∑
i=1

Lossi, (2.3)

which should be well known even to a layman. The accuracy of a model is 1 minus this
error rate. Intuitively one might choose the accuracy of a classifier as the performance
measure, but in the case of classifying imbalanced data this would be a mistake. Consider
a data set with 99 % of the cases being negative observations. If we were to classify every
single observation as negative we would achieve an accuracy of 99 %. An accuracy this
high would often be considered to be quite good, while in this case it is entirely useless.
For imbalanced data sets we must therefore use some other performance measure.

Balanced Accuracy

The balanced accuracy (BACC) of a classifier is defined by

BACC =
1

2
(True Negative Rate + True Positive Rate) (2.4)

and is considered to be an excellent performance measure when working with imbalanced
data sets (Lujan-Moreno et al., 2018). The balanced accuracy has the advantage of reward-
ing methods that are able to correctly classify some of the observations from the minority
class, while still keeping the accuracy up. We can easily generalize the BACC to place
uneven weight on the true negative and true positive rates:

BACCλ := (1− λ) · TNR + λ · TPR, λ ∈ (0, 1). (2.5)

4

This generalization allows for more flexibility than the first definition and the definitions
are equal when λ = 1/2. This performance measure is especially good when we have a
classification problem where a false negative and a false positive are of uneven concern,
i.e a false negative might be undesirable in a medical setting, as we then miss out on a sick
patient who goes un-diagnosed.

Brier Score

The Brier Score (BS) (Brier, 1950) is defined by

BS =
1

n

n∑
i=1

(pi − Yi)2, (2.6)

where pi is the predicted probability that Yi = 1. We can see that this is the mean squared
error of the predictor. This loss function was first formulated by Glenn W. Brier and was
used to measure the precision of weather reports. The rationale was that uncertain predic-
tions should be penalized. If rain is observed on a particular day in a particular location
then it would have been better if a 90 % chance of rain had been predicted, as opposed to
a 70 % chance of rain.

While it is clear that this loss function has its use, we will not be utilizing it here, as
the balanced accuracy should be a sufficient measure of which model is better. Which loss
function is appropriate to use is a somewhat subjective problem to determine and there are
probably many other loss functions that could be discussed here. The generalized version
of the balanced accuracy allows for a lot of flexibility, and the mixing parameter λ can
be chosen to accommodate any wishes one might have for the classifier. In some cases it
could be very important to correctly classify almost all the positive observations, and we
might therefore pick λ > 1/2. An example for this could be some screening for a rare
disease. The false positive rate will increase, but this can be dealt with through further
testing, and the goal of correctly determining who has the disease is maintained.

2.1.2 Training, Validating and Testing
When fitting a model to a data set, one generally needs to first split the data set into a
training set, a validation set and a test set. In order not to overfit the data we fit the
candidate models on the training set and compare their performance on the validation set.
The model that appears to be best according to the desired criterion is selected based on
this performance, and then this model is applied to the test set in order to report an unbiased
estimate of the performance of the model.

In this thesis we will be comparing methods to improve classification and the goal is
to determine if one method is better than another. We will mainly be using the balanced
accuracy of a classifier to evaluate what constitutes a good learning algorithm, and we care
only about the relative performances of two separate methods, not their absolute perfor-
mance. For this reason we can skip the step of using a validation set and ignore the fact that
the performance measure might be slightly biased, as we are picking the model that we
know has the best performance measure and using this on the test set. This performance

5

measure will then probably a bit better than an unbiased estimate, which is unproblematic
as we are simply comparing models.

When it comes to evaluating the performance of random forests, validation sets are
never needed, due to the nature of how these are created. For details, see section 2.3.2.

2.1.3 Undersampling

We now move on to a common method in dealing with imbalanced data sets, namely
undersampling. Undersampling works by intentionally omitting a large portion of obser-
vations from the majority class in the training set, thereby increasing the proportion of
minority cases in the training set. The idea is that an algorithm might be able to perform
better when it is trained on a less imbalanced data set.

Given a data set of size n with a fraction p of the observations being positive we can
decide to train our algorithm on a training set with an equal amount of negative and positive
observations. After omitting sufficiently many negative observations this training set will
consist of a total of 2np observations in order to become perfectly balanced. There are (at
least) three concerns regarding this:

1. As p � 1, this will be a dramatic reduction in sample size. If data is plentiful
this might not be an issue, but it is rarely desirable to reduce the number of available
observations. It is entirely possible that a classifier trained on such a training set will
miss out on valuable information regarding what classifies a negative observation.

2. If some of the covariates in the data set are categorical then they may have levels
that don’t show up in the training set. Methods like logistic regression are not meant
to deal with this issue. One solution could be to use different random seeds when
choosing the training set to combat this issue, but this is an inelegant solution that
might not always work. This issue was encountered in my project thesis (Frogner,
2019), and the chosen solution was to limit the degree of undersampling so that the
training set consisted of up to no more than 20 % positive observations, thereby
limiting the reduction of the sample size.

3. The third concern is that the chosen algorithm might become too eager to classify
to the majority class, as it is trained on a very biased data set. Note that ”too eager”
depends on the choice of loss function. Latinne et al. (2001) proposed an adjustment
of the output of a classification algorithm in order to correct for this bias and this is
discussed in section 2.1.5.

2.1.4 Oversampling & Synthetic Minority Oversampling Technique

In this section we will be discussing two quite similar methods for creating a more bal-
anced data set. The first is oversampling, which is to draw observations from the minority
class additional times in order to make the data set less imbalanced. We can either decide
to copy each of the positive observations a certain number of times, or we can randomly
draw from these observations with replacement until we are satisfied with the balance of
the training set.

6

The second method is called Synthetic Minority Oversampling Technique (SMOTE)
and works by randomly taking two observations from the minority class and creating a
new, synthetic data point on the line segment joining these observations (Chawla et al.,
2002). The new data point will be given the same response as the two points we sampled.
For continuous variables the new sample point xnew is created from two points xi and xj
in the following way:

xnew := axi + (1− a)xj , a ∈ (0, 1). (2.7)

The mixing parameter a is randomly sampled from the interval (0,1). The hope is that
this method can help to generalize the predictor space by introducing new points that
hopefully contain information that is representative for a minority observation. Categorical
variables are a slight complication to this algorithm. When two pointsxi andxj are chosen
to create the new data point, they might have categorical variables with differing levels.
Chawla et al. (2002) decided that the new point would be given the factor level that was
most common among the k-nearest neighbors of the new point, for some k. Beyer et al.
(1999) studied the k-nearest neighbor algorithm extensively for high dimensional cases,
and was able to show that in some cases the difference between the closest and farthest
point approached each other as the number of dimensions grew. The Euclidian distance
between two points is easy to calculate for continuous variables, but with differing factor
levels one must provide some addition to the distance measure to correctly identify how
far away two points lie from each other. We will not delve exactly into how this was
handled by Chawla et al. (2002) as we will be taking a simpler approach; when sampling
two points we will simply be giving the new observation the exact same factor levels as the
first observation we sampled, xi. We do not wish to calculate the nearest neighbors, as the
predictor space is sparsely inhabited when the number of predictors grows large. The data
set provided by Sparebank 1 consists of a response and 77 additional variables, and we
decide that using the k-nearest neighbors is not an optimal course of action. Our solution
is to sample the mixing parameter a from values close to 1 and far from 0, thereby making
sure that xnew lies closer to xi than xj . We do not wish to have the new point far from xi,
as points far away might have entirely different factor levels for their categorical variables.
We then decide to sample a uniformly from the interval [a′, 1] for some appropriate value
for a′. In this thesis we will use the interval [0.5, 1] to sample a from, as this ensures that
the new point lies closer to the point it inherits its factor levels from, and not to the other
point that may have other factor levels.

The term ”degree of over/undersampling” has been used a few times and refers to
the fraction of minority observations in the training set, regardless of the fraction in the
original data set. For instance, if we have an oversampled data set with 20 % of the obser-
vations belonging to the minority class, the degree of oversampling is 20 %, regardless of
the imbalance in the original data set.

2.1.5 Cut-Off Probability
Assume we have a model that predicted that Yi = 1 with probability pi for observation
i. We typically classify Yi as 1 if pi > 1/2, but the discriminating value need not be
1/2. Any value in the interval (0,1) will do, and we therefore adhere to the more flexible

7

classification rule given by

Yi =

{
0 if pi < α, α ∈ (0, 1),

1 otherwise.
(2.8)

We refer to α as our cut-off probability, and this can be varied to increase the number of
observations classified to the minority class.

Adjusting the Cut-Off Probability

When training a model on a training set that is either oversampled or undersampled, the
model will become biased in favor of the minority class. Latinne et al. (2001) proposed
a way to adjust the class probabilities given by a model by using Bayesian inference. We
will derive the formula for this adjustment based on the derivation in Latinne et al. (2001).

We first start by specifying some notation that is needed for this derivation. We treat
the general case of a C-class problem, with class labels ω0, ω1, . . . , ωC−1. p(ωi), i =
0, 1, . . . , C − 1 is the probability of a random observation in the original data set belong-
ing to class ωi, and pt(ωi) is the probability of a random observation in the training set
belonging to class ωi. Note that these probabilities are based only on the imbalance of
their respective data sets. Subscript t is used to refer to the training set.

Bayesian inference views parameters as stochastic variables instead of fixed values.
Prior distributions for the parameters are based on the observer’s subjective views on what
these distributions should be, and when data x is observed the distribution is updated and
we end up with our posterior distribution. Bayes’ theorem states that we have the following
relation:

p(x|ωi) =
p(ωi|x)p(x)

p(ωi)
. (2.9)

Here p(x|ωi) is the distribution of the covariates x given that the response belongs to class
ωi, p(x) is the distribution of the observation vectors for the entire population and p(ωi|x)
is what we are attempting to predict: the posterior probability that the response belongs to
ωi given data x. The same relation applies to data from the training set:

pt(x|ωi) =
pt(ωi|x)pt(x)

pt(ωi)
, (2.10)

where pt(ωi|x) is the probability of Y belonging to class ωi given by a model trained
on the over/undersampled training set, given data x. pt(ωi) simply equals the rate of
over/undersampling, as stated above. pt(x) is the distribution of the observation vector
evaluated at x. Note that this distribution also depends upon the training set. However,
the left hand side of both equations (2.9) and (2.10) does not depend upon which data set
we are looking at. Given the class ωi the distribution of the covariates x do not depend on
what data set they are taken from. For this reason we can equate the right hand sides of
equations (2.9) and (2.10) to solve for our target probability

p(ωi|x) =
pt(x)

p(x)

p(ωi)

pt(ωi)
pt(ωi|x). (2.11)

8

Necessarily,
C−1∑
i=0

p(ωi|x) = 1 (2.12)

as each observation must belong to one of the C classes. The first fraction in equation
(2.11) becomes a normalizing constant to ensure that equation (2.12) holds, and we have
that

pt(x)

p(x)
=

[
C−1∑
i=0

p(ωi)

pt(ωi)
· pt(ωi|x)

]−1
. (2.13)

We now simplify to having only two classes and use that p(ω0) = 1−p(ω1), and similarly
for all other probabilities. Using this and equation (2.13) and inserting into equation (2.11)
we obtain our posterior, unbiased probability:

p(ω1|x) =

p(ω1)
pt(ω1)

· pt(ω1|x)

p(ω1)
pt(ω1)

· pt(ω1|x) + 1−p(ω1)
1−pt(ω1)

· (1− pt(ω1|x))
. (2.14)

If we are to use a cut-off probability of 1/2 on the unbiased probability, we can set the left
hand side greater than 1/2 and solve for pt(ω1|x). A little bit of algebra yields

pt(ω1|x) >
pt(ω1)(1− p(ω1))

p(ω1)(1− pt(ω1)) + pt(ω1)(1− p(ω1))
(2.15)

as our cut-off probability. We will be investigating the effect of oversampling and under-
sampling, and we will be using this adjustment to see if it leads to improved performance
of any given model.

2.1.6 Correlation in Imbalanced Data & Mixed Distributions
Given two stochastic variables X and Y , their correlation ρ is defined by

ρX,Y =
Cov(X,Y)

σXσY
, (2.16)

where Cov(X,Y) is the covariance between the variables, and σX and σY are their re-
spective standard deviations. We want to look at the correlation between an explanatory
variable X and the response Y in an imbalanced dataset, where

Y ∼ Bin(1, p), p� 1, (2.17)

X|(Y = 0) ∼ N(µ0, σ
2
0), (2.18)

X|(Y = 1) ∼ N(µ1, σ
2
1). (2.19)

p is estimated by using the relative frequency of positive observations in the dataset. We
have that p � 1, because the dataset is imbalanced and the majority class is set to be
0. We have also assumed that the explanatory variable X comes from a known normal
distribution that depends on what the response was for the given observation. Furthermore,

9

we can standardize a normally distributed variable to have unit variance by dividing the
variable by its standard deviation, so we assume that this has been done and that σ2

0 =
σ2
1 = 1.

Given n independent observational pairs (Xi, Yi) = (xi, yi), i = 1, . . . , n, we have
that the sample correlation coefficient r is given by

rX,Y =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
, (2.20)

where x̄ = n−1
∑n
i=1 xi, and similarly for ȳ. s2x and s2y are the unbiased sample variances.

Dividing the sum into parts where yi = 0 and yi = 1 we can expand equation (2.20) in the
following way:

rX,Y =
1

(n− 1)sxsy

[∑
yi=0

(xi − x̄)(0− ȳ) +
∑
yi=1

(xi − x̄)(1− ȳ)

]
. (2.21)

The first sum extends over approximately n(1− p) elements, and the second extends over
approximately np elements. The xi in the first sum come from a distribution with mean
µ0 and the xi in the second sum come from a distribution with mean µ1. We can then
approximate the mean x̄ as a weighted sum of these means:

x̄ ≈ (1− p)µ0 + pµ1. (2.22)

p is approximated to be ȳ. Inserting this into equation (2.21) we can move some terms in
parenthesis outside their respective sums:

rX,Y =
1

(n− 1)sxsy

[
−p

∑
yi=0

(xi − x̄) + (1− p)
∑
yi=1

(xi − x̄)

]
. (2.23)

For all i where yi = 0 we know that the mean of the xi should be approximately equal to
µ0. Subtraction by the grand mean x̄ in each term serves only as a translation of the terms.
Therefore, we can approximate

−p
∑
yi=0

(xi − x̄) ≈ −pn(1− p)(µ0 − (1− p)µ0 − pµ1)

= np2(1− p)(µ1 − µ0), (2.24)

where we recall that multiplication by n(1− p) is due to the fact that this is the number of
terms in the sum. Similarly, for the second sum in equation (2.23) we obtain

(1− p)
∑
yi=1

(xi − x̄) ≈ (1− p)np(µ1 − (1− p)µ0 − pµ1)

= np(1− p)2(µ1 − µ0). (2.25)

Adding this to equation (2.24) we see that together they simplify slightly:

(2.24) + (2.25) = np(1− p)(µ1 − µ0)(p+ 1− p) = np(1− p)(µ1 − µ0). (2.26)

10

This can be inserted into equation (2.23) to obtain

rX,Y ≈
np(1− p)(µ1 − µ0)

(n− 1)sxsy
. (2.27)

The only unknowns remaining are the sample standard deviations. We start with sy . We
know that an unbiased estimate of the variance is found by using the sample variance, s2y ,
when it is defined by

s2y :=
1

n− 1

n∑
i=1

(yi − ȳ)2. (2.28)

As above, our estimate for p is ȳ. With approximately n(1 − p) terms having y = 0 and
np terms having y = 1 our estimate for the variance becomes

s2y ≈
1

n− 1

[
n(1− p)(0− p)2 + np(1− p)2

]
=
np(1− p)
n− 1

. (2.29)

Recall that Bessel’s correction - division by n − 1 instead of n - is necessary as we must
have the unbiased estimate of the variance for equation (2.20) to be accurate.

The variance s2x is a bit more complicated. The vector (x1, x2, . . . , xn) contains a
sample from a mixed distribution with mixing parameter p. This means that, given two
probability distribution functions g0(x) and g1(x), the vector contains a sample of obser-
vations from the distribution

f(x) = (1− p)g0(x) + pg1(x). (2.30)

Here g0(x) = N(x;µ0, σ
2
0 = 12) and g1(x) = N(x;µ1, σ

2
1 = 12). The mean of this

distribution is, as above, µ = (1− p)µ0 + pµ1. An illustration of this can be seen in figure
2.1. Everitt and Hand (1981) found that by equating the observed second order moment

1

n

n∑
i=0

(xi − x̄)2,

to the theoretical moment ∫
(x− µ)2f(x)dx,

we have that

1

n

n∑
i=0

(xi − x̄)2 ≈ (1− p)[σ2
0 + (µ− µ0)2] + p[σ2

1 + (µ− µ1)2]. (2.31)

For simplicity we will not delve into this derivation. Using µ = (1−p)µ0 +pµ1, applying
Bessel’s correction and setting σ0 = σ1 = 1 we find that the sample variance can be
expressed as

s2x ≈
n

n− 1
(1 + p(1− p)(µ1 − µ0)2). (2.32)

11

0.0

0.1

0.2

0.3

−6 −4 −2 0 2 4 6

Density for mixed distribution, mixing parameter = 0.1

Figure 2.1: The density of the mixed distribution f(x) with mixing parameter p = 0.1 as per
equation (2.30). Here we have g0(x) = N(−2, 12) and g1(x) = N(2, 12).

Taking the square root and inserting equations (2.29) and (2.32) into equation (2.27) we
obtain an expression for the sample correlation:

rX,Y ≈ (µ1 − µ0)

√
p(1− p)

1 + p(1− p)(µ1 − µ0)2
. (2.33)

Looking at this expression, we see that the magnitude of the correlation is determined by
the distance |µ1 − µ0| and by the imbalance in the data set.

From this we can clearly see that the correlation approaches zero as the imbalance in
the data set increases. In the case of having a single explanatory variable one would gen-
erally wish to plot the response against the variable to better understand the relationship
between the two. The more imbalanced the data set becomes, the harder it will be to visu-
ally determine a relationship. Research into a topic or field is often inspired by anecdotal
evidence of some relationship between two or more variables, which is made significantly
more apparent when variables are highly correlated.

12

2.2 Logistic Regression
Logistic regression is a very common method for performing classification. Closely re-
sembling linear regression in many ways, it is a well understood tool and will here be used
as the primary method for classifying data sets of varying imbalances. We will discuss the
logistic model estimation of the coefficients, and briefly touch upon model selection.

2.2.1 The Logistic Model
We are to model the response Yi for customer i given the data pairs

(yi,xi)
T = (yi, xi1, xi2, . . . , xik)T , i = 1, 2, . . . , n,

where xi is an observation vector containing k covariates with known response Yi = yi.
We have n of these observations and the response is binary, with Yi ∈ {0, 1}. We denote
pi = P (Yi = 1|xi) and we have that

Yi|xi ∼ Bin(1, pi). (2.34)

The expectation and variance of this distribution is

E(Yi) = pi, Var(Yi) = pi(1− pi). (2.35)

With heteroscedastic variance depending on the probability pi we can use generalized
linear models to model the response. Defining

ηi = β0 + xi1β1 + · · ·+ xikβk = xTi β and xTi := (1, xi1, xi2, . . . , xik) (2.36)

where η is our linear predictor and β is a vector of parameters yet to be determined, we
have that for the binomial distribution the canonical link function g (Fahrmeir et al., 2013)
is defined by

ηi = g(pi) = ln

(
pi

1− pi

)
. (2.37)

We define h as its inverse so that pi = h(ηi). Solving the above for pi we find that

pi = h(ηi) =
eηi

1 + eηi
, (2.38)

which is our response function. We can see that this function satisfies several important
criteria:

h : R→ (0, 1), h′(η) > 0, lim
η→−∞

h(η) = 0 and lim
η→∞

h(η) = 1. (2.39)

A function satisfying these criteria can be considered to be a probability measure, therefore
p can be viewed as a probability.

Inference on the coefficients βj , j = 0, 1, . . . , k, is usually based on the odds ratio,
which is commonly used in betting. The ratio

P (Yi = 1|xi)
P (Yi = 0|xi)

13

is the odds for the event Yi = 1, and using equation (2.37) we see that the odds becomes

P (Yi = 1|xi)
P (Yi = 0|xi)

=
pi

1− pi
= eηi = exp(β0) · exp(β1xi1) · . . . · exp(βkxik). (2.40)

A unit increase inxij will serve as a multiplication of the odds by a factor exp(βj), thereby
increasing the odds if βj > 0 and decreasing the odds if βj < 0.

2.2.2 Estimating the Coefficients
For non-gaussian errors the coefficients should not be found using ordinary least squares.
However, as with linear regression we can use maximum likelihood to obtain an estimate.
Assuming that the responses Yi are conditionally independent we can define the likelihood
function L as

L(β|y) =

n∏
i=1

f(yi|β) =

n∏
i=1

pyii (1− pi)1−yi , (2.41)

where f is the probability mass function of a binomial variable. Recall that p = p(β),
therefore the right hand side has β as a parameter. By defining l = lnL we can work with
sums instead of products, and we find that

l(β|y) =

n∑
i=1

yi ln pi + (1− yi) ln (1− pi) =

n∑
i=1

yi ln

(
pi

1− pi

)
+ ln (1− pi)

=

n∑
i=1

yix
T
i β − ln (1 + ex

T
i β),

(2.42)

by using equations (2.36) and (2.37), and the fact that

ln (1− p) = ln

(
1 + eη

1 + eη
− eη

1 + eη

)
= ln

(
1

1 + eη

)
= − ln (1 + eη).

The score function s(β) is defined as the derivative of l with respect to β:

s(β) :=
∂l

∂β
=

n∑
i=1

yixi − pixi. (2.43)

Setting this to 0 we should find a global maximum of this function, as we can see from
equation (2.42) that the expression is concave, which ensures a unique, global maximum
as long as none of the variables are linear combinations of each other. The desirable
property of a concave log-likelihood function is ensured due to the fact that we have used
the canonical link function for our generalized linear model, and our distribution is from
the exponential family. 1

In order to find the β that can make this expression equal 0, we must solve k + 1
non-linear equations. Therefore, we need a numerical way of solving these equations.
The commonly used function glm which is implemented in R uses the Fisher Scoring

1The binomial distribution is from the exponential family (Casella and Berger, 2002).

14

algorithm. It works by using a Taylor expansion around some starting point β(0) and using
an iterative method to find the optimal parameters. By defining the Fisher information
F (β) as

F (β) := − ∂2l(β)

∂βT∂β
=

N∑
i=1

xix
T
i pi(1− pi) (2.44)

we can utilize its inverse to find the optimal values β by the following iteration:

β(t+1) = β(t) + F−1(β(t))s(β(t)), t = 0, 1, 2 . . . (2.45)

As long as F is of full rank, this should converge to the parameter vector that maximizes
L(β|y).

2.2.3 Model Selection
There are many criteria that can provide some insight into how well a statistical model
fits its data. Most of these are relative, i.e their magnitude alone is unimportant and their
value should only be compared to that of the competing models. One such criteria to be
minimized is the Bayesian Information Criterion, defined by

BIC = −2l + k ln(n), (2.46)

where l is the log-likelihood function defined above, and k is the total number of predictors
included in the model. n is the size of the data set. The penalty k ln(n) seeks to reduce the
number of covariates included in the model, thereby making it faster to fit to the data, less
likely to overfit the data and more interpretable.

Another such criteria to be minimized is the AIC, which is of a similar form to the
BIC, but with a less strict penalty term. One can use these two criteria to create subsets of
the data to use for inference, where the one chosen by the BIC will be smaller than the one
chosen by the AIC. Model selection is not a very important part in this thesis, so we will
simply use the BIC in order to reduce the number of covariates and decrease the workload
that goes into building the models.

15

2.3 Decision Trees & Random Forests
Logistic regression is often considered to be the fundamental building block for statisti-
cians when performing classification. We now turn to methods based on decision trees,
which are thought to mimic human decision making. We first describe how a decision tree
is constructed, then we cover theory pertaining to random forests.

2.3.1 Constructing a Decision Tree
Decision trees can be used for regression, but their primary function is to perform clas-
sification. The simplest and most generic decision tree is visualized in figure 2.2, which

Figure 2.2: A generic decision tree with two terminal nodes.

makes decision 1 if the given condition is true. If it is false decision 2 is made instead. A
simple example of this could be if we were to decide whether or not to go to the beach one
day. We could condition this upon the weather the current day, say if it is sunny or not. If
it is sunny we decide to go to the beach, and this would be decision 1. If it is not sunny the
condition is false and we make decision 2, which is to stay at home. This process is quite
easy and straightforward, and in many cases this is how decisions are made.

The decision tree in figure 2.2 has two terminal nodes, but in general decision trees
can be much more complicated. The method of using trees for decision making relies
upon the tree segmenting the predictor space R into J non-overlapping regions Rj , j =
1, . . . , J , and making the same prediction for each new observation that falls into a given
region Rj . Note that the value of J depends upon the sample and is not given before
the tree is made. As the regions are supposed to be disjoint, we should have Ri ∩ Rj =
∅, i 6= j, and also R = ∪Jj=1Rj as these regions should make up the entire predictor
space. In the case of k real valued continuous variables we have R = Rk. Predictions
are made by majority vote in each region, which means that when a new observation is
to be classified, we check which region the observation falls into, and classify according
to the rule given by equation (2.8). For a given cut-off probability α we classify the new
observation as ω1 if the proportion of observations in the training set within the region
is higher than α, otherwise we classify the new observation as belonging to ω0. A more

16

detailed visualization of a decision tree is given in figure 2.3. In this figure we have the

Figure 2.3: Left: A visual representation of the partition a decision tree with two predictors A and
B can create. Right: The decision tree that partitions the predictor space as in the figure to the left.
Splits in the decision tree have been made for A at a1 and a2 and for B at b1 and b2.

two predictors A and B that we can use to partition the predictor space. To the right we
see the decision tree that created the boundaries visualized on the left. First, the condition
B < b1 was investigated. If a given condition is true we proceed down the left side
of the split, otherwise we proceed to the right. Assume we have n0 observations with
label ω0 and n1 observations with label ω1 in the data set. If we make no partition of
the predictor space a new observation would have to be classified to the majority class,
as this would be our guess. When the decision tree decides to investigate the condition
B < b1 it does so because on at least one side of B = b1 the distribution of the class
labels will be more uneven than in the data set as a whole. Assume that for B < b1 we
have M0 and M1 observations with respective labels ω0 and ω1. If the ratio M0/M1 is
much bigger than 1 we can expect a new observation falling into this region to have the
label ω0. Similarly, if the ratio is much smaller than 1 we can expect a new observation
to be of class ω1. Decision trees in this way seek to find the boundaries that are capable
of effectively discriminating between class labels. After having investigated the condition
B < b1 the decision tree continues by making the partition of the predictor space finer until
the imbalance within a region is significant enough that the tree can accurately classify
most observations within said region. Alternatively, the tree stops partitioning the predictor
space when the number of observations in each region becomes sufficiently small. We
note that for imbalanced data sets the decision tree might simply classify all observations
to the majority class, as it is quickly satisfied with the distribution in each region and can
accurately classify most observations. This further substantiates the claim by Rahman and
Davis (2013) that most classification algorithms tend to work by maximizing accuracy.

Formally, when the splits are performed we are seeking the split that provides the
greatest reduction in Gini Impurity G(Rj) (Muchai and Odongo, 2014) for a given region

17

Rj , defined for C classes as

G(Rj) =

C−1∑
k=0

pj(ωk)(1− pj(ωk)). (2.47)

In our case C = 2. pj(ωk) is the probability of an observation in region Rj having
class label ωk and is simply the relative frequency of observations in Rj having this label.
1 − pj(ωk) is the probability of misclassifying this observation. When a region R with
nR observations gets split into two smaller regions R1 and R2 with respective numbers of
observations nR1

and nR2
, the Gini Impurity after this split has been performed becomes

GSplit(R) =
nR1

nR
G(R1) +

nR2

nR
G(R2), (2.48)

and the split that is performed is the one that maximizes the difference G(R)−GSplit(R).

2.3.2 Bootstrap Aggregating and Random Forests
Before we move onto random forests we must first look at bootstrap aggregating (bag-
ging). When reading this keep in mind that random forests are essentially the same as
bagged trees, with the only difference being which predictors we include when creating
the individual trees.

Bootstrapping is a technique often used to approximate the sampling distribution of
some statistic when the actual distribution is unknown. A drawback of decision trees is
that they tend to be very dependent upon their training data, meaning that they are unstable
when new observations are introduced and therefore have high variance. This variance can
be reduced by making many trees and aggregating their predictions, thereby creating what
is referred to as bagged trees. We know that if Var(Yi) = σ2, then Var(

∑B
i=1 Yi/B) =

σ2/B as long as the Yi are independent and identically distributed.
Bootstrapping works by drawing a random sample with replacement M times from

a data set of size M . We create a decision tree to this sample, and repeat this process
B times. These trees are fitted to the same distribution and are not equal, but they are
dependent upon each other. This means that if an observation x is classified by trees i
and j with corresponding classifications Yi and Yj , then these are correlated with some
positive correlation ρ. We have

Cov(Yi, Yj) =

{
ρσ2 if i 6= j,

σ2 if i = j.
(2.49)

Because Var(Y) = Cov(Y, Y), for the mean Ȳ =
∑B
i=1 Yi/B we have

Var(Ȳ) =
1

B2
Cov

 B∑
i=1

Yi,

B∑
j=1

Yj

 . (2.50)

There are B2 terms here, with B of the terms having i = j and covariance σ2. The
remaining B2 − B terms each have covariance ρσ2. This leads us to the variance for the

18

mean

Var(Ȳ) =
1

B2

(
Bσ2 + (B2 −B)σ2ρ

)
=
σ2

B
(1 + ρB − ρ). (2.51)

We see that for ρ = 1 the variance is the same as for a single decision tree, and for ρ = 0
we have been able to divide the variance by B. The final prediction is then 1 if Ȳ > α,
with the cut-off α usually equal to 1/2. The cut-off can be set to any number, but must
be determined before the random forest is created. In the limit B → ∞ the variance
approaches ρσ2. Typical values for B lie in the hundreds, therefore a good approximation
is

Var(Ȳ) ≈ ρσ2. (2.52)

The correlation ρ is necessarily less than 1, although how much smaller is difficult to say.
Regardless, bagging can clearly improve the variance of the prediction.

We now move on to random forests. Random forests were created by Leo Breiman
and Adele Cutler, and the implementation in R used here is based on their original code
that was written in Fortran (Breiman, 2002). The idea is to further reduce the variance
of the classifier by reducing the correlation ρ between the trees. While random forests -
like bagged trees - train each tree on a random sample of the training set, random forests
additionally draw a random sample with replacement of the predictors it can use at each
split. When building a tree based on k predictors, it is recommended to use m ≈

√
k at

each split (Breiman, 2002). To clarify: these m predictors are drawn randomly several
times when creating a tree, once for each split. The chosen predictor is the one that has
the greatest reduction in Gini impurity, as for bagging. Trees grown on different samples
with different sets of predictors must necessarily be even less correlated than bagged trees,
leading to a further decrease in variance.

Another advantage of random forests is that they eliminate the need for validation sets
to create an estimate of the test set error (Breiman, 2001). WhenM observations are drawn
with replacement from a data set of size M , the probability of one of these observations
not being drawn is (1 − 1/M)M . We see that in the limit M → ∞ this equals 1/e
by definition, which means that approximately M/e observations are left out during the
construction of a single tree. These observations are commonly referred to as the out-of-
bag(OOB) sample and can be used as a validation set during training. The out-of-bag error
rate is the error rate when applying the random forest to the current OOB sample during
training, and this error rate is an unbiased estimate of the test set error rate, implying that
the algorithm does not overfit the data (Breiman, 2001).

19

2.4 Sampled Data
The advantage of sampling our own data is the fact that we can decide exactly which
conditions to examine. Training sets with imbalances of arbitrary degree can easily be
created, and we can decide what kind of distribution our covariates are to follow. The
normal (gaussian) distribution is central in many fields of statistics, and for this reason we
will choose to look at explanatory variables that conditionally follow this distribution.

2.4.1 One Normally Distributed Covariate
Consider the case described in section 2.1.6, where we have one covariate X and a re-
sponse Y and X follows a normal distribution, conditional upon the value of Y . Assume
Z is a random variable following a standard normal distribution. Defining the function
Φ(z) as the probability that Z ≤ z, we then have that

Φ(z) := P (Z ≤ z) =
1√
2π

∫ z

−∞
e−

1
2x

2

dx. (2.53)

Approximate values of this function can be found in a table, or one can use the R function
pnorm(z). This is commonly known to statisticians, and we can use this function to de-
termine the TNR, TPR and BACC of a given logistic model. Recall that with one predictor
X = x the linear predictor is given by

η = β0 + xβx.

With a cut-off probability α of 0.5 we have that an observation will be classified as a
positive instance when

p(Y = 1|η) >
1

2
, =⇒ η > 0, =⇒ x > −β0

βx
, (2.54)

given that βx > 0. We can make sure that βx is not a negative number from how we define
the distribution of x, namely by having µ1 > µ0. Given that Y = 0, we have that

X − µ0 ∼ Z ∼ N(0, 12).

The true negative rate is the fraction of correctly classified negative observations. We can
then see from equation (2.54) that this is given by

TNR = P (X < −β0/βx) = P (Z + µ0 < −β0/βx)

= P (Z < −µ0 − β0/βx) = Φ(−µ0 − β0/βx).
(2.55)

We note that P (Z > z) = 1 − P (Z ≤ z) = 1 − Φ(z), and conditional upon Y = 1 we
know that

X − µ1 ∼ N(0, 12).

This positive observation will be correctly classified as long as X = x > −β0/βx. We
then see that the true positive rate is given by

TPR = P (X > −β0/βx) = P (Z > −µ1 − β0/βx)

= 1− P (Z < −µ1 − β0/βx) = 1− Φ(−µ1 − β0/βx).
(2.56)

20

The balanced accuracy is then calculated by using the mean of these theoretical values.
When a model has been fitted and values for β0 and βx have been obtained, we can calcu-
late the TPR, TNR and BACC without having to rely on a test set. Obviously, this is only
possible when we know the distributions the variables are coming from. The values should
be more or less independent of initial seeds when we use sufficiently many observations.
This naturally leads to the question: what happens when the number of available observa-
tions is small? This is a central question when dealing with imbalanced data, as sample
sizes of an order of magnitude n = 1000 can in no way be considered large when dealing
with the same imbalances as observed in the data set provided by Sparebank 1 (approxi-
mately 219 negative observations for each positive observation). We will be looking at the
variability of the coefficients β0 and βx and their associated performance when fitted on
small data sets in the Results section.

21

22

Chapter 3
Data Set provided by Sparebank 1
Kredittkort AS

3.1 Predicting Refinancing of Credit Card Debt
My project thesis (Frogner, 2019) concerned the problem of predicting which customers
might seek refinancing of their credit card debt from competing banks. The data set was
provided by Sparebank 1, and for this thesis a new data set has been provided. It consists of
614 465 observations of 78 variables, including response. A complete list of the variables
with explanations can be found in Appendix A. The distribution of the response can be
viewed in table 3.1. In the data set the response is named ReFinInd. It is worth nothing

No Refinancing Refinancing Total
611 800 2665 614 465

Table 3.1: The number of customers who have received refinancing from competitors, as determined
by Sparebank 1.

that the imbalance given in table 3.1 will change after we are done with data preparation,
which is described in section 3.2. The data provided by Sparebank 1 will be used as a case
study to compare the effectiveness of some of the methods covered in the theory section,
as opposed to when the methods are applied to variables from ”nicer” distributions that we
have sampled from.

3.1.1 Distribution of the Covariates
We begin by looking at the data set to get some idea of what we are dealing with. Two
excerpts of some of the variables can be seen in figures 3.1 and 3.2. These excerpts clearly
illustrate that the distribution of the covariates do not follow a ”nice” distribution that you

23

Figure 3.1: An excerpt of the data set. The variables regard credit limit, revolving balance, utiliza-
tion and payments.

Figure 3.2: An excerpt of the data set. The variables regard what categories the customers spend
money on.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Correlation plot of the data set. Bottom row/last column is the response ReFinInd.

24

would find in a textbook in statistics. Many of the numbers are 0, and if they are non-
zero then they might be numbers from a few hundred to tens of thousands. In fact, after
performing the initial stages of data preparation there are 18.7 million 0-valued numbers
split among 66 variables and 466 539 observations. This means that more than half of the
numbers in the data set are 0.

A correlation plot of the data set is found in figure 3.3. The bottom row and last
column show the correlation between the response and the other variables. As studied
in section 2.1.6 we found that the correlation between a variable from a mixed normal
distribution and a binomial variable will be quite low for a data set that is this imbalanced.
Even though the variables here don’t follow the same distribution, we see that the findings
are much the same: the correlation between the variables and the response is very close
to 0. Determining an accurate relationship between the variables and the response by
inspection will be very difficult. This is obviously made more difficult for data sets with
many variables.

3.2 Data Preparation
In this data set there are a few issues that must be dealt with before models can be fitted.
These are mainly the issues of dealing with missing values, removing duplicate observa-
tions and handling multicollinearity between the variables.

Missing Values

There are 2 357 690 missing values in the data set. Upon inspection it is found that
almost all these missing values are found in variables that are defined as some fraction
of numbers. It is apparent that most - if not all - of these missing values are missing
due to the fraction being 0/0. One example of this is the variable AvgRevBalL3onL12
- average revolving balance last 3 months divided by average revolving balance last 12
months. Many customers have no revolving balance (they might not even use their credit
cards), and in this case this variable will have an undefined value. In this case it makes
sense to assume that this is the cause for the missing value, and it seems appropriate to
define

0

0
:= 0

for the variables that might have this issue. The only variable that has missing values that
can not have arisen from this issue is the variable CustomerAge. This variable has 39
missing values, and these observations were simply removed from the data set.

Duplicate Observations

The variable BK ACCOUNT ID is the unique anonymized account identifier. Sorting the
data set according to this variable and checking to see if any two consecutive observations
share the same account identifier we can identify duplicate observations. A total of 3700
duplicate observations were identified and removed. In conversations with Sparebank 1
we have discussed the methods of SMOTE and oversampling, as per section 2.1.4. It

25

is believed that some of these duplicates might be due to oversampling performed by
Sparebank 1, although exactly how the duplicates have arisen is unknown; they could
also be due to technical errors. Nevertheless, these observations were removed in order to
maintain control of the rate of oversampling and to maintain the purity of the data set.

Removing Unwanted Data

In the theory section several methods for making the data set more balanced were dis-
cussed. These methods were undersampling, oversampling and SMOTE. We can also
simply look at the variables and see if any of these can uniquely determine the response.
The variable Segment9Name is a variable that segments the customer base according to
some criteria. One of the levels of this categorical variable is "Not active in last
12 mths". Of the 144 199 accounts with this level, only 9 accounts had a positive re-
sponse ReFinInd; a fraction of less than 1 in 16 000. This is the kind of variable that
is easy to notice through inspecting the data: an account that has not been active for 12
months is very unlikely to receive refinancing from a competitor. As the vast majority of
these observations are negative and we are interested in identifying positive observations,
we choose to omit these observations. This favorably changes the distribution of the re-
sponse by making the data set more balanced, and the final distribution that we end up
with can be seen in table 3.2. The imbalance in this data set is then roughly p = 1/220;

No Refinancing Refinancing Total
464 419 2120 466 539

Table 3.2: The distribution of the response in the data set after preparing the data as described in
this section.

219 negative observations for every positive observation. This value for p will be used
extensively in the Results section. The data set we will be working with will consist of
466 539 observations, before splitting into training and test set. Additional variables will
be removed from the data set, but from here on out additional observations will not be
removed, except when performing undersampling.

Another issue that must be dealt with is that of categorical variables having many
levels. For instance, the variable CAMPAIGN NAME has 81 factor levels. Breiman and
Cutler’s implementation of random forests originally required categorical variables to have
fewer than 33 values (Breiman, 2002). Determining the optimal splits in a categorical
variable to create a decision tree is a problem that grows exponentially as a function of the
number of factor levels. For a variable with 81 levels this can take an extreme amount of
time, as we note that 280 > 1024. No modern computer can deal with computations of this
magnitude in any reasonable amount of time. Variables with many levels have also been
identified as problematic when testing a logistic model trained on an undersampled data
set on new data.

26

Multicollinearity

The final issue that must be dealt with is that of collinearity between the variables. Con-
sider figure 3.4. This figure shows part of a summary from fitting a logistic model to the

Figure 3.4: Summary of a logistic model, displaying issues of multicollinearity between some vari-
ables.

data set. Which variables are included can be found in Appendix B, under the print-out of
the aptly named model modelUseless. The first red box clearly displays collinearity
between variables; we have two coefficients that are extremely large, with the same order
of magnitude and opposite signs. In fact, almost all levels of CAMPAIGN NAME share the
same coefficient. This inflation of the coefficients occurs due to a near-singular design ma-
trix, and we can see from the right-most column that the p-values are equal to 0.88 which
typically means that this is a value to be discarded. However, a few rows down we find
one factor level that has a coefficient several orders of magnitude greater than the others,
and this coefficient is actually determined to be significant by looking at the associated
p-value. It would clearly be a mistake to include this variable. Recall that inference on the
parameters is usually based on the odds ratio, as given in equation (2.40). This means that
- given two observations x1 and x2 that only differ in this variable level - the odds relative
to each other will be equal to

p1
1−p1
p2

1−p2
= exp(4.509 · 1015).

One can verify that this number will have more than 1015 digits, making it absurdly large.
While it was not entirely necessary to show just how large this number is, it was interesting
to point out exactly how poor the results from logistic regression can be when dealing with
collinear variables. On the other hand, other methods will have no issue in dealing with
collinear variables. Random forests is one such example.

27

For the reasons stated, the variable CAMPAIGN NAME was removed from further in-
ference on the data set. The variable Segment9Name is explicitly given by the variable
Segment23Name, and the latter was removed from the data set. Several variables were
removed, as they all contained the same information, namely the period of time the data
set was taken from.

28

Chapter 4
Results

4.1 About the Results

The results have been produced using the statistical software R. Results that have been
produced by sampling data are entirely reproducible, and the reader can reproduce any of
these results by running the code given in Appendix C. The results pertaining to the data
set provided by Sparebank 1 are unfortunately not reproducible, as the data set cannot be
made available.

Regarding notation: notation in the results section will as closely as possible follow
the same notation used in the theory section. When comparing models to each other, we
need to be able to differentiate between them. What separates one model from another
is often no more than the data set the model is trained on, which can be oversampled,
undersampled or SMOTEd. The name of the model will reflect this in some way, and will
be explained as thoroughly as possible when necessary. This is of higher importance when
working on the data set provided by Sparebank 1. We denote by p the imbalance in the
original data set we are using, and pt is the imbalance in the resampled training set, as per
section 2.1.5. The degree of resampling will sometimes be referred to as pt, as these are
one and the same.

4.2 Logistic Regression on Sampled Data

In this section we will be using logistic regression on sampled data of varying levels of
imbalance to investigate the effectiveness of the methods discussed in the Theory section.

29

4.2.1 One Normally Distributed Predictor
We begin by studying the case described in section 2.1.6. We have a response Y and a
covariate X , where

Y ∼ Bin(1, p), p ∈ [1/1000, 1/2],

X|(Y = 0) ∼ N(−1, 12),

X|(Y = 1) ∼ N(1, 12).

Until otherwise stated, this will be the case we are studying. We vary p between 1/2 - the
perfectly balanced case - and 1/1000, which is quite an imbalanced data set. All parameters
are considered to be known, we therefore do not need to estimate any of these parameters.
We have sampled 1000 points from the minority class, where the distribution is as above.
We also sample the appropriate number of points from the majority class to obtain the
specified imbalance in the data set. For instance, in the case of an imbalance of 1/1000 we
have sampled 1000 points from the minority distribution and 999 000 from the majority
distribution. A logistic model was fitted to each of these data sets and the results can be
viewed in table 4.1. The cut-off probability α here is 1/2, which means that the linear

P (Y = 1) β0 βx −β0/βx TNR TPR BACC Accuracy
1/2 0.098 1.99 -0.049 0.83 0.85 0.84 0.841
1/5 -1.34 2.05 0.65 0.95 0.64 0.79 0.885

1/10 -2.14 1.98 1.08 0.98 0.47 0.72 0.931
1/20 -2.95 2.01 1.47 0.993 0.32 0.66 0.960
1/50 -3.86 1.97 1.96 0.998 0.17 0.58 0.982

1/100 -4.58 1.97 2.32 0.999 0.09 0.55 0.991
1/220 -5.47 2.09 2.62 0.999 0.05 0.53 0.996
1/500 -6.17 1.96 3.15 0.999 0.016 0.51 0.998

1/1000 -6.90 1.99 3.47 0.999 0.007 0.50 0.999

Table 4.1: Performance of logistic regression on data sets of varying imbalances. The value in red
corresponds to the imbalance of the data set from Sparebank 1.

predictor ηi = β0 + xiβx must be greater than 0 for Yi to be classified as positive. This
is ensured whenever xi > −β0/βx and this discriminating value is shown in the fourth
column of the table. We note that in the perfectly balanced case we have

E(TNR) = E(TPR) = E(BACC) = E(Accuracy) = Φ(1) ≈ 0.841,

where Φ(z) is as described in equation (2.53). Simple reasoning for this is the fact that
a true positive or true negative should be equally likely in this case, and will occur at a
rate of Φ(1). The coefficients β0 and βx are also included in the table, and we see that for
higher degrees of imbalance the intercept β0 steadily decreases, while the coefficient βx
seems to remain stable around 2. This causes the discriminant −β0/βx to increase, which
means that increasing degrees of imbalance are more likely to classify a new observation
as negative, regardless of which class it belongs to. The TNR, TPR and BACC given here
are not based on a test set, they are calculated using theoretical values, as per equations

30

(2.55) and (2.56). By theoretical values we mean theoretical as long as β0 and βx are
given. In the way this small experiment is set up, we know that we have a variable that has
significant explanatory power. In the perfectly balanced case we have a balanced accuracy
of 0.84, with the true negative and true positive rates more or less the same. When the
imbalance becomes p = 1/10 the true positive rate has fallen below 50 %, meaning that
we are no longer able to correctly classify even half the positive observations, given this
model. We see that as p decreases below 1/50 the true negative rate has more or less
reached 1, while the true positive rate continues to decrease. At this point we appear to
be reaching the threshold for where logistic regression can accurately identify any of the
observations from the minority class, even though we have a variable that should be a
strong indicator of which class the response belongs to.

Varying Cut-Off Probability

We now turn to the same case of using logistic regression to classify data sets of varying
imbalance, but now with varying cut off probability α. A natural question is what kind
of values should we use for α. As we saw from table 4.1 the BACC declines as the
distribution becomes more imbalanced. This is due to the true positive rate decreasing
faster than the true negative rate can increase. By adjusting down the cut-off probability
we can increase the balanced accuracy, and we choose to investigate the same values for
α as we have used for the imbalance p. The results of fitting a logistic model to data sets
of varying imbalances with varying cut-off values can be see in table 4.2. The balanced

α/p 1/2 1/5 1/10 1/20 1/50 1/100 1/220 1/500 1/1000
1/2 0.846 0.786 0.714 0.653 0.591 0.534 0.519 0.506 0.503
1/5 0.789 0.835 0.825 0.783 0.698 0.624 0.573 0.544 0.515

1/10 0.722 0.812 0.851 0.831 0.766 0.690 0.627 0.576 0.536
1/20 0.648 0.769 0.827 0.850 0.824 0.758 0.692 0.620 0.577
1/50 0.577 0.692 0.762 0.817 0.845 0.830 0.767 0.699 0.649

1/100 0.539 0.631 0.701 0.766 0.828 0.841 0.820 0.756 0.702
1/220 0.514 0.576 0.632 0.694 0.774 0.819 0.842 0.809 0.769
1/500 0.507 0.536 0.575 0.623 0.704 0.762 0.821 0.845 0.814

1/1000 0.502 0.518 0.540 0.578 0.643 0.696 0.776 0.833 0.838

Table 4.2: Balanced Accuracy for logistic models trained on data sets of varying imbalances p when
the cut-off probability α is varied.

accuracy for each case is given, with columns corresponding to a given imbalance p and
rows corresponding to a given cut-offα. The highest value for each data set with imbalance
p is highlighted in red. All these values appear to lie on the diagonal, where p = α. The
red values are clearly similar to the theoretical value Φ(1) ≈ 0.841 from equation (2.53).
Above the diagonal we have that the true negative rate is high and the true positive rate
is low, while below the diagonal the opposite is true. Viewing this as a matrix, we have
that element (α, p) is approximately equal to (p, α). A BACC of 0.5 is the expected
performance of random guessing, and we can see that several values are close to this
value, which means that for some of these parameters the model is more or less entirely
useless. This is a clear indication that varying the cut-off probability can improve a model

31

significantly. With the BACC as our performance measure, a logistic model trained on
a data set with imbalance p = 1/1000 can go from being about as effective as random
guessing when using the usual cut-off α = 0.5, to achieving a BACC as high as a model
trained on a perfectly balanced data set when α is set equal to p.

4.2.2 Resampling techniques on small data sets
We now delve into the problem of examining the performance of the resampling techniques
undersampling, oversampling and SMOTE. Here we will be looking at data sets with few
positive observations, and we will compare our findings to those in the next section where
we look at bigger data sets.

Several times in this section we will be writing ”parameters produced by oversam-
pling”, or similarly. By writing this we are referring to the parameters β0 and βx of a
logistic model trained on a resampled data set. This is to clarify that the simple act of
resampling does not alone produce any specific parameters; the parameters will depend on
the method of resampling as well as the degree of resampling, the random seed used for
sampling and on the data itself.

Denoting the number of positive observations as n1, we set n1 = 20 and use the
same value for p as in the data set from Sparebank 1, namely 1/220. This gives us 20
observations with label 1 from a N(1, 12)-distribution, and 4380 observations with label
0 from a N(−1, 12)-distribution, for a total of 4400 observations. We create 10 data sets
following this distribution, then proceed to train a total of 30 models on these after having
used all three resampling techniques to obtain training sets with an even distribution of
positive to negative observations. For the undersampled training set we then end up with
20 positive and 20 negative observations, while we need an additional 4360 observations of
the positive class for our oversampled and SMOTEd training sets. Fitting logistic models
to each of these 30 sets will yield slightly different parameters (β0, βx) each time, and we
can see a scatter plot of these in figure 4.1. In the top right we find a significant outlier. On

Figure 4.1: Scatter plot of parameters from logistic models trained on training sets with pt = 1/2,
original data with p = 1/220 and 20 positive observations.

the 6th data set that was sampled, three logistic models were trained, as for the other data

32

sets. The parameter vectors for the models trained on this training set were (1.91, 7.35),
(−0.21, 2.52) and (−0.53, 2.95) when the resampling techniques were undersampling,
oversampling and SMOTE, respectively. The parameters produced by using oversampling
and SMOTE are nothing out of the ordinary and fit well with the cluster in the bottom left.
Unsurprisingly, it was the undersampled training set that produced the outlier. Estimation
of the parameters depends upon the data provided, and with small data sets the parameters
are more likely to be influenced by a few noisy observations. Ignoring the outlier, it still
seems that the parameters produced by undersampling the data have higher variability than
those where the data has been oversampled. The parameters produced by SMOTE seem to
have slightly higher variability than the ones produced by oversampling, but still less than
the ones given by undersampling. We consider this stability to be a desirable property.

Twenty of the parameter vectors have an intercept β0 that is negative, while the re-
maining 10 have positive intercepts, making a false negative more probable than a false
positive. It is entirely possible that this is due to chance, as a sample size of 30 models
is quite small. Measuring performance again by BACC, we can see the performance of
the models in table 4.3. In this table we have also included a logistic model trained on

Run Undersampling Oversampling SMOTE No Resampling
1 0.843 0.843 0.843 0.508
2 0.840 0.843 0.839 0.552
3 0.839 0.842 0.841 0.526
4 0.842 0.842 0.842 0.516
5 0.844 0.843 0.842 0.529
6 0.836 0.843 0.839 0.524
7 0.837 0.838 0.834 0.528
8 0.842 0.842 0.842 0.520
9 0.837 0.842 0.840 0.526

10 0.843 0.843 0.842 0.517
Mean 0.840 0.842 0.840 0.525

Table 4.3: BACC for each test run for each of the models. The model with outlying parameters is
marked in red. The test set consisted of 10 000 positive observations and 10 000 negative observa-
tions.

the original, imbalanced data set. All cut-off values α are 0.5. The BACC of the model
that produced the outlier in figure 4.1 is highlighted in red, and is one of the lowest values
in the table, ignoring the last column. The BACC of this model is still quite high, which
shows that very different parameters can yield more or less the same results. Even though
the 10 data sets were sampled from exactly the same distribution, we can see that the 7th
run yields worse results than all the other runs. This is something that can happen when
the models are trained on a particularly noisy training set, which seems to be the issue
here. All the models were tested on the same test set, with observations drawn according
to the case described at the beginning of section 4.2.1, with p = 1/2. Recall that the high-
est expected accuracy and BACC of a model tested on this distribution is Φ(1) ≈ 0.8413.
Oversampling appears to achieve a mean BACC of 0.842, slightly higher than the theoret-
ical threshold, and this must be due to chance. Undersampling and SMOTE both get an

33

average of 0.840, very close to the theoretical threshold. It appears that for such a simple
data set, undersampling can perform more or less just as well SMOTE and oversampling,
even though the sample size is very small.

4.2.3 Resampling Techniques on Large Data Sets
Undersampling was shown to have higher variability than the other resampling techniques
when estimating the parameters of a logistic model, but appeared to achieve roughly the
same accuracy and BACC. Setting the number of positive observations n1 equal to 1000,
we investigate what happens to the parameters as we attempt to perform the same ex-
periment on a bigger data set. We resample the training sets so that pt = 1/2, and in
figure 4.2 we see the 30 parameter pairs (β0, βx) that are produced from these models. In

Figure 4.2: Scatter plot of parameters from logistic models trained on training sets with pt = 1/2,
original data with p = 1/220 and 1000 positive observations.

this second scatter plot we can see something interesting that was not apparent in the first
one. The parameters produced by undersampling and oversampling appear to be clustered
together, while the ones produced by SMOTE are clearly separated from the rest. Addi-
tionally, all the intercepts given by SMOTE are negative, and the mean true negative rate
for SMOTE was 0.858, while the mean true positive rate was 0.826. We expect a frac-
tion of 1 − Φ(1) ≈ 0.159 positive observations to have the explanatory variable X < 0.
When running SMOTE on data sampled from a N(1, 12) distribution, we end up with a
fraction of roughly 0.115 of the new data points having X < 0. Recall that whenever we
use SMOTE in this thesis, the mixing parameter a is sampled uniformly from the interval
[0.5,1], which means that this result will not be the same for other implementations of
SMOTE. We can easily determine that both oversampling and undersampling will asymp-
totically produce data sets where the positive observations follow a N(1, 12) distribution.
SMOTE has yielded similar results as the other resampling techniques thus far, but we can
see that the data it produces is not equal in distribution to the input data.

34

4.3 Data from Sparebank 1 Kredittkort AS
We now turn to the data set graciously provided by Sparebank 1 Kredittkort AS. We will
apply random forests to the data set and compare their performance to that of logistic
regression, and we will be using the resampling methods more extensively here.

4.3.1 Logistic Regression without Resampling
First, we partition the data set into a training set and a test set, using stratified sampling.
The training set consists of 316 539 observations, with 1438 of these being positive ob-
servations. Similarly, the test set consists of 150 000 observations with 682 of these being
positive observations. Including the response ReFinInd, the data set consists of 66 vari-
ables after we are done with data preparation. We fit a logistic model to the training set,
and it is tested on the test set for different values of the cut-off probability α. This can
be seen in table 4.4, and we have utilized all the possible variables, not counting the ones
removed during data preparation. We term this model the ”full model”, and exactly which
variables go into it can be seen in Appendix 6.2. Here we can clearly see the issues of an

α TN FP FN TP BACC Accuracy
1/2 149317 1 682 0 0.500 0.995
1/5 149312 6 682 0 0.500 0.995

1/10 149246 72 679 3 0.502 0.995
1/20 148581 737 648 34 0.522 0.991
1/50 141110 8208 467 215 0.630 0.942

1/100 127864 21454 246 436 0.748 0.855
1/220 111391 37927 106 576 0.795 0.746
1/500 87835 61483 37 645 0.767 0.590

1/1000 77079 72239 25 657 0.740 0.518

Table 4.4: Performance of logistic regression on the data set given by Sparebank 1, utilizing all
variables.

imbalanced data set: given the traditional cut-off value of 1/2, only a single observation
has been classified as positive, which turns out to be a false positive. The balanced accu-
racy is equal to the expected value of random guessing, namely 0.5, while the accuracy
is quite high. Fortunately, it is easy to adjust α for a logistic model, and we can see that
the BACC increases significantly as α is adjusted down. This comes at the cost of accu-
racy, and for Sparebank 1 this trade-off is important. Their goal is to limit the monetary
loss they have from customers seeking refinancing from competitors, but there will also be
a loss associated with the false positives that increase rapidly in number as α decreases.
When α is set to 0.01 we can see that the true positive rate has almost reached 2/3, and the
BACC has climbed to almost 3/4. Adjusting α further down so that it equals the imbalance
of p = 1/220 we find that the BACC is maximized among these chosen values for α. In
section 4.2.1 we found that the optimal cut-off for data sets drawn from a mixed normal
distribution seemed to be equal to the imbalance of the data set, and the same appears to
be true here. By optimal, we of course mean optimal in conjunction with using BACC as

35

our performance measure.

4.3.2 Model Selection
Model selection is typically performed in order to make a model more interpretable and
less likely to overfit the data. We are not particularly interested in having an interpretable
model, as the focus here is not understanding which variable to use, but rather which
methods are more effective when classifying imbalanced data. However, there is a third
reason why we would want to reduce the number of covariates included in the model. In
section 4.3.4 we will fit several logistic models to the data set, after having used resampling
techniques. The biggest of these required 870 MB of memory, and we will be looking at
several models simultaneously. Dealing with several such models on a laptop can be an
arduous task. Random forests also require significant amounts of memory, in addition
to taking some time to fit. Random forests typically require hundreds, sometimes even
thousands of decision trees in order to converge (Frogner, 2019). See the figures in section
4.3.3 for what it means for a random forest to converge. Reducing the number of covariates
in the model can be a significant help in dealing with these issues, and in figure 4.3 we see
the BIC for different model complexities. The covariates are chosen by forward selection,

Figure 4.3: BIC by forward selection. A model with 17 variables is considered optimal by this
criterion.

and a model with 17 predictors is deemed optimal. Several of the predictors are in fact
different factor levels of the same variable, which means that the model actually only
includes 12 different variables. Including all factor levels this turns out be 33 parameters
that must be estimated for a logistic model, including intercept. Exactly which parameters
this is can be seen from the print-out in Appendix 6.3. Thirty three parameters to estimate
is still a significant reduction from the 93 that were needed if we were to use the full model.

In table 4.5 we can see the performance of the reduced logistic model when applied
to the test set. The only difference between this table and table 4.4 are the variables that
were used to produce them. The highest BACC obtained here is attained when α = p,
which is as we have come to expect. Here, the highest BACC is 0.798, compared to
0.795 for the full model. While this might imply that the reduced model might be slightly

36

α TN FP FN TP BACC Accuracy
1/2 149318 0 682 0 0.500 0.995
1/5 149316 2 682 0 0.500 0.995

1/10 149253 65 679 3 0.502 0.995
1/20 148551 767 651 31 0.520 0.991
1/50 141886 7432 481 201 0.622 0.947

1/100 128618 20700 244 438 0.752 0.860
1/220 108615 40703 90 592 0.798 0.728
1/500 83866 65452 36 646 0.754 0.563

1/1000 76618 72700 26 656 0.737 0.515

Table 4.5: Performance of the reduced logistic model on the test set.

better, it is worth noticing that the accuracy for the full model is higher than the accuracy
for the reduced model for the same value of α. A side-by-side comparison of the tables
will show that the models follow each other closely in both accuracy, balanced accuracy
and true positive rate, implying that the models are of similar quality when it comes to
classification. However, the reduced model is clearly superior to the full model regarding
the issues discussed above in this section.

4.3.3 Random Forests without Resampling

We now turn to random forests. Random forests have many hyperparameters to be set
before they are trained, the most important being the number of predictors mtry tried at
each split, and the number of trees to be grown ntree. All hyperparameters excluding
the cut-off probability are set to default values, and ntree is set to 200 for all the results
produced here.

Training Random Forests on Imbalanced Data

As we have seen in previous sections, the cut-off probability α must be lowered below
the typical threshold of 1/2 in order for logistic regression to be able to accurately classify
the positive observations. We expect the same to apply to random forests to some extent,
which means that we must attempt to choose meaningful values of α. While logistic mod-
els can be modified after training by adjusting α, random forests must have this parameter
set before the model is built.

Consider figure 4.4. Here we have built four random forests on the full data set, with
differing values for α. We see that the algorithm has not converged even after 200 decision
trees have been made when the values for α are 1/50 and 1/220. For the higher values 1/10
and 1/2 the algorithm seems to converge much more quickly. We note from the purple
curve where α = 1/50 that the error rate seems to oscillate, and this is even more apparent
in figure 4.5, which was taken directly from my project thesis Frogner (2019). Higher
values of α make the out-of-bag error rate converge more quickly, and the error rate is
higher when α is small, as expected. We can see that for α = 0.05 there is a clear
oscillation of the error rate for the first 200 decision trees created, then it seems to stabilize

37

Figure 4.4: Out-of-bag error rate for random forests fitted on the full data set.

Figure 4.5: Oscillation of out-of-bag error rate. Taken directly from Frogner (2019).

towards the test set error rate.
The increase in the OOB error rate for lower values of α is due to the fact that these

classifiers are able to achieve a higher true positive rate than the classifiers with higher
values for α, at the cost of additional false positives. This is apparent in figure 4.6, where
we can see the true positive rates on the out-of-bag samples during training. The shape of
these graphs are more or less identical to the ones in 4.4. Combining this with the findings
in figure 4.7 where we see the true negative rates for the four random forests, we find
that adjusting α down has the same effect as for logistic models, namely increasing the
BACC of the classifier. Adjusting α is necessary when studying imbalanced data sets, and
unfortunately leads to the random forest requiring many trees in order to converge. This
can be time consuming, and many computers will have memory issues as the number of
trees in the forest becomes large. There are methods to combat these issues, for instance
by creating several smaller forests and combining them after they have been trained.

Similar graphs were created for random forests fitted to the reduced data set, using
the same hyperparameters that produced the results we have seen in figures 4.4, 4.6 and

38

Figure 4.6: Out-of-bag true positive rate for random forests fitted to the full data set.

Figure 4.7: Out-of-bag true negative rate for random forests fitted to the full data set.

4.7. Including these plots here was deemed superfluous, as the results were more or less
the exact same as for the random forests fitted to the full data set. The highest balanced
accuracy for the random forests fitted on the full data set was obtained when α = 1/220
and was equal to 0.778, while for the reduced model the highest BACC was 0.772 for the
same value of α.

4.3.4 Logistic Regression with Resampling

Resampling methods were briefly investigated on sampled data in sections 4.2.2 and 4.2.3.
In this section we apply the three resampling methods at degrees 0.05, 0.10 and 0.20 to the
full data set and fit logistic models to these 9 data sets. After having been fitted, the BACC
for each model was calculated for many different values of α. These are plotted in figures
4.8, 4.9 and 4.10.

In the first of these figures, we see the BACC for logistic models trained on the full
data set after they have been resampled such that the imbalance in the training sets is

39

Figure 4.8: Balanced Accuracy for logistic models fitted to resampled data sets with pt = 0.05.

Figure 4.9: Balanced Accuracy for logistic models fitted to resampled data sets with pt = 0.10.

Figure 4.10: Balanced Accuracy for logistic models fitted to resampled data sets with pt = 0.20.

40

pt = 0.05. The BACC seems to peak just below α = pt = 0.05 for all three resam-
pling methods. Undersampling achieved the highest BACC with a value of 0.804, with
SMOTE and oversampling following closely with maximum values of 0.803 and 0.802,
respectively. A few areas show the BACC of the undersampled model to lie slightly above
the graphs of the two other resampling methods, roughly around α ∈ [0.13, 0.17] and
α ∈ [0.22, 0.27]. We note that these are minor differences, and lie well outside the area of
where we can find the optimal value for α.

The second figure shows the case where the degree of resampling has been increased to
10 % for all three methods. SMOTE achieves the highest BACC for this degree of resam-
pling with a value of 0.804. Undersampling and oversampling both achieve a maximum
of 0.802, which is very similar. The peak for the BACC seems to lie slightly below 0.1, i.e
below the value of pt.

In the third figure the degree of resampling has been further increased to 20 %. SMOTE
and oversampling both achieve a BACC of 0.806, while undersampling peaks at 0.801. We
can see intervals for α where the BACC for the undersampled model clearly lies below the
two other graphs. Oversampling and SMOTE appear to follow each other closely. We
note that the original distribution had an imbalance in the data set of p = 1/220, while the
resampling techniques here yield training sets with imbalance p = 1/5 = 20%. For the
undersampled training set this means that we have reduced the sample size to a fraction
1/44 of the original size. While we saw that undersampling appeared to perform just as
well as SMOTE and oversampling for lower degrees of resampling, it appears that the
method seems to perform slightly worse for this degree of resampling.

The issue mentioned in section 2.1.3 of the training set not containing all factor lev-
els was encountered at this degree of resampling. An initial random seed of 4000 was
used on the first attempt to create an undersampled training set of degree 20%. In R the
command would look like this: set.seed(4000). When attempting to measure the
performance of this undersampled model on the test set, an error was given that stated that
one of the variables (ApplicationSalesChannel) had unseen levels. Resampling
was performed again with a random seed of 1111, and the problem was luckily circum-
vented.

We have found that undersampling appears to perform slightly worse on logistic mod-
els than the other resampling techniques for higher degrees of resampling. The problem of
encountering new factor levels after training the model on a very small subset of the data
was also encountered, and even higher degrees of resampling would have made this issue
even more problematic. The optimal cut-off values for a resampled data set in all cases
seemed to lie slightly below the degree of resampling pt.

Adjusting Biased Probabilities

In section 2.1.5 we discussed a method for adjusting the probabilities produced from a
classifier trained on a resampled training set. We have seen throughout this thesis that the
cut-off probability α needs to be significantly less than 0.5 in order for models trained
on imbalanced training sets to be able to achieve a high BACC. Applying the method
presented by Latinne et al. (2001) to adjust for the bias emerging from training a model on
a resampled data set would be counter-intuitive. The method would adjust the probabilities
given by a resampled method down towards 0, which is the opposite of what we require

41

from our classifier. If accuracy was our desired performance measure, then this adjustment
might be useful, but we see no reason to apply it here. Accuracy is not a good measure
for imbalanced data, and we therefore choose to refrain from using this method. BACC
cannot be improved by applying the adjustment to the probabilities.

4.3.5 Random Forests with Resampling
The final result we would like to discuss is what happens to a random forest when we apply
the algorithm to resampled data sets. In table 4.6 we see the results of fitting 9 random

Resampling Method Degree α TN FP FN TP BACC
Undersampling 5 % 0.05 113157 36161 91 591 0.812
Undersampling 10% 0.10 112436 36882 81 601 0.817
Undersampling 20% 0.20 113418 35900 83 599 0.819
Oversampling 5 % 0.05 142180 7138 501 181 0.609
Oversampling 10% 0.10 147281 2037 633 49 0.529
Oversampling 20% 0.20 148975 343 676 6 0.503
SMOTE 5 % 0.05 137797 11521 434 248 0.643
SMOTE 10% 0.10 141692 7626 506 176 0.603
SMOTE 20% 0.20 144625 4693 570 112 0.566

Table 4.6: Performance of random forests. The classifiers are trained on the reduced data set, and
resampled by all three resampling methods, at degrees 0.05, 0.1 and 0.2. Cut-off equal to the degree
of resampling.

forests to the reduced data set, with the same resampling as in the previous section. Two
hundred decision trees were used in each forest. Random forests cannot be applied to test
data with varying cut-off probability after they have been trained, as we have done for
logistic regression when producing figures 4.8, 4.9 and 4.10. Finding the optimal value
for α will be an extremely time-consuming process, which is why it was decided to set
α = pt in all cases. While all the resampling techniques seemed to yield quite similar
results in all cases when applied to logistic regression, we here find that the results are not
at all similar. From the table, we see that for the given values of α undersampling is vastly
superior to both oversampling and SMOTE when it comes to optimizing the BACC. The
true positive rate for undersampling is much higher than for SMOTE and oversampling.
Undersampling has the added bonus of being trained much faster than the other methods,
due to the fact the training set will be much smaller than in the other cases. This is further
increased by the fact that random forests take longer to converge when α is close to 0, and
the values for α have to be adjusted down in order for SMOTEd and oversampled random
forests to be able to correctly identify the minority class. However, it is important to point
out that this does not directly imply that undersampling is a better method when applied
to random forests than the other resampling methods. It merely implies that if the BACC
is to be optimized, the cut-off probability must be set lower for oversampling and SMOTE
than for undersampling.

42

Chapter 5
Concluding Remarks

Here, the findings from working on this thesis is summarized, and recommendations for
further work are provided.

5.1 Summary of the Results

The results were split into two main sections: sampled data and data provided by Spare-
bank 1. The code in the appendix make the results from the sampled data entirely repro-
ducible.

We have found that undersampling, oversampling and SMOTE all have the ability
to increase the performance of a classifier. Undersampling is prone to erratic behavior
when the number of minority observations is small, while this has not proven to be a
problem for oversampling and SMOTE. Undersampling seems to perform slightly worse
when the degree of resampling increases, which is assumed to be because the training set
gets reduced in size when this is done. Undersampling is superior to the other methods
when issues of memory constraints and time constraints are a factor.

We found that the optimal value for the cut-off probability α for a given classifier
seemed to be equal to the imbalance of the data set the classifier was trained on, when
performance was measured by balanced accuracy. Interestingly, random forests did not
exhibit this quality: when using oversampling and SMOTE on an imbalanced data set and
applying a random forest to the resampled data, it was found that α had to be adjusted
down significantly in order for the random forest to achieve the same balanced accuracy
as when undersampling was the chosen resampling method. Random forests were found
to take a long time to converge when α was small, which is necessary when attempting to
classify an imbalanced data set.

Adjustment of the probabilities produced from classifiers trained on resampled data
sets by the method presented in Latinne et al. (2001) was considered, and discarded. The
method was determined to not be suitable when BACC was the performance measure to
be maximized.

43

5.2 Recommendations for Further Work
There are probably many things that could have been done differently in this thesis, for
better or for worse. Balanced Accuracy was chosen as the desired performance measure
of the classifiers. There are many arguments to be made on what constitutes a good clas-
sifier, and balanced accuracy might be suitable in some situations, and useless in others.
Other performance measures might yield very different results to what has been found
here. There are many classification problems that are even more imbalanced than the one
considered in this thesis, for instance in medicine. These may have life and death conse-
quences, and in this case one could look at the generalized version of the BACC, which is
given in the theory section. This performance measure was never investigated, but here it
would make sense to heavily emphasize the true positive rate, in order to not miss a patient
who has an undiscovered disease.

When sampling data, it was attempted to use a categorical variable and see how well it
could help predict the response as the imbalance in the data set became more pronounced.
Code for this was written and is given in the appendix under sampling.R, but there
were a few issues in providing meaningful results that made this attempt fail. Our sampled
data only came from a mixed normal distribution, so in a future study similar to this thesis
one could look at different distributions to see how the results change.

For the data set provided by Sparebank 1, one could try different classification algo-
rithms to see if there are any that are capable of producing better results than the ones
found here. Examples could be boosting algorithms and support vector machines. Further
analysis could go into what kinds of variables are good for determining the response in
such a data set.

44

Bibliography

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U., 1999. When is “nearest neighbor”
meaningful? In: Database Theory – ICDT’99. Springer Berlin Heidelberg, pp. 217–235.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Breiman, L., 2002. Manual On Setting Up, Using, And Understanding Random Forests
V3.1.

Brier, G. W., 1950. Verification of forecasts expressed in terms of probability. Monthly
Weather Review 78 (1), 1–3.

Casella, G., Berger, R., 2002. Statistical Inference. Brooks/Cole, Cengage Learning.

Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P., 2002. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16 (1),
321–357.

Dilworth, K., 2019. Rate survey: Average card apr remains at 17.71 percent. Accessed 22.
August, 2019.
URL https://bit.ly/2Hpxf9T

Everitt, B. S., Hand, D. J., 1981. Finite Mixture Distributions, 1st Edition. Chapman and
Hall.

Fahrmeir, L., Kneib, T., Lang, S., Marx, B., 2013. Regression Models, Methods and Ap-
plications. Springer.

Finansdepartementet, February 2019. Forskrift om krav til finansforetakenes utlånspraksis
for forbrukslån.
URL https://bit.ly/2GBakLI

Frogner, T. B., 2019. Predicting refinancing of credit card debt. Unpublished project thesis
at NTNU.

45

https://bit.ly/2Hpxf9T
https://bit.ly/2GBakLI

Latinne, P., Saerens, M., Decaestecker, C., 01 2001. Adjusting the outputs of a classifier to
new a priori probabilities may significantly improve classification accuracy: Evidence
from a multi-class problem in remote sensing. In: ICML. pp. 298–305.

Lujan-Moreno, G. A., Howard, P., Rojas, O., Montgomery, D., 2018. Design of exper-
iments and response surface methodology to tune machine learning hyperparameters,
with a random forest case-study. Expert Systems With Applications 109, 195–205.

Muchai, E., Odongo, L., 2014. Comparison of crisp and fuzzy classification trees using
gini index impurity measure on simulated data. European Scientific Journal 10 (18),
130–134.

Rahman, M. M., Davis, D., 2013. Addressing the class imbalance problem in medical
datasets. International Journal of Machine Learning and Computing 3 (2), 224–228.

46

Chapter 6
Appendix

Appendix A

Variables in the data set provided by Sparebank 1, with descriptions.

Variable Description
BK ACCOUNT ID Account number, anonymized
PeriodId Date on format YYYYMMDD
Date Date on format YYYY-MM-DD
YearMonth Year and month on format YYYYMM
PNRSerial Digits 7 and 8 in national identification number
CustomerAge Customer’s age in years
MonthsSinceAccountCreated Account’s age in months
PRODUCT NAME Name of product (card type)
STATEMENT DUE DAY OF MONTH NUM Chosen due date (5.,10.,15. or 20.)
ApplicationSalesChannel Channel of application and / or sale
CAMPAIGN NAME Campaign (if any)
CLOSING BALANCE AMT Total amount printed on last statement
DISTRIBUTOR NAME Name of distributing bank
GENDER NAME Gender
HAS DIRECT DEBIT AGREEMENT IND Indicator, direct debit agreement selected
HAS ESTATEMENT AGREEMENT IND Indicator, e-statement selected
average credit limit last12 Average credit limit last 12 months
average revolvingbalance last12 Average revolving balance last 12 months
avg rev bal L3M Average revolving balance last 3 months
rev uti currmth Revolving balance divided by credit limit this

month

47

avg payment L3M Average payment last 3 months
rev per uti change L3M Change in revolving utilization (revolving bal-

ance divided by credit limit) last 3 months
MonthEnd uti Change Change in revolving utilization by end of month
payment amt change L3M Change in payment amount last 3 months
RevUti12 Average revolving balance last 12 months di-

vided by average credit limit last 12 months
AvgRevBalL3onL12 (Average revolving balance last 3 months di-

vided by average credit limit last 3 months)
divided by (Average revolving balance last 12
months divided by average credit limit last 12
months)

QCashpartL12 Part of sum of transactions in class Quasi Cash
last 12 months

QCashpartL3 Part of sum of transactions in class Quasi Cash
last 3 months

QCashL3onL12 (Part of sum of transactions in class Quasi Cash
last 3 months) divided by (Part of sum of trans-
actions in class Quasi Cash last 12 months)

TravelpartL12 Sum of transactions in classes, Airline, Hotel
motel and other transport last 12 months di-
vided by sum of transactions in all classes last
12 months

TravelpartL3 Sum of transactions in classes, Airline, Hotel
motel and other transport last 12 months di-
vided by sum of transactions in all classes last
3 months

Segment9Name Segment name with 9 segments (originally 9
segments, but a few more have been added re-
cently making it 11 segments)

Segment23Name Segment name with 23 segments originally, now
25

Score Simple risk score between 0 and 7
SUM of CreditLimitIncreaseFlag Number of credit limit increases last 12 months
SUM of CreditLimitDecreaseFlag Number of credit limit decreases last 12 months
SUM of PaymentOverDueFlag Number of months with payment overdue last 12

months
SUM of FirstDunningFlag Number of months with dunning last 12 months
SUM of CollectionAdviceFlag Number of months with collection advice last 12

months
SUM of CollectionFlag Number of months with debt collection last 12

months
SUM of CardFraudFlag Number of months with card fraud flag (transac-

tions marked as possible fraud) last 12 months
SUM of CardLostFlag Number of months with card lost flag (card

marked as lost) last 12 months
SUM of CardStolenFlag Number of months with card stolen flag (card

marked as stolen) last 12 months

48

SUM of AIRLINEL12 Sum of transactions in given class last 12 months
SUM of CLOTHING STORESL12 Sum of transactions in given class last 12 months
SUM of FOOD STORES WAREHOUSEL12 Sum of transactions in given class last 12 months
SUM of HOTEL MOTELL12 Sum of transactions in given class last 12 months
SUM of HARDWAREL12 Sum of transactions in given class last 12 months
SUM of INTERIOR FURNISHINGSL12 Sum of transactions in given class last 12 months
SUM of OTHER RETAILL12 Sum of transactions in given class last 12 months
SUM of OTHER SERVICESL12 Sum of transactions in given class last 12 months
SUM of OTHER TRANSPORTL12 Sum of transactions in given class last 12 months
SUM of RECREATIONL12 Sum of transactions in given class last 12 months
SUM of RESTAURANTS BARSL12 Sum of transactions in given class last 12 months
SUM of SPORTING TOY STORESL12 Sum of transactions in given class last 12 months
SUM of TRAVEL AGENCIESL12 Sum of transactions in given class last 12 months
SUM of VEHICLESL12 Sum of transactions in given class last 12 months
SUM of QUASI CASHL12 Sum of transactions in given class last 12 months
SUM of AIRLINEL3 Sum of transactions in given class last 3 months
SUM of CLOTHING STORESL3 Sum of transactions in given class last 3 months
SUM of FOOD STORES WAREHOUSEL3 Sum of transactions in given class last 3 months
SUM of HOTEL MOTELL3 Sum of transactions in given class last 3 months
SUM of HARDWAREL3 Sum of transactions in given class last 3 months
SUM of INTERIOR FURNISHINGSL3 Sum of transactions in given class last 3 months
SUM of OTHER RETAILL3 Sum of transactions in given class last 3 months
SUM of OTHER SERVICESL3 Sum of transactions in given class last 3 months
SUM of OTHER TRANSPORTL3 Sum of transactions in given class last 3 months
SUM of RECREATIONL3 Sum of transactions in given class last 3 months
SUM of RESTAURANTS BARSL3 Sum of transactions in given class last 3 months
SUM of SPORTING TOY STOR0ESL3 Sum of transactions in given class last 3 months
SUM of TRAVEL AGENCIESL3 Sum of transactions in given class last 3 months
SUM of VEHICLESL3 Sum of transactions in given class last 3 months
SUM of QUASI CASHL3 Sum of transactions in given class last 3 months
SHORT RULE DESC Short description of the account’s finances
lead1YearMonth YearMonth+1
lead2YearMonth YearMonth+2
lead3YearMonth YearMonth+3
ReFinInd The response, which equals ”Does the customer

receive refinancing from a competitor during the
next 3 months after the given month?” 0 = no, 1
= yes.

49

50

Appendix B

Print out can be found in this appendix.

6.1 Logistic Model on all variables

This is a summary of the a model fitted on (almost) all variables, before
the data preparation was complete. A subset of the data was used, and the
coefficients will not be entirely equal to what was shown in the dataprep
section.
> summary(modelUseless)

Call:
glm(formula = ReFinInd ˜ ., family = "binomial", data = dataSmall)

Deviance Residuals:
Min 1Q Median 3Q Max

-8.4904 -0.0526 0.0000 0.0000 4.2723

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.185e+01 3.333e+04 -0.002 0.99876
PNRSerial1 1.923e+01 3.235e+04 0.001 0.99953
PNRSerial2 1.947e+01 3.235e+04 0.001 0.99952
PNRSerial3 1.942e+01 3.235e+04 0.001 0.99952
PNRSerial4 1.952e+01 3.235e+04 0.001 0.99952
CustomerAge -1.764e-02 7.859e-03 -2.245 0.02480 *
MonthsSinceAccountCreated -3.855e-03 3.575e-03 -1.078 0.28099
PRODUCT_NAMELOfavør MasterCard 4.801e-01 1.021e+00 0.470 0.63813
PRODUCT_NAMESB1 EXTRA MC -7.740e-01 1.245e+00 -0.622 0.53417
PRODUCT_NAMESB1 GOLD MC -1.141e+00 7.126e-01 -1.602 0.10918
PRODUCT_NAMESB1 UNG MC -2.142e+01 6.584e+04 0.000 0.99974
PRODUCT_NAMESH GOLD MC -1.117e+00 7.233e-01 -1.544 0.12258
PRODUCT_NAMESparebank 1 Platinum MC -2.176e+01 1.118e+04 -0.002 0.99845
PRODUCT_NAMESpareBank 1 Visa Business Card 5.391e+00 3.562e+05 0.000 0.99999
PRODUCT_NAMESpareBank 1 Visa Gold -1.982e+01 3.208e+04 -0.001 0.99951
STATEMENT_DUE_DAY_OF_MONTH_NUM10 -4.314e-01 3.804e-01 -1.134 0.25675
STATEMENT_DUE_DAY_OF_MONTH_NUM15 -6.152e-02 2.495e-01 -0.247 0.80523
STATEMENT_DUE_DAY_OF_MONTH_NUM20 6.908e-02 2.409e-01 0.287 0.77426
ApplicationSalesChannelAutentisert web 5.998e-02 6.766e-01 0.089 0.92936
ApplicationSalesChannelNettbank 2.387e-01 3.661e-01 0.652 0.51436
ApplicationSalesChannelOpen web 2.151e+03 3.001e+07 0.000 0.99994
ApplicationSalesChannelOperatørkanal -1.581e-01 3.651e-01 -0.433 0.66501
ApplicationSalesChannelResponsside 7.933e+11 1.704e+13 0.047 0.96288
CAMPAIGN_NAME201602-Nysalgskampanje MasterCard Extra kort -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAME201603-Nysalgskampanje alle banker -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAME201603-Nysalgskampanje alle banker påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAME201603-Nysalgskampanje BN Bank -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAME201603-Nysalgskampanje BN Bank Påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAME201604-Nysalgkampanje post alle banker -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe A - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe A - B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe C - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe C - B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe C Chall - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe C Chall - B -4.504e+15 1.704e+13 -264.297 < 2e-16 ***
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe D Post - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15- Nysalgskampanje SR-Bank- Gruppe D Post - B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje BN-Bank B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje BN Bank A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje BN Bank A Reminder -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje BN Bank B Reminder -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje Hedmark - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje Hedmark - B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje Hedmark -Challenger A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENov15-Nysalgskampanje Hedmark -Challenger B -7.933e+11 1.704e+13 -0.047 0.96288

51

CAMPAIGN_NAMENysalg SR-Bank (løpende) -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgs kampanje alle banker -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje - Hedmark -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje alle banker -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje alle banker - A -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje alle banker - B -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje alle banker - Påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje alle banker - påminnelse post -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje BN Bank -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje BN Bank - Påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje Post Hedmark -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje SMN -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMENysalgskampanje SR-bank -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMEOkt15- Nysalgskampanje Alle påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMEOkt15- Nysalgskampanje Alle påminnelse post -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMEOkt15- Nysalgskampanje SMN påminnelse -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMEOkt15- Nysalgskampanje SMN påminnelse post -7.933e+11 1.704e+13 -0.047 0.96288
CAMPAIGN_NAMEOkt15-Reminder SR-Bank post -7.933e+11 1.704e+13 -0.047 0.96288
CLOSING_BALANCE_AMT -3.958e-05 1.279e-05 -3.095 0.00197 **
DISTRIBUTOR_NAMESpareBank 1 BV 2.385e-01 4.674e-01 0.510 0.60985
DISTRIBUTOR_NAMESpareBank 1 Gudbrandsdal -2.065e+01 1.440e+04 -0.001 0.99886
DISTRIBUTOR_NAMESpareBank 1 Hallingdal Valdres -2.032e+01 1.252e+04 -0.002 0.99870
DISTRIBUTOR_NAMESpareBank 1 Kredittkort 1.222e+00 8.133e+04 0.000 0.99999
DISTRIBUTOR_NAMESpareBank 1 Lom og Skjåk 3.272e-01 1.066e+00 0.307 0.75887
DISTRIBUTOR_NAMESpareBank 1 Modum -2.043e+01 1.159e+04 -0.002 0.99859
DISTRIBUTOR_NAMESpareBank 1 Nord-Norge -3.893e-01 3.846e-01 -1.012 0.31140
DISTRIBUTOR_NAMESpareBank 1 Nordvest 5.808e-01 5.490e-01 1.058 0.29008
DISTRIBUTOR_NAMESpareBank 1 Ringerike Hadeland 1.929e-01 5.923e-01 0.326 0.74468
DISTRIBUTOR_NAMESpareBank 1 SMN 5.031e-01 3.400e-01 1.480 0.13896
DISTRIBUTOR_NAMESpareBank 1 SR-Bank 1.029e-01 3.591e-01 0.287 0.77445
DISTRIBUTOR_NAMESpareBank 1 Søre Sunnmøre -3.206e-01 1.060e+00 -0.303 0.76222
DISTRIBUTOR_NAMESpareBank 1 Telemark 2.374e-01 4.943e-01 0.480 0.63107
DISTRIBUTOR_NAMESpareBank 1 Østfold Akershus 5.980e-01 4.341e-01 1.378 0.16835
DISTRIBUTOR_NAMESpareBank 1 Østlandet NA NA NA NA
GENDER_NAMEMann 1.289e-01 1.838e-01 0.701 0.48301
HAS_DIRECT_DEBIT_AGREEMENT_IND1 1.969e-01 1.920e-01 1.026 0.30502
HAS_ESTATEMENT_AGREEMENT_IND1 1.187e-02 1.825e-01 0.065 0.94812
average_credit_limit_last12 1.003e-05 7.822e-06 1.283 0.19959
average_revolvingbalance_last12 -2.341e-05 1.313e-05 -1.782 0.07469 .
avg_rev_bal_L3M -1.491e-05 1.571e-05 -0.949 0.34278
rev_uti_currmth 8.544e-03 4.493e-03 1.902 0.05722 .
avg_payment_L3M 3.997e-07 1.218e-04 0.003 0.99738
rev_per_uti_change_L3M 3.090e-04 6.715e-04 0.460 0.64538
MonthEnd_uti_Change -1.405e-07 2.052e-07 -0.685 0.49355
payment_amt_change_L3M 7.186e-07 7.171e-06 0.100 0.92017
RevUti12 9.547e-01 7.785e-01 1.226 0.22007
AvgRevBalL3onL12 3.514e-02 6.599e-02 0.532 0.59439
QCashpartL12 -2.079e-01 4.252e-01 -0.489 0.62495
QCashpartL3 -1.973e-01 4.624e-01 -0.427 0.66954
QCashL3onL12 1.189e-02 8.029e-03 1.481 0.13861
TravelpartL12 -5.159e-01 6.447e-01 -0.800 0.42363
TravelpartL3 7.355e-01 5.426e-01 1.355 0.17526
Segment9NameDelinquent 2.716e+01 8.027e+03 0.003 0.99730
Segment9NameLast active 4-6 mths ago 9.645e+00 1.017e+04 0.001 0.99924
Segment9NameLast active 7-12 mths ago -1.840e+01 1.013e+04 -0.002 0.99855
Segment9NameNot active in last 12 mths 7.895e-01 9.692e+03 0.000 0.99994
Segment9NameOccasional Revolver 2.756e+01 8.027e+03 0.003 0.99726
Segment9NameRevolved only 2.743e+01 8.027e+03 0.003 0.99727
Segment9NameRevolver 2.779e+01 8.027e+03 0.003 0.99724
Segment9NameTransactor 2.663e+01 8.027e+03 0.003 0.99735
Score 1.025e-01 9.574e-02 1.071 0.28421
SUM_of_CreditLimitIncreaseFlag 1.608e-01 2.256e-01 0.713 0.47590
SUM_of_CreditLimitDecreaseFlag 1.492e-01 4.439e-01 0.336 0.73673
SUM_of_PaymentOverDueFlag 1.106e-01 2.375e-01 0.466 0.64134
SUM_of_FirstDunningFlag -3.030e-01 2.404e-01 -1.260 0.20763
SUM_of_CollectionAdviceFlag 2.160e-01 2.928e-01 0.738 0.46066
SUM_of_CollectionFlag -4.302e-01 4.064e-01 -1.059 0.28981
SUM_of_CardFraudFlag -8.010e-01 1.038e+00 -0.772 0.44019
SUM_of_CardLostFlag 9.224e-04 4.750e-01 0.002 0.99845
SUM_of_CardStolenFlag 1.096e+00 9.142e-01 1.198 0.23076
SUM_of_AIRLINEL12 -1.054e-04 7.030e-05 -1.499 0.13395
SUM_of_CLOTHING_STORESL12 3.267e-05 2.609e-05 1.252 0.21060
SUM_of_FOOD_STORES_WAREHOUSEL12 2.140e-05 2.123e-05 1.008 0.31355
SUM_of_HOTEL_MOTELL12 7.213e-06 3.491e-05 0.207 0.83630
SUM_of_HARDWAREL12 -1.250e-05 4.170e-05 -0.300 0.76442
SUM_of_INTERIOR_FURNISHINGSL12 2.979e-05 1.477e-05 2.017 0.04369 *
SUM_of_OTHER_RETAILL12 -6.563e-05 4.893e-05 -1.341 0.17979
SUM_of_OTHER_SERVICESL12 -4.185e-05 5.512e-05 -0.759 0.44769
SUM_of_OTHER_TRANSPORTL12 2.522e-05 6.389e-05 0.395 0.69304
SUM_of_RECREATIONL12 2.964e-05 4.495e-05 0.659 0.50961
SUM_of_RESTAURANTS_BARSL12 -1.085e-04 6.496e-05 -1.670 0.09500 .
SUM_of_SPORTING_TOY_STORESL12 -6.157e-06 6.336e-05 -0.097 0.92259
SUM_of_TRAVEL_AGENCIESL12 -8.817e-05 5.808e-05 -1.518 0.12897
SUM_of_VEHICLESL12 -7.564e-05 5.011e-05 -1.509 0.13120
SUM_of_QUASI_CASHL12 1.031e-05 8.363e-06 1.233 0.21775
SUM_of_AIRLINEL3 -6.937e-05 1.812e-04 -0.383 0.70184
SUM_of_CLOTHING_STORESL3 -3.046e-04 1.586e-04 -1.921 0.05475 .
SUM_of_FOOD_STORES_WAREHOUSEL3 -5.581e-06 7.340e-05 -0.076 0.93940
SUM_of_HOTEL_MOTELL3 -2.385e-04 1.689e-04 -1.412 0.15785
SUM_of_HARDWAREL3 -1.686e-05 9.478e-05 -0.178 0.85879

52

SUM_of_INTERIOR_FURNISHINGSL3 2.012e-05 3.238e-05 0.621 0.53435
SUM_of_OTHER_RETAILL3 1.531e-05 1.141e-04 0.134 0.89328
SUM_of_OTHER_SERVICESL3 8.346e-05 8.452e-05 0.987 0.32342
SUM_of_OTHER_TRANSPORTL3 -1.713e-05 1.387e-04 -0.124 0.90170
SUM_of_RECREATIONL3 -1.132e-04 2.129e-04 -0.532 0.59499
SUM_of_RESTAURANTS_BARSL3 2.333e-04 9.821e-05 2.375 0.01753 *
SUM_of_SPORTING_TOY_STOR0ESL3 -1.714e-04 2.461e-04 -0.697 0.48602
SUM_of_TRAVEL_AGENCIESL3 1.599e-05 1.268e-04 0.126 0.89970
SUM_of_VEHICLESL3 1.022e-04 7.593e-05 1.346 0.17845
SUM_of_QUASI_CASHL3 7.232e-06 2.146e-05 0.337 0.73611
SHORT_RULE_DESCDCA 24 To 36 Ind -2.116e+01 2.064e+04 -0.001 0.99918
SHORT_RULE_DESCExeeded Num Of Dunnings 12 Ind 6.294e-01 9.942e-01 0.633 0.52667
SHORT_RULE_DESCHad Collection Adv 6 To 12 Ind 5.701e-01 8.268e-01 0.690 0.49050
SHORT_RULE_DESCHad Neg Status 0 to 6 Ind -5.513e-02 7.579e-01 -0.073 0.94201
SHORT_RULE_DESCHas Balance Above CL Ind 5.299e-01 6.616e-01 0.801 0.42317
SHORT_RULE_DESCHas Missed Payments Ind 4.394e-01 7.803e-01 0.563 0.57337
SHORT_RULE_DESCHas Neg Status Ind 4.182e-01 1.277e+00 0.327 0.74337
SHORT_RULE_DESCHas Too High Total Limit Ind -9.671e-01 9.006e-01 -1.074 0.28290
SHORT_RULE_DESCIs Above Auth Limit Ind -9.085e-01 1.210e+00 -0.751 0.45286
SHORT_RULE_DESCIs At DCA Ind 8.225e-01 1.982e+00 0.415 0.67817
SHORT_RULE_DESCIs On Black List Ind 1.111e+00 9.764e-01 1.138 0.25523
SHORT_RULE_DESCIs White Credit Balance Ind 2.693e-02 1.202e+00 0.022 0.98213
SHORT_RULE_DESCIs White Debet Balance Ind 4.578e-01 6.300e-01 0.727 0.46736
SHORT_RULE_DESCIs White No Balance Ind -1.888e+01 4.232e+03 -0.004 0.99644

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1964.1 on 39999 degrees of freedom
Residual deviance: 1743.7 on 39842 degrees of freedom
AIC: 2059.7

Number of Fisher Scoring iterations: 25

6.2 The Full Logistic Model

Summary of the full logistic model, trained on the original data with no
resampling.
> summary(model1)

Call:
glm(formula = ReFinInd ˜ ., family = "binomial", data = dataset[training,

])

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3332 -0.0963 -0.0402 -0.0181 4.4169

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.734e+00 1.233e+00 -6.275 3.50e-10 ***
CustomerAge -1.487e-02 2.392e-03 -6.216 5.10e-10 ***
MonthsSinceAccountCreated -2.550e-03 8.236e-04 -3.096 0.00196 **
STATEMENT_DUE_DAY_OF_MONTH_NUM10 -2.091e-01 1.049e-01 -1.993 0.04626 *
STATEMENT_DUE_DAY_OF_MONTH_NUM15 -7.384e-02 7.513e-02 -0.983 0.32565
STATEMENT_DUE_DAY_OF_MONTH_NUM20 -7.075e-02 7.657e-02 -0.924 0.35548
ApplicationSalesChannelAutentisert web 2.611e-01 1.460e-01 1.788 0.07385 .
ApplicationSalesChannelNettbank 1.388e-02 9.639e-02 0.144 0.88546
ApplicationSalesChannelOpen web -8.887e+00 1.251e+02 -0.071 0.94338
ApplicationSalesChannelOperatørkanal -9.083e-02 9.213e-02 -0.986 0.32418
ApplicationSalesChannelResponsside 2.367e-01 1.186e-01 1.996 0.04596 *
CLOSING_BALANCE_AMT -2.416e-05 3.029e-06 -7.977 1.50e-15 ***
GENDER_NAMEMann 1.156e-01 5.718e-02 2.022 0.04314 *
HAS_DIRECT_DEBIT_AGREEMENT_IND1 9.024e-02 6.331e-02 1.425 0.15406
HAS_ESTATEMENT_AGREEMENT_IND1 1.416e-01 5.720e-02 2.476 0.01328 *
average_credit_limit_last12 4.088e-06 8.517e-07 4.799 1.59e-06 ***
average_revolvingbalance_last12 -1.920e-05 3.528e-06 -5.440 5.32e-08 ***
avg_rev_bal_L3M 9.680e-07 3.295e-06 0.294 0.76893
rev_uti_currmth 2.502e-03 7.959e-04 3.143 0.00167 **
avg_payment_L3M 8.310e-06 7.239e-06 1.148 0.25099
rev_per_uti_change_L3M 1.047e-06 3.386e-06 0.309 0.75707
MonthEnd_uti_Change -5.192e-11 4.342e-08 -0.001 0.99905
payment_amt_change_L3M -3.337e-09 4.763e-08 -0.070 0.94415
RevUti12 1.034e+00 1.960e-01 5.274 1.33e-07 ***
AvgRevBalL3onL12 -5.644e-03 1.924e-02 -0.293 0.76922
QCashpartL12 4.745e-02 1.315e-01 0.361 0.71814
QCashpartL3 -5.163e-02 1.401e-01 -0.368 0.71250
QCashL3onL12 1.936e-04 2.025e-03 0.096 0.92382
TravelpartL12 -4.204e-01 1.910e-01 -2.201 0.02774 *
TravelpartL3 -3.899e-02 1.741e-01 -0.224 0.82280

53

Segment9NameDelinquent 1.440e+00 1.140e+00 1.263 0.20671
Segment9NameEMOB - Active in last 6 mths 1.793e+00 1.217e+00 1.474 0.14052
Segment9NameEMOB - Not active last 6 mths 3.563e-01 1.582e+00 0.225 0.82180
Segment9NameLast active 4-6 mths ago -8.289e-01 1.574e+00 -0.527 0.59837
Segment9NameLast active 7-12 mths ago -6.516e-01 1.573e+00 -0.414 0.67860
Segment9NameOccasional Revolver 2.156e+00 1.204e+00 1.790 0.07351 .
Segment9NameRevolved only 1.232e+00 1.223e+00 1.007 0.31391
Segment9NameRevolver 1.872e+00 1.205e+00 1.554 0.12015
Segment9NameTransactor 3.559e-01 1.220e+00 0.292 0.77040
Score 2.162e-01 2.859e-02 7.562 3.96e-14 ***
SUM_of_CreditLimitIncreaseFlag 3.688e-01 6.305e-02 5.849 4.94e-09 ***
SUM_of_CreditLimitDecreaseFlag -1.573e-01 1.370e-01 -1.148 0.25084
SUM_of_PaymentOverDueFlag -6.784e-02 7.111e-02 -0.954 0.34005
SUM_of_FirstDunningFlag 1.583e-02 7.094e-02 0.223 0.82341
SUM_of_CollectionAdviceFlag 2.641e-02 9.079e-02 0.291 0.77118
SUM_of_CollectionFlag -4.645e-02 1.138e-01 -0.408 0.68310
SUM_of_CardFraudFlag 1.542e-01 1.945e-01 0.793 0.42797
SUM_of_CardLostFlag 1.100e-01 1.238e-01 0.888 0.37441
SUM_of_CardStolenFlag 2.331e-01 3.803e-01 0.613 0.53994
SUM_of_AIRLINEL12 -1.283e-05 8.758e-06 -1.465 0.14299
SUM_of_CLOTHING_STORESL12 -1.283e-05 8.912e-06 -1.440 0.15000
SUM_of_FOOD_STORES_WAREHOUSEL12 -3.018e-06 5.766e-06 -0.523 0.60065
SUM_of_HOTEL_MOTELL12 -1.078e-05 8.717e-06 -1.237 0.21611
SUM_of_HARDWAREL12 3.105e-06 7.281e-06 0.426 0.66981
SUM_of_INTERIOR_FURNISHINGSL12 7.408e-06 5.444e-06 1.361 0.17361
SUM_of_OTHER_RETAILL12 -3.454e-06 7.130e-06 -0.484 0.62804
SUM_of_OTHER_SERVICESL12 -4.492e-07 9.584e-06 -0.047 0.96262
SUM_of_OTHER_TRANSPORTL12 -1.302e-05 1.570e-05 -0.829 0.40716
SUM_of_RECREATIONL12 2.044e-06 1.513e-05 0.135 0.89252
SUM_of_RESTAURANTS_BARSL12 1.164e-06 9.222e-06 0.126 0.89957
SUM_of_SPORTING_TOY_STORESL12 -1.611e-05 1.534e-05 -1.050 0.29364
SUM_of_TRAVEL_AGENCIESL12 -4.605e-06 6.307e-06 -0.730 0.46527
SUM_of_VEHICLESL12 -1.956e-06 7.398e-06 -0.264 0.79151
SUM_of_QUASI_CASHL12 -1.859e-06 2.946e-06 -0.631 0.52799
SUM_of_AIRLINEL3 -6.181e-06 2.252e-05 -0.274 0.78374
SUM_of_CLOTHING_STORESL3 8.869e-06 2.284e-05 0.388 0.69776
SUM_of_FOOD_STORES_WAREHOUSEL3 2.676e-05 1.552e-05 1.724 0.08472 .
SUM_of_HOTEL_MOTELL3 2.338e-05 1.905e-05 1.228 0.21958
SUM_of_HARDWAREL3 -7.588e-07 1.584e-05 -0.048 0.96180
SUM_of_INTERIOR_FURNISHINGSL3 -1.074e-05 1.371e-05 -0.784 0.43323
SUM_of_OTHER_RETAILL3 4.679e-06 1.901e-05 0.246 0.80562
SUM_of_OTHER_SERVICESL3 -1.642e-05 2.782e-05 -0.590 0.55507
SUM_of_OTHER_TRANSPORTL3 5.526e-05 2.421e-05 2.282 0.02247 *
SUM_of_RECREATIONL3 -2.238e-05 4.189e-05 -0.534 0.59315
SUM_of_RESTAURANTS_BARSL3 -2.059e-05 2.710e-05 -0.760 0.44740
SUM_of_SPORTING_TOY_STOR0ESL3 9.471e-06 3.391e-05 0.279 0.78002
SUM_of_TRAVEL_AGENCIESL3 -5.068e-06 1.671e-05 -0.303 0.76162
SUM_of_VEHICLESL3 1.744e-05 1.570e-05 1.111 0.26665
SUM_of_QUASI_CASHL3 1.705e-05 8.231e-06 2.071 0.03837 *
SHORT_RULE_DESCDCA 24 To 36 Ind -5.619e-01 4.009e-01 -1.402 0.16104
SHORT_RULE_DESCExeeded Num Of Dunnings 12 Ind -3.927e-01 3.442e-01 -1.141 0.25390
SHORT_RULE_DESCHad Collection Adv 6 To 12 Ind -2.736e-01 2.748e-01 -0.996 0.31940
SHORT_RULE_DESCHad Neg Status 0 to 6 Ind -8.679e-02 2.139e-01 -0.406 0.68487
SHORT_RULE_DESCHas Balance Above CL Ind 2.261e-01 1.984e-01 1.140 0.25438
SHORT_RULE_DESCHas Missed Payments Ind -2.492e-01 2.394e-01 -1.041 0.29798
SHORT_RULE_DESCHas Neg Status Ind -1.067e-01 4.059e-01 -0.263 0.79272
SHORT_RULE_DESCHas Too High Total Limit Ind -6.618e-01 2.622e-01 -2.524 0.01161 *
SHORT_RULE_DESCIs Above Auth Limit Ind -4.451e-01 2.630e-01 -1.693 0.09054 .
SHORT_RULE_DESCIs At DCA Ind -1.712e+00 8.400e-01 -2.038 0.04155 *
SHORT_RULE_DESCIs On Black List Ind 4.220e-01 3.035e-01 1.390 0.16443
SHORT_RULE_DESCIs White Credit Balance Ind -1.228e+00 4.876e-01 -2.519 0.01179 *
SHORT_RULE_DESCIs White Debet Balance Ind 1.033e-01 1.886e-01 0.548 0.58385
SHORT_RULE_DESCIs White No Balance Ind -1.280e+00 3.139e-01 -4.077 4.55e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 18383 on 316538 degrees of freedom
Residual deviance: 15306 on 316446 degrees of freedom
AIC: 15492

Number of Fisher Scoring iterations: 13

6.3 The Reduced Logistic Model

Summary of the reduced logistic model, trained on the original data with
no resampling.
> summary(model2)

Call:

54

glm(formula = ReFinInd ˜ ., family = "binomial", data = data2[training,
])

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3252 -0.1005 -0.0408 -0.0180 4.4503

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.475e+00 1.110e+00 -6.737 1.62e-11 ***
CustomerAge -1.501e-02 2.287e-03 -6.562 5.30e-11 ***
MonthsSinceAccountCreated -3.235e-03 6.153e-04 -5.257 1.47e-07 ***
CLOSING_BALANCE_AMT -1.318e-05 1.384e-06 -9.520 < 2e-16 ***
HAS_ESTATEMENT_AGREEMENT_IND1 1.640e-01 5.594e-02 2.931 0.003379 **
average_credit_limit_last12 2.929e-06 1.082e-06 2.706 0.006804 **
rev_uti_currmth 3.450e-03 5.108e-04 6.754 1.44e-11 ***
Segment9NameDelinquent 1.338e+00 1.000e+00 1.337 0.181173
Segment9NameEMOB - Active in last 6 mths 1.539e+00 1.099e+00 1.401 0.161261
Segment9NameEMOB - Not active last 6 mths -3.312e-03 1.495e+00 -0.002 0.998233
Segment9NameLast active 4-6 mths ago -1.144e+00 1.486e+00 -0.770 0.441451
Segment9NameLast active 7-12 mths ago -9.514e-01 1.485e+00 -0.641 0.521783
Segment9NameOccasional Revolver 1.977e+00 1.086e+00 1.821 0.068575 .
Segment9NameRevolved only 1.214e+00 1.104e+00 1.100 0.271303
Segment9NameRevolver 1.807e+00 1.085e+00 1.666 0.095668 .
Segment9NameTransactor 3.589e-02 1.102e+00 0.033 0.974030
Score 2.882e-01 2.502e-02 11.517 < 2e-16 ***
SUM_of_CreditLimitIncreaseFlag 4.024e-01 5.617e-02 7.165 7.79e-13 ***
SUM_of_AIRLINEL12 -2.579e-05 7.013e-06 -3.677 0.000236 ***
SUM_of_CLOTHING_STORESL12 -1.510e-05 5.941e-06 -2.542 0.011028 *
SHORT_RULE_DESCDCA 24 To 36 Ind -5.707e-01 3.973e-01 -1.436 0.150873
SHORT_RULE_DESCExeeded Num Of Dunnings 12 Ind -6.021e-01 3.314e-01 -1.817 0.069255 .
SHORT_RULE_DESCHad Collection Adv 6 To 12 Ind -3.711e-01 2.629e-01 -1.411 0.158115
SHORT_RULE_DESCHad Neg Status 0 to 6 Ind -1.191e-01 2.010e-01 -0.593 0.553501
SHORT_RULE_DESCHas Balance Above CL Ind 2.652e-01 1.930e-01 1.374 0.169437
SHORT_RULE_DESCHas Missed Payments Ind -3.839e-01 2.344e-01 -1.637 0.101528
SHORT_RULE_DESCHas Neg Status Ind -2.026e-01 3.999e-01 -0.507 0.612450
SHORT_RULE_DESCHas Too High Total Limit Ind -7.124e-01 2.564e-01 -2.778 0.005465 **
SHORT_RULE_DESCIs Above Auth Limit Ind -4.304e-01 2.612e-01 -1.648 0.099370 .
SHORT_RULE_DESCIs At DCA Ind -1.832e+00 8.355e-01 -2.193 0.028311 *
SHORT_RULE_DESCIs On Black List Ind 5.064e-01 3.001e-01 1.687 0.091513 .
SHORT_RULE_DESCIs White Credit Balance Ind -1.258e+00 4.850e-01 -2.594 0.009496 **
SHORT_RULE_DESCIs White Debet Balance Ind 1.382e-01 1.814e-01 0.762 0.446286
SHORT_RULE_DESCIs White No Balance Ind -1.409e+00 3.102e-01 -4.542 5.56e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 18383 on 316538 degrees of freedom
Residual deviance: 15436 on 316505 degrees of freedom
AIC: 15504

Number of Fisher Scoring iterations: 12

6.4 Random Forest

This is not very informative, but one such print-out should be included.
> rf2_220$call
randomForest(formula = ReFinInd ˜ ., data = data2[training,],

ntree = n, replace = TRUE, importance = TRUE, cutoff = c(219/220, 1/220))

55

56

Appendix C

The code is given here. The results from sampling are reproducible, and
can be reproduced by the two first files, usefulFunctions.R and sampling.R.
The code should be run in the order they appear here.

6.5 usefulFunctions.R
sigmoid = function(x){

return(exp(x)/(1+exp(x)))
}

confMatrix = function(prediction, referenceValue){
y = sum(referenceValue)
type1 = sum(prediction>referenceValue)
type2 = sum(prediction<referenceValue)
truePos = y-type2
trueNeg = length(prediction)-type1-type2-truePos
return(c(trueNeg,type1,type2,truePos))

}

a function that is useful and easy in scripts. creates a confusion matrix
cmFull = function(xTest,coefs,alpha=0.5,yTest){

return(confMatrix(classify(sigmoid(linPred(xTest,coefs)),alpha),yTest))
}

the function below takes the probabilities x determined by model from
an undersampled dataset and makes them unbiased relative to the
original dataset. p = relative frequency of positive response in the
original dataset, u = same for undersampled dataset
probUnbiased = function(p,u,x){

a = (p/u)*x
b = a + (1-x)*(1-p)/(1-u)
return(a/b)

}

linPred = function(xTest,coefs){
xTest = cbind(1,xTest)
xTest = as.matrix(xTest)
coefs = as.matrix(coefs)
return(xTest%*%coefs)

}

baccGen = function(tn,fp,fn,tp,lambda){
a = tn/(tn+fp)
b = tp/(fn+tp)
return((1-lambda)*a+lambda*b)

}

cutOffValue = function(p,u){
p = proportion of positive responses in main data,
u = proportion in undersampled
return(u*(1-p)/(u*(1-p)+p*(1-u)))

}

classify = function(probabilities,cutOff=0.5){
True = 1, False = 0
return(as.numeric(probabilities>=cutOff))

}

warning! when using the two functions below, set mySeed equal for both
smoteDataCont = function(df, numNew, a = 0.5, mySeed){

n = nrow(df)

57

set.seed(mySeed)
sample1 = sample(n, numNew, replace = TRUE)
sample2 = sample(n, numNew, replace = TRUE)
lambdas = runif(numNew, min = a, max = 1)
smoted = lambdas*df[sample1,]+(1-lambdas)*df[sample2,]
return(smoted)

}

smoteDataCat = function(df, numNew, mySeed){
n = nrow(df)
set.seed(mySeed)
sample1 = sample(n, numNew, replace = TRUE)
smoted = df[sample1,]
return(smoted)

}

6.6 sampling.R
library(stats)
library(corrplot)

source(’˜/Skole/Master/usefulFunctionsMaster.R’) # desktop
#source(’˜/Skole/Master/Master/usefulFunctionsMaster.R’) # laptop

ratios = c(1,4,9,19,49,99,219,499,999)
cutoffs = 1/(ratios+1)
mu = 1
n1 = 1000

showing off a mixed distribution
##
n = 500000
ratio = 9
x = rnorm(ratio*n,mean = -2)
y = rnorm(n,mean = 2)
distribution = c(x,y) # used to show mixed distribution
response = c(rep(0,ratio*n),rep(1,n))
##

#creating table "logregImba"
##
mu = 1
n1 = 1000
sigma = 1

set.seed(2019)
xList = list()
xTestList = list()
yList = list()
dfList = list()
coefs = list()
cmList = list()
accuracyList = list()
for(i in 1:length(ratios)){

xList[[i]] = c(rnorm(n1*ratios[i], mean = -mu),rnorm(n1, mean = mu))
xTestList[[i]] = c(rnorm(n1*ratios[i], mean = -mu),rnorm(n1, mean = mu))
yList[[i]] = c(rep(0,n1*ratios[i]),rep(1,n1))
dfList[[i]] = data.frame(xList[[i]],yList[[i]])
colnames(dfList[[i]]) = c("x","y")
coefs[[i]] = glm(y ˜ x, data = dfList[[i]], family = "binomial")$coefficients
cmList[[i]] = cmFull(xTestList[[i]],coefs[[i]],0.5,yList[[i]])
accuracyList[[i]] = (cmList[[i]][1]+cmList[[i]][4])/sum(cmList[[i]])

}
accuracyList

#coefs # these are found in the table
xCutOff = 0
for(i in 1:length(ratios)){

xCutOff[i] = -coefs[[i]][1]/coefs[[i]][2]
}
xCutOff
pnorm(mu+xCutOff) # true negative rate
pnorm(xCutOff-mu, lower.tail = FALSE) # true positive rate
(pnorm(mu+xCutOff) + pnorm(xCutOff-mu, lower.tail = FALSE))/2

summary(glm(y˜x, data = dfList[[1]], family ="binomial"))
##

set.seed(1337)
creating table "cutoffs"
##
xList = list()

58

xTest = list()
yList = list()
dfList = list()
coefs = list()
cmList = list()
for(i in 1:length(ratios)){

xList[[i]] = c(rnorm(n1*ratios[i], mean = -mu),rnorm(n1, mean = mu))
xTest[[i]] = c(rnorm(n1*ratios[i], mean = -mu),rnorm(n1, mean = mu))
yList[[i]] = c(rep(0,n1*ratios[i]),rep(1,n1))
dfList[[i]] = data.frame(xList[[i]],yList[[i]])
colnames(dfList[[i]]) = c("x","y")
coefs[[i]] = glm(y ˜ x, data = dfList[[i]], family = "binomial")$coefficients
cmList[[i]] = cmFull(xTest[[i]],coefs[[i]],0.5,yList[[i]]) # this line is unnecessary

}

cmList = list()
baccList = list()
for(i in 1:length(ratios)){

baccList[[i]] = list()
for(j in 1:length(cutoffs)){

cmList[[j]] = cmFull(xTest[[i]],coefs[[i]],cutoffs[j],yList[[i]])
temp = cmList[[j]]
baccList[[i]][j] = baccGen(temp[1],temp[2],temp[3],temp[4],0.5)

}
}

##

sampling, categorical (kind of)
set.seed(12345)
this section was a failed attempt and has been left out of the
theory and results
##
n1 = 1000
alfa0 = 0
alfa1 = 0
beta0 = 0.1
beta1 = 0.1

xList = list()
xTest = list()
yList = list()
yTest = list()
yTest2 = list()

dfList = list()
coefs = list()
cmList = list()
accuracyList = list()
baccList = list()
for(i in 1:length(ratios)){

cc = 0.2*log(ratios[i])
x0 = -runif(n1*ratios[i],alfa0+cc,beta0+cc)
x1 = runif(n1,alfa1,beta1)
xList[[i]] = c(x0,x1)

x0 = -runif(n1*ratios[i],alfa0+cc,beta0+cc)
x1 = runif(n1,alfa1,beta1)
xTest[[i]] = c(x0,x1)
u1 = runif(n1*ratios[i]+n1)
u2 = runif(n1*ratios[i]+n1)

yList[[i]] = as.numeric(u1<=sigmoid(xList[[i]]))
yTest[[i]] = as.numeric(u2<=sigmoid(xTest[[i]]))
yTest2[[i]] = c(rep(0,n1*ratios[i]),rep(1,n1))

dfList[[i]] = data.frame(xList[[i]],yList[[i]])

colnames(dfList[[i]]) = c("x","y")
coefs[[i]] = glm(y ˜ x, data = dfList[[i]], family = "binomial")$coefficients
cmList[[i]] = cmFull(xTest[[i]],coefs[[i]],0.5,yTest2[[i]])

accuracyList[[i]] = (cmList[[i]][1]+cmList[[i]][4])/sum(cmList[[i]])
baccList[[i]] = 0.5*cmList[[i]][1]/(cmList[[i]][1]+cmList[[i]][2])
baccList[[i]] = baccList[[i]]+0.5*cmList[[i]][4]/(cmList[[i]][3]+cmList[[i]][4])

}

rm(xList,xTest,yList,yTest,yTest2,dfList) # comment this out of if u dont have RAM issues
rm(u1,u2,x0,x1) # same as above

cmList
accuracyList
baccList
this section was a failure and has not been included in the results or theory
##

59

n1 = 20
set.seed(n1)
we set n1 = 20 and train models. check to see what works better
of oversampling and undersampling
switch n1 to 1000 after producing results for n1 = 20 and repeat
##
ratio = 219 # same as in the main data set by sparebank 1
mu = 1
limit1 = n1*ratio-n1+1
limit2 = n1*ratio+n1
numNew = (ratio-1)*n1

xTest = c(rnorm(10000, mean = -mu),rnorm(10000, mean = mu))
yTest = c(rep(0,10000), rep(1,10000))

coefList = list()
coefUnder = list()
coefOver = list()
coefSmote = list()

cmList = list()
cmUnder = list()
cmOver = list()
cmSmote = list()
baccList = list()

for(i in 1:10){
x = c(rnorm(n1*ratio, mean = -mu),rnorm(n1, mean = mu))
y = c(rep(0,n1*ratio), rep(1,n1))
df = data.frame(x,y)
ind1 = seq((n1*ratio+1),(n1*ratio+n1))
mySample = sample(ind1, (ratio-1)*n1, replace = TRUE)

coefList[[i]] = glm(y ˜ x, data = df, family = "binomial")$coefficients
coefUnder[[i]] = glm(y ˜ x, data = df[limit1:limit2,], family = "binomial")$coefficients
dfOver = rbind(df,df[mySample,])
coefOver[[i]] = glm(y ˜ x, data = dfOver, family = "binomial")$coefficients

#smote = smoteDataCont(df[4381:4400,],numNew,0.5,i)
smote = smoteDataCont(df[(ratio*n1+1):((1+ratio)*n1),],numNew,0.5,i)
dfSmote = rbind(df,smote)
coefSmote[[i]] = glm(y ˜ x, data = dfSmote, family = "binomial")$coefficients

#print(-coefList[[i]][1]/coefList[[i]][2])
cmList[[i]] = cmFull(xTest,coefList[[i]],0.5,yTest)
cmUnder[[i]] = cmFull(xTest,coefUnder[[i]],0.5,yTest)
cmOver[[i]] = cmFull(xTest,coefOver[[i]],0.5,yTest)
cmSmote[[i]] = cmFull(xTest,coefSmote[[i]],0.5,yTest)

}

beta0Under = c()
beta1Under = c()
beta0Over = c()
beta1Over = c()
beta0Smote = c()
beta1Smote = c()

for(i in 1:10){
beta0Under = c(beta0Under,coefUnder[[i]][1])
beta1Under = c(beta1Under,coefUnder[[i]][2])
beta0Over = c(beta0Over,coefOver[[i]][1])
beta1Over = c(beta1Over,coefOver[[i]][2])
beta0Smote = c(beta0Smote,coefSmote[[i]][1])
beta1Smote = c(beta1Smote,coefSmote[[i]][2])

}
x = 0
for(i in 1:10){

print(0.5*cmUnder[[i]][1]+0.5*cmUnder[[i]][4])
x = x + 0.5*cmUnder[[i]][1]+0.5*cmUnder[[i]][4]

}
x
x = 0
for(i in 1:10){

print(0.5*cmOver[[i]][1]+0.5*cmOver[[i]][4])
x = x + 0.5*cmOver[[i]][1]+0.5*cmOver[[i]][4]

}
x
x = 0
tnr = 0
tpr = 0
for(i in 1:10){

print(0.5*cmSmote[[i]][1]+0.5*cmSmote[[i]][4])
x = x + 0.5*cmSmote[[i]][1]+0.5*cmSmote[[i]][4]
tnr = tnr + cmSmote[[i]][1]
tpr = tpr + cmSmote[[i]][4]

}
x
tnr/100000
tpr/100000

60

x = 0
for(i in 1:10){

print(0.5*cmList[[i]][1]+0.5*cmList[[i]][4])
x = x + 0.5*cmList[[i]][1]+0.5*cmList[[i]][4]

}
x

##

finds the fraction of SMOTEd observations with x less than 0
##
set.seed(2019)
x = rnorm(10000,mean = 1)
y = rep(1, 10000)
mydf = data.frame(x,y)
ss = smoteDataCont(mydf,1000000,0.5,2019)
sum(ss$x<0) # 114968, so roughly 11.5 %
##

6.7 dataPrep.R
library(leaps)
library(haven)
library(dplyr)
library(gsubfn)
library(MASS)

#dataset = read_sas("Skole/Master/Master/Data/yarefin_trainset_small201810 ok.sas7bdat") # laptop
dataset = read_sas("Skole/Master/yarefin_trainset_small201810 ok.sas7bdat") # desktop
datasetOriginal = dataset
save(datasetOriginal, file = "datasetOriginal.RData")
rm(datasetOriginal)

diagnostics
##
sum(colSums(is.na(dataset))) # 2 357 690
ncol(dataset) # 78
nrow(dataset) # 614465
sum(dataset$ReFinInd==1) # 2665

##

acc_id = dataset$BK_ACCOUNT_ID
acc_id = sort(acc_id)
dataset = dataset[match(acc_id,dataset$BK_ACCOUNT_ID),]
rm(acc_id)
dataset = subset(dataset,

select = -c(lead1YearMonth,lead2YearMonth,
lead3YearMonth,Segment23Name,
PeriodId,Date,YearMonth))

count = 0
mylist = c(0)
for(i in 2:length(dataset$BK_ACCOUNT_ID)){

if(dataset$BK_ACCOUNT_ID[i]==dataset$BK_ACCOUNT_ID[i-1]){
count = count + 1
mylist = c(mylist,i)

}
}
count # = 3700

mylist=mylist[2:length(mylist)]
dataset = dataset[-mylist,]
dataset[is.na(dataset)] = 0

dataset = dataset[which(!dataset$CustomerAge==0),]
#sum(dataset$ReFinInd==1) # 2129
dataset = subset(dataset, select = -BK_ACCOUNT_ID)
dataset$ReFinInd = as.factor(dataset$ReFinInd)
dataset$PRODUCT_NAME = as.factor(dataset$PRODUCT_NAME)
dataset$STATEMENT_DUE_DAY_OF_MONTH_NUM = as.factor(dataset$STATEMENT_DUE_DAY_OF_MONTH_NUM)
dataset$ApplicationSalesChannel = as.factor(dataset$ApplicationSalesChannel)
dataset$CAMPAIGN_NAME = as.factor(dataset$CAMPAIGN_NAME)
dataset$DISTRIBUTOR_NAME = as.factor(dataset$DISTRIBUTOR_NAME)
dataset$GENDER_NAME = as.factor(dataset$GENDER_NAME)
dataset$Segment9Name = as.factor(dataset$Segment9Name)
dataset$SHORT_RULE_DESC = as.factor(dataset$SHORT_RULE_DESC)
dataset$PNRSerial = floor(dataset$PNRSerial/10)
dataset$PNRSerial = as.factor(dataset$PNRSerial)
dataset$HAS_DIRECT_DEBIT_AGREEMENT_IND = as.factor(dataset$HAS_DIRECT_DEBIT_AGREEMENT_IND)
dataset$HAS_ESTATEMENT_AGREEMENT_IND = as.factor(dataset$HAS_ESTATEMENT_AGREEMENT_IND)

61

indices = which(dataset$Segment9Name=="Not active in last 12 mths")
sum(dataset[indices,]$ReFinInd == 1) # = 9, out of 144 199
dataset = dataset[-indices,] # removing accounts that have not been active for 12 months
dataset$Segment9Name = factor(dataset$Segment9Name) # removes non-existent factor levels

##
set.seed(2019)
indices = sample(466539,40000, replace = FALSE)

#for the "dataset" section
###
dataSmall = dataset[indices,]
modelUseless = glm(ReFinInd ˜ ., data = dataSmall, family = "binomial")
coefUseless = modelUseless$coefficients
#
summary(modelUseless)
#this is the model that shows collinearity in
#188 parameters + intercept
##
dataset = subset(dataset,

select = -c(CAMPAIGN_NAME, PNRSerial,DISTRIBUTOR_NAME, PRODUCT_NAME))

sum(dataset$ReFinInd==0) # 464 419
sum(colSums(dataset==0)) # 18 701 432

save(dataset, file = "dataset.RData")
##

dataCont = subset(dataset,
select = -c(SHORT_RULE_DESC,Segment9Name,

GENDER_NAME,ApplicationSalesChannel,
STATEMENT_DUE_DAY_OF_MONTH_NUM,
HAS_DIRECT_DEBIT_AGREEMENT_IND,
HAS_ESTATEMENT_AGREEMENT_IND,ReFinInd))

dataCat = subset(dataset,
select = c(SHORT_RULE_DESC,Segment9Name,

GENDER_NAME,ApplicationSalesChannel,
STATEMENT_DUE_DAY_OF_MONTH_NUM,
HAS_DIRECT_DEBIT_AGREEMENT_IND,
HAS_ESTATEMENT_AGREEMENT_IND,ReFinInd))

save(dataCont, file = "dataCont.RData")
save(dataCat, file = "dataCat.RData")
##

set.seed(1000)
stratified sampling, creating training and test set
test set will have 150 000 observations, with 682 positive observations
##
indices0 = which(dataset$ReFinInd==0)
indices1 = which(dataset$ReFinInd==1)
#sum(dataset$ReFinInd==1) 2120

2120*(n-150000)/n # = 1438.385
n-150000-1438 # = 315101
train1 = sample(indices1, 1438, replace = FALSE) # stratified sampling
train0 = sample(indices0, 315101, replace = FALSE) # stratified sampling
training = c(train1,train0) # indices of training set
##

model selection
##
numPredictors = seq(2,93)
regfit = regsubsets(ReFinInd ˜ ., data = dataset[training,], nvmax = 93, method = "forward")
regfitsummary = summary(regfit)

aic = regfitsummary$bic + (2-log(dim(dataset[training,])[1]))*numPredictors
nVarAIC = which.min(aic)
nVarBIC = which.min(regfitsummary$bic)

varSmall = which(regfitsummary$which[nVarBIC,])
varSmall # variables in data2 below
varLarge = which(regfitsummary$which[nVarAIC,])
varLarge

variables below found from forward selection
data2 = subset(dataset,

select = c(CustomerAge,MonthsSinceAccountCreated,
CLOSING_BALANCE_AMT,HAS_ESTATEMENT_AGREEMENT_IND,
average_credit_limit_last12,rev_uti_currmth,
Segment9Name,Score,SUM_of_CreditLimitIncreaseFlag,
SUM_of_AIRLINEL12,SUM_of_CLOTHING_STORESL12,
SHORT_RULE_DESC, ReFinInd))

save(data2, file = "data2.RData")

data2Cat = subset(data2,

62

select = c(HAS_ESTATEMENT_AGREEMENT_IND,
Segment9Name,SHORT_RULE_DESC,ReFinInd))

data2Cont = subset(data2,
select = -c(HAS_ESTATEMENT_AGREEMENT_IND,

Segment9Name,SHORT_RULE_DESC,ReFinInd))
save(data2Cat, file = "data2Cat.RData")
save(data2Cont, file = "data2Cont.RData")

##

6.8 logReg.R
ratios = c(1,4,9,19,49,99,219,499,999)
cutoffs = 1/(ratios+1)
references = as.numeric(dataset$ReFinInd)-1

model is trained and saved here
##
model1 = glm(ReFinInd ˜ ., data = dataset[training,], family = "binomial") # full model
save(model1, file = "model1.rda")
model2 = glm(ReFinInd ˜ ., data = data2[training,], family = "binomial") # reduced model
save(model2, file = "model2.rda")

##

full model, varying cut off
also, reduced model
##
nTest = 150000
cmList = list()
baccList = list()
accList = list()

cmList2 = list()
baccList2 = list()
accList2 = list()

references = as.numeric(dataset$ReFinInd)-1
for(i in 1:length(cutoffs)){

cmList[[i]] = confMatrix(classify(sigmoid(predict(model1,dataset[-training,])),
cutoffs[i]),references[-training])

temp = cmList[[i]]
baccList[[i]] = baccGen(temp[1],temp[2],temp[3],temp[4],0.5)
accList[[i]] = (temp[1]+temp[4])/nTest

cmList2[[i]] = confMatrix(classify(sigmoid(predict(model2,data2[-training,])),
cutoffs[i]),references[-training])

temp = cmList2[[i]]
baccList2[[i]] = baccGen(temp[1],temp[2],temp[3],temp[4],0.5)
accList2[[i]] = (temp[1]+temp[4])/nTest

}
cmList
baccList
accList
cmList2
baccList2
accList2
##

smote
this section is commented out so i dont accidentally run it again
##
imba = c(0.05,0.1,0.2) # desired training set imbalance
achieved by under- and oversampling and SMOTE
numNew = round((imba*316539-1438)/(1-imba)) # number of new oversampled/
smoted observations to create the desired imbalance (balance)

mySeed = 1995
dataCatSmoted = smoteDataCat(dataCat[train1,],numNew[1],mySeed)
dataContSmoted = smoteDataCont(dataCont[train1,],numNew[1],0.5,mySeed)
dataSmoted05 = cbind(dataContSmoted,dataCatSmoted)
dataSmoted05 = rbind(dataSmoted05,dataset[training,])
save(dataSmoted05, file = "dSmote05.rda")

lmSmote05 = glm(data = dataSmoted05, ReFinInd ˜ ., family = "binomial")

63

save(lmSmote05, file = "lmSmote05.rda")
rm(lmSmote05)

mySeed = 1996
dataCatSmoted = smoteDataCat(dataCat[train1,],numNew[2],mySeed)
dataContSmoted = smoteDataCont(dataCont[train1,],numNew[2],0.5,mySeed)
dataSmoted10 = cbind(dataContSmoted,dataCatSmoted)
dataSmoted10 = rbind(dataSmoted10,dataset[training,])
save(dataSmoted10, file = "dSmote10.rda")

lmSmote10 = glm(data = dataSmoted10, ReFinInd ˜ ., family = "binomial")
save(lmSmote10, file = "lmSmote10.rda")
rm(lmSmote10)

mySeed = 1997
dataCatSmoted = smoteDataCat(dataCat[train1,],numNew[3],mySeed)
dataContSmoted = smoteDataCont(dataCont[train1,],numNew[3],0.5,mySeed)
dataSmoted20 = cbind(dataContSmoted,dataCatSmoted)
dataSmoted20 = rbind(dataSmoted20,dataset[training,])
save(dataSmoted20, file = "dSmote20.rda")

lmSmote20 = glm(data = dataSmoted20, ReFinInd ˜ ., family = "binomial")
save(lmSmote20, file = "lmSmote20.rda")
rm(lmSmote20)

##

oversampling
this section is commented out so i dont accidentally run it again
##
imba = c(0.05,0.1,0.2) # desired training set imbalance
achieved by under- and oversampling and SMOTE
numNew = round((imba*316539-1438)/(1-imba)) # number of new oversampled/
smoted observations to create the desired imbalance (balance)

set.seed(3000)
newSamples = list()
overSampled = list()
for(i in 1:3){

newSamples[[i]] = sample(train1,numNew[[i]], replace = TRUE)
overSampled[[i]] = c(newSamples[[i]],training)

}

lmOver05 = glm(ReFinInd ˜ ., data = dataset[overSampled[[1]],], family = "binomial")
save(lmOver05, file = "lmOver05.rda")
rm(lmOver05)

lmOver10 = glm(ReFinInd ˜ ., data = dataset[overSampled[[2]],], family = "binomial")
save(lmOver10, file = "lmOver10.rda")
rm(lmOver10)

lmOver20 = glm(ReFinInd ˜ ., data = dataset[overSampled[[3]],], family = "binomial")
save(lmOver20, file = "lmOver20.rda")
rm(lmOver20)

##

#undersampling
set.seed(1111)
if set.seed is set to 4000, then lmUnder20 cant predict the dataset
as application sales channel has unseen levels
##
imba = c(0.05,0.1,0.2)
ratios = c(19,9,4)
n1 = 1438

samples = list()
underSampled = list()
for(i in 1:3){

samples[[i]] = sample(train0, ratios[i]*n1, replace = FALSE)
underSampled[[i]] = c(train1,samples[[i]])

}

lmUnder05 = glm(ReFinInd ˜ ., data = dataset[underSampled[[1]],], family = "binomial")
lmUnder10 = glm(ReFinInd ˜ ., data = dataset[underSampled[[2]],], family = "binomial")
lmUnder20 = glm(ReFinInd ˜ ., data = dataset[underSampled[[3]],], family = "binomial")

##

comparing smote, undersampling and oversampling at degree 5,10,20%
run the section 3 times
##
cutoffs2 = seq(0.1,0.2,0.005) # this has been changed a few times

baccUnder = c()
baccOver = c()
baccSmote = c()

need to change the names of the models to test all 9

64

for(i in 1:length(cutoffs2)){
temp = confMatrix(classify(sigmoid(predict(lmUnder20,dataset[-training,])),

cutoffs2[i]),references[-training])
baccUnder = c(baccUnder,baccGen(temp[1],temp[2],temp[3],temp[4],0.5))

temp = confMatrix(classify(sigmoid(predict(lmOver20,dataset[-training,])),
cutoffs2[i]),references[-training])

baccOver = c(baccOver,baccGen(temp[1],temp[2],temp[3],temp[4],0.5))

temp = confMatrix(classify(sigmoid(predict(lmSmote20,dataset[-training,])),
cutoffs2[i]),references[-training])

baccSmote = c(baccSmote,baccGen(temp[1],temp[2],temp[3],temp[4],0.5))
}
max(baccSmote)
max(baccUnder)
max(baccOver)
##

6.9 randomForests.R
library(randomForest)
start.time = Sys.time()

references = as.numeric(dataset$ReFinInd)-1

ratios = c(1,4,9,19,49,99,219,499,999)
cutoffs = 1/(ratios+1)

set.seed(2019)
n = 200
##
rf_50 = randomForest(ReFinInd ˜ ., data = dataset[training,], ntree = n,

replace = TRUE, importance = TRUE, cutoff = c(0.5,0.5))
save(rf_50, file = "rf_50.RData")
rm(rf_50)

rf_10 = randomForest(ReFinInd ˜ ., data = dataset[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.9,0.1))

save(rf_10, file = "rf_10.RData")
rm(rf_10)

rf_02 = randomForest(ReFinInd ˜ ., data = dataset[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.98,0.02))

save(rf_02, file = "rf_02.RData")
rm(rf_02)

rf_220 = randomForest(ReFinInd ˜ ., data = dataset[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(219/220,1/220))

save(rf_220, file = "rf_220.RData")
rm(rf_220)
##

end.time = Sys.time()
end.time - start.time

set.seed(2020)
n = 200
##
rf2_50 = randomForest(ReFinInd ˜ ., data = data2[training,], ntree = n,

replace = TRUE, importance = TRUE, cutoff = c(0.5,0.5))
save(rf2_50, file = "rf2_50.RData")
rm(rf2_50)

rf2_10 = randomForest(ReFinInd ˜ ., data = data2[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.9,0.1))

save(rf2_10, file = "rf2_10.RData")
rm(rf2_10)

rf2_02 = randomForest(ReFinInd ˜ ., data = data2[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.98,0.02))

save(rf2_02, file = "rf2_02.RData")
rm(rf2_02)

rf2_220 = randomForest(ReFinInd ˜ ., data = data2[training,], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(219/220,1/220))

save(rf2_220, file = "rf2_220.RData")

65

rm(rf2_220)
##

#smote
##
data2Smoted05 = subset(dataSmoted05,

select = c(CustomerAge,MonthsSinceAccountCreated,
CLOSING_BALANCE_AMT,HAS_ESTATEMENT_AGREEMENT_IND,
average_credit_limit_last12,rev_uti_currmth,
Segment9Name,Score,SUM_of_CreditLimitIncreaseFlag,
SUM_of_AIRLINEL12,SUM_of_CLOTHING_STORESL12,
SHORT_RULE_DESC, ReFinInd))

data2Smoted10 = subset(dataSmoted10,
select = c(CustomerAge,MonthsSinceAccountCreated,

CLOSING_BALANCE_AMT,HAS_ESTATEMENT_AGREEMENT_IND,
average_credit_limit_last12,rev_uti_currmth,
Segment9Name,Score,SUM_of_CreditLimitIncreaseFlag,
SUM_of_AIRLINEL12,SUM_of_CLOTHING_STORESL12,
SHORT_RULE_DESC, ReFinInd))

data2Smoted20 = subset(dataSmoted20,
select = c(CustomerAge,MonthsSinceAccountCreated,

CLOSING_BALANCE_AMT,HAS_ESTATEMENT_AGREEMENT_IND,
average_credit_limit_last12,rev_uti_currmth,
Segment9Name,Score,SUM_of_CreditLimitIncreaseFlag,
SUM_of_AIRLINEL12,SUM_of_CLOTHING_STORESL12,
SHORT_RULE_DESC, ReFinInd))

##

#oversampling
##
imba = c(0.05,0.1,0.2) # desired training set imbalance
achieved by under- and oversampling and SMOTE
numNew = round((imba*316539-1438)/(1-imba)) # number of new oversampled/
smoted observations to create the desired imbalance (balance)

set.seed(3000)
newSamples = list()
overSampled = list()
for(i in 1:3){

newSamples[[i]] = sample(train1,numNew[[i]], replace = TRUE)
overSampled[[i]] = c(newSamples[[i]],training)

}
##

#undersampling
set.seed(1111)
if set.seed is set to 4000, then lmUnder20 cant predict the dataset
as application sales channel has unseen levels
##
imba = c(0.05,0.1,0.2)
ratios = c(19,9,4)
n1 = 1438

samples = list()
underSampled = list()
for(i in 1:3){

samples[[i]] = sample(train0, ratios[i]*n1, replace = FALSE)
underSampled[[i]] = c(train1,samples[[i]])

}
##

start.time = Sys.time()

training 9 models, resampling at 3 levels, 3 methods
n = 200
##
rf2_Over05 = randomForest(ReFinInd ˜ ., data = data2[overSampled[[1]],], ntree = n,

replace = TRUE, importance = TRUE, cutoff = c(0.95,0.05))
rf2_Over10 = randomForest(ReFinInd ˜ ., data = data2[overSampled[[2]],], ntree = n,

replace = TRUE, importance = TRUE, cutoff = c(0.90,0.10))
rf2_Over20 = randomForest(ReFinInd ˜ ., data = data2[overSampled[[3]],], ntree = n,

replace = TRUE, importance = TRUE, cutoff = c(0.80,0.20))
save(rf2_Over05, file = "rf2_Over05.rda")
save(rf2_Over10, file = "rf2_Over10.rda")
save(rf2_Over20, file = "rf2_Over20.rda")
rm(rf2_Over20,rf2_Over10,rf2_Over05)

rf2_Under05 = randomForest(ReFinInd ˜ ., data = data2[underSampled[[1]],], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.95,0.05))

rf2_Under10 = randomForest(ReFinInd ˜ ., data = data2[underSampled[[2]],], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.90,0.10))

66

rf2_Under20 = randomForest(ReFinInd ˜ ., data = data2[underSampled[[3]],], ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.80,0.20))

save(rf2_Under05, file = "rf2_Under05.rda")
save(rf2_Under10, file = "rf2_Under10.rda")
save(rf2_Under20, file = "rf2_Under20.rda")
rm(rf2_Under20,rf2_Under10,rf2_Under05)

rf2_Smote05 = randomForest(ReFinInd ˜ ., data = data2Smoted05, ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.95,0.05))

rf2_Smote10 = randomForest(ReFinInd ˜ ., data = data2Smoted10, ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.90,0.10))

rf2_Smote20 = randomForest(ReFinInd ˜ ., data = data2Smoted20, ntree = n,
replace = TRUE, importance = TRUE, cutoff = c(0.80,0.20))

save(rf2_Smote05, file = "rf2_Smote05.rda")
save(rf2_Smote10, file = "rf2_Smote10.rda")
save(rf2_Smote20, file = "rf2_Smote20.rda")
rm(rf2_Smote20,rf2_Smote10,rf2_Smote05)

##

end.time = Sys.time()
end.time - start.time

set.seed(7) #yes, the seed actually matters
pp = predict(rf2_Under05,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Under10,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Under20,data2[-training,])
table(references[-training],pp)

pp = predict(rf2_Over05,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Over10,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Over20,data2[-training,])
table(references[-training],pp)

pp = predict(rf2_Smote05,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Smote10,data2[-training,])
table(references[-training],pp)
pp = predict(rf2_Smote20,data2[-training,])
table(references[-training],pp)

67

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Thomas Benjamin Frogner

Learning from Imbalanced Data, with
a Case Study in Finance

Master’s thesis in Applied Physics and Mathematics
Supervisor: John Sølve Tyssedal

August 2019

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Theory
	Classification
	The Performance Measure
	Training, Validating and Testing
	Undersampling
	Oversampling & Synthetic Minority Oversampling Technique
	Cut-Off Probability
	Correlation in Imbalanced Data & Mixed Distributions

	Logistic Regression
	The Logistic Model
	Estimating the Coefficients
	Model Selection

	Decision Trees & Random Forests
	Constructing a Decision Tree
	Bootstrap Aggregating and Random Forests

	Sampled Data
	One Normally Distributed Covariate

	Data Set provided by Sparebank 1 Kredittkort AS
	Predicting Refinancing of Credit Card Debt
	Distribution of the Covariates

	Data Preparation

	Results
	About the Results
	Logistic Regression on Sampled Data
	One Normally Distributed Predictor
	Resampling techniques on small data sets
	Resampling Techniques on Large Data Sets

	Data from Sparebank 1 Kredittkort AS
	Logistic Regression without Resampling
	Model Selection
	Random Forests without Resampling
	Logistic Regression with Resampling
	Random Forests with Resampling

	Concluding Remarks
	Summary of the Results
	Recommendations for Further Work

	Bibliography
	Appendix
	Appendix A
	Appendix B
	Logistic Model on all variables
	The Full Logistic Model
	The Reduced Logistic Model
	Random Forest

	Appendix C
	usefulFunctions.R
	sampling.R
	dataPrep.R
	logReg.R
	randomForests.R

