
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

C
T

an
d

N
at

ur
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Torbjørn Kirkevik Soltvedt

A Distributed-to-Centralized Cost
Model for Service Selection in Smart
Cities

Master’s thesis in Master of Science (MSc) in Informatics
Supervisor: Sobah Abbas Petersen, Amir Sinaeepourfard

June 2019

Torbjørn Kirkevik Soltvedt

A Distributed-to-Centralized Cost Model
for Service Selection in Smart Cities

Master’s thesis in Master of Science (MSc) in Informatics
Supervisor: Sobah Abbas Petersen, Amir Sinaeepourfard
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description

In a distributed-to-centralized architecture for managing the data produced by the smart
cities, services and data is made accessible from different actors in different places in the
architecture. In order to be able to select the best services and data, an approach is needed
to manage the services and data, by helping to find and select them. In order to help select
the most suitable alternatives with respect to their cost and benefits, a cost model is to be
proposed as part of a selection approach. It is then implemented to work with a distributed-
to-centralized ICT data management architecture for collecting and managing data from
zero-emission neighborhoods. Which will be evaluated if it is fit for use in managing the
selection of services and data in the context of a smart city.

i

Abstract

With a growing urban population, and new enabling technologies, it is predicted that the
future smart city is going to generate large amounts of data that needs be managed in order
for it to be used in a manner that produces value for the smart city. A new data management
architecture known as a distributed-to-centralized data management architecture has been
proposed to help address these data challenges. But there is also a need for an approach to
find and select data and services in that architecture for the smart city.

This thesis proposes a cost model that is used to rank data and services as part of the
selection approach within the context of a distributed-to-centralized data management ar-
chitecture for the smart city. It describes which Key Performance Indicators (KPI) that can
be used by the cost model to rank different alternatives, as well as how to store and describe
the information about data and services. It then proposes a design for this cost model to
be implemented in the context of an instance of this architecture designed for FME ZEN
research centre for its pilot projects, know as the ZEN ICT architecture. This architec-
ture is responsible for gathering the ZEN KPIs from its pilot project buildings, which
are measurements of neighborhood and building performance. But as the distributed-to-
centralized architecture is also likely to be beneficial to other smart city architectures, the
design of a cost model in this thesis would likely also be beneficial in those cases. The
implementation of the design into a prototype is done to see how it is able to find and
rank data for selection, and evaluate it based on its performance, proving feasibility and
if it is fit for its intended application context. This can hopefully help finding the most
suitable data in the ZEN ICT architecture, connecting the data in the architecture with the
applications and services that needs that data.

ii

Sammendrag

Med en voksende urban befolkning, og nye støttende teknologier, er det antatt at den
fremtidige smarte byen kommer til å generere store mengder data som trenger å bli ad-
ministrert for å kunne bli brukt på en måte slik at den produserer verdi for den smarte
byen. En dataadministreringsarkitektur kjent som en distribuert-til-sentralisert dataadmin-
istreringsarkitektur har blitt foreslått for å svare pø disse datautfordringene. Men det er
også behov for en framgangsmåte for å finne og velge data og tjenester i den arkitekturen
for den smarte byen.

Denne oppgaven foreslår en kostnadsmodell som er brukt til å rangere data og tjenester
som en del av en seleksjonsframgangsmåte i kontekst av en distribuert-til-sentralisert
dataadministreringsarkitektur for den smarte byen. Den beskriver hvilke viktige nøkkeltall
(KPI) som kan brukes av kostnadsmodellen for å rangere ulike alternativ, i tillegg til hvor-
dan man kan lagre og beskrive informasjonen om data og tjenester. Så forslår den et de-
sign for hvordan denne kostnadsmodellen kan bli implementert i kontekst av en forekomst
av denne arkitekturen designet for FME ZEN forskningssenter sine pilotprosjekter, kjent
som ZEN ICT-arkitekturen. Denne arkitekturen har ansvar for å innhente ZEN sine viktige
nøkkeltall fra pilotprojektbygningene, som er målinger av nabolag- og bygningsprestasjon.
Men siden den distribuert-til-sentraliserte arkitekturen også sannsynligvis er gunstig for
andre smart by-arkitekturer, så er designet av kostnadsmodellen i denne oppgaven også
gunstig å bruke for de tilfellene. Implementasjonen av en prototype basert på designet er
gjort for å se hvordan den klarer å finne og rangere data for seleksjon, og for å evaluere
den basert på dens prestasjoner, for å bevise at det lar seg gjøre og at den passer for kon-
teksten den skal brukes i. Det kan forhåpentligvis hjelpe med å finne den mest passende
dataen i ZEN ICT-arkitekturen, og koble sammen data i arkitekturen med applikasjoner og
tjenester som trenger data.

iii

iv

Preface

This thesis is final part of a Master of Science degree in informatics with a specialization
in software engineering, at the Norwegian University of Science and Technology (NTNU).
This thesis and project was done under the Department of Computer Science (IDI), and
FME ZEN research centre.

I would like to thank Amir Sinaeepourfard and Sobah Abbas Petersen, from the De-
partment of Computer Science, for their support and guidance as supervisors during this
project.

Torbjørn Kirkevik Soltvedt
June 2019

v

vi

Table of Contents

Summary i

Preface ii

Preface iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xiv

Abbreviations xv

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Project Description . 2
1.4 Thesis Outline . 3

2 Background 5
2.1 Smart cities . 5
2.2 Technology management . 7

2.2.1 Resource management . 7
2.2.2 Data management . 8
2.2.3 Software management . 8
2.2.4 Schemas - Centralized and Disitributed-to-Centralized 8

2.3 Data management . 9
2.3.1 Centralized data management 9
2.3.2 Distributed-to-centralized data management 10

vii

2.4 Resource management . 10
2.4.1 Centralized resource management 10
2.4.2 Distributed-to-centralized resource management 10

2.5 Software management . 11
2.5.1 Centralized software management 11
2.5.2 Distributed-to-centralized software management 11

2.6 Cost models . 11
2.6.1 Linear programming models . 14
2.6.2 Epsilon-Constraint method . 15
2.6.3 Analytical Hierarchy Process (AHP) 15
2.6.4 Decision Envelopment Analysis (DEA) 17
2.6.5 Goal programming . 17
2.6.6 TOPSIS . 18
2.6.7 Multi-Attribute Utility Theory (MAUT) 19
2.6.8 ELECTRE methods . 20
2.6.9 Adaptive Cloud Provider Selection (ACPS) 23
2.6.10 Q-learning . 24
2.6.11 Boltzmann Exploration . 26
2.6.12 Cost model comparison . 26

2.7 Key Performance Indicator (KPI) . 28
2.7.1 Cloud computing KPI . 28
2.7.2 Distributed-to-centralized KPI 37
2.7.3 Data Quality . 39
2.7.4 Context Information . 42

2.8 Service registry . 42
2.8.1 Centralized registry . 42
2.8.2 Distributed hash tables and routing 44
2.8.3 Blockchain . 45

2.9 Service description . 50
2.9.1 Web Service Description Language (WSDL) and OWL-S 50
2.9.2 Cloud service descriptions . 51
2.9.3 Fog-to-cloud taxonomies . 51

2.10 Zero Emission Neighborhoods (ZEN) 52
2.10.1 ZEN pilot . 54
2.10.2 ZEN KPI . 54
2.10.3 ZEN ICT architecture . 56

3 Research Methodology 59
3.1 Research Method . 59
3.2 Research Questions . 61

4 Proposed cost model design 63
4.1 Stakeholders . 63
4.2 Requirements . 64

4.2.1 Previous requirements . 64
4.2.2 Usage scenario . 65

viii

4.2.3 Specified requirements . 66
4.3 Architecture . 66

4.3.1 Request handler . 68
4.3.2 Routing . 69
4.3.3 Cost model . 71
4.3.4 User interface . 72

5 ZEN Cost Model Prototype 73
5.1 Preliminaries . 73

5.1.1 Requirements and implementation 73
5.1.2 Scope and limitations . 74

5.2 KPI and data description . 74
5.3 Technologies . 76

5.3.1 Programming language and run-time environment 76
5.3.2 Frameworks . 76
5.3.3 Cloud computing . 76

5.4 Implementation architecture . 77
5.5 Development . 78

5.5.1 Control Unit . 78
5.5.2 GUI . 79
5.5.3 Mocked Data repository . 79

6 Results 81
6.1 ZEN Cost Model Prototype . 81

6.1.1 GUI . 81
6.1.2 Functionality . 82

6.2 Measurements . 84
6.2.1 Scenarios . 85
6.2.2 Response times . 86

7 Discussion and Evaluation 87
7.1 Discussion . 87
7.2 Evaluation . 89
7.3 Comparison with the centralized data management architecture 90
7.4 ZEN contribution . 90

8 Conclusion and Future Work 91
8.1 Conclusion . 91
8.2 Research Questions . 92
8.3 Future Work . 94

Bibliography 94

Appendix A 107

Appendix B 110

ix

x

List of Tables

2.1 Comparison of the different cost model approaches 27

4.1 How a query with location ”/bergen/” would query repositories from a
control unit . 70

6.1 Search query . 83

7.1 The requirements for the design and implementation and their fulfilment . 89

xi

xii

List of Figures

2.1 Five trade-off optimal solutions for a car, and one dominated alternative.
Taken from [34] . 12

2.2 Three alternatives with their KPIs used by the cost model to calculate their
ranking . 13

2.3 Example scenario using the ε-Constraint method 15
2.4 Example scenario with an AHP comparing two providers 16
2.5 The formula for expected utility in Q-learning [130] 25
2.6 A cloud provider selection scenario with three alternatives 25
2.7 Calculation of IPDV, taken from [112] 30
2.8 Converting the security information from a SLA into a QPT, taken from [70] 31
2.9 Capturing core elasticity metrics, taken from [57] 33
2.10 The broker pattern from [11, p. 212] . 43
2.11 Napster architecture from [114] . 43
2.12 Circular key space and finger table for Chord from [134] 44
2.13 The data structure of the blockchain showing the blocks and their content 45
2.14 The data structure of the Merkle Tree used to generate the Merkle root

hash used in the blockchain data structure. 46
2.15 The Tangle, which is the DAG holding all transactions [98]. 49
2.16 The Tangle, which is the DAG holding all transactions [98]. 50
2.17 The relationship between ZEN KPIs and the ZEN Toolbox [156] 56
2.18 The COSA-DLC model . 57
2.19 ZEN ICT architecture . 58

3.1 How the design science research checklist maps to three design research
cycles [58] . 60

4.1 The top level of the architecture of the cost model design 67
4.2 Internal architecture of a control unit . 68
4.3 Control flow for a user query . 69

5.1 The implementation of the architecture mapped to hosting locations . . . 77

xiii

6.1 The cost model configuration page in the GUI 82
6.2 The cost model configuration page in the GUI 83
6.3 The cost model configuration for query 1 84
6.4 The cost model configuration for query 2 84

xiv

Abbreviations

ICT = Information and Communications Technology
ZEN = Zero Emissions Neighbourhoods
KPI = Key Performance Indicator
IoT = Internet of Things
F2C = Fog-to-Cloud
SDN = Software Defined Networking
SLA = Service-Level Agreement
DHT = Distributed Hash Table
GUI = Graphical User Interface
QoS = Quality of Service
QoE = Quality of Experience
MAUT = Multi-Attribute Utility Theory
P2P = Peer-to-peer
PoW = Proof-of-Work
XML = Extensible Markup Language

xv

xvi

Chapter 1
Introduction

1.1 Introduction

According to an UN report on the urbanization of the world, 55% of the world’s population
lives in urban areas, which is a number that is expected to rise to around 68% in the year
2050 [143]. In the same period, the total population of the world is expected to rise to 9.8
billion, from the 7.3 billion currently in the world [144]. In order to meet new demands
of sustainability, environmental friendliness and maintaining a high quality of life in the
cities as more people make them their homes, new approaches to building and managing
cities is needed.
Researchers around the world envision new ways to build and manage the cities in order
to improve them, and one of more central terms used for the new cities, is the term ”smart
city”. Even though there is not a single agreed upon definition of the term, and its not
even the only term used to describe this new type of city, one thing that remains in agree-
ment in almost all the of definitions. The use of technology, specifically Information and
Communication Technology (ICT) to plan, manage and govern the city and the services.
With new enabling technologies, that connects all of the city through new network tech-
nologies that connects the whole city, together with advances in Internet of Things (IoT)
technology, new ways to gather data and sense the city is a central part of that. Which
means that with the smart city, also comes an expected exponential growth in the amount
of data generated [56]. To deal with these new data challenges, an architecture have been
proposed to help with the management of data in the smart city, by making up for the limi-
tations of the old centralized models, through combining the distributed data management
with the centralized cloud. In this architecture for data management, called a distributed-
to-centralized architecture, different actors within the city can gather, store and process
their own data and share it with others through this architecture, in different locations in
the overall system.
But for services and consumers of data, this opens up new challenges in how to find and
select data and services in this architecture. Services in the smart city is dependent on the
data generated in the smart city, as well as other services in order to provide their services.

1

Chapter 1. Introduction

And to help with the selection of the most suitable data or service, this thesis proposes a
cost model that is used as part of this selection. A cost model is in this case an approach
or a method create a ranking of different alternatives according to how suitable they are
depending on the users need, with respect to cost and benefits of the alternatives. Which
in turn can be used to select the best alternative.

1.2 Motivation

This thesis is motivated by the work done Zero Emissions Neighbourhoods (ZEN) research
centre 1. ZEN is working on different solutions with the goal of developing neighborhoods
with zero greenhouse gas emissions. Part of that work involves different, multidisciplinary
research, but most relevant for this thesis is the work on a data management and the pilot
projects around Norway that will generate data for the research that needs to managed, for
it later to be used as part of testing and analysis of the solutions. This is specifically tied
to research done in [126, 127], on the ZEN ICT architecture, which is more described in
section 2.10.3. Within the context data management for the ZEN pilot projects, finding a
way to find and select the most suitable data in the underlying data management is needed
as part of analysing and using of the data. For ZEN this will provide a connection between
the collecting, processing, and storage provided by the ZEN ICT architecture, and the
software tools used to analyze and visualize that data.

1.3 Project Description

This thesis is part of the work on the ZEN ICT architecture, for managing the data created
by the pilot project, and based upon work done in [126, 127] and by ZEN. It is also part
of a large body of work based on distributed-to-centralized architectures and fog-to-cloud
(F2C) architectures.

The goal of this thesis is to create and implement a cost model that is used to help select
among services and data in a distributed-to-centralized data management architecture. A
cost model is in this case a function or method that creates a ranking of service or data
according to the specified needs of the user, letting the user get the most benefit for the
cost of accessing it. The implementation will be a prototype or a proof of concept on how
to select data in the ZEN ICT architecture.

Part of this involves a literature review of the different cost model approaches, the different
KPI that should be used by the cost model, and how to find and store information about
services and data, as part of creating the design and implementation. After that, the imple-
mentation is evaluated and discussed, to see if it is an approach that is suitable to be used
in this domain.

1FME ZEN: https://fmezen.no/

2

1.4 Thesis Outline

1.4 Thesis Outline
The first chapter after this, is Chapter 2, which contains the theoretical background on
smart cities, distributed-to-centralized architectures, cost model approaches, relevant KPIs
to use with the cost model, approaches to store and describe data and services, and back-
ground on ZEN. Chapter 3 contains the research methodology for this thesis together with
the research questions identified. Chapter 4 presents the design of a cost model approach,
together with stakeholders and requirements for it. Chapter 5 presents the implementa-
tion of the cost model as a prototype, explaining how it was implemented. Chapter 6
presents the results from the implementation in terms of functionality and performance
measurements. Chapter 7 is a discussion of the thesis and implementation, together with
an evaluation of the implementation. Chapter 8 is the final chapter, where a conclusion of
the thesis is presented, research questions are answered and future work discussed.

3

Chapter 1. Introduction

4

Chapter 2
Background

The background for this thesis is based on attempting to create a cost model that can be
used for selecting services and data in a distributed-to-centralized data management archi-
tecture in the context of a smart city. The specific architecture looked at and which the
design is implemented for, is the ZEN ICT architecture, which will be presented in the
background. The background chapter start with an introduction of what a smart city is, be-
fore looking at some of the differences between a centralized schema versus a distributed-
to-centralized schema. It then looks at different approaches to cost models used to rank
multi-criteria alternatives, before looking at different KPIs that can be used with the cost
model to select among services and data. It then looks at different ways to store informa-
tion about services and data in the section, before looking at how to describe them. At
the end of the chapter, background regarding ZEN is explained and how it relates to this
thesis.

2.1 Smart cities

In [6] and [30], it is shown that the literature about smart cities does not have a single
agreed upon definition of what constitutes a smart city. Common for many of the defini-
tions is the use of ICT to improve different aspects of the city, the governance of the city,
the services provided, the sustainability and the quality of life in the city as some of the
many aspects and dimensions proposed. One of the most cited definitions of a smart city
that encapsulates the ideas in this thesis by including the use of ICT as well as the focus
on sustainability and quality of life is from [23] and is as follows:
”A city is smart when investments in human and social capital and traditional (transport)
and modern (ICT) communication infrastructure fuel sustainable economic growth and a
high quality of life, with a wise management of natural resources, through participatory
governance”.
Among the different definitions, general themes and dimensions exists that contains the
different ideas of what constitutes a smart city. In [83], these dimensions are categorized

5

Chapter 2. Background

into three different categories, and are the technology dimension, the human dimension,
and the institutional dimension.
The technological dimension is focused on the ICT of the city, where communication
technology is part of the infrastructure of the city that connects the city. Where the virtual
space of the city is as much a part of the city as the physical parts and access to the services
of the city is ubiquitous. And where data and information is extracted from the city as a
whole.
The human dimension is focused on the knowledge and learning of the people inhabiting
the city, and to support the creativity amongst its population, which can be supported by
the use of ICT.
The institutional dimensions is how the different institutions and communities in the city
make use of ICT technology to change and improve work and life around it, and to become
more integrated and collaborative among government, business and residents.
Which makes it clear that technology alone is not what makes a smart city, but is a com-
ponent of a smart city that must also be used by the entities and residents in the city in
a manner that is smart. In addition the the different dimensions of a smart city, there are
also different domains of a city that themselves can be made smarter in different ways and
might need different solutions built upon the same ideas of smartness. In [85], the different
domains of a smart city, that also have their own sub-domains, is gathered from literature
on smart cities and is as follows:

• Natural resources and energy
• Transport and mobility
• Buildings
• Living
• Government
• Economy and people

In order to create the infrastructure of the smart city, a variety of different technologies
is needed in order to collect data, facilitate communication, process and analyze the data
collected among other tasks. The enabling technology for the smart city is identified in
[145, 65] and described shortly in the subsections below.

IoT

Internet of Things (IoT) is the everyday objects surrounding us connected to networks, that
sense, act on the environment they are in, and interact with other devices, machines and
humans over networks[65]. These sensors will act as the part of the nervous system of the
city, sensing what is happening in the city, as well as being actuators in the same setting.

Networking

In order to enable the ubiquitousness of the smart city and enabling the use of IoT, network-
ing capabilities to reach the IoT devices and the residents is needed. Different technologies
like wireless sensor networks, 5G, IEEE 802.11ba, Software Defined Networking as well
as new proposals to addressing schemes is part of enabling the smart city [145].

6

2.2 Technology management

Big data

Enabling technologies like IoT and cloud computing that can harness vast amount of stor-
age and processing power is set to promote a sharp growth in the amount of data that is
produces [28]. In a smart city scenario with an ever growing urban population, that is
likely also the case. Big data is the technologies that is designed to deal with the 5 ’V’s of
big data. The volume of data, the velocity of the production of it, variety of the different
types, formats and structure of data,, the value of data and lastly the veracity of the data
which is how much it can be trusted [36].

Cloud and edge computing

Cloud computing is an enabling technology that allows for on demand computing that
scales according to the needs of users. The cloud computing providers have a large capac-
ity of processing power and storage that it relatively cost efficient for the user [48]. This
computing capacity and storage capacity is an enabling component in dealing with the
large amount of data generated in a smart city. The fog/edge computing is a technology
that brings processing, network and storage services typically at the edge of networks [17].
It can help reduce the data traffic to the cloud as well as providing the services nearby with
a low latency and location awareness.

As mentioned, it is not completely clear what makes a city smart, which makes it a chal-
lenge to correctly create systems that contribute to making the different domains or sub-
systems of the city smart. There are several challenges to be solved to make sure that
changes help reach the goals and avoid negative consequences, like issues with security
and privacy when collecting and using data [39].

2.2 Technology management

Within smart cities there is a need to manage the technologies used create the systems
around the different domains and areas of the cities. Looking at specifically the ICT
systems, we can categorize the management of these system into three categories. The
management of the resources used and part of the systems, the management of the data
generated, stored and used within the system, and the software running on the systems that
is part of managing data and resource, as well as depending on them.

2.2.1 Resource management

Resources is in this case the computational resources, the storage resource and the network
and communication resources. The pay model for virtual machines is often based on how
much these resources are used [141]. Part of managing the resources controlling who
gets to use them under what conditions, as well as making sure they are being utilized
optimally. In the smart city domain, the resource can also be IoT devices in the form of
sensors the generate data or actuators [120].

7

Chapter 2. Background

2.2.2 Data management
Data management consists of several aspect of managing the data. In [124], a model is
proposed that contains all these aspects. The main aspects is the acquisition of data, the
processing of data, and the preservation of data. Within these aspects, there are other
aspects like data classification, analysis, dissemination, archiving and so on. Every step of
related to the handling during its life-cycle is considered part of the data management.

2.2.3 Software management
Running on the different resources and devices, the underlying software is part of the
management of both data and the resources themselves. It also is part of providing services
and applications to the inhabitants and different entities of the smart city, and is itself
dependent on the resources and data to do that.

2.2.4 Schemas - Centralized and Disitributed-to-Centralized
Centralized computing

At the very beginning, computing was centralized. From that point, to the cloud comput-
ing, there have been six phases of computing models, identified in [47, 147]. The first
phase of computers were large computational units known as mainframes, where the users
had to connect to the mainframe through terminals. The second phase was the adoption
of personal computers, that held enough computational power to be used alone. The third
phase was the network computer, being able to access servers and other computers on a
network. The fourth phase, powered by the internet, was the internet computing, which
allowed a client-server model [47], where the client could access resources through the
internet. The client-server model could also exist with the network computer. The fifth
phase was the grid computing, where distributed computation on many computational
units within a network cooperated on tasks too large for a single computer can be used
to aggregate and share resource. The resource can be specialized devices or computation,
storage and data sources, that are all geographically distributed [22]. The grid can be con-
sidered a distributed schema, depending on how it is organized, but also be computational
resources within a geographical area, similar to cloud computing, and be more similar to
cloud computing on those terms. The last phase identified, is the cloud computing phase.
Although, these are all important, we are going to focus more on the cloud computing, as
it is part of architecture of the distributed-to-centralized solution.

Cloud computing

Cloud computing is a centralized schema, as the computing hardware is localized in cer-
tain geographical locations. The characteristics of cloud computing, based on the NIST1

definition [79], is that it provides on-demand access to resources through self-service,
ubiquitous access through the internet, through resource pooling and rapid elasticity there
is access to large computational power when needed, and the use of measurements of the

1U.S. National Institute of Standards and Technology

8

2.3 Data management

resource use for optimization and transparency to the user. Having large computational re-
sources, that are cheap through economies of scale and shared utilization of the equipment
[11, p. 507], is large benefit, and needed to handle the big data challenges of the smart city.
A drawback with the centralized schema and with the cloud is the latency. The cloud loca-
tion where the hardware is stationed is often geographically distant from the places where
the data is generated, which means that latency is often large, which can be detrimental to
some uses of the data which requires low latency and real-time data. It also poses certain
security and reliability issues as well [78]. Another issue is that with large amounts of data
that is generated at the edges, clouds will have trouble processing the constant flow of data
through the networks it is connected to [146, 87].

Distributed-to-centralized computing

In order to deal with these problems and limitations, a new approach in the form of
disitributed-to-centralized schema or fog-to-cloud (F2C) computing [77] has been pro-
posed. By having processing and storage near the edges for the network, application with
a low latency demand and need for real-time data is supported. It also reduces the process-
ing and data amount stored for the cloud by letting the resources near the edges perform
these tasks as well [125]. And allows more processing and energy constrained devices near
the edge offload computations to the cloud [104]. The architecture consist of fog nodes
near the edges of the network, the provides computation and storage with low latency,
with additional layers of nodes close to the cloud with more computational and storage
capacity, but higher latency, with the cloud at the top as high latency source of large com-
putational and storage capabilities. A distributed-to-centralized architecture is presented
in section 2.10.3, with the ZEN ICT architecture. Some of the drawback identified, is the
potential volatility of services and increased service disruption probability due the mobil-
ity and power constraints is identified in [104, 78]. Although there might be some issues
with security, as there might be limited resources for cryptographic operations, being able
to trust the different nodes at the edge, as it is not just one known provider, the devices
might be physically available for attacks [7].

2.3 Data management

2.3.1 Centralized data management

In the centralized schema based on the cloud. All data is sent to the large data centers that
represents the cloud, where most of the data life-cycle is handled by the cloud, where more
or less processed data are sent to it to be processed, stored, shared and used. As mentioned
with the cloud, it has large pool of resources, also in the form of storage for data, that can
be scaled up according to needs of the user. A single location for all data makes it easier to
find, but the geographical distance means that real-time data going through the cloud has
significant delay on it.

9

Chapter 2. Background

2.3.2 Distributed-to-centralized data management
In the distributed-to-centralized schema, the data can be stored on several locations, either
in the distributed parts of the architecture and/or in the cloud, which gives some challenges
in finding data in this schema, which is at the essence of the problem in this thesis. As
shown in [125, 126], the different locations, either in the form of fog nodes or the cloud can
all be part of the different aspects of the data management, and can gather, process, store
and share data. The processing of the data can change the nature of the data, removing
errors, redundancies through compression and aggregate it, so that the data found at the
different locations might change.

2.4 Resource management

2.4.1 Centralized resource management
In the centralized schema, the computational resources are also centralized. In the case
with the cloud, resources in the terms of storage, processors and network and I/O is often
managed by a hypervisor for different virtual machines running on the hypervisor. A hy-
pervisor can be considered a operating system for virtual machine instances where each
virtual machine can be loaded with its own operating system and applications that are man-
aged by the operating system in the virtual machine. The hypervisor is also responsible
for scheduling resources in the same way an operating system does, but for the virtual ma-
chines [11, p. 510]. In the context of a smart city, the IoT resources interact directly with
the cloud, without any use of nearby computational resources that the Fog would provide.

2.4.2 Distributed-to-centralized resource management
In the distributed-to-centralized scheme, it is a bit more complex to manage the resources.
The first issue is the large variety in the devices that can become a potential node providing
resources in the fog. The other is the coordination and service allocation of the fog, as the
devices that run the fog can in many cases be more volatile, mobile and dynamic than the
devices running the cloud, but there might also be more geographical distance between
the devices as well. To deal with the first issue, abstractions and operating systems for the
devices is proposed in [69, 16]. Cisco, that actually introduced the term ”fog computing”,
has introduced ”IOx” as a operating system for resource-rich fog computing devices called
Cloudlets [33], and similarly from ParaDrop, with its own Cloudlet architecture [157]. The
issue with coordination, means that there is a need for a way to communicate between the
nodes as well as an approach on how to orchestrate and control the nodes. In [69], the fog
devices are managed by the cloud as the central controller, where the communication is
done over a Software Defined Network (SDN), and the cloud manage what applications
run on the fog server and what data is kept there. In [16], a service orchestration layer,
laying on top of the abstraction of the underlying device, that is responsible for finding
the appropriate service for service requests, set system wide policies for the devices and
provide communication between the devices. There is also work done looking at service
allocation strategies, such as in [132], that could be used by orchestration and coordination
systems for the fog, and work on resource management specifically for F2C in [119], with

10

2.5 Software management

a focus on resource and service request categorization as part of the service allocation
strategy.

2.5 Software management

2.5.1 Centralized software management
In the centralized schema, the software can be run as a single instance in a single place.
Which means that the need for coordination or communication between different instances
can be eliminated. But even in a centralized scheme, scaling horizontally, by adding more
instances of the running software can be a way to scale up the capacity of the system,
if the architecture allows for it, which can require communication between the running
instances. In the context of the cloud, the software is run as instances of virtual machines,
or in containers, that provides a stack of software platforms the software can run on when
given processing time by the hypervisor that manage the access to computing resources.

2.5.2 Distributed-to-centralized software management
With a distributed-to-centralized schema, there are now several locations where the soft-
ware can run. Depending on the needs, it might need to run several different places like
on the cloud and on different fog devices, where the software might perform different
functions, which means that there is again a challenge of coordinating and orchestrating
the different places. For distributed-to-centralized systems, [138] identifies two hybrid ap-
proaches, that are more fitting with the distributed-to-centralized schema. The first is the
Edge-server systems, that have centralized core, but servers placed at the edge of network
near the users, in the given example to serve content, but in the case with the smart city,
this is reversed as the edges now also collect data and send it to the centralized core. And
the collaborative distributed system, that starts as a centralized client-server system, but
grows distributed once users join. It is also dependent on the system how much commu-
nication and coordination is needed, and of which type of communication is needed. In
some cases, the distributed software might need to communicate with the core only, and
in other cases, with other distributed software instances, which raises the question if this
should be done indirectly through the core, or between distributed instances.

2.6 Cost models
As mentioned in the introduction, there are many different applications and services in
the smart city. Selecting among services and data is an important issue in this context, as
services are often dependent on data and other services in order to provide their services.
To be able to select, appraising the quality of the different services and data is important.
Quality is defined as The result of judgment of the perceived composition of an entity with
respect to its desired composition [62], in other words, how close it is to the ideal instance
of it. The Quality of Service (QoS), based on its definition for telecommunications from
ITU-U [106], is defined as all the characteristics of a service that impacts how it is able
satisfy the stated and implied needs of the use of the service. These characteristics are

11

Chapter 2. Background

quantitative measurements of the performance of the service. The Quality of Experience
(QoE), is based experience of the users, and how they appraise the quality. This can be
measured by having users provide feedback, or objectively through models that maps QoS
to expected QoE [43]. This gives use two perspectives to take into consideration when we
attempt to appraise the quality of a service. Data also has its own quality measurements,
which will be expanded upon in section 2.7.3. A characteristic that are deemed important
for the service and data, will be referred to as a Key Performance Indicators (KPI) in this
thesis. A KPI is a quantifiable metric the reflect the performance of the service or data in
relation to the goals and objectives of it. This will further expanded upon in section 2.7,
that goes more in the depth of specific KPIs.

As both services and data can have several KPIs, makes the problem of selecting among
these a multi-criteria decision problem if the selection is dependent on more than one
KPI. A criterion is in this case a KPI and how it is judged, like judging the prize more
positively the cheaper it is. If you have a single criterion when selecting, the selection
is trivial in many cases. Take as an example deciding to buy a car, if the only criterion
is prize, then you pick the cheapest one. If you introduce two criteria, like prize and
comfort, it is suddenly not that easy. As there exists no value relation between the two
criteria, how much more you are willing to pay for more comfort is highly individual. The
difficulty arises because these problems give rise to a set of trade-off optimal solutions
(also known as Pareto-optimal solutions), instead of a single optimal or a set of equally
optimal solutions [34]. A trade-off optimal solution is a solution that is not dominated by
another alternative. Being dominated means that there exists an alternative that is better on
every criterion. Figure 2.1 shows an example of trade-off optimal solutions, and a single
dominated alternative d, where d has a higher cost and lower comfort than solution A and
B.

Figure 2.1: Five trade-off optimal solutions for a car, and one dominated alternative. Taken from
[34]

There are two main approaches to selecting among these alternatives. The first involves
finding all the trade-off optimal solutions, and then selecting one in the set of trade-off
optimal solution. This is an approach fit for human decision makers that use their intuition
and knowledge to chose among a smaller set of alternatives. The other approach is called
scalarization [34], which used a method or approach to convert the multi-criteria decision

12

2.6 Cost models

problem into a single-criteria decision problem, which is easy to solve and can easily be
automated. This approach or method is what is referred to as the cost model in this thesis,
that takes in a set of KPI measurement for the alternatives and produces a ranking of the
alternatives. That ranking can then by used to select from, by picking the best ranked
alternative. Figure 2.2 shows an example of a cost model used for three alternative cars
with cost and comfort KPIs. After ranking and scoring the alternatives with a cost model,
the highest scoring one is chosen.

Figure 2.2: Three alternatives with their KPIs used by the cost model to calculate their ranking

As there is a large amount of selection and cost model approaches, looking specifically at
the approaches used to select cloud service providers has been used to select most of the
approaches to look into further in this thesis. A fair bit of the selection and cost model
approaches is written about in [136], that does a literature review of cloud service provider
selection, but some outside of that has also been chosen. The goal has in this case been to
try to look at instances within different categories of approaches. The adaptive approaches
presented includes a selection method in addition to the cost model.

Some work has also been done on selection and service allocation within distributed-to-
centralized systems, mostly looking at fog-to-cloud. Some of the approaches, like in [132]
improve load balance for a large set of services, while the problem in this thesis is more
narrow than that, as it is about how to find the best service or data repository for a user.
As part of a service allocation approach in [131], First Fit is proposed as a strategy where
a service task is allocated the first place available in the Fog, and sent to the cloud if no
resource is available.. A similar strategy is presented [4], where a task is attempted to first
be allocated to the nearest fog, then to other connected fogs, and the to the cloud. It also
looks at response time and delay. [131] also presents a Best-Fit approach that offloads
tasks to the cloud if no resource with a given capacity threshold that is larger than the task
is available, and a Best-Fit with queue that will wait if it is faster to wait for a fog resource
instead of sending the task to the cloud.
Work that is a bit closer to the cost model and selection, within the domain of distributed-
to-centralized, or fog-to-cloud is found in [133], that uses Integer Linear Programming,
which can be considered a subset of linear programming discussed in section 2.6.1, to at-
tempt the lower the average delay when processing tasks. In [161], a mobile computing
offloading scheme is proposed, that uses TOPSIS to select an interface to offload compu-
tation, which will be discussed in section 2.6.6.

13

Chapter 2. Background

2.6.1 Linear programming models

As an example of a linear programming model, an example from [129] is used, as it is
used as an approach to select a cloud provider, called the Simple Cloud Provider Selection
(SCPS) algorithm. The SCPS algorithm is a linear programming model meant to help
choose a cloud computing provider based on the user needs and the performance of the
cloud computing providers. The score is calculated with a set of weights provided by the
user to give preference to some KPIs over others, and the score in the different KPIs used
to evaluate the cloud computing provider. The score of an alternative can be calculated by
formula 2.1, where xi is some sort of performance measurement for KPI i, and wi is the
weight of importance set by the user for that KPI, this is summed up for each KPI, which
then gives the score. The cloud provider with the highest score is selected.

score =
∑

xi ∗ wi (2.1)

In SCPS, the performance measurement or xi is calculated by the average measurement
and its standard deviation, and either divided by or by dividing the norm of all measure-
ment with it. The norm is the square root of all measurements for a KPI squared and
summed up. An example, where this is done for a KPI one would like to maximized and
one that should be minimized is shown in 2.2 and 2.3.

latency scorei =
||latency||α

latencyi + std(latency)
(2.2)

bandwidth scorei =
bandwidthi + std(bandwidth)

||bandwidth||α
(2.3)

The SCPS algorithm is a simple solution. In terms of complexity, you only need to iterate
through the measurements of all the cloud providers two times to find the highest scoring
one. The first time to calculate the norms, the second time to calculate the score and find
the highest scoring solution. With the algorithm itself taking input in the form of a set of
performance measures where some of them are highly dynamic, especially those related
networking performance, it means that a choice taken by the algorithm might be right when
it is taken, but not after some time has passed, as it is not an adaptive algorithm. Even if
the algorithm were called on regular intervals, there is quite a lot of overhead gathering
all those measurements each time if it is not needed. As shown in [43], the relationship
between the QoS and QoE is not necessarily of linear character. If the customer has a
requirement with latency below a given value, but as long as it is below it, it does not
matter by how much, which might be hard to represent in the model in certain scenarios.
Setting the correct weights can affect which solution is selected, with only four dimen-
sions, setting those is simple, but with more added dimensions, it might be hard to set the
correct weights. It also allows for scenarios where cloud computing providers are chosen
with unacceptable values in some of the dimension with low weights, as strict constraints
are not part of the model. Since the measurements of performance for an alternative is
specified in terms it performance in relation to all other alternatives performance, it is not
good to attempt to specify specific wanted KPI performance.

14

2.6 Cost models

2.6.2 Epsilon-Constraint method

The ε-Constraint approach is a scalarization approach to a multi-objective criteria problem
[34]. A scalarization approach to multi-objective optimization problems is an approach
that cast a multi-criteria optimization problem to a single-criteria optimization problem.
The approach consist of setting constraints on all KPIs measurements, except one KPI.
This filters the total solutions into the ones that are acceptable. After that, the solutions
are ranked after the one KPI without the constraint, choosing the one with the highest or
lowest value depending on if the goal is to minimize or maximize that objective.

Figure 2.3: Example scenario using the ε-Constraint method

An example scenario is shown in figure 2.3, where ε-Constraint approach is used, with
three specified constraints, and a goal of minimizing cost. Cloud provider 1 get filtered
away by the constraint indicated by the red text on instance performance, and Cloud
provider 2 gets selected because it has the lowest price.
This approach is very simple, with a low computational complexity. You only need to
iterate through the measurements for all cloud computing providers once, to find the best
alternative. It is not an adaptive approach, so any change in performance can mean that
the chosen alternative at time t is not the best alternative at time t+1. The constraints can
potentially be too strict, and give no solutions, and the solutions found can depend on this.
It is not good for specifying more complex needs, and might exclude more overall good
alternatives with its focus on one KPI. The same issues with measurement and utility not
being in a linear relationship, might be true for the selected KPI to minimize or maximize.

2.6.3 Analytical Hierarchy Process (AHP)

AHP, which was developed by Saaty in the 1970s [116], is another approach to multiple-
objective decision problems that solves the problem by casting it as a single-objective
decision problem before solving it. The method presented here to solve a multi-objective
decision problem is based same method used for cloud provider selection used in [51].
The process of solving a multi-criteria decision problem is done in several steps, where

15

Chapter 2. Background

the first set of steps only need to be done once, and the rest of the steps that needs to
be redone for different measurements. The first step is to build a hierarchy of attributes,
where the top attribute is the overall performance, and the attributes below is sub attributes
of the top attribute or other sub attributes. This ends up creating a hierarchy tree with
more specific attributes towards the leaves, until they are specific enough that they can be
measured and given a score. The next step to assign relative weights to all sub attributes
such that they all add up to 1 for a child of a node in the hierarchy, this can be done by
pair-wise comparisons of the attributes assigning relative importance between them, or
they can be assigned by the user by another method like cumulative voting, where the user
assigns relative importance based limited set of units that must divided according to their
importance [15]. The following steps is the calculation of a score using the hierarchy tree
and its weights together with the different measurement.

Figure 2.4: Example scenario with an AHP comparing two providers

Figure 2.4 shows an instance of a AHP hierarchy tree with weights and the measurements
of two providers that is being compared. The first step is to calculate a relative score at
the leaf nodes, this can be done the using the norm, the same way as in 2.2 and 2.3, or
some other way to get a relative score. This gives each alternative’s KPI a score relative to
the other alternatives. This score is then multiplied with its weight and aggregated in the
parent node. This is down from the leafs up to the root, where each alternative gets a final
score based in their performance.
This is not an adaptive approach to a multiple-criteria selection problem. It is a bit more
complex in terms of calculation compared to the linear programming model approach, but

16

2.6 Cost models

it allows more complexity in stating the preferential relationships between the attributes.
In computational complexity, it needs to iterate through the measurements of the cloud
providers twice, once to calculate the norm of the measurements, and the second run to
calculate the score. It can also be used to create the weights to be used in the linear pro-
gramming model, instead of using the hierarchy for calculating the score. In that case, with
figure 2.4, instance performance weight would be the weight of performance multiplied
with its own weight, 0.6 ∗ 0.4 = 0.24, latency weight would be 0.6 ∗ 0.6 ∗ 0.3 = 0.108,
bandwidth weight would be 0.6 ∗ 0.6 ∗ 0.7 = 0.252, and cost weight would just be 0.4.
The example in figure 2.4 used the measurements to create relative performance scores
for the providers, but you can also use similar approaches, such as utility functions repre-
sent preferences that are even more complex. It does not include to ability to specify hard
criteria to filter out unacceptable values from being considered as alternatives.

2.6.4 Decision Envelopment Analysis (DEA)

Decision Envelopment Analysis (DEA) [18] is a linear programming-based technique used
in decision making. It is used to measure the performance of an alternative with multiple
inputs and outputs. In a simple case of service selection, the cost is the only input, but
for a more nuanced evaluation of much benefit is given for the cost, other factors can also
be used as input that is not converted into monetary cost. It uses the term ”Efficiency” as
its measurement of the performance of the alternatives, where the Efficiency is the result
of the weighted sum of outputs divided by the weighted sum of the inputs, described in
formula 2.4. Where weighti is the importance of outputi, and weightj the importance of
inputj .

Efficiency =

∑
outputi ∗ weighti∑
inputj ∗ weightj

(2.4)

It is itself a version of a linear programming model, similar to the one shown in 2.6.1 and
has the same drawback and limitations in that it is not adaptive to changes on its own, it
can not specify hard constraints to filter alternatives, it does not directly deal with a not
linear relationship between a performance measurement and utility. But it does provide a
model that has a focus on get the most value out of the alternative in relation to cost, and
provides a more nuanced way to specify cost than just a simple linear programming model
shown in 2.6.1. Another issue is how fractions act as the denominator goes towards zero,
where it goes to infinity as it get closer to zero if the numerator is a constant value. This is
also a problem for alternatives with no cost, which would not work in this cost model.

2.6.5 Goal programming

Goal programming consists of several approaches for selection among multi-criteria alter-
natives using goals set for the different KPI. The goals can be soft, where a solution might
be have a lower score than the goal of that KPI, or a hard goal which is a constraint that
must be held. In [64], which is a visual and interactive approach to goal programming,
it selects all non-dominated alternatives that meets the set goals. Or in a case where no
alternatives meet the goals, the ones that are closest to the goal. Which can then be used

17

Chapter 2. Background

decision makers. It can also be used in a manner similar to the linear programming ap-
proach, with objective functions that calculate the score of each alternative in relation with
the set goals. And simple example of goal programming is shown in [109], where it uses
a weighted goal programming model similar to the on in 2.6.1, illustrated in formula 2.5.

score =
∑

(αini + βipi) (2.5)

For an alternative, ni is the negative deviation for the goal of i, with αi as the weight
assigned to it. Similarly, pi is the positive deviation for the goal of i, with βi as the weight
assigned to it, where the best alternative is the alternative with the lowest score, which
would be the alternative closest to the goal. In many cases, it is positive have a lower or a
higher a KPI that is being measured than the set goals, which is what is done in [142]. It
proposes a formula that negatively impacts not reaching the goal, while not affecting the
score one reaching past the goal, with its Exponential Weighted Difference, shown in 2.6,
where xi is the measurement for a KPI i, gi the goal i, and wi the importance weight for i.

score
∑

e−(xi−gi)wi (2.6)

This method is good for ensuring reaching clearly defined goals, where getting better
performance on some KPIs past that is not important. But for minimizing or maximizing
the value of KPIs, it is a bad fit. It is also dependent on the goals, as it treats solutions that
perform far better than the stated goals equal or even worse, depending on the approach.
If the goal is above all alternatives, it will likely rank the alternatives appropriately and
rank the closest one in performance as the best alternative, so setting high goals seems
important. It is very simple in runtime, need to only iterate through all alternatives once to
find the result. It is not adaptive either.

2.6.6 TOPSIS
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was first pre-
sented in [60]. It attempts to select as solution that is the closest to the optimal solution
and the furthest away from least optimal one, that is a solution that would be a collection
of all the best scoring KPIs, and a solution that is the collection of all the worst scoring
KPIs, from the collection of alternatives. The basis for the explanation of how it works
is from [13]. The first step is to normalize all the values for all the alternatives, which is
done by dividing the values in each column with the square root of the sum of all values
raised to a power of two, as shown in formula 2.7.

Rij =
Xij√∑
j=1X

2
ij

(2.7)

The second step is to add weights to the different KPIs in the different columns, according
to their importance. In [161], the weights are calculated using AHP, with pairwise com-
parisons, but another approach, like cumulative voting [15] could also be used. Formula
2.8 shows how this is calculated.

Vij = wjrij (2.8)

18

2.6 Cost models

The third step is to calculate the positive ideal and the negative ideal solutions, by for all
alternative’s KPIs, find the best and the worst scoring ones from each category of KPIs,
and use them to create the ideal solutions.
The fourth step is for each alternative, to calculate the Euclidean distance from the ideal
positive and the ideal negative solutions. This is done with formula 2.9 for the positive
ideal, where v+j is the positive ideal value of KPI in column j, with the same approach to
the negative distance, shown in formula 2.11.

S+
i =

√∑
(v+j − vij)2 (2.9)

S−i =
√∑

(v−j − vij)2 (2.10)

The final step is to calculate the relative closeness to the optimal solution, where the alter-
native Ci that is closest to 1 is the best solution, calculated with the following formula:

Ci =
S−i

S−i + S+
i

(2.11)

The method is fairly simple, as the only things that needs to be specified by the user,
is a set of weights for each of the KPIs of the different alternatives. Computational, it
needs one run through all the alternatives to calculate the norm. Then it must run through
the alternatives again to normalize and add weights to the value and find the positive and
negative ideal. A last iteration of the alternatives is needed to calculate the final score.
The score is in this case based on all the alternatives, through creating the ideals based on
them. It is not an adaptive approach either.

2.6.7 Multi-Attribute Utility Theory (MAUT)

The MAUT approach is an approach to solving multi-attribute/criteria decision or opti-
mization problems using utility functions to rate the different KPIs [148]. It works almost
the same way as the linear programming approach in the SCPS algorithm, but it differs in
how it calculates the scores of each attribute. It includes two extra steps, the first being
the identification of the values of the KPIs themselves, and the second being the assigning
of utility values to the KPI values identified. After that, like in the linear programming
approach, preference weights are set, and the score for each solution is calculated by mul-
tiplying the utility value of each objective in the solution with its weight, and summing
up the results for each objective. An example of the MAUT function is shown in formula
2.12, where each KPI and its measurement it passed through an utility function ui(x) and
multiplied with its weightwi. An example of a user defined utility function is shown in for-
mula 2.15, which maps latency measurements to utility values. The utility functions could
be any type of function that takes in a measurement and returns a utility score between 0
and 100, where 100 is the optimal utility.

score =
∑
i=1

ui(x) ∗ wi (2.12)

19

Chapter 2. Background

ulatency(x) =

100 x ≤ 25ms

75 26ms ≤ x ≤ 50ms

50 51ms ≤ x ≤ 75ms

25 76ms ≤ x ≤ 100ms

0 101ms ≤ x

(2.13)

The method is computationally simple, only requiring a single iteration through all
measurements of the cloud providers to find the best one, giving it O(n) run-time com-
plexity for n cloud computing providers. It is also not an adaptive approach, and will
stick with the first chosen alternative. It also requires more work from the customer for
the three first steps identifying the intervals, setting the values for them, and adding the
weights. This however, allows for more complexity in the rating of the different measure-
ments of the dimensions, and can help deal with the issues mentioned in [43], that the
relationship between QoS and QoE is not necessarily of linear character. In addition to
helping represent nonlinear relationship between utility and measurements, it allows the
representation of nominal scales with values as well. As an example, a cloud computing
provider can be perhaps be given a score based on a nominal scale security features with
this method. With many different objectives, setting the correct weight numbers gets less
intuitive and harder to get right. It does not include hard constraints, the worst a badly
performing KPI can do, is give a 0 in utility score. The proposed version of a utility func-
tion, has the downside that it can rank an alternative that is not trade-off optimal equally
to a trade-off optimal one, if the score is within all the same utility intervals, but slightly
worse. A solution to this can be to use utility functions based on mathematical functions
like in [54]. Another approach, could be to instead specify utility points, mapping some
KPI measurements to some utility values, and calculate the utility of any measurement
between these points by using the gradient between them to decide the value.

2.6.8 ELECTRE methods
ELECTRE consists of a series of outranking methods for multi-criteria problems [45].
Within ELECTRE, there are several versions created with some differences between them.
It consists of several steps to create a ranking of the alternatives. As an example of how
the method work, ELECTRE III will be used, based on [20]. In outranking methods,
binary relationships of preference or indifference between solution, ELECTRE adds more
nuance by adding the concepts of strong preference, weak preference and indifference in
the ranking, based on user-defined thresholds. How this works is demonstrated beneath.
Let matrix x in 2.14 be three alternatives in each row with the score for the different KPIs
in the columns, which we for simplicity would want to maximize.50 10 70

25 50 90
52 4 15

 (2.14)

The first step for the user would be for each of the KPIs in the columns, to decide their
weights in terms of importance, an indifference threshold (q) and a preference threshold

20

2.6 Cost models

(p). The indifference threshold described how much worse a KPI can score and still be
equal in the eyes of the user, and the preference threshold describes when the KPI is ranked
worse, leaving a gap between indifference and preference where there is some nuance to
whether its worse. This is shown in the table:

KPI 1 KPI 2 KPI 3
Weight 5 3 2

Indifference (q) 15 5 15
Preference (p) 30 10 30

Using this table and the matrix, we can demonstrate how the calculation for the concor-
dance matrix is done. As an example, row 1 compared with row 2 in matrix 2.14, to see
if alternative 1 at least as good alternative 2. For each KPI, compare with function C in
formula 2.15, where a is the KPI, andXi andXj are the two alternatives. We will continue
to use the comparison of alternative 1 against alternative 2, as examples to show how math
is done, as well as calculating the matrices for all comparisons.

Ca(xi, xj) =

1, xi + qa ≥ xj
0, xi + pa ≤ xj
p+xi−xj

pa−qa , xi + qa < xj < xi + pa

(2.15)

• For KPI 1, this would give C1(X1, X2) = 1 since 50 + 15 ≥ 25
• For KPI 2, this would give C2(X1, X2) = 0 since 10 + 10 ≤ 50
• For KPI 3, this would give C3(X1, X2) = 30+70−90

30−15 = 0.667 since 70+15 < 90 <
70 + 30

This would all be calculated together for each KPI and its weight to calculate the degree
which an alternative is equally good or better, shown by the formula in 2.16, and being
calculated for alternative 1 at least as good as alternative 2, shown below it.

C(xi, xj) =

∑
Ca(xi, xj) ∗ wa∑

wa
(2.16)

C(x1, x2) =
1 ∗ 5 + 0 ∗ 3 + 0.667 ∗ 2

5 + 3 + 2
= 0.633

This creates a concordance matrix of pairwise comparisons that contains the degree which
an alternative is at least as good as the other, expressed as number between and including
0 and 1, shown in matrix 2.17. The diagonal of numbers in the matrix going down from
the top left to bottom right is comparisons against itself, which always is 1. 1 0.633 1

0.667 1 0.6
0.74 0.5 1

 (2.17)

The next step is to try to disprove this by creating a discordance matrix, that attempts
to disprove the assertion of the concordance matrix. To get this, we need the user to
specify a new set of values, a veto threshold for individual KPI measurements that have a
unacceptably large difference between them in a negative way, shown below.

21

Chapter 2. Background

Veto threshold (v) 80 30 90

A very similar function to formula 2.15 is used, but now we use the veto threshold to see
if we can disconfirm what we found in the concordance matrix. That formula is shown in
formula 2.18.

Da(xi, xj) =

0, xi + pa ≥ xj
1, xi + va ≤ xj
xj−xi−pa
va−pa , xi + pa < xj < xi + va

(2.18)

• For KPI 1, this would give D1(X1, X2) = 0 since 50 + 30 ≥ 25
• For KPI 2, this would give D2(X1, X2) = 1 since 10 + 30 ≤ 50
• For KPI 3, this would give D3(X1, X2) = 0 since 70 + 30 ≥ 90

These values are going to be used together with the concordance matrix to calculate a
credibility matrix, that assert that an alternative is at least as good as another one. If
no discordance value Da is higher than its concordance value C, then the aggregated
concordance value C is the credibility value, otherwise it affects the credibility value, as
shown in the other option in formula 2.19. The ones that are aggregated, is the set of those
discordance values that are higher than the concordance value, is called J(xi, xj) where
all members of the set are Da(xi.xj) > C(xi, xj).

Sa(xi, xj) =

{
C(xi, xj), C(xi, xj) ≥ Da(xi, xj)∀a
C(xi, xj) ∗

∏
j∈J(xi,xj)

1−Da(xi,xj)
1−Ca(xi,xj)

(2.19)
This finally creates the credibility matrix shown in 2.20. The only changed entries, is
S(x1, x2), which had a discordance value of 1 for KPI 2, and S(x3, x2) which had a
discordance value of 1 for KPI 2, which both give a credibility value of 0 after formula
2.19 is used. 1 0 1

0.667 1 0.6
0.74 0 1

 (2.20)

With this matrix, a ranking of the alternatives is made through a process called descending
and ascending distillation that, that works as follow. Defined a credibility value s(λ) that
defines a cutoff of the values considered relative to the highest credibility matrix value λ,
so only values above λ− s(λ) is considered as outranked.
Then for each entry in the credibility matrix, calculate how many alternatives it outranks
minus the amount of projects that outranks it. All the alternatives with the highest value
is ranked first, if it is a shared set, that calculation is done again, but only with the values
inside the set of the highest, repeat until it is the only alternative is left, which is the highest
rank in the descending distillation, this is repeated for other entries until a descending
ranking is made. The same is the done in ascending order, and the ranking are combined
to make a final rating, where if an alternative is ranked above another in both orders, it
remains that way in the final result.

22

2.6 Cost models

The first thing to notice, is the amount of information that is needed from the user to make
this ranking. It is one of the more complex models in terms of the different needed user
input and how to inform the user on how to use it. The upside with that complexity is
that it allows the user specify more clearly what they want, unlike a simple model where
only a few options are available to specify the needs, which might be unclear how the
affect the selection. The approach is computationally demanding as it involves pairwise
comparisons, and since the each pair is compared twice, it gives us a complexity of at
leastO(n2) comparisons for n alternatives, with multiple steps of computation, increasing
depending on the amount of KPIs, and after that, there is that final ranking process with
its own computation. In [41], the amount computations is specified by O(n2 ∗m) where
n is the alternatives, and m the KPIs. It is not an adaptive approach either. The ranking
is anchored in the relative performance of the alternatives, and not goals or utility. It also
doesn’t give a score to the alternatives, but ranks the in a order that can be used to select
from, by selecting the highest ranked alternative.

2.6.9 Adaptive Cloud Provider Selection (ACPS)

The Adaptive Cloud Provider Selection algorithm is an algorithm based on the Page Hink-
ley approach [118]. The Page Hinkley approach is a sequential analysis technique. It is
used in [129] together with the SCPS algorithm presented in 2.6.1, to get create an adap-
tive algorithm that change cloud provider on degrading performance of the cloud provider.
Specifically, it is used to trigger a reselection of cloud computing providers using SCPS,
when the network performance of the currently selection degrades under a given threshold.
As mentioned in the portion about SCPS, a problem with it is that it only makes a single
selection of the cloud provider, and stays with that choice regardless of the degradation of
performance by that cloud provider. ACPS algorithm solves this issue using continuous
measures of the currently selected cloud computing provider score, using the same dimen-
sions as SCPS: Latency, bandwidth, instance performance and cost. It works in following
way: It continuously measures and calculates the current score currently selected cloud
computing provider using its dimensions of measurement. It uses this to calculate the av-
erage of all measurements it has done from it started. With this is average, it calculates a
cumulative variable of the difference between the average and the current score. The cu-
mulative variable is then tested if it is over a given threshold value. If it is, it triggers a new
selection procedure with SCPS. An example of the Page Hinkley approach implemented

23

Chapter 2. Background

as an algorithm is shown algorithm 1, taken from [129].

σ: allowed change value;
count = 0;
while true do

mean = (mean + measurement) * (count/(count + 1));
cumulative difference = cumulative difference + mean - measurement;
smallest cumulative difference;
if cumulative difference < smallest cumulative difference then

smallest cumulative difference = cumulative difference;
end
delta = cumulative difference - smallest cumulative difference;
if delta ≥ σ then

ALARM();
end
count++;

end
Algorithm 1: The ACPS approach based on Page Hinkley approach

ACPS allows for an adaptive approach to the cloud computing provider selection problems.
It itself only calculates the currently selected alternative’s performance, and is dependent
on another cost model to do the reselection. It is also simple in terms of computational
complexity, as it only uses measures the currently selected cloud computing providers.
However, as it does that, it cannot detect if another cloud computing provider alternative
suddenly increases its overall performance so much that it would be a better choice. There
is also the issue of balancing the threshold where the algorithm triggers a new selection
procedure with SCPS. Too low, and it might trigger too many changes as the performance
swings, and too high, it might be stuck on worse solution. Even in cases where there
is a close alternative in terms of performance, a too large threshold will make it keep a
subpar alternative, unlike what Q-learning and Boltzmann would do, presented in the next
sections.

2.6.10 Q-learning

Q-learning is a model-free reinforcement learning technique that can used to find an op-
timal solution in Markovian domains, where the goal is to find the best action to take in
the current state [152]. A Markovian domain allows us to represent the selection prob-
lem as a series of states, state transitions and probabilities, where the cost model is the
expected utility for each state transition. Finding the best action to take is done through
observing the value of the current state after taking an action to get to the state. After
trying all actions in all states several times, an optimal solution will eventually be found.
In [130], Q-learning is used as an adaptive approach to the problem of choosing the best
network connection when there are several network connections available. A problem
can be solved with Q-learning if it can be transformed into a set of states and actions in
those states, where the actions can be given expected utility values through observing the
outcome of choosing an action.
Figure 2.5 shows the formula for updating the utility of taking an action. To calculate

24

2.6 Cost models

Figure 2.5: The formula for expected utility in Q-learning [130]

the utility of taking an action, it uses the old value of it and adds it together with the
reward observed for taking the action, as well the difference between the old value and the
estimate of the optimal future value, which is the highest expected utility function in the
new state.

Figure 2.6: A cloud provider selection scenario with three alternatives

In Figure 2.6 the cloud computing provider scenario used earlier is transformed into a
Q-learning problem. As an example of how this could work, assume the agent is in S1,
and this is the currently selected cloud provider, and the highest expected utility action is
Qt(s1, a1). The agent takes that choice, as this has the highest expected utility. It now
enters the same state and observes a reward. In this case, the reward can be score of the
cloud computing provider in this state in t+1, calculated in the same manner as the SCPS
algorithm calculates the score, minus the score cloud computing provider in the former
state in t. Assume that the score of the provider has degraded, action Qt(s1, a1) will now
have lower expected utility, and one of the other actions might have higher utility in S1,
leading to a change of state and cloud computing provider.
This is an adaptive approach that will change solution if the currently selected one degrades
in performance. However, if other alternatives suddenly increases its performance, it will
not be detected until an action selection those alternatives is selected. Each calculation in
itself is fairly simple in terms of complexity, and once that optimal solution is found, it
is a question of recalculating this action or actions with some interval. It is required to at
least store all the measured performance of all alternatives, unlike the ACPS algorithm.
Another issue is however is that it requires a period of trying other different actions to

25

Chapter 2. Background

find this optimal solution. As this was used in dynamic environment, where the network
performance, or other changing performance measures affect the decision, you also have
to set a learning rate to allows change to another action quick enough, but not too quick,
to allow it to retain some memory of the past utility values.

2.6.11 Boltzmann Exploration
In paper [54], an adaptive approach to service selection is proposed. Boltzmann explo-
ration is another reinforcement learning technique, that similarly to Q-learning, explained
in 2.6.10, use exploration of different states in order to discover the best state. Similarly
to, it uses utility functions to select the states, but unlike in Q-learning, is also an an-
nealing algorithm [72]. Which means that it has a temperature parameter, that depending
value makes it more or less likely to choose an option with less expected utility. The pro-
posed solution uses mathematically defined expected utility functions where the input is
the KPIs, instead of the intervals presented in MAUT in 2.6.7, as the cost model used to
make the selection.

Pr(Pj |EUi) =
eT∗EUi(Pj)∑

pa∈P e
T∗EUi(pa)

(2.21)

The learning policy is shown in formula 2.21, is the chance of selecting provide Pj given
the expected utility function of the user EUi. The numerator of the fraction is the expo-
nential of the temperature variable T times the expected utility of a provider while the de-
nominator is the sum of all exponentials of the different expected utilities for all providers.
As the temperature variable T gets a lower value, the higher the chance of picking the al-
ternative with the highest expected value gets. When it is warm, it will change between the
state, exploring the different performances, and over time as the temperature gets colder,
choose the better alternatives.
Like the Q-learning, it needs to keep information about all the different alternatives for
it to work, and might only start changing state once the current selection degrades as the
temperature gets lower. It is however possible to keep the temperature such that it does
exploration from with a small chances, or to perhaps reheat the temperature as a response
to degrading performance. The behavior is tied to how temperature is adjusted, and there
is the chance that in a dynamic environment, it might get stuck in a worse state if not
allowed to continuously explore. If the temperature is kept high, it might keep exploring
worse alternatives even if there exists a stable, best alternative. Finding an appropriate
temperature policy can be a challenge.

2.6.12 Cost model comparison
The different cost models and selection methods each have strength and weaknesses, and
the best one depends on these properties and the needs of the user. The properties that are
used to compare the different solutions are as follows:

• Computational complexity: Specified in relation to the number of alternatives to
rank n. For the adaptive ones, that will be running with regularity, we look at space
complexity.

26

2.6 Cost models

Approach Complexity Input Comparison Adaptive Strict
Linear pro-
gramming

O(n) Set of weights Relative No No

Epslion-
constraint

O(n) Constraints
and attribute to
optimize

Absolute
value

No Yes

AHP O(n) Hierarchy with
weights

Relative No No

DEA O(n) Set of weights Absolute
value

No No

Goal pro-
gramming

O(n) A goal and
weights

Proximity
to the goal

No No

TOPSIS O(n) Set of weights Relative No No
MAUT O(n) Utility functions

and weights
Utility No No

ELECTRE O(n2) Weights, indiffer-
ence, preference,
veto threshold
and crediblity
value

Absolute
value

No No

ACPS s: O(1) Reselection
threshold and
reselection algo-
rithm

Absolute
value

Yes No

Q-learning s: O(n) Utility functions Utility Yes No
Boltzmann s: O(n) Utility functions Utility Yes No

Table 2.1: Comparison of the different cost model approaches

• User input: What type of input is needed
• Comparison: On what basis does the different models score different alternative.

The relative difference between the alternatives, by using utility functions, in rela-
tion to goals or absolute value

• Adaptivity: Is the model able to adapt to changes in the performances?
• Strict constraints: Is it able to represent strict constraints?

The different cost model approaches that is presented in this section, is compared by the
stated criteria in the table 2.1. These are just some of different properties of the selection
methods. In many of the cases, the comparison methods can be changed to use utility
functions, or other types of comparisons, and the currently represented is the once used for
the methods in their description. The other aspects of the different approaches is discussed
below them and could not as easily be summed up to fit in comparison table.

27

Chapter 2. Background

2.7 Key Performance Indicator (KPI)
In [12], KPI is given the following definition:
”KPIs are quantifiable metrics which reflect the performance of an organization in achiev-
ing its goals and objectives. KPIs reflect strategic value drivers rather than just measuring
non-critical business activities and processes.”
But in this case, we are looking specifically at the services and the data provided by them,
that reflect that value given to the user of the services base on the different quantifiable
metrics. The KPIs are important as they are part of the criteria used to choose one alterna-
tive over another, through the cost models. A user should be able to specify which KPIs
are the most important for them and their requirements for them through the cost model,
and part of helping them do it is to present which KPIs are relevant and allow them to
add those to the cost model. Not only can the KPIs be used for service and data selection,
some of them are also relevant when evaluating a system in the distributed-to-centralized
schema, like the implementation of the cost model would be. To choose services and data
in the context of a distributed-to-centralized schema in the smart city, we need to look at
KPIs for the cloud as the centralized component, for the distributed-to-centralized schema
as a whole and for data quality.

2.7.1 Cloud computing KPI

These are KPIs based on what is found in the literature as important performance measure-
ments and aspects of consideration when selecting a cloud computing provider service, as
well as definitions on how to measure them.

Availability

Availability is often mentioned as one of the most important attributes of a cloud service.
If the service can not be reached, it is of no use to the user requesting it, and how some of
the other attributes performs at that time does not matter if it can not be accessed. Smaller
and longer downtime of the service can be detrimental to the use case of those using the
services and result in loss of business and sales [59]. A measurement of the availability of
the system as an average over time, or the ”steady state availability” can be calculated by
the following formula [11, p. 510]:

Availability =
MeanTimeBeforeFailure

(MeanTimeBeforeFailure+MeanTimeToRepair)

The terminology used her is similar to the terminology used with reliability. The the two
are tightly connected as failures can result in loss of availability, but also be available,
but having the wrong external behavior. In this case, the failure in the ”mean time before
failure” parameter should be considered a failure that results in the loss of availability.
Similarly, as shown in [51], the availability which is called the ”robustness of service” can
be calculated by dividing the time the system or service was available by the total time that
has passed has passed for a given time period:

28

2.7 Key Performance Indicator (KPI)

Availability =
TimeAvailable

TotalT ime

As these formulas only calculated the average over time, the results obscure information
about the service downtime patterns, like variations in length of downtime and time be-
tween the downtime. Two different downtime patterns, one of many short outages and
one with a few long outages might have the same measurement of performance with these
formulas.

Instance Performance

Instance performance is concerned with how the provisioned instance from the cloud ser-
vice performs in terms of computational power and speed. This can be done with several
benchmark tests and measurements for different aspects of the instance. Benchmark test-
ing is the comparison of system, programs or hardware according to some metric, that is
done to evaluate the performance of the system [46]. This can be done by running different
tests on the system that measure the different metrics. As done in [129] and [42], this can
be done by using software running on the cloud computing platform that measure the pro-
cessing power, the I/O to data speed and the memory access speed. It can also be done by
running applications on the platform and test the response time from the virtual machine
instances, as it is done in [35], instead of doing the measurements on the platform.
The CPU performance is measured by how fast it can process its tasks, which is its pro-
cessing power. As modern CPUs are complex with different optimizations like branch
prediction, caches, multiple cores, power limits and specialized hardware, a general pur-
pose benchmarking tool or platform needs to make use of these when testing as well as
covering a wide range of computational patterns, algorithms and different inputs and sit-
uations when testing a CPU. In the case with specific applications and uses in mind, the
benchmark testing should use tests that are close to what the intended use for the plat-
form is. In the case with [42], which seeks to evaluate the performance of cloud service
providers for scientific computation, benchmarking tests with CPU operations similar to
the ones used in scientific computation is used.
With memory and I/O performance, it is also measured on how fast it is. And as is the
case with CPU performance, the memory and I/O performance is also dependent on the
different types of task that is done, as some systems are optimized for different use cases.
This can affect things like the write speed or read speed in different scenarios. Since not
all data can always be stored in memory, the speed of the retrieval from disk and how the
data is transferred to memory can affect how long time that takes for different scenarios.
The same is also the case of writing data to the disk, so it is often the case that there is a
trade off between optimizing for writes and for reads [31].

Network Performance

The network performance is concerned with everything that goes on in the network con-
necting the service to the user. The aspects of network performance can be measured
quantitatively through different metrics. In [129], the metrics used to rank a cloud service
provider network performance is the latency and the bandwidth of service. Packet delay

29

Chapter 2. Background

variation (also called jitter) and packet loss are also metrics that can be used to measure the
performance of the network [43], especially in cases with application that stream real-time
data that loses its value if it is not received within enough time from the last packet re-
ceived. Examples of this can be video and audio streams and online video games. Latency
is a measurement of the time duration between when data is sent and when it is received.
Bandwidth is a measurement of the amount of data that is transferred each second in terms
of data size. Packet loss is a measurement of the amounts of data packets lost, either as
a percentage of total sent or the amount over a period. These are data packets that never
reached their destination. Packet delay variation has two possible definitions, the first one
is Inter-Packet Delay Variation (IPDV), where the reference of the delay difference is the
delay of the previous packet, which is shown in Figure 2.7. The figure shows two lines
which represents the packets sent, when they’re received and the delay between. Calcu-
lation is done by summing up the differences between packet delay between packets and
dividing by the amount compared pairs. The second definition is Packet Delay Variation
(PDV), which uses the packet with the lowest delay as a reference of the delay difference
between packets [82].

Figure 2.7: Calculation of IPDV, taken from [112]

Stability

The stability of a cloud service provider is in [51] defined as the variability in the perfor-
mance over time. This can be specified in relation to the performance guaranteed in the
Service-Level Agreement (SLA) or in relation to the average performance. The differences
are accumulated and used to score the cloud service provider with respect to stability. In
it, the calculation is done with difference from SLA for computational resources, while
memory access performance is done with the variance from the average. The formula for
this is presented below, where α is some measure of performance:

∑ αavg,i−αsla,i

T

n

The top numerator is the average performance for a user i, minus the average performance
promised in the SLA for user i. This is divided the service time T , and this is again divided
by the total amount of users n, and then summed up to calculate a total stability score based
on all users experience of the service.
The stability of the bandwidth is also another metric which is mentioned [128] as a source
of problem for mobile use of cloud services. The idea behind stability could also be used

30

2.7 Key Performance Indicator (KPI)

together with other KPIs besides just instance performance, that also are dynamic and
subject to change, and as something that could also be used to calculate the stability for a
single user.

Security

Security can be divided into some subcategories or themes of security in the context of
information security. That is the availability, identification authentication of the user in-
teracting with the system, authentication of the user to allow access to the system, confi-
dentiality to restrict access to private and sensitive information, integrity to make sure that
only those authorized can manipulate data in the intended manner, and non-repudiation so
no action can be taken that affects the system and not be noticed [103]. Security is not as
easily subject to quantitative measurements in the same way as some of the other KPI, and
is also not likely to be subject to changes as often as other KPI, but is nonetheless impor-
tant in the selection of a cloud service provider. The security of cloud service providers
can be scored by either experts or by using frameworks that scores the security [102].
In [122] a trust model is proposed that is structured like a tree, each node, except the root,
being a subcategory of a security parameter. The leaf nodes are scored by the adherence to
different security policies and a final trust value is calculated in the same manner as in AHP
(link to AHP later). The user can select which parameters in the trust model to include,
according to their needs. A similar approach is used in [71, 70] that uses Quantative Policy
Trees (QPT) to calculate the a security score according to the security information that is
part of the Service Level Agreement (SLA) of a cloud service provider.

Figure 2.8: Converting the security information from a SLA into a QPT, taken from [70]

Figure 2.8 shows how the security information of a SLA, which is named SecLA in this
case, is used to generate the QPT, which is an AND/OR tree representing the security
provisions in the leaf nodes group under the different security categories in the nodes
above. The leaf nodes have AND/OR relationship with their parents, that decide if a

31

Chapter 2. Background

single provision affects it, or all provisions affects its parent node. To create a scoring
between the user needs and the security provisions of a cloud service provider, weights
are set on the different security provisions in the leaf nodes to represent the importance of
the security provisions. The next step is to calculate the parents of the leaf nodes. This
is done by calculating the score the cloud service provider gets in the leafs, and the score
the user requirements gets. This is calculated as follows: If it is an AND-node the values
are aggregated or if it is an OR-node the smallest value is chosen. The value of the parent
node is calculated with this formula:

NodeScore =
CLOUDparent− USERparent

MaxPossibleScore

And for the rest of nodes above this, the score flows upwards with the same AND/OR
logic of aggregation or choosing the smallest value below. This will give a final score to
the cloud service provider. There are some contradictions in the logic in the papers, when
it says that the OR-relationship is to be used for soft-requirements that only one provision
is needed to fulfill the parent goal, but also saying that the lowest value is chosen due
to the logic of the weakest link dominating the others in the case of the OR-relationship.
This also means that giving low weights in the leafs can affect value that is chosen in an
OR-node, which is weird as it is meant to intend low priority of a provision. If the max
value was chosen instead, this would have made more sense.
Another approach of measuring security that is proposed in [113] by keeping track of the
security breaching incidents in a system. It uses measures for confidentiality that is the
percentage of authorized accesses among total accesses, data integrity is measured by the
data accuracy before and after modification and privacy is measured with the rate of third
party access to the data. An issue with this approach is that this information found after
security breaches, which might mean that the security issue that caused the security breach
is fixed and the numbers are no longer representable for the service.
A system that measures the security of a system through penetration testing is proposed
in [154]. It is a third party system that attempts several attack vectors and then sends the
metrics of the penetration testing to the test cloud service provider.

Elasticity and Scalability

Scalability and elasticity are two related concepts in terms of supporting increasing de-
mands of a system. The scalability of a system is the ability of the system to handle
increasing workloads and make use of additional resources regardless of what time frame
this is done in. Elasticity on the other hand also takes the temporal aspect of scaling into
consideration and is defined as the degree a system adapts to changes in workload demand
by provisioning resources automatically to attempt to match the current demand to avail-
able resources. There are two dimensions of the elasticity, which is the speed of which
the system can adapt to resource demand changes and the precision in matching resources
with demand[57]. In order to account for the changes in resource demand, three different
scaling options are used. Vertical scaling, which is the increase of computational resources
to the system; horizontal scaling, which is the increase of virtual machine instance run-
ning; and virtual machine live migration, which moves the instance to a machine that is

32

2.7 Key Performance Indicator (KPI)

under less load or with more resources [84]. In [57], a set of different metrics for elasticity
is proposed, which are as following:

A = The average time it takes to switch away from underprovisioned states.
ΣA = The total time spent in an underprovisioned state.
U = The average amount of underprovisioned resources for underprovisioned periods.
B = The average time it takes to switch away from overprovisioned states.
ΣB = The total time spent in an overprovisioned state.
O = The average amount of overprovisioned resources for overprovisioned periods.

Using these metrics, you can calculate the elasticity for scaling up (Eu) and the elasticity
for scaling down (Ed):

Eu =
1

A× U

Ed =
1

B ×O
In figure 2.9 an example of the over- and underprovision of the resource is shown in a
graph representing the resource demand and available resources over time. The metrics
mentioned is also shown in the figure.

Figure 2.9: Capturing core elasticity metrics, taken from [57]

The same metrics are also included in [153], but also include other metrics for elasticity,
that measure the amount of scale events, which is the number of ”scale up demand” events
(Du) or ”scale down demand” events (Dd) compared to the scale up events (Au) or scale
down events (Ad). This gives the scale up and scale down timings of the system:

Scale up timing =
|Du −Au|

Du

Scale down timing =
|Dd −Ad|

Dd

If there is imbalance between the amount of events where there is a demand for scaling
compared to the actual scaling events, it might be an indicator for bad timing behavior.
In [123], another measure of elasticity is proposed that is based on the definition of elas-
ticity in physics, which is the ability of a a material to withstand stress. Stress is in physics

33

Chapter 2. Background

the force applied on a given area of the material. The strain is how much the material
stretches. In physics, the formula for elasticity is E = Stress

Strain . This formula is also used
for cloud computing, but with a new definition for stress and strain. Stress is the demand
for computational resources divided with the allocated ones. Strain is the difference in
bandwidth after scaling up divided by the bandwidth after scaling up and multiplied by the
time it took to scale up.
Measurements are done through benchmark testing with similar metrics as above, or using
simulations that allow the same [5].

Cost

The cost of the cloud service is specified in terms of the monetary cost of using the service.
Specifying and comparing the cost between the different services is not straightforward, as
the different cloud service providers have different cost and payment models that depend
that is dependent on different factors. The cost can be related to the other cloud KPI, like
the instance performance of the cloud service.
In [100], the two basic approaches identified, was either an advance payment which is
common for web hosting where the payment cover a certain amount of computational
units, or a consumption payment which is more common among IaaS providers, where
the user is charged for the resources used. Another thing that is common is to use a
hybrid between the two approaches, where you have to use advance payment initially, and
then you pay for the additional resources used outside of the ones included in the advance
payment. It defines three different metrics to measure the cost of the different cloud service
providers: Cost per virtual machine per hour, cost per gigabytes traffic in/out and cost per
gigabytes storage per month.
As a way to benchmark different cloud service provider with relation to cost, a cost for
running a benchmark test with different tasks was done in [101], which is an example that a
cost model can be defined in relation to measured instance performance as a way compare
different cloud service providers that have different payment models. It also showed that
there is a difference in price depending on the length of time or the size of the problem the
cloud service is provisioned for.
In [51], in order to compare cost between cloud service providers with different storage,
bandwidth and computational units, the cost is defined in relation to those attributes with
the following formula:

Cost =
Price

cpua × netb × datac ×RAM d

In this formula, a, b, c and d are weights representing the relative importance of each
attribute, and should sum up to one: a+ b+ c+ d = 1.
An extensive and detailed for predicting the cost for cloud computing is proposed in [141]
together with a cost estimation, monitoring and analysis service. The four first basic com-
ponents for modeling the cost are as following:

M dataStorage = size(total)×tsub×cost(storage)where tsub is the subscription time
MComputation machine = cost(machine)
MData transfer into cloud = cost(transferin)
MData transfer out of the cloud = cost(transferout)

34

2.7 Key Performance Indicator (KPI)

These components are used together with execution models to create more detailed corre-
sponding prediciting of cost for different workflows and for different computational execu-
tion models, like sequential or parallel programs running on a single or multiple machines.

Reliability

The reliability for a cloud service is tied the successful use of the service functions and
that it almost always provides the correct results and guarantees against loss of data. This
in turn is tied to some of the other performance indexes, like availability[2]. Events where
the unsuccessful use of the service functions is detectable externally, is known as a failure,
which is in turn is caused by a fault in the system. A system can be resilient to faults,
which mean that it prevents or handles faults so that they don’t cause a failure [11, p. 80].
In [51], the reliability of a cloud service provider is measured by the chance of failure
based observations done by the users multiplied with the cloud service provider’s own
promised mean time to failure:

Reliability = Probability of violation × Promised mean time to failure

= (1− numfailure

n
)× Promised mean time to failure

Another aspect of reliability, is the fault tolerance of the system. In [49], two metrics are
used to describe the fault tolerance when it comes to the consequences of faults or disasters
and data loss: Recovery Point Objective, which defines the amount of data that will be lost
during a fault or disaster, and Recovery Time Objective, which determines the minimal
downtime when recovering from faults.

Usability

How easy it is for a user to understand and be efficient and effective with the cloud service.
Can be quantified by the average time it takes a user learn and become proficient with using
the cloud service [51]. For both first time use and setup of the service, and continued
operation on it. As well as the possibility to customize the service to fit more in line with
the user needs [108].

Management of services

This part is not tied directly to the services themselves, but the company that provides the
services. The accountability of the cloud service provider is often detailed in the SLA,
which provides guarantees about different aspects of the service, as well as repercussions
if cloud service provider fail provide a service according to the guarantees given. The
cloud service provider should provide support and information, and specifications of what
kind of support is given under different circumstances [108].

35

Chapter 2. Background

Features

Features to the service or add-on services that comes in addition the service itself can be
important when deciding to use a cloud service. In [51], it quantifies this by suitability,
which is the amount of non-essential features that match with the non-essential features
needed by the customer, sustainability which depends on the amount of features provided
by the service in relation the ones needed. It also categorizes interoperability as the amount
of supported platforms by the provider in relation to the different platforms needed by the
customer.

Reputation and Trust

In cloud provider service selection, finding and choosing the right cloud service provider
is difficult enough with the different service descriptions detailed in the SLA that comes
with different trade-offs. But coupled with the fact that the cloud service provider might
not provide what is promised, makes it even harder to find the right one. But by using the
knowledge gathered by other users’ experience of the cloud provider services, expectations
of the service can be brought more in line with the actual performance of cloud provider
services.

There are two approaches to the reputation models for cloud services. The first one is
similar to the one used for restaurants, movies and in online stores, which is the subjective
feedback and ratings provided by the users of the service which is aggregated and used to
create a score for a cloud service. This approach is used in [151, 53, 89, 1, 88]. Another
approach that is used is to use performance measurements gathered from the cloud ser-
vices by the users as data to score the cloud services reputation. In [3] a reputation score
is used as part of a service selection system that schedules jobs to different web services.
In order to select the best services, a reputation score created for the services by gathering
information about completion times of jobs and service failure information for the jobs
scheduled. In [162] a trust and reputation system is proposed for cloud service providers
and sensor network providers. The trust of a cloud service provider is calculated by the
error of calculation, third party access to the data and if it is able to transmit the data to
the user. The reputation is calculated by the number of users that chose to use the service.
In [74], the trust score calculated by user submitted information about the availability, the
reliability, the data integrity and the time it takes to process jobs submitted to the service
together with the weights submitted by the user in the same manner as in linear program-
ming, presented in section 2.6.1. In [95] there is a hybrid approach between measurements
and subjective user feedback where the trustworthiness of an IaaS provider is calculated
using a mix of the measured of the compliance to the SLA, the times a user chooses to use
the service, and the satisfaction feedback given to the users. A problem with reputation
based ranking of services where anyone can provide their feedback, is the risk for mali-
cious and false feedback that is used to distort a reputation [90]. Several of the approaches
to reputation and trust management take that into consideration and attempts to filter out
that feed.

36

2.7 Key Performance Indicator (KPI)

2.7.2 Distributed-to-centralized KPI
These are different KPIs found in the literature for measuring the performance of distributed-
to centralized nad F2C systems and the applications running on them.

Processing load balance

In order to not overload or burden single processing nodes in the F2C with too many pro-
cessing task, or letting nodes be idle without using their processing capacity, it is important
to distribute the computational tasks evenly among the processing nodes. In [132], load
balancing among nodes is one of the goals in their service allocation strategy for F2C. In
the model, each node have a designated amount of slots to run small atomic services that
might be a component of a larger service. The load in each layer of the F2C is measured
by the amount slots that are used or not in that layer. The importance of utilizing resources
and reducing load is also mentioned in [78]. The need for efficient utilization of resources,
reduction of the computational processing on the higher levels near the cloud and being
able to offload computation from devices with less computational capacity are issues de-
scribed in [157]. By reducing the computation needed in the cloud, through doing the
computations near the edge, the overall system can be made more scalable, while at the
same time supporting devices near the edge that needs computation offloading [33]. This
is an important aspect of the F2C-architecture, to be able to support the large of amounts
of data that a smart city can potentially come to produce. Taking a look at the specific
parts and comparing the processing load of these in isolation can also help us gauge the
performance of the architecture.

Energy consumption

In order to be environment friendly, reducing the energy consumed is important. But
another reason that energy consumption and energy efficiency is an important focus, is
introduction of devices that can provide computation that have a limited power and energy.
An example of this could be a smart phone, that is dependent on its battery for power. The
service allocation strategy in [132] also takes into consideration the energy consumption in
the service allocation, attempting to balance the energy consumption among the different
fog in the F2C-architecture. In [104], a power consumption parameter for performance
is proposed that is the total power consumed at both fog and cloud premises, although
the study only considers power consumption at the cloud, as it would require a different
approach to include fog devices. There is a trade-off between the response time and power
consumed in response to growing workload allocation in a F2C-system, which is simulated
in [37]. It found that the power consumption decreases when it is allocated to the cloud as
it is more energy efficient, but allocating it to resources in the fog reduces response delay,
so it is a balance between wanting fast response times and saving energy. The importance
of energy efficiency is also mentioned in [33, 78, 157].

Latency

One of the arguments that have been put forward in favor of the F2C model in favor of
a centralized cloud model is the improvement in latency by having data and processing

37

Chapter 2. Background

resource geographically near where it is needed. In order to support real-time and appli-
cations dependent on low latency, this is needed. In [37], the trade-off between power
consumption and response time is looked and and a model is created and tested through
simulation. In [132], the allocation focuses on minimizing latency as part of the goals in
service allocation. The service response time is mentioned as one of the most importance
performance metrics in [104], and in testing two service allocation strategies is measured
by the average service response time. Experimenting with the response time using fog
layers near a pipeline monitoring system measures the response time of a pipeline moni-
toring system in a F2C-architecture, and shows that the response time significantly lowers
for hazardous events compared to using the cloud [139]. One of the three design goals for
a fog computing platform in [157] is the latency that must be sufficient to provide low-
latency guaranteed applications and services. Also in [78] the performance measurements
when comparing the cloud, the F2C and an optimized F2C is the response time on a sce-
nario with service tasks that is simulated on the different platforms. Almost any source
on F2C mentions the latency as one of the advantages and performance metrics of the
architecture.

Volatility and reliability

The devices at the in the fog and near the edge is not only different from the cloud in
their processing constraints and energy constraints, but also in terms of volatility. You can
be somewhat sure that the cloud provider will be there tomorrow with their guarantees
of nearly 100 percent availability, but when devices like smart phones and computational
devices in a car enters the pool of computational resources in an area, knowing how long
they will remain available is less certain. This is mentioned as one of the challenges in
[104], where the volatility in the fog layer and the service disruption probability is pro-
posed as important metrics for evaluating the fog layer and how the mobility and power
constraint might impact system. The service disruption probability is the amount disrupted
services during execution. The issue of volatility due the intermittent presence of comput-
ing resource due to their mobility is also mentioned in [78]. This dynamic nature of the
computational can also influence the quality of the services provided if they do not straight
up disrupt the services, impacting the reliability of the services.

Network load and traffic

When being able to process the collected data near the edge where it is generated, it can
be processed to be made smaller in size, as well as sending it at times where the overall
network load is low. The data storage size and the data sent from the edge, fog and to the
cloud is looked at in [125]. Through using data aggregation and compression in the differ-
ent layers, the amount total of amount of data sent will also be lower. The reduced data size
is also one of the parameters in the test of a pipeline monitoring system implemented in a
F2C-architecture, where it showed a significant decrease in the data sent [139]. Network
bandwidth occupancy is defined as the amount of traffic to the cloud in [104], but does not
include the traffic on the lower fog layers. Offloading the cloud’s bandwidth is also a stated
goal in [37], and a constraint included in the model it proposes. The reduction of network
traffic stated as an advantage of using the cloud in [33], and that is it not sensible to send

38

2.7 Key Performance Indicator (KPI)

raw data to the cloud as there is estimated a large amounts of data generating devices in
the future.

Security

With the devices no longer being secured on a single location, the lack of computation
power and energy, as well as the possibility almost anyone being able to provide compu-
tational power, there are some new strengths and weaknesses when it comes to security.
Without the strict control of the provider, the devices might be physically available to at-
tackers, but also comes with the control of not having all data centralized in a single place
that could be attacked. The issues to security and privacy in fog is unsolved might need
their own approaches [78]. In [157] the security and privacy is mentioned as important in
the design of a fog computing platform, and would need support on every layer in the form
of access control and intrusion detection systems.

2.7.3 Data Quality
The quality of data is relative to the intended use of it, and can Quality of Data can there-
fore defined as the fitness for use of the data [140]. It has also been defined as the agree-
ment between the data and the real world phenomena it represents. The different dimen-
sions of data can be classified into for different quality classes according to [135]. These
are:
1. The Intrinsic Data Quality, that is concerned with the attributes data themselves, like
the accuracy.
2. The Contextual Data Quality, that is characterized by other characteristics of the data,
like how complete the data set is or how new the data is.
3. The Accessibility Data Quality, which is how and who are able to access the data.
4. The Representational Data Quality, which is how the data is presented and how easily
it can be interpreted.
Data can also be classified as either soft or hard data, where the hard data is quantitative
data, like sensor measurement, and soft data which is qualitative like a customer evaluation
[9]. In [10, 96, 68], several dimensions of data quality is identified, which will be further
expanded upon in subsections below.

Accessibility

How easy it is get access to the data for those who should have access to it. This can be
cause by the access mechanisms themselves not working, or that the understandability or
interpretability of the data is such that making use of it is hard. It can also be caused by
data not being timely enough or that the data amount is large enough to cause problems
processing it [135].

Accuracy

Accuracy in data is defined as deviation from the state it originally is supposed to have
or the real world state it is supposed to represent. In [91], it is given as the percentage of

39

Chapter 2. Background

correct entries in a data set. It can also represent the accuracy of a single measurement
where the accuracy is the closeness between the measured value and the actual value of
the object that is being measured [80].

Amount of data

The amount of data should be appropriate for the task at hand. Can be specified as the
ratio between the amount of data needed by the user and the amount of data provided [96].

Believability

Defined by [150] as ”the extent to which data are accepted or regarded as true, real and
credible”. Can be measured by using the trustworthiness of source of the data, the reason-
ableness of the data and the degree which the temporal aspect of the data also is credible,
according to [99].

Completeness

Completeness is defined as the degree which all entity objects that exist in the abstract
universe is also represented in the data set [52]. The abstract universe is in the case the
specific instance or area we wish to represent in data. As an example from [67], the
abstract universe can be all instances of diagnosed tumors in a country, and the data set
is the registry of these incidents. The completeness would be the degree to which all
instances are in the data set.

Concise representation

The representation of data, and if it is concise, meaning that is conveys meaning while still
being as compact as possible both in format and presentation [68].

Consistency

May be related to the data values themselves or the representation. In the case of data
values, a data is consistent if any redundant data is consistent across several tables, which
might be know as a Referential Integrity constraint in a case with a database [96]. With
the representation consistency, the focus is on whether the representation is in a consistent
format [68].

Ease of manipulation

Or the Ease of operation. This is easy the data is to manipulate for the users needs, how
easy it is to aggregate and how easily it can be combined with other data [68].

40

2.7 Key Performance Indicator (KPI)

Granularity

The granularity of the data is the level of detail represented in the data [38]. For geospatial
data, data for an area might be represented for each square meter, or for a square mile.
For temporal data, it might be a measurement every second or measurement every hour
as examples of differing levels of details or granularity. Different temporal granularity of
measurement might also be referred to as the sampling rate.

Interpretability and Understandability

How easy it is to interpret and understand the data or information [68].

Objectivity

The degree to which the data is impartial, unbiased, objectively collected and based on
facts [68].

Precision

Defined as ”The closeness of agreement between independent test results obtained under
stipulated conditions” in [80]. Which means the degree to which different measurement
data of the same object under the same conditions are close to each other in value. So to
compare precision with accuracy, if we have high precision, but low accuracy, the mea-
surements are always nearly the same, but deviates from the actual temperature.

Relevancy and value-added

The degree to which the data is relevant for its use and the value-added to the users and
the organization of the users. The value-added is the value or the utility gained by the user
or organization by using or owning the data [9]. The relevancy of the data ties into the
value-added, as poor relevancy of the data means that there is less use for it [135].

Security

The security is tied to the availability of the data, which is the extent the data is restricted
properly to allow for its security [96]. Only those who are intended to have access to the
data are the ones who it should be available for. This is related to the security KPI for
cloud and F2C as well.

Timeliness

Describes the temporal dimension of data and how up-to-date the data is in relation to
the task it is going to be used for [96].Some uses of data require data that is very recent
or real-time data with very low delay in order to work. An extreme example is the high
frequency trading applications where just a few milliseconds of delay can mean you lose
against a faster trader [21].

41

Chapter 2. Background

2.7.4 Context Information

Often defined as any information that can be used to characterize the situation of an entity
that is considered relevant for an interaction [66]. An example of an entity can be a smart
phone, and the context information in this case can be the spatial position of the device or
the weather in that area. When the information is generated, there are often several sources
of context information, like the characteristics of the sensor, data about the situation for
the measurement [66].

Quality of Context

The quality of context describes the quality of the information that is used as context in-
formation. It can be used to determine the value of that information [66]. This information
is in itself subject to many of the dimensions that the ones mentioned for quality of data
[75, 25].

2.8 Service registry

Part of managing services and data, is being able to provide access and information about
them. In many instances, data and services might be distributed themselves, which means
part of the information on how access the data and service also needs to include how to
connect to them, directly or indirectly. In a smart city scenario, and in the scenario with the
ZEN pilot and the ZEN ICT architecture, which will be explained in 2.10.1 and 2.10.3, the
data is distributed around different locations in geographically proximity to the pilot areas
or further away. Which is why looking at different ways to store and use that information
is important to create a solution for the described problem. In this case, the term registry
is used as overall description of approaches used to store information about services and
data, and information on how to access them.

2.8.1 Centralized registry

A simple way to manage a distributed set of services and data repositories is by storing the
information about the services and data in a single centralized system. A common pattern
for implementing this for services, is by using the ”Broker Pattern” [11, p. 212] to create a
service broker that allows services to add their services to it, and for clients to help match
with a suitable service.
Figure 2.10 shows the broker pattern. The central component is the Broker itself, that can
be connected to multiple services/servers and multiple clients. As shown in the figure, the
client and servers uses proxies to communicate with it, and the broker implements a bridge
component to allow indirect communication between the server and component. The same
pattern can also be used as an initial way to pair clients and servers, and the allow direct
communication, but this needs established protocols between the components to work.
Similar patterns can also be used for distributed data storage, where a centralized com-
ponent holds information about distributed data and how to access it. One of the more

42

2.8 Service registry

Figure 2.10: The broker pattern from [11, p. 212]

Figure 2.11: Napster architecture from [114]

infamous instances of a distributed data storage and file sharing program was called Nap-
ster. Napster utilized a cluster of dedicated central servers keeping an index of files the
were being shared by the users of the of the network [114], as illustrated in figure 2.11.

The nodes S are the central servers, and the nodes P are the peers of the network. A
query Q is made to the central server, which then responds with a result R that contains
the locations of the peers holding the files queried. A peer-to-peer connection D could
then be made to transfer the files.

The downside with a design like, this is that it can be a bottleneck, and in the case of
Napster actually was a bottleneck [55]. It can also become a single point of failure, that
renders the systems depending on it useless if the central component goes down, and
depending on the degree of communication going through the central component, also
add latency since communication has to go through it [11, p. 210]. But it might be a less
complex approach to ground a distributed system in a centralized component, instead of
having every part being distributed.

43

Chapter 2. Background

Figure 2.12: Circular key space and finger table for Chord from [134]

2.8.2 Distributed hash tables and routing
Instead all information about the whereabouts and properties of data and service being
gathered in a single place, this information can also be distributed as well. One of the
most important parts of the internet, the IP-protocol and routing tables used to forward
packets of information, are based distributing the knowledge of the paths to the address
location, and if a router can not tell you exactly where the address location is, it at least
hold enough knowledge to send the packet in the right direction.
Similarly for files and data, distributed hash table (DHT) can be used to find data. Specifi-
cally for peer-to-peer applications, where the former centralized model in Napster caused
scalability issues, DHTs is an approach to deal with that problem as well as allowing for
a much more distributed system. In these file systems, each file is associated with a key,
often a hashed value of the name of the file, where the nodes in the system is responsible
for storing a range of its keys [105]. Even though there might be a large amount of nodes
holding their part of the information, the different routing algorithms presented in [105]
have a path length of max O(log n) for n, which means that it is scalable, and even for
large networks, the time to find and retrieve data is not too long.
In one of the first scalable routing algorithms for DHT, called Plaxton routing from [97], a
node is given a number, like 12345, if it is given a query for 12689, it forwards it to a node
126xx, so it must know a set of nodes that shares its prefix, but differ in the next digit.
The downside of this approach is that it works best for a static environment where nodes
doesn’t suddenly appear and disappear. Other routing algorithms for DHTs can deal better
with an dynamic, like Tapestry [159], which is variant of Plaxton that can adapt to nodes
appearing and disappearing.
Other approaches, like Pastry [110] and Chord [134] uses a circular key space, where the
nodes has a set of nearby neighbors, which are near in key space, but also has routing to
nodes that are further away in the key space for a short path. This is shown in figure 2.12,
which displays ”finger table” of Chord, that is an exponentially spaced list of other nodes
in the network, shown as solid arrows. This ensure efficient routing.
While the benefits of a distributed designed right might be the removal of bottlenecks,
and more robustness, there are still some potential issues, mentioned in [105]. Certain

44

2.8 Service registry

Figure 2.13: The data structure of the blockchain showing the blocks and their content

nodes can be come hotspots for much of the network activity through having popular files.
And even though the routing promises few hops between nodes to reach the destination,
the nodes can in reality be far apart geographically and causing the queries to have high
response time.

2.8.3 Blockchain

Blockchain is at the core of the cryptocurrency Bitcoin, which is implementation that
is used as the basis for the explanation of the blockchain here. There are several other
areas of its use, and variations on its implementation that also exist, which also will be
discussed. Especially the applications for IoT and Cloud is interesting in this case. While
blockchain in its narrowest sense can considered to be just a data structure of linked data
blocks forming a chain of data blocks where each block is dependent on the prior block
through hashing of the content of the block and new blocks pointing to these hash values
[50], which can be used as a ledger that is hard to tamper with. However, the overall
framework of enabling technologies used with blockchain is usually included in the use of
the term. These enabling technologies are: Peer-to-peer (P2P) networking eliminating the
need for a central entity for communication, allowing distribution of the ledger throughout
the network; Consensus algorithms that decides who gets to add a new block to the BC and
verifies the new block; Public/private key encryption for digital signatures to authenticate
the communication in the network.
Figure 2.13 shows the structure of three blocks in a BC. Each block, except the genesis
block, which is the first block of the BC, have a pointer in the form of the hash of the
previous block in the BC. The hash of the previous block is the hash value of the previous
blocks timestamp, Merkle root hash, nonce and its own hash of the its previous block
[160].
Figure 2.14 shows an example of a Merkle tree, and how a Merkle root hash is generated
from the transactions in the data block. All the values that is used to create the hash of a
block, is what makes it so hard to tamper with a blockchain. Changes to any transaction or
the other fields will change the hash of the block, which will in turn change the hash value
of any blocks after it. In addition to those fields, there is also the block version field that
indicates the validation rules for the block, and the nBits field which acts as the hashing
target for calculating the nonce. The calculated nonce must give a block hash value below
the nBits hashing target. This is something that makes finding a nonce harder, which is
important for some ways for reaching consensus and a source of computational overhead.

45

Chapter 2. Background

Figure 2.14: The data structure of the Merkle Tree used to generate the Merkle root hash used in
the blockchain data structure.

In a network with no central authority, it is not straightforward who gets to add a new block
to the BC among equal nodes that hold a copy of the blockchain. This leads us to the use
of consensus algorithms as part of the blockchain solutions. This is an area where there is
a lot of difference between different BC solution, both for cryptocurrency and other areas
of use.
In Bitcoin, Proof-of-Work (PoW) is used as the consensus algorithm to add new blocks.
Every node in the network is allowed to mine for a nonce that makes the block hash satisfy
the nBits hashing target. It is however computationally intensive to solve, especially as
multiple nodes at the same time are mining for this nonce, which is a point of critique
against it [94]. It needs to be difficult to limit how often a miner can append a new block
to the BC. If the interval is too small, too many forks are made to the blockchain and
double spending is a potential danger where someone can pay twice with the same crypto-
coin. In the case of forking, the longest blockchain becomes the used one, while the
shorter branches are abandoned. For identity management in a system where privacy and
anonymity are some of the key features, public/private keys are used. Transactions are
signed with the private key by encrypting a hash value created from the transaction, and
also providing the public key, so that other nodes can verify the transaction decrypting the
digital signature with the public key [160].
The advantages of blockchain is the decentralization of the system, which in turn saves
costs as the computational cost and storage is pushed out to the participants of it, but also
allows for a system as a whole that is resistant to attacks and faults, as the malicious or
faulty behavior from nodes need to affect a large portion of the participating nodes before
the system is no longer working. This at the same time as it allows anyone to join and
participate in the system without certification, while not sharing private information about
the participants. However, it is very computational demanding, stemming from the PoW
being run in parallel on all miners, spending large amounts of electricity. Another issue
is the scalability, as the transaction are stored in the blockchain, it grows in size, and
fewer nodes are able to hold the full blockchain. To distribute the full blockchain also
causes much load on the network as well. To limit the growth of the blockchain, there is
a limitation on the block size, together with a limitation on how often a new block can be

46

2.8 Service registry

added controlled by the difficulty of calculating a nonce for a valid block. This limits the
overall transaction throughput.

Other blockchain consensus mechanisms

As mentioned in the Blockchain segment, there are several implementations of blockchain,
that are both used for cryptocurrencies, and other purposes the differ in the implementa-
tions of different components in their blockchain framework. One area with many different
approaches is the consensus algorithm used to add block to the blockchain, as this is one
of the problem areas that causes the computational overhead, scalability and low through-
put of transaction problems of the Bitcoin implementation of blockchain. The consensus
algorithms can be categorized as either Proof-of-* or Byzantine Agreement. In the Proof-
of* approaches, the basis for it is the selection of a leader to validate a new block and
distribute it to the other nodes, while in the Byzantine Agreement approach, this is done
through majority voting [94].

Proof-of-Stake (PoS): With a Proof-of-Stake approach as the consensus algorithm, the
influence of each participant is dependent on their stake in the network, like the amount
of currency held. It could be used to increase chance of leader selection, or in the case of
Hashgraph increase their influence in voting [8].

Proof-of-Space or Proof-of-Capacity: Instead of using a computational difficult prob-
lem like in PoW, another approach that can save the energy expended in the PoW approach,
instead uses problems that requires much space instead computations to solve the problem,
while still being easy to verify the solution. Another believed benefit of this approach, is
that it the advantage in PoW mining from specialized equipment over a CPU is not as big
with this approach [107].

Proof-of-Burn: The idea behind Proof-of-Burn is similar in some way to the Proof-of-
Work in that there is some cost to proposing new blocks, but instead of wasting electricity
and time, some currency is sent to an address where the currency no longer can be used.
The transaction will work as proof of burning currency [93].

Proof-of-Activity: A combination between PoW and PoS. The first part of the consen-
sus approach consists of mining a nonce that creates a hash smaller than the hashing target.
Stakeholders are selected based on owning a randomly selected currency unit, which in-
creases the chances with more currency owned. This must sign the hash of the new block
with their private key [14].

Practical Byzantine Fault Tolerance: The algorithm in general works on the concept of
having every participant in the network vote on the correct response. It consists of three
phases. The first phase is the pre-prepare phase where a participant sends request, or in the
case of a blockchain, a value or block that should be added to the blockchain. After that,
the prepare phase starts, where all the participants broadcast their response to the request,
or in the case of a blockchain, the value or block that should be added is broadcasted
throughout the network. The last phase is the commit phase, where the result is accepted
by the nodes if 2/3 of the participants agree on the result [24].

Ripple: Each round the participants of the consensus process gathers the valid transac-
tions they have received. The participants keep a list of other participants that they query
during the consensus process, which they use to share and combine valid transactions with
and vote for their inclusion. If a transaction gets at least 80% of the votes, it is included.

47

Chapter 2. Background

If not, it is discarded or kept for the next round of the consensus process and might be
included there [117].

Algorand: This is a byzantine agreement algorithm. At first a leader is selected at
random, with higher chance of being selected depending on the stake in the network, who
proposes a block to be added to the ledger. A committee of verifiers is randomly selected to
approve the addition of the block, which digitally signs the block, before it is broadcasted
to the rest of the network [27].

Ethereum and smart contracts

Ethereum [40] is an open BC platform with different features than the BitCoin implemen-
tation of a BC. Ethereum is intended to be featureless and value-agnostic, and not specially
designed for a single purpose, like cryptocurrency. It is however suited for applications
with automatic and direct interaction between peers or coordinated group actions as it is
a programmable blockchain where smart contracts can be implemented. These programs
are run on the Ethereum Virtual Machine(EVM), on the different nodes in the network
in parallel to maintain consensus. Ethereum is Turing complete, and can execute code of
arbitrary complexity. The use of smart contracts is enabled through the use of contract ac-
counts, which are different from the externally owned accounts that are controlled by the
owner with their private key. The contract account act based on their internal code, and if
it acts based on human control, it is programmed because it can be programmed to do that.
Smart contracts are in this case the code in the contract accounts that execute when sent a
transaction. As this code is required to run on all nodes in the network, the outcome must
be deterministic to have consensus between the nodes. When someone sends a transaction
to a contract account that triggers computation, they are required to pay in Ethereums own
cryptocurrency, ether, for the computational and storage resources used by the contract to
the nodes that perform these operations as miners in the network.
This means that it might not only be used as a basis to store things in, but also be an more
active part in transactions and management of different parts of the smart city through its
smart contracts. Not only does this make it possible to access data and service through the
blockchain, but also to buy and sell access to these through the platform.

Similar approaches

IOTA Tangle [98]: IOTA is a cryptocurrency that is built on a data structure different from
the blockchain. Instead it uses a Directed Acyclical Graph (DAG), to store the transactions
in, called The Tangle. It also uses a different method to reach consensus instead of the use
of miners that is often used in different blockchain platforms. It still uses a puzzle similar
to proof-of-work to prevent the spam of transactions, by finding a nonce.
Figure 2.15, shows the data structure of the tangle. Each square is called a site and repre-
sents a single transaction. In order to add a transaction to the tangle, it must first approve
two older transaction in the tangle and solve a puzzle to be allowed to add its own trans-
action. As transaction are directly confirmed or indirectly through the transactions that
confirmed them being confirmed, they accumulate weight which means that it is more
trusted. The weight set on the transaction itself is dependent on the puzzle it solved. The
communication between the nodes in the network is through mutual tethering, so a single

48

2.8 Service registry

Figure 2.15: The Tangle, which is the DAG holding all transactions [98].

node does not have direct contact through all other nodes, but changes to the network is
propagated. The network is also asynchronous, so the nodes can hold different and con-
flicting transactions in their version of the network, but those transactions will have one
of the transactions being orphaned as nodes have to chose between them. The tangle is
vulnerable to attacks in the start, so it is currently using a coordinator that eventually con-
firms the transactions in the tangle. This is a centralized approach with the coordinator,
which is planned to be removed once the platform can work safely without it. This is
currently an ongoing research, on how and when the coordinator be removed. The coor-
dinator’s responsibility is to confirm transactions, by issuing a signed transaction called a
milestone, that confirms transactions by referencing them [61]. While it is not clear when
the approach can become truly decentralized, there are also some issues with wasting com-
putational, if there is an amount of transaction throughput that is needed for the system to
stay secure, there might be a need for honest nodes to constantly sign transactions, even
empty ones to make use of their hashing power to prevent adversarial attacks on the DAG
[19]. Otherwise, it is an interesting approach in making the users of the systems the min-
ers, but is still in a researching phase despite IOTA tokens being available for what now is
a somewhat centralized system.

Hedera Hashgraph [8]: The Hashgraph is also another different approach to the distributed
ledger which uses a different data structure than the blockchain to contain the transactions
and information within it. That structure is the hashgraph, which is held by the nodes in
the system. It consists of a graph of events which contains the transactions, being spread
by a gossip protocol. A gossip protocol is a protocol where a node shares everything they
know with a random node in the system to spread the information. They do not only spread
the transaction, but information of the event of who messaged who which is used to keep
the ordering of the event. A thing that is special for this implementation of a public ledger,
is that it maintains fairness in the ordering in transactions, meaning that if someone adds a
transaction before someone else, that order is kept in the ledger. Figure 2.16 shows the data
structure of the hash graph, where the lines are the time for each node, given names, and the
dots are gossip event, connected by who gossiped to who. To achieve consensus whether
an event happened or not, it uses what is called virtual voting, where nodes calculated what
another would vote based the information it holds, where it will confirm it if more than 2/3
of the other nodes can be calculated to agree on it. But this majority is not based on the
number nodes agreeing, but their stake, which is represented as positive number for each
node, and the 2/3 majority is when 2/3 of the total stake agrees on it. So it implements a
sort of a proof-of-stake as part of the consensus algorithm, to discourage Sybil attacks by

49

Chapter 2. Background

Figure 2.16: The Tangle, which is the DAG holding all transactions [98].

creating loots of node would not be able to get 2/3 majority because of their lack of stake
in the network. It claims to have a high transaction throughput and speeds and to be more
bandwidth efficient compared to similar Byzantine Fault Tolerant consensus approaches
due to the virtual voting. But it is currently patented and only exists as a private network
for now. So any use is limited outside of that.

2.9 Service description
In addition to the approaches on how to store information about services and data. There
is also a need to decide which types of descriptions of the service or data is needed to be
stored together with the information on how to access them. What it is included in the
service descriptions in the case of this thesis is likely to have some overlap with the KPIs
introduced in section 2.7.

2.9.1 Web Service Description Language (WSDL) and OWL-S
WSDL [29] is an approach on how to describe web services. WSDL documents are used
to describe or define services as a set of network endpoints, or ports, in a XML format.
It has an abstract and a concrete definition of a web service, where the abstract definition
defines with the web services does through defining operations and the messages in the
form of input or output, while the concrete part adds information about what protocols is
used to contact the service and at what address this is done. This provides a standardized
way to describe what the service does, and how to interact with it. This can as an example
be used to together with Universal Description, Discovery, and Integration (UDDI), which
is registry where services can be stored that maps to a WSDL document, using Simple
Object Access Protocol (SOAP) as the communication protocol to the registry, and to the
services [81]. Similar work with describing services was also done by creating OWL-S,
which built upon the Web Ontology Language (OWL), attempting to describe semantic
web services by a ”ServiceProfile” describing what it does for the user as advertisement,
a ”ServiceGrounding” describing how to interact with it, and a ”ServiceModel” that ex-
plaines how it actually works. These would themselves have several concepts below them,

50

2.9 Service description

and the whole thing would be formatted in XML as well [76].

2.9.2 Cloud service descriptions
With the new paradigm of cloud computing, some work has also been done describing
services in the cloud. In [111] a XML formatted schema for describing cloud storage
services is proposed, as part of an automated approach to cloud storage service selection.
It describes the storage services as containers that can hold different objects, with their
own descriptions in form of types. It also describes functionality and available operations
of the services, as well as the performance and costs for the service. This information is
used as a basis for selection.
Work on descriptions that covers cloud hosted services as a whole, looking at Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), cov-
ering all these cloud computing layer abstractions under a single abstract description of
cloud services, is proposed in [86]. It consists of a template for cloud services formatted
in XML, that can be extended with more sections as needed. The most basic properties
registered, is an unique id, description, ownership, version and release date. The next sec-
tion is a offering section that describes the functional capability of the service, technical
interfaces, QoS specifications and policies. There is an implementation section specified
for those that deploy and provide provisioning of the service, that can describe config-
urations and dependencies. A resource requirement section that describes the resource
requirements of the service. The description provides information both to the consumers
of the service as well as those that implements it.

2.9.3 Fog-to-cloud taxonomies
In papers [119, 120, 121], it is identified that a definition for the resources and the service-
tasks in Fog-to-cloud (F2C) computing. Looking specifically within a smart city scenario,
which is the case in all the papers, there is a lot of heterogeneity and variation in the
different devices that will be part of the F2C computing platform. The first part of creating
descriptions that can be used to allocate services to resources, is to create a taxonomy of
the resources and services for the F2C platform in a smart city scenario. The first concept
in the taxonomy, is the F2C resource, which is component that by having an entry point
and the ability to run the software so that it can participate in the overall F2C system, is
considered a F2C resource. It has a set of five main characteristics, that themselves also
have their own characteristics [120]:

• Device attributes
• Cost information
• History and behavioral information
• Security and privacy aspects
• IoT and attached components

Not every characteristics will be presented here, but we will have more specific look at the
ones related to data collection, which is the IoT and attached component characteristics.
IoT components have the following characteristics:

51

Chapter 2. Background

• Observed properties
• Operating properties
• Measuring properties
• Survival properties

But in addition to that, a more specific characterization for sensors is also proposed, with
the following characteristics:

• Survival range: Working lifespan of device
• Accuracy: Same as accuracy presented in section 2.7.3
• Frequency: The rate of capturing and sending data, same as granularity in section

2.7.3
• Geo-location: The geo-spatial position of the sensor itself.
• Latency: The delay between the data is captured, and when they are transmitted.
• Measurement range: The range in which the sensor is able to measure.
• Feature of interest: The feature of interest is the object that the measurements are

taken from. If a sensor measuring the CO2 in a room, the room is the feature of
interest, and the CO2 levels is a quality of it.

There is also characterization of services and tasks, a service consists of one of several
tasks, that needs to be completed in order provide the service. A service is characterized
by the context of the service, like if it is tied to governmental, educational service; the
service location, which is where in the F2C system it is provided, like the cloud or fog; the
security and reliability preferences; the data characteristics, in what type of data processing
is needed; the cost of the service, or if it is free; and at last, which tasks it consists of.

The characteristics of the task is mostly tied to their computational demands, like the
network, storage, processing, power, and memory requirements; data requirements, related
to what type of data is needed; and the time requirement, specifying how much time the
task has to execute. In [121], this taxonomy is used to create descriptions formatted in
XML as instance of descriptions.

2.10 Zero Emission Neighborhoods (ZEN)
Part of building sustainable cities with a wise management of natural resources, involves
the living and the building domain of the city. Buildings are a significant source of energy
consumption, with it being responsible for nearly 40% of the final energy consumption as
well as 36% of a greenhouse gas emissions in both the private and public sector [63].
A zero energy building is defined as building that supplies at least as much energy as it
consumes by supplying energy to the same grid that it consumes energy from [115]. In
the UK there is work towards realizing zero carbon homes that contribute zero carbon
emissions over their life-cycle [92]. Zero emissions neighborhoods (ZEN) have the same
focus on greenhouse gas emissions and low carbon, but instead on the scale of neighbor-
hoods where energy flexible neighborhoods is part of realizing that goal. To understand
the scope which ZEN operates within in the context of neighborhoods, their definition of
a neighborhood is useful [155]:

52

2.10 Zero Emission Neighborhoods (ZEN)

”In the ZEN Research Centre, a neighbourhood is defined as a group of in-
terconnected buildings (which can be of different types, e.g. new, existing,
retrofitted, or a combination) with associated infrastructure (which includes
grids and technologies for supply, generation, storage, and export of electric-
ity and heat, and may also include grids and technologies for water, sewage,
waste, mobility, and ICT), located within a confined geographical area. The
area has a defined physical boundary to external grids (electricity and heat,
and if included, water, sewage, waste, mobility, and ICT). However, the sys-
tem boundary for analysis of energy facilities serving the neighbourhood is
not necessarily the same as the geographical area. The system boundary for
each ZEN pilot area is also dependent on the case and may vary accordingly.”

According to [73], the ZEN research centre has an aim to answer the following research
question:

How should the sustainable neighbourhoods of the future be designed, built,
transformed, and managed to reduce their greenhouse gas (GHG) emissions
towards zero?

In order to achieve this, the same document report states that the focus should be the
following goals within the neighborhoods:

• Plan, design and operate buildings and their associated infrastructure components
towards minimized life cycle GHG emissions.

• Become highly energy efficient and powered by a high share of new renewable en-
ergy.

• Manage energy flows (within and between buildings) and exchanges with the sur-
rounding energy system in a flexible way

• Promote sustainable transport patterns and smart mobility systems.
• Plan, design and operate with respect to economic sustainability, by minimising total

life cycle costs.
• Plan and locate amenities in the neighbourhood to provide good spatial qualities and

stimulate sustainable behaviour.
• Development of the area is characterised by innovative processes based on new

forms of cooperation between the involved partners leading to innovative solutions.

The work of ZEN research centre is divided into 6 different work packages that focuses on
different areas of research, but are all connected to each other. Most relevant for this thesis
is work package 1, which is related to the specification of the ZEN KPIs, further explained
in section 2.10.2, and the data management plan for collecting, structuring, and analyzing
the ZEN KPI data, which involves the ZEN ICT architecture, further explained in section
2.10.3. And work package 6, which involves the ZEN pilot project and the living labs,
further explained in section 2.10.1.
The ZEN research centre is part of a research centre for environmentally friendly energy
called ”FME” which does the research on zero emission neighborhoods. And is research
done in collaberation with partners in the private sector and the public sector, where NTNU
acts as the hosts and leads the centre together with SINTEF Building and Infrastructure
and SINTEF Energy.

53

Chapter 2. Background

2.10.1 ZEN pilot
The ZEN pilot projects is part of work package 6, and consist of 9 different locations
in Norway where new solutions for the construction, operation and use of buildings are
tested. The intention of the ZEN pilot projects is to work as role models to other, by
inspiring them to build zero emission neighborhoods and showing how this can be done
[155]. The ZEN pilot projects are located at these locations in Norway:

• Airport redevelopment, Bod
• Campus Evenstad
• Campus Evenstad
• Fornebu, Brum
• Furuset, Oslo
• Knowledge Axis Trondheim
• Residential area, Steinkjer
• Ydalir, Elverum
• Zero Village Bergen

The project covers different phases, and involves new development and existing neighbor-
hoods as part of the projects. The phases ranges from the strategic long-term planning,
where goals and ambitions for the development are made, and measures are made to fulfil
goals and ambitions. To the tactical, mid-term planning and implementation phase, where
zoning plans and development agreements are made in order to specify the goals made in
the previous phase, and smaller projects might be part of this phase. And the last phase
that is the operational phase, where the neighborhood or parts of it is in use, research is
being done. The projects differ in which stage they are in, in addition to also have dif-
ferent functionalities, like being a school, and office building or a residential home. They
might differ in size, areas, local context and the time frames for the projects. There is
also different thematic scopes, where ZEN might look purely at energy use in project, to a
more holistic view in others [32]. And as part of testing and analyzing these solution, data
management of the gathered data from the project is needed, which is where ZEN ICT
architecture is meant as a solution.

2.10.2 ZEN KPI
As part of the testing and analysis of the new solutions in the pilot projects, there is a need
for a clearly defined set of assessment criteria and KPIs, that can be used to create methods
and tools to assess the progress of ZEN pilot project in terms of reaching their stated goals.
ZEN defines a KPI as ”a set of quantifiable performance measurement that define sets of
values based on measure data from a project, making it ensures to measure and track the
neighbourhood’s performance over time and against other similar projects” [149].
The scope of the ZEN definitions includes seven categories where each category might
have one or more assessment criteria, and each of the assessment criteria might have one
or more KPIs [73]:

• Greenhouse gas emissions

– Total greenhouse gas emissions

54

2.10 Zero Emission Neighborhoods (ZEN)

– Greenhouse gas emission reduction

• Energy

– Energy efficiency in buildings
∗ Net energy need
∗ Gross energy need
∗ Total energy need

– Per energy carrier
∗ Energy use
∗ Energy generations
∗ Delivered energy
∗ Exported energy
∗ Self consumption
∗ Self generation
∗ Color coded carpet plot

• Power/load

– Power/load performance
∗ Yearly net load profile
∗ Net load duration curve
∗ Peak load
∗ Peak export
∗ Utilization factor

– Power/load flexibility
∗ Daily net load profile

• Mobility

– Mode of transport
– Access to public transport

• Economy

– Lice cycle cost

• Spatial qualities

– Demographic needs and consultation plan
– Delivery and proximity to amenities
– Public space

• Innovation

ZEN Toolbox Guideline

In addition to the development of the ZEN KPIs, there has also a process of developing a
toolbox that makes use of the different KPIs, by feeding the different KPIs into the tools
[156]. These are multi-criteria decision analysis tools that look at the overall evaluation of
trade-offs and performances for the ZEN KPIs for a pilot project, as shown in figure 2.17.
As example for tool, might be visualization of overall performance for a project. These

55

Chapter 2. Background

Figure 2.17: The relationship between ZEN KPIs and the ZEN Toolbox [156]

tools have a need to also find the best data available for their use stored in the ZEN ICT
architecture, and might be helped by the work done in this thesis to find and select data.

2.10.3 ZEN ICT architecture
In papers [126, 127], the ZEN ICT architecture is proposed and is also shown in Figure
2.19. It is intended for big data management in a smart city scenario in order to manage
all the data created in a smart city, and also as an architecture for managing the data from
the ZEN pilot projects.
It consists of three different layers, where all layers manage data, through a model called
the Comprehensive Scenario Agnostic Data Life Cycle (COSA-DLC), described in [124]
and shown in figure 2.18. The three blocks of the model, data acquisition block, data
processing block, and the data preservation block details organization of the data manage-
ment at each layer in the overall architecture. Each block shows the different phases of
data management within it, as shown in the figure. Part of the process includes in addition
to collection, processing and storing, involves the classification of the different attributes
of the data during this process.
The architecture as a whole is shown in figure 2.19, where the architecture consists of
three layers, where the two lowest are distributed, and the top cloud layer is the centralized
layer. As the layers get closer to the cloud, the computational capacity and storage capacity
grows, but so does the latency for the users near the edge that need the data, and as a result,
the closer you get to the cloud, the older the data gets as well.

• Fog-Layer-1. The lowest layer of the architecture is Fog-Layer-1. It is the layer
nearest the end-users of the where the data is collected within the cities. At the top of
the layer represented as green dots in the figure, is the fog-devices that organize and

56

2.10 Zero Emission Neighborhoods (ZEN)

Figure 2.18: The COSA-DLC model

control the IoT devices that collect the data. This is most likely the most powerful
node in terms of processing and storage. These IoT-sources operate within a Fog-
Area, which in the case of ZEN is the ZEN Pilot neighborhoods. This layer is
responsible for managing real-time data.

• Fog-Layer-2. Fog-Layer-2 is a middle layer between the between the IoT-Hub and
Fog-Layer-1, which is positioned in the city but not in physical proximity to the IoT
devices. The IoT-Hub is the most powerful node in terms of processing and storage.
At the top of the architecture lies the cloud layer. It will store the last-recent data
that is not as fresh as the real-time, but not historic like in the cloud.

• Cloud Layer. The cloud layer has the most processing and storage, and will store
all historic data from the ZEN pilots. This forms the basis for the data management
in the ZEN pilots, and it is within this context a cost model for service selection is
to be proposed in the next section.

It is within this architecture that data from ZEN will be managed, and as explained earlier,
the problem looked at in this paper is how to find suitable data for the users within this
system of data management. The system will be responsible for gather data, processing it
and storing it in various locations.

57

Chapter 2. Background

Figure 2.19: ZEN ICT architecture

58

Chapter 3
Research Methodology

3.1 Research Method
This master thesis is part of ZEN research on distributed-to-centralized data management
architectures for smart cities [156]. The focus is as mentioned earlier in the problem de-
scription on how to find and select suitable data and services in this context. The problem
is in itself just one of many problems that needs to be solved in this context, and different
problems are also being worked on by two other master students at the same time period as
this thesis, which instead focuses on addressing and routing, and allocation of processing
resources. It is also a continuation on the work that was done on an older master thesis
with data management in a centralized model in [158]. This is also part of a larger body
of work on smart city data management, and distributed-to-centralized architectures or
fog-to-cloud architectures.

The research consists of two phases, the first is a literature review to build the background
theory of this thesis, which answers some of the research questions. The second phase
is based on the design research methodology, which aims to design and implemented an
artifact, which then is evaluated, as part of the research.

The literature review done in preparation to this thesis is based several topics related to
the problem and research questions as well as the work that is done in this area, based on
material given to me by my supervisor and expanded upon by finding related literature by
using terms from those papers. It consists of material about smart cities and distributed-
to-centralized architecture, KPIs in cloud computing and for decentralized-to-centralized
architecture, data quality, cost models, service selection and service management, which
are all relevant for the design of a solution.

The design research method in this paper is based upon the design research cycles pro-
posed in [58]. In it, three research cycles in the overall design research cycles is specified.
The first is the relevance cycle, which initiates the research by identifying opportunities
and problems in an application environment, and often ends with an evaluation of the
impact of the research in that application environment. The rigor cycle ties the design

59

Chapter 3. Research Methodology

Figure 3.1: How the design science research checklist maps to three design research cycles [58]

research into the scientific knowledge base of the related fields, grounding the design in
scientific concepts and also contributing to the knowledge base through the design re-
search. The design cycle is at the center of the design research cycles, and consists of
designing, building and evaluating artifacts and process informed by the other two cycle.
From this, a checklist of 8 questions is proposed for evaluating a design research project:

1. What is the research question (design requirements)?

2. What is the artifact? How is the artifact represented?

3. What design process (search heuristics) will be used to build the artifact?

4. How are the artifact and the processes grounded by the knowledge base? What, if
any, theories support the artifact design and the design process?

5. What evaluations are performed during the internal design cycles? What design
improvements are identified during each design cycle?

6. How is the artifact introduced into the application environment and how is it field
tested? What metrics are used to demonstrate artifact utility and improvement over
previous artifacts?

7. What new knowledge is added to the knowledge base and in what form (e.g., peer-
reviewed literature, meta-artifacts, new theory, new method)?

8. Has the research question been satisfactorily addressed?

How these questions maps to both the design research, the environment, and the exiting
knowledge base is shown in figure 3.1. With the numbers with red circles around the map
to the different parts of the three design research cycles.
For each of the questions, these are the answers or where the answers could be found:
1. The research questions are presented in section 3.2, and are based on the problem
description and motivation in section 1.2.
2. The artifact is the design presented in chapter 4 and implemented in chapter 5.

60

3.2 Research Questions

3. The design process is based on [137], where the process consists of suggesting a design
as a solution to the problem identified in research questions and in the problem description.
4. The design itself is formed and based on the theory found in the literature review, how
the design fits with the theory is explained in chapter 4.
5. There is only one cycle for the design cycle, which means the evaluation will be found
in the discussion in section 7.2
6. The testing of the artifact is explained in the evaluation and part of the results in chap-
ter 6. Besides looking at the whether it fulfills the requirements defined in the design,
measurements of response times is also used to evaluate the artifact.
7. Identification of KPIs to use for selection in this context, the design of the artifact
together with the evaluation of how it works in a simulated application context.
8. The research questions are answered in the conclusion, in section 8.2.

Strength and weaknesses

By not performing a systematic literature review, but what is referred to in [158] as an ad
hoc literature review, it makes it harder to reproduce the result from the literature review
and how the different literature was found. But since it was identified that the solutions
to the problems required literature from a wide variety of different domains, it would be
hard find search terms and approach that would cover this wide area and at the same not
produce an overwhelming amount of to be reviewed. The search terms use, related to
the selection, KPIs, storage and description, together with fog-to-cloud and cloud to find
relevant literature. A mistake that was done, was to not write down the terms used, which
in hindsight is a mistake.
The design science research allows us to test the feasibility of an idea of an solution to a
problem, but is also dependent on good enough evaluation and testing. If the environment
it is tested and evaluated in does not correctly correspond the environment is intended
to work in. In our case, with an underlying architecture that is not implemented as the
intended environment, the conclusions drawn in the evaluation might not translate.

3.2 Research Questions
• RQ1: How can a cost model be defined for service and data selection in a distributed-

to-centralized architecture for smart cities?

– RQ1.1: Which KPI and criteria should be used with the cost model in this
context?

– RQ1.2: What approaches and methods should be used to define a cost model
in this context?

– RQ1.3: How should information about services be stored and shared in this
context?

• RQ2: How can an implementation of this cost model contribute to finding data in
the ZEN ICT architecture?

61

Chapter 3. Research Methodology

62

Chapter 4
Proposed cost model design

This chapter contains the proposed design and architecture for the cost model and its sup-
porting components. The design is based on background material presented in chapter
2, which will be referred to in the design description. The goal of the design is to help
find data and services within a distributed-to-centralized data management architecture for
smart cities, with the ZEN ICT architecture as the mold for that type of architecture. The
goal of the design is to find data within the stated context, but also be general enough
that it can translate to finding services as well as data for similar architectures. First in
this chapter, the different stakeholders are identified, before some requirements based on
earlier work, and finally the design of the architecture itself.

4.1 Stakeholders
The different pilot projects have different stakeholders, identified in [32]:

• Project owners: In most cases the municipality is the project owners as well, but
could also be private developer and land owners.

• Municipality and government: Can be different departments and administrations
• Universities
• Landowners
• Developers
• Consulting agencies
• Transportation agencies
• Energy utility companies
• Waste management companies
• Housing cooperatives

But not all of these can be considered important stakeholders in this design. The stake-
holder is in the case the people and organizations that either use the data or generate it in
the ZEN pilot projects, but also in the smart city scenario. Based on this list, a short list of
stakeholders is presented below:

63

Chapter 4. Proposed cost model design

Citizens

To some degree the subjects of the data, and have a stake in how the data generated by
them and their buildings and neighborhoods, but also as potential consumers of their own
data through applications and services.

Municipality and government

Consumers of data, that can use the data as part of decision making support, through tools
that help analyze and visualize different aspects of the city. But also for creating policies
at the highest level of government as well.

Researchers

The pilot projects are themselves part of the research, where the researchers involved have
a vested interest in the data generated. In large scale scenarios, the data generated is also
something that researchers and scientists should find interesting.

Utility companies

Providers of different utilities like energy, waste management, transportation and water as
examples, are like going to be interested in the data produced to improve their services.

Application developers

The developers creating services based on the data from the smart city is going to have an
interest in a system the is responsible for managing the data they depend on.

4.2 Requirements
This section contains the requirements for the design. It also contains information of the
requirements specified for the previous work done on this topic, and which parts of the
requirements remains for the cost model design. The requirements are also to be used in
the evaluation of the implementation.

4.2.1 Previous requirements
This project is a continuation on the work on data management for ZEN. In an earlier the-
sis, a data management architecture using a centralized approach was designed and imple-
mented, and used a set of requirements identified by ZEN as a general set of requirement
for a data management platform [158]:

• Hosting of KPI, research and context data and metadata
• Big data and visualisation services
• End user applications for municipalities, citizens and businesses
• Logs and data on the use of services provided
• Open API for third party developers

64

4.2 Requirements

• Support for exploratory analysis of datasets
• Support for management of KPI data
• Support for research based on the data on the platform
• Future-proof for the duration of the ZEN pilot projects at a minimum 8 years
• Flexibility in order to adapt to changes in KPIs and collected data

From this, the thesis identified six different requirements:

• Flexible processing and analytics
• Interoperable storage for heterogenous data
• Cohesive data management
• General approach
• Facilitation of open data dissemination
• Vendor independent

With the new ZEN ICT architecture, which a is distributed-to-centralized approach to data
management, detailed in papers [126, 127] and discussed in section 2.10.3, the requirement
are specified in terms of meeting the big data challenges(the 6 Vs) and data life cycle
specified in terms of the COSA-DLC [124]. This thesis is however smaller in scope than
the whole data management task, and is instead focused on finding and selecting data,
which means several of the requirements are not useful for this case, and are deal with in
other places in the distributed-to-centralized architecture.

From the first set of requirements formulated, ”flexibility in order to adapt to changes
in KPIs and collected data”, is relevant, as the description of the data and services, and
changes in the KPIs used to select can change, which demands flexibility for this solution
as well. From second set of requirements, ”general approach”, in that it should support
finding and selecting different kind of data and services, which ties into the flexibility
requirement. ”Facilitation of open data dissemination”, it should make it easy to access
and explore data for everyone. ”Vendor independence” is also relevant for this solution.

From the 6Vs, the variety of data must be supported, and is related to the flexibility of
and general approach requirements. The velocity of the data, as it is quickly created,
must be attainable as soon as possible for the end user. The value of the data is at the
core of this thesis, attempting to find the most suitable data for the least cost. From the
COSA-DLC model, the responsibility of following the model lies on the actors storing
the data, in classifying the data, appraising the quality of the data and readying it for
dissemination. The classification and the quality appraisal information can then be used in
selecting among the data.

4.2.2 Usage scenario
The specific design is designed towards use with the ZEN ICT architecture and the ZEN
pilot project. In this scenario, different actors may want find specific ZEN KPI data. One
of the most basic specification of the data, is the type of data, the location where the data
is from, and the time period when the data was created. In addition to that, in order to find
the most suitable data, the actor should be able to specify different criteria with the data,
to get the most suitable place to get the data from.

65

Chapter 4. Proposed cost model design

4.2.3 Specified requirements
From the previous requirements, and the usage scenario, these are the requirements for the
design:

• Be able to find data according type, location, and time generated.
• Be able to specify preferred qualities with data or the provider of the data, to get the

most suitable data.
• Be flexible with which types of KPIs can be used to describe a data provider or the

data.
• Be able to find data as soon as it is accessible.
• Facilitate open data dissemination.
• Vendor independence.

4.3 Architecture
The architecture is based on the underlying ZEN ICT architecture, which is a distributed-
to-centralized architecture for data management, and provides the context this architecture
is designed in. It is itself a distributed design, where different instances of what in this case
is called ”Control units” are hosted in Fog-Layer-2 and in the Cloud-Layer and are able
to communicate with each other. The idea behind the design is that you should be able to
query any control unit, and get a response, but being in a city where a Fog-layer-2 control
unit is hosted and trying find data from that city should be better. In this case, the control
unit is kept separate from the data repositories, but could just as easily be implemented as
a part of the data storage. In the scenario outlined for the ZEN, there might be different
actors within the same city, like an energy provider, a municipal entity or a research team
that themselves keep data from the city that might be accessed. The architecture is shown
in figure 4.1, with two control units in Fog-Layer-2, representing Trondheim and Bergen,
and a control unit is the cloud. The architecture supports adding more units in Fog-Layer-
2, but for simplicity, only two are included in the design. The solid arrows represents the
communication between control units, while the stippled arrow represent communication
between control units and data repositories.

The control unit consist of three major components. The first being a request handler that
handles the incoming queries, from either a user or another control unit, and is responsible
for forwarding the request to the other components and responding to the query once
the other two components are done. The second component is the ”cost model”, which
is responsible for filtering and calculating a ranking between all viable alternatives that
is found, based on the criteria given by the user in the query. It can either return the
ranked results or just the highest ranked alternative to the user. The last component is the
”router”, which depending on the on some of the search parameters, queries the location
that might hold the type of data for metadata about the data and their service properties.
In addition to the control unit, a GUI is designed as the point where the user interact with
the system, consisting of a configuration component to specify a criteria for the search, as
well as search component that search for specific data and displays the results. In figure
4.2, the internal architecture and how the different components interacts, is shown, where

66

4.3 Architecture

Figure 4.1: The top level of the architecture of the cost model design

67

Chapter 4. Proposed cost model design

Figure 4.2: Internal architecture of a control unit

solid arrows show internal control flow of the control unit and request and response to the
control unit, and the stippled arrows show the queries that the routing component might
make. How the control flow is from a query to the control unit, to its response, is shown
in the sequence diagram in figure 4.3.

4.3.1 Request handler

The request handler acts as the interface to the control unit. There are two types of com-
munications that would access the request handler, the first being user requests in the form
of a search query together with a description of the cost model parameters, and returns
a ranked list of all the suitable alternatives. The other is a request from another control
unit, that needs information about data repositories that the control unit knows about, in
the form of a search query without a cost model configuration, and returns all results that
match the query. The search query consists of the location where the data was created,
the time it was created, and the type of data it is, like temperature measurements or power
usage. The cost model parameters are explained in section 4.3.3.

68

4.3 Architecture

Figure 4.3: Control flow for a user query

4.3.2 Routing

The routing component is responsible for querying all the places that might have the data
the user is looking for, specified by the search query sent to the request handler and passed
to the routing. It consists of a routing table and a set of query algorithms. The idea behind
this approach is based on the distributed hash tables containing information on where to
find data or files presented in section 2.8.2. The approach allows the different nodes of
the system to hold partial information about the all data stored in the system and knowing
where to forward the queries if it does not hold that information itself. This means that
a control unit in the fog only needs to hold information about the data stored for the fog
area, limiting the amount of information kept and managed by it, and that communication
can go to control unit placed locally, instead of through the cloud control unit, lowering
response times. Any query to it for data from another fog area is forwarded to the cloud
control unit, that will forward it to the correct fog.
The approach used in this design differs from the ones presented in section 2.8.2, in that it
uses the underlying tree structure of the ZEN ICT architecture presented in section 2.10.1,
and is likely very static as it is tied to the underlying infrastructure of buildings. The
biggest difference from the presented approaches in section 2.8.2, is that it does not only
attempt to reach a single node, but every node that might have the appropriate data, making
it like a hybrid approach between the flooding used in Gnutella [26], where a query is
flooded through the overlay network with some limited scope, but also keeping routing
tables to avoid forwarding it to nodes that does not have the data.
The reason behind this approach, is that we to some can assume that data generated in a
building can only be found at certain places, at the Fog-Layer-1 near where it was gener-
ated as real-time data, at Fog-Layer-2 as last recent data kept in the IoT-Hub or by other
actors in the same city, or in the cloud as historical data. This could also be extended to
be done together with type and time, as part of the routing entries, but is not done for this
implementation, focusing solely on location.

69

Chapter 4. Proposed cost model design

Entry Repository Queried
”/” Cloud Yes

”/bergen/” Fog-Layer 2 in Bergen Yes
”/trondheim/” Fog-Layer 2 in Trondheim No

”/bergen/zeroVillage” Fog-Layer 1 in Bergen Yes

Table 4.1: How a query with location ”/bergen/” would query repositories from a control unit

Routing table

The routing component needs to hold its own table, that is used to query different loca-
tions based on the search query given. For a given location sent in a search query, it makes
sense the routing table has enough information to know which places to query for data,
this could also be done for the type, if the routing table have knowledge of which loca-
tions hold which type of data, and even for time, if it knows that some data age means
that it could only be with the historic data as an example. Based on this, information from
the different location is queried. The approach for describing data location is based upon
the REST [44], for location only. A location for data might be described as ”/bergen/ze-
roVillage/2/4”, where the first parameter is the city, the next the neighborhood, followed
by building number and sensor number. A repository in the fog in Bergen might hold
data that begins with ”/bergen/”, which might contain any data generated in Bergen. That
means that when looking for data specifically from ”/bergen/zeroVillage/2/4”, we would
want to query that repository. ”/bergen/” is then the key for a table entry in routing table
for that repository, and if the key can be a prefix for the location in the query, we use the
associated IP-address to query that repository to find out if it holds data from ”/bergen/ze-
roVillage/2/4”.
Similarly, we also want to be able to query more than just a specific sensor, but data from
several locations. In a case where we would want data from Bergen as a whole, we would
search for ”/bergen/”, and if there exists repositories for data from a single neighborhood
with an entry longer than ”/bergen/”, like ”/bergen/zeroVillage/”, we would also want to
query this location as it holds data from Bergen. To do this, we check if the query can be
a prefix to the routing table entry, we query the associated IP-address.
We then end up with the logic of querying any entry in the table, where the routing table
entry can be a prefix of the query, or the query can be a prefix of the routing table entry.
In other words, if we know that a repository does not contain the data we are looking for,
we do not query it. As en example, the table 4.1 shows how the location part of a query
”/bergen/” interact with the routing table, with blue color meaning a prefix match, and the
red color meaning a prefix mismatch.

Query algorithms

Using the information from the routing table, the query algorithms are responsible for
querying the different locations that match the search query. As these are multiple http
requests, there is a possibility that some of the requests might fail or timeout, and after
the queries is done, the control unit still needs to respond before the initial request that
was sent to the control unit times out. This means that there needs to be window where

70

4.3 Architecture

responses are collected, returning those that succeed. On the other hand, if all requests
succeeds or fails quickly, it should return as fast as possible. As this process is can be
forwarded, there might be a need to decrease the waiting time on each following query,
which might be a working approach as the tree structure is limited in depth. These request
can be directly to a repository, or to another control unit, that returns the collection of data
descriptions it found.

4.3.3 Cost model

The cost model designed for this is based on that MAUT approach to selection, discussed
in section 2.6.7. The reason behind using this is that it a fairly intuitive approach that
allows to create fairly detailed ranking function depending on the amount of intervals
done, and being a utility based comparison makes it easier to target specific performance
values than by using comparison to relative performance of all alternatives. It is not very
computationally demanding, as it only need one iteration through all alternatives to find
the best score. It also seemed easy to make an intuitive interface for as well. But as it
does not have strict constraints in it, filtering results on strict constraints will be added
as part ranking and selection. This is something that should give a variety of ways for
a user to specify their needs and wants for the results. So, the cost model configuration
consists of a set of hard constraints that filters out alternatives based on some KPIs, and
a utility functions in the form of utility intervals, as presented in section 2.6.7, and their
weights. The final result set consists of all the alternatives given scores. A pseudo code
implementation of the cost model is presented in algorithm 2. After gathering all the
alternatives in alternatives, it iterates through them. For each alternative a, it first iterates
through the strict constraints in filter, if the alternative breaks a constraint, it sets add to
false, and it is not added to the final results. If it not filtered out, it iterates through the
criteria for the ranking, calculating a score with the weight and utility function in each
criteria c, adding it to the total score, before it is appended to the list of results together
with its score.

71

Chapter 4. Proposed cost model design

filters: a list of strict constraints;
critera: a list of criteria to rank with;
alternatives: a list of alternatives;
result = [];
for a in alternatives do

add = true;
for f in filters do

if a breaks constraint f then
add = false;

end
end
if add == true then

score = 0;
for c in criteria do

score = score + (c ranking for a)
end
result.append({score: score, data: a})

end
end

Algorithm 2: The cost model calculation

This is not an adaptive solution, as the result is calculated for a single query, based on KPI
data either queried from the data repositories, or measured, and given to the user requesting
it. It does not include an component for measuring the changing performance of a chosen
data repository, which likely should placed at the user utilizing the data repository. This
could perhaps be updated to the design by implementing the ACPS algorithm presented in
section 2.6.9 with the user.

4.3.4 User interface
The most basic user interface might be through the API provided by the control unit, which
takes the form of a JSON data in a HTTP POST request, with the search query and the cost
model configuration. But a design is also made for a graphical user interface (GUI), to see
how intuitively it can be made for users. The design consists of two pages, one where the
search terms can be entered and that displays the results, and another page for specifying
the cost model configuration so that it could be used for multiple search. The search pages
specifies search queries in terms of data type, data location, and data age, while the cost
model configuration uses different KPIs to filter and rank alternatives.

72

Chapter 5
ZEN Cost Model Prototype

This chapter introduces the prototype created based on the design presented in chapter
4. The creation of the prototype is part of the research methodology presented in chapter
3, where the part of the methodology includes the creation of an artifact to evaluate it as
part of answering the research questions, specifically RQ2. The prototype includes all the
components presented in the design, in addition to mocked data repositories to test the
prototype.
The prototype is limited in scope in terms of the KPIs included in the cost model, and is
using KPIs given by the mocked data repositories instead of measuring some of the data
itself.

5.1 Preliminaries

5.1.1 Requirements and implementation
The requirements identified in section 4.2.3 needs to be taken into consideration in the
implementation of the prototype.

1. Be able to find data according type, location, and time generated.
2. Be able to specify preferred qualities with data or the provider of the data, to get the

most suitable data.
3. Be flexible with which types of KPIs can be used to describe a data provider or the

data.
4. Be able to find data as soon as it is accessible.
5. Facilitate open data dissemination.
6. Vendor independence.

Most of these are taken into consideration in the design, and by implementing the design,
will be satisfied, this will include the requirement 1, 2, 4, 5, 6. But the flexibility needed
to satisfy requirement 3 is dependent on how the implementation of the design makes it

73

Chapter 5. ZEN Cost Model Prototype

easy to change or add KPIs to the system. It is necessary to design the scheme by how the
KPIs are handled and structured in a way that makes it flexible.

5.1.2 Scope and limitations
The scope of this prototype is in many way formed by the limitations. The largest limi-
tation is that the underlying ZEN ICT architecture only exists as an architecture design,
which means that in order to test and run the prototype in the context, some aspects of the
architecture needs to be mocked. This is done through mocking data repositories. There
is also some limitations to what data exists, and in what format it is. There exists data sets
collected at some of the pilot locations, but not as being processed and managed through
the decentralized-to-central data management architecture. But the data itself is not what
is of interest when selecting, but the description or metadata of both the data and the data
repository that is used in the cost model for selection. This means that a set of metadata
describing data sets is made up for the sake of testing the prototype, and specifying the
format of KPI descriptions for a data repository. The KPIs selected for this is further
explained in section 5.2.
The scope of the prototype involves implementing the design specified with a set of few
KPIs, and simple utility functions based on numerical intervals, as shown in the example
of MAUT in section 2.6.7. It is hosted locally, and on several location in the cloud, that all
communicate with each other and can be accessed through the implementation of GUI that
runs in a web browser. The mocked data repositories are small web servers the responds
to a search query of the same format as used for the control units, with a list of metadata
for data sets that match the search query.

5.2 KPI and data description
The implementation of the format of both search queries, and the description of how KPI
and data descriptions from the mocked data repositories is formatted is described in this
section. As Nodejs and javascript is used, it makes sense to also use the JSON format for
the descriptions, instead of an XML format. We can divide the descriptions into two parts,
the search query descriptions and the response detailing the data.

Search query

The search query consists of three parts, the first part specifies the difference between a
control unit query and a user quest, which does not include a cost model for the control
unit query. The second part is the data that is being searched for, and the third part is the
cost model configuration. Below is the format shown, implemented in json, with ”<” and
”>” around the input:

{
"query": "user",
"search": {

"type": "<data type>",
"location": "<location string>",

74

5.2 KPI and data description

"start": "<data after this date string>",
"end": "<data before this date string>",

},
"criteria": {

"criteriaList": "<list of different KPI for cost model>",
"intervalList": "<list of utility intervals>"

}
}

Response

Only a subset of the different KPIs is included in the implementation of the model. Mostly
because adding every KPI to the implementation would not give any benefit in testing
the implementation. The limitations with using mocked data repositories means that this
information that is created for the purpose of testing. Part of that simplification has been
to treat the data as sets with start and end times of recording. In reality, data can be
represented in other manners as well. Those chosen KPIs are ones that have been found to
be relevant for the task selecting data. The different KPIs is shown in the response format
below, some tied to the data repository and some to the data itself:

{
"score": "<ranking of the data>",
"server": {

"address": "<path to the server>",
"bandwidth": "<bandwidth>",
"resourceCost": "<cost for resources used"

},
"data": {

"key": "<some key to access the data>",
"timeStart": "<start date for data set>",
"timeEnd": "<end date for data set>",
"cost": "<access cost for data set>",
"location": "<exact location of origin>",
"type": "<data type>",
"samplingRate": "<granularity of data>",
"dataSize": "<storage size of data>",
"accuracy": "<accuracy of the data>"

}
}

This forms the API to interact with control units through HTTP POST messages, and could
allow other applications to interact with the control units besides the GUI created.

To address requirement 3, this should be a very flexible manner to implement the descrip-
tion of data and service, as you can just add a new KPI to the server description or the data
description, and if it is added to the list criteria in the query, it can be used as part of the
cost model, if the KPI is a numerical value. There is some lack in the flexibility, as there
is not support for non-numerical KPIs in the cost model.

75

Chapter 5. ZEN Cost Model Prototype

5.3 Technologies

5.3.1 Programming language and run-time environment

The implementation technologies are all built upon Node.js1, which involves both the con-
trol unit and the GUI, and the decision for programming language and platform was based
mostly upon the fact that I am most comfortable with my knowledge in the JavaScript and
TypeScript2 programming language and Node.js, together with express.js framework to
create web servers. By using Node.js you also have to use JavaScript, or a language like
Typescript that compiles into JavaScript. This could have likely been done in any other
web framework for different languages and run-time environments.

5.3.2 Frameworks

Express.js

I used the Express.js3 web framework to create the server. This was done for the same
reason as mentioned above, that it was web framework that I was familiar with, but could
also likely be replaced by most other web server frameworks. It is a simple way to quickly
create a web server that handles and returns http requests.

React

For the GUI, I used React4 to quickly create a graphical user interface to specify a configu-
ration for the cost model and to issue requests to the control unit. The reason behind using
react is also the fact that I have most experience with user interfaces through web browsers
created by html, css and javascript, and react seemed like a simple way to quickly create
that. Any other platform for creating an UI that could also send http requests would be
equally good.

5.3.3 Cloud computing

As part running the application up on the cloud, and at different places in the cloud was
also needed, which made it natural to test several of the cloud providers. The selection
of cloud providers was based on being some of the larger ones, and providing free cloud
hosting. For this I used virtual machines on Microsoft Azure and at Google Cloud. The
virtual machines in both instances ran Ubuntu 18.04 as an operating system, but that does
not matter as Node.js runs cross-platform on most common operating system. Using an a
cloud platform was important as this is part of the ZEN ICT architecture.

1Node.js - https://nodejs.org/en/
2TypeScript - https://www.typescriptlang.org/
3Express.js - https://expressjs.com/
4React - https://reactjs.org/

76

5.4 Implementation architecture

Figure 5.1: The implementation of the architecture mapped to hosting locations

5.4 Implementation architecture

It is important for the implementation to be somewhat close to the design in order to test
it. As mentioned in the limitations, much of the underlying infrastructure does not exist in
implemented form, but by hosting the control units locally, and on different cloud location,
the testing and evaluation can be done in a context that is somewhat close to the intended
one.

The final product consist of the control unit, the mocked data repository and the web
browser based GUI. To run different scenarios, which will be explained more of in section
6.2.1, and test and evaluate in the implementation, it is attempted to implemented like it
would be in the ZEN ICT architecture.
Figure 5.1 shows the architecture of the implementation. The Trondheim fog control unit
is hosted locally on my own desktop computer, together with the mocked data repository.
The GUI is running on a laptop locally that can access the desktop through the local area
network, and the control units that are host on two different cloud locations. The cloud
control unit is hosted on Microsoft Azure’s virtual machines, together with another virtual
machine that holds the mocked data repository. This is located on the North Europe region
of of Microsoft Azure’s regions, which is located in Ireland. The fog control unit for
what is supposed Bergen in the scenario is located on Google Cloud’s virtual machines
in Finland, as this was the closest cloud computing provider to Norway that I found. It is
hosted on a virtual machine there, and another virtual machine in the same location is used
for the mocked data repository. The implemented control units have configuration files,
that is used to set the routing tables such that they would communication as shown in the
figure, when appropriate queries are received. The internal components of the control units
is implemented as described in the architecture design in section 4.3, and more specifics
about how it was implemented is discussed in the next section.

77

Chapter 5. ZEN Cost Model Prototype

5.5 Development
This section contains information about how the different components was implemented,
and the technologies used, which are almost the same for all the different components,
all are based on TypeScript/JavaScript and node, but two uses the Expressjs framework,
and one the Reactjs framework. The actual code for these components can be found in
Appendix B.

5.5.1 Control Unit
The control unit developed with JavaScript/TypeScript and nodejs. I would say that in
hindsight, typescript would not have been necessary here as the program didn’t end up
very large in size, and I opted to work with JSON objects as JavaScript objects, instead
of converting into types. It was built upon the Expressjs framework for creating web
applications on Nodejs, allows to quickly create a web server and receiving and sending
HTTP requests. This would be much of the intended functionality for the request handler,
and might be considered part of it. The rest of the internal architecture with the different
components remained true to the design.

Request handler

A lot of the functionality intended for this component was handled by the framework, that
makes it easy to start a server, defined access point, that on HTTP request can call functions
and return responses. The rest of the functionality of the request handler was in this case
to handle the control flow from a request was received and between the components. In
the case of a user query, it would initiate the cost model with the given configuration,
make the route request data from the appropriate locations, give that data to the cost model
to calculate rankings and send it back as a HTTP response. In the case of control unit
querying it, it would skip the steps with the cost model, and only return data data.

Routing

The routing component consist of the a routing table as in the design, and some query
functions that send requests data from different locations and returns the collection of the
responses. The routing table works as explained in 4.3, in the a matching prefix of a entry
in the routing table with the location stated in the search query would trigger a request to
the data repository listed together with the entry in the routing table.

The way the query algorithms is implemented, might in some ways be affected by the
constructs of the programming language and platform. It is based on the use of promises.
To explain quickly how a promise works in JavaScript, when waiting for data to set the
value of a variable, we can treat it as a promise of a value that either can have the state
of undecided, resolved or rejected. If it is undecided, it has not gotten a value yet, it is
resolved if it has a value, and rejected if some error causes it to not get its value. When
dealing with several HTTP requests as promises in this case, where we want to component
to return all results as fast as possible if they all resolve or reject, but if some requests takes
too long time, we want to return those that resolved and skip the others after some time.

78

5.5 Development

So we wrap all requests in a promise with a timer, so that they can race against it, and once
every request is resolved, return the whole set of results.

Cost Model

The cost model is implemented as in the design, allowing it to set a set of hard constraints
in the form of filters, and weights and utility functions as utility intervals for the ranking
of the alternatives. The implementation of this is fairly simple, it receives a set of different
alternatives in the form of metadata describing the KPIs of different data sets at different
data repositories, iterates through them, and for each alternative, first checks if it should
be removed due to the filtering of the hard constraints. If it is not filtered, it check for
each KPI specified in the cost model, what utility score the measurement is equal to and
multiplies it with the weight of the KPI, adding together the total score of the alternative.
This is sorted from highest score, to lowest and returned with the alternative’s metadata.

5.5.2 GUI
The GUI is implemented using React, which is a framework for creating web browser-
based GUIs. React is a framework for Node.js and JavaScript, but also includes some of
its own programming language concepts JSX, mixing HTML into the JavaScript. In this
case, it use to create a web service that serves the GUI to the web browser, which itself is
a stand alone GUI.

The implementation of the GUI consists of main components, representing two pages in
the GUI. The first is the search and results page, which allows the user to specify a search
query for data, specifying type of data, data location, and start and end time for when
the data was collected. It also renders a list of the results of the query response from the
control unit below the search input. The second component is the cost model configuration
page, which allows the user to add hard constraints, and KPIs to cost model, setting their
weight and adding utility intervals. The state of this configuration is kept when switching
back to the search and results page, and the configuration data is sent with the query to the
control unit.

5.5.3 Mocked Data repository
This also a simple web server built upon Node.js, written in TypeScript/JavaScript, using
the Express.js framework. Since this is not a part of the designed solution, but a necessary
component for testing the implementation, everything about the functionality is explained
here. The data repositories stores different lists of metadata for data and information about
its own KPIs in the format explained in section 5.2. It has very simple search functionality,
that would be expected from the as data repository, returning filtering results solely based
on the search query, but not any of the KPIs. Which is the location, type and date of
the data sets. It returns a list metadata of all the data sets that matches the search query
together with information about itself.

79

Chapter 5. ZEN Cost Model Prototype

80

Chapter 6
Results

This chapter presents the results of the implementation of the ZEN Cost Model Prototype,
in presenting part of the solution and some testing done for certain scenarios.

6.1 ZEN Cost Model Prototype

The results of the development, is the implementation of the control units that implement
the proposed design in section 4, hosted locally and two different cloud locations. And a
web server that serves a GUI used to send queries to the different control units. It is hard
to present much of the more ”invisible” parts of the system, being the control units, the
focus on this section will be show how the system is presented to a user through the GUI,
and then present some of the results of using it for several use case scenarios, together with
measurements of response times.

6.1.1 GUI

The final result of the GUI is shown by the two pages in the GUI and an explanation of
how it works. The design is rather simple, and not very focused on looking good, but
demonstrating the functionality of the whole system.

Cost Model Configuration

The cost model configuration page is the place where the user is able to create the inputs
of different criteria for the cost model. The final result is shown in figure 6.1. The two
top buttons, allows navigation between the ”Search” page and the current ”Configuration”
page. The ”Add Criteria” button allows to add either a ”soft criteria”, which is a criteria
that is used as part of the MAUT portion of the cost model, with weights and utility func-
tions used for ranking, or a ”hard constraint” that acts as filter for solution. In the figure,
there is a hard constraint on cost, that specifies a max cost of 10, and two soft criteria on

81

Chapter 6. Results

Figure 6.1: The cost model configuration page in the GUI

bandwidth and sampling rate, with their utility intervals below them, listed under the but-
tons. The ”+” button is used to add utility intervals to the soft criteria. This configuration
is used when searching for data in on search page, demonstrated next.

Search and results

The ”Search” page also have the same two navigation buttons at the top as shown in figure
6.1. Beneath it is the search input for the data search, the search parameters are the data
type, the location the data was generated, and the time period which it was generated.
Below the search input, is where the result from a search is listed. There is no other
interaction with this other then seeing the different matching data sets, the ranking of it
and other related information. This is shown in figure 6.2, with three matching results
when searching for what is assumed to be a specific sensor or room in a building at that
location. The results are shown below, which includes the score to the left, and some of
the overall information that is sent back, based in the response shown in section 5.2. If
the sum of the weights specified in the cost configuration is 100, and all utility values are
between 0 and 100, then the alternatives are also ranked between 100 and 0, with 100
being the best.

6.1.2 Functionality
Having looked how the different pages of the GUI, an example how this works is presented
here. In this case, using mocked data sets, results for a query is presented and how the
result might vary dependent on the cost model configuration. The data we are looking at

82

6.1 ZEN Cost Model Prototype

Figure 6.2: The cost model configuration page in the GUI

Type Temperature
Location /trondheim/moholt/1/1
Start time 2018-06-03
End time 2018-06-03

Table 6.1: Search query

in this example is stored distributed in the fog and as well as centralized in the cloud, from
a single sensor from one day. The search parameters for the query is shown in table 6.1.

Query 1

The first query is done with focus on low cost and high bandwidth in the cost model
configuration. The cost model configuration for this query is shown in figure 6.3. The
result of this query gave the data set stored in cloud a score of 87.5, while the data set
stored in the fog got a score of 17.5, meaning that the data set in the cloud is the best
alternative according to the specified needs.

Query 2

The second query is done with focus on high sampling rate and a bit on cost. The cost
model configuration for this query is shown in figure 6.4. The result of this query gave
the data set stored in the fog a score of 82, while the data set stored in the fog got a score

83

Chapter 6. Results

Figure 6.3: The cost model configuration for query 1

Figure 6.4: The cost model configuration for query 2

of 23, meaning that the data set stored in the fog is the best alternative according to the
specified needs.

As we can see by these results, for certain preferences and needs, data stored in the dis-
tributed part of the system might better than the one stored in the cloud. And by using the
cost model implementation, it can help decide when using data from the cloud is best, and
when using data from the distributed repositories is the best alternative.

6.2 Measurements
Part of evaluating the implementation and design, in addition to see if it fulfill the re-
quirements, is to do some measurements on the performance, specifically in relation to
the decentralized-to-centralized KPIs presented in section 2.7.2, that might not only be
used on the basis to pick data and service, but also evaluate this system itself. We will

84

6.2 Measurements

be looking at latency measurements for several scenarios, that are specified in the next
section.

6.2.1 Scenarios
This section describes the different scenario for testing the response times of the system.
Within a short time period, 100 request were made for each to produce the resulting mea-
surements.

Scenario 1: Getting data from the local fog and the cloud

In this scenario, we are querying for data generated locally, that might exist in the cloud
as well, as historical data. Looking at figure 5.1, we are querying the local control unit,
which then queries the cloud and local data sources. This would be the normal query for
local data in our implementation, as there exists no way to know if data has been sent to
the cloud or not in the design.

Scenario 2: Getting data generated in another fog area

In this scenario, we query data generated in another fog area, and using the figure 5.1, this
would the data stored in Bergen or then Google Cloud. We query or local fog control unit,
which queries the cloud, which in turn queries the control unit in that fog area. This would
likely be the normal scenario for getting data generated in another fog area, by using the
local control unit.

Scenario 3: Querying the cloud directly

In this scenario, we don’t use the local fog control unit to query for data, we instead query
the cloud directly. There is one issue here, since the locally hosted fog control unit is stuck
behind a NAT router without my control, I am unable to query it from the cloud, so in
this case, I have to query the other fog control unit. When reasoning about the difference
querying the cloud for local data, or querying the local fog node, we can use this data in
conjunction with the difference in response time between the two fog control units and the
cloud control unit.

Scenario 4: Only getting data locally

In this case, we are looking at the performance if were able to only query the local fog
control unit, due to it know what type of data already exists in the cloud. Does not work
with the current implementation of routing, that needs to query the cloud to know if it has
data or not.

Scenario 5: Only querying the cloud

In this scenario, we can compare to a centralized implementation, where the cloud holds
all the data, or cases where the cloud knows that it is the only place were the data is held.

85

Chapter 6. Results

This does not work for the current implementation of routing, which does not now what
data the lower layers holds.

6.2.2 Response times
We choose to look at the median and the mean, because most of the measurements deviate
very little, but have a few outliers that are several times as large as the median. The
median gives us the picture of the expected response time, but the mean with the standard
deviation can give us an image of how the response time deviates in the different scenarios.
The response times is given in milliseconds

Scenario Median Mean Std
Scenario 1 132 ms 145 ms 75 ms
Scenario 2 247 ms 323 ms 160 ms
Scenario 3 182 ms 214 ms 77 ms
Scenario 4 26 ms 32 ms 13 ms
Scenario 5 66 ms 70 ms 14 ms

As mentioned in scenario 3, we have an issue comparing getting local data by querying
a local control unit that also query the cloud, to querying the cloud which then queries
the local fog. Since we are able to measure the delay between the fog nodes and the
cloud, we can instead use the difference between the fog nodes to estimate what response
time querying local data from the cloud would be. The fog node placed in Finland have
a median response time of 94 ms to the cloud, where the local fog node has a median
response time of 66 mm, which means that if we subtract 26 ms from the time to query the
cloud for data in Finland, which is the difference between two fog nodes to the cloud, from
the time to query the cloud for data in Finland in scenario 3, we get an estimate of 156 ms
if we were to query the cloud directly for data in the local fog node. With that estimate, it
seems there is a benefit to query the local fog, instead of the cloud in those cases, as it has
a median response time of 132 ms.

Looking at the response time from scenario 4, which is on local area network and the
travel time for the signal should be near instantaneous, means that most of the delay is
from the program itself. Even if it were to be hosted somewhere in Trondheim, the latency
should be extremely small as well, compared to the delay shown here. Which highlights
the importance when creating a several programs that send data in a chain to each other,
that they need to be quick.

86

Chapter 7
Discussion and Evaluation

The chapter contains the discussion about the process of this thesis, and an evaluation of
the resulting artifact. The evaluation is done with the requirements identified in section
4.2.3, and the measurements presented in chapter 6. It also contains a small comparison
of the former thesis [158], and a discussion on how the findings relate to ZEN.

7.1 Discussion

The start of this thesis, started with the literature review aimed at gaining knowledge on
how solve the problem described in the problem description, finding services and data in
the context of the distributed-to-centralized data management architecture for a smart city.
In the beginning, I researched materials related to the smart city and the distributed-to-
centralized, before moving on to the areas of KPI, selection methods, registry and descrip-
tion within the context of the architecture. This was aimed at being part of answering the
first research questions, as well as being the grounding in creating a design to solve the
problem. As mentioned in the research methodology in section 3.1, it uses an ad hoc ap-
proach to the literature review, which allowed to cover what was deemed as the necessary
domains of knowledge. However, some areas have gotten different amounts of attention,
which shows especially with the blockchain part, having much more material than other
alternatives.

During the design, the choices made is based on the literature review. For the cost model,
the choice ended on the MAUT-approach as it allows user to specify their needs in terms
of utility and weights, allowing for a lot of fairly specific specification, but at the same
time in a way that I found intuitive. How intuitive the GUI and approach is, was not tested.
The only downside to the approach is that it lacks a strict constraints, so that was added
to the design. Another consideration when deciding a cost model that attempts to help be
cost efficient, is how to represent the relationship between utility and cost. In the MAUT
approach, it is treated as an utility equal to other KPIs. Instead, an approach like in DEA
in section 2.6.4, which divides the performance with the score, could be used to attempt

87

Chapter 7. Discussion and Evaluation

to get the most cost effective solution. But there are some issues with dividing by the cost
when there might be free alternatives and you can not really specify the importance of cost
in terms of weight either.
How to store and represent the data in the design, is in many ways shaped by the underly-
ing data management architecture, so also using a distributed-to-centralized approach was
chosen here. The blockchain, while having the benefit of decentralizing trust, and a hard
to tamper with data structure, did not make sense in the context where a few actors using
and storing the data are know to each other, with the downside the large computational
overhead and growing data structure. And adaptive approach was not developed, because
of the extra work of creating monitoring of services or data repositories with changing
performance, when these did not exist. In order to make the process simple, it used static
information given by the data repositories on their performance, instead measuring and
benchmark testing, or using a trust system.

There were several different approaches for the design that were considered. One decision
was where to have the cost model calculation. In a centralized schema, keeping it only
in the cloud would have worked here, with issues accompanying centralized architecture.
Another alternative was to have it locally with the user, which might been beneficial if
an adaptive approach like the ACPS algorithm from section 2.6.9, used the cost model to
calculate the change in performance. But the current solutions allows anyone to use cost
model by just using the API, and letting the control unit which have a fair bit of com-
putational resources, which a users device might not have, do the computation. Another
decision was how to store and find information about the different data repositories. In
the design an implementation, this was done through querying the data repositories. This
seems beneficial in a scenario where queries are not happening that often, but the state of
the repositories changes often, with the cost of some more delay. The other alternative is
to let the control units keep the metadata about the data and the data repositories in the
control units themselves. The bonus of this approach is that queries would be faster, but
the downside is that amount of data traffic needed to keep an updated state of the data
repositories and their data if they change often relative to queries. This could be done
through periodical queries from the control unit, or the data repositories pushing updates
to the control unit. Periodical queries need a frequency high enough to ensure the rep-
resent the current information, and pushing data on every change might result in a lot of
unnecessary traffic. The best solution is likely based on the amount of queries and how
often the states of the data repositories change.

From the results, we see a large benefit in response time by allowing a query for local data
that does not query the cloud. And if it needs to query the cloud for local data, there seems
to be a small benefit of querying the local control unit first, instead of the cloud. Another
observation is that when querying the control unit, there is some delay in the processing
in the control unit that quickly adds up when querying multiple of them, which is likely
somewhat related to the technology used to implement it, and should be considered for a
real implementation.

We also see that this allows for selection of data outside the centralized cloud, in cases
where the needs of the users are such that a distributed repository is better. And in other
cases, the needs of the user is such that the cloud is the best alternative. Helping the users

88

7.2 Evaluation

Requirement Fulfilled
R1: Be able to find data according type, location, and
time generated.

Yes

R2: Be able to specify preferred qualities with data or the
provider of the data, to get the most suitable data.

Yes

R3: Be flexible with which types of KPIs can be used to
describe a data provider or the data.

Yes

R4: Be able to find data as soon as it is accessible. Yes
R5: Facilitate open data dissemination. To some degree
R6: Vendor independence. Yes

Table 7.1: The requirements for the design and implementation and their fulfilment

find the most suitable data through the cost model, is the main contribution of this paper
and directly related to the problem description.

The testing was done by hosting the system two places in the cloud and locally on desktop
computer. A better solution might have been to find hosting two cities where the pilot
projects, and host the fog control units there, while having one in the cloud, to get more
realistic results. Especially accessing the locally hosted over LAN compared to having it
hosted in the same city, and the issue with the locally run control unit not being able to
access queries from outside of the router, meaning the comparison using the other cloud
hosted fog is a bit tenuous to use to claim that it would also hold for the locally hosted
one. The reason for using this, was an issue of time and being familiar with the cloud
technologies used, and accepting that it would be good enough, as the latency within a city
is very small as well. These results can be used as part of the evaluation of the solution in
the next section.

How intuitive and the ability to be able to specify preferences in the cost model should
also have been tested by different users, to verify that view that this methods is actually
intuitive and allows to specify as much of the user needs as possible, as this is one of the
reasons that made it stand out from the other approaches.

7.2 Evaluation
The evaluation of the artifact created as part of this thesis, is done by looking at the re-
quirements defined for it during the design, as well looking at the performance during
testing.

Requirements

R5 is only partially fulfilled. It is a vague requirement in itself, but the current solution
does not help explore and discover data as easily on its own, as it is dependent on knowl-
edge of what that might exist to search for it and how to formulate the correct search
terms.

89

Chapter 7. Discussion and Evaluation

R3 is fulfilled, as any new description of KPIs can easily be added and selected for as
long it is specified as a numerical value. To allow the more flexibility, allowing other
types of values, like nominal values, to be specified as utility functions would increase this
flexibility as well, and should be easy to do with the current design.
R6 as this is a design that should could be implemented with a lot of different programming
languages, programming platforms and web server frameworks, it is completely vendor
independent.

Performance

The measurements shows that not having to directly access to cloud to query have a small
response time benefit if the local control unit has to query the cloud for information about
historical data, and a large one if it does not. Which means that a solution that does not
need to use the cloud that often, can be preferable to a centralized cloud solution in terms
of response time. It also shows that in situations when asking for information from another
fog area, chaining queries through control units adds to the response time, which means
that it is important that the control units are as fast as possible, which might exclude the
current technology used to implement it.

7.3 Comparison with the centralized data management
architecture

Looking at the former master thesis that creates a centralized architecture for data man-
agement for ZEN in [158], there have been some differences in terms of scope and what
was done. In the former thesis, collecting, processing and analysis of data was part of the
centralized architecture, together with dissemination of it. In this thesis, the scope was
smaller, as the underlying ZEN ICT data management architecture would be responsible
for gathering, processing and storing the data. The visualization and use of data would
be done by other tools, like the tools in the ZEN toolbox presented in section 2.10.2. The
task of connecting these two parts is the essence of this thesis, where the tools would be
able to use the proposed design in their discover and selection of data. Instead of having
everything in a single place, you have multiple, distributed components that are able to
connect and use each other to create the same services.

7.4 ZEN contribution
The contribution of the thesis for ZEN is in creating a design for system that can help use
the data managed by the ZEN ICT data management architecture. By using this system on
top of the underlying data management system, third party applications and services, as
well as the different tools in the ZEN toolbox can have the selection of data done automat-
ically according to their needs of the data. It also includes a description of different KPIs
that can used to select among the different data repositories, for a distributed-to-centralized
context.

90

Chapter 8
Conclusion and Future Work

8.1 Conclusion

The goal of this thesis was to solve the problem of finding and selecting services and
data within a distributed-to-centralized data management architecture in the context of the
smart city. The focus has been to do this for ZEN and the ZEN ICT architecture. It uses
a literature review to find relevant KPIs to be used when selecting in this context, as well
as other information that is used when designing the cost model. It then goes on to design
and implement this cost model for the ZEN ICT architecture. As part of the evaluation
of design and implementation, requirements for it is defined before the design which the
implementation is tested against to see if it fulfills, as well as a testing its performance
in terms of response time for different use case scenarios. It fulfilled the requirements
set for it, and showed the benefit of a hosting parts of the implementation near local fog
areas in the cities as part of the design, in cases where it does not have to contact the
cloud, as well as indications of a small benefit when it does have to contact the cloud as
well. And allowed selection of data from both the distributed part of the data management
architecture, as well as the centralized one, depending on the user needs. The ZEN ICT
architecture and similar distributed-to-centralized architectures can also be used for other
smart cities, which makes the same cost model for it relevant to use in those cases as well.

The thesis follows a design science research methodology, where the contribution is from
both the literature review in answering what methods and approaches can be used to im-
plement the different parts of the design, which KPIs to use in this context, and the design
artifact together with the evaluation of it within the application context of it.

91

Chapter 8. Conclusion and Future Work

8.2 Research Questions
RQ1: How can a cost model be defined for service and data selection in a distributed-
to-centralized architecture for smart cities?

This research question consists of three sub-question that is part of answering the question.
In the start it was identified that three things were needed to answer the overall question,
which is answered below before answering this research question.

RQ1.1: Which KPI and criteria should be used with the cost model in this context?

To answer this question, it has been looked at KPIs from cloud computing, since it is
the centralized component in the centralized-to-distributed architecture; KPIs identified
specifically for the distributed-to-centralized schema; and for data selection in this context,
also data quality KPIs have been identified. The following KPIs have been identified for
cloud computing:

• Availability
• Instance Performance
• Network Performance
• Stability
• Security
• Elasticity and Scalability
• Cost
• Reliability
• Usability
• Management of Services
• Features
• Reputation and Trust

From the distributed-to-centralized schema, there are some overlap between the ones found
in the cloud computing KPIs. These are as following:

• Processing load balance
• Energy consumption
• Latency
• Volatility and reliability
• Network load and traffic
• Security

For data quality, the following KPIs have been identfied:

• Accessibility
• Accuracy
• Amount of data
• Believability
• Completeness
• Concise representation

92

8.2 Research Questions

• Consistency
• Ease of manipulation
• Granularity
• Interpretability and Understandability
• Precision
• Relevancy and value-added
• Security
• Timeliness

These have varying degrees of specific ways to measure them. Some KPIs have very
well defined measurement methods, and other have limited amount of work done to define
them, so it is not straightforward to implement measures for every KPI. These are all the
different KPIs that can be used, but which one that should be used amongst them depends
on the needs of the user.

RQ1.2: What approaches and methods should be used to define a cost model in this con-
text?

In this case, it has been looked at a set of different approaches to multi-criteria selection,
and adaptive approaches that have been used for selection of services, mostly in the context
of cloud service selection. Among these, MAUT from section 2.6.7 was chosen because
it allowed to specify the needs of the user very specifically through utility functions and
weights of importance, with the only drawback being the lack of being able to specify
strict constraints, which was added to it in the cost model design. The other alternatives
should also work for the same purpose with different pros and cons. There are also several
other multi-criteria selection methods which might work just as good, that has not been
covered.

RQ1.3: How should information about services be stored and shared in this context?

For this, three approaches was identified on how store the information, the first being
the centralized approach, a decentralized approach, and a decentralized approach using
blockchain. On top of the underlying architecture, it seems a decentralized approach
works best because of the possible low response time together with lowering the traffic
and processing in the cloud. The decentralized trust and immutability of the blockchain
does not weight up for the downsides of it. But there are probably other contexts where
these approaches might be better.

The complete cost model design and implementation can be defined by using the KPIs
identified in RQ1.1, a cost model approach from RQ1.2, and an approach to store de-
scriptions of the service or data from RQ1.3. This is what is used in the design and at
implementation of the cost model for ZEN presention in chapter 4 and chapter 5, showing
that it is possible to define and create using the knowledge gained from answering these
three subquestions.

RQ2: How can an implementation of this cost model contribute to finding data in the
ZEN ICT architecture?

The first thing it does, is help a user find where data is in the underlying data management
architecture, regardless of where it is stored, abstracting away the complexity of the differ-

93

ent locations where data are stored. This can allow a service, user or application through
this cost model treat the complete system as if it is only stored in one location. The next
thing it does, is to select among the different locations to find the most suitable data for
the user. In its current form, it only provides a list of the different places that stores data
together with a ranking of how suitable the data and service is, but a ranking could quickly
be made to a selection by choosing the best alternative, and automatically fetching the data
from best alternative.

8.3 Future Work
To expand on the work done in this thesis, there are many things that can be approved
upon. The first one is that more work is needed on defining ways to measure some of
the KPIs identified. Some of them have clearly defined measurements, while others lack
this. Related to the thesis specific implementation that uses measurement provided by the
data repositories, future work can include how to let the system do these measurements
themselves through benchmark testing, instead of relying on the information given to it.
In a similar way, implementing a trust and reputation-based system shared by all user is
also a possible future direction of work. Part of implementing ways to let the system itself
implement measuring of performance, can also include adding adaptivity to the system,
attempting to always change to the best solution. Another future direction could be to
take an interest in the overall performance of the system when ranking and selecting,
taking into consideration the network load or the processing load in different parts of
the system. This could mean that it could be considered beneficial for a user to choose an
alternative that is not the best alternative if the benefit is helping the overall system through
avoiding processing nodes or part of the network that is currently near it capacity in terms
of processing load or traffic.

The solution also lacks ways to explore the data, as you need knowledge of what data is
out there to use the correct search terms to find it. Adding interfaces for exploration of
data is also a future direction that can help with the facilitation of open data dissemination,
which one of the requirements identified for the design.

On large drawback with the current design with the routing tables that was used, was that
it needed to query the cloud for data, as it held no knowledge of what data might have
been sent to the cloud as historic data. The measurements performed show a large benefit
in response time by not querying the cloud, so looking into ways this can the case when
querying local data, through storing that information locally, or knowing if data is not sent
to the cloud yet, is also a possible direction of future work.

Lastly, a natural future direction is to try to implement the design or something similar
with the actual underlying architecture, where it either query different actual locations for
data, or is part of the data management system that stores the data.

94

Bibliography

[1] Abawajy, J., Nov 2011. Establishing trust in hybrid cloud computing environments.
In: 2011IEEE 10th International Conference on Trust, Security and Privacy in Com-
puting and Communications. pp. 118–125.

[2] Abbadi, I. M., Martin, A., 2011. Trust in the cloud. information security technical
report 16 (3-4), 108–114.

[3] Achim, O., Pop, F., Cristea, V., Sep. 2011. Reputation based selection for services
in cloud environments. In: 2011 14th International Conference on Network-Based
Information Systems. pp. 268–273.

[4] Agarwal, S., Yadav, S., Yadav, A. K., 2016. An efficient architecture and algorithm
for resource provisioning in fog computing. International Journal of Information
Engineering and Electronic Business 8 (1), 48.

[5] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P., March 2018. Elasticity in
cloud computing: State of the art and research challenges. IEEE Transactions on
Services Computing 11 (2), 430–447.

[6] Albino, V., Berardi, U., Dangelico, R. M., 2015. Smart cities: Definitions, dimen-
sions, performance, and initiatives. Journal of urban technology 22 (1), 3–21.

[7] Alrawais, A., Alhothaily, A., Hu, C., Cheng, X., Mar 2017. Fog computing for the
internet of things: Security and privacy issues. IEEE Internet Computing 21 (2),
34–42.

[8] Baird, L., 2016. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep.

[9] Ballou, D. P., Tayi, G. K., 1999. Enhancing data quality in data warehouse environ-
ments. Communications of the ACM 42 (1), 73–78.

[10] Barnaghi, P. M., Bermudez-Edo, M., Tönjes, R., et al., 2015. Challenges for quality
of data in smart cities. J. Data and Information Quality 6 (2-3), 6–1.

95

[11] Bass, L., J. L., Jain, S., 2013. Software architecture in paractice. Addison-Wesley
Professional.

[12] Bauer, K., 2004. Kpis-the metrics that drive performance management. Information
Management 14 (9), 63.

[13] Behzadian, M., Otaghsara, S. K., Yazdani, M., Ignatius, J., 2012. A state-of the-art
survey of topsis applications. Expert Systems with applications 39 (17), 13051–
13069.

[14] Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M., 2014. Proof of activity: Extending
bitcoin’s proof of work via proof of stake. IACR Cryptology ePrint Archive 2014,
452.

[15] Berander, P., Andrews, A., 2005. Requirements prioritization. In: Engineering and
managing software requirements. Springer, pp. 69–94.

[16] Bonomi, F., Milito, R., Natarajan, P., Zhu, J., 2014. Fog computing: A platform for
internet of things and analytics. In: Big data and internet of things: A roadmap for
smart environments. Springer, pp. 169–186.

[17] Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in
the internet of things. In: Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM, pp. 13–16.

[18] Boussofiane, A., Dyson, R. G., Thanassoulis, E., 1991. Applied data envelopment
analysis. European Journal of Operational Research 52 (1), 1–15.

[19] Bramas, Q., 2018. The stability and the security of the tangle.

[20] Buchanan, J. T., Sheppard, P. J., Vanderpooten, D., 1999. Project ranking using
ELECTRE III. Department of Management Systems, University of Waikato.

[21] Budish, E., Cramton, P., Shim, J., 2015. The high-frequency trading arms race:
Frequent batch auctions as a market design response. The Quarterly Journal of Eco-
nomics 130 (4), 1547–1621.

[22] Buyya, R., Yeo, C. S., Venugopal, S., Sep. 2008. Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities. In: 2008
10th IEEE International Conference on High Performance Computing and Commu-
nications. pp. 5–13.

[23] Caragliu, A., Del Bo, C., Nijkamp, P., 2011. Smart cities in europe. Journal of urban
technology 18 (2), 65–82.

[24] Castro, M., Liskov, B., et al., 1999. Practical byzantine fault tolerance. In: OSDI.
Vol. 99. pp. 173–186.

[25] Chabridon, S., Laborde, R., Desprats, T., Oglaza, A., Marie, P., Marquez, S. M.,
2014. A survey on addressing privacy together with quality of context for context
management in the internet of things. Annals of telecommunications-annales des
télécommunications 69 (1-2), 47–62.

96

[26] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S., 2003. Making
gnutella-like p2p systems scalable. In: Proceedings of the 2003 conference on Ap-
plications, technologies, architectures, and protocols for computer communications.
ACM, pp. 407–418.

[27] Chen, J., Micali, S., 2016. Algorand. arXiv preprint arXiv:1607.01341.

[28] Chen, M., Mao, S., Liu, Y., Apr 2014. Big data: A survey. Mobile Networks and
Applications 19 (2), 171–209.
URL https://doi.org/10.1007/s11036-013-0489-0

[29] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al., 2001. Web ser-
vices description language (wsdl) 1.1.

[30] Cocchia, A., 2014. Smart and Digital City: A Systematic Literature Review.
Springer International Publishing, Cham, pp. 13–43.
URL https://doi.org/10.1007/978-3-319-06160-3_2

[31] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R., 2010. Bench-
marking cloud serving systems with ycsb. In: Proceedings of the 1st ACM sympo-
sium on Cloud computing. ACM, pp. 143–154.

[32] D. Baer, I. Andresen, 2018. ZEN pilot projects: Mapping of the pilot projects within
the Research Centre on Zero Emission Neighbourhoods in Smart Cities. ZEN Re-
port 10.

[33] Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K., Buyya, R., 2016. Fog
computing: Principles, architectures, and applications. In: Internet of things. Else-
vier, pp. 61–75.

[34] Deb, K., 2014. Multi-objective optimization. In: Search methodologies. Springer,
pp. 403–449.

[35] Dejun, J., Pierre, G., Chi, C.-H., 2010. Ec2 performance analysis for resource
provisioning of service-oriented applications. In: Dan, A., Gittler, F., Toumani,
F. (Eds.), Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 197–207.

[36] Demchenko, Y., Grosso, P., de Laat, C., Membrey, P., May 2013. Addressing big
data issues in scientific data infrastructure. In: 2013 International Conference on
Collaboration Technologies and Systems (CTS). pp. 48–55.

[37] Deng, R., Lu, R., Lai, C., Luan, T. H., June 2015. Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE In-
ternational Conference on Communications (ICC). pp. 3909–3914.

[38] Devillers, R., Bédard, Y., Jeansoulin, R., 2005. Multidimensional management of
geospatial data quality information for its dynamic use within gis. Photogrammetric
Engineering & Remote Sensing 71 (2), 205–215.

97

https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1007/978-3-319-06160-3_2

[39] Elmaghraby, A. S., Losavio, M. M., 2014. Cyber security challenges in smart cities:
Safety, security and privacy. Journal of advanced research 5 (4), 491–497.

[40] Ethereum community, c2016. Ethereum homestead documentation. http://
ethdocs.org/en/latest/, accessed: 2010-01-21.

[41] Ezbakhe, F., Prez-Foguet, A., 07 2017. Improved prioritisation tool for local
decision-making in the water, sanitation and hygiene sector.

[42] Feng, J., Zhang, L., Lu, J., Xu, B., 2017. Cpe: a cloud server performance evalu-
ation model. In: Proceedings of the 11th International Conference on Ubiquitous
Information Management and Communication. ACM, p. 60.

[43] Fiedler, M., Hossfeld, T., Tran-Gia, P., 2010. A generic quantitative relationship
between quality of experience and quality of service. IEEE Network 24 (2), 36–41.

[44] Fielding, R. T., Taylor, R. N., 2000. Architectural styles and the design of network-
based software architectures. Vol. 7. University of California, Irvine Doctoral dis-
sertation.

[45] Figueira, J., Mousseau, V., Roy, B., 2005. Electre methods. In: Multiple criteria
decision analysis: State of the art surveys. Springer, pp. 133–153.

[46] Fleming, P. J., Wallace, J. J., 1986. How not to lie with statistics: the correct way to
summarize benchmark results. Communications of the ACM 29 (3), 218–221.

[47] Furht, B., 2010. Cloud computing fundamentals. In: Handbook of cloud computing.
Springer, pp. 3–19.

[48] Furht, B., Escalante, A., 2010. Handbook of cloud computing. Vol. 3. Springer.

[49] Ganesh, A., Sandhya, M., Shankar, S., Feb 2014. A study on fault tolerance meth-
ods in cloud computing. In: 2014 IEEE International Advance Computing Confer-
ence (IACC). pp. 844–849.

[50] Gao, W., Hatcher, W. G., Yu, W., 2018. A survey of blockchain: Techniques, ap-
plications, and challenges. In: 2018 27th International Conference on Computer
Communication and Networks (ICCCN). IEEE, pp. 1–11.

[51] Garg, S. K., Versteeg, S., Buyya, R., Dec 2011. Smicloud: A framework for com-
paring and ranking cloud services. In: 2011 Fourth IEEE International Conference
on Utility and Cloud Computing. pp. 210–218.

[52] Guptill, S. C., Morrison, J. L., 2013. Elements of spatial data quality. Elsevier.

[53] Habib, S. M., Ries, S., Muhlhauser, M., Nov 2011. Towards a trust management
system for cloud computing. In: 2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications. pp. 933–939.

[54] Hang, C.-W., Singh, M. P., 2010. From quality to utility: Adaptive service selection
framework. In: International Conference on Service-Oriented Computing. Springer,
pp. 456–470.

98

http://ethdocs.org/en/latest/
http://ethdocs.org/en/latest/

[55] Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., Campbell, R., April 2005. A
survey of peer-to-peer storage techniques for distributed file systems. In: Interna-
tional Conference on Information Technology: Coding and Computing (ITCC’05)
- Volume II. Vol. 2. pp. 205–213 Vol. 2.

[56] Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A.,
Ahmed, E., Chiroma, H., 2016. The role of big data in smart city. International
Journal of Information Management 36 (5), 748–758.

[57] Herbst, N. R., Kounev, S., Reussner, R., 2013. Elasticity in cloud computing: What
it is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing ({ICAC} 13). pp. 23–27.

[58] Hevner, A., Chatterjee, S., 2010. Design science research in information systems.
In: Design research in information systems. Springer, pp. 9–22.

[59] Hinchey, M., Coyle, L., March 2010. Evolving critical systems: A research agenda
for computer-based systems. In: 2010 17th IEEE International Conference and
Workshops on Engineering of Computer Based Systems. pp. 430–435.

[60] Hwang, C.-L., Yoon, K., 2012. Multiple attribute decision making: methods and
applications a state-of-the-art survey. Vol. 186. Springer Science & Business Media.

[61] IOTA Foundation, 2018. Coordinator. part 1: The
path to coordicide. https://blog.iota.org/
coordinator-part-1-the-path-to-coordicide-ee4148a8db08,
[Online; accessed 18-May-2019].

[62] Jekosch, P., 2005. Voice and speech quality perception: Assessment and evaluation-
ute.

[63] Julien Paulou et al., 2014. Financing the energy renovation of buildings with Cohe-
sionPolicy funding. Tech. rep.

[64] Karpak, B., Kumcu, E., Kasuganti, R. R., 2001. Purchasing materials in the supply
chain: managing a multi-objective task. European Journal of Purchasing & Supply
Management 7 (3), 209–216.

[65] Khatoun, R., Zeadally, S., 2016. Smart cities: concepts, architectures, research op-
portunities. Commun. Acm 59 (8), 46–57.

[66] Krause, M., Hochstatter, I., 2005. Challenges in modelling and using quality of
context (qoc). In: International Workshop on Mobile Agents for Telecommunica-
tion Applications. Springer, pp. 324–333.

[67] Larsen, I. K., Småstuen, M., Johannesen, T. B., Langmark, F., Parkin, D. M., Bray,
F., Møller, B., 2009. Data quality at the cancer registry of norway: an overview
of comparability, completeness, validity and timeliness. European journal of cancer
45 (7), 1218–1231.

99

https://blog.iota.org/coordinator-part-1-the-path-to-coordicide-ee4148a8db08
https://blog.iota.org/coordinator-part-1-the-path-to-coordicide-ee4148a8db08

[68] Lee, Y. W., Strong, D. M., Kahn, B. K., Wang, R. Y., 2002. Aimq: a methodology
for information quality assessment. Information & management 40 (2), 133–146.

[69] Luan, T. H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L., 2015. Fog computing:
Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815.

[70] Luna, J., Taha, A., Trapero, R., Suri, N., 2017. Quantitative reasoning about cloud
security using service level agreements. IEEE Transactions on Cloud Computing
5 (3), 457–471.

[71] Luna Garcia, J., Langenberg, R., Suri, N., 2012. Benchmarking cloud security level
agreements using quantitative policy trees. In: Proceedings of the 2012 ACM Work-
shop on Cloud computing security workshop. ACM, pp. 103–112.

[72] Lundy, M., Mees, A., 1986. Convergence of an annealing algorithm. Mathematical
programming 34 (1), 111–124.

[73] M. K. Wiik, S. M. Fufa, J. Krogstie, D. Ahlers, A. Wyckmans, P. Driscoll, H. Brat-
teb, A. Gustavsen, 2018. Zero Emission Neighbourhoods in Smart Cities - Defini-
tion, key performance indicators and assessment criteria. ZEN Report 7.

[74] Manuel, P., Oct 2015. A trust model of cloud computing based on quality of service.
Annals of Operations Research 233 (1), 281–292.
URL https://doi.org/10.1007/s10479-013-1380-x

[75] Manzoor, A., Truong, H.-L., Dustdar, S., 2008. On the evaluation of quality of
context. In: European Conference on Smart Sensing and Context. Springer, pp.
140–153.

[76] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al., 2004. Owl-s: Semantic
markup for web services. W3C member submission 22 (4).

[77] Masip-Bruin, X., Marı́n-Tordera, E., Alonso, A., Garcia, J., 2016. Fog-to-cloud
computing (f2c): The key technology enabler for dependable e-health services de-
ployment. In: 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net).
IEEE, pp. 1–5.

[78] Masip-Bruin, X., Marn-Tordera, E., Tashakor, G., Jukan, A., Ren, G., October
2016. Foggy clouds and cloudy fogs: a real need for coordinated management of
fog-to-cloud computing systems. IEEE Wireless Communications 23 (5), 120–128.

[79] Mell, P., Grance, T., et al., 2011. The nist definition of cloud computing.

[80] Menditto, A., Patriarca, M., Magnusson, B., Jan 2007. Understanding the meaning
of accuracy, trueness and precision. Accreditation and Quality Assurance 12 (1),
45–47.
URL https://doi.org/10.1007/s00769-006-0191-z

[81] Moradian, E., Håkansson, A., 2006. Possible attacks on xml web services. IJCSNS
International Journal of Computer Science and Network Security 6 (1B), 154–170.

100

https://doi.org/10.1007/s10479-013-1380-x
https://doi.org/10.1007/s00769-006-0191-z

[82] Morton, A., Claise, B., 2009. Packet delay variation applicability statement. Tech.
rep.

[83] Nam, T., Pardo, T. A., 2011. Conceptualizing smart city with dimensions of tech-
nology, people, and institutions. In: Proceedings of the 12th annual international
digital government research conference: digital government innovation in challeng-
ing times. ACM, pp. 282–291.

[84] Naskos, A., Gounaris, A., Sioutas, S., 2016. Cloud elasticity: A survey. In: Kary-
dis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (Eds.), Algorithmic Aspects of
Cloud Computing. Springer International Publishing, Cham, pp. 151–167.

[85] Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., Scorrano, F., 2014. Cur-
rent trends in smart city initiatives: Some stylised facts. Cities 38, 25–36.

[86] Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M. P., van den Heuvel,
W.-J., 2011. Blueprint template support for engineering cloud-based services. In:
European Conference on a Service-Based Internet. Springer, pp. 26–37.

[87] Ning, Z., Huang, J., Wang, X., February 2019. Vehicular fog computing: En-
abling real-time traffic management for smart cities. IEEE Wireless Communica-
tions 26 (1), 87–93.

[88] Noor, T. H., Sheng, Q. Z., 2011. Credibility-based trust management for services in
cloud environments. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H. R. (Eds.),
Service-Oriented Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
328–343.

[89] Noor, T. H., Sheng, Q. Z., 2011. Trust as a service: A framework for trust manage-
ment in cloud environments. In: Bouguettaya, A., Hauswirth, M., Liu, L. (Eds.),
Web Information System Engineering – WISE 2011. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 314–321.

[90] Noor, T. H., Sheng, Q. Z., Alfazi, A., July 2013. Reputation attacks detection for
effective trust assessment among cloud services. In: 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications. pp.
469–476.

[91] Olson, J. E., 2003. Data quality: the accuracy dimension. Elsevier.

[92] Osmani, M., O’Reilly, A., 2009. Feasibility of zero carbon homes in england by
2016: A house builder’s perspective. Building and environment 44 (9), 1917–1924.

[93] P4Titan, 2014. Slimcoin a peer-to-peer crypto-currency with proof-of-burn.

[94] Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A., 2018. Blockchain
and iot integration: A systematic survey. Sensors 18 (8), 2575.

[95] Pawar, P. S., Rajarajan, M., Nair, S. K., Zisman, A., 2012. Trust model for optimized
cloud services. In: Dimitrakos, T., Moona, R., Patel, D., McKnight, D. H. (Eds.),
Trust Management VI. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 97–112.

101

[96] Pipino, L. L., Lee, Y. W., Wang, R. Y., 2002. Data quality assessment. Communi-
cations of the ACM 45 (4), 211–218.

[97] Plaxton, C. G., Rajaraman, R., Richa, A. W., 1999. Accessing nearby copies
of replicated objects in a distributed environment. Theory of computing systems
32 (3), 241–280.

[98] Popov, S., 2016. The tangle. cit. on, 131.

[99] Prat, N., Madnick, S., Jan 2008. Measuring data believability: A provenance ap-
proach. In: Proceedings of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008). pp. 393–393.

[100] Prodan, R., Ostermann, S., Oct 2009. A survey and taxonomy of infrastructure as
a service and web hosting cloud providers. In: 2009 10th IEEE/ACM International
Conference on Grid Computing. pp. 17–25.

[101] Prodan, R., Sperk, M., Ostermann, S., March 2012. Evaluating high-performance
computing on google app engine. IEEE Software 29 (2), 52–58.

[102] Qu, C., Buyya, R., May 2014. A cloud trust evaluation system using hierarchical
fuzzy inference system for service selection. In: 2014 IEEE 28th International Con-
ference on Advanced Information Networking and Applications. pp. 850–857.

[103] Ramgovind, S., Eloff, M. M., Smith, E., Aug 2010. The management of security in
cloud computing. In: 2010 Information Security for South Africa. pp. 1–7.

[104] Ramı́rez, W., Masip-Bruin, X., Marin-Tordera, E., Souza, V. B. C., Jukan, A., Ren,
G.-J., de Dios, O. G., 2017. Evaluating the benefits of combined and continuous
fog-to-cloud architectures. Computer Communications 113, 43–52.

[105] Ratnasamy, S., Stoica, I., Shenker, S., 2002. Routing algorithms for dhts: Some
open questions. In: International Workshop on Peer-to-Peer Systems. Springer, pp.
45–52.

[106] Recommendation, E., 2008. 800: Definitions of terms related to quality of service.
International Telecommunication Unions Telecommunication Standardization Sec-
tor (ITU-T) Std.

[107] Ren, L., Devadas, S., 2016. Proof of space from stacked expanders. In: Theory of
Cryptography Conference. Springer, pp. 262–285.

[108] Repschlaeger, J., Zarnekow, R., Wind, S., Turowski, K., et al., 2012. Cloud require-
ment framework: Requirements and evaluation criteria to adopt cloud solutions. In:
ECIS. p. 42.

[109] Romero, C., 2014. Handbook of critical issues in goal programming. Elsevier.

[110] Rowstron, A., Druschel, P., 2001. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In: IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer, pp. 329–350.

102

[111] Ruiz-Alvarez, A., Humphrey, M., 2011. An automated approach to cloud storage
service selection. In: Proceedings of the 2nd international workshop on Scientific
cloud computing. ACM, pp. 39–48.

[112] Saldana, J., Suznjevic, M., 08 2015. QoE and Latency Issues in Networked Games.

[113] Saravanan, K., Kantham, M. L., 2013. An enhanced qos architecture based frame-
work for ranking of cloud services. International Journal of Engineering Trends and
Technology (IJETT) 4 (4), 1022–1031.

[114] Saroiu, S., Gummadi, K. P., Gribble, S. D., 2003. Measuring and analyzing the
characteristics of napster and gnutella hosts. Multimedia systems 9 (2), 170–184.

[115] Sartori, I., Napolitano, A., Voss, K., 2012. Net zero energy buildings: A consistent
definition framework. Energy and buildings 48, 220–232.

[116] Schmoldt, D., Kangas, J., Mendoza, G. A., Pesonen, M., 2013. The analytic hierar-
chy process in natural resource and environmental decision making. Vol. 3. Springer
Science & Business Media.

[117] Schwartz, D., Youngs, N., Britto, A., et al., 2014. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper 5.

[118] Sebastiao, R., Gama, J., 2009. A study on change detection methods. In: Progress in
Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA.
pp. 12–15.

[119] Sengupta, S., Garcia, J., Masip-Bruin, X., 2018. An architecture for resource man-
agement in a fog-to-cloud framework. In: European Conference on Parallel Pro-
cessing. Springer, pp. 275–286.

[120] Sengupta, S., Garcia, J., Masip-Bruin, X., 2018. Essentiality of resource and
service-task characterization in the coordinated fog-to-cloud paradigm. In: 2018
International Conference on Smart Communications in Network Technologies
(SaCoNeT). IEEE, pp. 249–254.

[121] Sengupta, S., Garcia, J., Masip-Bruin, X., 2018. Taxonomy and resource model-
ing in combined fog-to-cloud systems. In: Proceedings of the Future Technologies
Conference. Springer, pp. 687–704.

[122] Shaikh, R., Sasikumar, M., 2015. Trust model for measuring security strength of
cloud computing service. Procedia Computer Science 45, 380–389.

[123] Shawky, D. M., Ali, A. F., Aug 2012. Defining a measure of cloud computing
elasticity. In: 2012 1st International Conference on Systems and Computer Science
(ICSCS). pp. 1–5.

[124] Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., Marı́n-Torder, E., 2016. Towards a
comprehensive data lifecycle model for big data environments. In: Proceedings of
the 3rd IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies. ACM, pp. 100–106.

103

[125] Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., Marin-Tordera, E., 2018. Data
preservation through fog-to-cloud (f2c) data management in smart cities. In: 2018
IEEE 2nd International Conference on Fog and Edge Computing (ICFEC). IEEE,
pp. 1–9.

[126] Sinaeepourfard, A., Krogstie, J., Petersen, S. A., 2018. A big data management
architecture for smart cities based on fog-to-cloud data management architecture.

[127] Sinaeepourfard, A., Krogstie, J., Petersen, S. A., Gustavsen, A., Oct 2018. A zero
emission neighbourhoods data management architecture for smart city scenarios:
Discussions toward 6vs challenges. In: 2018 International Conference on Informa-
tion and Communication Technology Convergence (ICTC). pp. 658–663.

[128] Song, W., Su, X., May 2011. Review of mobile cloud computing. In: 2011 IEEE
3rd International Conference on Communication Software and Networks. pp. 1–4.

[129] Souidi, M., Souihi, S., Hoceini, S., Mellouk, A., 2015. An adaptive real time mech-
anism for iaas cloud provider selection based on qoe aspects. In: 2015 IEEE Inter-
national Conference on Communications (ICC). IEEE, pp. 6809–6814.

[130] Souihi, S., Souidi, M., Mellouk, A., 2015. An adaptive qoe-based network inter-
face selection for multi-homed ehealth devices. In: International internet of things
summit. Springer, pp. 437–442.

[131] Souza, V., Masip-Bruin, X., Marı́n-Tordera, E., Sànchez-López, S., Garcia, J., Ren,
G.-J., Jukan, A., Ferrer, A. J., 2018. Towards a proper service placement in com-
bined fog-to-cloud (f2c) architectures. Future Generation Computer Systems 87,
1–15.

[132] Souza, V. B., Masip-Bruin, X., Marin-Tordera, E., Ramirez, W., Sanchez, S., Dec
2016. Towards distributed service allocation in fog-to-cloud (f2c) scenarios. In:
2016 IEEE Global Communications Conference (GLOBECOM). pp. 1–6.

[133] Souza, V. B. C., Ramrez, W., Masip-Bruin, X., Marn-Tordera, E., Ren, G.,
Tashakor, G., May 2016. Handling service allocation in combined fog-cloud scenar-
ios. In: 2016 IEEE International Conference on Communications (ICC). pp. 1–5.

[134] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H., 2001. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review 31 (4), 149–160.

[135] Strong, D. M., Lee, Y. W., Wang, R. Y., 1997. Data quality in context. Communica-
tions of the ACM 40 (5), 103–110.

[136] Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., Chang, E., 2014. Cloud service
selection: State-of-the-art and future research directions. Journal of Network and
Computer Applications 45, 134–150.

[137] Takeda, H., Veerkamp, P., Yoshikawa, H., 1990. Modeling design process. AI mag-
azine 11 (4), 37–37.

104

[138] Tanenbaum, A. S., Van Steen, M., 2007. Distributed systems: principles and
paradigms. Prentice-Hall.

[139] Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q., 2015. A hierarchi-
cal distributed fog computing architecture for big data analysis in smart cities. In:
Proceedings of the ASE BigData & SocialInformatics 2015. ACM, p. 28.

[140] Tayi, G. K., Ballou, D. P., 1998. Examining data quality. Communications of the
ACM 41 (2), 54–57.

[141] Truong, H.-L., Dustdar, S., 2010. Composable cost estimation and monitoring for
computational applications in cloud computing environments. Procedia Computer
Science 1 (1), 2175–2184.

[142] u. Rehman, Z., Hussain, F. K., Hussain, O. K., June 2011. Towards multi-criteria
cloud service selection, 44–48.

[143] United Nations, Department of Economic and Social Affairs, 2018. 2018 Revision
of World Urbanization Prospects.
URL https://www.un.org/development/desa/publications/
2018-revision-of-world-urbanization-prospects.html

[144] United Nations, Department of Economic and Social Affairs, Population Division,
2017. World Population Prospects: The 2017 Revision, Key Findings and Advance
Tables.
URL https://population.un.org/wpp/Publications/Files/
WPP2017_KeyFindings.pdf

[145] Van Dinh, D., Yoon, B., Le, H. N., Nguyen, U. Q., Dang Phan, K., Dinh Pham,
L., Feb 2018. Ict enabling technologies for smart cities. In: 2018 20th International
Conference on Advanced Communication Technology (ICACT). pp. 606–611.

[146] Varshney, P., Simmhan, Y., May 2017. Demystifying fog computing: Character-
izing architectures, applications and abstractions. In: 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC). pp. 115–124.

[147] Voas, J., Zhang, J., March 2009. Cloud computing: New wine or just a new bottle?
IT Professional 11 (2), 15–17.

[148] Von Winterfeldt, D., Fischer, G. W., 1975. Multi-attribute utility theory: models
and assessment procedures. In: Utility, probability, and human decision making.
Springer, pp. 47–85.

[149] Walnum, H.T., K. Srnes, M. Mysen, .L. Srensen, and A.-J. Alms, 2017. Prelimi-
nary toolkit for goals and KPIs, in PI-SEC Planning Instruments for Smart Energy
Communities.

[150] Wang, R. Y., Strong, D. M., 1996. Beyond accuracy: What data quality means to
data consumers. Journal of management information systems 12 (4), 5–33.

105

https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html
https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf
https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf

[151] Wang, S., Wei, J., Sun, L., Sun, Q., Yang, F., Dec 2013. Reputation measurement
of cloud services based on unstable feedback ratings. In: 2013 International Con-
ference on Parallel and Distributed Systems. pp. 474–479.

[152] Watkins, C. J. C. H., Dayan, P., 1992. Q-learning. In: Machine Learning. pp. 279–
292.

[153] Weber, A., Herbst, N., Groenda, H., Kounev, S., 2014. Towards a resource elas-
ticity benchmark for cloud environments. In: Proceedings of the 2nd International
Workshop on Hot Topics in Cloud service Scalability. ACM, p. 5.

[154] Whaiduzzaman, M., Gani, A., Feb 2014. Measuring security for cloud service
provider: A third party approach. In: 2013 International Conference on Electrical
Information and Communication Technology (EICT). pp. 1–6.

[155] Wiik, M. K., Fufa, S. M., Baer, D., Sartori, I. Andresen, I., 2018. The ZEN defini-
tion a guideline for the ZEN pilot areas. Version 1.0. ZEN Report 11.

[156] Woods, R., Reme, K. S., Hestnes, A. G., Gustavsen, A. (eds.) , 2019. Annual
Report 2018. ZEN Report 15.

[157] Yi, S., Hao, Z., Qin, Z., Li, Q., Nov 2015. Fog computing: Platform and applica-
tions. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technolo-
gies (HotWeb). pp. 73–78.

[158] Ystmark, A. M., 2018. Building a Data Management Architecture for Zero-
Emission Neighbourhoods in Smart Cities. Master’s thesis, NTNU, Trondheim.

[159] Zhao, B. Y., Kubiatowicz, J., Joseph, A. D., et al., 2001. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing.

[160] Zheng, Z., Xie, S., Dai, H.-N., Wang, H., 2016. Blockchain challenges and oppor-
tunities: A survey. Work Pap.–2016.

[161] Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N., Buyya, R., June 2015.
A context sensitive offloading scheme for mobile cloud computing service. In: 2015
IEEE 8th International Conference on Cloud Computing. pp. 869–876.

[162] Zhu, C., Nicanfar, H., Leung, V. C. M., Yang, L. T., Jan 2015. An authenticated trust
and reputation calculation and management system for cloud and sensor networks
integration. IEEE Transactions on Information Forensics and Security 10 (1), 118–
131.

106

Appendix A

Appendix A contains the installation and user guide for the programming artifacts of this
thesis. The installation guide first explains how to install the control unit, before explaining
how to install the GUI. The control unit and mocked data repository is in its own project
folder, while the GUI also has its own separate from this. So the installation guide is
divided in two for each of the project folders.

Control Unit and Mocked Data Repository Installation

1. Install Node.js and NPM

Both the GUI and the control unit program is written in TypeScript/JavaScript for
Node.js, and is dependent on Node.js to run. The version of Node.js used is version
10.14.0. The software needed to install imported modules and build the program
is called Node Packet Manager (NPM), and version 6.9.0 was used for with the
program. Using different versions might cause issues.

NPM is most likely included in the Node.js installation.

2. Install the required modules for the control unit program

From the root directory of the project folder, run ”npm install” in the terminal or
command line. The root project directory contains the package.json file which is
needed this command to work. This will install all the required modules for this
project.

3. Install TypeScript

This is needed to build the program. It compiles TypeScript into runnable JavaScript.
Install this by running ”npm install typescript” from the same directory as in step 2.
The version of TypeScript used for this project is version 3.2.1.

4. Compile the TypeScript into JavaScript

By using the command ”npm run build”, also from the root project directory, the
TypeScript files found in the ”lib” folder is compiled into JavaScript found in the
”dist” folder in the root project directory. If anything is changed in the TypeScript
files, they need to be compiled before running the program, for the changes to take
effect.

107

5. Configurate the config files

By this point, both the control unit and the mocked data repository, have their de-
pendencies installed, is compiled to JavaScript. The last step before running either
of the programs, is to make sure that their simple config files are as they should be.

(a) Control Unit Config:

The control unit config file is found in the root of the project directory, named
”config.json”. It has two entries, the first being its own IP-address, and the
second being the entries into the routing table. Its own IP-address is very
important, as this part of the mechanism that stops an endless loop of queries
between two control units from happening, which translates into monetary
loss in a cloud environment. This helps by attaching the IP-address to each
forwarded query, which stops the next control unit from forwarding the query
to the source. And it also means that endless cycles can happen if the network
organized by the routing table contains cycles as well. So structure of network
formed by the routing tables is important, maintain the tree structure in the
ZEN ICT architecture.

The routing table contains entries that map data location to different data repos-
itories and control unit. How this works is explained in chapter 4, but the short
version is that if an entry in the routing table’s key matches as a prefix to the
query’s location, the associated data repository or control unit is queried.

(b) Mocked Data Repository Config

The config of the mocked data repository is also found in the root of the project
directory, named ”dataConfig.json”. The first entry is its own IP-address,
which is not needed, as no logic is dependent on it, besides displaying it in
the GUI. The next entry, ”dataSource”, decides which JSON file it imports as
mocked data set descriptions. These data sets are found in the ”mockedData”
folder in the root project directory. The two next entries, ”bandwidth” and ”re-
sourceCost”, is KPIs used by the cost model for selection. At last, the ”delay”
entry adds delay to the response of mocked data repository, set in milliseconds.

6. Run the program

Finally, the programs can started. From the root of the project directory, ”npm run
startc” starts a control unit using port 3001, while ”npm run startd” starts a mocked
data repository using port 3000. Ctrl-c in terminal or command line to stop the
program running.

Contents of the control unit project folder

In this part, a short explanation and overview of the different content of the control unit
project is presented. At the root of the project folder, is the different config files. ”pack-
age.json”, ”package-lock.json”, and ”tsconfig.json” is configuration files for a Node.js

108

project with TypeScript, while the ”dataConfig.json” and ”config.json” is config files for
the program itself. The ”node modules” folder contains all the installed dependencies

The ”lib” folder contains the program files. Within it, is a folder named ”controlUnit” take
contains all the code for the control unit, and the ”dataApp” folder, which contains all the
code for the mocked data repository. In the ”mockedData” lies several mocked data set
descriptions that are used by the mocked data repositories as part of the mocking.

GUI installation

The GUI also depends on Node.js, so if it has not been installed, look at step 1 in the
installation guide for the control unit and mocked data repository, and perform it before
any steps in this installation guide.

1. Install the required modules for the control unit program

From the root of the project folder (folder containing ”package.json”), open terminal
or command line and run the command ”npm install”.

2. Change the hard coded control unit IP-address

The ip-address the queries are sent to is hard coded in the file ”app.js”, found in the
”src” folder. To change the IP-address the queries are sent to, the IP-address string
in the ”handleClick” function must be changed.

3. Run the program

Run the program opening a terminal or command line in the root of the project di-
rectory and running the command ”npm start”, this will open a new window in the
browser containing the GUI. All state that is stored in the GUI, like cost model con-
figuration, disappears when refreshing the page. Ctrl-c in the terminal or command
line running the program stops it.

Contents of the GUI project folder

The program is based on the React’s own initialized project template. The only files that
are change and that are of interest, is in the ”src” folder, with ”app.js”, that contains all
the logic of the search page, and ”config.js” that contains all the logic of the cost model
configuration page.

109

Appendix B

Appendix B contains the code from the three components of the control unit, the request
handler, the router, and the cost model, as these can be considered the most important parts
of the design and prototype.

Request Controller Implementation

e x p o r t c l a s s R e q u e s t H a n d l e r {

p u b l i c r o u t e r : R ou t e r ;

c o n s t r u c t o r () {
t h i s . r o u t e r = new Rou te r () ;

}

p u b l i c a sync h a n d l e (r e q) {
c o n s o l e . l o g (r e q) ;
i f (r e q [’ query ’] === ’ use r ’) {

//build ranking stuff here
c o n s t r a n k i n g F u n c t i o n = new RankAndSe lec to r () ;
r a n k i n g F u n c t i o n . a d d U t i l i t y F u n c t i o n s O r F i l t e r s (r e q [’ c r i t e r i a ’] [’ c r i t e r i a L i s t ’] , r e q [’ c r i t e r i a ’] [’ i n t e r v a l L i s t ’]) ;
//fetch all the different data sources
c o n s t r e s u l t s = a w a i t t h i s . r o u t e r . f i n d R e p o s i t o r i e s (r e q [’ s e a r c h ’] , ” u s e r ”) ;
//rank the results according to ranking stuff
c o n s t f l a t t e n R e s u l t s = t h i s . f l a t t e n D e e p (r e s u l t s) ;
c o n s t r a n k i n g = r a n k i n g F u n c t i o n . c a l c u l a t e R a n k i n g (f l a t t e n R e s u l t s) ;
//send the results back
r e t u r n { r e s u l t s : r a n k i n g};

//By providing the source of the request, it should not query it, to avoid circular query chains
} e l s e i f (r e q [’ query ’] === ’ c o n t r o l u n i t ’) {

c o n s o l e . l o g (” c o n t r o l U n i t ”) ;
c o n s t r e s u l t s = a w a i t t h i s . r o u t e r . f i n d R e p o s i t o r i e s (req , r e q [’ sou rce ’] , + r e q [’ t i m e o u t ’]) ;
c o n s t c leanedUp = t h i s . r emoveRe jec t sAndTimeou t s (r e s u l t s) ;
r e t u r n c leanedUp ;

} e l s e {
r e t u r n Promise . r e j e c t ({ e r r o r : ” Must s p e c i f y que ry t y p e ”}) ;

}
}

//cleans up rejected or timed out requests.
p r i v a t e removeRe jec t sAndTimeou t s (a r r) {

c o n s t r e s u l t s = [] ;
a r r . f o r E a c h (e l e m e n t => {

i f (e l e m e n t !== ” r e j e c t e d ” && e l e m e n t !== ” t imed o u t ”) {
r e s u l t s . push (e l e m e n t) ;

}
}) ;
r e t u r n r e s u l t s ;

}

//recursive flattening of array, borrowed from Mozilla Developer Network.
p r i v a t e f l a t t e n D e e p (a r r 1) {

r e t u r n a r r 1 . r e d u c e ((acc , v a l) => Array . i s A r r a y (v a l) ? acc . c o n c a t (t h i s . f l a t t e n D e e p (v a l)) : acc . c o n c a t (v a l) , []) ;
}

}

110

Router

i m p o r t ∗ as rp from ” r e q u e s t−promise ” ;
i m p o r t ∗ as f s from ” f s ” ;

e x p o r t c l a s s R ou te r {

p r i v a t e t a b l e : Map<s t r i n g , s t r i n g >;
p r i v a t e t i m e o u t : number = 6000
p u b l i c a d d r e s s : s t r i n g ;

c o n s t r u c t o r () {
t h i s . t a b l e = new Map<s t r i n g , s t r i n g >();
c o n s t c o n f i g D a t a = f s . r e a d F i l e S y n c (” c o n f i g . j s o n ”) . t o S t r i n g (’ u t f −8 ’);
c o n s t c o n f i g = JSON . p a r s e (c o n f i g D a t a) ;
t h i s . a d d r e s s = c o n f i g [’ a d d r e s s ’] ;
c o n f i g [’ r o u t i n g ’] . f o r E a c h (r o u t e => {

t h i s . t a b l e . s e t (r o u t e [’ key ’] , r o u t e [’ a d d r e s s ’]) ;
}) ;

}

//takes in a request object and returns a list of places where the data can be found and metadata
//the only accessible function outside this class.
p u b l i c f i n d R e p o s i t o r i e s (s e a r c h P a r a m e t e r s , s o u r c e : s t r i n g , t i m e o u t : number = t h i s . t i m e o u t) {

l e t f i n a l R e s u l t s = new Promise ((r e s o l v e , r e j e c t s) => {
t h i s . r e q u e s t M e t a D a t a (s e a r c h P a r a m e t e r s , sou rce , t i m e o u t) . t h e n ((r e s u l t s : any []) => {

c o n s o l e . l o g (r e s u l t s) ;
l e t f i n a l R e s u l t s = [] ;
r e s u l t s . f o r E a c h (e l e m e n t => {

i f (t y p e o f e l e m e n t === ” s t r i n g ”) {
t r y {

f i n a l R e s u l t s . push (JSON . p a r s e (e l e m e n t))
} c a t c h (e r r) {

c o n s o l e . l o g (e r r . message) ;
}

}
}) ;
r e s o l v e (f i n a l R e s u l t s) ;

}) ;
}) ;
r e t u r n f i n a l R e s u l t s ;

}

//Makes a series of http requests to all places that might have the data that is queried
//once all requests are resolved/rejected/timed out, the promise that it returns, returns a list of results or errors.
p r i v a t e r e q u e s t M e t a D a t a (s e a r c h P a r a m e t e r s , s o u r c e : s t r i n g , t i m e o u t : number) {

c o n s t f o r m D a t a I n p u t = {
que ry : ” c o n t r o l u n i t ” ,
l o c a t i o n : s e a r c h P a r a m e t e r s [’ l o c a t i o n ’] ,
s t a r t : s e a r c h P a r a m e t e r s [’ s t a r t ’] ,
end : s e a r c h P a r a m e t e r s [’ end ’] ,
t y p e : s e a r c h P a r a m e t e r s [’ type ’] ,
t i m e o u t : t i m e o u t , //− r e d u c e t h e t i m e o u t f o r each r e q . (Not a c t u a l l y used)
s o u r c e : t h i s . a d d r e s s

};
c o n s o l e . l o g (f o r m D a t a I n p u t) ;

c o n s t o p t i o n s = {
method : ”POST” ,
u r i : n u l l ,
form : fo rmDa ta Inpu t ,
h e a d e r s : {

’ c o n t e n t−type ’ : ” a p p l i c a t i o n / j s o n ”
} ,
t ime : t r u e ,
r e s o l v e W i t h F u l l R e s p o n s e : t r u e

};

c o n s t p r o m i s e A r r a y = [] ;
t h i s . t a b l e . f o r E a c h ((va lue , key) => {

i f (s e a r c h P a r a m e t e r s [’ l o c a t i o n ’] . s t a r t s W i t h (key) && s o u r c e !== v a l u e) {
c o n s o l e . l o g (” r e q u e s t ”) ;
o p t i o n s . u r i = v a l u e + ” / que ry ” ;
c o n s t d a t a R e q u e s t P r o m i s e = t h i s . r e s o l v e R e j e c t s (rp (o p t i o n s) , t i m e o u t , v a l u e) ;
p r o m i s e A r r a y . push (d a t a R e q u e s t P r o m i s e) ;

}
}) ;

r e t u r n Promise . a l l (p r o m i s e A r r a y) ;
}

//wrapper for data request promises
//this lets us treat the request-promise rejects as resolves, so that a reject or timing out doesn’t stop promise.all
//The intended behavior is that whenever a promise is done or the time is over, the ones that resolves will be used.
//handle the error from requests elsewhere
p r i v a t e r e s o l v e R e j e c t s (promise , t i m e o u t , a d d r e s s) {

c o n s t r e s o l v e s = new Promise ((r e s o l v e , r e j e c t) => {
s e t T i m e o u t (() => r e s o l v e (” t imed o u t ”) , t i m e o u t) ;
p romise . t h e n ((r e s p o n s e) => {

111

c o n s o l e . l o g (” Delay : ” + r e s p o n s e . e l apsedT ime + ”ms from ” + a d d r e s s) ;
r e s o l v e (r e s p o n s e . body) ;

})
. c a t c h ((e r r) => {

c o n s o l e . l o g (e r r) ;
r e s o l v e (” r e j e c t e d ”) ;

})
})
r e t u r n r e s o l v e s ;

}

}

Cost Model

i n t e r f a c e I n t e r v a l V a l u e {
i S t a r t : number ;
iEnd : number ;
v a l u e : number ;

}

//Represent a strict constraint for a KPI
c l a s s F i l t e r {

p u b l i c t y p e : s t r i n g ;
p u b l i c d i r e c t i o n : s t r i n g ;
p u b l i c l i m i t : number ;

p u b l i c keep (measure : number) : b o o l e a n {
r e t u r n t h i s . d i r e c t i o n === ”Max” ? measure <= t h i s . l i m i t : measure >= t h i s . l i m i t ;

}
}

//Represents a criteria for the cost model, with a type, a weight of importance,
//and a utility function in the form of a collection of intervals.
//calculateScore() return the score for a single KPI given a measurement of it.
//A criteria can be considered as the utility function plus its weight for a single KPI in the cost model
c l a s s U t i l i t y F u n c t i o n {

p u b l i c t y p e : s t r i n g ;
p u b l i c w e i g t h : number ;
p u b l i c v a l u e F u n c t i o n : I n t e r v a l V a l u e [] ;

c o n s t r u c t o r () {
t h i s . v a l u e F u n c t i o n = [] ;

}

p u b l i c c a l c u l a t e S c o r e (measure : number) : number {
l e t v a l u e = 0 ;
c o n s o l e . l o g (measure) ;
t h i s . v a l u e F u n c t i o n . f o r E a c h (i n t e r v a l => {

i f ((measure >= i n t e r v a l . i S t a r t && measure <= i n t e r v a l . iEnd) || (measure <= i n t e r v a l . i S t a r t && measure >= i n t e r v a l . iEnd)) {
i f (v a l u e < i n t e r v a l . v a l u e) {

v a l u e = i n t e r v a l . v a l u e
}

}
}) ;
r e t u r n v a l u e ∗ (t h i s . we ig th / 1 0 0) ;

}
}

//Main cost model class, holds a collection of filters and cost model criteria and methods to interact with it
e x p o r t c l a s s RankAndSe lec to r {

p r i v a t e u t i l i t y F u n c t i o n s : U t i l i t y F u n c t i o n [] ;
p r i v a t e f i l t e r s : F i l t e r [] ;

c o n s t r u c t o r (){
t h i s . u t i l i t y F u n c t i o n s = [] ;
t h i s . f i l t e r s = [] ;

}

//Adds filters and criteria to the cost model
p u b l i c a d d U t i l i t y F u n c t i o n s O r F i l t e r s (c r i t i e r a L i s t , i n t e r v a l L i s t) {

l e t c o u n t = 0 ;
c r i t i e r a L i s t . f o r E a c h (c r i t e r i a => {

i f (c r i t e r i a [’ c o n s t r a i n t T y p e ’] === ” S o f t ”) {
c o n s t c = new U t i l i t y F u n c t i o n () ;
c . t y p e = c r i t e r i a [’ c r i t e r i a ’] ;
c . w e i g t h = + c r i t e r i a [’ weight ’] ;
i n t e r v a l L i s t [c o u n t] . f o r E a c h (i n t e r v a l => {

c o n s t i : I n t e r v a l V a l u e = { i S t a r t : + i n t e r v a l [’ s t a r t ’] , iEnd : + i n t e r v a l [’ end ’] , v a l u e : + i n t e r v a l [’ u t i l i t y ’]} ;
c . v a l u e F u n c t i o n . push (i) ;

}) ;
t h i s . u t i l i t y F u n c t i o n s . push (c) ;

} e l s e {
c o n s t f = new F i l t e r () ;
f . t y p e = c r i t e r i a [’ c r i t e r i a ’] ;
f . l i m i t = + c r i t e r i a [’ l i m i t ’] ;
f . d i r e c t i o n = c r i t e r i a [’ d i r e c t i o n ’] ;

112

t h i s . f i l t e r s . push (f) ;
}
c o u n t ++;

}) ;
}

//Takes in a list of alternatives, and returns a list with all alternatives either ranked or filtered out
p u b l i c c a l c u l a t e R a n k i n g (r e s u l t s) {

c o n s o l e . l o g (r e s u l t s) ;
c o n s t r e s u l t = [] ;
r e s u l t s . f o r E a c h (s e r v e r D a t a => {

s e r v e r D a t a [’ da t a ’] . f o r E a c h (m e t a d a t a => {
i f (t h i s . f i l t e r (s e r v e r D a t a , m e t a d a t a)) {

c o n s t s c o r e = t h i s . c a l c u l a t e S c o r e (s e r v e r D a t a [’ s e r v e r ’] , m e t a d a t a) ;
r e s u l t . push ({ s c o r e : s c o r e , s e r v e r : s e r v e r D a t a [’ s e r v e r ’] , d a t a : m e t a d a t a})

}
}) ;

}) ;
r e s u l t . s o r t ((a , b) => {

r e t u r n b . s c o r e − a . s c o r e ;
}) ;
r e t u r n r e s u l t ;

}

//calculates the score for a single alternative
p r i v a t e c a l c u l a t e S c o r e (s e r v e r D a t a , m e t a d a t a) : number {

l e t s c o r e = 0 ;
t h i s . u t i l i t y F u n c t i o n s . f o r E a c h (e l e m e n t => {

/ / i f i t i s c o s t , we c a l c u l a t e t o t a l c o s t
i f (e l e m e n t . t y p e === ” c o s t ”) {

s c o r e += e l e m e n t . c a l c u l a t e S c o r e (t h i s . c a l c u l a t e C o s t (s e r v e r D a t a , m e t a d a t a)) ;
} e l s e {

i f (s e r v e r D a t a . hasOwnProper ty (e l e m e n t . t y p e)) {
s c o r e += e l e m e n t . c a l c u l a t e S c o r e (s e r v e r D a t a [e l e m e n t . t y p e]) ;

} e l s e i f (m e t a d a t a . hasOwnProper ty (e l e m e n t . t y p e)) {
s c o r e += e l e m e n t . c a l c u l a t e S c o r e (m e t a d a t a [e l e m e n t . t y p e]) ;

}
}

}) ;
r e t u r n s c o r e ;

}

//returns false if an alternative breaks a strict constraint
p r i v a t e f i l t e r (s e r v e r D a t a , m e t a d a t a) : b o o l e a n {

l e t i n c l u d e = t r u e ;
t h i s . f i l t e r s . f o r E a c h (e l e m e n t => {

/ / i f i t i s c o s t , we c a l c u l a t e t o t a l c o s t
i f (e l e m e n t . t y p e === ” c o s t ”) {

i f (! e l e m e n t . keep (t h i s . c a l c u l a t e C o s t (s e r v e r D a t a , m e t a d a t a)))
i n c l u d e = f a l s e ;

} e l s e {
i f (s e r v e r D a t a . hasOwnProper ty (e l e m e n t . t y p e)) {

i f (! e l e m e n t . keep (s e r v e r D a t a [e l e m e n t . t y p e])) {
i n c l u d e = f a l s e ;

}
} e l s e i f (m e t a d a t a . hasOwnProper ty (e l e m e n t . t y p e)) {

i f (! e l e m e n t . keep (m e t a d a t a [e l e m e n t . t y p e])) {
i n c l u d e = f a l s e ;

}
}

}
}) ;
r e t u r n i n c l u d e ;

}

//calculates total cost for an alternative, using access cost and estimated resource cost
p r i v a t e c a l c u l a t e C o s t (s e r v e r D a t a , m e t a d a t a) {

l e t c o s t = 0 ;
i f (m e t a d a t a . hasOwnProper ty (” c o s t ”))

c o s t += + m e t a d a t a [” c o s t ”] ;
i f (s e r v e r D a t a . hasOwnProper ty (” r e s o u r c e C o s t ”) && m e t a d a t a . hasOwnProper ty (” d a t a S i z e ”))

c o s t += (+ s e r v e r D a t a [” r e s o u r c e C o s t ”] ∗ + m e t a d a t a [’ d a t a S i z e ’]) ;
r e t u r n c o s t ;

}
}

113

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

C
T

an
d

N
at

ur
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Torbjørn Kirkevik Soltvedt

A Distributed-to-Centralized Cost
Model for Service Selection in Smart
Cities

Master’s thesis in Master of Science (MSc) in Informatics
Supervisor: Sobah Abbas Petersen, Amir Sinaeepourfard

June 2019

	Summary
	Preface
	Preface
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Introduction
	Motivation
	Project Description
	Thesis Outline

	Background
	Smart cities
	Technology management
	Resource management
	Data management
	Software management
	Schemas - Centralized and Disitributed-to-Centralized

	Data management
	Centralized data management
	Distributed-to-centralized data management

	Resource management
	Centralized resource management
	Distributed-to-centralized resource management

	Software management
	Centralized software management
	Distributed-to-centralized software management

	Cost models
	Linear programming models
	Epsilon-Constraint method
	Analytical Hierarchy Process (AHP)
	Decision Envelopment Analysis (DEA)
	Goal programming
	TOPSIS
	Multi-Attribute Utility Theory (MAUT)
	ELECTRE methods
	Adaptive Cloud Provider Selection (ACPS)
	Q-learning
	Boltzmann Exploration
	Cost model comparison

	Key Performance Indicator (KPI)
	Cloud computing KPI
	Distributed-to-centralized KPI
	Data Quality
	Context Information

	Service registry
	Centralized registry
	Distributed hash tables and routing
	Blockchain

	Service description
	Web Service Description Language (WSDL) and OWL-S
	Cloud service descriptions
	Fog-to-cloud taxonomies

	Zero Emission Neighborhoods (ZEN)
	ZEN pilot
	ZEN KPI
	ZEN ICT architecture

	Research Methodology
	Research Method
	Research Questions

	Proposed cost model design
	Stakeholders
	Requirements
	Previous requirements
	Usage scenario
	Specified requirements

	Architecture
	Request handler
	Routing
	Cost model
	User interface

	ZEN Cost Model Prototype
	Preliminaries
	Requirements and implementation
	Scope and limitations

	KPI and data description
	Technologies
	Programming language and run-time environment
	Frameworks
	Cloud computing

	Implementation architecture
	Development
	Control Unit
	GUI
	Mocked Data repository

	Results
	ZEN Cost Model Prototype
	GUI
	Functionality

	Measurements
	Scenarios
	Response times

	Discussion and Evaluation
	Discussion
	Evaluation
	Comparison with the centralized data management architecture
	ZEN contribution

	Conclusion and Future Work
	Conclusion
	Research Questions
	Future Work

	Bibliography
	Appendix A
	Appendix B

