
Thorben W
erner Sjøstrøm

 D
ahl

Im
proved O

ntology B
ased Sem

antic Search for O
pen D

ata

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Thorben Werner Sjøstrøm Dahl

Improved Ontology Based Semantic
Search for Open Data

Master’s thesis in MIT
Supervisor: Jingyue Li

June 2019

Thorben Werner Sjøstrøm Dahl

Improved Ontology-Based Semantic
Search for Open Data

Master’s thesis in Informatics
Supervisor: Jingyue Li
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

As governments publish more datasets, potential users need a way of finding the
datasets they desire. This is not always so easy. Special domain-specific terminology
may seem obvious to the dataset publishers, but is likely not so obvious to the users look-
ing for datasets. Existing keyword-based search approaches therefore leave some room for
improvement, since they require that queries mention words from the dataset metadata.

Efforts have been made to help solve this problem. Hagelien’s thesis serves as a ba-
sis for this thesis, and presented a prototype for ontology-based semantic search called
DataOntoSearch. His approach is to match the user’s query with concepts in an ontology,
which are then matched with datasets based on either an automatic or a manual associa-
tion between datasets and concepts. By using concepts as an intermediate layer, the user’s
query is more likely to match with datasets that are related without mentioning the specific
words used by the user.

Other efforts include Google Dataset Search, which was introduced in September
2018. Their system works much like the regular Google search, letting you search for
datasets independent of where they are published, but it exhibits the same traits as other
keyword-based search engines. Another approach uses the semantic web to let the user
specify a time period and geographical area by using terms known to the them, rather than
specific dates and coordinates. Even then, it does not look like any approach exists using
an ontology for open data search.

This thesis poses two research questions: What problems are there in DataOntoSearch,
and how can we address these issues? A usability test showed that the search did not
return what users search for, and looked unprofessional. The users were more impressed
by Google Dataset Search.

Based on these findings and other observations about DataOntoSearch, I have devel-
oped a version 2 of the system, where it has been made 1) ready to set up and deploy
2) interoperable with web APIs 3) integrated with a common dataset archival solution
(CKAN) 4) hopefully more usable and 5) better for searching .

Specifically, while version 1 had an F1 score of 6% and a MAP measure of 3%, ver-
sion 2 has an F1 score of 35% and a MAP measure of 32% using the manually created
dataset-concept associations. Though Google Dataset Search was included in the evalu-
ation and scored a lower than DataOntoSearch version 2, it suffered from a bug that day
which made it not perform as well as it has performed other days.

Overall, the ontology-based semantic search approach is promising, and may very well
help solve the problem of making open datasets discoverable. With the contributions of
this thesis, DataOntoSearch is better poised to serve its purpose “out in the wild” than ever
before, and has a greater chance of being adapted and make a difference for users wishing
to find a dataset to solve their problems.

i

Sammendrag

Etterhvert som mengden publiserte datasett har økt, har det blitt viktigere og viktigere
med verktøy som hjelper brukerne med å finne fram i havet av datasett. Typiske nøkkelord-
baserte søk gjør ikke så mye nytte for seg, siden domene-spesifikke faguttrykk ofte kan bli
brukt av de som publiserer datasett. Når vanlige brukere skal forsøke å finne datasett, er det
ikke sikkert de har kjennskap til de samme faguttrykkene, så deres spørringer returnerer
ikke nødvendigvis de relevante datasettene.

Flere forsøk har blitt gjort for å løse dette problemet. Masteroppgaven til Hagelien fun-
gerer som et grunnlag for denne masteroppgaven, og presenterte en prototype for ontologi-
basert semantisk søk kalt DataOntoSearch. Hans system knytter brukerens spørring opp
mot konsepter i ontologien, som igjen sammenliknes med datasett basert på enten manuelle
eller automatiske koblinger mellom datasett og konsept. Ved å bruke konsepter som et
mellomlag mellom spørringen og datasett, kan brukerens spørring returnere datasett som
er relatert til spørringen uten at de nødvendigvis bruker de samme ordene som spørringen.

Andre systemer inkluderer Google Dataset Search, som ble introdusert i september
2018. Deres system virker på samme måte som vanlig Google-søk, ved at du kan søke etter
datasett uavhengig av hvor de er publisert. Det virker dog til å ha de samme problemene
som andre nøkkelord-baserte søk. En annen tilnærming lar brukerne filtrere datasett på
tidsperioder og geografiske områder ved å bruke kjente navn, i stedet for å kreve spesifikke
datoer og koordinater. Til tross for dette later det ikke til å være noen andre tilnærminger
som bruker en ontologi for søk i åpne data.

Denne oppgaven stiller to forskningsspørsmål: Hvilke problemer har DataOntoSearch,
og hvordan kan de løses? Brukbarhetstester viste at systemet ikke returnerte det brukerne
så etter og så uprofesjonelt ut. De likte derimot Google Dataset Search.

Basert på dette og andre observasjoner har jeg utviklet en version 2 av systemet. Sys-
temet har blitt 1) klargjort for bruk og produksjonssetting 2) mulig å bruke med andre sys-
temer gjennom vev-API 3) integrert med en mye brukt løsning for publisering av datasett
(CKAN) 4) forhåpentligvis mer brukbart, og 5) bedre til søking.

Spesifikt så har versjon 2 en F1-skår på 35% og en målt MAP på 32%, sammenliknet
med version 1 sin F1-skår på 6% og målt MAP på 3% med manuelt genererte datasett-
konsept koblinger. Selv om Google Dataset Search var med i evalueringen og skåret lavere
enn DataOntoSearch versjon 2, sleit det med en programfeil den dagen som gjorde at det
ikke presterte så bra som det ellers har gjort.

Når alt kommer til stykket har ontologi-basert semantisk søk et potensiale, og kan
faktisk hjelpe til å gjøre åpne datasett synlige. Med bidragene fra denne masteroppgaven
står DataOntoSearch bedre rustet enn noensinne til å gjøre sitt oppdrag “i det fri,” og har
en bedre sjanse til å bli adaptert og gjøre en forskjell for brukere som ønsker å finne fram
til datasett som kan løse problemene deres.

ii

Preface

For the last year, I have spent my days researching and writing this master thesis. It
has been a long ride, filled both with moments of frustration and of joy. It has also been
an exercise in tenacity and self discipline, and a constant balancing act between school,
voluntary activities and free time at home. I am left with a greater appreciation of my own
limits and a desire to start a normal work-life, where I am compensated for the hours I put
in and not thinking of any free time as time I could have spent improving the thesis.

This master thesis is a part of the Open Transport Data project1, which is a project
funded by the Research Council of Norway. The project partners are:

• Norwegian Public Road Administration

• Norwegian Coastal Administration

• Municipality of Oslo

• ITS Norway

• URBALURBA

• SINTEF Digital

The work has been done under the skillful supervision of Dr. Shanshan Jiang (SIN-
TEF) and associate professor Jingyue Li (NTNU). I would like to thank them for their
time and knowledge, and SINTEF for their collaboration with NTNU for this thesis. Ad-
ditionally, I would like to thank Dr. Shanshan Jiang and Marit Natvig at SINTEF for their
work in updating the ontology and creating a new evaluation framework based on New
York’s open data.

I would also like to thank Thomas Hagelien (SINTEF) for dedicating time to explain-
ing aspects of the system and assisting in getting it to run on my computer.

Of course, I wouldn’t have made it this far without a little help from my friends. I
would like to thank my friends at Studentmediene i Trondheim, and give a special thank
you to those of my friends who volunteered as test users for the usability tests.

1https://opentransportdata.wordpress.com/

iii

https://opentransportdata.wordpress.com/

iv

Contents

Abstract i

Sammendrag ii

Preface iii

Contents v

List of Tables ix

List of Figures xi

Glossary xii

1 Introduction 1

2 Background 3
2.1 Open data and semantic technologies . 3

2.1.1 Open Data . 3
2.1.2 Dataset archival solutions . 4
2.1.3 Linked Data and Semantic Technologies 5
2.1.4 Taxonomy of semantic search engines 7
2.1.5 Related Natural Language Processing technologies 8

2.2 Existing search function in CKAN . 9
2.3 A previous project on improving the CKAN search 11
2.4 The master thesis which improved CKAN search further 12

2.4.1 Ontology development . 12
2.4.2 Semantic search . 13
2.4.3 Evaluation . 14

v

3 Related Work 17
3.1 Semantic based search . 17

3.1.1 Google Dataset Search . 17
3.1.2 Spatio-Temporal Search . 18
3.1.3 OntRank . 19
3.1.4 Dataset search using semi-structured query patterns 20
3.1.5 Ontology-based query improvement 21
3.1.6 Other semantic search engines 21

3.2 Evaluation approaches of semantic search 22
3.3 System-oriented Evaluation . 23

3.3.1 Precision and recall . 23
3.3.2 Precision at k . 24
3.3.3 R-Precision . 25
3.3.4 Mean Average Precision . 25
3.3.5 Receiver Operating Characteristics (ROC) 25
3.3.6 Normalized Discounted Cumulative Gain 25
3.3.7 Best Practice . 26
3.3.8 Crowdsourcing relevance assessment 27

3.4 User-oriented Evaluation . 27
3.4.1 Defining Usability . 27
3.4.2 Evaluating usability . 28
3.4.3 Evaluating Usability of Semantic Search Interfaces: An Example

Study . 32

4 Overall design 35
4.1 Motivation . 35
4.2 Research Questions . 38
4.3 Overview . 38

5 Investigation and results of RQ1 41
5.1 Methodology . 41

5.1.1 Goals . 41
5.1.2 Test methodology . 42
5.1.3 Collection and analysis of data 43
5.1.4 Test details . 44

5.2 Implementation . 48
5.2.1 Getting a runnable system . 48
5.2.2 Finding common datasets . 50
5.2.3 Updated ontology . 51
5.2.4 User interface improvements . 52

5.3 Results . 55
5.3.1 Changes made from pilot study 55
5.3.2 User rating of systems . 56
5.3.3 User satisfaction . 57
5.3.4 Problems and themes in user comments 57
5.3.5 User performance . 58

vi

6 Implementation and results of RQ2 59
6.1 Methodology . 59

6.1.1 Goals . 59
6.1.2 Measures . 60
6.1.3 Queries and relevance assessments 60
6.1.4 Collection and analysis of data 63

6.2 Implementation . 66
6.2.1 CKAN Extension . 66
6.2.2 API . 71
6.2.3 Improving how the query is associated with concepts 73
6.2.4 Increasing the ontology’s importance 76
6.2.5 New threshold variables . 77
6.2.6 Autotagging . 78
6.2.7 Manual tagging process . 79
6.2.8 Web interface . 79

6.3 Results . 83
6.3.1 Sensitivity of threshold variables 83
6.3.2 Search engine comparison . 84
6.3.3 Performance . 89

7 Discussion 99
7.1 The usability test . 99

7.1.1 Limitations . 102
7.2 The CKAN plugin . 102

7.2.1 Limitations . 103
7.3 Code quality . 103
7.4 Search quality and evaluation . 104

7.4.1 Limitations . 105
7.5 Run-time performance . 106
7.6 Comparison with some other approaches 106
7.7 Future work . 108

8 Conclusion 111

Bibliography 113

Appendices 117

A Material provided to test users in pre-study 119
A.1 Test description . 120
A.2 Task descriptions . 121

A.2.1 Internal notes about the tasks . 121
A.3 Manual . 122

A.3.1 Dataset publishers . 122
A.3.2 Search engines . 122

vii

B Example of code quality improvements 125

C Documentation 129
C.1 README of DataOntoSearch . 129

C.1.1 Preparing . 130
C.1.2 Usage . 130

C.2 API Documentation of dataset tagger . 137
C.2.1 Overview . 137
C.2.2 GET /api/v1/<uuid>/concept 137
C.2.3 GET /api/v1/<uuid>/tag 138
C.2.4 POST /api/v1/<uuid>/tag 139
C.2.5 DELETE /api/v1/<uuid>/tag 139
C.2.6 DELETE /api/v1/<uuid>/dataset 140

C.3 API Documentation of search webserver 141
C.3.1 Overview . 141
C.3.2 GET /api/v1/search . 141

C.4 README of ckanext-dataontosearch 143
C.4.1 Requirements . 143
C.4.2 Installation . 143
C.4.3 Config Settings . 144
C.4.4 Development Installation . 144
C.4.5 Future Work . 145
C.4.6 Running the Tests . 145
C.4.7 Releasing a New Version of ckanext-dataontosearch 146

D Code used for search 147
D.1 The OpenDataSemanticFramework class 147
D.2 QueryExtractor . 154
D.3 SemScore . 155

viii

List of Tables

5.1 SUS scores . 57
5.2 Summary of measurements collected from users 58

6.1 Queries with concept-based relevance assessment 62
6.2 Queries derived from the pre-study . 64
6.3 Previous descriptions of TC and TS . 78
6.4 Effect of varying TS . 85
6.5 Effect of varying TQ . 85
6.6 Effect of varying TC . 86
6.7 Effect of varying TC over TQ, using F1 score 86
6.8 Effect of varying TC over TQ, using MAP 91
6.9 Effect of varying TS over combinations of TQ and TC for automatic tag-

ging, measured using F1 score . 92
6.10 Effect of varying TS over combinations of TQ and TC for manual tagging,

measured using F1 score . 93
6.11 Effect of varying TS over combinations of TQ and TC for automatic tag-

ging, measured in MAP . 94
6.12 Effect of varying TS over combinations of TQ and TC for manual tagging,

measured in MAP . 95
6.13 Summary of measurements between the two threshold combinations, us-

ing all queries. Google is included for comparison. 96
6.14 Precision measurements . 96
6.15 Recall measurements . 96
6.16 F1 score measurements . 97
6.17 R-Precision measurements . 97
6.18 Mean Average Precision (MAP) measurements 98
6.19 Summary of measurements for DataOntoSearch v2, Google Dataset Search

and DataOntoSearch v1. 98
6.20 Mean Average Precision (MAP) using task-based relevance assessment . 98

ix

6.21 The time spent on the different parts of the query process. Measured in
real time. 98

x

List of Figures

2.1 Search example in CKAN . 10
2.2 Overview over the search process of DataOntoSearch version 1 13

3.1 The four interfaces created in [26]. Upper left is the free-form NLI, upper
right the somewhat guided NLI, lower left the very guided NLI and lower
right the graphical SPARQL editor. The original screenshots are property
of the paper’s authors. 33

5.1 The revised web search interface, without concepts being shown. 53
5.2 The revised web search interface, this time with concepts. 54

6.1 A list of concepts are shown for this dataset. 68
6.2 The user can add, change or remove concepts for the selected dataset. . . 68
6.3 The semantic search page lists matching concepts on the left, and the

search results in the main part of the page. 69
6.4 A link to view associated concepts is shown when viewing a dataset in

CKAN. 69
6.5 A link to edit associated concepts is shown when editing a dataset in CKAN. 70
6.6 When using the CKAN search, the user can click a link to perform the

same search using DataOntoSearch’s semantic search. 70
6.7 Example of query parameters in API request 73
6.8 Example of result from API request . 81
6.9 Example of how the generated CSV file can be used for manual tagging. . 82

A.1 An excerpt from the ontology hierarchy. 123

xi

Glossary

Symbol Definition

API Application Programming Interface. A way to make functionality
available to other computer programs

CKAN Open source software for storing, organizing and publishing datasets.
Commonly used by governments, especially European ones

CLI Command Line Interface. A way of interacting with a computer pro-
gram by running it as a program on the command line

DCAT Data Catalog Vocabulary. RDF predicates useful for describing datasets
and their metadata

DIFI Direktoratet for forvaltning og IKT (Agency for Public Management
and eGovernment). The Norwegian government agency responsible
for helping local governments and the central government make their
datasets available publicly. They host a federated dataset catalog for
this purpose

HTTP Hypertext Transfer Protocol. The protocol used for requesting and
receiving web pages.

I/O Input/Output. Usually refers to reading input from and giving feed-
back to the user, reading files from or writing files to the hard drive,
or communicating with other programs and computers.

Ontology A way of organizing knowledge in a topology, i.e. a hierarchical
structure where sub-concepts are specializations of their parents

OTD Open Transport Data. Research project

OWL Web Ontology Language. A further extension of RDFS, allowing for
more inferences

NL Natural Language. The type of writing you use when writing to an-
other human, as opposed to the more formal writing often required
when interacting with computers

NLI Natural Language Interface. A user interface which accepts natural
language from the user

NLP Natural Language Processing. Technologies for taking natural lan-
guage and transforming it into something the computer can work
with

xii

NTNU Norwegian University of Science and Technology, located in Trond-
heim, Gjøvik and Ålesund

RDF Resource Definition Language. Way of organizing knowledge, using
triples of (subject, predicate, object)

RDFS RDF Schema. Adds type functionality to RDF, letting you assign dif-
ferent types to different entities, and also infer types by using predi-
cates and restrictions on what types they can apply to

REST Representational State Transfer. Describes a way of designing an
API so that it is simple to use and benefits from the nature of the web

Semantic Web The idea of extending the World Wide Web with information read-
able by computers, as opposed to the unstructured text typically found
on websites. Just like the regular web, one site’s semantic data can
refer to information found other places, essentially creating one big,
distributed knowledge base

SINTEF Norwegian research organization with a focus on technology, coop-
eration with NTNU and commercialization of research results

SKOS Set of RDF predicates useful for defining an ontology, where con-
cepts can relate to one another in a number of different ways

Socrata Commercial alternative to CKAN, used by e.g. New York

SPARQL SPARQL Protocol and RDF Query Language. Technology used to
retrieve triples from an RDF store, using a syntax resembling SQL

SQL Structured Query Language. Way of querying and managing data in
databases

SUS System Usability Scale. Measures how well the user felt about using
the system

UUID Universally Unique IDentifier. A very random text string which is
used to identify something

xiii

xiv

Chapter 1
Introduction

Governments around the world have been adopting the open data philosophy, publishing
their data for anyone to use in the hopes of helping innovation and be transparent. This is
most often done through content management systems for open data, such as CKAN. The
benefits touted by advocates have not always come to fruition, though, with datasets not
being so easy to find for the average user. Even if you are walking around with a vague
idea for a startup relying on some open government data, actually figuring out where to
find this data – if it even exists – can be a challenge.

Clearly, there is an opportunity here to improve the discoverability of datasets. Hagelien
explored different ways of doing this, eventually creating a prototype dubbed DataOn-
toSearch. It is an ontology-based semantic search engine for searching among datasets. By
using an ontology, users do not need to know the exact words used by the dataset publish-
ers, since the ontology adds a layer of indirection between the query and the datasets that
are retrieved. DataOntoSearch seems to perform better than the search built into CKAN,
at least for queries that use words different from those used in the dataset metadata.

The experimental approach has its downsides, though, and the system setup itself can-
not be easily replicated by others. In addition, the evaluation of the system may be a bit
unrealistic, compared to the types of queries users would make “in the wild.” There are
also plenty of opportunities for improving the system itself, whether it be the user interface
and the system’s ease of use, or its algorithms for retrieving and ranking datasets. Finally,
a new contender entered the ring in September, with the beta launch of Google Dataset
Search.

My thesis is a continuation of Hagelien’s work, and aims to answer the following two
request questions:

RQ1: What do users think of DataOntoSearch version 1? What problems are there?

RQ2: How can we address the identified problems when creating version 2?

Both research questions involve deciding on a methodology, doing some implemen-
tation work and evaluating the result. For the first research question, I must be able to

1

Chapter 1. Introduction

run DataOntoSearch on my own computer, and ideally gain some knowledge of its inner
workings. Then, I can conduct a usability test to get a more realistic and accurate view
of how the system performs, and contrast it with users’ experience trying Google Dataset
Search.

The output of the work for the first research question functions as input for the work on
the second question. Whereas the first research question is about what to do, the second
research question mandates a more systematic evaluation so conclusions can be drawn
about the improvements made. Summarized, this thesis can be said to follow a pre-study,
improvements and evaluation structure.

Once I had the system running, which required a considerable amount of effort refac-
toring it, the usability test showed that the version of DataOntoSearch version 1 I had
access to performed very badly. Users preferred Google Dataset Search, which actu-
ally helped them achieve their tasks, as opposed to DataOntoSearch which did not return
the datasets the users were looking for. Users also commented that the look of DataOn-
toSearch’s web interface did not leave them with a good impression.

For the improvement work, I have implemented a CKAN extension integrating DataOn-
toSearch into the popular dataset archival system. I expect that having the system available
in the same website where the datasets are hosted will increase DataOntoSearch’s viability
as a platform for dataset search. Through this work, generic APIs have been implemented
in DataOntoSearch, so it is possible to integrate it with more platforms, should it be de-
sired. When using DataOntoSearch through CKAN, users get to enjoy the graphical user
interface of CKAN instead of the prototypical interface of DataOntoSearch, hopefully fix-
ing the problem users had with its graphical design.

Furthermore, the algorithm for mapping the user’s query to concepts in the ontology
has seen some improvements, by using more of the information present in the digital dic-
tionary used (WordNet), adding some predictability to how a query can be matched with
a concept by processing both the same way, and using the ontology to a greater degree.
The systematic evaluation in the end shows that the new version of DataOntoSearch pro-
vides a great improvement over version 1, especially when using manually created associ-
ations between datasets in the index and concepts in the ontology. It seemingly compares
favourably to Google Dataset Search, but this cannot be concluded conclusively.

The rest of the thesis is structured like this. Chapter 2 goes into the background, includ-
ing an introduction to open data, semantic technologies and earlier endeavours related to
the Open Transport Data project. Other related works, like other approaches for searching
open data and different evaluation methods, are covered in Chapter 3. With the knowl-
edge prerequisites out of the way, Chapter 4 details the motivation, research questions and
evaluation approach, before Chapter 5 covers the first research question and 6 covers the
second. A discussion of the results found is presented in Chapter 7, before Chapter 8
concludes the thesis.

2

Chapter 2
Background

This master thesis is a part of the Open Transport Data project, and is a continuation of
earlier efforts to make datasets more easily discoverable to dataset users. This chapter sets
the stage by introducing this backdrop.

2.1 Open data and semantic technologies

2.1.1 Open Data
There are multiple ways of approaching the question of what open data is. The Open
Definition project 1 is a project of the Open Knowledge Foundation, which seeks to clarify
what exactly what “openness” means. They summarize that “Open means anyone can
freely access, use, modify, and share for any purpose (subject, at most, to requirements
that preserve provenance and openness) [19].” Thus, open data can be said to mean any
data which is made available in a way that conforms to this definition of “open.” The
data can for example be “bus departure times in Stavanger” or “CO2 levels measured in
Tromsø,” usually made available as spreadsheets.

Of course, open data is more than just data that happens to be open. It is also an initia-
tive which promotes the idea of opening up data, especially for government entities which
generate the data using public funds. Rob Kitchin summarizes the arguments in [27]:

• Accountability: The general public can investigate how well the institutions in
question fulfil their purpose.

• Informed participation: By being better informed, the general public has a greater
chance of involving themselves in politics and democracy.

• Encouraging monitoring: Once openly available, the data can be used to moni-
tor the institution’s performance over time, both from within the institution and by
external agencies.

1http://opendefinition.org/

3

http://opendefinition.org/

Chapter 2. Background

• Improving public image: By adapting open practices, you are recognized as “in-
novative” and foster more connections with customers and end-users.

• Generate value: Businesses may often profit from having access to and using data
produced by the government. If such data is only available at a cost, innovative new
businesses may struggle to compete with the established giants who can afford the
cost.

More and more governments have adopted the open data mantra, such as the US gov-
ernment, the European Union and also the Norwegian government.

All open data are not created equal. Just because you can download a PDF with the
information does not mean you can do something useful with it. Tim Bernes-Lee has de-
veloped a five-star scale indicating how well some data accomplishes the ideals of linked,
open data [5]. Using it, one star is awarded for simply making the data available on the web
under an open license, while more stars are awarded as the data is made more machine-
readable (e.g. going from image to Excel to CSV) and interlinked with other open data on
the web (e.g. by adapting RDF and linking to other people’s data). As a dataset is awarded
more stars, you can assume it has become easier to use.

Open data is not without its problems. When the data is made openly available, there is
practically no way of funding the data generation, besides the government subsidizing the
process. Compared to a model where businesses pay to access the data, the government
essentially takes over the costs earlier paid for by those who gained the most from the data.
In fact, as Rob Kitchin summarizes in [27], there are critics who say that businesses have
supported open data practices as a way of generating more profit, while publicly using
arguments of transparency and accountability. Critics also argue, Kitchin continues, that
adapting open data may promote neoliberalization and marketisation of public services,
that advocates focus on technical and economic perspectives without considering how the
data may negatively affect the poor, and that the usefulness of open data has been greatly
exaggerated, due to initiatives not focusing on users of the data.

2.1.2 Dataset archival solutions
Though you could simply upload your open data to a personal website, it may be hard to
discover the dataset and you often want to collect datasets from many different sources
and present them in a federated catalog. For example, though each municipality in Nor-
way publish their own datasets on their own websites, the datasets are also collected and
presented in one system, at https://data.norge.no. For this purpose, a number of
solutions are available for uploading and making datasets available to the general public.

Such solutions must be easy to use, both for dataset publishers and dataset consumers.
They must provide ways of finding the dataset you want to use, and also store enough
metadata so you can know how and when to use the dataset, if you want to use it at all.

CKAN2 is a widely used open source software for archiving datasets. The system
is organized so datasets may be assigned to an organization, and each dataset has one
or more resources, representing a file, typically a spreadsheet file. There are harvesting
plugins available, enabling you to have a CKAN instance which harvests datasets from

2https://ckan.org/

4

https://data.norge.no
https://ckan.org/

2.1 Open data and semantic technologies

many other CKAN instances, e.g. when you want a federated catalog for all municipal-
ities. Such harvesters may harvest from many different sources, including other CKAN
instances, Socrata instances and so on. CKAN’s popularity means there are many plu-
gins available for augmenting and adding functionality. Users of CKAN include the US
federated catalog3 and the European Union’s federated catalog, the European Data Portal4.

Alternatives to CKAN include the commercial service Socrata run by Tyler Technolo-
gies5, an open source system ready for webhotels and with integrated CMS called DKAN6,
and an open source system focused on archival of research data called Dataverse7. Users
of Socrata include both the city8 and state9 of New York.

In the rest of the thesis, we will focus on CKAN, since it is widely used and can be
extended to handle datasets from the other dataset archival solutions.

2.1.3 Linked Data and Semantic Technologies

Making machine-readable data openly available under a non-proprietary format is just one
piece of the puzzle. To truly utilize the potential of the world wide web, you want to
present data in a way that lets consumers combine and look up information from multiple
sources. For example, your website can refer to the city of New York. Visitors may then go
to other sources describing the same entity, like the city’s Wikipedia article, to learn more
about said city. Semantic technologies were introduced to achieve this vision of linked,
open data, often referred to as the semantic web.

As explained by [3]:

The Semantic Web . . . follows different design principles, which can be sum-
marized as follows:

1. make structured and semi-structured data available in standardized for-
mats on the web;

2. make not just the datasets, but also the individual data-elements and their
relations accessible on the web,

3. describe the intended semantics of such data in a formalism, so that this
intended semantics can be processed by machines

To achieve this, a couple technologies have been developed, which embed information
of increasing complexity and inference technology of increasing capability. RDF is the
most basic of these technologies.

3https://catalog.data.gov
4https://www.europeandataportal.eu/en/
5https://www.tylertech.com/products/socrata
6https://getdkan.org/
7https://dataverse.org/
8https://opendata.cityofnewyork.us/
9https://data.ny.gov/

5

https://catalog.data.gov
https://www.europeandataportal.eu/en/
https://www.tylertech.com/products/socrata
https://getdkan.org/
https://dataverse.org/
https://opendata.cityofnewyork.us/
https://data.ny.gov/

Chapter 2. Background

RDF

RDF is an abbreviation of Resource Description Framework, a framework which describes
a way of organizing facts about different entities and their relationships, as well as ways of
representing this information in a way that computers can understand. Specifically, RDF
is a family of specifications issued by the W3C organization, with the latest specification
dating February 25th 2014.

Information in RDF is organized into triples. Each triple can be viewed as a simple
sentence on the form “〈subject〉 〈predicate〉 〈object〉.” Consider the example “〈New York〉
〈is a〉 〈city〉.” “New York” is here the subject, “is a” plays the role of predicate and “city”
is the object. As explained by the specification, a triple tells us that “some relationship,
indicated by the predicate, holds between . . . the subject and object [49]”.

The subject, predicate and object can be specified using something that looks like a
URL. By using them, one website can describe New York, and another website can then
refer to New York by the same URL, thereby allowing systems to learn about New York
from multiple sources and know that the different sources are describing the same thing.

RDF also defines ways of storing these triples. The most basic format is the XML
format, but there also exist more human-friendly formats, like Turtle.

Inference

Other technologies exist that build on top of RDF, adding the capability to generate new
triples by inferring information from what is already there. For example, RDFS adds the
ability to assign types to entities and say that one predicate only holds between certain
types. As an example, if a predicate isTopConcept is defined to apply between a Concept
and a Scheme, and you have the triple “Animal isTopConcept AnimalScheme,” then you
can infer that Animal must be a Concept, and AnimalScheme must be a Scheme, simply
based on what is known about isTopConcept.

OWL adds even more inference power, adopting the so-called open world assumption,
namely that instead of assuming everything is false until it is said to be true, everything is
assumed to be unknown instead. Using hierarchies of classes, properties and entities, more
complex knowledge can be represented in OWL ontologies.

Vocabularies

In order for a computer to understand RDF properly, we need to agree on some vocabular-
ies to use. This way, whenever the same predicate is encountered across different websites,
they can be taken to mean the same thing. For example, you will need to use a standard
vocabulary decided by Google to get your datasets indexed by the Google Dataset Search
[37].

One of the vocabularies most useful to us is the SKOS vocabulary. “The Simple
Knowledge Organization System (SKOS) is an RDF vocabulary for representing semi-
formal knowledge organization systems (KOSs), such as thesauri, taxonomies, classifica-
tion schemes and subject heading lists [47].” SKOS has the tools needed to represent an
ontology as a hierarchy of concepts, and attach labels and other documentary notes to each
concept.

6

2.1 Open data and semantic technologies

Another useful vocabulary is DCAT, i.e. the Data Catalog Vocabulary. It essentially
gives you the tools to represent a catalog consisting of datasets [48] . A DCAT plugin
is available in CKAN10, letting you access the dataset metadata using DCAT and RDF.
DCAT has more or less become a standard way of exchanging dataset metadata between
different dataset archival solutions.

2.1.4 Taxonomy of semantic search engines
Butt, Haller and Xie set out to analyze existing techniques for retrieving data from the
Semantic Web, to “find the directions that have been taken” and figure out “what are
some of the promising significant directions to pursue future research” [9]. As a part of
their work, they created a taxonomy of different dimensions that can be used to describe
different semantic search engines. Some of the most relevant dimensions are:

• Retrieval scope: What is searched in, and what is searched for?

– ONTOLOGY-RETRIEVAL TECHNIQUES search for ontologies and vocabularies
and inside their contents.

– LINKED-DATA-RETRIEVAL TECHNIQUES explore the linked data which is de-
scribed using these ontologies.

– GRAPH-RETRIEVAL TECHNIQUES are made to be used on graphs, but have
been applied to searching the Semantic Web.

• Query model: How do you model the query? And by extension, how does the user
create queries?

– In KEYWORD SEARCH, the user writes their query as a text consisting of sev-
eral keywords, which most will recognize from Google.

– STRUCTURED QUERY SEARCH is much more precise and requires that the
user conforms to a certain syntax, with one example being SPARQL. It is
therefore only accessible to experts with knowledge of the query language and
the underlying data.

– FACETED BROWSING uses filtering, in a way most people will recognize from
e-commerce sites where you can pick what price, what brands and what type
of products you would like to browse for, except the properties (i.e. facets)
you can filter will vary with the domain or search results.

– HYPERLINK-BASED TECHNIQUES offer links you can click, which will take
you to new queries, letting you navigate the data.

• Results type: How are the retrieved results presented to the user, conceptually?

– DOCUMENT-CENTRIC approaches simply present the retrieved data as it was
found, potentially listing different information about the same thing multiple
times.

10https://github.com/ckan/ckanext-dcat

7

https://github.com/ckan/ckanext-dcat

Chapter 2. Background

– ENTITY-CENTRIC approaches identify the entities that are found, and collect
all information about them so each entity is listed once, with all the consoli-
dated data.

– RELATION-CENTRIC approaches focus on the relationships between entities,
and is usually achieved through structured queries and faceted browsing.

• Data acquisition: How is the data collection done?

– MANUAL COLLECTION requires an administrator to make a decision on what
datasets to include.

– LINKED DATA CRAWLERS crawl the Semantic Web in much the same way
web search engines crawl the World Wide Web. They vary in to what degree
they crawl HTML documents with embedded RDF in addition to the Semantic
Web.

• Ranking factor: How do you rank documents?

Approaches include query-independent factors like popularity factors similar to Google’s
PageRank, how trustworthy the data is, how much information the data carries, ma-
chine learning, centrality and user feedback, and the query-dependent coverage fac-
tor, which considers how well each result covers the query.

• Datasets: When you evaluate the engine, what kind of data do you experiment with?

– REAL-WORLD DATA are important due to its messy and noisy nature, which
search engines will need to cope with when applied to the Semantic Web.

– SYNTHETICALLY GENERATED DATA are often used since it may be difficult
to obtain real-world data of the size needed to evaluate the engines’ scalability.

• User interface: What kinds of usages is the engine capable of?

– GRAPHICAL USER INTERFACES are useful for end-users.

– APPLICATION PROGRAMMING INTERFACES (API) are useful for integrating
the search with other applications.

With the dimensions defined, Butt, Haller and Xie reviewed a number of existing sys-
tems, identifying how they aligned along the dimensions. Based on this work, they identi-
fied a number of directions which had not been explored yet, like dynamically generating
facets for faceted browsing, ranking of ontologies and triples, and creating a comprehen-
sive evaluation framework for Semantic Web data retrieval techniques [9].

2.1.5 Related Natural Language Processing technologies
“Natural language” is the language we use when communicating to one another. The
collection of techniques used when a computer is asked to process this type of language
is called natural language processing, or NLP for short. This is used e.g. when trying to
make sense of a search query or extracting relevant concepts from a dataset description.

Some of the NLP techniques relevant for this thesis are described below.

8

2.2 Existing search function in CKAN

Tokenization The process of splitting one long text into tokens, typically one for each
word and punctuation mark.

Part-of-speech tagging Analyzing the structure of sentences and the individual words to
assign a part of speech, such as noun or verb, to each token.

Chunking Creating a tree out of a sentence, essentially breaking the sentence down into
sub-phrases.

Lemmatization Standardizing each token so different forms of the same words are changed
to a standard form, e.g. ensuring both “writes” and “wrote” are changed to “write.”

Stop word removal Removing the most common words that cannot be used to differenti-
ate between different texts, like “a,” “the” and “is.” Removing them can often yield
great performance benefits for little loss since they are so common.

WordNet

The techniques described above are not enough to gauge the “distance” in meaning be-
tween two words. For example, you intuitively know that the word “car” is more closely
related to “bicycle” than to the word “flower,” but the computer does not know this. This
kind of comparison would be useful to use when trying to see what concepts in an ontol-
ogy the user’s query is related to, since you want to match with concepts even if synonyms
or closely related words are used.

WordNet provides this type of functionality [40]. It is basically a dictionary made into
a computer-readable format, grouping nouns, verbs, adjectives and adverbs into groups of
synonyms, called synsets. These groups are then related to one another through a number
of different semantic relations, and have examples and definitions associated with them.
Software is distributed along with WordNet that e.g. lets you to find the distance between
two synsets.

Though the original WordNet only covers the English language, there have been made
versions for many other languages that follow the same format. For example, a Norwegian
version called OrdVev exists, available from the national library (Nasjonalbiblioteket)11.

2.2 Existing search function in CKAN
CKAN uses the Apache Solr project12 for its search functionality, which in turn is based
on Lucene. It is essentially a full-text search, which looks for datasets whose metadata
include words in your query. CKAN updates Solr so datasets are indexed, and CKAN uses
Solr to carry out any searching, while providing the user interface itself. You can see the
CKAN search in action in Figure 2.1 on the following page.

Solr includes “Advanced Configurable Text Analysis,” which is designed “to make
indexing and querying your content as flexible as possible [4].” Specifically, Solr includes

11https://www.nb.no/sprakbanken/repositorium#ticketsfrom?lang=en&query=
alle&tokens=ordvev&from=1&size=12&collection=sbr

12https://lucene.apache.org/solr/

9

https://www.nb.no/sprakbanken/repositorium#ticketsfrom?lang=en&query=alle&tokens=ordvev&from=1&size=12&collection=sbr
https://www.nb.no/sprakbanken/repositorium#ticketsfrom?lang=en&query=alle&tokens=ordvev&from=1&size=12&collection=sbr
https://lucene.apache.org/solr/

Chapter 2. Background

Figure 2.1: Example of searching using the CKAN interface, here on data.gov.

10

2.3 A previous project on improving the CKAN search

“[m]any additional text analysis components including word splitting, regex, stemming
and more.”

The CKAN project itself writes that “CKAN provides a rich search experience which
allows for quick ‘Google-style’ keyword search as well as faceting by tags and browsing
between related datasets. [. . .] all dataset fields are searchable [12].” Furthermore, some
fuzzy-matching is available, with an “option to search for closely matching terms instead
of exact matches,” likely using the text capabilities of Solr mentioned above.

The faceting feature is an advantage of using Solr. By using it, the user can filter
returned datasets by tags, publishers and so on. The user can also see how many datasets
there are for the different filtering options. These facets are handy if you know what you
are looking for, for example if you know a certain dataset is published by the city of New
York. Solr also has the ability to do a geospatial search, using location information to find
nearby results. You can see the facets on the left-hand side in Figure 2.1 on the preceding
page.

The CKAN search has one weakness, namely the fact that the user’s query must men-
tion words found in the dataset metadata. If the datasets’ metadata were consistently com-
prehensive and included many synonyms, this would not be a big problem. However,
dataset titles and descriptions are often very technical and brief. It can look like they were
created by individuals who are very familiar with the subject matter, and who did not have
much time for publishing the dataset. This is only natural, considering how the job of
publishing datasets is not among the core tasks of a governmental body, but rather just a
side-task that has been “forced” upon them to a varying degree.

The end result is that you need to have a similar mindset of the ones publishing the
dataset if you are to find them. Especially in domains with a lot of domain-specific terms
will there be problems for users who have not acquired the same vocabulary. If you search
using a different term than the one used by the dataset publisher, you will likely end up
with zero results, even if there are datasets out there that are relevant to your search. The
fuzzy matching available does not seem to take into account the meaning of words, only
how similar they are when written out with letters, so it does not mitigate this problem.

2.3 A previous project on improving the CKAN search
In 2016, as a part of the “Open Transport Data” project and the NTNU subject TDT4290
Customer Driven Project, a group of students were tasked with creating:

a user friendly system, based on CKAN technology, that makes it possible to
gather the information for all transport related datasets in one location. [. . .]
The system should also provide [a] user-friendly search function based on the
semantics of a transport ontology. [22, p. 1]

Due to difficulties working with CKAN, the search solution was implemented as a
separate front-end, through which you can make semantic search queries. The backend
is implemented as a CKAN extension, which adds a tab to the dataset pages which lets
you manually tag them with concepts. Your search query is matched against existing
concepts in the ontology, and all datasets associated with either the matched concepts

11

Chapter 2. Background

or their children in the specialization hierarchy are retrieved. If your query is matched
with the concept “Vehicle,” all datasets associated with “Vehicle” or any concept beneath
Vehicle, like “Car” and “Bus,” are returned.

The project was ambitious, considering CKAN is a quite impenetrable system. It may
therefore not come as a surprise that there are some limitations:

• The search result is not ranked.

• No ontology is built into the system, instead you must upload an ontology your-
self. Though an ontology developed internally is mentioned, its development is not
described and its content is not available in the code repository.

• Though ontologies developed with Protége could be uploaded, other ontologies in
the same file format cause errors when uploaded [22, p. 119].

• The expected format of the ontology is not aligned with best practices for ontologies
[2], since concepts are represented as classes without instances and their hierarchy
is built using “subClassOf” relationships.

The produced artifacts are superseded by the master thesis written the following year.

2.4 The master thesis which improved CKAN search fur-
ther

This thesis uses a previous master thesis as a starting point, namely Thomas Hagelien’s
thesis on “Ontology Based Semantic Search” [20]. The system he developed was later
named DataOntoSearch, and is referred to as DataOntoSearch version 1 in this thesis. An
introduction to it is given in this section.

Hagelien’s thesis casts a wide net, attempting to create an ontology for the transport
domain, implement a semantic search for open transport data sets and create a system for
helping applications interoperate in cases where data fields are given the same semantic
meaning in the applications, but the expected data format is different. For the latter part,
only a design could be made in time, while for the other two parts, Hagelien created an
ontology and a prototype for searching for datasets semantically.

2.4.1 Ontology development
Hagelien did not find the existing Open Transport Data Ontology fit for purpose. Though
it may have looked fine to a human, it did not embed much information about how related
the different concepts were to one another, due to a very flat hierarchy. He helped develop
a new version which is much more useful when used with similarity measures like the
Wu-Palmer distance. Additionally, the new ontology has human-readable labels for all
concepts in both English and Norwegian, making it possible to use it with dataset metadata
and queries of both languages. The process of creating the ontology and an excerpt from
it is found in [25].

12

2.4 The master thesis which improved CKAN search further

Figure 2.2: Overview over the search process. From [25].

2.4.2 Semantic search

The DataOntoSearch system was developed as a standalone application which is fed datasets
and their associations with concepts from other sources. There are two set of associations
between datasets and concepts:

1. Manual tagging: Manual associations between datasets and concepts, added by
domain experts.

2. Automatic tagging: Based on the similarity between each dataset’s metadata and
the concept labels, using NLP methods and WordNet.

They are handled separately, but you can choose which to use when you search. The
addition of automatic tagging is one benefit of DataOntoSearch compared to the imple-
mentation mentioned in Section 2.3, since many dataset publishers presumably do not have
the time or expertise to properly pick concepts. The autotagging procedure is described in
detail in [25].

The search procedure of DataOntoSearch version 1 can conceptually be thought of like
this:

1. What concepts are relevant to this query? NLP and WordNet is used to compare
the query’s semantic similarity to all concept labels.

The procedure now has a Query-Concept Similarity Vector (QCSV) which contains
the similarity between the query and each concept, with each concept corresponding
to one column.

13

Chapter 2. Background

2. What concepts are relevant to each dataset? The manual or the automatic tagging
is loaded into the application. This constitutes the Dataset-Concept Similarity Ma-
trix (DCSM), in which the concepts are the columns and each row corresponds to a
dataset.

3. How similar are all the concepts to each other? For each pair of concepts, their
similarity can be found by applying the Wu-Palmer algorithm [50] to the hierarchy
of concepts in the ontology. The resulting matrix with concepts as both rows and
columns is called the Concept-Concept Similarity Matrix (CCSM).

4. What other concepts are relevant to each dataset? The method wants to enrich
the datasets with concepts that are semantically close to the ones already associated
with them, so that you can get a match even if your query did not match the exact
same concept. For example, say a dataset a is only associated with the concept
“Car,” with a similarity score of 1.0. From the CCSM, the procedure can see that
the similarity between the two concepts “Car” and “Bicycle” is 0.22. It therefore
sets the similarity between a and ”Bicycle” to 1.0 ∗ 0.22 = 0.22. The procedure
does the same for all the other concepts, updating its Dataset-Concept Similarity
Matrix as it goes along.

The procedure now has the Query-Concept Similarity Vector and a Dataset-Concept
Similarity Matrix. Both have the same concepts as columns.

5. How similar is each dataset to the query? For each row (dataset) in the DCSM,
the procedure calculates the row’s similarity to the QCSV using cosine similarity,
essentially creating a Query-Dataset Similarity Vector.

6. What are the most similar datasets? Using the calculated similarities, the proce-
dure can return the most similar datasets, sorted by decreasing similarity. This is our
search result.

Of course, step 2-4 are independent of the query and are in practice done once of-
fline, before processing queries. The full details of the process and examples of what the
matrices look like can be found in [25].

What this process essentially does, is use the ontology’s concepts as a common “lan-
guage” between the user’s query and the datasets. By “translating” both the query and all
datasets to concepts, the method finds what datasets are most similar to the query when
expressed as concepts. The use of concepts allows for finding the datasets that are only in-
directly relevant to the query, hopefully giving DataOntoSearch an edge over the keyword
search approach found in CKAN.

2.4.3 Evaluation
Hagelien compared the search process to the original CKAN search using traditional infor-
mation retrieval evaluation methods. He found that for the seven queries tested, DataOn-
toSearch version 1 surpassed CKAN for queries using words that were semantically simi-
lar to, yet not the exact same as, the words used in the dataset metadata [25]. The evalua-
tion did not consider the result ranking, opting instead to measure the precision and recall
after retrieving all matching documents.

14

2.4 The master thesis which improved CKAN search further

Compared to the improvement of CKAN mentioned in Section 2.3, Hagelien’s system
sports a couple improvements:

• It is independent from CKAN, giving it wider applicability.

• An ontology using SKOS is provided.

• Search results are ranked by relevance.

• The user’s query is expanded using WordNet.

• The search engine is able to return datasets related to broader concepts than the ones
matched, rather than just the narrower concepts.

• Automatic tagging is implemented.

15

Chapter 2. Background

16

Chapter 3
Related Work

The domain of semantic and ontology based search has existed for some time. Similarly,
there is a lot of literature out there regarding how to evaluate such systems. This chapter
summarizes some of the work related to semantic and ontology based search and how to
evaluate the systems and their search results.

3.1 Semantic based search
This section introduces existing solutions for semantic search.

3.1.1 Google Dataset Search
For a while, Google has used the semantic web to enrich their regular search engine.
For example, “[they] provide better discovery and rich content for books, movies, events,
recipes, reviews and a number of other content categories [37].” In the beginning of 2017,
Google announced through their blogpost [37] that they would like to provide the same
capabilities for datasets. The announcement emphasized the importance of data providers
to “[publish] structured metadata using schema.org, DCAT, CSVW, and other community
standards [37].”

One and a half year later, Google launched their dataset search, available at http://
g.co/datasetsearch [36]. Although it does not return results from the Norwegian
government yet (September 2018), this may be caused by the way the government publish
their data:

As more data repositories use the schema.org standard to describe their datasets,
the variety and coverage of datasets that users will find in Dataset Search, will
continue to grow.

[. . .]

A search tool like this one is only as good as the metadata that data publishers
are willing to provide. We hope to see many of you use the open standards

17

http://g.co/datasetsearch
http://g.co/datasetsearch

Chapter 3. Related Work

to describe your data, enabling our users to find the data that they are looking
for. [36]

Other actors were quick to adopt Google’s guidelines, with Mark Hahnel, chief ex-
ecutive of a data-sharing company, saying that “By November, all the universities we’re
working for had their stuff marked up [10].”

Google’s search solution also finds research articles citing the datasets in question,
allowing you to find descriptions and usages of the dataset.

Some drawbacks of this first version of Google Dataset Search solution are:

• No datasets harvested from official data providers in Norway (only versions down-
loaded and uploaded elsewhere by users).

• No support for Norwegian language.

• Search being one of Google’s biggest assets, the algorithm and procedure is not
documented or published anywhere, limiting the knowledge and usage to Google.
This is in contrast to open source solutions, which may be used by whoever wants
to, and inform the scientific community.

• Formatted metadata from data providers is served directly to users without format-
ting, leading to some disastrous results in the user interface. An example1 being
a dataset description that includes code examples, which is presented without line
breaks on Google and ends up being unreadable.

• No application programming interface provided for automatic use by software.

Many of these problems are intrinsic to any dataset search engine which aims to search
among all datasets on the Internet. When limiting the scope to datasets published by
one entity, you can customize the user interface and search engine so it fulfils its task
better. This does, however, reduce its usefulness as a one stop shop for developers to
search for datasets. Other problems are related to Google’s business model, which means
they can’t publish the code for everyone to see. Nevertheless, “[e]xperts say that [Google
dataset search] fills a gap and could contribute significantly to the success of the open-data
movement [10].”

3.1.2 Spatio-Temporal Search
Neumaier and Polleres have created an open source semantic search system for open (gov-
ernment) data, which provides capabilities for finding datasets that pertain to a certain ge-
ographical area and period of time [32]. Utilizing the breadth of information available on
the Semantic Web, their system lets the user filter based on actual geographical names and
named periods of time, like “Oslo” and “the cold war,” instead of simply using coordinates
and start and end dates.

Their system has to do several tasks to accomplish its overarching goals:

1http://web.archive.org/web/20180920132203/https://toolbox.google.com/
datasetsearch/search?query=bus%20departure&docid=H84sSCiT5CHKvdKOAAAAAA%
3D%3D

18

http://web.archive.org/web/20180920132203/https://toolbox.google.com/datasetsearch/search?query=bus%20departure&docid=H84sSCiT5CHKvdKOAAAAAA%3D%3D
http://web.archive.org/web/20180920132203/https://toolbox.google.com/datasetsearch/search?query=bus%20departure&docid=H84sSCiT5CHKvdKOAAAAAA%3D%3D
http://web.archive.org/web/20180920132203/https://toolbox.google.com/datasetsearch/search?query=bus%20departure&docid=H84sSCiT5CHKvdKOAAAAAA%3D%3D

3.1 Semantic based search

1. Consolidate data from the Semantic Web: Several sources are used to create a
knowledge graph which can be used to map queries and datasets to spatial and tem-
poral entities. For instance, something as “simple” as national postal codes will re-
quire information from many different sources, since no single comprehensive data
source include them for all countries. Different sources may also provide different
details about the same entities.

2. Label datasets with spatio-temporal information: In much the same way the au-
totagging of DataOntoSearch links datasets to concepts, this system needs to enrich
the datasets with links to the spatial and temporal entities extracted in the previous
step. This is done by looking at the dataset metadata, as well as the dataset contents.

A number of different heuristics are used to check whether a column contains geo-
graphical or temporal information, and when such a column is detected, its contents
can used to determine what spatial and temporal entities the dataset should be linked
to. This can be challenging due to ambiguities, like four-digit postal codes poten-
tially being misinterpreted as years, or the text “Norwegen” in a German dataset
(“Norway” in English) being taken to mean the small region in Germany, not the
country. Nevertheless, using the dataset contents is a promising direction that is
especially useful when the dataset metadata themselves are lacking.

3. Export RDF: All the information gathered in the preceding two steps is made avail-
able as RDF through a SPARQL endpoint, including taggings of datasets and their
individual table columns and cells.

4. Provide search: Both a graphical user interface and an API is available for use.
There are separate fields for entering a geographical location and keywords and
selecting a time period, all of which are used to filter the datasets. Autocomplete
is provided, so the user selects an entity the system knows. When you query using
the graphical user interface, you also get to see an excerpt from the dataset contents,
where the geographical location you chose is highlighted.

Neumaier and Polleres evaluated the dataset labelling system to check its correctness.
They found that for a random sample of datasets, the labeller’s average precision was 86%
and its recall was 73%, leaving some room for improvement. The results depended on the
dataset’s country of origin, however, with some countries having near perfect scores and
some others not scoring so well.

The search itself and its graphical user interface was not evaluated by Neumaier and
Polleres, though it is available online2 and seems to be a prototype.

3.1.3 OntRank

Xiaolong Tang et al. experimented in 2013 with a way of adapting generic RDF data
to fit with classic information retrieval methods, while adding an ontology factor to the
ranking algorithm [45]. They found that existing approaches either were unsuitable for

2https://data.wu.ac.at/odgraphsearch/

19

https://data.wu.ac.at/odgraphsearch/

Chapter 3. Related Work

novice users since they required knowledge of the underlying semantic data and a query
language, or had poor search results.

Since traditional information retrieval operates on documents, the RDF data must be
transformed to fit this structure of documents. Xiaolong Tang et al. do this by looking at
all the entities that appear as subjects in the RDF graph. For each such entity, its corre-
sponding document is created by including all triples that have that entity as the subject.
This is similar in nature to documents which have different properties attached to them, so
the BM25F algorithm is chosen.

Two indices are created, one for the documents themselves and one for the ontology,
which is based on information from DBpedia. Due to the sheer size of graphs obtained
from linked data, Xialong Tang et al. focus on efficiency and scalability in the indexing
procedures, adopting the Map-Reduce pattern to effectively utilize concurrency. They use
ORDPATH as the hierarchical coding scheme, which handles updates well and gives an
easy way of calculating the path distance between two items in the hierarchy.

Xialong Tang et al. introduce a ranking algorithm called OntRank, which combines
the BM25F algorithm with a new factor called RO. It is based on the semantic similarity
between the query and the document, as indicated by the distance of the path between
them in the ontology.

When evaluating OntRank against just BM25F alone, they found that the first 15 doc-
uments retrieved were relevant to a greater degree with OntRank. Other measures showed
only slight improvements, likely because there are some limitations in the ontology and its
classification. Theories and algorithms are for instance just being classified as owl:Thing
since no specific classification exists, and some entities are misclassified. Xialong Tang et
al. believe that as the quality of the underlying data improve, the OntRank algorithm will
show greater improvements.

3.1.4 Dataset search using semi-structured query patterns

Buranarach et al. explored an approach that lies between the full-text search of CKAN
and a structured search like SQL or SparQL, using three different semi-structured query
patterns [8]. Furthermore, it looks into the datasets’ content when searching, helping users
find the data they need instead of having to go through dataset descriptions.

As an example, you have the pattern “〈class〉 〈property〉 〈value〉.” By searching for
“income province bangkok,” you will get dataset rows about income, for which province
is Bangkok. The other types of patterns are “〈property〉 〈subject〉” and the same, just with
the opposite order. Here, searching for “telephoneNo Rajini School” would search for
datasets with the telephoneNo column, and specifically find the row for Rajini School.
As you can see, the system presents not only datasets as documents, but presents their
contents in a table format. If the user’s query doesn’t match any of the patterns, the search
falls back to a regular keyword search.

It could potentially be very awkward for the user to write queries in these formats when
not knowing what to search for. Therefore, search suggestions are implemented, giving the
user options for potential classes, properties, values and subjects, based on what pattern
is found to be used. By following the autocomplete suggestions, users are guaranteed a
query which fits with one of the query patterns.

20

3.1 Semantic based search

Buranarach et al. developed a prototype system which used ten datasets from the Thai
government’s open data portal, Data.go.th. The classes, properties, values and subjects
had to be extracted from the dataset contents in question in order to build an index, so that
the search suggestions could be given on the fly. RDF is used internally to represent the
metadata, and the user’s query is parsed and made into a SparQL query as a part of the
search procedure.

Even with the limited number of datasets used in the prototype, Buranarach et al.
encountered scalability problems. The index grows quite large, hosting over 160 properties
and 25 000 term relations. They found that “[t]his can greatly reduce the performance of
the system in making query suggestion[s] [8].” Furthermore, the format of the datasets
themselves can give some confusion, e.g. with column headers like “TelNo” that are not
natural for the user, and it is desirable to support queries with more than just one property-
value pair.

Buranarach et al. do not present any evaluations of the system. It could have been
interesting to see if and how end users would adapt to the semi-structured query patterns
in a usability test, for instance.

3.1.5 Ontology-based query improvement
Xu and Li created a search engine which uses an ontology to help the user improve their
queries before giving it to a keyword-based search engine [51]. Their ontologies are sim-
ilar in nature to that of DataOntoSearch version 1, in that it is a hierarchy of concepts
organized with “broader” and “narrower” relationships, though they also use “equivalent”
relationships and define properties of some concepts.

When the user attempts to search, their query is matched with concepts. Based on the
concepts’ relationships in the ontology, related concepts are found and shown to the user,
which can either click another concept to browse its related concepts, or perform a regular
keyword-based search using the concept. Though the system uses ontologies and semantic
technologies to help the user find the right query to make, the actual searching is left to an
off-the-shelf system and is done without involvement of the ontology.

A case study was done by developing an ontology for the computer science domain,
based on two university courses taught by one of the authors. Xu and Li argue that the sys-
tem benefits users without intimate domain knowledge, since they can arrive at the concept
they wanted to search for by searching for the related concepts they actually remember.
The system’s capabilities for finding related concepts is also quite advanced, though it
does not seem to include any ranking functionality. That said, they do not present any
evaluation of the system. It might have been interesting to know what students attending
the courses thought about the system’s usefulness.

3.1.6 Other semantic search engines
There have been a lot of attempts at creating a search engine for searching the linked data
on the semantic web. Aidan Hogan et al. [24] mention a couple examples, like the early
attempts Ontobroker [14] and SHOE [23], document-centric approaches like Swoogle [15]
and Sindice [39], and entity-centric approaches like Sig.Ma [46], Watson [13] and the
Falcons Search engine [11].

21

Chapter 3. Related Work

A different search engine for searching among RDF entities in the Semantic Web is the
Semantic Web Search Engine, abbreviated SWSE [24]. It adopts a holistic approach which
aims at giving the average user a way to access linked data, which brings its own challenges
due to the scale of the semantic web, mistakes and noise in the data and needing to make
this usable for people without knowledge of semantic technologies. The idea is to collect
information about an entity from different sources and present it unified, instead of simply
presenting each individual source of information the way document-centric systems such
as Google does. Interestingly, they echo the sentiment that “the quality of data, that a
system such as SWSE operates over, is perhaps as much of a factor in the system’s utility
as the design of the system itself [24].” Though their system proved able to handle the
scale of the semantic web, they leave regular information retrieval evaluation methods like
precision and recall and usability testing as possible future work.

Morales and Melgar present a systematic literature review of architectures of semantic
search engines in [31]. The use of ontologies is one of the topics they investigate. They
found that “[d]omain ontologies are mostly used, which seems to be a pattern across ar-
chitectures.” Though some approaches used general purpose ontologies like WordNet as
well, they ended up using domain specific ontologies to better represent user concepts.
The roles of ontologies, Morales and Melgar found, are diverse, “but most of the selected
architecture[s] use them as a way to classify and express relationships among key concepts
[31].”

When DataOntoSearch version 1 was presented, Shanshan Jiang et al. noted that “[t]o
the best of our knowledge, there are no reports on applying semantic search on open data,
in particular, for the widely used open data platform or portals [25].” As far as I can tell,
no new reports on the topic have been published since then, apart from the spatio-temporal
search described in Section 3.1.2.

3.2 Evaluation approaches of semantic search
Ali and Beg reviewed approaches to evaluating non-semantic web search, categorizing
them into eight different categories [1]. Among them are relevance based methods, rep-
resenting information retrieval methods like recall and precision; ranking based methods,
putting focus on the ranking of the top 20 items; user satisfaction methods, measuring
users’ satisfaction with the system; and automatic evaluation approaches, which attempt
to eliminate the need for human evaluators.

As summarized by Elbedweihy, there are two categories of evaluations for information
retrieval systems [16]:

• System-oriented evaluation: is concerned about the search results to certain queries,
evaluating the system’s ability to fetch relevant documents and rank them highly.
This type of evaluation “simulates” the user, and its validity is therefore dependent
on how well the “simulation” matches up with real users’ behaviour. It is popu-
lar since it can be automated to a high degree once relevant documents have been
decided, lending itself well to repeated evaluations.

• User-oriented evaluation: is more concerned about the entire user experience. This
is achieved by testing the system in a more realistic setting, and also taking into

22

3.3 System-oriented Evaluation

consideration the experience of formulating a search query and browsing the results.
Though the results may be more valid, this kind of evaluation requires a lot of effort.

These two approaches are described in more detail in the next sections.

3.3 System-oriented Evaluation
System-oriented evaluation encompasses methods usually associated with information re-
trieval. Instead of having real users spend time with the system, their queries are “simu-
lated” and ran systematically, and the users’ satisfaction with the results are “simulated”
by having judges decide which results were relevant. System-oriented evaluations are
generally set up this way:

1. Decide the dataset to use for search.

2. Formulate queries to be performed on the system under test.

3. Run the queries with each system, recording the result.

4. Depending on the evaluation method, decide what documents or entities are relevant
to each query, either for returned documents or the entire document collection.

5. Calculate scores.

A common thread through this process is the wish to emulate the real world as closely
as possible. For instance, the chosen dataset should, according to Elbedweihy, include at
least 100 million triples in order to be acceptable, have triples of varying origin and quality,
and be up-to-date with current standards [16]. Similarly, queries should be representative
of queries users would make, and the relevance assessment should be guided enough for
the assessments to reflect what a user might think.

Even if you make sure to be as close to the real world as possible, system-oriented
evaluation methods will not align perfectly with how users would use a system. The pre-
sentation of the system, instruction for search and guidance given while writing the search
query all affect the user experience, so system-oriented evaluation is no substitute for user-
oriented evaluation. What it provides, is a way of testing often or testing many systems.
For example, it can help you test a system during development, allowing you to see how
much a new change improved the search engine. Of course, this requires that the dataset,
queries and relevance assessment has been done, all of which are manual processes, and
to a varying degree labour intensive.

Some of the measures available are described below. They all wary in what parts of
the search results they use, what kind of relevance assessment they require, and what their
score can tell us about the system being tested.

3.3.1 Precision and recall
Precision is a measure of how many of the retrieved documents are relevant [29]. For
example, if a system retrieved 50 documents, out of which 20 were relevant, its precision

23

Chapter 3. Related Work

would be 20
50 = 2

5 . A high precision score indicates a system which avoids retrieving
irrelevant documents, while a low score is indicative of a system that retrieves a lot of
noise.

Recall is a measure of how many of the relevant documents were retrieved. For ex-
ample, if there are 60 relevant documents in the collection, out of which only 20 were
retrieved, the recall would be 20

60 = 1
3 . A high recall score indicates that the system re-

trieves a complete result, so you can trust that you are not missing out of any relevant
documents. A low recall score means that many relevant documents remain inaccessible
to the user.

Precision and recall can often be thought of as opposite ends of a spectrum. A system
with a high precision score might be leaving out a lot of documents, including relevant
documents, resulting in a low recall score. Similarly, a system with a high recall score
might be retrieving a lot of documents, including irrelevant documents, affecting precision
negatively. Of course, a perfect system would retrieve all relevant documents and nothing
else, resulting in perfect precision and recall scores. It is possible to combine precision
and recall into one measure called the F1 score, by taking the harmonic mean of precision
and recall.

Precision only requires a relevance assessment of the documents retrieved by the
system. On the other hand, recall requires that all documents in the entire document
collection are assessed, so you can know how many relevant documents there are. Both
for this reason and the fact that most users only care about getting their question answered,
not seeing all possible documents answering their question, precision is often used and
recall is dropped when using large document collections, as is the case for web search
and semantic search. Alternatively, a less resource intensive way of deciding relevant
documents can be used, like using the documents retrieved by multiple systems. This
could possibly decrease the measurement’s validity, however, by not “simulating” the user
well.

Precision and recall, in their unaltered form, do not take into consideration the ranking
of the results. A system that ranks the relevant documents at the bottom will receive the
same score as one that ranks them at the top.

3.3.2 Precision at k

While the precision measure looks at the entire collection of retrieved documents, users
typically do not care about what is retrieved beyond the first page of search results. To
better simulate this behaviour, the precision at k measure can be used to calculate the
precision when the top k documents have been retrieved.

Unfortunately, this is not a stable measure, since it is highly dependent on the cut-off
value k relative to the total number of relevant documents. If one query has a hundred
more relevant documents than another query, and the cut-off value is fixed for all queries
(as is typically the case), then we can expect the score to be much better for the first query
compared to the second, even if random documents are retrieved.

There is also the unfortunate fact that if the number of relevant documents is lower
than the cut-off value, a perfect score is not possible.

24

3.3 System-oriented Evaluation

3.3.3 R-Precision
R-Precision can be thought of as precision at k, except k is set dynamically to the number
of relevant documents for each query. Thus, if there are 60 relevant documents to a query,
then R-Precision is the precision score when examining the top 60 retrieved documents.

This measure avoids the problems of precision at k, since it scales with the number of
relevant documents, and a perfect score can be achieved for any query when the system
retrieves only relevant documents.

3.3.4 Mean Average Precision
All measures described until now only calculate the precision and/or recall at a certain
point, whether it be when all documents are retrieved or only a set number. However,
it can be beneficial to measure precision at multiple points, to better evaluate a system’s
capability to rank relevant documents highly.

Consider a single query. The Average Precision is the average of multiple precision
scores. They can be measured either at different levels of recall (like 0.0, 0.1, . . . , 0.9, 1.0)
[16] or once every time a relevant document is retrieved [29]. The precision for relevant
documents that are never retrieved is set to 0.

The average precision can itself be averaged over multiple queries, in which case it is
called Mean Average Precision, abbreviated MAP.

MAP is a common measure, which gives a good idea of how well a system ranks its
results. It is also a stable measure, and is well equipped to separate the best systems from
the rest.

3.3.5 Receiver Operating Characteristics (ROC)
A ROC curve is an alternative to MAP. It shows how the recall score, mapped to the Y
axis, increases as more and more irrelevant documents are retrieved, mapped to the X
axis. If the curve starts with a steep climb on the left side, then many relevant documents
are retrieved before irrelevant ones. On the other hand, if the graph raises slowly then
many irrelevant documents are spread among the relevant documents retrieved.

As a system gets better and better, the ROC curve starts with a climb that gets steeper,
earlier. It therefore stands to reason that the area under the ROC curve can be used as a
good measure. In practice, the area under the ROC curve is often used in fields other than
Information Retrieval (IR), while MAP is more common in the IR field.

3.3.6 Normalized Discounted Cumulative Gain
This is a measure using graded relevance assessments, granting greater granularity than
the simple relevant/irrelevant scheme used by the measures described up until now. Such
graded relevance assessments let you decide that one document is a little bit relevant, while
another one is very relevant to the query.

Cumulative Gain (CG) is the simplest way of measuring using graded relevance
scores. The cumulative gain at a level i is simply the sum of the relevance score of each
document that has been retrieved when i documents are retrieved. When you retrieve one

25

Chapter 3. Related Work

more document, its relevance score is added to the cumulative gain at the level above. As
opposed to precision and recall, the cumulative gain is not normalized by the number of
retrieved or relevant documents. However, just like precision and recall, it does not care
where in the ranked list relevant documents appear.

Discounted Cumulative Gain (DCG) adds a discount function to Cumulative Gain, so
that the relevance scores from low-ranked relevant documents contribute less to the total
than the relevance scores of top-ranked documents. Thus, more emphasis is placed on the
documents ranked higher. The discount function used is defined as 1

logb i , where b is a
variable you can use to adjust to what degree lower-ranked documents are discounted.

Normalized Discounted Cumulative Gain (NDCG) is to DCG what R-Precision is to
Precision at k, though the method used is not the same. An ideal set of DCG values is
created, representing what the result of a perfect information retrieval system would be.
The actual DCG for the system being tested is then divided by the ideal DCG values, so
that a perfect system achieves a score of 1.

3.3.7 Best Practice
Elbedweihy et. al. describe some best practices for evaluating semantic search systems
[16]. They stress the importance of user-oriented evaluation, especially for semantic search
applications, and recommend an approach using both types of evaluations. The system-
oriented evaluation recommendations are described here.

Choice of dataset

The aim is to have a realistic dataset, which can function as a stand-in for the set of data
that would be used in a real-world situation. In the case of a generic system used for
a single domain, its dataset should contain over 100 million triples, while open-domain
systems be at least 109 triples large. They should ideally vary in source, origin and quality,
to better emulate the messy nature of real-world datasets. They should be up-to-date with
current standards and technologies.

Choice of queries

For the choice of number of queries, “ between 50 and 100 queries would be acceptable.”
They should represent genuine information needs from users, being based on interviews
with users or search logs. However, using search logs is very difficult due to semantic
search not being widely adopted by regular users. Instead of simply writing down the
queries, it is best to record some more information along with the query, like the informa-
tion need that led to the query, so that it is easier to determine what is relevant afterwards.

Relevance assessment

Instead of assessing all documents, the results from different systems should be put to-
gether to form a pool of the top K results. This pool is then evaluated by human judges to
determine what is relevant and not. An effort must be made to avoid any biases that may
occur from aspects like the choice of judges and the order documents are presented in.

26

3.4 User-oriented Evaluation

Evaluation criteria

Measures usable for ranked results and graded relevance assessment should ideally be
used. NDCG is, in that case, a good candidate. However, the number of queries and
results assessed per query must be taken into account when deciding what measures to
use, since the stability of measures depend on those factors.

3.3.8 Crowdsourcing relevance assessment
While expert judges have typically been used for determining the relevance of retrieved
results for different queries, a new approach was examined by Blanco et. al. in which
the task is split up and sent to workers participating in the Amazon Mechanical Turk
[6]. The lack of expertise is made up for by drastically increasing the number of judges,
with overlapping relevance assessments, and by asking for a relevance assessment of items
already assessed by experts, allowing the system to filter out judges not fit for the task. This
approach makes for more reliable and repeatable results in a scalable manner, avoiding the
pitfalls of using few experts whose individual opinions are given a high weight.

Before using a solution like this, researches much give proper thought to the problems
inherit in using a system like the Amazon Mechanical Turk, in which workers are often
paid less than the minimal wage in the US [21]. Workers are not compensated for the
down time in-between assignments or their use of a computer and internet connection.
Since they are essentially their own business owners taking on work from the Mechanical
Turk, they are not entitled to any health care either. Researchers must think twice before
engaging in a system which abuses workers, especially considering the increasing public
awareness of this problem, as demonstrated by the recent Uber and Lyft strike [38] and
critical press articles [42, 43].

3.4 User-oriented Evaluation
As previously mentioned, user-oriented evaluation, also referred to as usability testing,
considers the entirity of the user’s experience with the system under test. Before we dive
into the methodology used, we will take a look at what usability actually is. At the end,
we go through a related study which uses some of the discussed methods.

3.4.1 Defining Usability
There are multiple ways of defining usability. According to Jakob Nielsen, “Usability is a
quality attribute that assesses how easy user interfaces are to use [33].” He lists five quality
components for usability [33]:

• Learnability: How easy it is for users to learn and use the system on their first
encounter.

• Efficiency: How efficient the users are once they have learnt the system.

• Memorability: How easy it is for users to re-learn the system after a period of not
using it.

27

Chapter 3. Related Work

• Errors: The rate of errors users make, the severity of their consequences and how
easy the users recover from them.

• Satisfaction: How pleasant the system is to use.

Nielsen argues on page 26 of Usability Engineering [34] that “[o]nly by defining the
abstract concept of ‘usability’ in terms of these more precise and measurable components
can we [as a discipline systematically approach, improve and evaluate usability].”

To further define the word “usability,” he relates it to the concepts of “utility” and
“usefulness” in [33]:

• Definition of Utility = whether it provides the features you need.

• Definition of Usability = how easy & pleasant these features are to use.

• Definition of Useful = usability + utility.

It follows that systems without the needed features are not useful, no matter how easy
and pleasant their design is. Similarly, a feature might as well not exist if it is never
discovered by users, or users are unable to use it well due to problems with the design.

When you try to define a concept, it may be wise to check in with the established inter-
national standards. The International Organization for Standardization (ISO) has defined
two standards related to usability, namely ISO 9241-11 and ISO/IEC 25010. They describe
respectively the concept of usability, and software quality models for quality evaluation,
in which “‘usability’ is a subset of quality in use,” according to [44] who cites ISO/IEC
25010. ISO 9241-11 defines usability as follows, according to another citation in [44]:

The extent to which a product can be used by specified users to achieve speci-
fied goals with effectiveness, efficiency and satisfaction in a specified context
of use

An important take-away from this definition is how a product’s usability is measured
in relation to a certain set of users trying to achieve a certain set of goals, all in a certain
context of use. Consider for example a mobile application showing a map. This applica-
tion might have a very different usability for young adults using it to find a nearby café
while at home, compared to seniors trying to find a suitable trail towards a mountain top
while squinting at the mobile screen in the sunlight. If the company is trying to improve
the application’s usability for the second scenario, they would be ill-advised to run a us-
ability study using young participants in the meeting room of an office (though they might
discover some relevant problems in the design). The measurements from such a study
could not be used to evaluate the usability for the senior scenario.

3.4.2 Evaluating usability
The topic of evaluating usability is a large one, which can only be briefly summarized
here. Specifically, topics like the difference between formative and summative evaluations,
methodological pitfalls, methods used and how to run a comparative usability test are
briefly covered.

28

3.4 User-oriented Evaluation

Two types of evaluations

You can separate usability tests into two categories, depending on what type of evaluation
they aim to perform [34]:

• Formative evaluation helps find out what works and what does not, providing valu-
able input to future design iterations. This is often called qualitative evaluation.

• Summative evaluation measures the usability of the system (or systems) tested, as
a part of assessing the system’s quality. This is often called quantitative evaluation.

Formative evaluations are useful to do before you start to design or while you are
designing a system [34]. They give you an overview of problem areas as well as specific
problems you need to solve. On the other hand, summative evaluations give you a way of
comparing several systems, and let you validate whether or not a certain system meets its
usability requirements. They are therefore typically performed when you have a system to
test, such as when deciding what off-the-shelf system you want to use, or when validating
a finished system.

Ensuring trustworthy results

When you perform a usability test, you must be careful about the test’s reliability and va-
lidity. “Reliability is the question of whether one would get the same result if the test were
to be repeated [34],” and is problematic for usability tests because the raw results depend
a lot on the individual test participants. Users have a varying amount of experience with
computers, to name just one factor. To combat this problem, you need to test with more
users and use statistical methods to discover the extent to which you can draw conclusions
based on the collected data.

The test’s validity is closely related to how the measured usability is dependent on
the users, their goals and their context of use. When assessing a test’s validity, you are
finding out to what extent the test results reflect the actual usability of the product in use.
Or more precisely, whether the test tests what you wanted to test. If you intend to test the
usability of a product for office workers, but only test using students, the expected validity
would be poor. Similarly, if you intend to test the usability difference between the Iphone
and Android, but test using a small mobile phone for Android and a big mobile phone for
Iphone, your test results might tell you more about the impact of the phone’s size than the
impact of its operating system on usability.

Elbedweihy et. al. [16] also address the issue of reliability and validity when consider-
ing summative evaluations of Semantic Web systems. They found that “inconsistencies in
the dataset, as well as naming techniques used within the Semantic Web community, could
affect the user’s experience and their ability to perform the search task [16].” This could
vary between users and datasets, thus affecting the test’s reliability. To combat this, they
argue that a balance must be struck between choosing a dataset that properly represents
a realistic situation, and choosing a dataset which users understand. Furthermore, when
considering the number of test users to recruit, they argue that “a number ranging between
8 and 12 subjects would be acceptable.”

29

Chapter 3. Related Work

As for validity, Elbedweihy et. al. note that “[m]any systems developed within the
Semantic Web community have been evaluated by experts [16].” This affects validity
negatively, since many of these systems wish to become mainstream and find an audience
of causal users. However, using both experts and non-experts can give some interesting
findings on how the system accommodates the two user groups and how their requirements
differ.

Planning the test

Before you start recruiting users for the test, you must create a test plan. Putting it together
involves making some important decisions on the intentions and contents of the test, such
as:

• What do you want to get out of this test?

• What users will you test with?

• What tasks will they perform?

• When and where will the tests take place?

• Who will run the tests?

• What is the budget for the tests?

See Usability Engineering [34, p. 170] for a complete list of questions.

Usability testing methods

As previously mentioned, there are two ways of evaluating usability: formative evaluation
and summative evaluation. The two types of evaluations favor different kinds of methods,
with formative evaluation favoring methods like thinking aloud, and summative evaluation
favoring methods like performance measurement.

The thinking aloud method involves asking the user to “think aloud” while performing
the task. This is valuable because you can see where the user’s mental model is different
from what was intended from the system. You also learn how the user interpret the dif-
ferent parts of the interface. Of course, observing the user is just as import as listening
to the user, since users generally don’t know why they did what they did, and may make
incorrect rationalizations after-the-fact. Some drawbacks of this method include how test
participants find the thinking aloud method to be unnatural, and the fact that they might
realize shortcomings in their reasoning when putting it into words, which they otherwise
would not have realized, had they sit quiet in their office. Thus, you cannot trust that their
behaviour properly represents how a user would interact with the system in the wild.

The performance measurement method measures how fast and with how many errors
users complete tasks. You can for instance use a stopwatch which you start at a clearly
defined time when the task begins, and which you stop when the user has reached their
goal, again something which should be clearly defined in the test task description. The
definition of what counts as an “error” should also be agreed upon. Pilot tests should be
used to reveal inconsistencies and ambiguities in these definitions.

30

3.4 User-oriented Evaluation

Yet another tool, the System Usability Scale (SUS), is useful for measuring the sub-
jective usability of a system in a “quick and dirty” way [7]. It is a questionnaire consisting
of 10 questions, which the test participant answers using the Likert scale, a scale between
1 and 5 where 1 is “Strongly disagree” and 5 is “Strongly agree.” They should answer it
right after having used the system under test, but before any debriefing. It can be used in
conjunction with both the thinking aloud and performance measurement methods, since
it measures the subjective aspect of usability. This type of survey is typically how you
learn how pleasant the user found the system. Other scales can be made, to capture the
information you are interested in.

Comparing different systems

While usability testing can be done with just one system in isolation to elicit requirements
for new versions or evaluate its fitness for purpose, you can often learn more by testing
with multiple systems. Doing so also allows you to compare them with each other in a
scientifically reliable way, avoiding differences caused by different users, different test
setups and other subtle differences. Since usability is not an absolute metric, you cannot
easily compare across studies.

When testing multiple systems, you must choose between “between-subjects” and
“within-subjects” testing [34, p. 178].

• Between-subjects testing exposes each test user to a single system only. This means
that individual variations in users may impact how the systems compare to one an-
other, for example if one system is tested by users with more computer experience.
It is necessary to test with more users and assign these users to systems in a way that
avoids bias.

• Within-subjects testing puts each test user through the same systems. This means
that they will be more familiar with the task and its domain by the time they test
the second (and third) system. It is therefore necessary to divide users into different
groups, where each group tests the systems in a different order. That way, no single
system is placed in a “favorable” position more than the others.

According to an article by the Nielsen Norman Group, “Competitive usability evalua-
tions are a method to determine how your site performs in relation to your competitors’
sites [41].” They advocate using within-subjects testing with the thinking aloud method,
using 2 or 3 different sites per test user [28]. At the end, the test user should be asked to
compare the sites. They also argue that knowing what system has the best usability is not
as useful as learning “what worked and what didn’t across designs [41].” Knowing that
your design is 30% worse than your competition doesn’t help you as much as knowing
that the competitor’s sign up form was much less painful than yours because of e.g. timely
feedback.

Similarly, Elbedweihy et. al. recommend asking the user to complete a comparative
questionnaire after evaluating all systems rather than relying only on individual question-
naires answered after each system [16]. The reason is that the latter cannot be trusted as
much when comparing across systems, due to the time gap between the questionnaires and
the lack of any frame of reference.

31

Chapter 3. Related Work

3.4.3 Evaluating Usability of Semantic Search Interfaces: An Exam-
ple Study

Kaufmann and Bernstein [26] looked at so-called “Natural Language Interfaces” (NLI)
enabling users to query the semantic web using natural language rather than a formal
language like SPARQL. More specifically, they created four systems specifically for the
evaluation, and evaluated their user experience by running a usability study, aiming to
validate their hypothesis that a guided natural language query language provides the best
user experience (compared to a free-form natural language query language and formal
query language).

This is a competitive usability study, using within-subjects testing with the perfor-
mance measure method. Kaufmann and Bernstein reference Jacob Nielsen’s Usability En-
gineering [34], along with a German article about user-focused application benchmarking.
Their approach to the experiment was to have each test user:

1. Read general instructions about the experiment, printed on a paper to ensure there
were no differences in the presentation given by experiment runners.

2. Read instructions about the first query language.

3. Perform the tasks with that NLI.

4. Fill a SUS questionnaire.

5. Read the instructions for the next query language, and so on.

6. Answer a comparative questionnaire after having used all systems, asking what sys-
tem they liked the best and least, and why.

They ran usability tests with 48 participants, which were given monetary compensation
for their participation. The participants were recruited from the general population, not
just students or computer engineers. The number of participants allowed them to test each
order of NLIs twice, so they could account for bias that might occur from the test order. A
number of statistical measurements were used to answer the research question, comparing
the SUS scores between the NLIs as well as the test users’ performance. They also looked
at free-text comments about the NLIs, gathered from the comparative questionnaire given
to users after they had tried out all interfaces.

The four NLIs created and tested are shown in Figure 3.1, and were:

• a free-form NLI

• a somewhat guided natural language question/answer interface

• a very guided NLI

• a graphical SPARQL query editor

The somewhat guided NLI was liked the best by users, while the SPARQL query editor
was liked the least. The absolute free-form NLI and the very guided NLI were rated about
the same, midways between the two others. Interestingly enough, users thought they had

32

3.4 User-oriented Evaluation

Figure 3.1: The four interfaces created in [26]. Upper left is the free-form NLI, upper right the
somewhat guided NLI, lower left the very guided NLI and lower right the graphical SPARQL editor.
The original screenshots are property of the paper’s authors.

arrived at the correct answer more often than they actually did with the somewhat guided
NLI, probably because the interface gives off an impression of being an oracle, giving the
user no opportunity to cross-check its conclusion, while the other interfaces are closer to
traditional search engines.

One of the more applicable wisdoms from Kaufmann and Bernstein comes from the
contradictory user comments. Some praised the free-form NLI for being similar to com-
mon search engines, while others critized it for being “too relaxed.” The other NLIs re-
ceived similarly contradictory comments, suggesting that different users preferred differ-
ent kinds of interfaces. Kaufmann and Bernstein therefore suggest that “we should con-
sider interfaces to Semantic Web data that offer a combination of graphically displayed as
well as keyword-based and full-sentence query languages [26].”

As for their hypothesis, it seemed to be confirmed, though users had a greater (actual)
success rate with the free-form NLI than the somewhat guided NLI.

As with any study, there are some problematic aspects here. Specifically:

• More than one variable: Not only did the query language differ between the differ-
ent NLI. The interface for writing the query and the result display were significantly
different, with the free-form NLI displaying results using their unreadable RDF URI,

33

Chapter 3. Related Work

while the favourably rated NLI gave back the answer in plain language. This being
an experiment, it is not possible to know whether it was the different user interface
or the different query language that made users prefer the somewhat guided NLI.
The authors argue that “Given the qualitative statements we doubt that the impact is
so profound that it solely explains [the somewhat guided NLI’s] lead [26],” though
it is difficult to see how the users’ comments support this conclusion.

• Limited types of questions: Users were tasked with answering purely factual ques-
tions, like “number of lakes in Florida? [26].” Other types of questions, like “how
to fix permission denied when mounting a cifs” might have resulted in a different
NLI being preferred by users.

34

Chapter 4
Overall design

Now that this project’s background and the related work done in the field of semantic
search and open data have been introduced, it is time to look at the work specific to this
thesis. In this chapter, you will learn about the goals of this project, along with their
motivation and the overall approach.

4.1 Motivation
Discoverability is a prerequisite for achieving the benefits touted by open data advocates,
like improving accountability and generating value for businesses and potential start-ups.
If the general public are not made aware of the data’s existence, or they are unable to find
the data, it does not really make any difference whether it exists or not. To put it another
way, the data can hardly be used for any good, if it is made accessible “in the bottom of a
locked filing cabinet stuck in a disused lavatory with a sign on the door saying Beware of
the Leopard 1.”

Open data has been made public by governments and different municipalities through
the use of dataset archival solutions like CKAN. As explained in Section 2.2, though its
search is powerful, it is only as good as the metadata that publishers have added to their
datasets. Given how the dataset publishers do not experience the downsides of poor meta-
data, since they only publish datasets and rarely will need to consume them through the
publishing solutions, it may not be surprising that the metadata is not as comprehensive
as we desire. If we wish to make datasets discoverable, we must find ways of letting
users explore and find datasets, even when they don’t know the exact words used by the
publisher.

As explained in Chapter 2, some effort has already been put into solving this problem.
The customer-driven project in Section 2.3 showed how using an ontology can help finding
datasets tangentially related to the user’s query, even if it was not labelled with the exact
same concept the user wrote. Thomas Hagelien’s DataOntoSearch version 1 in Section 2.4

1Douglas Adams, Hitchhiker’s Guide to the Galaxy, 1979

35

Chapter 4. Overall design

provides the foundational basis for this thesis, and demonstrated how the approach can be
expanded so that the ontology embeds more knowledge, have the search be independent of
CKAN, alleviate the need for manually tagging datasets with concepts and improve how
related concepts and datasets are retrieved and ranked.

DataOntoSearch version 1 is still far from perfect. Some of the weaknesses of the
process and the product are:

W1. Evaluation needs improvement: At the end of Hagelien’s thesis, we know how
the system performed with a few queries, but we do not know what actual users
would think of the system. The queries used may not represent how users would
approach a system like this, so their validity may not be so good. In addition, there
is no testing of DataOntoSearch’s ability to rank the retrieved datasets, resulting in
a focus on the cut-off point for retrieving datasets which is not so interesting in an
online search context. There are also more systems available to test now, with the
introduction of Google Dataset Search.

W2. Irreproducible system setup: Though the code for the system was made available
on GitHub, important parts were missing. Some of those parts are available in the
thesis PDF, though they extend beyond the margins and are thus inaccessible. There
are also no instructions on how to get the system to run. Ironically, the system
meant to make published datasets more accessible to developers, is itself technically
published, yet completely impenetrable.

W3. Separation from CKAN: The system is separate from CKAN, making it more dif-
ficult to apply to the CKAN project. On the other hand, this makes it possible to use
the system with more than one CKAN instance, and it may also interoperate with
any system or dataset catalog that uses DCAT. It is still desirable to integrate it in
some way, since users cannot be expected to use an external system for tagging or
searching.

W4. Some concepts cannot be matched with: Some experiments show that in version 1,
there actually exist concepts that cannot be matched with a user’s query. Some
of this may be due to the limits of WordNet, but the process of converting text to
WordNet synsets is different for concept labels and the user’s query and autotagging.
Thus, even if you write the concept label verbatim, the system will not match you
with that concept, particularly for concepts consisting of multiple words. This may
also be caused by labels not having corresponding entries in the WordNet word
catalog.

W5. Only ontology-based semantic search is used: The system is only able to search
through concepts. Aspects that are not modelled in the ontology, such as geography,
dates and names, are simply ignored and not used to filter the results. There may
also be some concepts not found in the ontology yet, or domain-specific terms that
are not found in WordNet. In all these cases, adding keyword search may give
the system the ability to make the results more relevant, by taking into account the
words the user chose. Though a motivation of this system is to alleviate the need to
use the correct words, a hybrid approach would give us the best of both worlds by

36

4.1 Motivation

potentially getting datasets that are more relevant. Facets are also useful, allowing
for further filtering.

W6. Hard to tag datasets: Along with automatic tagging, the manual approach could be
more streamlined to help the process go faster. It could also use automatic tagging
to suggest concepts for datasets, making for a semi-automatic process.

W7. Imprecise search: Compared to a regular keyword search, this approach helps find
entries related to the words in the search query, adding datasets which may not have
been found with the keyword search. Though this increases recall, the precision
of the query is not improved, partly since the search query is not disambiguated.
An effort to increase precision could mean asking the user for clarification (“did
you mean..?”) or using a document collection to find the term the user most likely
meant, using the terms’ context.

W8. Dataset contents not used for automatic tagging: Though suggested as a potential
improvement, the datasets themselves are not used to map datasets to concepts.

W9. Limited expressiveness in ontology: The version 1 of the ontology only uses hier-
archical “is-a” properties, meaning that concepts are only considered related if they
reside close to each other in the resulting tree. This is not always right. “tollboth,”
for instance, is considered more relevant to “garage” than “law,” since the former is
a physical place (like tollboth), while the latter is an abstract concept, thus belong-
ing to an entirely different branch in the ontology. Some “related” links across the
tree could help combat this problem, though the search algorithm would need to be
modified to support this.

W10. Standard semantic technologies not used: DataOntoSearch version 1 does not
use SPARQL, and rolls its own solutions instead. This makes it harder to compare
the tool to semantic search engines that generate SPARQL queries, though it does
enable ranking by how related the word is to the concepts.

Google Dataset Search is, of course, a real alternative to DataOntoSearch version 1. As
explained in Section 3.1.1, Google’s solution is powered by Google’s search technology,
and is designed to be a generic tool for finding datasets from any domain. However, just
like with CKAN, the user’s query needs to match closely with the dataset metadata in
order for the dataset to be retrieved. Some of the same problems evident with CKAN’s
search are therefore present here as well. It should be noted, though, that Google Dataset
Search solves the problem of finding the right open data portal, which previously required
you to navigate to the right government body, which may not be obvious due to the way
public services are split up between the federal government, states, counties, cities and
municipalities, to take the United States of America as an example. That said, many
countries host federated CKAN instances, like Data.gov, which collect datasets from all
the different publishers and make them available in one place.

37

Chapter 4. Overall design

4.2 Research Questions
It is evident that there is a discoverability problem for datasets, and none of the systems
available today have truly fixed it. Though DataOntoSearch version 1 is a start, it is a
prototype, its suitability as a search engine has not been decided and a number of weak-
nesses have been identified. An eventual upgraded version could address many of the
existing problems and hopefully bring better results. But to really bring improvements, we
investigate how the first version performs, and what aspects of it can be improved.

My research question can therefore be split into two:

RQ1: What do users think of DataOntoSearch version 1? What main problems are there?

This addresses W1 above, and addresses W2 as a prerequisite.

RQ2: How can we address the identified problems when creating version 2?

This may additionally address the other identified weaknesses W3-W10 above.

4.3 Overview
The overall plan for the system mostly follows the two research questions, since the second
naturally comes after the first:

1. Make the system ready for the pre-study.

2. Conduct the pre-study to find out what to improve.

3. Make improvements to the system.

4. Evaluate the newly improved system.

In practice, the amount of effort required for step 1 was much greater than antici-
pated, and led to a delay of the pre-study. There is also a significant amount of work
involved in learning about the technologies involved and how such systems can be eval-
uated. Here is an overview over the project’s timeline, starting from August 2018 and
ending in June 2019:

August-September Try to understand the previous thesis and related background

October Research and design pre-study

October-January Understand and refactor existing system

January-February Continue work on preparing pre-study

February Conduct usability tests

March Set up system-oriented evaluation and analyze pre-study

March-April Integrate with CKAN

38

4.3 Overview

May Improve search

May-June Run evaluations and finish the thesis

The next two chapters go through the two research questions, one at a time. Chapter 5
tackles the pre-study, which constitutes the first research question. The planning of the
pre-study, the work required to prepare DataOntoSearch version 1 and the results are pre-
sented in that chapter. Chapter 6 picks up right after, and presents the work that went into
improving and evaluating DataOntoSearch version 2.

39

Chapter 4. Overall design

40

Chapter 5
Investigation and results of RQ1

Our first research question is all about understanding where we are with version 1, and
what direction we can take for further development. Though some simple queries have
been tested using precision and recall in Hagelien’s master thesis and paper, we want to
put the system in front of people to essentially get a reality check. This chapter goes
through this process, starting with the test plan and proceeding with the implementation
work involved and results.

5.1 Methodology
By the end of Hagelien’s project (see Section 2.4), we were left with a prototype for an
ontology-based semantic search which had been evaluated against the CKAN search using
information retrieval methods. Though it did compare favorably in some regards, there are
some uncertainties related to its evaluation. I also wish to gain more insights into what
should be improved, based on the one metric that actually counts – the end users’ problems
with the search. A new competitor had also entered the stage since Hagelien delivered his
thesis, namely the Google Dataset Search.

To achieve this, the pre-study is a competitive usability test.
I present the test plan here, using the questions described in Usability Engineering

[34, p. 170] (summarized in section 3.4.2). In addition to those, questions of privacy
considerations and the test methodology are included.

5.1.1 Goals
The pre-study aims to answer the following questions:

• How good is the current system, using Google Dataset Search as a point of refer-
ence?

• What should we improve? What does Google Dataset Search do better or worse
than DataOntoSearch?

41

Chapter 5. Investigation and results of RQ1

• What queries should we use in system-oriented evaluations later?

5.1.2 Test methodology
Here, some important questions regarding the test design are discussed. The questions
discussed here do not have a particular connection to any of the other questions included
as a part of the test plan.

Formative or summative? As explained in Section 3.4, there are two types of evalua-
tions: Formative and summative. To achieve the goals of finding improvements, a forma-
tive evaluation seems most fruitful.

Competitive and choice of systems To evaluate against Google Dataset Search, the
usability test is a competitive one, focusing on Hagelien’s prototype and Google Dataset
Search.

Between-subjects or within-subjects? Competitive usability studies can be between-
subjects or within-subjects. In order to achieve a reliable result, within-subjects testing is
chosen.

Should the interface vary? Do we wish to find usability problems and differences in
the interface itself, or do we wish to only test the search backends? If the answer is
the interface, then we simply test with the different search interfaces directly. This also
requires less work, and respects the fact that different search backends may be better suited
with different frontends, for example due to autocomplete.

However, if we wish to test just the search backend, we need to use the very same user
interface for all systems, with the least amount of changes needed to support the different
ways of formulating queries. This will potentially require a lot of work, since Google
Dataset Search doesn’t support APIs.

Though it is desirable to use same interface for all, it is not essential. Due to the amount
of work required to create a unified interface, we must make due with using different
interfaces.

Should the available datasets vary? In the beginning, the only datasets with a manual
tagging in Hagelien’s system were datasets fetched from different Norwegian sources.
These datasets are not available in Google Dataset Search. We therefore have a couple
alternate approaches:

1. Expand what datasets are available in Google. This cannot be done, since we are
not in charge of DIFI or Google.

2. Expand what datasets are available in DataOntoSearch. Though this can be done,
some effort must be spent manually linking datasets to concepts.

3. Test using different datasets for different systems.

42

5.1 Methodology

Approach 3 above is not useful at all. Using different datasets for different systems
means information retrieval methods are out of the picture, since differences in perfor-
mance might be due to different datasets. Of course, this also applies to the usability test –
we do not know if it is the interface/search engine or the available datasets that makes the
difference. An additional problem is the fact that different datasets means using different
tasks, which further reduces what the pre-study can tell us about the systems under test.

Since approach 1 above is out of our reach, we are left with approach 2, i.e. add
datasets to DataOntoSearch that are indexed by Google Dataset Search. The work that has
gone into this is described in Section 5.2.2 on page 50.

5.1.3 Collection and analysis of data
Collecting personal data would entail satisfying a long list of requirements to ensure the
test users’ privacy is handled properly. Perhaps the greatest hurdle is the process of send-
ing a form to the NSD1, which evaluates and makes sure the planned research fulfils our
privacy duties. Since they need some time to look at the application, it must be sent in
a couple weeks in advance. I was not made aware of this before it was time to conduct
the pre-study, which means the study had to be designed so that no personal data is col-
lected. That way, our study will not infringe the test users’ privacy, and will not require
any application to be sent.

With this in mind, the following data will be collected:

• Recording of screen

• Search queries

• Hand-written notes focusing on user comments and struggles

• SUS score

• Comparative questionnaire

• Answers to the tasks

Using these, we will arrive at the following measures:

• User’s accuracy

• User’s efficiency with the system

• Pain points and other interesting findings

• How satisfied was the user with each system?

• Which system was preferred by the user? Why? By how much?

• Collect issued queries

1https://nsd.no/english/

43

https://nsd.no/english/

Chapter 5. Investigation and results of RQ1

The recording of the screen will be there for later reference, so we easier can judge
the system’s performance. It will also let us see how fast the user was. It will be used on
an on-demand basis. The recording must be started and stopped by the experimenter, and
saved to the local disk. After the test sessions, the recording should be moved to a move
permanent storage, like a network folder at NTNU. A random identifier should be created
for each test user, so the recording and notes can be associated with each other.

Searches performed by the users should be analyzed to reveal search queries that users
expected to give valuable results, but which the system failed to deliver on. They will be
collected by inspecting system logs, or by looking through the screen recording.

The hand-written notes will be the primary source of analysis. User comments should
be transcribed to a more usable medium shortly after the test session, with some extra
details filled in from memory. They should be analyzed to find problems with the system
that the users struggled with.

The SUS score will be collected after the user is done with one system, before moving
on to the next. The standard questionnaire will be given.

The comparative questionnaire is given after the final system’s SUS questionnaire has
been delivered. It will ask questions about what system the test user liked the best, and
why. It should also ask the user to rate the other system, in comparison to the “best”
system, again asking for their reasoning. This should supplement the information derived
from the notes, and also give us an idea of how well the current system fares compared to
Google.

5.1.4 Test details
The remaining topics from the test plan are presented below.

When and where to perform the study

The tests will be performed in a bookable group room at NTNU, or another location de-
pending on the availability of rooms.

The time must be decided depending on when the participants are available.

Duration

We aimed at using no more than an hour, with the ideal time being around 45 minutes.

Computer support

The main need is for screen capture, in addition to the capability to run the software under
test, of course. To avoid problems with the untraditional trackpad on my computer, an
external mouse should be used.

Software to ready

A web browser must be set up with the systems to test. The backends must be running (for
any system that I set up myself), and it must be ready for use. Two bookmarks should be

44

5.1 Methodology

provided in a bookmark bar, so the user can easily navigate to the different search engines.
The browser should have one tab open, namely the first screen of the first system to test.

Software for recording the screen must be armed for recording.

System/network load and response times

We use DataOntoSearch running locally. This means its results are not delayed by the net-
work as much as Google is. Since the system is not very quick and takes a couple seconds
to retrieve documents, we opted to not delay or throttle the traffic. The performance has
not been a focus, and it is therefore not interesting to test since we already know it’s poor.

Experimenters

I will be the sole experimenter. Since we’re only testing acquaintances of mine, it is not as
important for me to have another experimenter as in cases where we test using strangers.

Who are the test users? How to recruit them?

For this formative usability study, I and my supervisors decided that it is okay to primarily
recruit acquaintances of mine. This helps me recruit users fast enough to conduct tests in a
timely manner. It also avoids the problem of registering personal details through electronic
solutions.

How many test users?

4-5 test users is a good enough amount, since we only test two systems.

Test tasks

The tasks must be related to the datasets used, and therefore limited to the transportation
domain. They should focus on describing a need for the user, which they must use the
search software to solve.

It is important that the name of the datasets and other features of the datasets aren’t
revealed in the task descriptions. Users may be led by them, and have their thought process
swayed (primed) by the formulation of the task.

Another aspect to consider is whether the user can assume there is a relevant dataset.
If they can, then the situation becomes unrealistic, since they may then have the tenacity to
continue searching, long after the point where they would normally have given up. On the
other hand, if the user doesn’t know whether there are relevant results or not, they might
give up easily. And users who give up on the entire test may be “correct” some of the time.
To make it more realistic and hopefully learn something new about how users judge the
fitness of a certain search engine, the latter approach is the preferred one.

Please refer to appendix A.2 for the tasks that were given to users.

45

Chapter 5. Investigation and results of RQ1

Criteria for finishing test task correctly

To have finished a test task, the user must do one of two things:

1. Declare that there is no dataset fit for the task

2. Declare one dataset as the one fit for the task

For this to be a correct answer, the answer must coincide with what actually is the case,
depending on the task.

To make it easier to see in the screen recording, we might want to use some software
to signal the answer, rather than the user simply telling the experiment runner what they
think.

A concern with this method is that it does resemble a test of the user’s ability to find
an answer, since there is a right and wrong answer. As such, they might feel intimidated
and wish to succeed. This must be compensated for by our introduction and guidance, so
we don’t stress the user.

User aids

The user will have access to a short manual which is printed out, given alongside the
instructions. The manual should describe the characteristics of the systems, giving some
guidance on how to effectively use them.

See Appendix A.3 for the concrete manual given.
In addition, users may ask questions regarding name of relevant companies, geography,

translations and other questions that they would normally have found answers to using aids
like Google or Wikipedia.

Help from experimenter

The experimenter will not help the user with formulating the query or picking a dataset.
However, if the user has any specific question about the task itself and its context, like
the name of the transport company in Stavanger, the experimenter may answer as much as
they think is necessary. The aim is to ensure users have an equal chance of formulating
relevant queries, independent of their knowledge of the geographical locations used in the
task.

The experimenter should ask the user what they would do, had the experimenter not
been available. The experimenter replaces typical Google and Wikipedia usage.

Criterion for announcing the interface a success

This point is not so relevant for this formative study, but it is included for completeness.
A successful interface:

• Should be pleasant to use. We measure this as having a good SUS score. This is
difficult to quantify since SUS is not absolute, but it should be above average.

• No major problems should be found.

46

5.1 Methodology

• Users should be able to formulate successful queries with no more than two at-
tempts.

• Users should be able to find a fitting dataset within one and a half minute.

Budgetary concerns

There are no extra costs associated with the pre-study.

47

Chapter 5. Investigation and results of RQ1

5.2 Implementation
Before I can evaluate DataOntoSearch version 1, there are a couple prerequisites that must
be fulfilled:

1. I must have a running version of the system.

2. A set of datasets which are available to DataOntoSearch and Google Dataset Search
must be found.

3. The system must be populated with the set of datasets I found.

4. Manual associations between datasets and concepts must be added.

5. The ontology must be modified to accommodate the new datasets.

This turned out to be a challenge in and of itself.

5.2.1 Getting a runnable system
The system that was used as a starting point for this master thesis was delivered by Thomas
Hagelien at the end of his own master thesis project. It showed signs of being a snapshot at
a point in time, which could result from an experimental approach which suddenly had to
halt so it could be delivered. Specifically, the software system had the following problems:

• Hard to read: Abbreviations were frequently used. To make matters worse, mean-
ingless variable and function names, like “foo” and “x,” were found frequently. This
made it hard to understand the software.

• Poor organization: The software was very difficult to modify, since the relationship
between modules was not very clear, and large pieces of code were duplicated across
the places it was used. A lot of technical debt had accumulated and needed to be
taken care of in order to restore modifiability. There was also a lot of failing code
that was not referenced anywhere, which made it difficult to know what code was
important and what was leftovers from earlier phases.

• No database setup: There only existed code that used the database, and no code for
adding graphs to it. Parts of this was available in Hagelien’s master thesis, although
parts of the code was cut off since it went outside of the page boundaries. This
code was only made available when I asked Hagelien about it, and even then, the
code was only available as Jupyter notebooks, which essentially are printouts of
interactive code sessions.

• Code that fails: Certain functions try to call functions that do not exist. This is
present both in central classes and in code used for evaluating results. It also looks
like there was a change in how graphs were organized at one point, since some parts
of the code refers to an outdated way of organizing graphs. Specifically, the dataset
tagger did not work since it added similarity links to a graph, assuming the very same
graph should be used for ontologies, datasets and manual taggings. These errors and
their nature were not marked in any way, and had to be discovered manually.

48

5.2 Implementation

• No instructions for how to run: There were no instructions for what you had to do
in order to run the system, as is typically found in README files. This, too, had to
learnt by way of email correspondence with Hagelien.

• Hard coded MongoDB instance and graphs: Only the MongoDB database login
was set to be configured by the user. The rest had a value set in variables in the code,
requiring code to be edited in order to change the MongoDB instance used or the
graphs used for various purposes.

• Hard to run: Only the webservers for dataset tagging and searching existed as
scripts you could run. The rest of the system was only available as Jupyter notebook
files, as previously mentioned, which cannot be run as easily.

• No version history: The finished project files were added in huge commits to the
Git repository around the time of the delivery deadline. The commit messages gave
no additional information about the intentions behind the system. It seems like the
public Git repository simply functioned as a way of hosting the final project, and
was not used during development.

Essentially, it would not have been possible for someone else to replicate the master
thesis as it stood. They would need access to files that were unavailable, and would have
no instructions for how to get the system running. Had there not been for Hagelien’s
support, I would have been unable to get the system to run and would have had to resort to
recreating the system from scratch, barely achieving anything new with the thesis.

In order to get the system into a state where further development could take place, my
first work on the system was refactoring work. Essentially, my aim was that if someone
else wants to run the system, they should be able to do so without much trouble. This work
also doubled as a way of getting familiar with the system and its design, so I could get a
better grip of how to develop it further.

The refactoring work took a couple months, and was an on-going project since new
parts of the system were needed later on in the project. For example, the evaluation code
had to be completely rewritten when a need for system-oriented evaluation arose. After
this, I dedicated some time to keeping the system in a modifiable state, so it would keep
the desired qualities when I delivered my master thesis.

The work resulted in what you could call DataOntoSearch version 1.1, though I will
simply refer to it as version 1. Since I wanted to evaluate the system developed by
Hagelien, I made an effort to keep the search logic functionally equal to the existing sys-
tem, so that any findings relate to the existing system, and not something I wrote.

Specifically, the following improvements were made:

• Create README: I created a document which describes the background of DataOn-
toSearch, and how to set up the project to run locally. It is included in Appendix C.1.

• Use environment variables: Instead of hardcoding what graphs to use and which
MongoDB instance to connect to in the code, environment variables are used to set
these parameters. They provide a flexible and universal way of specifying settings
that change between different deployments of DataOntoSearch. In addition, so-
called dotenv files supported, so the environment variables can be put into a file
instead of being supplied through the shell.

49

Chapter 5. Investigation and results of RQ1

• Use one entrypoint: Instead of having many different Python scripts laying around
and leaving it to the user to find the proper script to run for a given task, the user only
uses a single script. This script functions much like manage.py in Django and
command line programs like git, in the sense that you use different subcommands
to do different tasks in the system, with built-in help functionality which lets you
discover available subcommands and arguments.

• Centralize repeated code: Database interactions and all other kinds of repeated
code is put into a central place, and re-used wherever they are needed. The process
of choosing what to include there and what to keep in specialized files, were mostly
done after-the-fact, instead of trying to anticipate what would be useful abstractions.
Some duplication is still present, since there is a trade-off between decreasing du-
plication and increasing complexity. For example, the code for handling different
types of graphs is re-used, but for a different type of entity called Configuration,
different code is used.

• Create subcommands for handling database entities: The so-called CRUD tasks
(Create, Read, Update, and Delete) are all implemented as separate subsubcom-
mands for the different subcommands that correspond with different types of database
entity (ontology, dataset, similarity, autotag and configuration). For example, run-
ning python dataontosearch.py ontology create creates a new on-
tology graph in the database, using the ontology created as a part of this project.

• Create subcommands for searching from command line: Instead of only per-
forming searching through the web interface, separate subcommands are available
that lets you automate searching to a greater degree. This is also utilized for an
automatic evaluation utility.

• Remove unused code: After checking what code is used and not, functions and files
that were not in use were removed. This way, it is easier for newcomers to know
what to pay attention to.

• Make code more readable: This work involved renaming variables, creating new
functions, adding explanatory comments, storing data in mapping-like objects in-
stead of multiple arrays and restructuring the project.

For this last point, compare the code that handles the search procedure, shown in Ap-
pendix B on page 125.

5.2.2 Finding common datasets
When we want to compare different systems in a competitive usability test, we want to
reduce the number of variables between the systems. That way, any differences we observe
are more likely to be caused by the systems themselves, and not irrelevant variables.

The datasets available to the systems is one such variable we wish to eliminate. Though
DataOntoSearch is capable of importing any datasets that are expressed with DCAT in
RDF, the system is dependent on associations between datasets and concepts. Settling

50

5.2 Implementation

on using the autotagger would likely mean decreasing the quality of the search, since the
autotagger is far from perfect, especially when faced with incomplete dataset descriptions.

The set of datasets we wish to find, must fulfil the following criteria:

1. They must be indexed by Google.

2. They must be possible to import into DataOntoSearch.

3. They must be at least a little related to the ontology we use, in our case the Open
Transport Data ontology.

4. The number of datasets must be manageable, so a manual tagging process can be
performed.

5. The datasets must be relatable to the test users.

After some experimentation and looking around, I ultimately landed on using datasets
from the State of New York that are put in the transportation category. There are 288
datasets that match this criteria. These datasets are indexed by Google, and are available
from the American federated CKAN instance2 as well as through the system ran by the
State of New York themselves3. The latter system hosts both datasets from New York State
and federated datasets from Buffalo City and New York City, among others. In addition,
New York is a famous location, and although not so many Norwegian students are familiar
with its geography or details, I assume most people can imagine the city based on what
they have seen in popular culture. They may not be so familiar with the state of New York,
though.

To get those datasets into DataOntoSearch, they were imported from the State of New
York’s Socrata instance into a local CKAN instance that was running on my computer.
From there, it was imported using the existing scripts for importing datasets from CKAN,
limiting the datasets to those with the “transportation” tag. The resulting RDF is available
in the code repository4 and can be imported directly into DataOntoSearch.

A set of associations between those datasets and our concepts – the so-called manual
linking – has been created by Dr. Shanshan Jiang and Marit Natvig, so that the datasets
can be used with DataOntoSearch without relying on the automatic tagging. This is also
accessible in the code repository5.

5.2.3 Updated ontology
The ontology is an important part of the DataOntoSearch project. Its structure and con-
cepts determine how well the system can represent the user’s query, and how well it can
represent all the datasets. It also affects how well the system is able to show datasets that
the user did not mention explicitly, but which are still related to their query.

2http://catalog.data.gov
3http://data.ny.gov
4https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/ny_

dataset.ttl
5https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/

manually-tagged-ny-datasets.xlsx

51

http://catalog.data.gov
http://data.ny.gov
https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/ny_dataset.ttl
https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/ny_dataset.ttl
https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/manually-tagged-ny-datasets.xlsx
https://github.com/tobinus/OTD-semantic-framework/blob/master/doc/manually-tagged-ny-datasets.xlsx

Chapter 5. Investigation and results of RQ1

The types of datasets found in Section 5.2.2 are a little different from those used with
the ontology before, so the ontology was updated to account for this. Some concepts were
also moved, to make the new hierarchy more logical. This was done based on the input
from Jiang and Natvig.

Before the refactoring, the ontology was defined using Python code which generated
the corresponding RDF graph. As a part of the refactoring, this was changed so that the
ontology is stored in Turtle format, an RDF storage format which is convenient for humans
to read and write. The concepts are sorted in depth-first order so the hierarchical structure
is evident. This file is stored in the GitHub repository 6.

In addition, I created a tool for generating HTML visualizing the concept hierarchy.
The tool helped the domain experts, Jiang and Natvig, when they were performing the
manual linking of the datasets.

5.2.4 User interface improvements
Some small changes were done to the user interface to make it more presentable to users:

• Concepts that matched the query and datasets are hidden by default, and can be
shown by checking a checkbox. You can see this in action in Figure 5.1 and 5.2.

• The search query textbox has concept labels as search suggestions.

• Some smaller stylistic changes, including using white-space to separate the individ-
ual results from each other.

The following improvements were made after the pilot test:

• The dataset links point directly to the original publication, instead of pointing to the
CKAN instance they were imported from.

• The choice of similarity type was temporarily removed to avoid confusion.

6https://github.com/tobinus/OTD-semantic-framework/blob/master/ontology/
otd.ttl

52

https://github.com/tobinus/OTD-semantic-framework/blob/master/ontology/otd.ttl
https://github.com/tobinus/OTD-semantic-framework/blob/master/ontology/otd.ttl

5.2 Implementation

Figure 5.1: The revised web search interface, without concepts being shown.

53

Chapter 5. Investigation and results of RQ1

Figure 5.2: The revised web search interface, this time with concepts.

54

5.3 Results

5.3 Results
The results of the pre-study are presented here, including the answers to the questionnaires
and task performance.

There were four test users (N=4). They all attend study programs closely related to
computer science, and can be considered developers. They were all acquaintances of mine
or friends.

5.3.1 Changes made from pilot study
The first usability test conducted served as a guide on what to improve for later tests. I
don’t expect the problems to have much of an effect on the systems’ performance, but they
mostly concern the test itself. The problems discovered, along with the changes made to
remedy them, are presented below.

• The delivery form, based on Microsoft Forms, was too difficult to use. Particularly
because it was impossible to split between pages, and some fields were not shown
before a selection was made.

– I re-created the form in Google Forms and made it easier to use.

• The user was not aware that I could answer some questions.

– I added this to my test introduction.

• The test went on for too long, and the tasks were easy when tested on the second
system, since the user knew what dataset to look for.

– The remaining tests were done with two tasks per system instead of three.

– One random task is made exclusive to the second system.

• The user got confused about the meaning of “tagged” versus “auto,” which were
presented in a selection field to let the user choose between the manual concept
associations and the autotagger’s associations.

– The select box letting the user pick between “tagged” and “auto” was removed.
Instead, “tagged” is always chosen.

– I do not consider this an essential part of DataOntoSearch’s operation, but
rather a by-product from the prototype phase. It therefore does not need to be
a part of the evaluation.

• The user was not so familiar with how to think aloud.

– I added a demonstration of thinking aloud to my test introduction.

• The user was concerned about finding datasets that were up-to-date.

– The test tasks were reworded so that their timely aspect is no longer empha-
sized.

55

Chapter 5. Investigation and results of RQ1

• The user encountered many datasets from outside New York in Google Dataset
Search, since Google is not restricted to New York datasets.

– I added a note to myself that the user should be made aware of the “site:”
operator available in Google Dataset Search, along with potential sites to use
it with.

• The user was confused about how to copy and paste on my computer.

– I added a note in my test introduction to tell the user that my “Ctrl” and “Fn”
keys have switched behaviour with each other.

During the second user test, two smaller problems were discovered and fixed:

• “DataOntoSearch” was mistakenly named “OntoDataSearch” a couple places.

– I updated the documents so “DataOntoSearch” is used consistently.

• The user thought task 68 asked for the existence of train routes, not specific train
departure times.

– Task 68 was reworded so it specifically asked for train departures.

Even though there were some problems, I do not think their presence biased the test in
favor of any one system. The results from these tests were therefore kept and are presented
along with the results from the other two tests in the following.

5.3.2 User rating of systems

The ratings done by the users, randomly labelled A, B, C and D, are presented in the
following table. They were collected through the comparative questionnaire, using a scale
from 1 to 9.

Very bad Very good
1 2 3 4 5 6 7 8 9

Google Dataset Search ABD C
DataOntoSearch AB D C

All users rated Google Dataset Search above DataOntoSearch version 1. Two users
had a three point difference between the two systems, while the other two had a two point
difference.

The average rating in general is 5, which is right in the middle of the scale. Google’s
average rating is 6.25, while DataOntoSearch’s average rating is 3.75.

56

5.3 Results

User Google DataOntoSearch
A 60.0 67.5
B 60.0 65.0
C 70.0 50.0
D 70.0 57.5

Table 5.1: SUS scores for Google Dataset Search and DataOntoSearch version 1. The bold numbers
indicate that the system was the first the user tested.

5.3.3 User satisfaction
SUS scores are calculated from the collected SUS questionnaires. Users were consistently
more satisfied with the second system they tested, independent of whether this was Google
Dataset Search or DataOntoSearch. That said, the increase was more pronounced for users
who went from DataOntoSearch to Google Dataset Search. Though note that this kind of
comparison is not reliable, due to the time gap between the questionnaires and the lack of
a frame of reference, as noted in section 3.4.2. The raw scores are reported in Table 5.1.
The average SUS scores were 65 for Google Dataset Search, and 60 for DataOntoSearch.

5.3.4 Problems and themes in user comments
User comments were collected directly from users in the comparative questionnaire, where
they were asked to explain their rating of the two systems. In addition, some comments
were collected as written notes by the experiment runner while the user was trying out the
system. Here, common problems and other comments for DataOntoSearch are presented.

• The system failed: Users could not find what they were looking for, and always
answered that the dataset did not exist. One user reported that “I did not get any
desired results, as far as I could see.” Another one wrote that “Didn’t find any
database needed.”

• A few datasets are always on top: Especially the “Bus Safety Network” dataset
is always among the first, even if you try to vary your query or search for trains.
As one user put it, “Always gave same (wrong) results.” Another user attributed
this deficiency to the ontology approach, noting that “Ontology method ‘works,’ but
search results are too similar if used to the keyword approach, and a bus database
nearly always got top score.”

• Unprofessional look: The look, though simple, did not evoke the same kind of
authority as Google’s professional design, with users noting that it “Looked very
simple” and “A bit boring UI.”

• Matching concepts were appreciated: Users felt more in control of the system
when they could see concepts that the query was matched with. They also liked
how they didn’t need to try different synonyms for words in their query in DataOn-
toSearch. Users noted that they “Liked the word comparison, but it was not clear
how the words were matched” and “Liked the check box with synonym for my
query.” Not all users discovered this functionality by themselves.

57

Chapter 5. Investigation and results of RQ1

Measure Google DataOntoSearch
Average comparative rating 6.25/9.00 3.75/9.00
Average SUS score 65/100 60/100
Success rate (tasks with dataset) 3/5 0/6
Success rate (task without dataset) 3/4 3/3
Success rate (total) 6/9 3/9
Median task duration 00:04:53 00:05:45

Table 5.2: Summary of the measurements collected from users when testing Google Dataset Search
and DataOntoSearch version 1.

5.3.5 User performance
First, we look at what the users answered. For Google Dataset Search, there were 9 at-
tempts at a task. Six of these were successful, while the datasets chosen for the remaining
three would not have helped the user solve their task and therefore registered as incorrect.
Two of the incorrect answers may possibly be explained by test users not understanding
exactly what the task was asking for, though this can also be attributed to how the dataset
is presented in the search result page. For all tasks for which a dataset exists, the users
answered that there existed a dataset. Google Dataset Search was thus able to provide
search results which users felt were right for the task.

For DataOntoSearch, on the other hand, not a single user answered that they had found
a fitting dataset. For one task, this was the correct answer, which means that the users
that tested this task with DataOntoSearch found the correct answer. These are the only
correct answers for DataOntoSearch. For all six attempts at solving the other tasks, the
user did not find a fitting dataset, even though it should have been available. Thus, for all
the datasets that were returned, the user deemed them not relevant enough.

The median duration for task attempts on Google Dataset Search is 00:04:53, while
the median duration for DataOntoSearch is 00:05:45.

All of the measurements are summarized in Table 5.2. Note that the low number of
users means these numbers cannot be said to represent all developers in general, but they
give us a better indication than testing with no users, and they do tell us how the systems
fared in the hands of the recruited test users.

58

Chapter 6
Implementation and results of RQ2

Equipped with a better understanding of the issues users faced using DataOntoSearch ver-
sion 1, the mission to improve DataOntoSearch can begin. Of course, just tweaking things
and hoping an improvement was made will not do. I will need a sound way of assessing the
improvements. This chapter describes how the evaluation is planned, the implementation
changes made and how the changes affected how well the system performs.

6.1 Methodology
After the system has been developed further, we need to know whether we actually made
any improvements, and by how much. We also want to know how the system compares to
Google Dataset Search. This section presents the methodology used for the final evalua-
tion.

6.1.1 Goals
The overall goal is to know what this thesis contributes to the field, and provide evidence
of this contribution. Specifically, I must learn:

• How did we do? Were the improvements a step in the right direction? Did we see
only small benefits, or was it a bigger shift? Do the changes apply universally, or
only to certain types of queries? This involves comparing with an earlier version of
DataOntoSearch.

• How do we compare to the alternatives? Is DataOntoSearch a viable option, when
set up against Google Dataset Search?

• How does the system react to different threshold values? There are a couple
variables that can be varied to tune the search system. It would be nice to know what
value they should be given, so potential users of the system have a good starting

59

Chapter 6. Implementation and results of RQ2

point. It would also be interesting to see how much they vary between different
queries, and how important it is to select the right threshold values.

• How fast does the system run? Though not a primary focus, it is interesting to
know how much time the search procedure takes.

In contrast to the formative nature of the pre-study, whose purpose was to give a di-
rection for further development, this new evaluation is summative. It must give us some
numbers that tell us something about how well the systems fulfil their purpose.

6.1.2 Measures
Whereas comments from a few users give us a valuable insight into their needs and can
inform our direction, they are not reliable enough to conclude what system is best, at least
not on the scale of the pre-study. It is also necessary to test with many variations of the
system, which would be difficult to achieve with the overhead and effort required by a
usability test. I’m therefore using system-oriented evaluation methods for this evaluation.
These methods were introduced in Section 3.3 on page 23.

Specifically, the following evaluation methods are used:

• Precision: Tells us to what degree irrelevant datasets pollute the results.

• Recall: Tells us whether the user can find what they’re looking for, given their query.

• F1 score: Gives us a unified measure of precision and recall, reconciling the two.

• R-Precision: Incorporates an aspect of ranking to precision, by looking at only a
top portion of the retrieved datasets.

• Mean Average Precision: For properly distinguishing systems that rank relevant
datasets high from systems that rank them low.

For all these measures, I must arrive at a set of queries and a set of relevant datasets
for each query in some way. Since it is easier to use binary relevance assessments rather
than graded ones, only measures made for such relevance assessments are used.

In addition, there is one goal related to the system’s time usage. For this purpose, the
execution time serves as a good enough measure, though care should be taken to eliminate
external factors like different workloads on the computer.

6.1.3 Queries and relevance assessments
As I explained in Section 3.3, the choice of queries greatly affects the evaluation’s validity.
If the selection of queries does not properly reflect the type of queries users would make,
we end up with numbers that don’t tell us anything about how the system would perform
“in the wild,” with actual users. There is also the danger of “overfitting” the system, which
is the trap of over-optimizing the system for one set of queries. You may then risk ending
up with a system that performs poorly once you try out a query it has not been optimized
for.

60

6.1 Methodology

Concept-based relevance assessments

There is a significant amount of work required to manually go through the available
datasets and mark them as either relevant to the query or irrelevant. We may therefore
want to take a shortcut. We already have assigned concepts to each dataset manually, to
enable the operation of DataOntoSearch. What if the assignment of datasets to concepts
can also be used to determine each dataset’s relevance to a query?

Usually, the relevance assessments are done once the queries have been decided upon
and we know what datasets were retrieved. If we use the concepts, however, we must go
the other way around:

1. Find a concept which is associated with several datasets

2. Formulate a query so that a dataset is relevant to the query if and only if it is tagged
with the related concept

There is a rather obvious problem with this approach: You are essentially using one ex-
tra piece of information, namely the manually tagged datasets, for both DataOntoSearch’s
search procedure and for the system evaluation. This is information which e.g. Google
Dataset Search does not have access to. These queries may therefore risk favouring
DataOntoSearch over other search engines.

To combat this, some extra care must be taken when formulating the queries. If you
directly quote the concept label, the DataOntoSearch search procedure is more or less
guaranteed to match with that concept. Using alternate ways of describing the same con-
cept should alleviate this effect. That said, search interfaces using DataOntoSearch may
choose to use concept labels as search suggestions, which one would assume makes such
queries more representative of the type of queries users would make. But then again,
Google Dataset Search uses full dataset titles as search suggestions, which would mean
using a dataset’s full title might represent users of Google Dataset Search better. For the
purposes of this thesis, I will simply acknowledge this problem, and ensure anyone inter-
ested may look at the queries and concepts to determine the validity of the results.

There are three sources used to gather queries:

• Queries derived from concepts in Hagelien’s thesis.

• New queries derived from concepts by me.

• Queries collected from the usability tests, with concepts found afterwards.

Thomas Hagelien already used this approach in his master thesis [20]. The queries he
made were made with another collection of datasets in mind, namely datasets related to
transport in Norwegian. Some of the queries made for that dataset collection are associated
with concepts that are not used in the manual tagging of New York datasets, and therefore
had to be dropped. The remaining four queries are re-used.

To increase the number of queries, I found more concepts and made queries for them.
My approach was:

1. Choose one concept at random, using a random number generator.

61

Chapter 6. Implementation and results of RQ2

Table 6.1: Queries with concept-based relevance assessment
Source Query Concepts

Hagelien’s thesis [20]

location1 Location
statistics1 Statistics
bike Bicycle
map Map

New, from concepts

messaging Communication
stopping place Station
walking Pedestrian
driving permit Driver’s license
tallying Counting
road traffic management Traffic regulation

Usability tests

new york state rest stop Rest area
nyc subway Underground railway
rest area Rest area
site:data.cityofnewyork.us
subway stations

Underground railway ∩ Station

subway stations Underground railway ∩ Station
rest stops Rest area2

highway new york rural Highway3

underground railway posi-
tion

Underground railway ∩ Railway3

1 This query had to be modified by appending “transportation,” since Google reached its
upper limit of datasets returned.

2 This concept was chosen by me, not the domain expert.
3 There are no matching datasets, so this query was not used.

2. Check if there are any datasets associated with the chosen concept.

3. Use Wiktionary and Wikipedia to arrive at a term or phrase that has more or less
the same meaning as the concept, but is lexigraphically different from the concept’s
labels.

I decided beforehand to do this until I had six more queries.
The final source of queries were the usability tests conducted as a part of the pre-study.

The users’ queries for both systems were collected. For this purpose, I used the first query
each user made, since I assume the best case would be for them to find the relevant dataset
on their first try. Based on the query, our domain expert found concepts which should
more or less match its intent. It was not possible to do this for all queries, since some
combinations of concepts did not have any datasets associated with them.

The queries and the concepts they are derived from are listed in Table 6.1.

Task-based relevance assessment

Of course, one of the goals of the pre-study was to understand what type of queries users
make when sat in front of a new, semantic search engine. For this purpose, queries made

62

6.1 Methodology

by the users were collected. Since there was one dataset indicated as relevant per task, we
could use queries the users made and say that only the dataset relevant for the related task
is considered relevant for that query. This would effectively work like a simulation of the
usability tests, letting us know whether the improved DataOntoSearch would fare better in
those tests than version 1, at least for the search engine aspect.

Having just one relevant dataset is highly unusual, and makes it more important to look
at the ranking of datasets – if the relevant dataset was returned first, the system should not
really be punished for returning many irrelevant datasets afterwards (which decreases the
precision and F1 score). Presumably, the user would not care about there being extra
datasets after they found what they were looking for in this context. Indeed, one of the test
users noted that:

When I search, then I may read, like, the first five hits, and then skim through
the rest. But if I don’t find what I’m looking for among the first five hits, I can
almost be certain that I won’t find it at all.

The Mean Average Precision (MAP) measure neatly captures the search engine’s abil-
ity to rank the relevant results high.

As for how to pick the queries to use out of all the queries the users made, we can use
a procedure like the following:

1. Focus on the tasks for which a relevant dataset existed. See Appendix A for the task
descriptions.

2. Look at one user and one task at a time.

3. Given the list of queries the user made, we throw away any “testing” queries, like
“hello.”

4. Users often made multiple queries. However, I assume that the best case scenario is
the user finding what they look for with their first query. Therefore, we should pick
only the first query and add to our list of queries. The queries the user made after
the first one are likely influenced by the results from the earlier queries anyway.

Since users tested both Google Dataset Search and DataOntoSearch, we could poten-
tially use different queries for the two systems. Since we want to do a direct comparison
between the two systems, we should not vary the queries between them. Instead, queries
collected from both systems should be run on both systems.

The queries used with task-based relevance assessment are listed in Table 6.2, along
with the task they were taken from and the system in use.

6.1.4 Collection and analysis of data
With the queries and their relevant datasets decided, they need to be run with the systems
to see what results they retrieve and calculate the metrics described earlier.

Although it would be possible to use DataOntoSearch unmodified to run the queries
and write down retrieved datasets, and perform the relevance assessments manually, this
would take much effort. By adding the capability to run such evaluations automatically,

63

Chapter 6. Implementation and results of RQ2

Query Task System
underground railway position Task 55 DataOntoSearch
site:data.cityofnewyork.us subway stations Task 55 DataOntoSearch
nyc subway Task 55 DataOntoSearch
subway stations Task 55 DataOntoSearch
highway new york rural Task 47 DataOntoSearch
new york state rest stop Task 47 DataOntoSearch
rest area Task 47 DataOntoSearch
nyc subway station Task 55 Google
rest stops Task 47 Google
new york state highway public facilities Task 47 Google
new york public facilities Task 47 Google
new york road Task 47 Google

Table 6.2: Queries derived from the pre-study

a greater number of queries can be used, and evaluations can be done more frequently to
give us a better picture of how smaller changes affect the system’s performance, rather
than run as one big batch at the end.

As part of the implementation work, I have implemented the capabilities needed for
such automatic evaluations. They are split into two parts: One part reads a recipe on what
queries to run, and what values should be used for the different variables. All combinations
of value assignments and queries are then executed, using the cartesian product. The
results are reported for each execution. The other part is fed this result, does the relevance
assessment using the same recipe, makes the needed calculations and finally reports the
results. For the current DataOntoSearch system, the two parts directly interact to run the
queries and process the results.

Older version

The first version of DataOntoSearch also included some capabilities for automatic evalua-
tion, but they reference functions that do not exist and were not available as simple scripts.
However, as a part of the refactoring work, a command line utility had been created. It
allows for running one query at a time, with machine-readable results. I am therefore able
to manually run the queries, capture their results and reformat them so they are in the same
format as the query results from the current DataOntoSearch system. This can then be fed
into the same evaluation code as used for DataOntoSearch version 2.

Google Dataset Search

For Google Dataset Search, the query-running module has been extended with the option
of using Google Dataset Search instead of DataOntoSearch. This way, the same evaluation
code can still be used, since just the process of retrieving the results is different.

To gather results from Google, the software must look at the HTML returned by the
search, and compare the dataset titles, since no public API exists. The collection of search-
able datasets varies between the two systems, so you may specify a “site:” operator to

64

6.1 Methodology

restrict results to one dataset provider. In addition, any unrecognized datasets are ignored,
so the resulting list of datasets from Google answers the question “what would Google
retrieve, if they were limited to the same dataset collection as DataOntoSearch?” Unrec-
ognized datasets may still take up spots that could otherwise be occupied by recognized
datasets, that may have been pushed off the search result page as a result. To avoid this
problem, reports of unrecognized datasets should be checked to ensure we are not ap-
proaching the maximum number of datasets displayed in the search result page.

Doing the analysis

Evaluating the results once gathered is fairly simple. The recipe that lists queries, also
lists datasets or concepts relevant to that query. The evaluation code may therefore look
through the available datasets, find the relevant ones, and check what retrieved datasets
were relevant and mark the rest irrelevant. The precision, recall, F1 score and MAP mea-
surements can then be calculated, since we both have a set of relevant datasets in the
dataset collection, and an ordered list of retrieved datasets and their relevance.

Time spent

Finally, the system’s execution time must be measured. To measure it, log messages with
timestamps can be used to check the time between the start of a search and the moment
results are retrieved. However, the reported time will also be affected by other tasks run-
ning on the computer, since the search process will share processing power with the other
tasks.

A more robust time measurement tool, like the perf stat command-line command,
can be used to run the program multiple times and report many interesting statistics like the
time spent in the CPU, but it will only look at the software as whole. It cannot report which
part of the search process took the most time. It should also be noted that a significant
part of DataOntoSeach’s execution time is spent on I/O, which contributes a lot to the
execution time. Looking at just the CPU runtime would not account for any improvements
(or disimprovements) in the application’s I/O usage.

A combination is likely to yields the most useful information.

65

Chapter 6. Implementation and results of RQ2

6.2 Implementation
A major part of this thesis’ contribution lies in the improvements that are made to the
implementation. Apart from the refactoring work described in relation to RQ1, the changes
and new developments made to the implementation are presented in this section. The code
of DataOntoSearch version 2 is published on GitHub1.

6.2.1 CKAN Extension
One of the complaints from the usability tests, was that the design of DataOntoSearch’s
web interface did not look so professional. In addition, Dr. Shanshan Jiang noted that it
would be difficult to make users use DataOntoSearch if it is a separate, third-party website
which is not linked to from the dataset archives. This goes for both dataset consumers who
would like to find a dataset for their needs, and dataset publishers, who are unlikely to go
to a separate website to associate some concepts to their datasets.

To solve these problems, the functionality of DataOntoSearch has been integrated with
CKAN. Specifically, I have developed and published the extension ckanext-
dataontosearch on GitHub2 and PyPI3.

Organization

DataOntoSearch itself is not put into CKAN. Instead, API endpoints have been added
to DataOntoSearch, which are then used by the CKAN extension. DataOntoSearch and
CKAN may therefore run on different servers, and one instance of DataOntoSearch can
serve multiple CKAN instances. This provides flexibility, and also makes it easier to add
DataOntoSearch to existing CKAN instances, which may not have the technical know-how
necessary to set up DataOntoSearch.

The CKAN extension is split into two plugins, which can be activated individually.
One of them provides the ability to manually associate datasets with concepts. The other
plugin adds the ability to perform semantic search inside CKAN. The split helps with
organizing the code, and also makes it possible for a CKAN instance to e.g. just use the
semantic search, and not the dataset tagger.

CKAN is organized into actions, routes and templates, which more or less correspond
to the model, controller and view of the Model-View-Controller architectural pattern. This
structure is adhered to by the extension as well, which adds new actions, routes and tem-
plates to CKAN.

• Each action is made easily available to the routes, and is also automatically made
available through CKAN’s own APIs. Each action also has a separate authoriza-
tion function associated with it, which decides if the user is allowed to perform the
action.

• Each route is mapped to a set of URLs, and is invoked when the user visits one of
the matching URLs. The CKAN project is currently switching to Flask (a Python

1https://github.com/tobinus/OTD-semantic-framework
2https://github.com/tobinus/ckanext-dataontosearch
3https://pypi.org/project/ckanext-dataontosearch/

66

https://github.com/tobinus/OTD-semantic-framework
https://github.com/tobinus/ckanext-dataontosearch
https://pypi.org/project/ckanext-dataontosearch/

6.2 Implementation

library handling HTTP requests and mapping them to Python functions) for handling
routes, and the extension therefore uses the Flask capabilities exposed by CKAN.
The routes are responsible for collecting data and invoking the different actions,
before letting the template generate the HTML.

• Each template is used by one or multiple routes, and make up the user interface
of CKAN. A flexible organization is adapted, which allows extensions to override
small “snippets” and therefore add a link here and another link there, so the exten-
sion can change how the existing pages in CKAN look.

The different ways the CKAN extension alters CKAN are described below, following
this distinction between actions, routes and templates.

Actions

The DataOntoSearch plugin adds the following actions:

Concept list: Fetches a list of concepts and their labels from DataOntoSearch.

List all tags: Fetches a list of dataset-concept associations, for all datasets.

List tags: Fetches a list of dataset-concept associations, for the specified dataset.

Create tag: Add a dataset-concept association, adding the dataset to DataOntoSearch’s
index if it’s not there already.

Delete tag: Remove a dataset-concept association.

Delete dataset: Remove all dataset-concept associations for the specified dataset, and
remove the dataset from DataOntoSearch’s index.

Search datasets: Perform a semantic search using DataOntoSearch.

These actions are invoked by the routes when required. For example, the action for
listing concepts is used when the user loads the form for editing concepts, since a list
of concepts available is presented there. Additionally, the “Delete dataset” action is set
to automatically run when a dataset is removed from CKAN, to avoid DataOntoSearch
presenting datasets that no longer exist.

Protection is added so that only users who would normally be able to edit a dataset,
can edit the dataset’s associated concepts. There is also a weak protection added so that
the semantic search only shows datasets the user is authorized to see. This protection is
weak because using the API or GUI of DataOntoSearch directly, you can see all datasets,
irrespective of their privacy settings in CKAN.

Routes

New routes are also added, providing the DataOntoSearch functionality inside CKAN:

/dataontosearch/tagger/〈dataset id〉/ Shows the concepts associated with the dataset.
This view is shown in Figure 6.1.

67

Chapter 6. Implementation and results of RQ2

Figure 6.1: A list of concepts are shown for this dataset.

Figure 6.2: The user can add, change or remove concepts for the selected dataset.

68

6.2 Implementation

Figure 6.3: The semantic search page lists matching concepts on the left, and the search results in
the main part of the page.

Figure 6.4: A link to view associated concepts is shown when viewing a dataset in CKAN.

/dataontosearch/tagger/〈dataset id〉/edit Lets you add, remove and change what con-
cepts are associated with the dataset. Figure 6.2 shows an example.

/dataontosearch/search Provides semantic search results, as seen in Figure 6.3.

Templates

Each route has a template associated with them, which implements the route’s graphical
user interface. In addition, some small changes are made to existing “snippets” in CKAN,
in order to make the new routes discoverable by users:

• When you view a dataset, a new tab links to the route listing the dataset’s concepts.
This is shown in Figure 6.4.

• When you edit a dataset, a new tab links to the route where you can edit the dataset’s
concepts, as shown in Figure 6.5.

• When you make a search using the built-in CKAN search, a link lets you repeat that
search using the semantic search. Figure 6.6 showcases this.

Installation

The recommendations for CKAN extensions are followed. Specifically, the extension is
published onto PyPI, which lets CKAN administrators install the extension by simply
using the Python packaging tool pip. Afterwards, the administrator must follow the same

69

Chapter 6. Implementation and results of RQ2

Figure 6.5: A link to edit associated concepts is shown when editing a dataset in CKAN.

Figure 6.6: When using the CKAN search, the user can click a link to perform the same search
using DataOntoSearch’s semantic search.

70

6.2 Implementation

procedure as for every other extension, meaning it must be added to the configuration
file. The DataOntoSearch extension requires some extra configuring, e.g. so the extension
knows where to find the DataOntoSearch instance. The specific instructions are presented
in the extension’s README file, which is included in Appendix C.4, and are based on the
template CKAN provides to plugin authors.

6.2.2 API
When a separate system, like the CKAN extension just discussed, wishes to interact with
DataOntoSearch, then that is usually done through APIs. They provide a well-defined,
predictable way of interacting with the application.

DataOntoSearch version 1 did not have any functioning APIs. Its dataset tagger did
have some rudimentary APIs defined, but they had not been updated to reflect a new stor-
age structure that had been adapted. The semantic search did not have any APIs exposed
on the web. I have therefore dedicated a good amount of work towards implementing APIs
for DataOntoSearch, mostly informed by the needs of the CKAN extension.

Handling multiple instances

By keeping CKAN and DataOntoSearch separate, we are able to serve multiple CKAN
instances with just one instance of DataOntoSearch. This, however, presents a challenge:
How do you avoid different instances interfering with each other? E.g., how do you avoid
that when a user performs a semantic search on instance A, they get datasets from instance
B?

From before of, DataOntoSearch uses a number of different graphs. They are:

1. Ontology: Concepts and their relation to one another.

2. Dataset: Available datasets in DCAT format (the “index,” if you like).

3. Similarity: Similarity graph, storing dataset-concept associations made manually.

4. Autotag: Similarity graph, storing dataset-concept associations made by the auto-
tagger.

When you search, you need to have selected one graph of each graph type. This would
quickly get unwieldy for API users for two reasons:

1. Needing to send four graph IDs with each API call adds complexity.

2. Not all combinations of graphs work. Specifically, the similarity and autotag graphs
depend on one particular ontology and one particular dataset graph, since they define
associations between entities in the two graphs.

Therefore, a new entity has been introduced, called Configuration. Each Configuration
simply holds an ID of four graphs that are used together, along with a label and the date it
was last modified. API users simply provide the ID of the Configuration they want to use.
Based on what Configuration they specify, DataOntoSearch knows exactly which graphs
to use.

71

Chapter 6. Implementation and results of RQ2

In practice, each CKAN instance should get one Configuration each. Though the On-
tology graph will likely be shared between instances, the other graphs should be unique.
This way, the instances’ indexed datasets and stored dataset-concept associations are safe
from others.

Design

The principles of REST are used to a great degree in designing the HTTP APIs. They are
widely used on the web, and are intended to make it easier to use such APIs. Some of the
principles of REST are [18]:

• Stateless requests and responses, so they are self-contained and do not depend on
earlier interactions.

• The data is represented in a standard format, which need not be the same as the
internal representation.

• The inner workings of the application is encapsulated, so users of the API need only
concern themselves with the API’s constraints and semantics.

• Different URLs reflect different resources, just like different URLs on the web refer
to different articles and so on.

• When applied to HTTP, the so-called HTTP method is used to indicate the type of
action you’d like to perform, as specified by the protocol. GET means retrieving a
resource without causing side-effects, POST is typically assigned the meaning of
creating new resources, DELETE is used to delete a resource, and so on [17].

DataOntoSearch’s functionality is split across two webservers, which is a decision that
was made already for DataOntoSearch version 1. The dataset tagger is responsible for
viewing and editing the dataset-concept associations. The search server is responsible for
answering search queries. The APIs are therefore also split across the two webservers, so
the code can be re-used and so the structure is consistent.

For the dataset tagger, multiple endpoints are provided, which more or less correspond
one-to-one with the actions described for the CKAN extension. They are documented in
the code repository. The documentation is also included as Appendix C.2. The endpoints
are:

Method Endpoint Purpose
GET /api/v1/〈configuration〉/concept Retrieve concepts available to you
GET /api/v1/〈configuration〉/tag Retrieve existing associations be-

tween dataset and concepts
POST /api/v1/〈configuration〉/tag Tag a dataset with a concept
DELETE /api/v1/〈configuration〉/tag Remove a tag connecting a concept

to a dataset
DELETE /api/v1/〈configuration〉/dataset Remove a dataset and all associated

tags
For those endpoints, the Configuration chosen is specified in the URL. This means that

it is possible to create access control rules for individual Configurations in the webserver

72

6.2 Implementation

Figure 6.7: Query parameters used to make an example request to the /api/v1/search endpoint. q
is the query, c is the Configuration chosen and d and ic affect what information is included in the
response. The documentation in Appendix C.3 describes all available parameters.

software (e.g. Nginx or Apache). For example, you can specify rules that only allow one
particular login for paths starting with /api/v1/5c7ea259c556bb42803fa17e, while another
login is used for paths starting with /api/v1/5ccbf0bdc556bb13f71377d7, corresponding to
two different Configuration instances. The v1 in the endpoint path refers to the version of
the API, not the version of DataOntoSearch.

There is only one endpoint for the search webserver, namely a GET endpoint for
/api/v1/search. The query and a number of optional options, such as the Configuration
to use, are set using query parameters. An example of an API request is shown in Fig-
ure 6.7, along with the response in Figure 6.8 on page 81. The endpoint is documented in
the code repository, though the documentation is included in Appendix C.3.

6.2.3 Improving how the query is associated with concepts
When I experimented with DataOntoSearch version 1, I quickly noticed that the concepts
that my query matched with didn’t make much sense. Even after I had implemented search
suggestions based on concept labels, selecting a suggestion would not guarantee that the
underlying concept was associated with the query.

Even more concerning was the fact that many concepts seemed inaccessible. I have
implemented a route that lets you see the similarity of your query to all the concepts,
accessible at /scores. Experimenting with this tool, I could see that many concepts had a
score of 0.000, which almost never happens when a synset is found for both the concept
label and the query. This indicated that there were many concepts that did not match with
any WordNet synsets. This was a serious problem, since synsets are used as a common
link between queries and concepts.

In short, the way I saw it, there were two desired properties of DataOntoSearch that it
did not possess:

• If you use a concept’s label as your search query, you should match with that con-
cept.

• For all concepts, there should exist a query that matches with that concept.

To solve the first problem, the code that compared the query to concepts was modified
to use the same code for processing the natural language of the query and the concepts.

73

Chapter 6. Implementation and results of RQ2

This way, if it receives the same input – i.e. the query is equal to a concept’s label – it
will find the same WordNet synsets for them both, and they will compare equal. This did,
however, uncover some more problems with system.

The code implementation concerned with the issues discussed here can be found in
Appendix D, specifically in Appendix D.2 and D.3.

Increasing specificity of matching concepts

With concept labels being split up, it became difficult to match with one-word concepts
whose word was also a part of longer concept labels.

Take bus, for instance. Now, if you searched for bus, you got a perfect match with:

• bus

• bus stop

• bus terminal

This led to a lot of noise in the results, since you could not match with the bus concept
without simultaneously matching with the other concepts.

The reason this was the case, was that both the query and the concept labels were
matched with WordNet synsets that were put into one big bag, one for the query and one
for the concept. All pairs of synsets were compared to examine their semantic similarity,
using the graph structure of WordNet. The similarity between the most similar synsets was
taken to be the similarity score between the query and that concept.

Though this approach makes sense for single-word concept labels, it breaks down
when concepts can have labels with multiple words. Since all synsets from all words
are put into a single set of synsets, both bus stop and bus terminal will include the same
synsets as bus, since the word “bus” is present in all three, and therefore produces the same
WordNet synsets.

This situation is comparable to using term frequency (TF) as an information retrieval
technique without normalizing it. In short, not applying normalization would mean mak-
ing long documents more likely to be matched, just because they include more words and
therefore have a greater chance of mentioning a word from the user’s query. By dividing
the raw term frequency by the number of terms in the document, smaller but relevant doc-
uments actually stand a chance against longer documents that just happen to mention the
search term in passing.

The solution I implemented here, was to modify how synsets were returned from the
algorithm that matches concept labels with WordNet synsets. Instead of returning just one
set of synsets, it now returns one set of synsets per word in the label. For each set of
synsets, the comparison is still the same: The most similar pair of synsets from the entire
query and the particular word in the label is chosen. Thus, a similarity score is calculated
for each word in the concept label.

The previous behaviour can, at this point, be simulated by picking the highest similarity
score found among the words. The new behaviour, however, uses the harmonic mean
across all the words. Thus, when you search for bike, the similarity to the concept bicycle
is set to 1, but the similarity to bike sharing is just 0.688.

74

6.2 Implementation

Of course, the same problem is present when the query contains words that map with
both long and short concept labels. Searching for bike sharing therefore gives a perfect
match with both bike sharing and bicycle. I experimented with penalizing concepts that
matched with only a portion of the query, but the few experiments gave poor results.

Making all concepts available

When the user’s query is compared to concepts, a number of different NLP methods are
used. However, in the end, WordNet is used to compare the semantics of the words.

The way this process was set up in DataOntoSearch version 1 meant that the query was
split into tokens that were put into WordNet one by one. For the concepts, however, their
entire label was put right into WordNet, without splitting it up. It turns out that even though
WordNet has entries that consist of multiple words, you must use underscores between the
words when looking them up. Since spaces were used in DataOntoSearch version 1, any
concept that only had labels made up of multiple words never matched with any synonym
sets in WordNet and were consequently inaccessible and not possible to match with.

This is fixed in version 2, at first by processing concepts the same way the query is
processed.

Increasing the search’s precision with word-bagging

There is an element of inaccuracy introduced when splitting words, though: Even if the
user searched with a phrase known to WordNet, it was split up into the individual words
and used one-by-one in WordNet. Thus, phrases which could be assigned one specific
semantic meaning in WordNet, were instead assigned a high number of synonym sets.

For example, querying WordNet for synsets using the phrase bus stop yields just one
synset, with the definition “a place on a bus route where buses stop to discharge and take
on passengers.” However, bus and stop separately are mapped to 7 and 22 synsets respec-
tively. DataOntoSearch does not know how to disambiguate between them and will try
using all the 29 synsets, using whatever synset gives the highest similarity to a concept.

Clearly, it would be best if multi-word phrases in the query and concept labels could be
matched with multi-word phrases in WordNet. Before implementing this, an analysis was
done of the WordNet synsets available, to figure out exactly how large multi-word phrases
should be tried out. When only supporting single-word phrases, 67% of the WordNet
synsets can be matched with. Adding support for bigrams and trigrams (bags of two and
three words, respectively) increases this number to 99%. Supporting longer phrases does
not give big returns, so the upper bound is set to supporting trigrams.

A greedy matching algorithm is implemented. It first tries all trigrams. If a trigram
is found in WordNet, the tokens that made up that trigram are replaced by dummy tokens
in the list of tokens. Next, all bigrams are tried out, skipping any bigrams that include
a dummy token. The tokens that made up any matching bigrams are also replaced by
dummy tokens. Finally, WordNet is queried using the remaining single words. The final
list of synset groups is returned.

A problem with this approach is that is clashes with the NLP methods used. For
example, the stop-word remover removes words that may be integral to a phrase, like of in
time of day. The remaining phrase, time day, does not make sense and does not match with

75

Chapter 6. Implementation and results of RQ2

anything in WordNet. The stop word remover was therefore removed. Most stop words
are not represented in WordNet anyway, since e.g. prepositions are left out.

Another problem is that only certain parts of speech are preserved while others are
eliminated, which also has the potential to cut out phrases known to WordNet. The lemma-
tizer used is also unnecessary, since the WordNet library carries out lemmatizing automat-
ically when looking up entries. The lemmatizer was therefore cut out, and the constraints
placed on what phrases were included were relaxed.

Decreasing the number of synsets to compare

As was mentioned earlier, a concept’s similarity to the query is found by comparing all
WordNet synsets generated from the concept labels to all the synsets generated using the
query. As the number of synsets gets higher, the process time for this comparison process
increases rapidly, since the time complexity is bound by n ∗ m, where n and m are the
number of synsets generated from the query and concepts. Reducing the number of synsets
in the query by half therefore cuts the processing time by a factor of four.

In DataOntoSearch version 1, a part of speech tagger is used to figure out what part of
speech each token is. It uses information about the token’s surrounding words to determine
what part of speech it is. This information was only used to filter out words that were not
deemed interesting, before the part of speech tag was discarded.

In version 2, the part of speech tag is kept. It turns out that the WordNet library supports
specifying a part of speech when you try to find synsets. It acts as a filter, ensuring that
only synsets of the corresponding part of speech are retrieved. This greatly reduces the
number of synsets any particular word is matched with, and also increases the accuracy.

The part of speech tagger is not able to disambiguate between different possible parts
of speech when there is only one word. It is therefore skipped for those cases, so that
all possible WordNet synsets are used. This was necessary because it would arrive at the
wrong conclusion some of the time.

6.2.4 Increasing the ontology’s importance
When the query is compared with datasets, its similarity with concepts is used. This is
called the Query-Concept Similarity Vector (QCSV). Similarly, the datasets’ similarity to
concepts is stored in the Dataset-Concept Similarity Matrix (DCSM).

Cosine similarity is used to compare the QCSV with each vector of the DCSM, with
each concept being one dimension. Concepts that are associated with both the query and
the dataset increase the similarity score output by the cosine similarity, while differences
are penalized.

In DataOntoSearch version 1, the ontology is used to create the Concept-Concept Sim-
ilarity Matrix (CCSM). The matrix is used to create the DCSM, by enriching the existing
associations (the automatic or manual tagging) with new dataset-concept relations, based
on the new concepts’ similarity to the concepts already associated with the dataset. The
structure of the ontology therefore affects all the similarity scores and their distribution.

On the other hand, the CCSM is never used with the query. Its similarity to concepts
is only defined through the similarity scores calculated by WordNet, using the same algo-
rithm used for creating the CCSM, but with the graph structure of WordNet synsets rather

76

6.2 Implementation

than the ontology. This graph consists of WordNet synsets as nodes. Relationships be-
tween the synsets, like one synset being more general than another, make up the edges of
the graph. In many ways, WordNet is used as if it is was an ontology, though this is not
the purpose it was made for.

Due to the way cosine similarity works, and the way the similarities are calculated, this
has a rather interesting consequence: A dataset is more similar to the query if the structure
of its concepts in the ontology is more similar to the structure of the synsets in WordNet.

To avoid problems with datasets’ ranking being determined by this irrelevant factor, a
new step is introduced.

1. The query is associated with concepts through WordNet, just like before.

2. A new threshold called TQ is used. Only similarities that are ≥ TQ are kept.

3. The Query-Concept Similarity Vector is enriched using CCSM in the exact same
way the datasets were enriched when creating the DCSM.

4. Just as for the datasets, the TC threshold is now used here to ensure low-scoring
concepts do not affect the cosine similarity. The same threshold is used for the
query and datasets to ensure consistency between them.

The effect of this change is that WordNet’s involvement is reduced to simply finding
the most similar concepts. Once they are found, the ontology takes over. This way, the
structure of WordNet no longer affects what datasets are considered most similar. The
code implementation of this can be seen in Appendix D.1.

6.2.5 New threshold variables
Hagelien’s thesis [20] and the paper describing DataOntoSearch [25] both describe two
threshold values that can be varied to tune DataOntoSearch’s behaviour. However, the
descriptions did not match up with the code that was made available on GitHub, where
only one of the thresholds were implemented, and it was not implemented in a way that let
you vary it.

When I started working on the code needed to evaluate DataOntoSearch version 1 for
the pre-study (RQ1), I decided to not spend time implementing the two thresholds, since I
did not understand them at the time. Later, when I worked on evaluating version 2, I had
to search up how the variables work.

In addition to the aforementioned thesis and paper, I asked Hagelien directly by email
about the distinction between the two thresholds. His reply came with a warning that he
might be misremembering things, but I include it here because it is interesting. Table 6.3
on the next page shows what the different sources had to say about the thresholds.

Hagelien’s thesis has a description of TC which corresponds with the paper, since it
relates the threshold to “concept relevance.” Concept relevance is described as “a limit
for how similar a concept and a dataset must be for a concept to be considered relevant.”
However, the thesis also describes TC as a threshold similar to TS , stating that “[i]f a
dataset has a similarity score higher than the threshold, the dataset is expected to [be a]
part of the search result.” It goes on to describe how TC determines whether a dataset

77

Chapter 6. Implementation and results of RQ2

Table 6.3: Previous descriptions of TC and TS

Source TC TS
Thesis [20] Contradicting descriptions Lower threshold for dataset-query

similarity
Paper [25] Concepts w/ sim. ≥ TC are associ-

ated with the dataset w/ score = 1
Lower threshold for dataset-query
similarity

Email Concepts w/ sim. ≥ TC are asso-
ciated with the dataset

Concepts w/ sim. ≥ TS are asso-
ciated with the query

is “correct” or not, depending on its similarity to a concept. I find these descriptions
contradictory.

With DataOntoSearch version 2, I decided to implement the following thresholds:

TC Concepts with similarity ≥ TC are associated with the dataset (as described in
Hagelien’s email).

By keeping their similarity score and not setting it to 1, we can calculate the cosine
similarity with greater granularity.

TS Lower threshold for dataset-query similarity (as described in the thesis and the
paper).

TQ New threshold. Concepts with similarity ≥ TQ are associated with the query.

I was inspired to implement this when I saw it described as TS by Hagelien in
his email, though I made it a new threshold. This is implemented as a part of the
previously described effort in increasing the ontology’s importance.

The threshold TC is used when generating the Dataset-Concept Similarity Matrix.
Since this is an offline process, there exists no good way of specifying TC when using
the online search. It is supported when using the command-line tools, though, including
the evaluation tools.

Both TS and TQ can be varied on the fly. Though the graphical user interface does not
provide any way of changing them, users of the API may change them as they wish. They
are, of course, supported in the command-line interface.

The evaluation includes an analysis of how the different thresholds affect the search
results.

6.2.6 Autotagging
When Hagelien implemented the autotagging functionality, he helped make it possible
to perform ontology-based semantic search on datasets without the need for manually
associating datasets with concepts. Though this is very helpful, I have not focused on
improving the autotagger in my work. The main reason is that I have focused on making it
easier to perform aforementioned manual linking, which should hopefully alleviate some
of the need for the autotagger.

The one change I have made, is making it possible to choose between the English
WordNet and the Norwegian OrdVev. This makes it possible to use the autotagger with

78

6.2 Implementation

datasets that have their metadata written in English. Since the datasets used by Hagelien
were from the Open Transport Data project, they were written in Norwegian and there was
therefore no need to support English metadata.

6.2.7 Manual tagging process
The manual tagging process used to be a very labour intensive process. Though spread-
sheets were used to write down what concepts each dataset should be associated with,
there was no easy way to generate the spreadsheets, and there was no automatic way of
parsing them and create the RDF graph structure needed to represent the associations.

Through my work, I have added the ability to generate a spreadsheet fit for manually
linking many datasets at once. Each row of the spreadsheet represents one dataset, and
contains the dataset’s title, description and ID. It can be used in one of two ways:

• One column per concept: All the concepts have one column dedicated to them. If
you write anything in the table cell corresponding to the row of dataset d and the
column of concept c, an association will be made between d and c. An example of
how this looks is shown in Figure 6.9

• One column with concepts: You can create a column with the header “Concepts.”
In it, you write the name of any concepts that the dataset on that row should be
associated with. Multiple concepts are separated with comma and white-space.

A new utility has been made for parsing a CSV and turning it into an RDF graph of
manual associations. There will likely be errors in the CSV file, such as misspellings or
use of alternate names of concepts. Using the --check flag, all unrecognized concepts
are reported at once, along with the names of the cells where they appear.

All in all, these utilities enables mass-tagging of datasets and concepts, while reducing
the effort involved in setting up and getting the results into the system.

The previously described CKAN extension adds another way of manually linking
datasets and concepts. When using it, any unrecognized datasets are also added to DataOn-
toSearch. In other words, if you start with an empty CKAN and empty dataset and simi-
larity graphs in DataOntoSearch, the two systems will stay in sync with each other.

This approach works best for incremental changes, e.g. adding concepts whenever you
upload a new dataset. When tagging multiple datasets in one go, the slow response times
and the many clicks needed to navigate around make it less enjoyable.

There was a rudimentary web interface for adding manual links in DataOntoSearch
version 1. As a part of the API implementation, I also updated this web interface so it
actually works, and is compatible with Configurations. That said, it provides very little
feedback about which associations already exist, and it requires that you write the URL of
the dataset. The CKAN extension, on the other hand, gives a clear view over what concepts
the dataset is associated with, and you only need to find the dataset inside CKAN.

6.2.8 Web interface
The web interface was updated slightly in preparation for the usability tests in RQ1, as
discussed in Section 5.2.4. I have not focused on improving it further after that, because I

79

Chapter 6. Implementation and results of RQ2

wanted to focus on integrating the search into CKAN instead.
This approach essentially means that a new user interface has been created, namely

the extension’s semantic search web page in CKAN. Since it follows the look and feel of
CKAN itself, it is more stylistic and should hopefully leave a better impression than the
built-in web interface of DataOntoSearch.

That said, it does not show the concepts that are associated with each dataset yet. It
also does not suggest concept labels when typing the query. In those areas, the built-in
web interface of DataOntoSearch is still better.

80

6.2 Implementation

Figure 6.8: A small sample of the response to the API request shown in Figure 6.7. The documen-
tation in Appendix C.3 describes the meaning of all the fields.

81

Chapter 6. Implementation and results of RQ2

Figure 6.9: Example of how the generated CSV file can be used for manual tagging.

82

6.3 Results

6.3 Results

The results from the evaluation done after the improvements were implemented are pre-
sented in this section. They answer the question of how DataOntoSearch reacts to differ-
ent threshold values, and how the new version fares compared to both the old and Google
Dataset Search.

In the following, the tables are coloured. The intensity of the colour indicates how
high the number in that cell is. The colour itself indicates what measure is being reported.

6.3.1 Sensitivity of threshold variables

As explained in Section 6.2.5, there are three thresholds which can be varied in DataOn-
toSearch version 2. They are:

TS: Only datasets with a query similarity score ≥ TS are retrieved.

TQ: Only concepts whose similarity to the query is ≥ TQ are associated with the query,
before applying the CCSM.

TC: Only concepts whose similarity to a dataset or the query is ≥ TC are associated with
that dataset or query after having applied the CCSM.

Effect of varying TS The way TS affects DataOntoSearch’s performance can be seen
in Table 6.4 on page 85. The measures are averaged over all combinations of TC , TQ ∈
{0.00, 0.25, 0.50, 0.75, 1.00}. Since this threshold is a cut-off point for at which point no
more datasets will be retrieved, it naturally affects recall the most. When set to 0.00, all
datasets are retrieved for every query and we therefore get a recall of 100%, and when set
to 1.00, almost no dataset is retrieved, so recall is close to 0%. How similar the datasets are
to the query’s concept vector will generally differ depending on the values of TC and TQ,
so looking at TS averaged over all values of TC and TQ may not give us much information.

Effect of varying TQ Moving on to TQ, its effect on DataOntoSearch’s performance
can be seen in Table 6.5 on page 85. The measures are averaged over all combinations of
TS , TC ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. There does not seem to be any pattern in what
values give the best performance, since a higher value is good for the manually tagged
dataset-concept associations, while a score closer to the middle is marginally better for the
automatic tags.

Effect of varying TC Finally, the effect of varying TC is shown in Table 6.6 on page 86.
The measures are averaged over all combinations of TS , TQ ∈ {0.00, 0.25, 0.50, 0.75, 1.00}.
The trend seems to be better performance for lower values of TC , though with a surprising
performance increase for 1.00 when using the manual tagging.

83

Chapter 6. Implementation and results of RQ2

Effect of varying TQ and TC together We now move on to looking at multiple vari-
ables in tandem. First, the F1 scores and MAP values for combinations of TQ and TC are
shown in Table 6.7 on page 86 and Table 6.8 on page 91 respectively. The measures are
averaged over all TS ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. Recall that the F1 score is a com-
bination of precision and recall. There does not seem to be any apparent pattern in what
threshold values give the best F1 score for the automatic tagging, which may indicate that
TS is a greater contributor to the F1 score than TQ and TC . For the manual tagging, the
score increases when both are close to 1.00.

Continuing to MAP, which is a measure of how well the datasets were ranked, there
seems to be a pattern of lower scores of both increasing the MAP measure slightly. How-
ever, setting TQ to 1.00 yields a high boost, but only for the manual tagging. For the
automatic tagging, setting TQ = 1.00 negatively affects performance. With TQ = 1.00,
the system seems to perform better when TC is not in the middle.

Effect of varying TS over combinations of TQ and TC We finally consider all the
three variables at once. To make this possible, the results have been split up over multiple
tables. We once again use the F1 score and MAP measures. The F1 score is presented for
automatic tagging in Table 6.9 on page 92 and for manual tagging in Table 6.10 on page 93.
There is a tendency towards higher values when TS is set to 0.25, though this is not so
apparent for the automatic tagging. There are some specific combinations that yield much
greater results than neighbouring combinations, namely TS = 0.25, TQ = 0.75, TC =
1.00 and TS = 0.25, TQ = 1.00, TC = 1.00. This is true for both the automatic and the
manual tagging, though the effect is much greater for the manually derived associations.

The MAP measurements are shown for automatic tagging in Table 6.11 on page 94
and for manual tagging in Table 6.12 on page 95. Here, TS = 0.00 seems to be the
best performing assignment, though not much is lost when setting TS = 0.25. The best
performing combinations for the F1 score perform reasonably well for MAP as well, es-
pecially TS = 0.25, TQ = 1.00, TC = 1.00 for the manual tagging.

6.3.2 Search engine comparison

One of the main goals of this evaluation is to demonstrate how the new version of DataOn-
toSearch compares to Google Dataset Search and DataOntoSearch version 1. We will first
arrive at a set of threshold values to use for DataOntoSearch version 2, before presenting
the evaluation results.

Before that, though, it must be noted that Google Dataset Search seemed to have a bug
the day the queries were run (May 31st), which meant that e.g. the dataset with subway
station data was unavailable when using the “site:data.ny.gov” operator, despite the dataset
showing “data.ny.gov” as its source. This was confirmed with manual use of the search
afterwards the same day. A couple days later (June 3rd), the bug seems to have been fixed.
Google would likely perform much better if rerun today, though it has not been possible
to do this due to time constraints.

84

6.3 Results

Table 6.4: Effect of varying TS . The measures are averaged over the other two thresholds, using all
combinations of values ∈ {0.00, 0.25, 0.50, 0.75, 1.00}

Tagging TS Precision Recall F1 score R-Precision MAP
0.00 6 % 100 % 9 % 11 % 13 %
0.25 7 % 79 % 9 % 10 % 11 %
0.50 5 % 67 % 7 % 8 % 9 %
0.75 4 % 54 % 6 % 6 % 7 %

auto

1.00 0 % 0 % 0 % 0 % 0 %
0.00 6 % 100 % 10 % 17 % 22 %
0.25 10 % 77 % 13 % 14 % 17 %
0.50 9 % 59 % 11 % 11 % 14 %
0.75 6 % 40 % 7 % 8 % 9 %

manual

1.00 2 % 1 % 1 % 1 % 1 %
Average 5 % 58 % 7 % 8 % 10 %

Table 6.5: Effect of varying TQ. The measures are averaged over the other two thresholds, using all
combinations of values ∈ {0.00, 0.25, 0.50, 0.75, 1.00}

Tagging TQ Precision Recall F1 score R-Precision MAP

auto

0.00 4 % 67 % 7 % 7 % 8 %
0.25 4 % 66 % 7 % 7 % 8 %
0.50 4 % 64 % 7 % 7 % 9 %
0.75 5 % 59 % 7 % 9 % 9 %
1.00 4 % 43 % 5 % 5 % 6 %

manual

0.00 4 % 55 % 6 % 5 % 7 %
0.25 5 % 55 % 6 % 5 % 7 %
0.50 4 % 55 % 6 % 5 % 8 %
0.75 9 % 59 % 11 % 12 % 15 %
1.00 11 % 53 % 12 % 22 % 25 %

Average 5 % 58 % 7 % 8 % 10 %

85

Chapter 6. Implementation and results of RQ2

Table 6.6: Effect of varying TC . The measures are averaged over the other two thresholds, using all
combinations of values ∈ {0.00, 0.25, 0.50, 0.75, 1.00}

Tagging TC Precision Recall F1 score R-Precision MAP

auto

0.00 4 % 76 % 7 % 8 % 10 %
0.25 4 % 75 % 7 % 8 % 10 %
0.50 4 % 70 % 7 % 8 % 10 %
0.75 5 % 52 % 6 % 7 % 7 %
1.00 4 % 27 % 5 % 4 % 4 %

manual

0.00 5 % 77 % 8 % 12 % 16 %
0.25 5 % 75 % 8 % 9 % 12 %
0.50 6 % 56 % 8 % 9 % 10 %
0.75 7 % 42 % 8 % 7 % 11 %
1.00 9 % 27 % 9 % 13 % 14 %

Average 5 % 58 % 7 % 8 % 10 %

Table 6.7: Effect of varying TC over TQ, using F1 score. The measures are averaged over all
TS ∈ {0.00, 0.25, 0.50, 0.75, 1.00}

F1 Score TC AverageTagging TQ 0.00 0.25 0.50 0.75 1.00

auto

0.00 8 % 8 % 8 % 8 % 4 % 7 %
0.25 8 % 8 % 7 % 7 % 4 % 7 %
0.50 8 % 8 % 7 % 6 % 4 % 7 %
0.75 8 % 7 % 7 % 6 % 5 % 7 %
1.00 6 % 6 % 5 % 3 % 7 % 5 %

manual

0.00 8 % 8 % 8 % 5 % 2 % 6 %
0.25 8 % 8 % 8 % 6 % 2 % 6 %
0.50 8 % 8 % 7 % 5 % 3 % 6 %
0.75 8 % 8 % 8 % 12 % 16 % 11 %
1.00 7 % 7 % 11 % 13 % 22 % 12 %

Average 7 % 7 % 8 % 7 % 7 % 7 %

86

6.3 Results

Picking threshold values for DataOntoSearch version 2

The previous subsection showed how important it is to pick good threshold values for
DataOntoSearch. Even though the tables from that section could be used to simply pick the
best values available, this would risk giving DataOntoSearch an unfair advantage. After
all, none of the other two engines are given the opportunity to adjust their inner workings
to the queries at hand.

To make this more fair, around 15% of the queries, selected randomly, are set aside and
are only used to adjust DataOntoSearch’s thresholds. The remaining 85% of the queries
are used for evaluation only. This reflects the method often used in classification, where a
certain number of tasks are used as training set and the rest as validation and testing set.

The reliability of this method is hindered by the fact that only one split between training
and testing set is done. The particular numbers are therefore sensitive to what queries end
up in what set, since some training queries can be more representative of the testing set than
others. This effect is reinforced by the low number of queries in general. That said, this
reflects how the system might be set up in the wild, where the threshold values are likely
“set once and forgotten.” Though it is not perfect, I consider this more representative of
DataOntoSearch’s performance than the aforementioned approach of picking values using
all queries, adding some imperfection to the mix.

Based on the queries in the training set, the thresholds for DataOntoSearch version 2
were set as follows: TS = 0.25, TQ = 0.75, TC = 1.00. The results reported for DataOn-
toSearch version 2 in the following were gathered using those thresholds.

As can be seen in Table 6.9-6.12, the combination TS = 0.25, TQ = 1.00, TC =
1.00 yields better results when using all queries, than the combination chosen based on
the training set. To see what difference this makes for the measurements, a comparison
between the two threshold combinations is made in Table 6.13 on page 96, using all queries
and not just the testing set.

The threshold variables were not new to DataOntoSearch version 2. TS was already
present in DataOntoSearch version 1, but it was hard-coded in the code. Though [25]
claims that TC was also implemented, its implementation could not be found in the source
code I had access to. It was likely implemented in some code that was never published
to GitHub. Due to these issues, the threshold values for DataOntoSearch version 1 are
effectively set to TS = 0.75, TQ = 0.00, TC = 0.00. This is likely to give version 1 a
disadvantage compared to version 2, but it also reflects the state of the system.

Note that the effect of the threshold values has changed between the versions, due to
the implementation changes made to the query processing. It therefore does not make
sense to set the threshold to be equal on the two versions. I experimented with giving
version 1 the same threshold values as version 2, but the system ended up not returning
any datasets.

Evaluation with concept-based relevance assessment

The results from evaluating the open data search engines DataOntoSearch version 2, Google
Dataset Search and DataOntoSearch version 1 are presented here.

To decide what datasets are relevant to each query, we use the manual associations
made between datasets and concepts. Each query has been manually associated with con-

87

Chapter 6. Implementation and results of RQ2

cepts, and only datasets that are associated with the same concepts are considered relevant
for that query. The details of how the queries were gathered and associated with concepts
are covered in Section 6.1.3.

Precision The reported precision for the three systems is shown in Table 6.14 on page 96.
DataOntoSearch version 1 performs the worst, with no big difference between the auto-
matic and manual tagging. Google Dataset Search performs reasonably well, though there
are some queries it is unable to handle. DataOntoSearch version 2 varies greatly between
the automatic and the manual tagging, with the manual tagging being much more precise,
even beating Google.

Recall The recall scores found are presented in Table 6.15 on page 96. The automatic
tagging of version 1 consistently returns a lot of the relevant datasets, though as we saw in
the precision scores, it also returns many irrelevant datasets. The other configurations and
systems perform about the same, though version 2 with the manual tagging returns about
all relevant datasets for a couple of the queries, granting it about half the recall score of
version 1 with automatic tagging.

F1 score Table 6.16 on page 97 shows the F1 scores, which present a unified view of the
precision and recall measures. Even though version 1 had a pretty high measured recall,
its low precision keeps its F1 score down. Google, on the other hand, is kept down by their
relatively low recall. Version 2 with automatic tagging does not perform much better than
version 1, but the manual tagging scores very high for some queries, with some queries
even giving perfect results, i.e. all relevant datasets being retrieved and nothing else. This
grants it the highest average, though it seems to be very dependent on the type of queries.

R-Precision Moving on to the ranking-based algorithms, the R-Precision measurements
are reported in Table 6.17 on page 97. For DataOntoSearch version 1, curiously enough,
the automatic tagging performs better than the manual tagging. Google performs some-
what better than version 1, but is once again beat by version 2 with manual tagging. The
same queries we saw perform well with the previous measures also do well here, reinforc-
ing the engine’s sensitivity to the type of queries.

Mean Average Precision (MAP) The mean average precision is at display in Table 6.18
on page 98. It is not so different from the results of R-Precision. Though there are some
changes here and there, the overall trend is the same.

Summary The different systems’ averages over all the queries are presented in Ta-
ble 6.19 on page 98. DataOntoSearch version 2 with manual tagging performs the best
overall, with Google DataSet Search being the next best. Though as we saw, how the
systems perform depend very much on the queries used.

88

6.3 Results

Evaluation with task-based relevance assessment

Though we have just seen how the systems perform in a traditional evaluation, the method
used has some limitations. Specifically, the relevance assessment uses information which
is only available to DataOntoSearch’s manual tagging, and not known to the automatic
tagging or Google. At the same time, we already know what queries users would make
when put in front of the two systems – their queries during the pre-study were recorded.
Using these queries, we can look at how well the systems under test would respond to the
test users’ needs, by using the queries test users made, and marking the dataset that would
solve their task as the relevant dataset.

Table 6.20 on page 98 shows the result of this experiment, using mean average preci-
sion (MAP). Aside from the queries being different, it shows how version 2 of DataOn-
toSearch fares much better than version 1. Google performs just as well as version 2
when the rest stops are queried more or less directly, but it is unable to find it when it is
only asked about indirectly. That said, DataOntoSearch does not fare much better in those
cases.

Google’s performance is greatly hindered by the aforementioned bug, since it is unable
to retrieve the relevant dataset for three of the queries.

6.3.3 Performance
I tested the performance, as in execution time, using the perf stat tool. I used the
multisearch utility of DataOntoSearch, which runs many queries after each other, with
varying threshold values. It was run with two rather lengthy queries:

• highway new york rural

• underground railway position

Due to the amount of threshold values specified, a total of 500 searches were made
during this execution.

The first time a query is run, WordNet is loaded into memory. This is done lazily,
i.e. WordNet does not load before it is needed, which incidentally is when similarities
are calculated between concepts and the query. It therefore disturbs the information about
how long the different phases of the search take, and penalizes systems which cannot run
multiple queries in one execution, since they will need to load WordNet for every query.
This is why it is not possible to compare the performance between version 1 and version 2
of DataOntoSearch.

Some performance statistics of DataOntoSearch version 1 are reported in [25]. I only
report the runtime of queries in version 2 here, since I presume that the processing time
users will actually need to wait for is the most important. The offline processes are there-
fore not as interesting.

The computer used for this testing has an Intel Core i5-g200U CPU, capable of running
2.30GHz with 4 processors, running Fedora 30. The hard disk is a Solid State Drive (SSD)
and it has 7.7GiB of memory. Other processes took up about half of the processing power
available, with a heavy memory load.

The statistics reported by perf stat, averaged over all searches performed:

89

Chapter 6. Implementation and results of RQ2

• Time spent in total: 5.626 seconds. This also includes time in which other pro-
cesses occupied the processor.

• Time spent running in userland: 5.575 seconds. This essentially means time spent
performing calculations and doing things.

• Time spent running in the kernel: 0.170 seconds. This is the time the process
spent waiting for the kernel to return, typically while the kernel handles network
communication or disk reads.

• Mispredicted branches: 1.16 %.

The time spent running in userland and kernel add up to more than the total time,
likely due to some small amount of parallelism that is being used in one of the libraries.
The former measures count time per processor, so when two processors are involved, the
time is counted twice.

When excluding the first query run, the time spent for the different parts of the query
are shown in Table 6.21 on page 98. The first query took 7.399 seconds to run.

As shown, the first part of the process is where most of the time is spent. From my
time experimenting with the system, I noticed that this portion did not take so much time
before the CCSM was taken into use. In an attempt to reduce the time spent, I used a
profiling tool for Python to see which functions took much time, and the function involved
with applying the CCSM to the QCSV was indeed the one where the most time was spent.
Finding a way of applying the CCSM to QCSV inside NumPy, instead of in Python code,
will likely reduce this time drastically.

It should be noted that the part of the process called Putting together result is not
relevant in this case, because the dataset metadata is not gathered when running multiple
queries, since it is not used. This process involves looking up the dataset in the dataset
graph and creating a structure of metadata. It escalates linearly with the number of datasets
retrieved, and is therefore sensitive to how the thresholds are set. From a repeated test with
a single query, it took around 0.060 and 0.065 seconds to do this when fetching the dataset
metadata and 3.224 and 3.588 seconds when also fetching the concepts most similar to
each dataset. This was for a query that returned 282 datasets.

90

6.3 Results

Table 6.8: Effect of varying TC over TQ, using MAP. The measures are averaged over all TS ∈
{0.00, 0.25, 0.50, 0.75, 1.00}

MAP TC AverageTagging TQ 0.00 0.25 0.50 0.75 1.00

auto

0.00 11 % 11 % 11 % 6 % 3 % 8 %
0.25 11 % 11 % 10 % 6 % 3 % 8 %
0.50 11 % 11 % 9 % 11 % 4 % 9 %
0.75 11 % 10 % 11 % 9 % 5 % 9 %
1.00 7 % 7 % 6 % 4 % 7 % 6 %

manual

0.00 10 % 9 % 7 % 6 % 4 % 7 %
0.25 10 % 9 % 7 % 6 % 5 % 7 %
0.50 10 % 9 % 7 % 6 % 6 % 8 %
0.75 18 % 9 % 8 % 16 % 23 % 15 %
1.00 29 % 24 % 22 % 20 % 32 % 25 %

Average 13 % 11 % 10 % 9 % 9 % 10 %

91

Chapter 6. Implementation and results of RQ2

Table 6.9: Effect of varying TS over combinations of TQ and TC for automatic tagging, measured
using F1 score

F1 score, auto TS Average
TQ TC 0.00 0.25 0.50 0.75 1.00

0.00

0.00 9 % 9 % 9 % 9 % 0 % 8 %
0.25 9 % 9 % 9 % 9 % 0 % 8 %
0.50 9 % 9 % 9 % 10 % 0 % 8 %
0.75 9 % 9 % 10 % 9 % 0 % 8 %
1.00 9 % 11 % 0 % 0 % 0 % 4 %

0.25

0.00 9 % 9 % 9 % 9 % 0 % 8 %
0.25 9 % 9 % 9 % 9 % 0 % 8 %
0.50 9 % 9 % 9 % 7 % 0 % 7 %
0.75 9 % 9 % 10 % 7 % 0 % 7 %
1.00 9 % 12 % 0 % 0 % 0 % 4 %

0.50

0.00 9 % 9 % 9 % 9 % 0 % 8 %
0.25 9 % 9 % 9 % 9 % 0 % 8 %
0.50 9 % 9 % 9 % 7 % 0 % 7 %
0.75 9 % 7 % 8 % 7 % 0 % 6 %
1.00 9 % 12 % 0 % 0 % 0 % 4 %

0.75

0.00 9 % 9 % 9 % 9 % 0 % 8 %
0.25 9 % 9 % 9 % 7 % 0 % 7 %
0.50 9 % 9 % 7 % 11 % 0 % 7 %
0.75 9 % 8 % 9 % 4 % 0 % 6 %
1.00 9 % 14 % 3 % 0 % 0 % 5 %

1.00

0.00 9 % 6 % 6 % 6 % 0 % 6 %
0.25 9 % 6 % 6 % 6 % 0 % 6 %
0.50 9 % 7 % 9 % 1 % 0 % 5 %
0.75 9 % 5 % 1 % 0 % 0 % 3 %
1.00 9 % 15 % 9 % 0 % 0 % 7 %

Average 9 % 9 % 7 % 6 % 0 % 6 %

92

6.3 Results

Table 6.10: Effect of varying TS over combinations of TQ and TC for manual tagging, measured
using F1 score

F1 score, manual TS Average
TQ TC 0.00 0.25 0.50 0.75 1.00

0.00

0.00 10 % 10 % 10 % 10 % 0 % 8 %
0.25 10 % 10 % 10 % 10 % 0 % 8 %
0.50 10 % 10 % 11 % 8 % 0 % 8 %
0.75 10 % 11 % 6 % 0 % 0 % 5 %
1.00 10 % 0 % 0 % 0 % 0 % 2 %

0.25

0.00 10 % 10 % 10 % 10 % 0 % 8 %
0.25 10 % 10 % 10 % 10 % 0 % 8 %
0.50 10 % 10 % 12 % 7 % 0 % 8 %
0.75 10 % 12 % 7 % 0 % 0 % 6 %
1.00 10 % 1 % 0 % 0 % 0 % 2 %

0.50

0.00 10 % 10 % 10 % 10 % 0 % 8 %
0.25 10 % 10 % 10 % 10 % 0 % 8 %
0.50 10 % 10 % 12 % 5 % 0 % 7 %
0.75 10 % 10 % 5 % 0 % 0 % 5 %
1.00 10 % 6 % 0 % 0 % 0 % 3 %

0.75

0.00 10 % 10 % 10 % 10 % 3 % 8 %
0.25 10 % 10 % 10 % 12 % 0 % 8 %
0.50 10 % 12 % 16 % 5 % 0 % 8 %
0.75 10 % 29 % 19 % 5 % 0 % 12 %
1.00 10 % 40 % 18 % 9 % 3 % 16 %

1.00

0.00 10 % 7 % 7 % 7 % 5 % 7 %
0.25 10 % 7 % 7 % 9 % 5 % 7 %
0.50 10 % 9 % 14 % 17 % 5 % 11 %
0.75 10 % 18 % 19 % 16 % 0 % 13 %
1.00 10 % 55 % 36 % 5 % 5 % 22 %

Average 10 % 13 % 11 % 7 % 1 % 8 %

93

Chapter 6. Implementation and results of RQ2

Table 6.11: Effect of varying TS over combinations of TQ and TC for automatic tagging, measured
in MAP

MAP, auto TS Average
TQ TC 0.00 0.25 0.50 0.75 1.00

0.00

0.00 13 % 13 % 13 % 13 % 0 % 11 %
0.25 13 % 13 % 13 % 13 % 0 % 11 %
0.50 14 % 14 % 14 % 14 % 0 % 11 %
0.75 9 % 8 % 8 % 6 % 0 % 6 %
1.00 9 % 5 % 0 % 0 % 0 % 3 %

0.25

0.00 13 % 13 % 13 % 13 % 0 % 11 %
0.25 14 % 14 % 14 % 14 % 0 % 11 %
0.50 14 % 14 % 14 % 11 % 0 % 10 %
0.75 9 % 9 % 9 % 4 % 0 % 6 %
1.00 10 % 6 % 0 % 0 % 0 % 3 %

0.50

0.00 13 % 13 % 13 % 13 % 0 % 11 %
0.25 13 % 13 % 13 % 13 % 0 % 11 %
0.50 13 % 13 % 11 % 10 % 0 % 9 %
0.75 19 % 15 % 15 % 5 % 0 % 11 %
1.00 12 % 6 % 0 % 0 % 0 % 4 %

0.75

0.00 14 % 14 % 14 % 14 % 0 % 11 %
0.25 14 % 14 % 14 % 8 % 0 % 10 %
0.50 15 % 15 % 13 % 11 % 0 % 11 %
0.75 19 % 16 % 11 % 1 % 0 % 9 %
1.00 16 % 9 % 2 % 0 % 0 % 5 %

1.00

0.00 11 % 8 % 8 % 8 % 0 % 7 %
0.25 10 % 8 % 8 % 7 % 0 % 7 %
0.50 12 % 10 % 7 % 0 % 0 % 6 %
0.75 13 % 7 % 1 % 0 % 0 % 4 %
1.00 19 % 12 % 5 % 0 % 0 % 7 %

Average 13 % 11 % 9 % 7 % 0 % 8 %

94

6.3 Results

Table 6.12: Effect of varying TS over combinations of TQ and TC for manual tagging, measured in
MAP

MAP, manual TS Average
TQ TC 0.00 0.25 0.50 0.75 1.00

0.00

0.00 13 % 13 % 13 % 13 % 0 % 10 %
0.25 11 % 11 % 11 % 11 % 0 % 9 %
0.50 11 % 11 % 11 % 4 % 0 % 7 %
0.75 13 % 12 % 3 % 0 % 0 % 6 %
1.00 22 % 0 % 0 % 0 % 0 % 4 %

0.25

0.00 13 % 13 % 13 % 13 % 0 % 10 %
0.25 11 % 11 % 11 % 11 % 0 % 9 %
0.50 11 % 11 % 11 % 4 % 0 % 7 %
0.75 14 % 12 % 4 % 0 % 0 % 6 %
1.00 22 % 0 % 0 % 0 % 0 % 5 %

0.50

0.00 13 % 13 % 13 % 13 % 0 % 10 %
0.25 11 % 11 % 11 % 11 % 0 % 9 %
0.50 11 % 11 % 11 % 2 % 0 % 7 %
0.75 17 % 11 % 3 % 0 % 0 % 6 %
1.00 26 % 5 % 0 % 0 % 0 % 6 %

0.75

0.00 22 % 22 % 22 % 22 % 2 % 18 %
0.25 12 % 12 % 12 % 11 % 0 % 9 %
0.50 14 % 14 % 13 % 3 % 0 % 8 %
0.75 33 % 30 % 14 % 4 % 0 % 16 %
1.00 52 % 36 % 17 % 7 % 2 % 23 %

1.00

0.00 36 % 34 % 34 % 34 % 4 % 29 %
0.25 31 % 29 % 29 % 29 % 4 % 24 %
0.50 31 % 28 % 28 % 19 % 4 % 22 %
0.75 32 % 27 % 24 % 18 % 0 % 20 %
1.00 59 % 56 % 34 % 4 % 4 % 32 %

Average 22 % 17 % 14 % 9 % 1 % 13 %

95

Chapter 6. Implementation and results of RQ2

Table 6.13: Summary of measurements between the two threshold combinations, using all queries.
Google is included for comparison.

Measure v2, best v2, chosen Googleauto manual auto manual
Precision 13 % 54 % 13 % 42 % 26 %
Recall 23 % 58 % 27 % 45 % 18 %
F1 score 15 % 55 % 14 % 40 % 17 %
R-Precision 13 % 56 % 9 % 35 % 18 %
Mean Average Precision (MAP) 12 % 56 % 9 % 36 % 18 %

Table 6.14: Precision for DataOntoSearch v2, Google Dataset Search and DataOntoSearch v1.

Query v2 Google v1 Averageauto manual auto manual
bike 31 % 0 % 100 % 12 % 7 % 30 %
location transportation 6 % 0 % 40 % 7 % 24 % 15 %
map 5 % 100 % 0 % 5 % 2 % 22 %
messaging 0 % 100 % 0 % 0 % 0 % 20 %
new york state rest stop 0 % 67 % 50 % 1 % 2 % 24 %
nyc subway 33 % 60 % 0 % 2 % 0 % 19 %
rest area 0 % 67 % 67 % 1 % 3 % 27 %
road traffic management 6 % 14 % 0 % 3 % 0 % 5 %
site:data.cityofnewyork.us subway stations 4 % 0 % 0 % 1 % 0 % 1 %
statistics transportation 48 % 100 % 100 % 38 % 46 % 66 %
stopping place 0 % 0 % 0 % 1 % 0 % 0 %
subway stations 5 % 0 % 0 % 1 % 0 % 1 %
walking 3 % 0 % 0 % 0 % 0 % 1 %
Average 11 % 39 % 27 % 5 % 6 % 18 %

Table 6.15: Recall for DataOntoSearch v2, Google Dataset Search and DataOntoSearch v1.

Query v2 Google v1 Averageauto tagged auto tagged
bike 31 % 0 % 15 % 85 % 15 % 29 %
location transportation 15 % 0 % 20 % 100 % 65 % 40 %
map 15 % 100 % 0 % 100 % 8 % 45 %
messaging 0 % 100 % 0 % 0 % 0 % 20 %
new york state rest stop 0 % 100 % 50 % 100 % 50 % 60 %
nyc subway 67 % 100 % 0 % 100 % 0 % 53 %
rest area 0 % 100 % 100 % 100 % 100 % 80 %
road traffic management 20 % 10 % 0 % 100 % 0 % 26 %
site:data.cityofnewyork.us subway stations 50 % 0 % 0 % 100 % 0 % 30 %
statistics transportation 10 % 4 % 5 % 100 % 21 % 28 %
stopping place 0 % 0 % 0 % 100 % 0 % 20 %
subway stations 50 % 0 % 0 % 100 % 0 % 30 %
walking 13 % 0 % 0 % 0 % 0 % 3 %
Average 21 % 40 % 15 % 83 % 20 % 36 %

96

6.3 Results

Table 6.16: F1 score for DataOntoSearch v2, Google Dataset Search and DataOntoSearch v1.

Query v2 Google v1 Averageauto tagged auto tagged
bike 31 % 0 % 27 % 21 % 10 % 18 %
location transportation 8 % 0 % 27 % 13 % 35 % 17 %
map 7 % 100 % 0 % 9 % 3 % 24 %
messaging 0 % 100 % 0 % 0 % 0 % 20 %
new york state rest stop 0 % 80 % 50 % 1 % 3 % 27 %
nyc subway 44 % 75 % 0 % 4 % 0 % 25 %
rest area 0 % 80 % 80 % 1 % 5 % 33 %
road traffic management 10 % 12 % 0 % 7 % 0 % 6 %
site:data.cityofnewyork.us subway stations 8 % 0 % 0 % 1 % 0 % 2 %
statistics transportation 17 % 7 % 10 % 55 % 29 % 24 %
stopping place 0 % 0 % 0 % 2 % 0 % 0 %
subway stations 9 % 0 % 0 % 1 % 0 % 2 %
walking 5 % 0 % 0 % 0 % 0 % 1 %
Average 11 % 35 % 15 % 9 % 6 % 15 %

Table 6.17: R-Precision for DataOntoSearch v2, Google Dataset Search and DataOntoSearch v1.

Query v2 Google v1 Averageauto manual auto manual
bike 31 % 0 % 15 % 15 % 15 % 15 %
location transportation 15 % 0 % 20 % 10 % 5 % 10 %
map 15 % 100 % 0 % 15 % 8 % 28 %
messaging 0 % 100 % 0 % 0 % 0 % 20 %
new york state rest stop 0 % 50 % 50 % 0 % 0 % 20 %
nyc subway 0 % 100 % 0 % 67 % 0 % 33 %
rest area 0 % 50 % 100 % 0 % 0 % 30 %
road traffic management 10 % 10 % 0 % 0 % 0 % 4 %
site:data.cityofnewyork.us subway stations 0 % 0 % 0 % 0 % 0 % 0 %
statistics transportation 10 % 4 % 5 % 28 % 21 % 14 %
stopping place 0 % 0 % 0 % 0 % 0 % 0 %
subway stations 0 % 0 % 0 % 0 % 0 % 0 %
walking 0 % 0 % 0 % 0 % 0 % 0 %
Average 6 % 32 % 15 % 10 % 4 % 13 %

97

Chapter 6. Implementation and results of RQ2

Table 6.18: Mean Average Precision (MAP) for DataOntoSearch v2, Google Dataset Search and
DataOntoSearch v1.

Query v2 Google v1 Averageauto manual auto manual
bike 10 % 0 % 15 % 17 % 5 % 9 %
location transportation 4 % 0 % 18 % 12 % 11 % 9 %
map 15 % 100 % 0 % 7 % 1 % 25 %
messaging 0 % 100 % 0 % 0 % 0 % 20 %
new york state rest stop 0 % 58 % 50 % 4 % 1 % 23 %
nyc subway 19 % 100 % 0 % 58 % 0 % 35 %
rest area 0 % 58 % 100 % 5 % 2 % 33 %
road traffic management 3 % 1 % 0 % 6 % 0 % 2 %
site:data.cityofnewyork.us subway stations 10 % 0 % 0 % 7 % 0 % 3 %
statistics transportation 4 % 4 % 5 % 32 % 13 % 12 %
stopping place 0 % 0 % 0 % 1 % 0 % 0 %
subway stations 3 % 0 % 0 % 11 % 0 % 3 %
walking 1 % 0 % 0 % 0 % 0 % 0 %
Average 5 % 32 % 15 % 12 % 3 % 13 %

Table 6.19: Summary of measurements for DataOntoSearch v2, Google Dataset Search and
DataOntoSearch v1.

Measure v2 Google v1 Averageauto manual auto manual
Precision 11 % 39 % 27 % 5 % 6 % 18 %
Recall 21 % 40 % 15 % 83 % 20 % 36 %
F1 score 11 % 35 % 15 % 9 % 6 % 15 %
R-Precision 6 % 32 % 15 % 10 % 4 % 13 %
Mean Average Precision (MAP) 5 % 32 % 15 % 12 % 3 % 13 %

Table 6.20: Mean Average Precision (MAP) using task-based relevance assessment

Query v2 Google v1 Averageauto manual auto manual
new york public facilities 0 % 0 % 0 % 0 % 0 % 0 %
new york road 0 % 0 % 0 % 0 % 0 % 0 %
new york state highway public facilities 0 % 0 % 0 % 0 % 2 % 0 %
new york state rest stop 0 % 50 % 0 % 0 % 2 % 10 %
nyc subway 0 % 100 % 0 % 2 % 0 % 20 %
nyc subway station 5 % 0 % 0 % 2 % 0 % 2 %
rest area 0 % 50 % 50 % 0 % 2 % 20 %
rest stops 0 % 50 % 50 % 0 % 2 % 20 %
site:data.cityofnewyork.us subway stations 20 % 0 % 0 % 2 % 0 % 4 %
Average 3 % 28 % 11 % 1 % 1 % 9 %

Table 6.21: The time spent on the different parts of the query process. Measured in real time.
Part of process Average time (seconds)
Associating query with concepts 4.506
Finding the most similar concepts 0.000
Comparing QDSV with each row of the DCSV 0.017
Putting together result 0.001
Start to end 4.525

98

Chapter 7
Discussion

In Chapter 5, we saw how DataOntoSearch version 1 fared in the hands of test users
in a usability test. Along with this, I put in an effort to make the system runnable and
increase its modifiability. Then, in Chapter 6, I improved on the system, both by making
it available to CKAN users and by improving its search algorithm. I evaluated the system
along with version 1 and Google Dataset Search, using a number of different system-
oriented evaluation methods.

One question remains, though: What does it all mean? What conclusions can we draw
from all this? How do we answer the research questions?

Recall the two research questions presented in Section 4.2:

RQ1: What do users think of DataOntoSearch version 1? What main problems are there?

RQ2: How can we address the identified problems when creating version 2?

First, RQ1 is discussed in Section 7.1. RQ2 is discussed through the lens of the CKAN
plugin in Section 7.2, the code quality improvements in Section 7.3, the systematic eval-
uation in Section 7.4 and run-time performance in Section 7.5. In section 7.6, DataOn-
toSearch’s approach is compared to that of Google Dataset Search and the spatio-temporal
search. Finally, in Section 7.7, I list up the directions that future work can take.

7.1 The usability test
When looking at the results of the usability test (Table 5.2 on page 58), it is not difficult
to see which system could be considered the “winner.” Where DataOntoSearch was given
an average rating of 3.75 by the four test users, Google Dataset Search was given 6.25.
The latter system actually managed to answer the users’ needs, while the search results
of DataOntoSearch almost seemed random and not connected to the query. In fact, some
datasets always hugged the top positions, even if the user searched for something different.

That said, the test tasks were formulated so that they did not give away the name of
the dataset. This turned out to be a good decision, since the users often used terminology

99

Chapter 7. Discussion

from the task directly. Especially for the task of finding rest areas, most test users were
unfamiliar with the term “rest area,” performing searches like “new york state rest stop”
(a direct translation of the Norwegian term “rasteplass”), and “highway new york rural”
(using keywords from the task). For those queries, Google Dataset Search shows the same
weaknesses that CKAN’s built-in search also shows, in that “rest stop” does not give the
same results as “rest area,” even though they are intuitively related. This goes to show that
the ontology-based semantic approach may still hold some promise, it just had not come
to fruition yet with DataOntoSearch version 1.

Users were already familiar with Google, though they had not heard about Google
Dataset Search before. Its familiarity, both in brand and function, likely gave test users a
better first-impression than DataOntoSearch’s unstyled interface. One user jokingly com-
mented something along the lines of “ah, nice to see Google’s famous autocomplete again.”

There was no uniform opinion on the layout, where the results are listed on the left
with a main window presenting the selected dataset. Some preferred DataOntoSearch’s
traditional presentation which gave much information right away, while others liked the
potential for seeing additional details without leaving the search results page.

Since the users were not given the exact words of the dataset, they had to perform an
assessment themselves of what datasets were relevant or not. This involved reading the
title and description, and clicking to see how the dataset is presented at its source, e.g. the
open data portals of NYC and NYS. However, they did not just open any dataset to look
at. The open data portals are quite slow to respond, and they did not always answer the
user’s question, likely stopping the users from wanting to check every dataset.

One user commented that they really liked how the New York State open data portal
showed a preview of the dataset, since that could confirm that the dataset contained the
information the user sought. The same user wrote in the comparative questionnaire that “A
data preview would also be appreciated” for both search systems, and commented that in
a “real situation,” they might just try to go “directly to data.gov, or data.norge,” preferring
browsing over searching for such exploratory tasks. It should be noted that this user is
knowledgeable about how transport systems are usually organized, and so would have a
better chance of knowing who the dataset publisher is than people less familiar with those
structures.

A curious part of the usability test setup, was the fact that I included a task for which
no relevant dataset exists. This is not something that I have seen described anywhere, but
I decided to include it to avoid users trying to search for much longer than they normally
would. I cannot say that I observed the desired effect. The longest time spent on a single
task was almost 10 minutes before successfully finding the dataset. It seems that the
users’ desire to succeed with the tasks outweighed their perceived chance that there are no
relevant datasets to be found. The difference in time spent on Google Dataset Search and
DataOntoSearch is not very big, and may have been influenced by what tasks the users
were given on what systems. The time difference between tasks is greater than the time
difference between systems.

Another explanation may be that the tasks seemed very simple to do. One user was
baffled by what datasets are available, saying that “there are many datasets, like number
of transported railcars through New York and New Yersey every year since 2000. . . but
not exactly relevant,” later noting that they could find the bridge conditions of individual

100

7.1 The usability test

bridges, but not something as “simple” as the Amtrak train departure times.
The usability test showed that developers, though curious about the semantic search

engine, approached it just like they would approach any other search. Although they were
given a manual they could read, most did not take the time to read it, opting instead to just
play with the system directly. This likely reflects how users would approach the search
in the wild, though, and shows that it is difficult to make users change their behaviour. I
speculate that if you want to create a semantic search which places a burden on the user
in how they formulate the query, you might want to re-think and adopt a more guided
approach, so the user is taken out of their “Google” mindset. If you just provide a big
search box, users are likely to engage with it just like they engage with any other search.
Why shouldn’t they?

The main takeaways from the evaluation of DataOntoSearch version 1 and Google
Dataset Search, answering RQ1, are:

• DataOntoSearch version 1 left a bad impression, and did not help the users solve
their tasks.

• Users liked Google Dataset Search, though its unique layout was divisive.

• Dataset preview gave users a lot more than just the dataset description alone, and
were appreciated.

• Some users may prefer to browse categories and publishers, rather than rely on
search.

• Including tasks which cannot be solved did not seem to have any effect, though I
have not run any evaluation without the task in question, so I cannot really conclude
one way or another. It may just be enough to include an upper time limit.

• You cannot assume that the users will use the terminology that is used by the dataset
publisher, even for simple topics like rest area or subway.

• Users were surprised about what datasets were available and what datasets were not
available.

• If you give users a search box, then they will treat it just like they would treat any
other search, even if you advertise it as a different kind of search.

The users tested with here were, for the most part, not overly familiar with the trans-
port domain. The way they approached the systems is therefore likely to be different from
how domain experts would approach them, since the latter should be able to more consis-
tently use the same words as the dataset publishers and the concepts in our domain-specific
ontology. That said, one of the motivations for experimenting with an ontology-based se-
mantic search approach were to make the existing datasets available to a broader audience
than just the domain experts.

101

Chapter 7. Discussion

7.1.1 Limitations

There are some limitations to the usability test. First of all, different interfaces are used for
the different search engines. This means that the results tell us about the entire experience,
and not just about the differences in the search algorithms. I wanted to know how the
two different search interfaces made for different user experiences anyway, so this was an
accepted limitation.

A bigger problem is how the test users were recruited among my own friends and
acquaintances. There is a change that some may have been more tenacious than they
otherwise would have been, because they were testing with someone they knew. I did
emphasize that I was interested in learning how the system fared, not the user, and that any
failings would be attributed to the system.

Another problem with selecting users like this is a potential for lack of diversity in
test users, meaning that my findings may not be representable of all the different kinds of
people. Since the usability test was formative and not summative, I had accepted from the
start that the results did not need to be generalized to a bigger population, which is also
why I deemed four test users to be adequate. This does pose a restriction on what can be
concluded based on the usability test, as was explained when the results were presented in
Chapter 5. That said, a trade-off had to be made, and the existing literature on usability
testing suggests that you will see diminishing returns for qualitative usability tests when
you add users beyond the fifth [35]. We got to know that DataOntoSearch was performing
poorly after testing with just four users, and I would probably not have had any time left
to improve the system if I were to evaluate with more users.

7.2 The CKAN plugin

One of the main contributions of this thesis is the integration of DataOntoSearch into
CKAN. It provides a new way of accessing the search and manual tagging functionality
of DataOntoSearch, without users even realizing that it is a separate system. This is vital
first step in making DataOntoSearch a usable system that can actually be used and help
users find the datasets they want. This also comes with improvements to the overall user
experience, since CKAN’s design is more stylized and is probably able to evoke more
authority than the bare-bones design of DataOntoSearch’s web user interface, thus helping
answer RQ2.

Developing plugins for CKAN was surprisingly hard and complex. There is no doc-
umentation on the classes and functions available, with very few exceptions. In order to
understand it all, you must dive into the code itself and read the documentation embedded
there. I did not expect that plugin authors had to read the source of CKAN itself, and while
the documentation for plugin authors seems adequate at first, it e.g. does not mention what
route name you must use to create a hyperlink to a dataset. There is also very little guid-
ance, so I almost implemented routes using the old mechanism that CKAN is transitioning
from, and not the new mechanism.

Despite these problems, actually writing the extension was not so difficult. The chal-
lenge lied in knowing what to write and what to use, and not in the actual engineering
itself.

102

7.3 Code quality

Now that one integration has been made for DataOntoSearch, it is not hard to make
integrations for more systems. A big part of the work has already been done, since DataOn-
toSearch now has APIs capable of handling semantic search and manual tagging. These
APIs are not restricted to use by CKAN, and give DataOntoSearch added flexibility and
longevity since it is able to survive transitions between dataset archival solutions.

7.2.1 Limitations
Although I think the CKAN integration improves the usability of DataOntoSearch, there
has not been enough time available to conduct a second usability test to confirm the in-
crease in the system’s ability to fetch relevant datasets or the improvements made by adapt-
ing it for CKAN. Once more improvements are made to the CKAN integration, it would
be interesting to know how users feel about using the user interface, compared to the built-
in interface of DataOntoSearch. It may also be revelatory to check how the improved
semantic search fares compared to Google Dataset Search and CKAN’s native search.

Since the CKAN integration does not change anything about the search procedure, no
changes can be observed from its implementation in the evaluation results of RQ2. There-
fore, there is no evaluation to back up my claims about the CKAN integration improving
the user experience of DataOntoSearch, other than my own anecdotal experience with try-
ing out the system for myself. There simply was not enough time to perform a second
usability test when so much time had already gone into preparing the first one, including
the refactoring work.

7.3 Code quality
Converting DataOntoSearch from being a prototype to being a system others can adopt and
use, has generally been a recurring theme in my work. A significant portion of the time
spent preparing the usability tests were spent making the system easier to reason about
and modify, and though this isn’t something that can be easily measured, it still remains
an important part of this thesis. Especially considering how, in academia, it seems like a
rarity to have projects that amount to anything more than just qualifying the students for
a certain grade. Hopefully, DataOntoSearch version 2 can help provide any developers
new to the system with a good introduction and code which they can build on. Only then
can the system evolve into a better version of itself, instead of new developers taking one
glance at the project, shrugging and starting to write a new version from scratch.

That said, I might have been better off starting from scratch myself, and just copy in
relevant parts from the existing system. The architecture and storage solutions were mostly
inherited from Hagelien’s system, and embed decisions that made sense when prototyping
and experimenting, but which may not make much sense for the system the way it has
grown. For example, the search and construction of the matrices is located entirely in a
class named OpenDataSemanticFramework. It is not entirely clear what the class or its
instances represent, yet I have kept it to avoid having to spend effort rewriting it. Instead, I
have written a new class called ODSFLoader, which simply is responsible for creating in-
stances of OpenDataSemanticFramework and initialize them on demand, and keep a copy
of instances so they can be re-used later. Though it made sense to do at the time, to avoid

103

Chapter 7. Discussion

dealing with the existing infrastructure, this is probably just a symptom of architectural
problems with DataOntoSearch.

The inherited storage solution is also not fit for purpose. It requires using MongoDB,
which has adopted a license that is not considered a “Free Software License” and the
project is therefore thrown out of e.g. Fedora’s repositories [30]. Its document-centric
approach, while convenient for an experimentation phase where you don’t know what your
schema will be, does not really do DataOntoSearch any favours. Even though the RDF
graphs are stored using JSON-LD, which you would think would make them accessible to
MongoDB’s search functions since it uses JSON itself, the graphs are encoded as binary
JSON and thus completely inaccessible to MongoDB. There exist storage solutions out
there specifically targeting RDF graphs, which should be investigated.

Still, by converting DataOntoSearch from being a bunch of Jupyter Notebooks to con-
sisting of Python scripts, and by drastically increasing the project’s quality, the system
stands a much greater chance of being useful in the future.

7.4 Search quality and evaluation
During my work with DataOntoSearch version 2, I managed to sneak in a couple changes
to the search process to help address RQ2. Though the changes were small and innocent
on their own, they have collectively increased the quality of the search results. WordNet is
also utilized to a greater extent, and all the concepts of the ontology can now actually be
associated with the user’s query.

The usability test showed that DataOntoSearch version 1 returned what felt like ran-
dom datasets. The results from the final evaluation confirms that the performance of ver-
sion 1 with manual linking is not good, and the automatic linking, curiously, performed
a little better than the manual linking, though it returns way too many datasets, as can be
seen from the high recall value.

Regarding the thresholds, you can see that TS very clearly is the cut-off point for the
search results. In general, you can achieve a perfect recall score by returning all datasets,
but then your precision score is not going to be so great. On the other hand, you can retrieve
very few datasets and have a high precision, but low recall. Achieving a good F1 score
requires that you perform well with both precision and recall. TS is therefore important
for achieving a good performance with the unranked measures. Setting it to 0.00 simply
returns all datasets, so the scores are the same independent of the other thresholds. For the
other thresholds, TS needs to be set so that not too many irrelevant datasets are “above the
fold,” while still including as many relevant datasets as possible. What constitutes a good
value for TS therefore depends on how well the ranking works, which is affected by TQ

and TC .
It is also good that the confusion regarding threshold values has been cleared up, so

that they now are implemented, can be varied and have a consistent description. The
TQ threshold also has a varying effect on how well the system performs, so the related
changes to the query processing and the introduction of TQ has given an improvement
of the system. For comparison, setting TQ to 0.00 effectively cancels the changes that
introduced it, and we can see that higher values do indeed improve the results. TC is also
an effective threshold variable, and the interplay between the three threshold variables

104

7.4 Search quality and evaluation

means they must be chosen carefully, since the performance varies from very bad to quite
good.

Speaking of performance: DataOntoSearch version 2 performs better than version 1,
except for the ranking measures of automatic linking. This is only to be expected since my
experiments never considered the automatically tagged associations. The manual linking
of version 2 performs many times better than version 1, meaning that the changes have
worked and brought with them a system more able to respond to users’ demands.

7.4.1 Limitations
It is unfortunate that version 1 does not have functioning thresholds, because we may
not know how well it might perform with optimized values. We saw that the thresholds
dramatically affect DataOntoSearch’s performance, making it go from returning very rel-
evant datasets to returning nothing or returning everything. Version 1 also exhibit this
trait, which means that the evaluation results we see could just reflect a poor choice of
threshold values hardcoded into version 1, and not actual improvements to the algorithms
themselves. I would still argue that the fact that the thresholds were neither implemented
nor variable in version 1 is a fault with the original system, which should – and probably
is – reflected in its evaluation.

The greater limitation here, is the fact that Google Dataset Search experienced a bug
when the tests were ran, which stopped some relevant datasets from being retrieved. I
therefore do not wish to conclude one way or another regarding whether DataOntoSearch
version 2 beats Google or not. You could still make the same argument as with DataOn-
toSearch version 1, i.e. that the bug is a fault of Google and that this should be reflected
in the evaluation, but I think that it is more interesting to know how the engine would per-
form today than how it performed a particular day in the past. DataOntoSearch version 1
is the way it has been for a couple months now, but Google Dataset Search is continuously
developed and changed. This makes it hard to evaluate Google, but it also means there will
be temporary hiccups every now and then. I cannot take the blame for evaluating Google
on a “bad day,” but I won’t take the opportunity to conclude heavily in DataOntoSearch’s
favour because of it either.

Another reason why it would be unfair to judge Google too harshly, is the fact that
the evaluation itself is based on information which is accessible to DataOntoSearch when
using the manual tagging. While comparing DataOntoSearch across versions is fine, since
the RDF graphs are the same, it may be unfair for Google to be pit against them. Theo-
retically, if the engineering team at Google were given the same information, they could
have adapted the search so it performed better against our evaluation. A counterargument
to this is that we very well might have landed on the exact same relevance assessments,
had we gone through the datasets one by one and recorded whether they were relevant or
not, though there is no way to know that.

A third factor at play here is the choice of threshold values. DataOntoSearch was tuned
to some of the queries, which Google Dataset Search cannot do. By design, there were
big steps between the different threshold values, to avoid over-specializing to the queries
at hand. That said, it would probably be better to have some smaller steps around the
extremes, since there is a very big gap from 1.00 and 0.75. Early testing, for comparison,
found that the assignment of TS = 0.75, TQ = 0.95, TC = 0.00 was optimal, although

105

Chapter 7. Discussion

TS = 0.75 was set from the start and the other two thresholds were found based on that,
so the system did not do so well with the unranked measures. The distinction between
training and testing queries played a role in alleviating the unfairness, and you can see that
the best combination – TS = 0.25, TQ = 1.00, TC = 1.00 – was not chosen.

7.5 Run-time performance
Since only the performance of DataOntoSearch version 2 has been captured, it is not pos-
sible to systematically compare it to with the other systems. Anecdotally, the time usage
is significantly higher than what most people are used to from typical web search engines,
and must be improved in the future.

The real-world runtime per query reported by perf stat and by Table 6.21 differs
by 1.101 seconds, a quite significant amount of time. This is caused by the difference
in what is measured by the two measuring methods. The former method measures the
run-time for the entire program, while the latter only measures time spent in the method
responsible for performing the search. Specifically, the run-time of the following proce-
dures are factored into the former but not the latter time measurements:

• Fetching ontology and dataset graphs from the data store.

• Parsing and converting graphs into a Python data structure.

• Fetching pre-calculated matrices (CCSM and DCSM) from the data store.

• Loading and converting pre-calculated matrices into NumPy data structures.

• Printing the results to the console window.

• Parsing the query specification file (only done once for the process).

Most of these processes are only repeated when running multiple queries using the
CLI, since the underlying data structures are kept across queries run using the webserver
process. The time measurements shown in Table 6.21 are therefore likely to be more repre-
sentative of how users perceive the system’s performance, though with a longer execution
time due to fetching dataset metadata.

7.6 Comparison with some other approaches
The overall approach of DataOntoSearch has not changed much between version 1 and
version 2. There are mainly some details that have changed, though they have affected the
performance greatly.

In Section 2.1.4 on page 7, a taxonomy of semantic search approaches was presented.
It can be interesting to classify DataOntoSearch in terms of those dimensions.

• Retrieval scope: Linked-data-retrieval techniques. Though an ontology is used,
the taxonomy seems to be using the word “ontology” to describe RDF vocabularies,
not hierarchies of concepts. Since DataOntoSearch searches among datasets ex-
pressed using DCAT, the linked-data-retrieval techniques best describes the system.

106

7.6 Comparison with some other approaches

• Query model: Keyword search.

• Results type: Entity-centric or document-centric. The information about each
dataset is collected using the entire index, but if multiple sources refer to the same
dataset using different RDF identifiers, they will be treated as separate datasets due
to there not being any de-duplication mechanism.

• Data acquisition: Manual collection. A dataset is added when the user adds a
manual dataset-concept association involving it, or when added to the dataset graph
manually.

• Ranking factor: Query-dependent. The exact ranking factor used by DataOn-
toSearch is not listed in the taxonomy, but is the similarity between the Query-
Concept Similarity Vector and the dataset’s Dataset-Concept Similarity Vector.

• Datasets: Real-world data. The evaluation was done with real datasets collected
from New York State’s Socrata and the other publishers they republish from.

• User interface: Graphical user interface and API. With DataOntoSearch ver-
sion 2, APIs are supported in addition to the existing graphical user interface.

Google Dataset Search, described in Section 3.1.1, is different from DataOntoSearch
in a number of ways.

• Google’s results are entity-centric, using a de-duplication mechanism to understand
when multiple sources describe the same dataset [36], and presents a unified view
of that dataset with links to the different sources.

• Google obtains data by crawling the web.

• The ranking factors of Google Dataset Search are not known.

• Google Dataset Search only provides a graphical user interface, no API.

There are also some similarities:

• Both systems focus on linked-data-retrieval techniques.

• Both systems use keyword search, letting users type in text in a free-form text box.

The spatio-temporal search described in Section 3.1.2 is more similar to DataOn-
toSearch. They, too, provide both a graphical user interface and an extensive API. Their
query model, however, is closer to faceted search than keyword search, since the user must
specify the time period and geographical area in separate text fields, rather than trying to
extract the information from a long user query.

Furthermore, the spatio-temporal search and DataOntoSearch complement each other
quite well, since the former system filters datasets based on geographical and temporal in-
formation with a plain keyword-based search underneath, while DataOntoSearch retrieves
and ranks datasets based on their topic and has no concept of time and space. Future work
could very well combine the two approaches, making spatio-temporal filtering available
as facets while letting DataOntoSearch handle the underlying text search.

107

Chapter 7. Discussion

7.7 Future work
There are a couple problems and possible future directions that should be the focus of any
new endeavors made with DataOntoSearch:

• Hybrid search: For queries like “new york state highway public facilities,” the
words “new york state” may actually have entries in WordNet, but they are not
helpful since the ontology contains no geographical taxonomy. Instead, it would
be interesting to combine semantic search with traditional keyword-based search,
which could help add some precision to the search and better support elements that
are not modelled in the ontology.

• Show why a result is relevant: A path could be shown to indicate how the dataset
relates to the query, e.g. word in query→WordNet synonym→ concept→ related
concept→ the dataset. The challenge of this would be to figure out why a dataset is
related to the query, since that depends on its cosine similarity, and also how to get
this information from algorithms that essentially work like black boxes.

• Alternatives to WordNet: Are there alternatives to WordNet, that can be used? Or
can WordNet be extended, so domain specific terminology is better represented?

• Integrate with spatio-temporal semantic search: The work of Neumaier and
Polleres, discussed in Section 3.1.2 on page 18, covers aspects not covered by
DataOntoSearch, namely geography and time.

• Improve CKAN integration: The semantic search in CKAN is very slow for
searches with many results, due to the search mechanism looking up metadata for
all datasets. Paging options should be implemented to alleviate this. The semantic
search results page should also be able to show matching concepts for the retrieved
datasets, and give search suggestions based on the available concepts. There are
also many smaller improvements that can be made to the usability of the CKAN
extension, some of which are mentioned in its README file1.

• Handle search different for automatic tagging: Right now, only the manually
tagged dataset-concept associations were used while working on improving the
search procedure. Since the structure of the manual and automatic associations dif-
fer quite a lot, the improvements that worked well for manual tagging may not have
worked so well for the automatic one. Some custom changes may need to be applied
when using the automatic tagging.

• Better storage solutions: MongoDB is used as a simple document store, simply be-
cause that was what Hagelien used for version 1. There exists custom datastores for
RDF, though, which could give the application a boost in processing time and mem-
ory usage (since all RDF graphs are currently loaded into memory from MongoDB).
This could also solve the current problem with there not being any protection against
concurrent changes to the graphs, which can lead to changes being lost because the
graph that is saved last overrides any changes anyone else did in the meantime.

1https://github.com/tobinus/ckanext-dataontosearch#future-work

108

https://github.com/tobinus/ckanext-dataontosearch#future-work

7.7 Future work

• Handle private datasets in CKAN: Private datasets are still made available in
DataOntoSearch by the CKAN plugin. Even though they are not shown when
searching inside CKAN, DataOntoSearch itself has no concept of datasets being
private and will show them all to you when you use it directly.

• Authentication and authorization in DataOntoSearch: Right now, all the API
endpoints are unprotected. It has not been prioritized since the system has not been
put into production, and because access control can be implemented in the web
server, e.g. Nginx or Apache. It would still be nice to add a username/password
combination to each Configuration, so that there is built-in protection against people
screwing around with other CKAN instances’ manual tagging.

• Better use of NumPy functionality: The matrix calculations currently take a lot of
time, most of which is spent working with NumPy matrices. It is possible that great
performance improvements can be achieved by using built-in NumPy functionality
instead of spending all the time in our own custom Python code. This especially
applies to the process of binding concepts to the query, which takes up the majority
of time spent processing queries.

• Handle incremental changes to the index: Right now, the Concept-Dataset Simi-
larity Matrix is calculated from scratch every time the concept-dataset associations
have changed. This is not scalable, especially not when users make one change after
another in CKAN. Ideally, the changes made since last time should just be applied
to the existing matrix, at least for small changes like a new dataset being added or
a new association being made. Changes to the ontology are likely very hard to do
incrementally.

• Simplification and refactoring: Though I spent a lot of time refactoring the code
in the beginning, some parts have not been treated so well afterwards. There may
also be instances of overengineering, though I’m not the best person to judge that.

• Addressing weaknesses mentioned but not addressed: The section on research
motivation, Section 4.1 on page 35, mentions several more weaknesses that I did
not have the time to address, like using dataset contents for automatic tagging and
improving the ontology with equivalence relationships.

• Investigate some new methods: At one point, I got a tips from Hagelien, who
had attended a conference and presented DataOntoSearch. Some topics that could
be relevant, based on conversations he had had, are B-cube and Entity Alignment
F-measure, and also clustering for evaluating parts of the system.

109

Chapter 7. Discussion

110

Chapter 8
Conclusion

At the start of this project, I was set to explore an ontology-based semantic search system
for open data, a system which consists of many words I did not really understand the
meaning of back then. Through reading books and literature on related topics, and doing
some detective work to figure out what DataOntoSearch is doing and how it is trying
to do that, I have gained a greater understanding of the challenges of making open data
discoverable and accessible to developers and other users not familiar with the domain in
question.

I did not foresee spending so much time refactoring and making the DataOntoSearch
runnable, but the experimental approach of my predecessor left me with little choice. Ini-
tially thought of as a way to get to know the system while making it easier to improve it
later, the problems ran deep and I was still struggling with making sense of it all right until
the last few months, with the confusing situation surrounding the threshold variables.

I also did not think so much time would go into researching how to do evaluations, but
they are an important part of this project. The usability test in particular took a lot of time
to prepare, but from it, we learnt more about the state of DataOntoSearch, and brought in
a down-to-earth perspective often missing from semantic search research. It revealed that
DataOntoSearch version 1 was not in a good position, and that I had my work cut out for
me when finally sitting down to improve it. Specifically, users noted that the system did
not look styled, and were unsatisfied with the irrelevant datasets retrieved. This answers
our first research question of what users think of DataOntoSearch version 1.

Moving on to the second research question, my first order of action was to make
DataOntoSearch itself more easily available. We cannot expect users to seek out a third-
party website to perform a search or add dataset-concept links, when they already sit in
CKAN and are doing just fine. By making DataOntoSearch’s functionality available for
use within CKAN, the benefits it brings stand a better chance of actually making a change
for users searching after datasets. The work on the CKAN extension has also paved the
way for integrating DataOntoSearch with other systems, since any technology can make
use of DataOntoSearch’s APIs.

Of course, having DataOntoSearch in CKAN is not going to do users any good if its

111

Chapter 8. Conclusion

search performs much worse than alternative search options. Setting a lower threshold
for what concepts are associated with the query through WordNet reduces the impor-
tance of WordNet’s structure. Enriching the associated concepts with related concepts
helps with making the query vector more similar to the datasets’ vectors, and increases
the importance of the hand-crafted ontology which separates DataOntoSearch from other
approaches within semantic open government data search. The ontology is also utilized
to a greater extent along with WordNet, by overhauling how the query is matched up with
concepts. Finally, multi-word concepts can be associated with the user’s query, and the
knowledge embedded in WordNet is used more now that its multi-word entries are used to
calculate the query’s similarity to concepts.

The system-oriented evaluation methods confirm that a significant improvement has
been made over DataOntoSearch version 1 for manually created dataset-concept associ-
ations, confirming that the problem with irrelevant datasets has been addressed – at least
to some degree. Though the results indicate that the system surpasses Google Dataset
Search as well, unfortunate circumstances sow doubt about how representable Google’s
performance was for their engine. It is also an open challenge to find a form of systematic
evaluation which does not give any search engine an unfair advantage, without spending a
huge amount of effort assessing each dataset’s relevancy to each query.

All in all, the ontology-based semantic search approach seems to hold some merit,
especially now that concepts can be matched with with greater predictability. By further
improving DataOntoSearch’s capabilities and fitness for use, the system may facilitate
interdisciplinarity by granting developers who are well versed in the domain of computer
science the ability to find and create new, innovative applications using open data from
the transport domain. Though keyword-based approaches like Google Dataset Search are
promising, they may not help as much to achieve this vision due to the barrier of entry for
users not familiar with the domain-specific language.

112

Bibliography

[1] Rashid Ali and M.M. Sufyan Beg. “An overview of Web search evaluation meth-
ods”. English. In: Computers & Electrical Engineering 37.6 (2011), pp. 835–848.
ISSN: 0045-7906.

[2] Dean Allemang. Semantic web for the working ontologist: effective modeling in
RDFS and OWL. eng. 2nd ed. Amsterdam: Elsevier, 2011. ISBN: 9780123859655.

[3] Grigoris Antoniou et al. A Semantic Web Primer. 3rd ed. London, England: The
MIT Press, 2012. ISBN: 978-0-262-01828-9.

[4] Apache. Apache Solr - Features. 2019. URL: https://lucene.apache.
org/solr/features.html (visited on 05/23/2019).

[5] Tim Bernes-Lee. Linked Data - Design Issues. 2010. URL: https://www.w3.
org/DesignIssues/LinkedData.html (visited on 05/21/2019).

[6] Roi Blanco et al. “Repeatable and reliable semantic search evaluation”. eng. In:
Web Semantics: Science, Services and Agents on the World Wide Web 21.C (2013),
pp. 14–29. ISSN: 1570-8268.

[7] John Brooke. SUS - A quick and dirty usability scale. eng. Nov. 1995.

[8] M. Buranarach et al. “Open data search framework based on semi-structured query
patterns”. In: CEUR Workshop Proceedings 2000 (2017), pp. 13–19. ISSN: 16130073.

[9] Anila Sahar Butt, Armin Haller, and Lexing Xie. “A Taxonomy of Semantic Web
Data Retrieval Techniques”. In: Proceedings of the 8th International Conference
on Knowledge Capture. K-CAP 2015. Palisades, NY, USA: ACM, 2015, 9:1–9:9.
ISBN: 978-1-4503-3849-3. DOI: 10.1145/2815833.2815846. URL: http:
//doi.acm.org/10.1145/2815833.2815846.

[10] Davide Castelvecchi. “Google unveils search engine for open data”. eng. In: Na-
ture 561.7722 (Sept. 5, 2018), pp. 161–162. ISSN: 00280836. DOI: 10.1038/
d41586 - 018 - 06201 - x. URL: http : / / search . proquest . com /
docview/2116833645/ (visited on 05/26/2019).

113

https://lucene.apache.org/solr/features.html
https://lucene.apache.org/solr/features.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1145/2815833.2815846
http://doi.acm.org/10.1145/2815833.2815846
http://doi.acm.org/10.1145/2815833.2815846
https://doi.org/10.1038/d41586-018-06201-x
https://doi.org/10.1038/d41586-018-06201-x
http://search.proquest.com/docview/2116833645/
http://search.proquest.com/docview/2116833645/

[11] Gong Cheng and Yuzhong Qu. “Searching linked objects with falcons: Approach,
implementation and evaluation”. In: International Journal on Semantic Web and
Information Systems (IJSWIS) 5.3 (2009), pp. 49–70.

[12] ckan. Search and Discovery. URL: https://ckan.org/portfolio/search-
and-discovery/ (visited on 05/23/2019).

[13] Mathieu d’Aquin et al. “Watson: A gateway for the semantic web”. In: (2007).

[14] Stefan Decker et al. “Ontobroker: Ontology based access to distributed and semi-
structured information”. In: Database Semantics. Springer, 1999, pp. 351–369.

[15] Li Ding et al. “Swoogle: a search and metadata engine for the semantic web”. In:
Proceedings of the thirteenth ACM international conference on Information and
knowledge management. ACM. 2004, pp. 652–659.

[16] Khadija M. Elbedweihy et al. “An overview of semantic search evaluation initia-
tives”. eng. In: Web Semantics: Science, Services and Agents on the World Wide
Web 30.C (2015), pp. 82–105. ISSN: 1570-8268.

[17] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. 1999. URL: https:
//www.w3.org/Protocols/rfc2616/rfc2616.txt.

[18] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web Ar-
chitecture”. In: ACM Trans. Internet Technol. 2.2 (May 2002), pp. 115–150. ISSN:
1533-5399. DOI: 10.1145/514183.514185. URL: http://doi.acm.
org/10.1145/514183.514185.

[19] Open Knowledge Foundation. Open Definition 2.1. URL: http://opendefinition.
org/od/2.1/en/ (visited on 05/21/2019).

[20] Thomas Fjæstad Hagelien. “A Framework for Ontology Based Semantic Search”.
eng. MA thesis. Trondheim, July 2018. URL: http://hdl.handle.net/
11250/2567220.

[21] Kotaro Hara et al. “A Data-Driven Analysis of Workers’ Earnings on Amazon Me-
chanical Turk”. In: (2017).

[22] Aileen Hay et al. Federated catalogue service for open transport data. Trondheim,
Nov. 2016.

[23] Jeff Heflin, James A Hendler, and Sean Luke. “SHOE: A Blueprint for the Semantic
Web.” In: Spinning the Semantic Web 1 (2003), pp. 1–19.

[24] Aidan Hogan et al. “Searching and browsing Linked Data with SWSE: The Se-
mantic Web Search Engine”. In: Journal of Web Semantics 9.4 (2011). JWS spe-
cial issue on Semantic Search, pp. 365–401. ISSN: 1570-8268. DOI: https://
doi.org/10.1016/j.websem.2011.06.004. URL: http://www.
sciencedirect.com/science/article/pii/S1570826811000473.

[25] Shanshan Jiang et al. “Ontology-Based Semantic Search for Open Government
Data”. In: 13th IEEE International Conference on Semantic Computing, ICSC 2019,
Newport Beach, CA, USA, January 30 - February 1, 2019. IEEE, 2019, pp. 7–
15. ISBN: 978-1-5386-6783-5. DOI: 10.1109/ICOSC.2019.8665522. URL:
https://doi.org/10.1109/ICOSC.2019.8665522.

114

https://ckan.org/portfolio/search-and-discovery/
https://ckan.org/portfolio/search-and-discovery/
https://www.w3.org/Protocols/rfc2616/rfc2616.txt
https://www.w3.org/Protocols/rfc2616/rfc2616.txt
https://doi.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://opendefinition.org/od/2.1/en/
http://opendefinition.org/od/2.1/en/
http://hdl.handle.net/11250/2567220
http://hdl.handle.net/11250/2567220
https://doi.org/https://doi.org/10.1016/j.websem.2011.06.004
https://doi.org/https://doi.org/10.1016/j.websem.2011.06.004
http://www.sciencedirect.com/science/article/pii/S1570826811000473
http://www.sciencedirect.com/science/article/pii/S1570826811000473
https://doi.org/10.1109/ICOSC.2019.8665522
https://doi.org/10.1109/ICOSC.2019.8665522

[26] Esther Kaufmann and Abraham Bernstein. “Evaluating the usability of natural lan-
guage query languages and interfaces to Semantic Web knowledge bases”. eng. In:
Web Semantics: Science, Services and Agents on the World Wide Web 8.4 (2010),
pp. 377–393. ISSN: 1570-8268.

[27] Rob Kitchin. The Data Revolution: Big Data, Open Data, Data Infrastructures &
Their Consequences. eng. London: SAGE Publications Ltd, 2014. DOI: 10.4135/
9781473909472.

[28] Hoa Loranger. Redesigning Your Website? Don’t Ditch Your Old Design So Soon.
eng. Dec. 7, 2014. URL: https://www.nngroup.com/articles/redesign-
competitive-testing/ (visited on 10/10/2018).

[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. eng. Cambridge, 2008. URL: https://nlp.stanford.
edu/IR-book/.

[30] Natasha Mathur. Red Hat drops MongoDB over concerns related to its Server Side
Public License (SSPL). eng. Jan. 17, 2019. URL: https://hub.packtpub.
com/red-hat-drops-mongodb-over-concerns-related-to-
its-server-side-public-license-sspl/ (visited on 06/05/2019).

[31] Jorge Morales and Andrés Melgar. “Research on Proposals and Trends in the Ar-
chitectures of Semantic Search Engines: A Systematic Literature Review”. In: Pro-
ceedings of the 2017 Federated Conference on Computer Science and Information
Systems. 2017 Federated Conference on Computer Science and Information Sys-
tems 11 (2017), pp. 271–280.

[32] Sebastian Neumaier and Axel Polleres. “Enabling Spatio-Temporal Search in Open
Data”. In: Journal of Web Semantics 55 (2019), pp. 21–36. ISSN: 1570-8268. DOI:
https://doi.org/10.1016/j.websem.2018.12.007. URL: http:
//www.sciencedirect.com/science/article/pii/S1570826818300696.

[33] Jakob Nielsen. Usability 101: Introduction to Usability. eng. Jan. 4, 2012. URL:
https://www.nngroup.com/articles/usability-101-introduction-
to-usability/ (visited on 10/08/2018).

[34] Jakob Nielsen. Usability Engineering. eng. Academic Press, 1993. ISBN: 0-12-
518405-0.

[35] Jakob Nielsen. Why You Only Need to Test with 5 Users. eng. Mar. 19, 2000. URL:
https://www.nngroup.com/articles/why-you-only-need-to-
test-with-5-users/ (visited on 06/05/2019).

[36] Natasha Noy. Making it easier to discover datasets. Sept. 5, 2018. URL: https:
//www.blog.google/products/search/making- it- easier-
discover-datasets/ (visited on 09/20/2018).

[37] Natasha Noy and Dan Brickley. Facilitating the discovery of public datasets. Jan. 24,
2017. URL: https://ai.googleblog.com/2017/01/facilitating-
discovery-of-public.html (visited on 09/20/2018).

115

https://doi.org/10.4135/9781473909472
https://doi.org/10.4135/9781473909472
https://www.nngroup.com/articles/redesign-competitive-testing/
https://www.nngroup.com/articles/redesign-competitive-testing/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://hub.packtpub.com/red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/
https://hub.packtpub.com/red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/
https://hub.packtpub.com/red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/
https://doi.org/https://doi.org/10.1016/j.websem.2018.12.007
http://www.sciencedirect.com/science/article/pii/S1570826818300696
http://www.sciencedirect.com/science/article/pii/S1570826818300696
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
https://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html

[38] Sara Ashley O’Brien. Why Uber and Lyft drivers are striking. May 8, 2019. URL:
https://edition.cnn.com/2019/05/07/tech/uber-driver-
strike-ipo/index.html (visited on 05/10/2019).

[39] Eyal Oren et al. “Sindice. com: a document-oriented lookup index for open linked
data”. In: International Journal of Metadata, Semantics and Ontologies 3.1 (2008),
pp. 37–52.

[40] Princeton University. About Wordnet. eng. 2010. URL: https://wordnet.
princeton.edu/ (visited on 02/11/2019).

[41] Amy Schade. Competitive Usability Evaluations: Learning from Your Competi-
tion. eng. Dec. 15, 2013. URL: https://www.nngroup.com/articles/
competitive-usability-evaluations/ (visited on 10/10/2018).

[42] Oscar Schwartz. Untold History of AI: How Amazon’s Mechanical Turkers Got
Squeezed Inside the Machine. Apr. 22, 2019. URL: https://spectrum.ieee.
org/tech-talk/tech-history/dawn-of-electronics/untold-
history-of-ai-mechanical-turk-revisited-tktkt (visited on
05/10/2019).

[43] Alana Semuels. The Internet Is Enabling a New Kind of Poorly Paid Hell. Jan. 23,
2018. URL: https://www.theatlantic.com/business/archive/
2018/01/amazon-mechanical-turk/551192/ (visited on 05/10/2019).

[44] Maximilian Speicher. What is Usability? eng. 2015. URL: http://www.qucosa.
de/fileadmin/data/qucosa/documents/15994/CSR-2015-02.
pdf.

[45] Xiaolong Tang et al. “Ontology-Based Semantic Search for Large-Scale RDF Data”.
In: Web-Age Information Management. Ed. by Jianyong Wang et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2013, pp. 570–582. ISBN: 978-3-642-38562-9.
DOI: 10.1007/978-3-642-38562-9_58.

[46] Giovanni Tummarello et al. “Sig. ma: Live views on the web of data”. In: Web Se-
mantics: Science, Services and Agents on the World Wide Web 8.4 (2010), pp. 355–
364.

[47] W3C Working Group. SKOS Simple Knowledge Organization System Primer. eng.
Aug. 18, 2009. URL: https://www.w3.org/TR/skos-primer/ (visited
on 05/21/2019).

[48] W3C World Wide Web Consortium. Data Catalog Vocabulary (DCAT). eng. Jan. 16,
2014. URL: https://www.w3.org/TR/vocab-dcat/ (visited on 05/21/2019).

[49] W3C World Wide Web Consortium. RDF 1.1 Concepts and Abstract Syntax. eng.
Feb. 25, 2014. URL: https://www.w3.org/TR/rdf11- concepts/
(visited on 05/21/2019).

[50] Zhibiao Wu and Martha Palmer. “Verbs semantics and lexical selection”. In: Pro-
ceedings of the 32nd annual meeting on Association for Computational Linguistics.
Association for Computational Linguistics. 1994, pp. 133–138.

[51] Haiping Xu and Arturo Li. “Two-Level Smart Search Engine Using Ontology-
Based Semantic Reasoning.” In: SEKE. 2014, pp. 648–652.

116

https://edition.cnn.com/2019/05/07/tech/uber-driver-strike-ipo/index.html
https://edition.cnn.com/2019/05/07/tech/uber-driver-strike-ipo/index.html
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
https://www.nngroup.com/articles/competitive-usability-evaluations/
https://www.nngroup.com/articles/competitive-usability-evaluations/
https://spectrum.ieee.org/tech-talk/tech-history/dawn-of-electronics/untold-history-of-ai-mechanical-turk-revisited-tktkt
https://spectrum.ieee.org/tech-talk/tech-history/dawn-of-electronics/untold-history-of-ai-mechanical-turk-revisited-tktkt
https://spectrum.ieee.org/tech-talk/tech-history/dawn-of-electronics/untold-history-of-ai-mechanical-turk-revisited-tktkt
https://www.theatlantic.com/business/archive/2018/01/amazon-mechanical-turk/551192/
https://www.theatlantic.com/business/archive/2018/01/amazon-mechanical-turk/551192/
http://www.qucosa.de/fileadmin/data/qucosa/documents/15994/CSR-2015-02.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/15994/CSR-2015-02.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/15994/CSR-2015-02.pdf
https://doi.org/10.1007/978-3-642-38562-9_58
https://www.w3.org/TR/skos-primer/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/rdf11-concepts/

Appendices

117

Appendix A
Material provided to test users in
pre-study

Test users should be provided with a test description and a manual, so they know how to
use the different systems. They should also be provided with the task descriptions, one at
a time. This section provides a copy of this material.

The test description is a short introduction to the test. Next, the task descriptions are
given. An internal note about the tasks and their possible solutions is also included.

Finally, the manual provided to test users as an introduction to the systems is given.

119

A.1 Test description
This is a test of two systems’ usability, aiming to learn how easy they are to use, and what
problems they have. This project is a pre-study, and is a part of a master thesis. The master
thesis is about a search engine meant to help software developers find datasets. Datasets
can for example be “Bus schedule in Trondheim” or “CO2 levels in Tromsø.”

As a part of the test, you are asked to:

1. Try to finish three tasks with one search engine, and think aloud when doing so.

2. Answer a short questionnaire about the search engine you just tried out.

3. Do step 1-2 using another search engine.

4. Answer a questionnaire about which search engine you enjoyed the most.

It is important for us to emphasise that you are not being tested. What we are testing,
is the system. Any problems you encounter during the test, will be considered problems
with the system, not you, so please relax!

Information that will be collected
The following information will be collected:

• Written notes by researchers, based on what you say

• Answers to all three questionnaires

• Task solutions found

• Time spent on each task

• Video of the computer screen (without sound)

• What study program you attend

No personal information will be collected. As an example, name and age is not
collected, and no voice recording is made. Due to this, the regulations related to personal
data do not apply.

Participation is voluntary
Participation in the project is voluntary. If you choose to participate, you can withdraw
your consent at any time without giving a reason. There will be no negative conse-
quences for you if you choose not to participate or later decide to withdraw. Specifically, I
will not hold it against you if you do so. Your participation or lack thereof will be kept
confidential and not be shared with others. You, on the other hand, are free to speak to
others about this.

120

A.2 Task descriptions

Task 55
You are a software developer living in the city of New York. You would like to create a
computer program telling you the nearest place where you can go to ride the underground
railway. You decide to use a dataset so your computer program can retrieve information
automatically.

Can you find a dataset you could use to solve this problem?

Task 47
You are a software developer working for a tourist agency focusing on tourists who would
like to experience the state of New York, but not the famous New York City itself. To
help them get around, the agency would like to display information about public facilities
along the highways at which travelers can stop and take a break from driving (“rasteplass”)
– specifically the ones which the state of New York have responsibility for. You decide to
use a dataset so your website can retrieve information automatically.

Can you find a dataset you could use to solve this problem?

Task 68
You are a software developer working for a travel agency focusing on travels inside all of
the United States of America. Customers visit your website, and write where they would
like to travel from, where they would like to travel to, and a range of dates where they
would like to travel. Right now you only show available flights or options for renting a
car, but the travel agency wants to include possible train departures as well. You decide to
use a dataset so the website can find available train departures automatically.

Can you find a dataset you could use to solve this problem?

A.2.1 Internal notes about the tasks
Summary of the tasks:

1. Underground Railway

2. Rest Areas

3. Train schedule

The following are example solutions to the tasks. They are not exclusive; whether a
dataset is correct or not need to be assessed to account for potential confusing formulations
of the task descriptions.

1. “NYC Transit Subway Entrance And Exit Data”

2. “Rest Areas Across NY”

3. Though there are datasets for tracks and stations, Amtrak does not seem to have a
dataset for train schedules.

121

A.3 Manual
In this pre-study, we focus on search engines meant to help software developers and re-
searchers find datasets. Datasets can for example be “Bus schedule in Trondheim” or
“CO2 levels in Tromsø,” and can be fed into computer programs or be analyzed in spread-
sheets.

Datasets can be published by anyone, but we limit ourself to datasets published by “of-
ficial” entities. For example a municipality (“kommune”), or the government. Currently,
datasets are published by different entities on different platforms. They are then collected
and presented on federated platforms, which present datasets from multiple sources in a
single place.

A.3.1 Dataset publishers
The following dataset publishers are relevant to the tasks in this test:

• data.cityofnewyork.us: Open data from the City of New York (NYC).

• data.buffalony.gov: Open data from the city of Buffalo, in the state of New York.

• data.ny.gov: Open data from the state of New York itself. In addition, datasets from
the two publishers above are included.

• data.gov: Open data from the entirety of the United States of America. This is a
federated catalog, including all three publishers above.

A.3.2 Search engines
There are two search engines used in this test.

• DataOntoSearch: Semantic search using concepts organized in a hierarchy.

• Google Dataset Search: Keyword search focused on datasets.

They are described in more detail below.

DataOntoSearch

This search engine uses an ontology. An ontology is an overview over concepts in a field,
in our case the field of transport. There, concepts are organized in a hierarchy, so that
one concept is at the top, with more specialized concepts below it, and even more specific
specializations below them again.

For example, “Entity” can be a top concept, with “Abstraction” as one specialization,
“Communication” as a specialization of that again, “Geographical information” as a spe-
cialization of “Communication,” and finally “Map” as a specialization of “Geographical
information.” See Figure A.1 for a visual illustration of this hierarchy.

When you search, your query is compared to the concepts to find which concepts are
most relevant. All datasets have also been through this process, and the relevant datasets

122

Figure A.1: An excerpt from the ontology hierarchy.

are found by looking at the datasets that are relevant to the same concepts as your query.
Thus, concepts act as the link between your query and datasets.

Note that this search is restricted to datasets from the data.ny.gov publisher.
A checkbox is found on the search page. Checking this will show you what concepts

your query matched with, and also what concepts each dataset is connected to.

Google Dataset Search

Please refer to the “About” link on the Google Dataset Search page.
Note that Google supports a site: operator, which lets you restrict your search to

one of the dataset publishers mentioned earlier.

123

124

Appendix B
Example of code quality
improvements

The two code listings below demonstrate how the method responsible for performing the
search was changed during the refactoring work described in Section 5.2.1.

Search procedure from Hagelien

def search_query(self, query, cds_name="all"):
sv = self.get_scorevec(query)
significant = sorted(list(zip(list(sv.columns),sv.as_ c

matrix()[0])), key=lambda x : x[1],
reverse=True)[:5]

↪→

↪→

df = sv.append(self.cds[cds_name])
data = cosine_similarity(df)
df1 = pd.DataFrame(data, columns=df.index,

index=df.index)↪→

f = df1.loc[query].sort_values(ascending=False)[1:]
relvec = []
for x in f.index:

data = (list(zip(self.cds[cds_name].loc[x].index,
self.cds[cds_name].loc[x].as_matrix())))↪→

data = sorted(data, key=lambda x:x[1],
reverse=True)[:5]↪→

relvec.append(data)
xs = zip(f.tolist(), map(self.get_dataset_info,

list(f.index)), relvec)↪→

return ([x for x in xs if x[0] > 0.75], significant)

Improved search procedure (not the most recent version)

def search_query(

125

self,
query,
cds_name="all",
qc_sim_threshold=0.0,
score_threshold=0.75

):
"""
Perform a search query.
Args:

query: Search query to use.
cds_name: Name of concept-dataset tagging to use

when retrieving datasets.↪→

qc_sim_threshold: Lower threshold for how similar a
word in the query must be to a concept label in order
for that concept to be considered relevant to the
query.

↪→

↪→

↪→

score_threshold: Lower threshold for how similar a
dataset must be to the query to be included in the
result. This effectively decides how many datasets are
included.

↪→

↪→

↪→

Returns: A tuple. The first item is a list of
SearchResult that matched, sorted with the most similar
results first. The second item is a list of the top
five concepts that were matched with the query.

↪→

↪→

↪→

"""
Calculate the query's similarity to our concepts
query_concept_sim =

self.calculate_query_sim_to_concepts(↪→

query,
qc_sim_threshold

)

What were the most similar concepts?
most_similar_concepts = self.sort_concept_similarities(

self.get_concept_similarities_for_query(
query_concept_sim

)
)[:5]

How similar are the datasets' similarity to the
query's similarity?↪→

dataset_query_sim = self.calculate_dataset_query_sim(
query_concept_sim,
cds_name,
query,

126

)

Put together information for the search results page
results = list()
for dataset, similarity in dataset_query_sim.items():

Only consider the most relevant datasets
if similarity < float(score_threshold):

continue
results.append(SearchResult(

score=similarity,
info=self.get_dataset_info(dataset),
concepts=self.get_most_similar_concepts_for_ c

dataset(↪→

cds_name,
dataset

),
))

return results, most_similar_concepts

127

128

Appendix C
Documentation

This appendix includes the technical documentation that was written for the CKAN ex-
tension and for DataOntoSearch. The README file for DataOntoSearch was started on
during the refactoring work, but has been extended during the improvement work. The
rest was written along with the systems they describe.

The documentation here was originally written using MarkDown or restructuredText
format. The original versions can be viewed at the following locations:

1. https://github.com/tobinus/OTD-semantic-framework/blob/
master/README.md

2. https://github.com/tobinus/OTD-semantic-framework/blob/
master/dataset tagger/app/API%20Documentation.md

3. https://github.com/tobinus/OTD-semantic-framework/blob/
master/ontosearch/app/API%20Documentation.md

4. https://github.com/tobinus/ckanext-dataontosearch/blob/
master/README.rst

Note that the documentation for the CKAN extension is based on a template given by
CKAN.

C.1 README of DataOntoSearch
Ontology Based Semantic Search for Open Transport Data

This repository contains source-code and stubs of code used in the development of the
prototype DataOntoSearch. Its purpose is to help developers find the datasets they want
to use, by not requiring them to use the exact same words in their search queries as those
used by the dataset publishers.

129

https://github.com/tobinus/OTD-semantic-framework/blob/master/README.md
https://github.com/tobinus/OTD-semantic-framework/blob/master/README.md
https://github.com/tobinus/OTD-semantic-framework/blob/master/dataset_tagger/app/API%20Documentation.md
https://github.com/tobinus/OTD-semantic-framework/blob/master/dataset_tagger/app/API%20Documentation.md
https://github.com/tobinus/OTD-semantic-framework/blob/master/ontosearch/app/API%20Documentation.md
https://github.com/tobinus/OTD-semantic-framework/blob/master/ontosearch/app/API%20Documentation.md
https://github.com/tobinus/ckanext-dataontosearch/blob/master/README.rst
https://github.com/tobinus/ckanext-dataontosearch/blob/master/README.rst

C.1.1 Preparing
This guide assumes you use Pipenv, but you may also use virtualenv/pip directly using the
requirements.txt files (though support for this may be dropped at a future point).

Reading this guide: Any Python commands in the instructions assume you already
have the virtual environment loaded. With Pipenv, you do this by running pipenv shell ,
or you can prepend pipenv run to whatever you want to run inside the virtual environ-
ment. With Pip and Virtualenv, you do this by sourcing the activate inside the virtual
environment folder. For example, if the virtual environment folder is called venv, you run
. venv/bin / activate .

1. (Fork and) clone this repository, so you have a copy locally

2. Install Pipenv (if so desired)

3. While in this directory, run pipenv install . Pip+Virtualenv users should set up the
virtual environment and install from requirements . txt now

4. Follow the link in ordvev/README.md and extract the files into the ordvev/ direc-
tory

5. Configure (and install if you haven’t) MongoDB so you have a user (with password)
which can access it. You will also need to enable authentication. See for example
the official guide from MongoDB.

6. Create a file called .env in this directory, where you define the variables:

• DB USERNAME: Username to use when logging in to MongoDB

• DB PASSWD: Password to use when logging in to MongoDB

• DB HOST: Name of server where MongoDB runs. Defaults to localhost

• DB NAME: Name of database to use in MongoDB. Defaults to ontodb

To define for example DB USERNAME to be john, you would write:

DB USERNAME= john

These can also be set as environment variables.

7. Download the different data for nltk, used for word tokenizing, removing stop words
and the like. You can do this by running python dataontosearch .py nltk data .

C.1.2 Usage
There is only one script you need to care about, namely dataontosearch .py. It has many
subcommands that can be invoked, much like Django’s manage.py command or the git
utility.

Documentation for the available subcommands and their arguments is not presented
here, instead you should use the −−help flag to access the built-in help. For example, to
see the available subcommands, run:

130

https://docs.mongodb.com/manual/tutorial/enable-authentication/
https://en.wikipedia.org/wiki/Environment_variable
https://www.nltk.org/data.html

python dataontosearch .py −−help
Nothing is actually done when you use the −−help flag, it simply prints the help

information and exits. Absolutely all subcommands accept the −−help flag, so please use
it to your heart’s content!

Below, some general information is provided about how to use DataOntoSearch. Af-
terwards, the process of getting the search system into a usable state is described.

Entities

There are four types of RDF graphs in the application’s database:

1. Ontology: Concepts and their relation to one another

2. Dataset: Available datasets in DCAT format

3. Similarity: Similarity graph, linking datasets to concepts manually

4. Autotag: Similarity graph, linking datasets to concepts automatically

These entities are managed through their own subcommands, in a fairly consistent way.
They all have a canonical version, which is used by default. It is also possible to load a
custom graph into the database.

In addition, there are different kinds of matrices used:

1. Concept-concept similarity matrix: Similarities between concepts, calculated us-
ing Wu-Palmer similarity.

2. Concept-dataset similarity matrix for manual tagging: Similarities between datasets
and concepts, enriched by the concept-concept similarity matrix.

3. Concept-dataset similarity matrix for automatic tagging: Same as above, except
this uses the autotag graph rather than the similarity one.

Since they are all derivatives of graphs, they are automatically created when needed,
and re-created whenever the graph they directly depend on (ontology, similarity and auto-
tag respectively) changes or is otherwise updated.

Choosing graphs to use

For each of the graphs mentioned above, the application’s choice of graph to use is done
like this:

1. Has a UUID been specified using CLI options or the like (where available)? If so,
use the specified graph.

2. Has a UUID been specified using the environment variable named <GRAPH−
↪→ NAME> UUID, where <GRAPH−NAME> is the upper-cased name of the
graph? For example, ONTOLOGY UUID or DATASET UUID. If so, use the spec-
ified graph.

131

3. If no graph has been specified this far, then whatever graph is returned first by Mon-
goDB is used. The system will warn you about this, since there is no guarantee that
the same graph would be returned at a later time.

Defining environment variables in .env As a shortcut for defining environment vari-
ables (step 2 above), the DataOntoSearch supports the use of a .env file (sometimes called
”dotenv”). There you can define environment variables which could potentially be tire-
some to define in your shell every time. The system will print a message whenever it reads
from a .env file; if you don’t receive such a message then you can assume it wasn’t read.

Caveat: Pipenv will read the .env file when you create a shell (pipenv shell). Changes
you make to the .env file will not be picked up before you exit and re-enter the Pipenv
shell. Even though DataOntoSearch reads from .env itself, it will not override environ-
ment variables already set by your shell, so the potentially outdated values set by Pipenv
will override those read from .env at runtime.

The Configuration entity There is one exception to the procedure above, namely the
Configuration mechanism. A Configuration is simply a selection of graphs, one for each
type, which is stored alongside a label. The purpose of a Configuration is to allow clients to
connect to DataOntoSearch and simply specify their configuration, from which the system
knows what graphs to load. This way, different organizations may connect to the same
DataOntoSearch process, yet use different ontologies, datasets and taggings.

Configurations are used by the dataset tagger (dataset tagger) and the search itself
(serve) along with related commands (search, multisearch and evaluate). The selection
of a Configuration follows the exact same procedure as for graph selection above, using
the CONFIGURATION UUID environment variable when the user does not specify a
Configuration themselves, or using whatever Configuration MongoDB returns first.

The Configuration is not used for any other commands. The reason is that a Configu-
ration requires there to be one graph of each type, since it will be pointing to one graph
of each type. Therefore, you cannot create a Configuration before everything else has been
set up; it will generally be the last thing you do before the search is ready.

Suggested approaches

• Keep only one version of each graph type, so it is obvious which one is picked by
MongoDB.

– You don’t need to specify what graph to use this way.

– However, if there are more than one graph, you may encounter subtle bugs due
to an unexpected graph being used.

• Specify the UUID of the graph to use in the .env file, using the appropriate environ-
ment variables.

– Works well when you’d like to switch between different graphs.

– You may override the .env variables on the command line.

132

https://github.com/theskumar/python-dotenv#usages

– Though this means you must manage the UUIDs of graphs.
– You can use multiple files and change between them by renaming one of them

to .env, and let the others have other names when not in use.

Setup

Before the search engine can get up and running, there are a couple processes that must be
run. Specifically:

1. Pre-process ontology

1. Upload ontology

2. Pre-process datasets

1. Import (new) datasets
2. Perform manual linking to concepts
3. Perform automatic linking to concepts

3. Run search

Below, you’ll find instructions for running these processes.

Pre-processing of ontology

Upload ontology

1. Run python dataontosearch .py ontology create

There are other commands you can use to manipulate and display ontologies, run
python dataontosearch .py ontology −−help for a full list.

Pre-processing of datasets

Import (new) datasets You may decide to import a set of dataset, or all datasets avail-
able to a CKAN instance or another compatible system. You will typically do this if you
want to use the automatic tagger or the spreadsheet approach below:

1. Run python dataontosearch .py dataset create −−ckan <CKAN−URL> where
you replace <CKAN−URL> with the base URL to your CKAN instance. The
instance must also expose RDF information about each dataset, using the ckanext-
dcat plugin.

If you use another system which exposes the datasets using the DCAT vocabulary,
you can import its data by downloading the RDF and using the −−read flag with python
↪→ dataontosearch .py dataset create .

Alternatively, you may start with an empty graph. This is useful when you intend to
add datasets gradually through the dataset tagger, which automatically downloads dataset
metadata for unknown datasets. Simply use the −−empty flag.

As always, run python dataontosearch .py dataset create −−help to see your op-
tions.

133

Perform manual linking to concepts You may use the existing tags for the Open Trans-
port Data project, if you use the very same datasets. Simply run:

python dataontosearch .py similarity create
Alternatively, you can do custom tagging. There are two ways:

• Using a spreadsheet: This approach is preferred for mass-tagging of many datasets
at once.

1. Ensure the newly created ontology and dataset graphs are set to be used. See
the instructions above on ”Choosing graphs to use”.

2. Use python dataontosearch .py similarity csv prepare to generate a CSV
file which can be filled in.

3. Read the instructions found when running python dataontosearch .py similarity
↪→ csv parse −−help for information on the two options you have for filling
in the CSV file.

4. Fill the CSV file with your taggings, potentially using python dataontosearch
↪→ .py ontology show hier to see a list of available concepts.

5. Export a new CSV file with your manual tagging.

6. Use python dataontosearch similarity csv parse to make the CSV file into
an RDF graph, which you should save to a file.

7. Use the −−read option with python dataontosearch similarity create to
store the newly create graph in the database.

• Using online application: This approach is preferred when incrementally adding
datasets, for example when used with a running CKAN instance.

1. Run python dataontosearch .py similarity create −−empty to create a new,
empty similarity graph.

2. You must set up a Configuration before running the dataset tagger. This re-
quires you to have an autotag graph already, so you may choose to continue
with this set-up procedure. Alternatively, you can create a new, empty auto-
tag graph by running python dataontosearch .py autotag create −−empty.
Then you can create a new Configuration using this empty autotag graph.

3. Run python dataontosearch .py dataset tagger

4. Now, you can use the included interface for tagging datasets, or use the API
with e.g. the CKAN DataOntoSearch plugin to tag datasets. Follow these steps
to use the built-in interface:

5. Visit http://localhost:8000 in your web browser.

6. Fill in the UUID of the Configuration you have created (in step 2).

7. Follow the instructions to tag datasets.

134

https://pypi.org/project/ckanext-dataontosearch/
http://localhost:8000

Perform automatic linking to concepts Run the following:
python dataontosearch .py autotag create
Again, append−−help to see available options, for example options for using English

WordNet instead of Norwegian (the default).
WARNING 1: The autotag script requires around 2 GB of RAM(!) for the Python

process when using the Norwegian OrdNet, meaning that it may get killed on systems
with not enough memory. You may choose to run the autotag process on a different system,
instead of on the server intended for serving the search (for example, use generate instead
of create , then transfer the generated file).

WARNING 2: This script can take a long time to run, like 45 minutes or even an hour.
It is not able to continue where it left out, so you might want to run this in tmux, screen
or something similar when running on a server over SSH (so the process survives if your
SSH connection ends).

Create Configuration

Before you can search, you must create a Configuration to be used by the search engine.
Ensure that the correct graphs will be chosen by running:

python dataontosearch .py configuration create <LABEL NAME> −−preview
Replace <LABEL NAME> with a name for this Configuration so you can understand

which Configuration is used for what purpose later on.
This prints the UUID of the graphs that will be chosen for the new configuration. Use

the command line arguments available or set the environment variables if the wrong graphs
are chosen, or there is a mismatch between the graphs (the similarity and autotag graphs
must have been made using the same dataset and ontology graphs).

When satisfied, remove the −−preview flag to actually create the Configuration.

Run search

Now that you have a Configuration to use, you can start the search process:

1. Run python dataontosearch .py serve

2. The webserver will perform some indexing, creating necessary matrices. It will give
you a signal when it’s done

3. You may now search by visiting http://localhost:8000

Alternatively, you may search using the command line interface directly. Run python
↪→ dataontosearch .py search −−help for more information.

Note: The web interface only allows access to the default Configuration. The API,
however, allows the user to specify a Configuration to use. With this setup, new Con-
figurations can be added or changed without restarting the web server. You will need to
re-generate the matrices, however, since it cannot be done inside a request (the request
would be aborted before the calculations are done). You can do this by running python
↪→ dataontosearch .py matrix, which you might want to run periodically so changes in
the manual tagging and dataset graphs are picked up. You can add it as a recurring task in

135

http://localhost:8000

a crontab, though you’ll need to point to the python executable located in your virtualenv,
not just the system-wide python.

Do you want to run multiple queries for machine processing, while varying available
thresholds and such? Use the python dataontosearch .py multisearch subcommand for
this. See its −−help information for many details.

An evaluation subcommand is built on top of the multisearch command, allowing you
to run systematic evaluations. See python dataontosearch .py evaluate −−help for an
introduction.

136

C.2 API Documentation of dataset tagger

The endpoints available through the dataset tagger are documented below.
URL variables describe parts of the URL which are variable, denoted by angle brack-

ets. Currently, only the Configuration UUID is in use. It must be set so that the application
knows what set of graphs to use (see the entity description in the root README).

Query parameters describe what GET query parameters are available to use.
Similarly, JSON payload describes the format of the JSON you must send as the

POST payload. The names found on https://www.json.org are used to describe
the types. Note that the Content−Type header must be set appropriately, for example
application / json.

Finally, Response JSON describes the JSON returned by the dataset tagger in re-
sponse to your query.

Note: Usually, there are two ways of specifying a dataset.

• You can use the RDF IRI, which identifies the dataset in the RDF. This is called
dataset id , but should not be confused with the ID associated with the dataset in

e.g. CKAN.

• Or you can use a URL at which the system can download RDF information about
the dataset. This is called dataset url , but should not be confused with the RDF
IRI, URI or URL. The RDF IRI is extracted by finding the first dataset described in
the downloaded graph.

”RDF URI” and ”RDF IRI” are used interchangeably, though the latter is more correct
(see the RDF spec).

C.2.1 Overview
Method Endpoint Purpose
GET / api /v1/<uuid>/concept Retrieve concepts available to you
GET / api /v1/<uuid>/tag Retrieve existing tags connecting dataset and

concepts
POST / api /v1/<uuid>/tag Tag a dataset with a concept
DELETE / api /v1/<uuid>/tag Remove a tag connecting a concept to a dataset
DELETE / api /v1/<uuid>/dataset Remove a dataset and all associated tags

C.2.2 GET /api/v1/<uuid>/concept

Retrieve the concepts in the ontology.

URL Variables

Variable Description
uuid UUID of the Configuration to use

137

https://www.json.org
https://www.w3.org/TR/rdf11-concepts/#resources-and-statements

Query parameters

No parameters are accepted.

Response JSON

Parameter Type Description
root object Each member of this object represents a concept
<URI> string URI is the RDF URI of a concept in the ontology. The value is a

human-readable label for this concept

C.2.3 GET /api/v1/<uuid>/tag

Retrieve what concepts the datasets have been tagged with.

URL Variables

Variable Description
uuid UUID of the Configuration to use

Query parameters

Parameter Type Description
dataset id or dataset url string Optional. If not provided, tags for all datasets are

retrieved. Use dataset id if you have the RDF IRI
of the dataset to retrieve tagged concepts for, or use
dataset url if you have the URL from which DCAT

RDF about the dataset can be downloaded

Response JSON

If dataset id or dataset url was provided:
Parameter Type Description
root object Represents the specified dataset
title string Title of the specified dataset
concepts array of object List of concepts associated with the specified dataset
concepts[].uri string RDF URI of this concept
concepts[].label string Human readable label for this concept

If neither dataset id nor dataset url were provided:

138

Parameter Type Description
root object Each member of this object represents a

dataset
<URI> object URI is the RDF URI of a dataset for which

a tag exists
<URI>.title string Title of this dataset
<URI>.concepts array of object List of concepts associated with this dataset
<URI>.concepts[].uri string RDF URI of this concept
<URI>.concepts[].label string Human readable label for this concept

C.2.4 POST /api/v1/<uuid>/tag

Tag a dataset with a related concept. If the dataset has not been encountered yet, it will be
added to the data store.

URL Variables

Variable Description
uuid UUID of the Configuration to use

JSON payload

Parameter Type Description
root object
dataset url string URL at which RDF DCAT information about the dataset can be

found. Used to identify which dataset concept shall be associated
with, and to download metadata if this dataset has not been seen
before. Because of this last usage, it is not possible to specify the
dataset id directly

concept string Either RDF URI or the label of the concept to associate with
dataset url

Response JSON

Parameter Type Description
root object
success bool true if the dataset was tagged successfully, false if an error oc-

curred
id string ID of the newly added tag. Only present if success is true
message string Error message. Only present if success is false

C.2.5 DELETE /api/v1/<uuid>/tag

Disassociate the dataset with the concept, removing any tags connecting the two.

139

URL Variables

Variable Description
uuid UUID of the Configuration to use

JSON payload

Parameter Type Description
root object
dataset id or dataset url string The dataset to disassociate with concept. Use

dataset id if you have the RDF IRI of the dataset
in question, or use dataset url if you have the URL
from which DCAT RDF about the dataset can be
downloaded

concept string Either RDF URI or the label of the concept to disas-
sociate with dataset id / dataset url

Response JSON

Parameter Type Description
root object
success bool true if no error occurred. Note that it is not checked whether any

such tag actually existed; not removing any tags is still considered a
success

Note: On error, this endpoint currently raises an exception and fails with a 500 Internal
error status message.

C.2.6 DELETE /api/v1/<uuid>/dataset

Remove all tags associated with the specified dataset, and remove it from the data store.

URL Variables

Variable Description
uuid UUID of the Configuration to use

JSON payload

Parameter Type Description
root object
dataset id or dataset url string The dataset to remove all traces of. Use dataset id

if you have the RDF IRI of the dataset in question,
or use dataset url if you have the URL from which
DCAT RDF about the dataset can be downloaded

140

Response JSON

Parameter Type Description
root object
success bool true if no error occurred. Note that it is not checked whether any

such dataset or tags existed; not removing any dataset or tags is still
considered a success

Note: On error, this endpoint currently raises an exception and fails with a 500 Internal
error status message.

C.3 API Documentation of search webserver

The endpoint available through the DataOntoSearch is documented below.
The documentation format is similar to that of dataset tagger .

C.3.1 Overview

Method Endpoint Purpose
GET / api /v1/search Perform a search

C.3.2 GET /api/v1/search

Perform a semantic search using DataOntoSearch.

Query parameters

Parameter Type Description
q string Query to perform
c string Optional. The Configuration to use. When not provided, the de-

fault configuration is used (the same as for the web interface)
a number Optional. Set to 1 in order to use the automatically tagged data,

instead of the manual tags (the default)
d number Optional. Set to 0 to avoid retrieving metadata about the matched

datasets. The title and description fields will be null in that case
ic number Optional. Set to 0 to avoid retrieving concepts related to the query

and datasets
qcs float Optional. The query-concept similarity threshold, default: 0.0
qds float Optional. The query-dataset similarity threshold, default: 0.75

141

Response JSON

Parameter Type Description
root object
concepts array The concepts regarded as the most simi-

lar to the query, sorted with the most rel-
evant first

concepts[] object One matching concept
concepts []. uri string The RDF IRI of this concept
concepts []. label string The preferred label for this concept
concepts []. similarity number The similarity score between the query

and this concept
results array The datasets regarded as the most similar

to the query, sorted with the most relevant
first

results [] object One matching dataset
results []. score number The similarity score between the query

and this dataset
results []. title string This dataset’s title
results []. description string This dataset’s description
results []. uri string This dataset’s RDF IRI
results []. concepts array The concepts regarded as the most sim-

ilar to this dataset (independently of the
query)

results []. concepts[] object One related concept
results []. concepts []. uri string The RDF IRI of this concept
results []. concepts []. label string The preferred label for this concept
results []. concepts []. similarity number The similarity score between this dataset

and this concept

142

C.4 README of ckanext-dataontosearch
Extension for integrating CKAN with DataOntoSearch.

DataOntoSearch is a project which aims to make it easier to find datasets, by using a
domain-specific ontology to find similar datasets. The software is run as a separate server,
which other projects like CKAN can connect to.

There are two separate plugins provided with this extension. dataontosearch tagging
↪→ provides a way of associating datasets with concepts in the ontology. (Each such
association is internally called a ”tag”, which should not be confused with the traditional
tags CKAN provide.) dataontosearch searching provides an integrated way of searching
using DataOntoSearch.

The extension adds a link you can follow when editing datasets. From there, you can
change what concepts are connected to what datasets.

The extension also adds a link to the alternative search method. Following it lets you
search using DataOntoSearch.

Important
This extension does not work by itself. It must be paired with a separately deployed

version of DataOntoSearch.
Attention
Both this and DataOntoSearch should be considered experimental. The majority of

the work is done by master students who are not affiliated with the project after their
involvement ends.

C.4.1 Requirements
This plugin was developed for CKAN version 2.8. We have not checked what other ver-
sions it works with, but it does use features introduced in version 2.7.

C.4.2 Installation
To install ckanext-dataontosearch:

1. Ensure that the ckanext-dcat extension is installed.

2. Ensure that CKAN can accept multiple requests in parallel. For example, if you
use gunicorn to run your application, you could use the −w flag to specify more
than 1 worker: gunicorn −w 4 (This is necessary because this extension’s request
to DataOntoSearch might cause DataOntoSearch to make a request back to CKAN,
so the applications would end up waiting for each other in a deadlock.) Note that
the debug setting must be set to false for CKAN to work in parallel.

3. Activate your CKAN virtual environment, for example:

. / u s r / l i b / ckan / d e f a u l t / b i n / a c t i v a t e

4. Install the ckanext-dataontosearch Python package into your virtual environment:

p i p i n s t a l l ckanex t−d a t a o n t o s e a r c h

143

https://github.com/ckan/ckanext-dcat

5. Add dataontosearch tagging and dataontosearch searching to the ckan. plugins
setting in your CKAN config file (by default the config file is located at / etc /ckan
↪→ / default / production . ini). Both are not required, any one of them can be used
alone, but that is rather uncommon. They need to be listed after the dcat plugins.

6. Add required settings:

Base URL where d a t a s e t t a g g e r i s r u n n i n g
ckan . d a t a o n t o s e a r c h . t a g g e r u r l = h t t p s : / / example . com /

↪→ t a g g e r

Base URL where t h e s e a r c h f o r Da taOntoSea rch i s
↪→ r u n n i n g

ckan . d a t a o n t o s e a r c h . s e a r c h u r l = h t t p s : / / example . com /
↪→ s e a r c h

The DataOntoSea rch C o n f i g u r a t i o n t o use
ckan . d a t a o n t o s e a r c h . c o n f i g u r a t i o n = 5

↪→ c7ea259c556bb42803fa17e

7. Restart CKAN. For example if you’ve deployed CKAN with Apache on Ubuntu:

sudo s e r v i c e apache2 r e l o a d

C.4.3 Config Settings
The required settings are described in the installation guide. In addition to those, you may
specify the login used when connecting to DataOntoSearch:

Username and password t o use when q u e r y i n g and t a g g i n g
↪→ d a t a s e t s i n

DataOntoSea rch (HTTP B a s i c A u t h e n t i c a t i o n)
(o p t i o n a l , d e f a u l t : no c r e d e n t i a l s) .
c k a n e x t . d a t a o n t o s e a r c h . username = a l a d d i n
c k a n e x t . d a t a o n t o s e a r c h . password = opensesame

In addition, you can also tell the extension to use the autotagged similarity graph when
searching, instead of the manual tags:

Whether t o use t h e a u t o t a g g e d graph i n s t e a d o f t h e manual
↪→ one when

s e a r c h i n g (o p t i o n a l , d e f a u l t : no) .
ckan . d a t a o n t o s e a r c h . u s e a u t o t a g = yes

C.4.4 Development Installation
To install ckanext-dataontosearch for development, activate your CKAN virtualenv and
do:

144

g i t c l o n e h t t p s : / / g i t h u b . com / t o b i n u s / ckanex t−d a t a o n t o s e a r c h
↪→ . g i t

cd ckanex t−d a t a o n t o s e a r c h
py thon s e t u p . py d e v e l o p
p i p i n s t a l l −r dev−r e q u i r e m e n t s . t x t

C.4.5 Future Work
There are plenty of things that should be improved. Here are some of them:

• Integrate concept viewing/editing with the dataset type of view, so the tabs don’t
disappear once you click on ”Concepts”.

• Some styling improvements can be done to make it look more appealing and be
easier to use.

• Give feedback to the user when they save concept changes successfully.

• Use progress indicator of some kind when the user submits concept changes, and
stop them from submitting more than once.

• Give the user an idea of how the concepts relate to one another in a hierarchy, instead
of just a flat list. They should only use the most relevant, specific concepts, and not
try to fit many ”similar” concepts, like you would with tags or search words.

• Give the user more context for each concept. There exist alternate labels that some-
times indicate what other areas that concept is covering, and some even have text
that explain and show how to apply that concept. This would require changes to the
dataset tagger API in DataOntoSearch to make the information available to ckanext-
dataontosearch.

• Separate the two different plugins into two different Python files, per the CKAN
recommendations (to avoid problems with files loading out of order).

• Add translations.

There are also some TODO notes in the source code.

C.4.6 Running the Tests
Note

No tests have been written for this project yet.
To run the tests, do:

n o s e t e s t s −−n o l o g c a p t u r e −−with−p y l o n s = t e s t . i n i

To run the tests and produce a coverage report, first make sure you have coverage
installed in your virtualenv (pip install coverage) then run:

145

n o s e t e s t s −−n o l o g c a p t u r e −−with−p y l o n s = t e s t . i n i −−with−
↪→ c o v e r a g e −−cover−package = c k a n e x t . d a t a o n t o s e a r c h −−
↪→ cover− i n c l u s i v e −−cover−e r a s e −−cover− t e s t s

C.4.7 Releasing a New Version of ckanext-dataontosearch
Note

Publishing on PyPi under the same name (ckanext-dataontosearch) is only possible if
you receive rights from one who already has access. You should be able to make contact
through an author’s GitHub user.

ckanext-dataontosearch is availabe on PyPI as https://pypi.python.org/pypi/
ckanext-dataontosearch. To publish a new version to PyPI follow these steps:

1. Update the version number in the setup .py file. See PEP 440 for how to choose
version numbers, using the principles of semantic versioning.

2. Create a source distribution of the new version:

py thon s e t u p . py s d i s t

3. Upload the source distribution to PyPI (assuming you have run pip install twine
before):

t w i n e up lo ad d i s t / *

4. Tag the new release of the project on GitHub with the version number from the
setup .py file. For example if the version number in setup .py is 0.0.2 then do:

g i t t a g 0 . 0 . 2
g i t push −− t a g s

146

https://pypi.python.org/pypi/ckanext-dataontosearch
https://pypi.python.org/pypi/ckanext-dataontosearch
http://legacy.python.org/dev/peps/pep-0440/#public-version-identifiers
https://semver.org/

Appendix D
Code used for search

This appendix includes a selection of Python code which demonstrates the implementation
of the search process. There may be some differences from the code found in the reposi-
tory, since some irrelevant code is removed, some comments have been put into one line
to facilitate easier reading and some methods have been reordered. Some of this code has
remained from DataOntoSearch version 1 and is therefore written by Hagelien.

D.1 The OpenDataSemanticFramework class
This class is responsible for constructing matrices and perform searching. The matrix con-
struction code is left out. The class has some style and architectural problems and is a
prime candidate for further refactoring; I simply could not dedicate more time to refactor-
ing and therefore changed as little as I could with this class from Hagelien’s version.

import itertools
from otd.constants import SIMTYPE_AUTOTAG,

SIMTYPE_SIMILARITY↪→

import logging
from rdflib import URIRef
from utils.graph import RDF, OTD, DCAT, DCT
from otd.skosnavigate import SKOSNavigate
from otd.queryextractor import QueryExtractor
from otd.semscore import SemScore
import db.dataframe
import db.graph
from sklearn.metrics.pairwise import cosine_similarity
from collections import namedtuple

import pandas as pd
import numpy as np

147

...

log = logging.getLogger(__name__)

DatasetInfo = namedtuple('DatasetInfo', ('title',
'description', 'uri', 'href'))↪→

SearchResult = namedtuple('SearchResult', ('score', 'info',
'concepts'))↪→

Note: 'info' is just dataset RDF IRI when dataset_info is
disabled↪→

ConceptSimilarity = namedtuple(
'ConceptSimilarity',
('uri', 'label', 'similarity')

)

class OpenDataSemanticFramework:
def __init__(self, ontology_uuid, dataset_uuid,

auto_compute=True,↪→

concept_similarity=0.0):
"""
The RDF library allows a set of rdf-files to be

parsed into a graph representing RDF triples. The
SKOSNavigate class is a tool for navigating between
siblings, children and parents in a graph, and
implements methods for calculating similarity based on
the relative position of two concepts.

↪→

↪→

↪→

↪→

↪→

"""
self.auto_compute = auto_compute
self.cds = dict()
self.cds_df_id = dict()
self.ccs = None
self.concept_similarity = concept_similarity

Set up variables needed for graph property setter
self.__graph = None
self.navigator = None
self.concepts = []
self.ontology = None
self.dataset = None
self._qe = QueryExtractor()
self._semscore = None

Then set graph
self.load_new_graph(ontology_uuid)

148

Other properties
self.dataset_graph =

db.graph.Dataset.from_uuid(dataset_uuid).graph↪→

...

def search_query(
self,
query,
cds_name="all",
qc_sim_threshold=0.0,
score_threshold=0.75,
include_dataset_info=True,
include_concepts=True,

):
"""
Perform a search query.

Args:
query: Search query to use.
cds_name: Name of concept-dataset tagging to

use when retrieving datasets.↪→

qc_sim_threshold: Lower threshold for how
similar a word in the query must be to a concept label
in order for that concept to be considered relevant to
the query.

↪→

↪→

↪→

score_threshold: Lower threshold for how
similar a dataset must be to the query to be included
in the result. This effectively decides how many
datasets are included.

↪→

↪→

↪→

include_dataset_info: Set to False to disable
collection of dataset information. Should save some
time in situations where that information is not
needed.

↪→

↪→

↪→

include_concepts: Set to False to disable
collection of concepts related to the query and to each
returned dataset. Should save some time in situations
where that information is not needed.

↪→

↪→

↪→

Returns:
A tuple. The first item is a list of

SearchResult that matched, sorted with the most similar
results first. The second item is a list of the top
five concepts that were matched with the query.

↪→

↪→

↪→

"""

149

log.info('Binding query to concepts...')
Calculate the query's similarity to our concepts
query_concept_sim =

self.calculate_query_sim_to_concepts(↪→

query,
qc_sim_threshold

)

log.info('Extracting most similar concepts...')
What were the most similar concepts?
if include_concepts:

most_similar_concepts =
self.sort_concept_similarities(↪→

self.get_concept_similarities_for_query(
query_concept_sim

)
)[:5]

else:
most_similar_concepts = []

log.info('Comparing datasets to the concepts
extracted from the query...')↪→

How similar are the datasets' similarity to the
query's similarity?↪→

dataset_query_sim =
self.calculate_dataset_query_sim(↪→

query_concept_sim,
cds_name,
query,

)

log.info('Putting together information for the
result...')↪→

Put together information for the search results
page↪→

results = list()
for dataset, similarity in

dataset_query_sim.items():↪→

Only consider the most relevant datasets
TODO: Return a minimum amount of datasets
if similarity < float(score_threshold):

continue
results.append(SearchResult(

score=similarity,
info=self.get_dataset_info(dataset)

150

if include_dataset_info else dataset,
concepts=self.get_most_similar_concepts_ c

for_dataset(↪→

cds_name,
dataset

) if include_concepts else [],
))

log.info('Done with query processing!')
return results, most_similar_concepts

def calculate_query_sim_to_concepts(self, query,
sim_threshold):↪→

scorevec = self._semscore.score_vector(query,
sim_threshold)↪→

scorevec = self.enrich_query_with_ccs(scorevec,
query, self.concept_similarity)↪→

return scorevec

def enrich_query_with_ccs(self, score_vec, query,
similarity_threshold):↪→

new_score_vec = score_vec.copy()
query_row = score_vec.loc[query]
new_query_row = new_score_vec.loc[query]

for c1, c2 in itertools.permutations(self.concepts,
2):↪→

simscore = (float)(self.ccs[c1][c2]) *
query_row[c1]↪→

if simscore < similarity_threshold:
simscore = 0.0

new_query_row[c2] = np.nanmax(
[simscore, new_query_row[c2]]

)
return new_score_vec

@staticmethod
def sort_concept_similarities(similarities):

return sorted(
similarities,
key=lambda x: x.similarity,
reverse=True

)

151

def get_concept_similarities_for_query(self,
query_concept_similarity):↪→

return self._create_concept_similarities(
query_concept_similarity.columns,
query_concept_similarity.values[0]

)

def _create_concept_similarities(self, concepts,
similarity_scores):↪→

processed_similarities = []

concept_similarities = zip(
concepts,
similarity_scores,

)

for concept, similarity in concept_similarities:
labels = self.navigator.pref_and_alt_ c

labels(URIRef(concept))↪→

label = labels[0]

processed_ c

similarities.append(ConceptSimilarity(↪→

concept, label, similarity
))

return processed_similarities

def calculate_dataset_query_sim(self,
query_concept_sim, cds_name, query):↪→

Add in the datasets' similarity to the concepts
entry_concept_sim = query_concept_sim.append(

self.cds[cds_name],
sort=True

)

Do the similarity calculation
sim_data = cosine_similarity(entry_concept_sim)

Convert into format used by the rest of the
application↪→

entry_entry_sim = pd.DataFrame(
sim_data,
columns=entry_concept_sim.index,
index=entry_concept_sim.index

152

)

Extract the datasets' similarity to the query,
sort most similar↪→

datasets first, then remove the query's
similarity to itself↪→

dataset_query_sim = entry_entry_sim \
.loc[query] \
.sort_values(ascending=False) \
.drop(query)

return dataset_query_sim

def get_dataset_info(self, dataset):
title = next(self.dataset_graph.objects(dataset,

DCT.title), None)↪→

description = next(
self.dataset_graph.objects(dataset,

DCT.description),↪→

None
)
href = next(

self.dataset_graph.objects(dataset,
DCAT.landingPage),↪→

dataset
)
return DatasetInfo(

str(title),
str(description),
str(dataset),
str(href)

)

def get_most_similar_concepts_for_dataset(self,
cds_name, dataset):↪→

concepts_for_dataset =
self.get_concepts_for_dataset(↪→

cds_name,
dataset

)
closest_concepts_for_dataset =

self.sort_concept_similarities(↪→

concepts_for_dataset
)[:5]
return closest_concepts_for_dataset

153

def get_concepts_for_dataset(self, cds_name, dataset):
location = self.cds[cds_name].loc[dataset]
return self._create_concept_similarities(

location.index,
location.values

)

D.2 QueryExtractor
This class is responsible for taking text and return pairs of tokens and their part of speech.
It essentially puts together the NLP methods used in DataOntoSearch. It was initially used
only for handling the query, hence its name. Just like with the OpenDataSemanticFrame-
work, this was initially written by Hagelien and modified further by me. It could use some
refactoring, e.g. trying to remove the chunk parser.

import itertools
import nltk

class QueryExtractor:
def __init__(self):

chunk_gram = r"""
NBAR:

{<NN.*|JJ.*>*<NN.*>} # Nouns and
Adjectives, terminated with Nouns↪→

NP:
{<NBAR><IN><NBAR>} # Above, connected with

in/of/etc...↪→

{<NBAR>}
{<FW|VB.*|JJ.*>} # Experiment, trying to

match more↪→

"""
self.chunk_parser = nltk.RegexpParser(chunk_gram)

def normalize(self, word):
return word.lower()

def extract_terms(self, sentence):
tokenized_sentence = nltk.word_tokenize(sentence)

num_tokens = len(tokenized_sentence)
if num_tokens == 0:

Short circuit
return tuple()

154

elif num_tokens == 1:
Let WordNet use any part of speech
token = tokenized_sentence[0]
return [(self.normalize(token), '')]

pos_tag_tokens =
nltk.tag.pos_tag(tokenized_sentence)↪→

tree = self.chunk_parser.parse(pos_tag_tokens)
np_trees = tree.subtrees(filter=lambda t: t.label()

== 'NP')↪→

leaves_per_tree = (t.leaves() for t in np_trees)
leaves =

itertools.chain.from_iterable(leaves_per_tree)↪→

words_per_leaf = ((self.normalize(w), pos)
for w, pos in leaves)

return words_per_leaf

def search(self, sentence):
TODO: Use extract_terms() directly instead of

through this↪→

return self.extract_terms(sentence)

D.3 SemScore
The SemScore class is responsible for taking a query and an ontology navigator (for re-
trieving concepts), and give back a Query-Concept Similarity Vector. This is where the
WordNet synsets are used. Very little code remains from Hagelien’s implementation.

import itertools
import statistics
import pandas as pd
from nltk.corpus import wordnet as wn

class SemScore:
def __init__(self, extractor, navigator):

self.extractor = extractor
self.navigator = navigator
self._synsets_by_concept = dict()

def score_vector(self, query, sim_threshold):
concepts = list(self.navigator.concepts())
scoreDataFrame = pd.DataFrame(columns=concepts)
scoreDataFrame.loc[query] = [0]*len(concepts)

155

query_synsets = self.synsets_from_query(query)

for concept in concepts:
labels = self.synset_sets_from_concept(concept)

label_scores =
[SemScore.calculate_score_for_label(l,
query_synsets)

↪→

↪→

for l in labels]

concept_score = max(filter(None, label_scores),
default=0.0)↪→

if concept_score < sim_threshold:
concept_score = 0.0

scoreDataFrame.loc[query][concept] =
concept_score↪→

return scoreDataFrame

@staticmethod
def calculate_score_for_label(label_words,

query_synsets):↪→

scores =
[SemScore.calculate_score_for_label_word(w,
query_synsets)

↪→

↪→

for w in label_words]
try:

return statistics.harmonic_mean(filter(None,
scores))↪→

except statistics.StatisticsError:
return 0.0

@staticmethod
def calculate_score_for_label_word(label_synsets,

query_synsets):↪→

synset_pairs = itertools.product(query_synsets,
label_synsets)↪→

scores = [q.wup_similarity(c) for q, c in
synset_pairs]↪→

return max(filter(None, scores), default=0.0)

def synsets_from_query(self, q):
return self.synsets_from_str(q)

156

def synset_sets_from_concept(self, c):
try:

return self._synsets_by_concept[c]
except KeyError:

label_synsets = []
for label in

self.navigator.pref_and_alt_labels(c):↪→

label_synsets.append(self.synset_sets_ c

from_str(label))↪→

self._synsets_by_concept[c] = label_synsets
return label_synsets

def synsets_from_str(self, s):
synset_sets = self.synset_sets_from_str(s)
return tuple(itertools.chain.from_iterable(synset_ c

sets))↪→

def synset_sets_from_str(self, s):
words = tuple(self.extractor.search(s))
return self.synset_sets_from_words(words)

def synset_sets_from_words(self, words):
words = list(words)
synset_sets = []

def handle_grams(i):
for gram_contents in SemScore.ngrams(words, i):

Don't construct connected words that
didn't exist in the original text. We
do this by using placeholders where
used words used to be. Skip if we have
one of those.

↪→

↪→

↪→

↪→

if (None, None) in gram_contents:
continue

gram_words = tuple(word for word, pos in
gram_contents)↪→

combined = '_'.join(gram_words)
synsets = self.synsets(combined, '')
if synsets:

These words have been matched, don't
look up afterwards↪→

for tagged_word in gram_contents:
try:

index =
words.index(tagged_word)↪→

157

TODO: Pass indices instead of
contents from ngrams, so
array updates here are
reflected in the next
iteration while still
inside of handle_grams()

↪→

↪→

↪→

↪→

↪→

words[index] = (None, None)
except ValueError:

ValueError triggered by
words.index; not found. The
word was probably removed
by an earlier ngram with
the same n, so we don't
need to remove it again

↪→

↪→

↪→

↪→

↪→

pass

Add the result
synset_sets.append(synsets)

handle_grams(3)
handle_grams(2)

Lookup any remaining single-words
for word, pos in words:

if word is not None:
synset_sets.append(self.synsets(word, pos))

return synset_sets

@staticmethod
def ngrams(iterator, n):

iterator = tuple(iterator)

def get_ngram_at(offset):
return tuple(iterator[offset + i] for i in

range(n))↪→

return tuple(get_ngram_at(i) for i in range(0,
(len(iterator) - n) + 1))↪→

def synsets(self, word, pos):
return wn.synsets(word,

pos=self.convert_to_wn_pos(pos))↪→

def convert_to_wn_pos(self, pos):

158

if pos.startswith('NN'):
return wn.NOUN

elif pos.startswith('VB'):
return wn.VERB

elif pos.startswith('JJ'):
return wn.ADJ

elif pos.startswith('RB'):
return wn.ADV

else:
return None

159

Thorben W
erner Sjøstrøm

 D
ahl

Im
proved O

ntology B
ased Sem

antic Search for O
pen D

ata

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Thorben Werner Sjøstrøm Dahl

Improved Ontology Based Semantic
Search for Open Data

Master’s thesis in MIT
Supervisor: Jingyue Li

June 2019

	Abstract
	Sammendrag
	Preface
	Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Background
	Open data and semantic technologies
	Open Data
	Dataset archival solutions
	Linked Data and Semantic Technologies
	Taxonomy of semantic search engines
	Related Natural Language Processing technologies

	Existing search function in CKAN
	A previous project on improving the CKAN search
	The master thesis which improved CKAN search further
	Ontology development
	Semantic search
	Evaluation

	Related Work
	Semantic based search
	Google Dataset Search
	Spatio-Temporal Search
	OntRank
	Dataset search using semi-structured query patterns
	Ontology-based query improvement
	Other semantic search engines

	Evaluation approaches of semantic search
	System-oriented Evaluation
	Precision and recall
	Precision at k
	R-Precision
	Mean Average Precision
	Receiver Operating Characteristics (ROC)
	Normalized Discounted Cumulative Gain
	Best Practice
	Crowdsourcing relevance assessment

	User-oriented Evaluation
	Defining Usability
	Evaluating usability
	Evaluating Usability of Semantic Search Interfaces: An Example Study

	Overall design
	Motivation
	Research Questions
	Overview

	Investigation and results of RQ1
	Methodology
	Goals
	Test methodology
	Collection and analysis of data
	Test details

	Implementation
	Getting a runnable system
	Finding common datasets
	Updated ontology
	User interface improvements

	Results
	Changes made from pilot study
	User rating of systems
	User satisfaction
	Problems and themes in user comments
	User performance

	Implementation and results of RQ2
	Methodology
	Goals
	Measures
	Queries and relevance assessments
	Collection and analysis of data

	Implementation
	CKAN Extension
	API
	Improving how the query is associated with concepts
	Increasing the ontology's importance
	New threshold variables
	Autotagging
	Manual tagging process
	Web interface

	Results
	Sensitivity of threshold variables
	Search engine comparison
	Performance

	Discussion
	The usability test
	Limitations

	The CKAN plugin
	Limitations

	Code quality
	Search quality and evaluation
	Limitations

	Run-time performance
	Comparison with some other approaches
	Future work

	Conclusion
	Bibliography
	Appendices
	Material provided to test users in pre-study
	Test description
	Task descriptions
	Internal notes about the tasks

	Manual
	Dataset publishers
	Search engines

	Example of code quality improvements
	Documentation
	README of DataOntoSearch
	Preparing
	Usage

	API Documentation of dataset tagger
	Overview
	GET /api/v1/<uuid>/concept
	GET /api/v1/<uuid>/tag
	POST /api/v1/<uuid>/tag
	DELETE /api/v1/<uuid>/tag
	DELETE /api/v1/<uuid>/dataset

	API Documentation of search webserver
	Overview
	GET /api/v1/search

	README of ckanext-dataontosearch
	Requirements
	Installation
	Config Settings
	Development Installation
	Future Work
	Running the Tests
	Releasing a New Version of ckanext-dataontosearch

	Code used for search
	The OpenDataSemanticFramework class
	QueryExtractor
	SemScore

