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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 
DET MEDISINSKE FAKULTET 

 

 

DNA‐reparasjons‐protein‐komplekser, funksjonalitet og 
signifikans for reparasjonseffektivitet og skadetoleranse 

 
 

Karin Margaretha Gilljam 

 
 
All informasjon om en organisme er lagret i vår arvestoff, DNA. DNA er et relativt 
ustabilt makromolekyl som konstant blir utsatt for farer som truer dets integritet, både 
fra omgivelsene og fra kjemiske prosesser inne i selve cellen. I tillegg kan baser 
spontant bli mistet uten noe form for påvirkning. Selve kopieringen av DNA, den 
såkalte DNA-replikasjonen er svært rask og er en kritisk prosess i cellen hvor mye kan 
gå galt. I tillegg kan ureparerte DNA-skader ved replikasjonen foreviges i form av 
mutasjoner. Mutasjoner i gener som koder for proteiner som regulerer cellens vekst og 
død kan resultere i ukontrollert cellevekst og dermed kreft. En av cellens strategier for å 
sikre effektiv og trygg replikasjon og reparasjon av DNA’et er å samarbeide ved å 
danne proteinkomplekser, hvorav PCNA ofte spiller en sentral rolle. PCNA sitter som 
en homotrimerisk ring rundt DNA-tråden som replikeres, og fungerer som en plattform 
for binding av mange proteiner. I tillegg til binding av DNA-replikasjonsproteiner, 
bindes også mange DNA-reparasjonsproteiner til PCNA, og sørger for effektiv 
reparasjon av skadet DNA både før og etter selve replikasjonen. I tillegg er PCNA 
involvert i DNA-syntese ved reparasjon som ikke er assosiert med replikasjon.  
 
I 1998 ble det funnet et motiv (en peptid-sekvens) som er ansvarlig for at mange 
proteiner bindes til PCNA, kalt PCNA Interacting Peptide (PIP). I artikkel 1 fant vi ved 
hjelp av blant annet fluorescerende proteiner og konfokal mikroskopi et nytt motiv som 
er viktig for proteiners binding til PCNA. Dette motivet fant vi først i det direkte 
alkyleringsreparasjons-proteinet; human AlkB homologue 2 og derfor kalte vi motivet 
AlkB homologue 2 PCNA Interacting Motif (APIM). I denne artikkelen verifiserer vi et 
funksjonelt APIM motiv i fem proteiner og viser at over-uttrykk av dette motivet gjør 
celler mer sensitive for alkylerende skade. Dette tyder på at overuttykk av APIM 
hemmer bindingen mellom APIM-inneholdende DNA reparasjons-proteiner og PCNA 
slik at de ikke reparerer DNA-skadene optimalt. 
 
I samme artikkel viser vi også at APIM er konservert i mer enn 200 proteiner, blant 
annet i nukleotideeksisjonsreparasjons (NER) proteinet Xeroderma Pigmentosum group 
A (XPA), og i artikkel 2 verifiserer vi at APIM også er et funksjonelt PCNA bindende 
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motiv i XPA. Vi viser og at overuttrykk av APIM-peptidet gjør celler mer sensitive for 
skade fra UV-lys, en type DNA-skade som hovedsakelig blir reparert av NER. I tillegg 
finner vi bevis som støtter at det er redusert funksjon av XPA som er årsak til at cellene 
er mer UV-sensitive ved overuttrykk av APIM, antagelig pga. svekket binding til PCNA. 
 
I artikkel 3 ser vi nærmere på baseeksisjonsreparasjons- og singeltrådbrudds-
reparasjons-proteinet XRCC1. Dette er i likhet med PCNA og XPA et protein uten 
enzymatisk funksjon, men med mange bindingspartnere, blant annet PCNA. Hvilken del 
av XRCC1 som er viktig for dens funksjon i cella er derimot ikke helt klarlagt, noe vi 
undersøker nærmere i denne artikkelen. Det viser seg at den delen av XRCC1 som har 
evnen til å binde PCNA og alkyleringsreparasjons-proteinet MPG er den eneste XRCC1 
mutanten som kan stimulere reparasjon av alkyleringsskader, noe som igjen bekrefter 
viktigheten av å binde seg til PCNA.  
 
Oppsummert tar dette arbeidet for seg hvordan DNA-reparasjonsproteiner binder seg til 
hverandre og PCNA, og hvordan dette påvirker evnen til å reparere DNA og dermed 
tåle DNA-skade.  
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TFIIH  Transcription factor II H 

TFII-I  Transcription factor II-I 

TFIIS-L  Transcription factor II S-Like 

TDP1  Tyrosyl DNA phosphodiesterase 

Topo Topoisomerase 

TLS   Translesion synthesis 

TTD  Trichothiodystrophy 

UDG   Uracil-DNA glycosylase 

UNG   Uracil-DNA glycosylase 

UV  Ultra violet 

W  Tryptophan, Trp 

Y  Tyrosine, Tyr 

YFP  Yellow fluorescent protein 

XAB1/2  XPA-binding protein 1/2 

XLF  XRCC4-like factor 

XP   Xeroderma pigmentosum 

XPA-G  Xerodemra pigmentosum group A-G 

XPV  Xeroderma pigmentosum variant 

XRCC1  X-ray repair cross-complementing protein 1 



 11

INTRODUCTION 

Keeping the genome intact is a challenge due to the unstable nature of DNA and the 

threat from endogenous and environmental agents. The acute effects of DNA damage 

are cell cycle arrest, transcription block, and apoptosis, but DNA damage left unrepaired 

may result in mutations. From an evolutionary perspective, mutations are essential for 

generation of genetic variation, however, with respect to human health, mutations are 

harmful as they are the driving force for oncogenesis, leading to the formation of cancer.   

DNA replication  

DNA replication is a critical event in the cell; errors can be made and importantly, DNA 

damage unrepaired upon DNA replication may give rise to mutations. Thus, many DNA 

repair proteins interact with the replication machinery in order to be at the right place at 

the right time. 

All organisms must duplicate their entire DNA before the cell can divide. In mammals, 

DNA replication occurs at a polymerisation rate of 20-50 nucleotides per second 

(Burgers, 2009). The mammalian genome consists of 3 × 109
 base pairs, but only 1 error 

in every 109 base pair is made (Alberts, 1994). To achieve such low error-rate during 

the rapid polymerization, mechanisms for reliable and efficient DNA replication have 

evolved: The DNA polymerases catalyze a nucleophilic attack on the 3’ hydroxyl (OH) 

terminus from the sugar backbone only when the base on the incoming nucleotide is 

complementary, i.e. forms a Watson-Crick base pair with the opposite base (Stryer, 

1995). Furthermore, the few errors made by the replicative polymerases are repaired by 

the 3’ to 5’ exonuclease proofreading activity within the polymerase itself (Alberts, 

1994). Finally, many proteins participate in the formation of large replication protein 

complexes, in order to ensure efficient and reliable DNA duplication.  
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Since the DNA polymerases attack the 3’ terminus and both strands serve as templates, 

the so-called replication fork is asymmetrical. One strand, the leading strand, is 

continuously duplicated, while the opposite, the lagging strand, is discontinuously 

duplicated. Despite the differences of the two strands, they are held together by large 

multiprotein complexes that move rapidly along the DNA. For the leading strand, Pol ε 

is suggested to be responsible for the continuous polymerization, at least in yeast 

(Pursell et al., 2007). For the lagging strand, however, there is a constant need of RNA 

primers formed by the Pol α/primase. Pol α elongates the RNA primers for a few 

nucleotides, and is replaced by Pol δ. Pol δ continues polymerization until it runs into 

the next RNA primer. Pol δ displaces the RNA, and the flap is cleaved off by Flap 

endonuclease I (FEN1) followed by sealing of the gap by DNA ligase I (LIG1) (Burgers, 

2009). Other proteins involved in the replication machinery complex are: Replication 

protein A (RPA) which stabilizes the ssDNA; DNA helicase which unwinds the 

template; and topoisomerases which reveal the supercoil. Importantly, the proliferating 

cell nuclear antigen (PCNA) forms a sliding clamp around DNA, constituting a platform 

for binding and organization of the DNA polymerases, FEN1, LIG1 and more (Bowman 

et al., 2004; Maga and Hubscher, 2003). Many core replication proteins bind to PCNA 

through a conserved motif called the PCNA interacting peptide (PIP) box (Warbrick, 

2000), discussed later. The replicating protein complex is illustrated in figure 1. 

 

Figure 1: Cartoon of the replication fork. 
Black lines illustrate the template DNA, the 
grey lines the newly formed DNA and the 
purple lines the RNA primers. 
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There are essentially two forms of topoisomerases solving the topological problems 

caused by the DNA unwinding during replication, Topoisomerase (Topo) I and II. Topo 

I cuts one strand while Topo II cuts both strands and can therefore be a threat to the cell 

as it has the potential to cause lethal double strand breaks (DSBs) (Agostinho et al., 

2004; Nitiss, 2009a). The positive supercoiled DNA can be relaxed by either Topo I or 

Topo II in front of the replication fork as illustrated in figure 1. However, only Topo II 

seems to be able to solve the topological problem in late S-phase by decatenation. When 

two replication forks meet, completion of replication leads to formation of two 

interlinked catenanes (figure 2). Resolution of this catenan requires Topo II. There are 

two isoforms of Topo II, called Topo II α and β, where Topo II α appears to be essential 

for cell survival (Agostinho et al., 2004). In addition to replication, Topo II also has a 

pronounced role in chromosome separation and transcription which encounter similar 

topology issues (Nitiss, 2009a).  

 

 
Figure 2: Resolving of topological problems including decatenation 
by Topo II. Adapted from (Nitiss, 2009a). 

 

Topo II α is one of the proteins containing the newly identified PCNA interaction motif; 

AlkB homologue 2 PCNA interacting motif (APIM), published in paper 1. Topo II α 

has previously been suggested to interact with PCNA through a PIP-box like sequence 

(Niimi et al., 2001); however, our studies indicate that it is the APIM motif, rather than 

the proposed PIP-box, that is responsible for the interaction between Topo II α and 

PCNA. 

Topo I 
Topo II 

 
Topo II 

Supercoiled Relaxed, 
decatenated 

Catenanes 
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Proliferating cell nuclear antigen 

PCNA consists of three similar subunits forming a donut with an overall negative 

charge. The inner surface; however, is positively charged due to many lysine and 

arginine residues, enabling DNA to pass through the donut without electrostatic 

repulsions. PCNA consists of a “front” and a “back” side, and it is suggested that PCNA 

forms a double trimer with a back-to-back interaction (Naryzhny et al., 2005). The level 

of PCNA molecules is cell cycle regulated and reaches a peak during S-phase. The 

average number of PCNA molecules in a normal cell is 500 000 monomers. However, 

in a rapidly dividing cancer cell, the average is 4 000 000 PCNA molecules (Naryzhny, 

2008). PCNA has therefore been suggested as a prognostic marker for cancer (Naryzhny, 

2008; Stoimenov and Helleday, 2009). 

Numerous proteins bind to PCNA, and all identified protein - PCNA interactions are on 

the “front” side of PCNA (Jonsson et al., 1998). Many proteins bind through the 

conserved PIP-box (Qxx(L/I/M)xx/(F/Y)(F/Y)) identified in 1998 (Warbrick, 1998). 

Since then, a second PCNA binding motif, termed the KAx-box, was suggested (Xu et 

al., 2001); however, the biological significance of this motif is not verified. In 2009 we 

identified a new PCNA binding motif, first identified in the AlkB homologue 2, thereby 

its name APIM: AlkB homologue 2 PCNA Interacting Motif. This motif is functionally 

verified in six human proteins and a conserved motif is found in more than 200 other 

proteins. The discovery of this motif is described in paper 1.  

PCNA plays important roles in many cellular processes in addition to DNA replication. 

These include involvement in regulation of replication bypass, prevention of sister 

chromatid recombination, DNA repair, chromatin remodeling and epigenetics, sister 

chromatin cohesion, cell cycle control and cell survival (Moldovan et al., 2007). With 

such diverse roles, and with a growing number of binding partners, a tight regulation is 

needed. This regulation occurs at several levels; one level is through different affinity to 

PCNA for proteins which bind to the same part of PCNA. An example of this is the 

PIP-containing protein cyclin-dependent kinase inhibitor 1 (p21) which interacts with 
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PCNA with a higher affinity than other PIP-box containing proteins. The PCNA - p21 

binding thereby result in replication arrest by blocking the binding of Pol ε and δ to 

PCNA (Podust et al., 1995). Also, post translational modifications (PTMs) on either 

PCNA or its binding partners can regulate the affinity. PCNA ubiquitylation is the most 

documented PTM on PCNA and is involved in the polymerase switch in translesion 

synthesis described later (Lee and Myung, 2008; Moldovan et al., 2007). Furthermore, 

PCNA is reported to be SUMOylated, phosphorylated, acetylated and deacetylated 

(Hoege et al., 2002; Naryzhny and Lee, 2004; Prosperi et al., 1994). Also, a cancer 

specific modification on PCNA; methyl esterification, has been identified (Hoelz et al., 

2006). PCNA is also know to be proteolyzed, but the biological relevance of this is 

unclear (Naryzhny, 2008). The PCNA form which binds to the APIM motif seems to 

have a PTM modification; however, the nature of this modification is not known (paper 

1). 

Numerous PCNA molecules, replication factors, cell cycle regulating proteins, DNA 

repair proteins etc. cluster to form so-called replication factories in the nucleus. These 

clusters give foci which can be visualized by fluorescent microscopy. When PCNA is 

fused to a fluorescent protein such as Green fluorescent protein (GFP) these foci can 

also be detected in live cells and this has been employed in the work for this thesis. In 

early S-phase the foci are small and localized throughout the nucleus, in mid S-phase 

the foci localize around the nucleoli and close to the membrane, and in late S-phase the 

foci are large and localized around the nucleoli (Leonhardt et al., 2000).   

DNA damage 

Damage to our DNA happens continuously, both by spontaneous reactions, most 

frequently from reactions with oxygen and water, and by influence from endogenous 

and exogenous agents. Quantitatively, most damage occurs as a result of spontaneous 

reactions and from endogenous agents, however, exogenous agents also pose a threat to 

the genome integrity. The exogenous agents include different chemicals that severely 

damage the DNA, including chemicals used in chemotherapy for cancer patients  
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Endogenous DNA damage  

Reactive oxygen species (ROS) are generated during normal cellular metabolism and 

are among the most important sources of endogenous damage (De Bont and van 

Larebeke, 2004). The superoxide anion radical (·O2
-) is abundant in the cell, but its 

reactivity is low. ·O2
- can, however, be converted to hydrogen peroxide (H2O2) by 

superoxide dismutase, which in turn can be reduced to the extremely reactive hydroxyl 

radical (·OH). Hydrogen peroxide is used as a source for generation of oxidative 

damage in paper 3. The DNA damage from ROS includes oxidized bases, single strand 

breaks (SSBs) and DSBs (De Bont and van Larebeke, 2004). Furthermore, oxygen 

radicals can abstract electrons from organic macromolecules such as lipids in a reaction 

called lipid peroxidation. The oxidized lipid products react with DNA and can result in 

the severe crosslinking between opposite DNA strands, so-called interstrand crosslinks 

(ICLs) (Friedberg, 2006). 

Alkylating agents are electrophilic compounds with affinity for nucleophilic centers in 

organic macromolecules (Friedberg, 2006). They may arise from endogenous and 

exogenous sources and are widely used in cancer treatment. The main source of 

endogenous alkylation is S-adenosylmethionine (SAM), a small molecule with a 

reactive methyl group. SAM is involved in execution of physiologically enzymatic 

DNA methylation which is important in gene expression regulation. However, due to its 

reactivity, mutagenic and cytotoxic adducts can also be formed (De Bont and van 

Larebeke, 2004).   

The glycosidic bond between the base and the deoxyribose is labile under certain 

conditions and may be cleaved off forming apurinic/apyrimidinic (AP) sites. This 

process can occur both spontaneously or as a consequence of ROS, and constitutes one 

of the most frequent lesions in DNA with 10 000 to 20 000 estimated AP sites per cell 

per day (Friedberg, 2006). The AP sites are cytotoxic as they stall replication and may 

lead to collapse of the replication fork forming DSBs. AP sites are also mutagenic, as 

the polymerase lacks a template, thus a random base is inserted, which in 54% of the 

incidents are adenines (De Bont and van Larebeke, 2004; Lawrence et al., 1990). 
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Hydrolytic deamination occurs more frequently in ssDNA than in dsDNA, and more 

frequently of pyrimidines than of purines. 100 to 500 cytosines per cell per day are 

estimated to deaminate forming uracil (De Bont and van Larebeke, 2004). Uracil, not 

normally present in DNA, resembles thymine and forms a base pair with adenine during 

replication. Thus, deaminated cytosines in DNA are mutagenic as they give C:G to T:A 

transition mutations. Uracil may also be mis-incorporated during DNA synthesis as 

substitute for thymine. In this case, uracil will not be directly mutagenic; however, the 

AP sites generated during removal of these uracils may be potentially mutagenic and 

cytotoxic (De Bont and van Larebeke, 2004; Friedberg, 2006). 

Exogenous DNA damage 

In general, exogenous DNA damage is more bulky than endogenous DNA damage, and 

is the main source for DSBs (De Bont and van Larebeke, 2004). Damage to DNA 

caused by ultraviolet (UV) light irriadiation was the first template for study of DNA 

repair (Friedberg, 2006). The UV light is divided into UV-A (320-400 nm), UV-B (295-

320 nm) and UV-C (100-295 nm). The DNA absorption peak is at 260 nm (UV-C 

specific), however, not much UV-C radiation reaches the earth since wavelengths below 

300 nm have low penetration through ozone. Thus, the solar UV light at the earth 

mainly consists of UV-A and UV-B (Cadet et al., 2005; Pfeifer et al., 2005). UV-B 

(used in the work for paper 2) and UV-C mostly induce DNA damage directly by 

covalent linkage between adjacent pyrimidines, forming most frequently cyclobutane 

pyrimidine dimers (CPDs), and to a smaller extent (6-4) photoproducts (Yoon et al., 

2000) (illustrated in figure 3). Particularly the (6-4) photoproducts, but also the CPDs 

distort the DNA helix and both interfere with DNA replication (Kaufmann, 2007). UV-

A radiation is not readily absorbed by DNA and mostly damages DNA indirectly 

through formation of reactive species, most frequently by formation of ROS (Cadet et 

al., 2005; Pfeifer et al., 2005).  
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Figure 3: Cartoon of the most common DNA damage 
from UV; Cyclobutane pyrimidine dimer (CPD) and (6-
4) photobroduct. Adapted from (Cadet et al., 2005). 

 

Ionizing radiation (IR) is naturally occurring cosmic radiation, and has always been 

present. Damage from IR can take place either through direct absorption of the radiation 

energy by DNA, or indirectly as for the UV damage. IR may damage the base and form 

strand breaks (Friedberg, 2006). Moreover, DNA can be damaged by a wide range of 

chemicals. In addition to the chemotherapeutic anti-cancer drugs, carcinogenic 

chemicals are present in pollution, food, industrial waste, tobacco smoke, and more 

(Poirier, 2004).  

Anti‐cancer chemotherapy 

The aim of anti-cancer therapy is to kill the cancer cells more efficiently than normal 

cells. To achieve this, cancer therapy must exploit the molecular and cellular features, 

characteristic for the target cancer cells. Since most cancer cells have a higher 

proliferation rate than normal cells, most cancer drugs target the cell cycle. Entry into 

the cell cycle can be inhibited by hormonal manipulation, therapeutic antibodies or 

drugs that inhibit the growth signals (Helleday et al., 2008). However, the use of DNA 

damaging chemotherapy which inhibits the cell cycle is more common and will be 

emphasized in this thesis. There are many cancer drugs, and the main groups are listed 

in table 1. Their general trait is their ability to produce excessive amounts of DNA 

damage causing cell death, either directly or following DNA replication.  

Cyclobutane pyrimidine dimer         (6-4) photoproduct 
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Table 1: The main groups of anti-cancer chemotherapy and the various lesions 
they may form. Modified from (Helleday et al., 2008). * Chemotherapy used in the 
work for this thesis. 
 

ANTI‐CANCER CHEMOTHERAPY  DNA LESION 

Radiotherapy and radiomimetics 
Ionizing radiation 
Bleomycin  

Single‐strand breaks 
Double‐strand breaks 
Base damage 

Monofunctional alkylators 
Alkylsuphonates 
Nitrosurea compounds 
Temozolomide * 

Base damage 
Bulky adducts 

Bifunctional alkylators 
Nitrogen mustard 
Mitomycin C * 
Carmustine/BCNU * 
Cisplatin (*) 

Double‐strand breaks 
DNA crosslinks 
Bulky adducts 

Antimetobolites 
5‐Fluorouracil 
Hydroxyurea 
Folate analogues 

Base damage 
Replication lesions 

Topoisomerase inhibitors 
Camptothecins 
Etoposide 

Double‐strand breaks 
Single‐strand breaks 
 

 

Inhibitors of DNA replication impair replication fork progression which may cause 

DNA lesions including DSBs, and are therefore regarded as DNA damaging agents. 

Antimetabolites interfere with DNA replication by inhibiting nucleotide metabolism 

pathways, thereby depleting the cells of deoxyribonucleotides (dNTPs), or by being 

incorporated into the DNA. One of these antimetabolites, hydroxyurea (HU) is a 

clinically important anti-cancer drug and is also commonly used in the laboratory for 

study of arrested replication forks. HU acts by inhibiting the enzyme ribonucleotid 

reductase, preventing the conversion of ribonucleotides into dNTPs, thereby depleting 

the cells for dNTPs and stalling replication (Saban and Bujak, 2009). Inhibitors of the 

topoisomerases exploit the naturally occurring strand breaks. As already mentioned, 
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Topo I introduces SSBs and Topo II introduces DSBs while resolving torsional strains 

during DNA replication. Inhibitors of Topo I cause positive supercoils in front of the 

replication forks and replication associated DSBs, whereas inhibitors of Topo II trap the 

enzyme in complex with DNA leaving DSBs (Nitiss, 2009b; Pommier, 2006).  

Alkylating agents are the oldest group of anti-cancer drugs, and remain among the most 

important group of chemotherapeutics in cancer treatment. In fact, alkylating drugs 

were first introduced as mustard gas during World War I as an agent for chemical 

warfare. Unexpectedly, beneficial traits of this horrifying drug were observed by the US 

Chemical Defense Research Department (Biesele et al., 1950). They found that the 

mustard gas interfered with mitosis and gave chromosomal aberrations, and by 

dissolving mustard gas in alcohol in the late 1920s, the first anti-cancer cytostatic with 

promising effect on superficial tumors was invented (Biesele et al., 1950; Joensuu, 

2008). Although this drug was abandoned from clinical use, it constituted the 

foundation for future research resulting in the crosslinking alkylators used today.  

Alkylating drugs exert their cytotoxic effect by modifying the DNA bases by covalently 

binding to DNA, either directly or after being metabolized in the body. The alkylating 

agents can be either monofuncitonal, with one reactive site modifying single bases, or 

bifunctional, with two reactive sites, capable of crosslinking two DNA bases in the 

same (intra-) or the opposite (inter-) strand. Temozolomide used in paper 1 is an 

example of a monofunctional alkylator. Temozolomide is believed to introduce methyl 

adducts on N7G and O6G, with the O6meG as the most toxic lesion, inhibiting the DNA, 

RNA, and protein synthesis (Marchesi et al., 2007). The alkylators Mitomycin C, used 

in paper 1, and cisplatin mentioned in paper 2 are examples of bifuncional agents and 

are frequently used in treatment of several malignancies. Cisplatin has no alkyl group, 

but its mechanism is similar to that of alkylating drugs. Cisplatin primarily forms 

adducts on GG resulting in intrastrand crosslinks (95%). However, the minor ICLs are 

believed to constitute its anticancer effect by forming a total block of the DNA 

synthesis, thus interfering with the cell cycle (Chaney et al., 2005; Siddik, 2003; Wang 

and Lippard, 2005).  
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Cellular response to DNA damage 

DNA damage can be both mutagenic and cytotoxic to the cell. Left unrepaired upon 

DNA replication, damage to DNA can give rise to mutations, and accumulation of 

mutations in genes coding for proteins involved in the cell’s regulation of growth and 

death may in the worst case give rise to immortal cancer cells. DNA damage may also 

impair the protein synthesis, arrest the cell cycle, and lead to cell death - thus the 

cytotoxicity of the DNA damage. To render life possible, cells have evolved a natural 

defense to combat these threats. One of these defenses is through DNA repair, which 

counteracts most of the DNA damage before they harm the cells. 

DNA repair  

Traditionally, DNA repair has been divided into distinct pathways, such as lesion 

bypass, mismatch repair, direct repair, nucleotide and base excision repair, single and 

double strand break repair and the newly identified Fanconi anemia (FA) pathway. 

Recent research has, however, shown that the pathways are not always distinct and 

crosstalk between the different repair pathways is common. This is demonstrated by the 

Fanconi anemia (FA) ICL repair protein; FANCD1, which is identical to the DSB repair 

protein; breast and ovarian cancer type 2 susceptibility protein (BRCA2) (Wang, 2007). 

In the work for the papers presented in this thesis, we have studied the repair efficiency 

and damage tolerance after induction of certain types of DNA lesions. Most DNA 

lesions can be repaired by several DNA repair pathways, thus; in this thesis, the repair is 

described dependent on which type of DNA damage is repaired. Also, many DNA 

repair pathways are involved in the repair of more than one type of DNA damage, and 

will be briefly described the first time mentioned. To simplify, the focus will be on 

human, nuclear DNA repair. Proteins involved in direct repair as well as nucleotide and 

base excision repair are studied in paper 1, 2 and 3 respectively. Common for all three 

papers, however, is the importance of complex formation, especially with the “Maestro 

of the replication fork” PCNA.  
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Repair of damaged bases and single strand breaks 

DNA damage from endogenous impact such as ROS and alkylation as well as 

spontaneous hydroxylation causes loss or damage of the DNA base. Loss of the base 

resulting in AP sites has the potential to form single strand breaks (SSBs). This kind of 

DNA damage is predominantly repaired by the base excision repair (BER)/single strand 

break repair (SSBR) pathways, however, mechanisms of direct reversal of the damaged 

base, such as bases alkylated by SAM, are also important. Moreover, the mismatch 

repair (MMR) pathway, normally regarded as a repair pathway for mis-incorporated 

bases, is involved in the repair of certain types of base damage.  

Mismatch repair 

The main function of MMR is to execute post-replicative repair of errors that have 

escaped the 3’- 5’ exonucleolytic proofreading activity by replicative DNA polymerases, 

but it can also recognize base damage such as O6meG caused by the anti-cancer drug 

temozolomide used in paper 1. Mis-incorporated bases are identified due to their failure 

to form Watson-Crick base pairs, while the base damage is identified due to a weakened 

base pairing as well as a slightly distorted helix (Dalhus et al., 2009). Mis-incorporated 

bases can give rise to mutations, while the methylated guanine can form base pairs with 

both cytosine and thymine; however, both meG:C and meG:T recruits the MMR 

machinery (Jiricny, 2006; Jun et al., 2006).  

There are still some disputes regarding the exact mechanisms for MMR. However, it is 

commonly agreed that base - base mispairs and small insertion/deletion loop mispairs 

are recognized by a heterodimer of MutS homologues MSH2 and MSH6 (also-called 

MutSα), whereas a heterodimer containing MSH2 and MSH3 (also-called MutSβ) 

recognizes larger insertion/deletion loop mispairs (Jiricny, 2006; Jun et al., 2006). The 

MutSα or β complex binds to the mismatch and recruits a second heterodimer composed 

of two MutL homologues; MLH1 and post-meiotic segregation 2 (PMS2) (also-called 

MutLα). MutSα/β and MutLα are converted into sliding clamps by an ATP-driven 

conformation switch. The MutSα/β and MutLα complexes translocate in both directions 

in search for strand discontinuity. EXO1, a 5’ to 3’ exonuclease, subsequently binds 
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MSH2 and MLH1 (Jager et al., 2001; Tishkoff et al., 1998). This complex is believed to 

degrade a stretch of several hundred nucleotides, while RPA stabilizes the ssDNA. The 

degeneration ceases as the complex encounters the miss-pair. Replicative DNA 

polylmerases can then resyntesize the degraded region and DNA ligase seals the nick 

(Genschel and Modrich, 2003; Jiricny, 2006; Jun et al., 2006). Since only the newly 

synthesized strand is degraded, damaged bases such as O6meG are not removed. Instead, 

MMR is believed to act as a damage sensor, signaling cell cycle arrest due to the so-

called futile cycle, leaving other repair pathways to remove the damage (Jiricny, 2006; 

Meyers et al., 2003). The futile cycle is a result of MMR removal of the mismatch 

leaving the damaged base intact. The remaining lesion makes the MMR pathway to 

restart again and again, leading to cell cycle arrest. This allows time for other DNA 

repair mechanisms to remove the erroneous base, or alternatively formation of strand 

breaks and subsequently cell death (Jiricny, 2006; Meyers et al., 2003). 

PCNA appears to function at several steps in MMR. It is essential from the start during 

mismatch recognition by binding to MSH3 and MSH6 (Flores-Rozas et al., 2000; Iyer 

et al., 2008; Kleczkowska et al., 2001), during translocation by binding of MLH1 (Lee 

and Alani, 2006), during digestion by binding to EXO1 (Nielsen et al., 2004), and 

throughout the completion of the repair pathway by binding the polymerase during 

DNA resynthesis (Moldovan et al., 2007). Notably, MSH3, MSH6 and MLH1 contain 

the conserved PIP-box motif (Kleczkowska et al., 2001; Lee and Alani, 2006). The 

importance of PCNA in the MMR pathway was demonstrated by Clark and colleagues 

by mutating the PIP-box in MSH6, which resulted in increased mutation rate (Clark et 

al., 2000). When using a p21 peptide which binds PCNA tightly by its PIP-box, the 

binding site on PCNA for other PIP-box containing proteins is blocked (Podust et al., 

1995). This was utilized by Maish and colleagues who found that p21 prevents the 

binding of the MMR factors to the replication fork, demonstrating that PCNA is 

required for recruitment of the MMR machinery (Masih et al., 2008). 
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Direct repair 

Direct repair is a mechanism for removing the lesion, without removing the nucleotide. 

There are essentially two mechanisms of direct repair of alkylated bases in humans, 

repair by transfer and by oxidative demethylation. In humans, there is one alkyl 

transferase called O6-methylguanine-DNA methylatransferase (MGMT) also-called O6-

alkylguanine-DNA alkylatransferase (AGT), removing O-alkyl lesions from DNA 

(Kaina et al., 2007). This is a so-called suicide enzyme as it transfers the alkyl group to 

a cysteine acceptor within itself resulting in its inactivation followed by ubiquitylation 

and degradation (Kaina et al., 2007). Inactivation after alkyl transfer has also been 

reported to facilitate a switch of MGMT from a DNA repair protein to a transcription 

regulator, enabling the cell to sense, as well as respond to, mutagens (Teo et al., 2001). 

The N-alkyl lesions are removed by the oxidative demethylases. There are 9 oxidative 

demetylases in humans. These are homologues of the bacterial AlkB protein, and 

members of a large superfamily of enzymes known as iron (II) and 2-ketoglutarate-

dependent dioxygenases (Aravind and Koonin, 2001; Gerken et al., 2007). They are 

identified based on their homology, but little is know about the AlkB homologue 4 to 9 

(ABH4 to 8 and FTO; fat mass and obesity associated protein). ABH8 has been shown 

to contain an RNA binding motif (Osada et al., 2002), and to be associated with 

generation of intracellular ROS and development of bladder cancer (Shimada et al., 

2009), and FTO is known to remove 3meU and 3meT from ssDNA and RNA (Gerken 

et al., 2007; Jia et al., 2008). FTO was recently identified as an AlkB homologue based 

on sequence similarity, and variants of this protein are associated with obesity in 

humans (Frayling et al., 2007). Besides DNA and RNA repair, the homologues are 

believed to be involved in normal RNA methylation and demethylation, as well as 

demethylation of proteins (Sundheim et al., 2008). 

At this date, most is known about ABH1, 2 and 3. Biochemical studies have shown that 

these homologues can demethylate bases in DNA (ABH1, 2 and 3) and RNA (ABH1 

and 3) by an oxidative demethylation mechanism shown in figure 4 (Duncan et al., 2002; 

Westbye et al., 2008). Similar to the bacterial AlkB, the enzymes use oxygen, 2-
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oxoglutarate (2OG) and iron (Fe2+) to hydroxylate the methylated base (Falnes et al., 

2002; Trewick et al., 2002; Aas et al., 2003). Hydroxymethyl is unstable, and is 

spontaneously released as formaldehyde (Sedgwick, 2004).  

 

 

Figure 4: The general mechanism of the human AlkB homologues. 
Adapted from (Roy and Bhagwat, 2007). 
 
 

The first homologue discovered; ABH1 has the highest sequence similarity to AlkB 

(Aravind and Koonin, 2001; Wei et al., 1996). This homologue is predominantly 

localized in mitochondria where it repairs 3meC in ssDNA as well as in RNA (Westbye 

et al., 2008). ABH3 is localized to the nucleus as well as the cytoplasm and repairs 

1meA and 3meC, preferentially from ssDNA and RNA (Aas et al., 2003). 

The human AlkB homologue studied in this thesis is hABH2, which preferentially 

reverses 1meA and 3meC in nuclear dsDNA (Falnes et al., 2004; Koivisto et al., 2004; 

Aas et al., 2003). Furthermore, hABH2 was recently shown to reverse 1,N6-

ethenoadenine in DNA (Ringvoll et al., 2008). In 2003, our group published that 

hABH2 colocalizes with PCNA in replication foci, suggesting a role for this protein 

close to the replication fork (Aas et al., 2003). Removal of the alkylated lesions by 

hABH2 is therefore believed to act in front of the replication fork, preventing the 

alkylated bases to give rise to mutations. Subsequent studies in knock-out mice showed 

that cells deficient in mABH2 accumulated 1meA in DNA (Ringvoll et al., 2006). 

Embryonic fibroblast cells from these mice were sensitive to MMS, and the removal of 

1meA was impaired, particularly in cells arrested in the S-phase (Ringvoll et al., 2006). 

This supports the importance of hABH2 during replication, suggested by Aas and 
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colleagues (Aas et al., 2003). hABH2 does not, however, contain the PIP-box. When 

searching for the sequence responsible for hABH2’s colocalization with PCNA, we 

found that this sequence, which we called APIM also was responsible for a direct 

interaction between these proteins. The discovery of APIM is described in paper 1.  

Base excision and single strand break repair 

BER is a multistep DNA repair pathway removing damaged bases from DNA. As an 

intermediate in BER, SSBs are formed, and repair of these (SSBR) can be considered to 

be the same pathway as BER after excision of the damaged base. However, SSBs can 

also be formed directly by disintegration of the oxidized sugar from ROS attack, or as a 

result of erroneous or abortive activity of Topo 1 (Caldecott, 2008). The BER/SSBR 

pathway can be both replication coupled and replication independent, described in more 

detail later. SSBs left unrepaired upon replication may be fatal to the cells as they can 

lead to DSBs, demonstrating the importance of replication coupled repair.  

Except for the initial base excision and strand excision steps, BER is essentially the 

same as SSBR illustrated in figure 5. The BER pathway is initiated by DNA 

glycosylases which recognize and cleave the N-glycosylic bond between the sugar 

backbone and the damaged base forming an AP site. There are several DNA 

glycosylases more or less damage specific. Roughly they can be divided into mono- and 

bi-functional glycosylases. The mono-funtional glycosylases simply cut out the 

damaged base, leaving the sugar backbone intact. The bi-functional glycosylases 

however, display an associated lyase function incising 5’ and/or 3’ to the AP site 

(Dalhus et al., 2009).  

SSBs need another detection mechanism to recruit the repair machinery since there are 

no erroneous bases to be recognized. Instead, SSBs are recognized by Poly (ADP-ribose) 

polymerase 1 (PARP1), which rapidly binds and modifies itself and the target proteins 

with chains of PAR (Drew and Plummer, 2009; Hakme et al., 2008). PARP1 is also 

activated by SSBs formed indirectly during BER (Durkacz et al., 1980); however, the 

biological significance of this remains elusive since the damage has arisen during a 

coordinated controlled process where the intermediates are passed on from one enzyme 
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to another (Caldecott, 2008). Recent data indicate; however, that PARP1 is needed for 

recruitment of downstream BER/SSBR proteins, particularly the proteins involved in 

the long patch repair described later (Akbari et al., Unpublished). Proteins are recruited 

by the negative charge of the PAR-chain, through interaction by dedicated PARP 

binding motifs (Hakme et al., 2008). 

 

 

 

Figure 5: Sketch of the BER/SSBR pathway after base damage excision 
by the glycosylase. Adapted from (Caldecott, 2008). 
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After removal of the damaged base by the DNA glycosylase, the AP site formed is 

incised by an AP endonuclease (APE1) 5’ to the AP site creating an SSB. For further 

repair, the ends need to be restored to the conventional 3’-OH and 5’-phosphate. 

Enzymatically, this is the most diverse step in BER (Caldecott, 2008). An example is 

DNA damage from ROS which can leave both phosphate and phosphoglycolate at the 

3’ end. These are processed by polynucleotide kinase 3'-phosphatase (PNK) and APE1 

respectively (Evans et al., 2000; Wiederhold et al., 2004), both binding to the 

scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1) (Caldecott, 

2008; Horton et al., 2008). The gap can be sealed by a single nucleotide (short patch 

BER), or up to 10 nucleotides (long patch BER). Pol β is believed to be the main 

polymerase for gap sealing during BER, at least in short patch BER (Podlutsky et al., 

2001). Pol β is shown to interact with XRCC1 (Caldecott et al., 1994), and to interact 

and colocalize with PCNA and XRCC1 in replication foci (Akbari et al., Unpublished; 

Akbari et al., 2010; Kedar et al., 2002). Notably, Pol β also possesses 

deoxyribosephosphate phosphodiesterase (dRPase) activity (Podlutsky et al., 2001), 

generating a ligatable 5’ end which can be sealed by DNA liagase III (LIG3) which 

forms stable complexes with XRCC1 (Parsons et al., 2005). If the dRP-fragment is 

modified in such a way that it becomes resistant to the dRPase activity of Pol β, the 

dRP-fragment is removed as part of a single strand flap generated by strand 

displacement synthesis in the long patch BER (Akbari et al., 2009; Kubota et al., 1996). 

In long patch BER, Pol β, δ and ε in conjunction with PCNA incorporate nucleotides 

while displacing the old strand generating a flap. This flap is removed by FEN1 and the 

gap is sealed by LIG1 (Pascucci et al., 1999).  

It is still disputed what determines whether BER/SSBR ends up in the short- or the long 

patch pathway.  It has been reported to be dependent on the cell cycle, the presence of 

FEN1, PCNA and PARP1, and the type of damage (Akbari et al., 2009; Caldecott, 2008; 

Fan and Wilson, 2005). Recent studies by our group, however, have shown that after 

DNA insult by low dose of near UVA light, XRCC1 recruits its “core” complex 

containing PNK, Pol β, and likely LIG3 and other short patch BER proteins (Akbari et 

al., Unpublished). Higher dose of the near UVA light; however, recruits PCNA and 

FEN1 which are involved in the long patch BER, indicating that the amount or the 
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nature of the damage determines which path to be activated. Higher accumulation of 

PARP1 at the damaged area by addition of PARP inhibitor recruited long patch proteins 

to micro-irradiated regions also at low UVA doses, suggesting a role for PARP1 in 

signaling long patch BER (Akbari et al., Unpublished). There are several commercially 

available PARP-inhibitors, and inhibition of the PARP1-dependent SSBR has shown 

promising results in the treatment of cancers in patients with defective DSB repair 

(DSBR).  PARP1 has therefore been the subject of extensive research the last few years 

(Bryant et al., 2005; Drew and Plummer, 2009; Helleday et al., 2008).  

In addition to PARP1, the scaffolding protein XRCC1 plays a major role for complex 

formation in BER/SSBR. XRCC1 was first identified due to a mutant in Chinese 

hamster ovary cell (CHO, EM9) (Thompson et al., 1982). The XRCC1 mutant was 

isolated due to its hypersensitivity to  MMS and IR, and the cells displayed defective 

SSBR, increased sister chromatid exchange as well as reduced homologous 

recombination (HR) (Hoy et al., 1987; Thompson et al., 1982). Later, the same group 

cloned the gene, and by expressing the XRCC1 protein in EM9 mutant cells, they found 

that this protein could restore the SSBR to the same level as the XRCC1 wild type 

(CHO AA8) cells (Thompson et al., 1990). The CHO EM9 and AA8 cells are used for 

studies performed for paper 3.  

XRCC1 has no known enzymatic activity, but exerts its effect as a scaffolding protein 

(Caldecott, 2008; Horton et al., 2008). XRCC1 is important for efficient recruitment of 

proteins to BER/SSBR from the early damage recognition in BER by binding to DNA 

glycosylases such as Uracil-DNA glycosylase 2 (UNG2), N-methylpurine DNA 

glycosylase (MPG) also-called 3-alkyladenine DNA glycosylase (AAG), Nei 

endonuclease VIII-like 2 (NEIL2) and 8-oxoguanine DNA glycosylase (OGG1) (Akbari 

et al., 2010; Campalans et al., 2005; Das et al., 2006; Marsin et al., 2003) and by 

binding to PARP1 in SSB recognition (Caldecott, 2008; Horton et al., 2008; Masson et 

al., 1998). Furthermore, XRCC1 is reported to interact with the downstream BER 

proteins Pol β, PNK, PCNA, APE1, LIG3, and PARP1 and 2 (Caldecott, 2008; 

Caldecott et al., 1994; Fan et al., 2004; Masson et al., 1998; Schreiber et al., 2002; Vidal 

et al., 2001). Importantly, XRCC1 binds to itself forming multimers (Akbari et al., 2010; 
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Fan et al., 2004). Also Aprataxin and tyrosyl DNA phosphodiesterase (TDP1) binds to 

XRCC1 (Caldecott, 2008; Plo et al., 2003).  Aprataxin and TDP1 are not essential for 

BER; however, congenital defects in these proteins give rise to neurological disorders 

described later.  

Fully competent short patch and long patch BER complexes can be isolated by 

immunoprecipitation of XRCC1 (Akbari et al., Unpublished; Akbari et al., 2010). There 

seems to be at least three distinct BER/SSBR complexes. One complex is present in 

unthreated cells independent of the cell cycle, one is formed upon DNA insult, and one 

is bound to PCNA at sites of DNA replication (Akbari et al., Unpublished; Akbari et al., 

2010). Results from pull-down followed by BER activity assays by Akbari and 

colleagues lead to suggestion of a model where there are pre-replicative BER/SSBR 

complexes containing UNG2 and XRCC1 proteins and a post-replicative BER/SSBR 

divided into two steps. Post-replicatively, UNG2 is believed to bind PCNA at the site of 

the replication excising the mis-incorporated uracil, forming an AP site which is 

repaired by a tightly followed, but non-interacting, XRCC1 complex (Akbari et al., 

2010).  

XRCC1 consists of tree functional domains, one N-terminal DNA binding domain, one 

internal BRCA1 carboxyl-terminal (BRCT) 1 domain and one C-terminal BRCT2 

domain (Horton et al., 2008). Which domain is important for the scaffolding properties 

of XRCC1 has, however, been somewhat elusive. In paper 3, the relative contribution of 

each of these domains for intra-nuclear localization, recruitment to DNA damage, 

capacity for recruitment of the other BER/SSBR proteins as well as their capacity to 

form functional BER/SSBR complexes are described. The nuclear localization signal 

(NLS) to BRCT1 part of XRCC1 which turned out to be the key region for the function 

of XRCC1, contains three common single-nucleotide polymorphisms (SNPs). These 

SNPs have been the subjects to massive epidemiological studies in the search for 

correlations between the different XRCC1 SNPs and the capacity of DNA repair and 

cancer risk (Vineis et al., 2009). Thus, the repair capacity of XRCC1 with the various 

SNPs was also examined in paper 3. 
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For replication coupled BER/SSBR, PCNA is involved from damage recognition 

through binding of the DNA glycosylases to the final ligation, suggesting a PCNA-

guided ordered reaction (Moldovan et al., 2007). UNG2 is up-regulated during the S-

phase of the cell cycle (Hagen et al., 2008), and colocalizes with PCNA in replication 

foci through its PIP-box (Otterlei et al., 1999). This brings UNG2 to the replication fork 

where it is believed to perform pre- and post-replicative excision of uracil as described 

previously. The glycosylase mutY homologue (MYH) involved in the repair of mis-

incorporated adenine opposite of 8oxoG (Slupska et al., 1996), also interacts with 

PCNA through its PIP-box (Chang and Lu, 2002). MYH is likely involved in post-

replicative removal of mis-incorporated adenine similar to UNG2’s removal of mis-

incorporated uracil (Akbari et al., 2010). In addition, MPG removing methylated purine 

bases, mainly 3meA (O'Connor and Laval, 1991), interacts with PCNA through an 

inverted PIP-box (Xia et al., 2005). 3meA is a replication blocking lesion, thus MPG is 

likely repairing this lesion in a pre-replicative process. PCNA is shown to not only bind, 

but also to stimulate UNG2, NEIL1 and possibly MPG (Dou et al., 2008; Ko and 

Bennett, 2005; Xia et al., 2005). Furthermore, XRCC1, APE1, FEN1, Pol β/ε/δ and 

finally LIG1 interact with PCNA (Dianova et al., 2001; Fan et al., 2004; Moldovan et 

al., 2007). In BER/SSBR independent of replication, PCNA is believed to be mainly 

involved in the long patch gap filling (Caldecott, 2008).  

The involvement of PCNA in BER/SSBR is undisputable, and also PARP1 has been 

reported to interact with PCNA (Simbulan-Rosenthal et al., 1999). PCNA is known to 

be poly (ADP) ribosylated by PARP1, and there seems to be a correlation between S-

phase associated expression of PCNA and PARP1. This suggests a role for PARP1 in 

PCNA expression, possibly by interacting with its promoter (Simbulan-Rosenthal et al., 

1999). Interestingly, conserved APIM motifs are found in PARP1 as well as PARP2 and 

4 (paper 1); however, the biological significance of these motifs in PARP remains to be 

confirmed. 



 32

Repair of double strand breaks 

DSBs constitute the most serious DNA damage as they can lead to mutations, 

chromosome instability and cell death (Bernstein and Rothstein, 2009). DSBs can be 

formed directly from IR or ROS or indirectly from incomplete BER/SSBR, from 

inhibited Topo II, stalled and collapsed replication fork, low pH and more (Ohnishi et 

al., 2009). To counteract the serious threat of DSBs, cells have evolved two distinct 

pathways, HR and non-homologous end joining (NHEJ). Defects in either one of these 

pathways lead to genetic instability and tumorgenesis (Delacote and Lopez, 2008). HR 

is most efficient when the sister chromatid is close by, thus post replication. NHEJ has 

generally been believed to act during the G1-phase; however, studies have shown that 

NHEJ can act in all stages of the cell cycle (Rothkamm et al., 2003). This enables the 

pathways to complement for each other in all stages of the cell cycle, except in G1 

where there is no template for HR. 

Homologous recombination  

HR is mostly an error-free repair pathway that uses the homology of the sister 

chromatid to direct DNA synthesis across the damaged region. Roughly, Ataxia 

telangiectasia mutated (ATM) and the MRE11/RAD50/NBS1 (MRN) complex mediate 

the cell’s initial response to DSBs. The damaged ends are then modified to generate 

3’ssDNA tails which are substrates for HR. The key proteins RAD51 and RPA bind to 

the 3’ssDNA, forming a nucleoprotein filament. When homology is found, this 

nucleoprotein filament attaches to the sister chromatid invading the double strand, 

forming a so-called D-loop, constituting the template for DNA polymerase (Ohnishi et 

al., 2009). The strand invasion is dependent on RAD51, which is upregulated in many 

cancer types (Richardson, 2005). Another key protein in HR is the BRCA2 protein 

which is the same protein as FANCD1. BRCA2 binds RAD51, thereby restricting its 

action to the sites of DSBs where RAD51 accumulates. BRCA1 is also involved in HR 

repair by binding to the RAD51 and BRCA2; however, the exact mechanism for this 

contribution is not clear (Huen et al., 2010). Other proteins participating in HR are 

RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, RAD54 and RAD54B (Dudas and 

Chovanec, 2004; Ohnishi et al., 2009). The importance of BRCA1 and 2 is visualized 
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by women with BRCA1 and 2 defects. These women are highly predisposed to breast 

and ovarian cancer (Huen et al., 2010; Yu et al., 2000), thus the full name for these 

proteins; breast and ovarian cancer type 1/2 susceptibility protein (BRCA1/BRCA2) 

(Huen et al., 2010). 

PCNA has not so far been reported to directly participate in the HR pathway. However, 

in paper 1, we show that the RAD51 paralog, RAD51B, interacts with PCNA via the 

newly identified APIM motif. RAD51B is thought to assist RAD51 in the early stages 

of HR, and is unique amongst the RAD51 paralogs in that its deficiency results in 

hypersensitivity to DNA damaging agents, chromosomal instability and impaired 

RAD51 foci formation (Date et al., 2006). Furthermore, APIM was also identified in the 

BRCA1/BRCA2-containing complex subunit 45 (pro-BRE) and in the human structural 

maintenance of chromosomes 5 (hSMC5), both involved in HR (paper 1). Interestingly, 

the hSMC5 in complex with hSMC6 has been reported to be necessary for post-

replicative repair of DSBs (Potts et al., 2006). The functionality of APIM in pro-BRE 

and hSMC5, however, remains to be investigated. 

Non‐homologous end joining 

This DNA repair pathway is a straight forward re-ligation of the DNA ends without 

requirement of template, in a manner believed to be error-prone. The fidelity of NHEJ, 

however, depends on the nature of the DSB. DSBs from collapsed replication forks 

mostly generate one-ended DSBs. NHEJ requires two ends, and will ligate the one-

ended DSB with a distal end causing gene rearrangements (Delacote and Lopez, 2008). 

The DSBs formed during G1 such as from IR and ROS leave two proximal ends, 

readily re-ligated by NHEJ (Delacote and Lopez, 2008). Since the main part of the 

genome is non-coding, loss or gain of a few nucleotides may not affect the genetic 

stability.  

Roughly, the Ku70/80 heterodimer binds the DNA ends recruiting and activating DNA-

dependent protein kinase (DNA-PK). DNA-PK phosphorylates the Ku proteins, XRCC4, 

XRCC4-like factor (XLF), Artemis, and itself (Pastwa et al., 2009). Blunt DNA ends 

are ligated by a complex of XLF, XRCC4 and DNA ligase IV (LIG4) (Ahnesorg et al., 
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2006). However, when loss or gain of nucleotides is required, additional nuclease and 

polymerase activities take place. In humans, the endonuclease Artemis and the DNA 

polymerases Pol γ and Pol λ are reported to have roles in formation of blunt ends in the 

NHEJ pathway (Lieber, 2008; Povirk et al., 2007). Interestingly, an alternative DNA-

PK/LIG4/XRCC4- independent pathway has been identified (Audebert et al., 2004). By 

using the DNA strand break chemical Calichemaicin γ1, PARP1 inhibitor, and cells 

proficient and deficient in PARP1, Ku80 and XRCC1, Audbert and colleagues found 

that this alternative pathway requires PARP1 and the ligation activity of XRCC1 - LIG3 

(Audebert et al., 2004). Moreover, the XRCC1 partner PNK is reported to be involved 

in restoration of ligatable ends (Chappell et al., 2002). These are proteins traditionally 

referred to as BER/SSBR proteins, demonstrating the growing evidence of crosstalk 

between the DNA repair pathways.  

As mentioned previously, XRCC1 binds to PCNA (Fan et al., 2004). Moreover, PARP1 

contains the APIM motif described in paper 1 and may also bind to PCNA. Involvement 

of XRCC1 and PARP1 in the alternative NHEJ pathway may therefore recruit PCNA. 

However, so far, there are no reports of PCNA interference with NHEJ, but due to the 

multiplicity of PCNA, a role of PCNA in NHEJ would not be surprising. 

Repair of intrastrand crosslinks  

Intrastrand crosslinking can be formed as a consequence of exogenous insult such as 

UV-B and UV-C and from bifunctional chemical agents commonly used in cancer 

treatment. Furthermore, crosslinks can be formed by endogenous insults such as from 

peroxidized lipids (Friedberg, 2006). The intrastrand crosslinks kink the DNA helix, 

serving as templates for the nucleotide excision repair (NER) pathway. Furthermore, 

specialized DNA polymerases can bypass these intrastrand crosslinks by the so-called 

translesion synthesis (TLS) during replication. 
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Nucleotide excision repair 

NER is the most versatile of the repair pathways as it repairs the diverse group of helix-

distorting DNA lesions, mainly generated by environmental agents (Altieri et al., 2008; 

Hoeijmakers, 2009). These lesions interfere with base pairing, and disrupt transcription 

as well as DNA replication (Kaufmann, 2007; Unsal-Kacmaz et al., 2007). Even so, this 

pathway has not yet been reported to be coupled to replication. The lesions repaired by 

NER include pyrimidine dimers (mainly (6-4) photoproducts) caused by UV radiation 

(figure 3) and “bulky” chemical adducts that are incorporated in the DNA disrupting the 

folding (Nouspikel, 2009). Dependent on whether the damage occurs in the actively 

transcribed domains or elsewhere in the genome, repair is initiated by either of the two 

sub pathways; transcription coupled nucleotide excision repair (TCR), dealing with 

damage blocking the RNA polymerase or global genome nucleotide excision repair 

(GGR) recognizing damage throughout the genome (Nouspikel, 2009). Figure 6 shows 

a simplified sketch of TCR and GGR. 

In TCR, the stalled RNA polymerase complex recruits Cockayne syndrome A and B 

(CSA and CSB) proteins. CSA has been shown to polyubiquitylate CSB, causing its 

release and degradation (Groisman et al., 2006). In GGR, recognition of the DNA 

damage is dependent on the kink. In the cases where the DNA lesions are causing a 

strong kink, e.g. (6-4) photoproducts, Xeroderma pigmentosum (XP) group C in 

complex with human homologue of yeast Rad23 protein (HR23B) recognize the lesion 

(Nouspikel, 2009; Sugasawa et al., 1998). DNA lesions causing a more modest kink, e.g. 

CPDs; however, are first recognized by damage DNA binding protein 1 (DDB1) 

together with an XPE/DDB2 complex. This heterodimer increases the kink, making it 

readily recognizable for the XPC complex (Chu and Chang, 1988; Nouspikel, 2009; 

Tang and Chu, 2002). After damage recognition, GGR and TCR are identical. The ten-

component basal transcription factor II H (TFIIH) interacts with XPC from GGR or the 

stalled transcription apparatus from TCR. XPB and XPD, components of TFIIH are 

DNA helicases unwinding the DNA (Evans et al., 1997; Sarker et al., 2005). This makes 

space for binding of XPA and RPA, preventing reannealing (Evans et al., 1997). The 
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strand is cleaved by ERCC1-XPF and XPG, and the damaged oligonucleotide (25-30 

bases) is removed (Mu et al., 1996; O'Donovan et al., 1994). Finally, the remaining gap 

is filled by the DNA replication machinery (Popanda and Thielmann, 1992; Shivji et al., 

1992) and sealed by DNA ligase, presumably by LIG3 in complex with XRCC1 (Moser 

et al., 2007; Ogi et al., 2010).  

 

 

Figure 6. Simplified sketch of NER, from damage recognition to 
incision (Cleaver 2009). 

 

All together, more than 30 proteins participate in the NER pathway (Hoeijmakers, 

2009). XPA has an essential, but not yet fully understood role in the core incision 

complex, where it is believed to be involved in damage verification and tethering of 

DNA and the other NER subunits (Camenisch and Nageli, 2008; Nouspikel, 2009). 
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Furthermore, a recent publication suggests a presence of XPA in the process all the way 

from damage verification to the repair synthesis (Luijsterburg et al., 2010). Despite the 

small size (273 amino acids), XPA has many binding partners. XPA is reported to 

interact with RPA, XPC-HR23B, TFIIH, ERCC1, XPC, and XPA-binding protein 1 and 

2 (XAB1 and XAB2) (Camenisch and Nageli, 2008; He et al., 1995; Krasikova et al., 

2008; Matsuda et al., 1995; Nakatsu et al., 2000; Nitta et al., 2000; Tsodikov et al., 2007; 

You et al., 2003). Finally, XPA is reported to interact with DNA (Kuraoka et al., 1996), 

and itself forming dimers (Yang et al., 2002). Unlike the other NER proteins, XPA has 

no other known biochemical functions, thus impairing XPA will specifically affect NER. 

This makes XPA a potential target for improving cancer chemotherapy, and certain 

studies have shown that by impairing XPA directly, cells are sensitized to the 

crosslinking agent cisplatin (Cummings et al., 2006; Wu et al., 2003). 

The presence of PCNA is indispensable for functional NER (Moldovan et al., 2007; 

Shivji et al., 1992). In 1997 PCNA was shown to participate in the DNA repair 

synthesis step in NER, through binding to the N-terminal of XPG. They also showed 

that this domain was essential for PCNA binding and NER activity (Gary et al., 1997). 

Subsequent studies showed that this N-terminal PCNA binding domain in XPG was the 

conserved PIP-box motif (Warbrick, 2000). Moreover, in paper 2, we show that also the 

scaffolding NER protein XPA binds to PCNA mediated by the APIM motif, and that 

this interaction is required for proper function of the NER pathway. 

Lesion bypass  

Arrested replication fork is a challenge for the cell, and prolonged stalling can result in 

fatal DSBs. Conserved from bacteria to humans, cells possesses mechanisms for 

replicating past certain types of lesions, by using specialized TLS DNA polymerases. In 

humans, there are currently 9 known specialized polymerases, termed Pol η (eta),  ι 

(iota), κ (kappa), λ (lambda), μ (mu), θ (theta), ζ (zeta, Rev3), Rev1, and ν (nu) (Loeb 

and Monnat, 2008). These polymerases can temporarily switch with the blocked 

replicative DNA polymerases and polymerize over the damaged DNA. This is possible 

because these TLS polymerases have more flexible base-pairing properties enabling 
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them to bypass the lesions. The flexibility, however, makes them “sloppy” and not as 

accurate as the replicative DNA polymerases. Moreover, unlike the replicative 

polymerases (Pol δ,ε,γ) the TLS polymerases lack proofreading activity. Together with 

the flexibility, this contributes to a common reference of these polymerases as error-

prone, thereby mutagenic (Loeb and Monnat, 2008; Wang, 2001). Some polymerases 

have distinct biological roles, and Pol η replicates accurately past T-T CPDs from UV 

irradiation. In the absence of Pol η, the TLS polymerases Pol ι, Pol κ, Pol ζ, and Rev1 

may bypass CPDs, however, in an error-prone manner. Thus, cells lacking Pol η are 

hypermutable following UV exposure, visualized by the skin cancer predisposition 

syndrome XP variant (XPV) (Huang and D'Andrea, 2006; Inui et al., 2008; Pfeifer et al., 

2005; Vaisman et al., 2003). Also, Pol , Pol , and Rev1 can copy past bulky DNA 

adducts, while Pol ζ and Pol θ are believed to be important for bypass of DNA 

crosslinks (Loeb and Monnat, 2008). Furthermore, Pol η, Pol ζ, Pol μ, and possibly Pol ι, 

may also participate in somatic hypermutation involved in antibody maturation (Wang, 

2001; Zhu and Zhang, 2003).  

Switching from the replicative DNA polymerase and deciding which of the TLS DNA 

polymerases to use, is probably to a large extent determined by PTMs on PCNA. 

Ubiquitylation of PCNA is one of the best characterized examples of how PTMs on 

PCNA regulate its action (Lee and Myung, 2008; Moldovan et al., 2007). 

Monoubiquitylation on PCNA at K164 is reported to increase the affinity towards the 

TLS polymerases (Huang and D'Andrea, 2006). The ubiquitin dependent binding of the 

TLS polymerases to PCNA is widely believed to be physically coupled to stalled 

replication forks (Davies et al., 2008; Ulrich, 2009; Yang and Zou, 2009). This has 

recently been challenged by Karras and Jentsch. They suggest that TLS triggered by 

monoubiquitylation of PCNA not normally mediates bypass at stalled replication forks, 

but rather mediates bypass post replication or even outside of the S-phase, at least in 

yeast (Karras and Jentsch, 2010). Pol η, Pol ι and Pol κ all bind PCNA through their 

PIP-boxes (Moldovan et al., 2007). Pol ζ on the other hand, contains the newly 

discovered APIM motif (paper 1), however, whether this motif is functional in Pol ζ, 

remains to be determined. 
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Repair of interstrand crosslinks 

Most crosslinking agents generate both intrastrand crosslinks and ICLs, however, the 

ICLs are believed to be more severe as they pose a complete block of both transcription 

and DNA replication (McCabe et al., 2009). The repair of ICL is complex and not yet 

fully understood, however, it is believed to be both replication dependent, relying on the 

FA, HR and NER pathways and replication independent, relying on NER and TLS 

(Karras and Jentsch, 2010; Wang, 2007; Wang et al., 2001).  

The Fanconi anemia pathway 

The FA pathway was identified due to the rare cancer predisposition syndrome with the 

same name caused by mutation in any of the 13 hitherto known FANC genes. Little is 

known about the mechanism of the FA pathway, but it is known to be crucial for 

replication-coupled repair of ICLs. The FA proteins form complexes with each other as 

well as with proteins from the HR pathway (Bagby and Alter, 2006; Knipscheer et al., 

2009). The FA pathway is believed to act in front of the replication fork, where it is 

somehow involved in the repair of ICLs, enabling the replication fork to progress 

(Wang, 2007).  The 13 FANC proteins can be divided into three groups based on their 

function. Group I consists of 8 FA proteins constituting the core complex (FANCA, B, 

C, E, F, G, L, and M). Group II consists of FANCD2 and I, both of which are 

ubiquitylated by FA group I proteins and proposed to bind to DNA (Knipscheer et al., 

2009; Wang, 2007). Group III consists of FANCD1 (BRCA2), J and N and are 

connected to breast cancer (Wang, 2007). Homozygous mutations in any of the FANC 

genes cause the FA disorder, while heterozygous mutations in any of the group III 

FANC genes predispose female carriers to breast cancer (Knipscheer et al., 2009; Wang, 

2007). Some of the FA proteins have enzymatic activities: FANCM (group I) contains 

domains for helicase and endonuclease activities and has translocase activity; FANCJ 

(group III) is a DNA helicase interacting with BRCA1; and finally FANCD1 (BRCA2) 

(group III) is a regulator of RAD51.  
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Even though the FA pathway is replication dependent, an involvement of PCNA has not 

yet been demonstrated (McCabe et al., 2009; Wang, 2007). In paper 1, however, we 

report that one of the core FA proteins, FANCC (group I), contains the APIM motif. 

The functionality of APIM in FANCC, however, remains to be determined. 

 

  

Figure 7. One of the models proposed to describe replication coupled 
repair of ICLs. A: Replication fork arrest at ICL recruits and activates the 
core FA proteins (group I). Group I FA ubiquitylates group II FA proteins. 
B: Unhooking of the crosslink by XPF-ERCC1 and MUS81-EME1. C: FA 
group III facilitates clearing of DNA and loading of TLS polymerases, 
creating a DSB. D-E: NER removes the remaining adducts and repairs the 
gap. F: FA group II recruits BRCA1-RAD51, promoting HR. G: 
Resolution of the recombination by FA helicases, and replication fork 
restart. Adapted from (Wang, 2007). 

 

There are several theories for how repair of replication associated ICLs takes place. One 

model proposed by Wang is shown in figure 7 (Wang, 2007). The damage recognition 

is believed to be initiated by either collapsed replication fork or the FA proteins 

(McCabe et al., 2009). Recognition is tightly followed by incision near the ICL 

involving the NER heterodimer ERCC1/XPF and MUS81/EME1 unhooking the ICL 

A B C 

D E 

F G 
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(7B). The remaining gap may be resynthesized by TLS forming a DSB (7C) (Nojima et 

al., 2005; Wang, 2007). The FA group III protein FANCJ helicase is believed to 

facilitate clearing of DNA and loading of the TLS polymerase (Wang, 2007). The 

remaining DSB is further repaired by the HR pathway shown to be essential for error-

free repair of ICLs, where RAD51 plays an important role (7F) (Godthelp et al., 2002; 

Nojima et al., 2005). Finally, the FA helicases (FANCJ and M) are believed to resolve 

the recombination enabling restart of the replication fork (Wang, 2007).  

To complicate the story further, the previously mentioned replication coupled MMR is 

also involved in ICL repair. Upon treatment with crosslinking anti-cancer drugs such as 

cisplatin, MMR is reported to signal cell cycle arrest due to the so-called futile cycle, 

eventually leading to strand break and cell death (Jiricny, 2006; Meyers et al., 2003). 

Thus, the MMR pathway induces cell death in response to cisplatin treatment, and 

deficient MMR is related to increased resistance to cisplatin (Jiricny, 2006; Meyers et 

al., 2003; Wang and Lippard, 2005). Interestingly, the NER complexes XPA - RPA and 

XPC - HR23B have been reported to cooperate with the MMR complex MutSβ in 

recognition of ICLs (Thoma et al., 2005; Zhao et al., 2009).  

An HR-independent repair of ICL, probably also independent of replication, exists. This 

repair involves TLS together with the NER pathway and is unlike replication-dependent 

repair of ICL, error-prone (Wang et al., 2001). NER is believed to incise on both sides 

of the lesion, followed by TLS and another action of the NER pathway, resulting in 

removal of the ICL (McCabe et al., 2009; Wang et al., 2001). In this case, TLS is 

predominantly carried out by Pol ζ, at least in mouse and avian cells (Shen et al., 2006). 

Pol ζ is dependent on PTM modified (monoubiquitylated) PCNA and Rev1 for bypass 

of ICLs, in a process recently suggested to be independent of replication (Karras and 

Jentsch, 2010; Shen et al., 2006). A direct interaction between Pol ζ and PCNA has, 

however, not been demonstrated (Shen et al., 2006). Notably, Pol ζ contains the APIM 

motif described in paper 1. The PCNA form binding to the APIM containing proteins 

also has a PTM modification; however, the nature of this PTM is not yet known. 
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Clinical  features  of  patients with  hereditary  defects  in 
DNA repair pathways  

The importance of the particular DNA repair pathways are demonstrated by the severe 

consequence for people with congenital DNA repair impairments, leading to 

predisposition to cancer or other diseases.  

Perhaps the most pronounced disorder comes from defects in the NER pathway, with 

three rare human disorders, Xeroderma pigmentosum (XP), Cocayne syndrome (CS) 

and trichothiodystrophy (TTD). The skin cancer disease XP arises from mutations in 

one of the seven XP genes. The XP patients exhibit a >1000-fold increase in the 

incidence of sun-induced skin cancer, and 20% of the patients also develop neurological 

abnormalities dependent on which gene is defective (Cleaver et al., 2009; Hakem, 2008; 

Hoeijmakers, 2001). XP patients with defects in the GGR damage recognition proteins 

XPC and XPE have the lowest level of neurological damage, probably because RNA 

polymerase II is unaffected (Cleaver et al., 2009). CS is a rare human autosomal 

recessive inherited genetic disease. CS patients have growth retardation, progressive 

cognitive impairment and they die young. Similar to the XP patients they are also 

excessively sun sensitive, but do not seem to be predisposed to skin cancer. The CS 

disorder is caused by mutations in CSA or CSB genes, and CS cells therefore fail to 

recover gene transcription after DNA damage. Arrested RNA polymerase will induce 

apoptosis, thus damaged cells are lost rather than mutated. This explains why CS is not 

associated with increased cancer risk (Cleaver et al., 2009; Thoms et al., 2007). TTD is 

also a rare human autosomal recessive disorder caused by defective NER. In this case, 

the mutations are found in the XPB or XPD helicase genes. The TTD patients suffer 

from brittle hair and nails, dwarfism and ataxia, and half of the patients are sensitive to 

sunlight, however, as for CS patients, TTD patients do not seem to be predisposed to 

skin cancer (Cleaver et al., 2009; Thoms et al., 2007). 

Sun sensitivity is also observed in patients with mutations in the TLS polymerase Pol η 

demonstrating its role in UV damage bypass (Pfeifer et al., 2005; Stary and Sarasin, 

2002). These patients have normal NER function, and the disorder was therefore named 



 43

XPV prior to the identification of Pol η in 1999 (Masutani et al., 1999). The XPV 

patients are not as sensitive to UV light as the NER deficient XP patients; however, they 

are significantly predisposed to various types of skin cancers as a response to UV light 

from the sun (Inui et al., 2008).  

Defects in the MMR pathway are related to development of hereditary non-polyposis 

colon cancer (HNPCC). Mutations in the MSH2 or MLH1 genes are most common 

(Hakem, 2008), but such mutations only constitute 3-4 % of all colorectal cancer 

incidents (Hsieh and Yamane, 2008). Defects in SSBR also lead to rare genetic 

disorders; Ataxia-oculomotor apraxia 1 (AOA1) and the even more seldom disorder; 

Spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). None of the disorders result 

in genetic instability; instead they are characterized by ataxia and other neurological 

defects (Caldecott, 2008). The AOA1 disorder originates from mutations in the gene 

encoding aprataxin and SCAN1 from mutations in the gene encoding TDP1, both 

binding partners of the scaffolding proteins XRCC1 (Caldecott, 2008; Plo et al., 2003). 

Defects in BRCA1 and BRCA2 proteins predispose women to breast and ovarian cancer. 

As described previously, these proteins are important for HR repair of the fatal DSBs. 

BRCA1 is furthermore important for cell cycle regulation by interacting with numerous 

cell cycle checkpoint and repair proteins through its BRCT domain. Moreover, BRCA1 

is involved in DNA replication by regulating the ubiquitylation status of Topo II α 

(Huen et al., 2010). Pernicious homozygous mutations in any of the two BRCA genes 

result in enhanced chromosomal alterations termed gross chromosomal rearrangements 

which are the leading cause of cancerous mutations (Yu et al., 2000). For breast cancer, 

only 5 to 10% of the women carry mutation in BRCA1 or BRCA2. However, a woman 

carrying BRCA1 or BRCA2 mutations in one allele, has 40 to 80% chance of developing 

breast cancer, making these mutations the strongest breast cancer predictors know 

(Fackenthal and Olopade, 2007).  

Furthermore, homozygous mutations in any of the 13 FANC genes result in the genetic 

cancer predisposition syndrome FA. Genetically, the disease is characterized by 

chromosomal instability and hypersensitivity to ICLs (Wang, 2007). The phenotype is 
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characterized by bone marrow failure and high risk of myelodysplasia, acute 

nonlymphocytic leukemia and certain epithelial malignancies. In addition, the patients 

usually have particular features such as growth retardation, small head size, and café-au-

lait spots; however, some patients acquire the characteristic features in adulthood 

(Bagby and Alter, 2006). As discussed for ICL repair, the FA pathway seems to work in 

tight collaboration with HR, however, the FA patients does not seem to be predisposed 

to breast or ovarian cancer. Heterozygous mutation in the group III FANC genes 

(FANCJ and FANCN in addition to FANCD1/BRCA2), however, seems to predispose 

women to breast cancer (Wang, 2007). 

DNA repair and cancer therapy 

The overall goal of cancer chemotherapeutic treatment is to impose a huge enough 

threat to the cells’ DNA to make the cells give up and die. Our natural defense against 

these threats, DNA repair, will counteract these insults, and will ironically impair the 

cancer treatment. One approach for improving cancer treatment is therefore to modulate 

the DNA repair to increase the drug efficacy. Another approach is to take advantage of 

the cancer cells’ defective DNA repair pathways, such as in the case of the BRCA1 and 

2 deficient breast and ovarian cancers, which have reduced ability to repair DSBs. 

However, each cancer is genotypically different, thus personalized medicine has a 

potential for utilizing the particular genetic features for each of the cancer incidents. 

Alkylating agents are widely used in cancer treatment (table 1). The direct repair protein 

MGMT is important for repair of O-alkylated lesions; however, the enzyme is 

inactivated and degraded after repair (Kaina et al., 2007). Thus, pseudo substrates for 

MGMT can be used in combination with temozolomide (which causes O6meG). This 

will decrease the amount of active MGMT, and increase the effect of temozolomide. A 

class of pseudo substrates for MGMT is currently being tested in clinical trials in 

combination with temozolomide (Sharma et al., 2009). 

At this date, the hottest DNA repair protein target for cancer therapy is PARP. Most is 

known about PARP1, which is involved in several DNA repair pathways, but most 
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importantly in BER/SSBR. Inhibition of PARP1 will impair SSBR, leading to the 

formation of DSBs. The use of PARP inhibitor has been suggested to work as a 

combination therapy for several types of cancers (Helleday et al., 2008); however, the 

indisputably best effects of PARP inhibitors is seen in BRCA1 and BRCA2 deficient 

cancer cells. Women with inherited heterozygous BRCA1 and BRCA2 defects have one 

functional allele; however, the cells that have developed into tumor cells have lost the 

functionality of both alleles (Yu et al., 2000). Consequently, the cancer cells in these 

patients display impaired DSBR by the HR pathway (Bryant et al., 2005; Farmer et al., 

2005). By threating cells with PARP inhibitors, the SSBR is impaired, leading to 

accumulation of SSBs. SSBs left unrepaired form fatal DSBs. During DNA replication 

in normal repair proficient cells, these DSBs are repaired by HR. However, in the HR 

impaired BRCA1 and BRCA2 deficient cancer cells, more DSBs will remain unrepaired, 

leading to collapse of the replication fork and subsequent cell death (Bryant et al., 2005; 

Farmer et al., 2005). The use of PARP inhibitors is in phase III clinical trials and show 

promising results for these patients (Rouleau et al., 2010).  

As our knowledge about the whole DNA repair machinery grows - which proteins are 

involved in repair of the various DNA lesions, how the proteins are modified and how 

they work together in complexes to efficiently repair the DNA - new possibilities for 

modulation of DNA repair emerge. Overexpression of an APIM containing fusion 

protein sensitized cells to various DNA damaging agents, including several anti-cancer 

drugs (paper 1 and 2). Thus, the APIM-peptide may be a potential DNA repair 

modulator for future cancer treatment. The intense basic research on DNA repair the last 

few decades will likely identify several new ways to modulate DNA repair, providing 

us with better and more customized cancer medicine in the future. 
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AIMS OF THE STUDY 

The overall goal of this thesis was to study protein interactions in DNA repair using 

sophisticated in vivo cell biology based experiments. Use of confocal microscopy 

enables the study of fluorescently tagged proteins in living cells, in an environment 

close to reality. Our aim was to identify the regions within the particular DNA repair 

proteins responsible for complex formation with other DNA repair proteins and the 

“Maestro of the replication fork”, PCNA. Furthermore, we wanted to investigate the 

biological significance of these interactions in terms of repair efficiency and cell 

survival. 

In 2003, our group published that hABH2 colocalizes with PCNA in replication foci 

(Aas et al., 2003); however, unlike many other known proteins colocalizing with PCNA, 

it did not contain the PIP-box. The first aim of this thesis was therefore to reveal 

whether hABH2 and PCNA were directly interacting, and to find the region of hABH2 

responsible for its complex formation with PCNA. The search for the PCNA interacting 

region in hABH2 turned into an identification of five conserved amino acids 

constituting a novel PCNA interacting motif, which we termed APIM. This motif was 

found in more than 200 proteins, many with distinct roles in DNA repair. Whether 

APIM was a functional motif in these proteins, however, was not known. Thus, the next 

aim was therefore to investigate the functionality of APIM in XPA, with an essential but 

not yet fully understood role in NER.   

Numerous papers dealing with XRCC1 and its binding partners have been published. 

XRCC1 contains three conserved domains, reported to bind various repair proteins in 

vitro. However, which of these domains that is responsible for its localization to 

replication and to damaged areas, as well as its ability to recruit its binding partners, has 

been somewhat elusive. Furthermore, several SNPs within XRCC1 are associated with 

cancer. Therefore, the final and slightly different aim of this thesis was to study the 

ability of the various XRCC1 deletion mutants and SNP variants for intra nuclear 

migration, complex formation, protein recruitment, and repair capacity. 
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PAPER SUMMARY 

Paper 1, Journal of Cell Biology 2009:  

Identification of a novel, widespread, and functionally important PCNA‐
binding motif 

Karin M. Gilljam†, Emadoldin Feyzi†, Per A. Aas†, Mirta M.L. Sousa,  Rebekka Müller, 
Cathrine B. Vågbø, Tara C. Catterall, Nina B. Liabakk, Geir Slupphaug, Finn Drabløs, 
Hans E. Krokan, and  Marit Otterlei 

† These authors contributed equally to this work 

 

hABH2 colocalizes with PCNA in replication foci (Aas et al., 2003), but lacks the 

PCNA interacting peptide (PIP) box found in many proteins colocalizing with PCNA 

(Warbrick, 2000). Thus, the work for this paper started with dissecting hABH2, finding 

the smallest possible part responsible for its colocalization with PCNA, and 

examination of whether this sequence also mediated direct binding to PCNA. 

By fluorescently tagged overexpressed proteins, confocal imaging, dot blot and pull-

down assays we found that 5 conserved amino acids in the N-terminal of hABH2 were 

responsible for the colocalization between hABH2 and PCNA. Dot blot and subsequent 

in vivo confocal imaging showed that a conserved aromatic amino acid in position 2 (F, 

Y or W) of the 5 amino acid motif was crucial for its binding to PCNA. Positive 

fluorescence resonance energy transfer (FRET) indicates that the proteins are within 10 

nm, and pull-down of crosslinked proteins indicates that the proteins are within 0.2 nm 

of one another (Matyus, 1992; Vasilescu et al., 2004). By using these two approaches, 

we found it most likely that the interaction between hABH2 and PCNA was direct. We 

termed this 5 amino acid motif AlkB homologue 2 PCNA interacting motif (APIM). 

Results from the fractionated pull-down assays suggested that only a part of the 

available hABH2 and PCNA - predominantly in the chromatin enriched fraction, 

interacted. This may indicate that PCNA, hABH2, or both need to be PTM modified to 

interact. This was supported by 2 dimensional gel electrophoresis analyses which 
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showed that APIM pulled down a modified form of PCNA; however, the nature of this 

modification is still enigmatic.  

The functionality of APIM in hABH2 was illustrated by mutating F in position 4 in 

hABH2 to A, which totally disrupted colocalization with PCNA. Moreover, 

overexpression of APIM-YFP in S-phase cells threated with MMS lead to an elevated 

level of 3meA, and increased the sensitivity to MMS, measured by colony forming and 

MTT assays. However, APIM also sensitized cells to other DNA alkylating agents 

(Carmustine/BCNU, Mitomycin C and Temozolomide) introducing DNA damage not 

believed to be repaired by hABH2.  

Using the APIM motif (K/R)-(F/Y/W)-(L/I/V/A)-(L/I/V/A)-(K/R) as a query, we 

obtained hundreds of hits in the Swiss-Prot/TreEMBL database. Of these, about 200 

proteins had conserved APIM and were believed to be localized in the nucleus. Many of 

these proteins are involved in cellular stress-responses to DNA damage. Of the APIM 

containing proteins found, we verified functional APIM sequences in four proteins in 

addition to hABH2: transcription factor II S Like; transcription factor II-I; DNA 

topoisomerase II α; and RAD51B. All proteins colocalized and gave positive FRET 

with PCNA in replication foci. Importantly, mutation of the conserved amino acid (F to 

A) in APIM sequence in all these proteins either abolished colocalization or reduced 

FRET with PCNA, demonstrating the functionality of APIM in these proteins. In fact, 

the general transcription factor TFII-I has four APIM motifs. Mutation of either one of 

these motifs reduced FRET, and mutation of all four together totally abolished 

colocalization with PCNA. This suggests that several motifs can compete for stronger 

binding to PCNA.  

To summarize, this paper presents the finding of a new PCNA interacting motif, called 

APIM, first discovered in hABH2. This motif binds directly to a modified form of 

PCNA in replication foci. A conserved APIM is found in more than 200 nuclear 

proteins, and a functional motif is demonstrated for 4 of these in addition to hABH2. 

Overexpression of this motif sensitizes cells to various DNA damaging agents 

introducing various types of lesions in DNA. 
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Paper 2, Manuscript submitted May 2010:  

Proper functioning of the Xeroderma Pigmentosum group A protein is 
dependent on interaction with PCNA  

Karin M. Gilljam, Rebekka Müller, and Marit Otterlei 

 

The identified PCNA interacting motif, APIM (paper 1), was found in more than 200 

proteins; however, the functionality of APIM in these proteins is not known. This paper 

investigated the functionality of APIM in the core NER pathway protein Xeroderma 

pigmentosum group A (XPA). 

Experimentally, we made use of fluorescently tagged overexpressed proteins, confocal 

imaging, FRET, dot blot, pull-down, siRNA knock down, and MTT assay to examine 

the functionality of APIM in XPA. We found that XPA colocalized with PCNA in 

replication foci, and that XPA and PCNA were co-immunoprecipitated. Similar to what 

we found for the hABH2 - PCNA interaction (paper 1), the XPA - PCNA interaction 

seemed to be stronger in the chromatin enriched fraction than in the soluble fraction, 

probably requiring the PTM form of PCNA found in paper 1. Furthermore, FRET 

analysis indicated that XPA and PCNA were in close proximity. The APIM motif found 

in XPA is conserved within the DNA binding part of XPA, and these 5 conserved 

amino acids from XPA were sufficient for a close interaction with PCNA both in vitro 

(dot blot) and in vivo (confocal imaging including FRET measurements).  

Unlike hABH2, transcription factor II S Like, transcription factor II-I, DNA 

topoisomerase II α, and RAD51B in paper 1, mutation of APIM in XPA did not reduce 

colocalization nor FRET with PCNA in HeLa cells. However, XPA has been reported to 

form dimers (Yang et al., 2002), and our FRET measurements supported this. Therefore, 

we used XP-A deficient fibroblast cells (GMO4429) for colocalization and FRET 

analysis. We found a strong reduction in FRET between XPA mutated in APIM and 

PCNA compared to the wild type constructs. However, the mutant XPA still colocalized 
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with PCNA, probably through its other binding partners. Notably, one of its binding 

partners, named XPA binding protein 2 (XAB2) also contains APIM (paper 1). 

We found that overexpression of an APIM-peptide severely increased the sensitivity for 

damage from UV-B irradiation, which primarily is repaired by the NER pathway 

(Nouspikel, 2009). Importantly, by using siRNA knock down of XPA, we showed that 

the increased sensitivity against UV-B in cells overexpressing APIM compared to 

control cells was dependent on the presence of XPA. This strongly suggests that the 

UV-B sensitizing effect of APIM overexpression was due to reduced NER imputable to 

impaired binding between XPA and PCNA.  

To summarize, this paper shows that XPA colocalizes and binds directly to PCNA 

through the newly discovered APIM motif, and that overexpression of APIM sensitized 

cells to UV-B only when XPA is present.  
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Paper 3, manuscript:  

The NLS to BRCT1 region of XRCC1, harbouring the three most common 
single nucleotide variations, is essential for the scaffolding function of 
XRCC1. 
 
Audun Hanssen‐Bauer†, Karin Solvang‐Garten†, Karin M. Gilljam, Kathrin Thorseth, 
David M. Wilson III, Mansour Akbari, and Marit Otterlei  

† These authors contributed equally to this work 

 

The scaffolding protein XRCC1 is composed of several conserved domains, all 

involved in interactions with different proteins. However, which of these domains is 

important for the scaffolding function, and the ability of XRCC1 to be recruited to sites 

of DNA damage or DNA replication, is somewhat elusive. Furthermore, SNP variants 

of XRCC1 have been associated with increased cancer incidents. Thus, in this paper we 

examined three different deletion mutants and three different SNP variants of XRCC1 

and compared them with the full length, conservative protein in an XRCC1-/- 

background.  

To investigate which part of XRCC1 was required for recruitment to sites of DNA 

damage, we used fluorescently tagged deletion mutants of XRCC1 (N-terminal, internal 

and C-terminal mutant). By introducing local damage by near UVA laser (405nm) 

during confocal imaging, we found that the BRCT1 region (present in both the internal 

and the C-terminal mutants) was essential for migration to sites of DNA damage. By co-

expressing the XRCC1 deletion mutants with PCNA, PNK and Pol β, we found that the 

mutants carrying the suggested binding sites from in vitro experiments (Fan et al., 2004; 

Whitehouse et al., 2001), in addition to the BRCT1 domain, increased the recruitment of 

these proteins to micro-irradiated regions. Furthermore, we found that the BRCT1 

region was absolutely required for colocalization of XRCC1 with sites of DNA 

replication, and that this colocalization was independent of the XRCC1-PCNA 

interaction sites.  
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Comet assay analysis, measuring single and double strand breaks as well as alkali labile 

sites, revealed that only the internal deletion mutant containing the region from NLS 

through BRCT1 had the capability to partly complement XRCC1 in XRCC1-/- cells after 

MMS challenge. This mutant neither binds Pol β nor LIG3, but contains the reported 

binding site for the 3-methyl-adenine DNA glycosylase (MPG) (Campalans et al., 2005), 

important for repair of methylated bases from MMS exposure. Thus, this mutant had the 

ability to colocalize with PCNA and MPG - two properties likely important for the 

complementation of XRCC1 for alkylation repair. The complementation observed 

despite the lack of Pol β and LIG3 binding sites may indicate that the repair of alkylated 

bases by MPG is most important during replication when other polymerases and DNA 

ligase I from the replication machinery are available. The internal mutant also possesses 

the binding site for OGG1, NEIL2 and NTH1 repairing oxidative base damage 

(Campalans et al., 2005; Marsin et al., 2003), however, this mutant could not 

complement for XRCC1 after H2O2 challenge.  

The three common SNPs in XRCC1, Arg194Trp, Arg280His and Arg399Gln have been 

associated with increased incidence of specific cancers. All these SNPs are found within 

the important NLS - BRCT1 region of XRCC1. When comparing these SNP variants of 

XRCC1 with the conservative protein in our cell biology based experiments, we could 

not detect significant differences with regard to intra-nuclear localization or their ability 

to recruit Pol β or PNK to micro-irradiated regions. However, we found a slightly 

reduced ability to form and to maintain foci upon micro-irradiation as well as a slightly 

different repair profile after MMS and H2O2 treatment in two of these SNP variants 

compared with the conservative XRCC1. Small variations in repair profiles could have 

significant implications in vivo. 

To summarize, the BRCT1 domain of XRCC1 is important for its accumulation to local 

DNA damage, and the mutants carrying the suggested binding sites for PCNA and PNK 

recruited these proteins to the micro-irradiated regions. The internal NLS - BRCT1 

domain was further required for partial complementation of XRCC1 for alkylation 

damage repair. This part of XRCC1 carries three known SNPs showing slightly 

different accumulation upon micro-irradiation and in vivo repair efficiency.  
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DISCUSSION OF RESULTS AND PLANS FOR THE FUTURE 

To increase the efficiency of DNA repair, proteins cluster together to be at the right 

place at the right time. Efficient DNA repair is vital during DNA replication, and the 

replication associated repair complexes - often mediated through binding to PCNA - has 

been our main focus.  

Complex  formation with PCNA  increases  the DNA  repair efficiency and 
cell survival 

Direct repair of alkylation damage by hABH2 has previously been reported to be 

localized to the replication fork (Aas et al., 2003), and to be required for efficient repair 

of 1meA during replication (Ringvoll et al., 2006). In paper 1, we showed that the 

interaction between hABH2 and PCNA is direct, mediated by a five amino acid motif 

which we termed APIM. Overexpression of this motif sensitized cells to damage from 

MMS, and increased the amount of 1meA in MMS threated HeLa cells arrested in S-

phase. The sensitization by APIM is probably caused by blockage of the binding site for 

hABH2 on PCNA as illustrated in figure 8. This strongly indicates that hABH2 works 

more optimal while it is in complex with PCNA. We believe that hABH2 is bound to 

PCNA that is present close to the front of the replication fork during steady state 

replication of the genome. Alternatively, it may be in the vicinity of the replication fork 

and bind to PCNA with high affinity when the replication is stalled, similar to what is 

suggested for the TLS polymerases (Kannouche et al., 2004). 

The core NER protein XPA has many binding partners, but the endonuclease XPG has 

been the only NER protein reported to bind to PCNA (Camenisch and Nageli, 2008; 

Gary et al., 1997). However, a recent publication investigating the assembly and 

disassembly of the NER proteins after UV-irradiation showed that XPA, not XPG, 

remained present in the final repair synthesis step, only accompanied by PCNA and 

RPA (Luijsterburg et al., 2010). They also suggested that XPA binds to the repair 

synthesis intermediate with high affinity. In accordance with this, we suggested that 

XPA binds directly to PCNA in paper 2. Importantly, our results showed that the 
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interaction is mediated by APIM and that proper function of XPA for UV damage repair 

is dependent on interaction with PCNA. Our data indicates that the interaction between 

XPA and PCNA takes place in replication foci, although NER is considered to be 

replication independent. Thus, interaction at the replication foci might be an artifact of 

overexpression due to direct interaction, enabling overexpressed PCNA to transport 

overexpressed XPA to these foci. Alternatively, XPA might in fact have an important 

role close to the replication fork. Bulky adducts and crosslinks block replication 

(Kaufmann, 2007; Unsal-Kacmaz et al., 2007; Wang and Lippard, 2005). Thus, keeping 

the NER core protein XPA in front of the replication fork could enable pre-replicative 

NER removal of the crosslink, allowing progression of the replication. The TLS 

polymerases may bypass the same bulky adducts, however, in an error-prone manner 

(Loeb and Monnat, 2008). NER, on the other hand has generally been considered to be 

error-free (Wood and Shivji, 1997; Youngs and Smith, 1973), although this has recently 

been challenged (Ogi et al., 2010). Ogi and colleagues suggest that not only Pol δ and 

Pol ε but also the “sloppy” TLS polymerase Pol κ may participate in the repair synthesis 

step in NER. Nevertheless, the presence of replication coupled repair by NER would be 

beneficial for the genome integrity. The confocal images show a clear colocalization 

between XPA and PCNA (paper 2), but compared to hABH2 (paper 1), more XPA 

seems to be in the nucleoplasm, indicating that only a fraction of the available XPA 

binds to PCNA. XPA may therefore have more than one role in the cell, which may 

mirror the contradictory published material concerning both the function as well as the 

cellular localization of XPA (Asahina et al., 1994; Bartels and Lambert, 2007; Lambert 

and Yang, 2000; Luijsterburg et al., 2010; Rademakers et al., 2003; Wu et al., 2007).  

The BER/SSBR complexes appear to be comprehensive and intricate, and whether the 

BER/SSBR repair foci are pre-formed or formed sequentially upon DNA damage is part 

of an ongoing debate (Akbari et al., Unpublished; Akbari et al., 2010; Dianov et al., 

2003; Fan and Wilson, 2005). Both XRCC1 and PCNA can be referred to as scaffolding 

proteins, since they have no enzymatic activity but instead mainly exert their effects 

through interaction with other proteins. PARP1 is reported to be important in BER, 

mainly through its recognition and binding to single strand breaks (Caldecott, 2008); 

however, recent work in our group suggests that PARP1 is important for recruitment of 
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long patch BER proteins (Akbari et al., Unpublished). PARP1 is reported to bind to the 

internal NLS-BRCT1 mutant of XRCC1 (Masson et al., 1998), the mutant required for 

complementation of XRCC1 in alkylation damage repair (paper 3). However, the C-

terminal mutant, which also possesses the binding site for PARP1, did not have the 

capacity to complement for XRCC1. Thus, SSB recognition or recruitment of long 

patch repair proteins is not likely to be important in this case. It is more likely that the 

internal mutant’s ability to bind to PCNA and MPG is its cardinal trait in 

complementation of XRCC1 in alkylation damage repair. It has recently been shown 

that the repair of alkylation damage from MMS, primarily executed by BER, is essential 

for fork progression during replication, at least in yeast (Vazquez et al., 2008). 

Moreover, MPG has been reported to be up-regulated in the S-phase and to interact with 

PCNA through an “inverted” PIP-box (Bouziane et al., 2000; Xia et al., 2005). This 

supports that the function of this protein is dependent on binding to PCNA, apparently 

recruited by XRCC1.  

The potential binding of OGG1, NEIL2 and NTH1 to the same internal XRCC1 

deletion mutant during exposure to oxidative damage from hydrogen peroxide did not 

support repair. This may indicate that repair of oxidative damage is not linked to 

replication to the same extent as the repair of alkylation damage, or that the main 

products of hydrogen peroxide treatment are SSBs. OGG1 has previously been reported 

to be constitutively expressed throughout the cell cycle (Dhenaut et al., 2000), whereas 

NEIL2 and NTH1 are reported to be up-regulated during S-phase (Hazra et al., 2002; 

Luna et al., 2000), and NTH1 to interact with PCNA (Oyama et al., 2004). A study has 

shown that knock down of both OGG1 and NTH1 individually, sensitized cells to 

hydrogen peroxide, demonstrating that this is a substrate recognized by these 

glycosylases (Yang et al., 2006). However, Yang and colleagues used ~100× more 

hydrogen peroxide compared to what we used in our comet assays. This dose would 

have wiped out our XRCC1 deficient cells, but perhaps a higher dose of hydrogen 

peroxide gives more oxidative damage.   
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PTMs  on  PCNA  mediate  the  binding  of  APIM  containing  proteins, 
possibly  inducing  DNA  repair,  cell  cycle  arrest,  and  re‐adjustments  in 
transcription 

We found that the PCNA form pulled down by APIM was modified (paper 1), and we 

are currently working on identification of this PTM. Compared to the main form of 

PCNA (pulled down by anti-PCNA antibodies), the form pulled down by APIM had a 

rare modification, making PCNA slightly more basic but not much larger. Thus, it is not 

likely that this modification is an ubiquitylation which is reported to signal the switch 

from a replicative to a TLS polymerase upon arrest of the replication fork (Lee and 

Myung, 2008). It is more likely that this modification is an acetylation, a PCNA 

modification reported to be enriched in the chromatin bound fraction and up-regulated 

during S-phase (Naryzhny and Lee, 2004). Thus, this modification fits well with our 

data; however, we have not been able to identify any acetylations on PCNA by Western 

blots. In terms of charge and size, the APIM specific modification also resembles the 

reported cancer specific methyl esterification on PCNA (Hoelz et al., 2006); however, 

APIM containing proteins also interact with PCNA in noncancerous cells. We believe 

that APIM specific PTM modification of PCNA may be induced by DNA damage, 

signaling a switch in PCNA’s binding preference from PIP-box containing proteins, to 

APIM containing proteins as illustrated in figure 8. This will explain why APIM 

expression sensitized cells to DNA damaging agents, whereas unthreated cells seemed 

to be unaffected by APIM (paper 1 and 2).  

 
Figure 8. Suggested change in PCNA’s affinity towards PIP-box containing 
proteins (orange) to affinity towards APIM containing proteins (blue) as a result 
of APIM specific PTMs on PCNA after DNA damage. Expression of the APIM 
peptide (small blue dots) blocks the binding of APIM containing proteins to 
PCNA. 
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Cells overexpressing APIM are hyper-sensitive to crosslinking agents such as 

Carmustine/BCNU and Mitomycin C (paper 1) as well as cisplatin (unpublished data), 

forming intrastrand crosslinks and ICLs. The cellular response to these crosslinks 

involves several processes including cell signaling and activation of various DNA repair 

pathways such as NER, HR, FA and TLS (Wang and Lippard, 2005; Wang, 2007). 

Impaired function of XPA may contribute to the increased sensitization to crosslinks; 

however, we did not observe any sensitization to cisplatin when we knocked down XPA 

by siRNA. It is not likely that diminished hAHB2 affects the sensitization to these 

agents; however, reduced function of RAD51B may reduce the efficiency of HR and 

thereby the error-free ICL repair. Moreover, the reason for APIM’s sensitization to 

crosslinking agents is probably imputable to reduced function of several of the APIM 

containing proteins listed in http://tare.medisin.ntnu.no/pcna/index.php, published in 

paper 1. Among these are the HR proteins pro-BRE and hSMC5, and the FA protein 

FANCC mentioned previously. Preliminary studies regarding the core FA protein 

FANCC show that FANCC colocalizes with PCNA, possibly through a functional 

APIM motif (Müller et al., in prep). Also, the MAP kinase pathway contains three 

APIM containing proteins; MAPKAP Kinase 2 and 5 (MK2 and MK5) and mitogen-

activated protein kinase 15. MK2 is known to be activated upon cell stress including 

DNA damage (Kyriakis and Avruch, 2001), and a recent study has suggested a role for 

MK2 in cell cycle arrest in response to DNA damage (Reinhardt and Yaffe, 2009). An 

ongoing study at our lab suggests that the MAP-kinase pathway is partly impaired by 

overexpression of APIM, possibly contributing to the sensitization to crosslinking 

agents (Müller et al. in prep).  

The transcription machinery controls and adjusts the protein production according to the 

cells’ demand. After cell stress such as DNA damage, transcription of stress-related 

genes is stimulated while transcription of growth-related genes is repressed (Lopez-

Maury et al., 2008). In paper 1, our strongest evidence for the functionality of APIM as 

a PCNA interacting motif was the transcription factor TFII-I with four conserved 

functional APIM motifs. TFII-I is a growth factor induced transcription factor which 

has been shown to participate in transcription of Cyclin D1, which is important for cell 

cycle entry into S-phase as a response to growth signal (Desgranges and Roy, 2006). 
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Vice versa, the same group suggested that TFII-I is ubiquitylated and degraded 

following genotoxic stress, resulting in repression Cyclin D1 transcription and thereby 

cell cycle arrest. Thus, a presence of TFII-I in front of the replication fork would 

efficiently sense the DNA damage and signal for cell cycle arrest. Furthermore, two 

RNA polymerase II subunits contain APIM, whereas the largest subunit (RPB1) has 

shown to colocalize with PCNA in replication foci (Halvei, 2009, unpublished Master 

thesis). This supports a close interaction between DNA replication and transcription, 

which has already been suggested (Gilchrist et al., 2008; Malyavantham et al., 2008). A 

close interaction between these two processes, which previously was referred to as 

separate (Wei et al., 1998), enables communication of replication arrest upon 

encountering of DNA damage. This may lead to transcription repression of growth-

related genes, while transcription of stress-related genes may be stimulated. Our data 

from paper 1, suggests that APIM could be important in this linkage between DNA 

replication and transcription, possibly signaled by APIM-specific PTMs on PCNA.   

In vivo versus in vitro approach for the study of protein complexes 

Traditionally, protein interactions have been studied in vitro, inside a tube. Our 

approach; however, has been to identify protein-protein interactions and protein 

localization in live cells in vivo. Many of our results could not be obtained from purified 

proteins and in vitro experiments. Examples are our endless unsuccessful attempts to 

show specific binding between purified full length hABH2 and PCNA in vitro, before 

we realized that the PCNA form binding to APIM is PTM modified. Thus, specific high 

affinity interaction is likely dependent upon this modification. XRCC1 is similar to 

PCNA, a scaffold protein which is PTM modified. The exact nature and extent of PTM 

modifications on XRCC1 and PCNA are not fully understood. However, proper protein 

modifications as well as correct intra-cell and intra-nuclear localization are vital in order 

to study and identify new interaction partners. 

In cases where the alternative PTMs are known and can be mimicked, in vitro assays 

can be useful. If we can mimic the specific PTM required for APIM’s binding to PCNA, 

we can execute in vitro assays to quantitatively elucidate the stimulatory effect of 
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hABH2’s binding to PCNA. However, whether the binding between hABH2 and PCNA 

increases the activity of hABH2 in a reaction tube where the enzyme and substrate are 

in close proximity is uncertain. Another urgent issue that needs to be addressed is to 

elucidate where on PCNA the APIM motif binds. If we manage to acquire specific in 

vitro binding between APIM and PCNA, they can be crystallized together, or 

alternatively be analyzed by Small angle X-ray scattering (SAXS) experiments. The 

PIP-box has been reported to bind into a hydrophobic pocket of PCNA buried under the 

interdomain connecting loop (Bruning and Shamoo, 2004; Gulbis et al., 1996), and 

whether the APIM-peptide binds to or overlap with this loop is of interest since this 

could tell us whether PIP and APIM collaborate and mutually exclude each other.  

APIM versus PIP  

For 11 years (Warbrick, 1998), the PIP-box was the only known PCNA interacting 

motif, and in many papers we find the sentence “…PIP box, was found in … and most 

other PCNA-binding partners” (Moldovan et al., 2007). In fact, in the database search 

performed for paper 1, we found 226 nuclear proteins with conserved APIM and “only” 

198 with conserved PIP-box, indicating that at least as many proteins contain the APIM 

motif. The functionality of PIP and APIM in most of these proteins, however, remains 

to be determined. The majority of the PIP-containing proteins are directly involved in 

DNA replication or in processes tightly bound to the replication such as the MMR 

pathway. On the other hand, APIM containing proteins appear to be involved in 

processes more important after cell stress. In support for this, overexpression of a PIP-

box peptide (from p21) completely blocked DNA replication (Mattock et al., 2001), 

while overexpression of APIM had little or no effect on the cell growth without addition 

of cytotoxic agents (paper 1 and 2).  

APIM Therapeutics AS 

The APIM motif is now being patented, and a company APIM Therapeutics AS, has 

been established. Exposing various cancer cells to an APIM-derived peptide has shown 

that the toxic effect of APIM alone is a matter of concentration. Also, the toxicity varies 

significantly between different cancer cells. Certain cancer cell lines, such as lymphoma 
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and myeloma cells, are particularly sensitive to the peptide without additional drugs, 

whereas other cancer cell lines such as osteosarcoma and breast cancer cells appear to 

be unaffected by APIM expression alone, but display an increased sensitivity when 

exposed to APIM in combination with cancer chemotherapy. Moreover, preliminary 

studies using a Xenograft prostate cancer mouse model have shown that the mice 

receiving the APIM peptide together with cisplatin displayed delayed tumor growth. 

Importantly, the APIM motif is not toxic to the mice as judged by body weight loss at 

receivable doses; thus, the APIM-peptide has a potential as a DNA repair modulator in 

future cancer treatment.  
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Introduction
Proliferating cell nuclear antigen (PCNA) is a member of  
the conserved sliding clamp family of proteins. It is essential 
for chromosomal DNA replication and important for several 
DNA transactions, such as DNA repair, epigenetic modifica-
tion, chromatin assembly and remodeling, sister chromatid 
cohesion, and cell cycle control (Moldovan et al., 2007). Nu-
merous proteins involved in these processes are localized in 
so-called replication factories, and many of these proteins 
interact with PCNA through the conserved sequence called the 
PCNA-interacting peptide (PIP) box (QxxL/I/MxxHF/DF/Y; 
Warbrick, 2000). However, several PCNA-binding proteins  
do not contain a PIP box (Fan et al., 2004; Moldovan et al., 
2007). Furthermore, posttranslational modifications (PTMs) 
of PCNA have been reported to regulate the affinity to its 
binding partners, as illustrated by polymerase switch (Lehmann 
et al., 2007).

Human cells are exposed to alkylating compounds pro-
duced endogenously from environmental sources and drugs 

used in cancer treatment (Drabløs et al., 2004). Proteins  
involved in DNA repair and cell cycle control are interesting 
targets to increase the efficacy of chemotherapy (Helleday  
et al., 2008). The DNA damage introduced, such as alkylation 
adducts and interstrand cross-links, may lead to miscoding, 
replication arrest, double-strand breaks, and/or cell death. The 
simpler lesions, such as methylated bases, are repaired by base 
excision repair (BER), oxidative demethylation, or methyl 
transfer, depending on the type of damage (Sedgwick et al., 
2007). The BER enzyme 3-methyladenine DNA glycosylase 
(AAG/MPG; removes 3meA) and the oxidative demethylase 
human AlkB homologue 2 (hABH2; repairs 1meA and 3meC) 
are both localized in proximity of replication foci (Aas et al., 
2003; Xia et al., 2005). Although MPG contains an “inverted” 
PIP box sequence for interaction with PCNA, no PIP box is 
found in hABH2.

In this study, we demonstrate that hABH2 interacts with 
PCNA through a novel PCNA-interacting motif, AlkB homo-
logue 2 PCNA-interacting motif (APIM), and that APIM is a 
functional PCNA-binding motif important for several proteins 
involved in DNA maintenance and cell cycle regulation after 
DNA damage.

 Numerous proteins, many essential for the DNA 
replication machinery, interact with proliferating 
cell nuclear antigen (PCNA) through the PCNA-

interacting peptide (PIP) sequence called the PIP box. We 
have previously shown that the oxidative demethylase  
human AlkB homologue 2 (hABH2) colocalizes with PCNA 
in replication foci. In this study, we show that hABH2 inter-
acts with a posttranslationally modified PCNA via a novel 
PCNA-interacting motif, which we term AlkB homologue 2 

PCNA-interacting motif (APIM). We identify APIM in 
>200 other proteins involved in DNA maintenance, tran-
scription, and cell cycle regulation, and verify a functional 
APIM in five of these. Expression of an APIM peptide  
increases the cellular sensitivity to several cytostatic agents 
not accounted for by perturbing only the hABH2–PCNA 
interaction. Thus, APIM is likely to mediate PCNA binding 
in many proteins involved in DNA repair and cell cycle 
control during genotoxic stress.
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Tyr could substitute for Phe at this position, whereas Ala abol-
ished the interaction (Fig. 2 B and not depicted). We verified 
the sequence specificity for the PCNA interaction in vivo by 
expressing the conserved amino acids 1–7 of hABH2, and vari-
ants in which Phe4 was substituted by Tyr, Trp, or Ala, in fusion 
with YFP and tested their subnuclear localization. Expressed 
fusion proteins containing an aromatic amino acid in position 4 
colocalized with PCNA when expressed alone (Fig. 2 C, rows 
1 and 2) and when coexpressed with CFP-PCNA (Fig. 2 C, 
rows 3–5). Analogous to what was found in dot blot assays, the 
F4A mutation severely reduced the colocalization with PCNA 
(Fig. 2 C, row 6). By measuring fluorescence resonance energy 
transfer (FRET), we found that both full-length hABH2-YFP 
and hABH21–10-YFP as well as hABH21–7F4W-YFP are in very 
close proximity with CFP-PCNA because fluorescent tags must 
be <100 Å apart to give positive FRET (Mátyus, 1992).

To further investigate the proximity between hABH2 and  
PCNA, we performed in vivo cross-linking in cells stably ex
pressing hABH21–7-YFP-Flag and hABH21–7F4A-YFP-Flag 
using formaldehyde. Formaldehyde induces heat-reversible cross-
links of proteins that are within 2 Å of one another (Vasilescu  
et al., 2004). Extracts from these cells were used for IP with -Flag. 
After elution with Flag peptide, cross-links in half of the samples 
were reversed. In Fig. 2 E (lanes 3 and 11), bands containing both  
PCNA and Flag are identified at molecular masses of 70–75 kD 
(1: PCNA cross-linked to hABH21–7-YFP-Flag), 100–130 kD 
(2: PCNA dimer or trimer cross-linked to hABH21–7-YFP-Flag), 
and 160–190 kD (3: PCNA trimer cross-linked to two or three 
hABH21–7-YFP-Flag). Bands 1 and 2 are much stronger in the 
IP from cells expressing hABH21–7 wild type (WT) than from 
cells expressing the hABH21–7F4A mutant, and band 3 is not de-
tected in the IP from cells expressing the hABH21–7F4A mutant. 
Notably, after reversal of the cross-links (lanes 4 and 12), only 
PCNA and Flag bands of 35 kD were identified, suggesting that 
the larger bands detected in lanes 3 and 11 were cross-linked with 
hABH21–7-YFP-Flag and PCNA. Together with the FRET, these 
data strongly support a direct interaction between hABH21–7  
and PCNA.

Our data from co-IP experiments (Fig. 1, B–D) indi-
cated that more complexes of hABH2 and PCNA were pulled 
down from chromatin-enriched fractions, suggesting potential 
involvement of PTMs. Therefore, we analyzed the isoform 
distribution of PCNA cross-linked to hABH21–7-YFP-Flag 
by 2D Western blot (WB) analysis and compared it with the 
total repertoire of PCNA isoforms present in the same cell 
extract (Fig. 2 F). We included purified RAD51 as an inter-
nal standard because its isoelectric point (pI; 5.4) is close to 
the pI of unmodified PCNA (4.6). Our results indicate that 
the PCNA variants cross-linked to hABH21–7-YFP-Flag (top 
membrane) are shifted toward a more acidic pI without sig-
nificantly changing the vertical migration. Multiple isoforms 
of PCNA with pI between 4 and 5 have previously been identi-
fied, although the exact nature of most of these modifications 
is not known (Naryzhny, 2008). Most PCNA present in a cell 
(lower membrane), and the low levels (Fig. 2 E, lane 7) of 
PCNA cross-linked to hABH21–7F4A-YFP-Flag (mutant; mid 
membrane), have a higher pI than the PCNA pulled down by 

Results and discussion
The 10 N-terminal amino acids in hABH2 
are essential for colocalization with PCNA
To identify the region in hABH2 responsible for localization in 
replication foci during S phase (Aas et al., 2003), we coexpressed 
PCNA tagged with a blue variant of GFP (CFP-PCNA) and var-
ious hABH2 deletion mutants fused with a yellow GFP variant 
(YFP) because GFP-tagged PCNA is known to form foci rep-
resenting sites of replication (Leonhardt et al., 2000). First, we 
verified that hABH2-YFP colocalized with endogenous PCNA  
similar to coexpressed, tagged PCNA (Fig. 1 A, rows 1 and 2).  
Next, we found that deletion of the 10 N-terminal amino acids  
in hABH2 totally abolished the colocalization with PCNA.  
Remarkably, these 10 amino acids fused to YFP were sufficient 
for colocalization with PCNA (Fig. 1 A, rows 3 and 4). No-
tably, coexpression of CFP-PCNA increased the localization 
of full-length hABH2 (hABH21–261-YFP) but not hABH211–261-
YFP in nuclear foci, suggesting a direct interaction between 
PCNA and hABH2 mediated by the 10 N-terminal amino  
acids of hABH2.

To investigate the potential hABH2–PCNA interaction in 
more detail, soluble and chromatin-enriched protein extracts were 
prepared from cells expressing hABH2-YFP, hABH211–261-YFP, 
or YFP and subjected to coimmunoprecipitation (co-IP) using 
anti-YFP antibodies (-YFP). Notably, low levels of PCNA 
were pulled down from the soluble cell fraction, whereas PCNA 
was readily pulled down from the chromatin-enriched fraction. 
Moreover, removal of the 10 N-terminal residues in hABH2 
markedly decreased the amount of PCNA pulled down (Fig. 1 B). 
The hABH2–PCNA interaction was confirmed by reciprocal 
experiments using extracts from cells expressing YFP-PCNA 
(Fig. 1 C) and also by targeting endogenous PCNA (Fig. 1 D).  
In both cases, more hABH2 was pulled down from the chromatin-
enriched fractions than from the soluble fractions (Fig. 1, C  
and D), even though both proteins were present in the soluble frac-
tion (Fig. 1 D, input). Collectively, these results support the idea 
that hABH2 interacts with PCNA and that the binding sequence 
is contained within hABH2’s 10 N-terminal amino acids. The 
apparent preferential association of hABH2 and PCNA in the 
chromatin-enriched fraction may indicate that a subfraction of 
either of the proteins exists in a PTM form, promoting the inter-
action. Alternatively, the presence of other proteins may medi-
ate the observed interaction. A bridging effect caused by DNA 
interaction was considered less likely because the chromatin-
enriched fraction was subjected to extensive DNase and RNase 
treatment before co-IP.

hABH2 directly interacts with PCNA 
through a novel PCNA-binding motif
Sequence alignment of ABH2s from several species shows  
that the seven N-terminal amino acids are highly conserved 
(Fig. 2 A) and have the apparent consensus Met-Asp-Lys/Arg-
Phe-(Leu/Val/Ile)2-Lys/Arg. The flanking amino acids (8–10) 
are not conserved. Dot blot assays against mutant versions of 
this sequence indicated that the most important determinant for 
binding to PCNA was an aromatic residue at position 4 because 
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hABH21–7-YFP-Flag. PTMs on PCNA may explain why our 
attempts to analyze the PCNA–hABH2 interactions using puri-
fied recombinant full-length proteins in in vitro experiments 
gave inconclusive data.

Collectively, these results reveal a novel PCNA-binding 
site within the conserved seven N-terminal amino acids of 
hABH2. Based on the alignment of the different ABH2s, the dot 
blot assay, and the in vivo imaging results, APIM was defined as 
[KR]-[FYW]-[LIVA]-[LIVA]-[KR].

Overexpression of APIM decapeptide 
fused to YFP reduces repair of 1meA and 
sensitizes cells to DNA alkylation damage
hABH2 is known to repair 1meA and 3meC generated by the 
SN2-alkylating agent methyl methanesulfonate (MMS) (Aas  
et al., 2003; Ringvoll et al., 2006). To examine whether expres-
sion of APIM interfered with the function of hABH2 by per-
turbation of the PCNA binding, we exposed cells expressing  
hABH21–10-YFP or only YFP to MMS and analyzed removal 
of 1meA in DNA by liquid chromatography (LC)/mass spec-
trometry (MS)/MS. Cells were arrested at the G1/S border 
and treated with MMS for 1 h. For arrested cells, a 13% sig-
nificant increase of 1meA was seen in APIM-YFP–expressing 
compared with YFP-expressing cells (Fig. 3 A). This is likely 
the result of reduced removal of 1meA by endogenous hABH2 
during incubation with MMS. These results indicate that the 
hABH2–PCNA interaction is required for efficient removal of 
1meA in cells arrested at the G1/ S transition.

Next, we exposed cell lines expressing hABH21–10-YFP, 
hABH21–7F4A-YFP, and YFP to MMS and measured their  
colony-forming capacity. We found a fivefold decrease in colony-
forming units in cells overexpressing functional hABH21–10-YFP 
compared with the cells expressing mutated APIM and only 
YFP (Fig. 3 B). These results strongly suggest that binding of 
APIM to PCNA increases MMS cytotoxicity. We subsequently 
exposed hABH21–10-YFP– and YFP-expressing cells to MMS 
as well as three other alkylating agents, BCNU (carmustine), 
temozolomide (TMZ), and mitomycin C (MMC), and measured 
cell growth for 4 d (MTT assay [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide]). Unlike MMS, the other  
alkylating agents are believed to introduce damage not repaired 
by hABH2 but by several different repair pathways, includ-
ing direct methyl transfer by O6-methylguanine-DNA methyl-
transferase, nucleotide excision repair, BER, mismatch repair, 
and homologous recombination (Sedgwick et al., 2007). Over 
expression of hABH21–10-YFP had little effect on the growth 
rate in untreated cells, whereas it strongly sensitized cells to all 
the alkylating agents (Fig. 3 C). These results suggested that 
the hypersensitivity to genotoxic agents was caused by inhibit-
ing the function not only of hABH2 but also of other proteins 
involved in genome maintenance.

Figure 1.  The 10 N-terminal amino acids of hABH2 are important for 
interaction with PCNA. (A) Confocal fluorescence images of full-length 
hABH2-YFP with endogenous PCNA (row 1) and hABH2 constructs co-
expressed with CFP-PCNA in live cycling HeLa cells. Insets show a higher 
magnification view of boxed regions. Bar, 5 µm. (B) Co-IP of PCNA from 
HeLa cells stably expressing hABH2-YFP constructs using -YFP beads.  
(C) Co-IP of hABH2 from cells stably expressing YFP-PCNA using -YFP 

beads. (D) Co-IP of hABH2 from cells only expressing endogenous proteins 
using -PCNA beads. Input is 3.3% of cell extract used for IP. Black lines, 
separate membranes; gray lines, same membranes.
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Figure 2.  Close interaction between the N terminus of hABH2 and a modified form of PCNA. (A) Sequence alignment of the 10 N-terminal amino acids 
of ABH2 homologues from different species (colors as given by Clustal X). (B) PCNA binding to hABH21–10 peptide variants (dot blot). Row 1 shows the 
hABH21–10 peptide, and rows 2–8 show peptides where different amino acids are substituted (underlined in the right panel; data from one membrane). 
(C) Confocal images of HeLa cells. Row 1 shows hABH21–7-YFP expressed alone (live cells), row 2 shows hABH21–7-YFP with endogenous PCNA, and 
rows 3–6 show various hABH21–7-YFP F4 variants coexpressed with CFP-PCNA (live cells). Insets show a magnified view of the boxed areas. Bars, 5 µm. 
(D) NFRET measurements. YFP/CFP (vectors only) and YFP-PCNA/CFP-PCNA were used as background and positive controls, respectively. Data shown 
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either one of the four APIMs of TFII-I, did not cause visible 
reduction in colocalization with PCNA when cotransfected 
with PCNA alone (unpublished data), but a reduction in FRET 
could be detected in these cases (Fig. 4 B, green). Thus, higher 
FRET between PCNA and WT proteins, and the fact that WT 
proteins outcompete the mutant proteins for binding to PCNA 
when coexpressed (Fig. 4 A, rows 3 and 4), suggested that the 
affinity of the mutant proteins for PCNA was reduced. Only a 
minor reduction in colocalization with PCNA was observed for 
the mutant Topo II  when coexpressed with WT Topo II . 
However, a reduction in FRET was also detected in this case 
(Fig. 4 B). Because Topo II  is a homodimer (Nettikadan et al., 
1998), binding to PCNA could be mediated through its non-
mutated endogenous or coexpressed WT partner. Altogether, 
these results strongly suggest that APIM is a functional PCNA- 
binding motif in all these proteins.

The RAD51B S phase spots were on average less bright 
than the spots for the other APIM-containing proteins, and 
clear colocalization with PCNA was seen in only 20% of the 
S phase cells in comparison with 95–100% for hABH2, TFIIS-L, 
TFII-I, and Topo II . This indicates that the PCNA–RAD51B 
interaction is less prominent and might require specific cell 
conditions.

In summary, the work presented in this study strongly indi-
cates that APIM is a functional, widespread PCNA-interacting 
motif found in many proteins involved in genome maintenance. 
Among other interesting APIM-containing proteins are the 
poly(ADP-ribose) family (PARP-1, -2, and -4), the FANCC pro-
tein, the REV3L subunit of translesion polymerase , several E3 
ubiquitin protein ligases, subunits of the general transcription 
factors II and III, members of the MAPK pathway, many serine/
threonine protein kinases, and three subunits of RNA poly-
merase II and III (Table I). Interestingly, recent data indicate 
a partial overlap between regions of replication and transcrip-
tion (Malyavantham et al., 2008); thus, APIM could possibly 
be involved in linking transcription and cell cycle regulation to 
PCNA/replicative processes after genotoxic stress.

The scaffold protein PCNA interacts with numerous pro-
teins in a well-orchestrated fashion, thus constituting a foun-
dation for many vital cellular processes. Interactions with PCNA 
are likely to be regulated at several levels; e.g., by PTMs as 
well as through several PCNA-interacting motifs (Moldovan 
et al., 2007). Interestingly, PCNA-binding peptides containing 
the PIP box fused to GFP are reported to block colony forma-
tion when expressed in untreated freely cycling HeLa and 
U2OS cells (Warbrick, 2006). Cells expressing APIM-YFP 
had normal capacity for colony formation in untreated cells, 
but these cells showed increased sensitivity to alkylating agents. 
We suggest that impaired PCNA binding of several APIM-
containing proteins, in addition to hABH2, contributes to the 

APIM is found in many proteins involved in 
genome maintenance and cell cycle control
Using the APIM motif as the query, we obtained 636 hits in the 
Swiss-Prot/TrEMBL database. After discarding nonnuclear 
proteins and proteins in which APIM is not conserved, this was 
reduced to 226 hits (Table I; see http://tare.medisin.ntnu.no/
pcna/index.php for complete query results and experimental 
procedures). Nine of these proteins also contained the PIP box 
consensus (Table I).

Among the proteins found in the query, we examined the 
APIMs more closely in four human proteins in addition to 
hABH2. We named the first protein examined TFIIS-like 
(TFIIS-L) because it contains the conserved N-terminal do-
main I found in elongation factor TFIIS (Cramer, 2004). The 
function of this protein is unknown. However, like hABH2, 
TFIIS-L contains an APIM within its seven N-terminal amino 
acids. We next examined the multifunctional transcription fac-
tor TFII-I, which contains four APIMs. TFII-I is a transcription 
factor critical for cell cycle control and proliferation and has 
also recently been suggested to have a role in DNA repair 
(Desgranges and Roy, 2006). Finally, we examined APIM in 
DNA topoisomerase (Topo) II , which is involved in post
replicative DNA decatenation and DNA segregation (Agostinho  
et al., 2004), and the RAD51 paralogue RAD51B, which is in-
volved in homologous recombination, centrosome function, 
and chromosome segregation (Date et al., 2006). The APIM 
sequences in all these proteins are conserved throughout evolu-
tion (Fig. 3 D). Among these proteins, only Topo II  has been 
reported to localize to nuclear S phase foci (Lou et al., 2005) 
and to contain a putative PIP box (QttLaFkp; amino acids 
1,277–1,284; Niimi et al., 2001). We cloned the proteins as 
YFP fusions and found that all were nuclear proteins accumu-
lating in various numbers of visible foci (Fig. 3 D), many of 
which represent replication foci (see following paragraph).  
Endogenous TFII-I was also present in foci colocalizing with 
endogenous PCNA (unpublished data).

APIM is a functional  
PCNA-interacting motif
Substitution of Phe4 to Ala in APIM impaired binding between 
hABH2-derived peptides and PCNA (Fig. 2); thus, we wanted 
to examine whether the corresponding mutation had a similar 
effect on the full-length hABH2, TFIIS-L, TFII-I (in one and 
four APIMs), Topo II , and RAD51B. Mutation of APIM in all 
these proteins, except Topo II , strongly reduced colocaliza-
tion with PCNA when coexpressed with WT proteins (Fig. 4 A, 
rows 2–7), suggesting that impaired APIM reduced the PCNA 
interaction. However, coexpression of WT hABH2-CFP and 
WT hABH2-YFP resulted in foci containing both fusion pro-
teins (Fig. 4 A, row 1). Mutations of APIM in TFIIS-L, or in  

are the result of three individual experiments (mean ± SEM; n = 35–50). (E) Cross-linked and reverse cross-linked IPs (-Flag) from cells stably expressing 
hABH21-–7YFP-Flag and hABH21-–7F4A-YFP-Flag. The eluted fractions were analyzed for the presence of PCNA and Flag fusion proteins by WB. (F) 2D gel 
electrophoresis followed by WB analysis of PCNA immunoprecipitated from cross-linked hABH21–7-YFP-Flag (top membrane; -Flag) and hABH21–7F4A-
YFP-Flag (mid membrane; -Flag). Total PCNA was immunoprecipitated with -PCNA beads (lower membrane). Purified recombinant RAD51 (rRAD51) 
was added as an internal standard. Dotted lines illustrate the vertical alignment of the membranes. (B and E) Gray lines indicate that intervening lanes 
have been spliced out.
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hypersensitivity to cytostatic drugs seen in APIM-expressing 
cells and that coordinated binding of APIM-containing pro-
teins to PCNA might be an important response mechanism 
subsequent to DNA damage.

Materials and methods
Expression constructs
Cloning of the fluorescently tagged expression constructs CFP-PCNA, 
Hereactis crispa RFP (HcRed)–PCNA, and hABH21–261-YFP/-CFP has 

been described previously (Aas et al., 2003; Otterlei et al., 2006).  
Using phABH21–261-YFP as a template, phABH21–10-YFP and phABH211–261- 
YFP were generated by PCR and cloned into pYFP-N1 (Clontech Lab-
oratories, Inc.) using NdeI–AgeI and AgeI–EcoRI, respectively. The 
PCR product from EST (image clone 5176979 [BC035374] Resource  
Center/Primary Database) was cloned into pYFP- and pCFP-C1  
(HindIII–Acc651) to make pYFP- and pCFP–TFIIS-L. pTFII-I–YFP and –CFP 
were generated by PCR amplification of TFII-I from pI3CX–TFII-I (pro-
vided by R.G. Roeder, The Rockefeller University, New York, NY) and  
cloning into pYFP- and pCFP-N1 (SacI–ApaI). pYFP– and pCFP–Topo II  
were made by switching the EGFP tag (EcoRI blunt–NheI) with YFP and 
CFP tag (XhoI blunt–NheI) from pEGFP–Topo II  (pT104-1; provided by 

Figure 3.  Expression of APIM decapeptide sensitizes cells to alkylating agents, and several foci-forming proteins contain conserved APIM. (A) 1meA in 
DNA isolated from YFP (closed squares)- and hABH21–10-YFP (open circles)–expressing cells after exposure to 1.2 mM MMS for 1 h before release from 
the G1/S border (mean ± SEM; n = 4–5). (B) Clonogenic assay comparing the MMS sensitivity between cells expressing hABH21–10-YFP (open circles), 
hABH21–7F4A-YFP (closed triangles), or only YFP (closed squares; mean ± SD; n = 2–4). CFU, colony-forming unit. (C) Cell growth of HeLa cells stably 
expressing YFP (closed squares) and hABH21–10-YFP (open circles) measured by MTT assay after continuous exposure to MMS, BCNU, MMC, and TMZ. 
The growth rates of unexposed cells are shown in the right lane. (D) Conservation of APIM in TFIIS-L, TFII-I, Topo II , and RAD51B. These proteins are 
shown as YFP fusion proteins. Bar, 5 µm.
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W.T. Beck, University of Illinois, Chicago, IL). RAD51B was amplified by 
PCR from pET15b-RAD51B (provided by S. Yokoyama, RIKEN Genomic  
Sciences Center, Kanagawa, Japan) and cloned into pYFP- and pCFP-N1 
using XhoI and SacII. The hABH21–7-YFP constructs, including the F4 
mutants, were made by annealing oligos with XhoI–EcoRI overhang  
followed by cloning into pYFP-N1 mutated in the ATG codon. The Flag 
constructs were generated by PCR amplification of the 3× Flag tag from 
p3×Flag–CMW-14 (Sigma-Aldrich) followed by cloning into pCFP-N1 
in the BsrGI–XbaI site. All point mutations were made by site-directed 
mutagenesis (QuickChange II; Agilent Technologies) according to the 
manufacturer’s instructions. Restriction enzymes and calf intestinal alka-
line phosphatase were obtained from New England Biolabs, Inc., and 
the oligonucleotides were obtained from MedProbe Eurogentech. All con-
structs were verified by sequencing.

Confocal imaging
HeLa cells were examined 16–48 h after transient transfection (by  
Fugene 6 [Roche] or Lipofectamine 2000 [Invitrogen] according to the 
manufacturer’s recommendations) of CFP, YFP, and HcRed fusion con-
structs. Fluorescent images were aquired using a laser-scanning micro-
scope (LSM 510 Meta; Carl Zeiss, Inc.) equipped with a Plan Apochromat 
63× 1.4 NA oil immersion objective. The images were acquired in the 
growth medium of the cell with the stage heated to 37°C using LSM 510 
software (Carl Zeiss, Inc.). For the two-color images, CFP was excited at 
 = 458 nm and detected at  = 470–500 nm, and YFP was excited at 
 = 514 nm and detected at  = 530–600 nm using consecutive scans. 
When three-color images were acquired, YFP was excited at  = 488 nm 
and detected at  = 530–600 nm, HcRed was excited at  = 543 nm  
and detected at  > 560 nm, and the CFP settings were kept as for the 

Table I.  Selected proteins containing APIM

Type/group of proteins Proteins Source

Proteins containing PIP box  
and APIM

DNA ligase I, MDN1 Midasin, ubiquitin thioesterase FAF-X,  
  protein 18 homologue (hVPS18), cytokine signaling 6 (SOCS-6),  
  Topo II , IB-related protein, UHRF2, PARP4

Moldovan et al., 2007

DNA polymerase Pol  catalytic subunit (hREV3L) Moldovan et al., 2007
DNA ligases DNA ligase I, DNA ligase IV Moldovan et al., 2007
Topo Topo II  and  This study; Niimi et al., 2001;  

  Lou et al., 2005 
DNA repair proteins hABH2, PARP-1, -2, and -4, RAD51B, FANCC, XPA This study;  

  Simbulan-Rosenthal et al., 1999;  
  Jacquemont and Taniguchi, 2007

DNA repair–associated/  
interacting proteins

XPA-binding protein 2, BRCA1/BRCA2-containing  
  complex subunit 45 (prot-BRE), x-ray radiation  
  resistance-associated protein 1

NA

Sister chromatid cohesion N-acetyltransferase ESCO1/EFO1, hSMC5 Potts et al., 2006;  
  Moldovan et al., 2007

Chromatin remodelling and  
DNA-binding proteins

Chromodomain helicase DNA-binding proteins 3–5,  
  p325 subunit of remodeling and spacing factor  
  chromatin–remodelling complex, telomeric repeat–binding  
  protein 2 (TRF2)

Opresko et al., 2004

E3 ubiquitin ligases UHFR1, UHFR2, UBR1, UBR2, ring finger proteins 3, 17,  
  and 151, probable E3 ubiquitin protein ligase MYCBP2

Bronner et al., 2007

Transcription factors TFIIS-L, TFII-I, TFIIE-, sterol regulatory element-binding  
  transcription factor 2 (SREBF2), TFIIIC subunit , TFIID 100 kD  
  subunit (TAF5), TFIIIC 102 kD subunit (TF3C ), transcription  
  factor–like protein MRG15 and X (mortality factor 4–like proteins  
  1 and 2), E2 transcription factor 7

This study

Cell cycle regulators Cell division cycle-associated 2, Bcl2-interacting mediator  
  of cell death, testis spermatocyte apoptosis-related gene 2 protein

NA

Protein kinases Serine/threonine (S/T) protein kinases SRPK1 and -2, 33  
  and MST4, leucine-rich repeat S/T protein kinase 1, STK23  
  (S/T protein kinase 23), S/T protein kinase PLK3,  
  microtubuli-associated S/T protein kinase, microtubuli-associated  
  S/T protein kinase 1, MAPKAP kinase 2 (MK2) and 5 (MK5),  
  mitogen-activated protein kinase 15 (MSK-15)

NA

Methyltransferase H3 lysine 4–specific MLL3, H3-K9 methyltransferase 5,  
  putative rRNA methyltransferase 3

NA

Cancer-associated antigens Melanoma-associated antigen E1 (MAGE E1), MAGE B18,  
  MAGE-G1, natural killer tumor recognition protein (NK-TR),  
  Myc-binding protein–associated protein, Myb-binding  
  protein 1A, hepatoma-derived growth factor–related protein 2  
  isoform1, serologically defined colon cancer antigen 1

NA

RNA polymerase and  
ribosome-associated  
proteins

RNA polymerase II, largest subunit (RPB1), RNA polymerase III  
  subunit 5 (RPC5), RNA polymerase II 140 kD (RPB2), UTP14A U3  
  small nucleolar RNA-associated protein 14 homologue A,  
  60S ribosomal protein L18, 60S ribosomal protein L35,  
  TAF5-like RNA polymerase II p300 (PAF65-beta), mediator of 
  RNA polymerase II  
  transcription subunit 12 homologue

NA

NA, not applicable. Bold indicates proteins localized in replication foci under normal conditions or after DNA damage. The full lists of hits for the APIM and PIP motifs 
are available at http://tare.medisin.ntnu.no/pcna/index.php.
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two-color images. The thickness of the slice was 1 µm. No image process-
ing, except contrast and intensity adjustments, were performed.

Immunofluorescence
HeLa cells were fixed in freshly made 2% paraformaldehyde on ice for  
10 min before cold (20°C) methanol was added, and the cells were 
incubated at 20°C for 20 min. All dilutions and washes were per-
formed in 2% FCS in PBS. The cells were washed (three times for 5 min) 
before addition of 1 µg/ml -PCNA (PC10; Abcam) and incubation for 
1 h at 37°C. Finally, the cells were incubated for 1 h at 37°C with the 
secondary antibody Alexa Fluor 546 goat anti–mouse (diluted 1:2,000; 
Invitrogen). After washing, the cells were analyzed in a laser-scanning 
microscope (LSM 510 Meta; described in the previous paragraph), with 
excitation at 546 nm and detection >560 nm for goat anti–mouse and 
488 nm excitation and detection between 505 and 550 nm for YFP,  
using consecutive scans.

FRET measurements
FRET occurs if the tags (YFP and CFP) are <100 Å (10 nm) apart (Mátyus, 
1992). We detected FRET using the sensitized emission method, measuring 
acceptor (YFP) emission upon donor (CFP) excitation. FRET was scored 
when the intensity of emitted light from YFP after excitation of the CFP fluoro-
chrome was stronger than the light emitted by CFP- or YFP-tagged proteins 
alone after excitation with the YFP and CFP lasers, respectively (bleed 
through), given by the equation FRET = I2  I1 (ID2/ID1)  I3 (IA2/IA3), in 
which I indicates mean intensities. YFP and CFP (vectors only) were used to 
measure background FRET because of dimerization of the tags, and YFP-
PCNA and CFP-PCNA (because PCNA is a homotrimer) were used as posi-
tive control. FRET > 0 was normalized for expression levels using the 
equation NFRET = FRET/(I1 × I3)1/2 (Mátyus, 1992; Xia and Liu, 2001;  
Otterlei et al., 2006). NFRET was calculated from mean intensities within a 
region of interest containing >25 pixels in which all pixels had intensities 
<250, and the mean intensities were between 100 and 200. Channels 1 
(CFP) and 3 (YFP) were measured as described for imaging, and channel 2 
(FRET) was excited with  = 458 nm and detected at  = 530–600 nm. 
ID1–D3 and IA1–A3 were determined for cells transfected with CFP and YFP 
constructs only with the same settings and fluorescence intensities as co-
transfected cells (I1 and I3).

Culture of cell lines and preparation of cell extracts
HeLa (cervical cancer) cells stably expressing the constructs of interest 
were prepared by transfection (Fugene 6) followed by cell sorting or 
cloning by dilution, and prolonged culturing in 400 µg/ml selective  
(using genticine; G418; Invitrogen) high glucose, 4.5 g/liter DME (Bio-
Whittaker) supplemented with 10% FCS, 250 µg/ml amphotericin B 
(Sigma-Aldrich), 100 µg/ml gentamycin (Invitrogen), and 1 mM gluta-
mine (BioWhittaker). The cells were cultured at 37°C in a 5% carbon 
dioxide–humidified atmosphere. Fractionated cell extracts from HeLa 
were prepared by resuspending the cell pellets in 1× packed cell vol-
ume (PCV) in buffer I (10 mM Tris-HCl, pH 8.0, and 50 mM KCl) and 
1× PCV in buffer II (10 mM Tris-HCl, 100 mM KCl, 20% glycerol, 0.5% 
Nonidet P-40, 10 mM EGTA, 10 mM MgCl2, 1 mM DTT, 1× complete 
protease inhibitor [Roche], and phosphatase inhibitor cocktail [PIC I 
and II; Sigma-Aldrich]). Cells were incubated under constant shaking for  
30 min at 4°C, centrifuged at 2,000 rpm, and the supernatant (soluble 
fraction) was harvested. The pellet (containing nuclei) was resuspended 
in 1× PCV of buffer III (10 mM Tris-HCl, pH 8.0, and 100 mM KCl), 1× 
PCV buffer II, and sonicated. The sonicated nuclear pellet was incubated 
with 2 µl DNase/RNase cocktail I (200 U/µl Omnicleave Endonuclease; 
Epicentre Technologies), 1 µl DNase (10 U/µl; Roche), 1 µl bensonase 
(250 U/µl; EMD), 1 µl micrococcal nuclease (100–300 U/mg; Sigma-
Aldrich), and 10 µl RNase (2 mg/ml; Sigma-Aldrich) per 30 mg cell 
extract at 37°C for 1 h. This fraction, denoted chromatin-enriched frac-
tion, was dialyzed against buffer II and III followed by clearance by 
centrifugation before IP.

Figure 4.  Point mutations in APIM result in disrupted colocalization and 
reduced FRET. (A) Row 1 shows confocal images of cotransfected WT 
hABH2-CFP, WT hABH2-YFP, and HcRed-PCNA. Rows 2–7 show confocal 
images of the WT proteins with CFP tag (left; green) cotransfected with YFP-
tagged proteins mutated in APIM (middle; green), and HcRed-PCNA (right; 
red) in live cycling HeLa cells. Insets show merged images with PCNA.  
Bar, 5 µm. (B) NFRET calculated for constructs in which single APIM mutation 

does not disrupt colocalization. WT and mutant proteins (YFP fusions of 
TFIIS-L, TFII-I, and Topo II ) are coexpressed with CFP-PCNA. YFP/CFP 
(vectors only) were used as background. Data are the results of two (TFIIS-L 
and TFII-I) to four (Topo II ) independent experiments. Error bars indicate 
mean ± SEM (n = 36–119).
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Sigma-Aldrich), and -Flag (monoclonal; Sigma-Aldrich), as well as the 
secondary antibodies, polyclonal rabbit anti–mouse IgG/HRP and poly-
clonal swine anti–rabbit IgG/HRP (Dako), were diluted in 1% dry milk in 
PBST. The membranes were treated with chemiluminescence reagent  
(SuperSignal West Femto Maximum; Thermo Fisher Scientific), and the pro-
teins were visualized in Image Station (2000R; Kodak).

Dot blot analysis of predicted PCNA-binding peptides
An amino PEG500-UC540 sheet (acid hardened with improved stability) 
containing dots of 28 nmol peptide (stained with Ponceau to visualize the 
spots) was prepared at the peptide synthesis laboratory at The Biotechnol-
ogy Center (University of Oslo, Oslo, Norway). The membrane was probed 
with 1 µg/ml PCNA for 2 h followed by probing with -PCNA (PC10) and 
developed as described for WB. Data extracted from one representative 
dot blot is shown.

Sequence analysis
Details are provided at http://tare.medisin.ntnu.no/pcna/index.php.

MTT assay
HeLa cells stably expressing hABH21–10-YFP and YFP were seeded 
into 96-well plates (4,000 cells/well) and incubated for 3 h. Various 
doses of MMS (Acros Organics), BCNU (1,3-Bis(2-chloroethyl)-1-nitro-
surea; Sigma-Aldrich), TMZ (4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo 
[4.3.0] nona-2,7,9-triene-9-carboxamide; Sigma-Aldrich), and MMC 
(6-amino-1,1a,2,8,8a,8b-hexahydro-8-(hydroxymethyl)-8a-methoxy-5-
methyl-azirino[2’,3:3,4] pyrrolo[1,2-a]indole-4,7-dione carbamate; 
Sigma-Aldrich) were added to the wells. The cells were exposed con-
tinuously until harvest. MTT was added to the cells, the OD was mea-
sured at 570 nm, the mean from at least six wells was used to calculate 
cell survival, and the SD was smaller than the size of the dots. Data 
presented show growth from one representative experiment and has 
been reproduced at least two times.

Clonogenic assay
750 cells were seeded out in 10-cm cell culture dishes in 10 ml growth  
media and grown for 10 d. The cells were fixed in 6% glutaraldehyde in 
PBS for 15 min at room temperature, washed once in PBS, and stained 
with crystal violet, and colony-forming units were counted. Only colonies 
consisting of at least 50 cells were included. Data presented are mean ± 
SD from two (hABH21–7F4A-YFP) and four (hABH21–10-YFP and YFP) inde-
pendent experiments.

Quantitation of 1meA in DNA
HeLa cells stably expressing hABH21–10-YFP and YFP were synchronized by 
the double thymidine block and analyzed by flow cytometry to verify the 
cell cycle phase. The DNA analysis of the cells was performed after metha-
nol fixation (70%), RNase treatment (100 µg/ml in PBS at 37°C for 30 
min), and propidium iodide staining (50 µg/ml in PBS at 37°C for 30 min) 
on an FACS flow cytometer (Canto; BD).

During G1/S arrest, the cells were treated with 1,200 µM MMS  
for 1 h, released, and harvested at defined time points. The cell pellets 
were washed with ice-cold PBS, spun down, snap frozen in liquid N2, and 
stored at 80°C before use. DNA was isolated using DNeasy Blood  
and Tissue kit (QIAGEN). DNA samples were degraded enzymatically 
to deoxynucleosides and analyzed by LC/MS/MS using an HPLC system 
(Prominence; Shimadzu) interfaced with a triple-quadrupole mass spec-
trometer (API5000; Applied Biosystems), essentially as described previously 
(Ringvoll et al., 2006). 1meA and unmodified deoxynucleosides were 
monitored in multiple-reaction monitoring mode using the mass transitions 
266.2→150.1 (1meA), 252.2→136.1 (deoxyadenosine), 243.2→127.1 
(thymidine), 268.2→152.1 (deoxyguanosine), and 228.2→112.1 (deoxy-
cytidine). Quantization was accomplished by comparison with pure deoxy-
nucleoside standards.
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Formaldehyde cross-linking of proteins in intact cells
Cells were harvested and washed twice with cold PBS. 5–6 × 106 cells were 
resuspended in 10 ml PBS containing 0.25% formaldehyde and incubated 
at 37°C for 20 min. Cross-linking was stopped by adding glycine (final con-
centration 0.125 M). Cells were collected by centrifugation and washed 
once in PBS, resuspended in 8× PCV in buffer (20 mM Hepes, pH 7.9,  
1.5 mM MgCl2, 100 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.5% NP-40, 
1 mM DTT, and complete protease inhibitor) containing 5 µl Omnicleave, 
and sonicated. DNase/RNase cocktail I was added, and the homogenate 
was incubated at room temperature for 1 h and dialyzed at 4°C overnight 
in buffer (20 mM Hepes, pH 7.9, 1.5 mM MgCl2, 100 mM KCl, 0.2 mM 
EDTA, 10% glycerol, 1 mM DTT, and complete protease inhibitor).

co-IP
An in-house affinity-purified rabbit polyclonal antibody raised against GFP 
protein, which also recognizes YFP and CFP proteins (called -YFP), and 
monoclonal -PCNA antibody (PC10; Santa Cruz Biotechnology, Inc.) 
were covalently linked to protein A paramagnetic beads (Invitrogen) ac-
cording to instructions provided by New England Biolabs, Inc. 1,500 µg 
total cell–protein of the fractions was incubated with an additional 2 µl 
Omnicleave during IP with 10 µl antibody-coupled beads under constant 
rotation at 4°C over night (IP). The beads were washed four times with 200 µl 
10 mM Tris-HCl and 50 mM KCl, pH 8, with a 5-min incubation on ice 
in between. The beads were resuspended in NuPAGE (Invitrogen) loading 
buffer and 1 mM DTT, heated, and the IP elutions were separated on  
4–12% Bis-Tris-HCl (NuPAGE) gels. 50 µg cell extract was used for input.

IP of cross-linked protein extracts
Cross-linked Flag fusion proteins were immunoprecipitated using anti-Flag 
M2 affinity gel (herein referred to as -Flag; Sigma-Aldrich) according to 
the manufacturer’s protocol. The resin was prepared by washing once with 
0.1 M glycine and 0.5 M NaCl, pH 3.0, and three times with TBS buffer 
(50 mM Tris HCl, pH 7.4, 150 mM NaCl, 10 mM Na butyrate, and  
20 mM NaF). 2.5 mg and 5 mg (hABH21–7-YFP and hABH21–7F4A-YFP,  
respectively) of cross-linked extracts were incubated with 20 µl or 40 µl 
resin, respectively (packed gel volume), for 2 h at 4°C under constant rota-
tion. The resin was washed three times with 500 µl of TBS buffer, and the 
cross-linked Flag fusion proteins were eluted by incubating the resin with 
100 µl 3× Flag peptide in TBS buffer (final concentration of 450 ng/µl) for 
30 min at 4°C under constant rotation. The cross-linking was reversed by 
a 30-min incubation at 95°C. For further WB analyses, the IP elution frac-
tions were heated in 1× LDS sample buffer (NuPAGE) and 0.1 M DTT 
(65°C for 10 min) before loading 4–12% Bis-Tris-HCl (NuPAGE) gels.

2D gel electrophoresis
Immunoprecipitates of cross-linked extracts of hABH21–7YFP–3× Flag  
(5 mg) and hABH21–7F4A-YFP-3× Flag (10 mg) pulled down with -Flag 
resin (40 µl and 80 µl, respectively) and by magnetic -PCNA–coupled 
beads (50 µl beads; 2 mg extract) was subjected to 2D Western analysis. 
The resin was washed three times with 500 µl of TBS buffer. The resin was 
washed once in 20 mM Tris HCl, pH 7.4, 50 mM NaCl, 10 mM Na buty
rate, and 20 mM NaF, and the cross-linked Flag fusion proteins were eluted 
by incubating the resin with 100 µl 3×Flag peptide in this buffer (final con-
centration of 450 ng/µl) for 30 min at 4°C under constant rotation. First di-
mension: after IP and elution, the cross-links were reversed (see previous 
paragraph), the -PCNA beads were washed three times with 10 mM Tris-HCl 
and 50 mM KCl (1 ml), and resuspended in 340 µl destreak with 1% 
IPG buffer, pH 4–7 (GE Healthcare). After incubation overnight in a shaker 
at 4°C, the elutions were collected in separate vials without -PCNA 
beads. 20 ng recombinant RAD51 protein (molecular mass, 37 kD;  
pI, 5.4; provided by I. Hickson Weatherall, University of Oxford, Oxford, 
England, UK) was added to each sample to serve as an internal standard. 
The samples were used to rehydrate immobiline DryStrips (18 cm; pH 4–7; 
GE Healthcare) overnight. The isoelectric focusing was performed accord-
ing to the manufacturer’s instructions in the IPGphor II unit (GE Healthcare). 
After isoelectric focusing, strips were cut after pH 5.5, and the pieces from 
pH 4–5.5 were incubated in equilibrium buffer (50 mM Tris-HCl, pH 8.8, 
6 M urea, 30% glycerol, and 2% SDS) containing 1% DTT for 15 min fol-
lowed by a 15-min incubation in the same buffer containing 2.5% iodo-
acetamide instead of DTT. Second dimension: the strips were loaded onto 
NuPAGE Novex 4–12% gels (Invitrogen).

WB
After gel electrophoresis, the polyvinylidene fluoride membranes (Immobi-
lon; Millipore) were blocked in 5% low fat dry milk in PBST (PBS with 0.1% 
Tween 20). The primary antibodies, -PCNA (PC10), -hABH2 (monoclonal; 
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