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Abstract. We prove that if {φj}j is a sequence of subharmonic func-
tions which are increasing to some subharmonic function φ in C, then the
union of all the weighted Hilbert spaces H(φj) is dense in the weighted
Hilbert space H(φ).
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1. Introduction

Let φ be a measurable function, locally bounded above on a domain
Ω ⊂ Cn. Set

H(Ω, φ) := {f ∈ O(Ω) :

∫
Ω
|f |2e−φdλ < +∞}

where O(Ω) stands for the space of holomorphic functions on Ω and dλ is
the Lebesgue measure. If Ω = C, let H(φ) be the space of entire functions
f with L2(Cn, φ) norm, i.e., ∥f∥2L2(Cn,φ) =

∫
Cn |f |2e−φdλ < +∞.

Since f ∈ H(Ω, φ), the function |f |2 is plurisubharmonic (psh) and φ is
locally bounded above, then

|f(w)| ≤ Cn
rn

∥f∥L2(B(w,r),0) ≤
C ′
n

rn
∥f∥H(Ω,φ),(1.1)

1



2 JOHN ERIK FORNÆSS AND JUJIE WU

if the ball B(w, r) ⊂⊂ Ω and for K ⊂⊂ Ω

sup
K

|f | ≤ C∥f∥H(Ω,φ),

where C depends only on K and Ω. So H(Ω, φ) is a closed subspace of
L2(Ω, φ) and thus a Hilbert space. Let KΩ,φ(z, w) denote the weighted
Bergman kernel corresponding to the Hilbert space H(Ω, φ). If φ = 0, then
KΩ(z, w) := KΩ,0(z, w) is the classical kernel introduced by Stefan Bergman.

In 1971, B. A. Taylor [5] investigated weighted approximation results for
entire functions on Cn. He proved:

Theorem 1.1. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be psh functions on Cn, assume
φ = lim

j→∞
φj is psh, and suppose that

∫
K e

−φ1dλ < ∞ for every compact

set K. Then the closure of
∞∪
j=1

H(φj + log(1 + ∥z∥2)) in the Hilbert space

L2(φ+ log(1 + ∥z∥2)) contains H(φ).

In [3] we improved Taylor’s result as follows

Theorem 1.2. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be psh functions on Cn with psh
limit. For any ϵ > 0, let φ̃j = φj + ϵ log(1 + ∥z∥2) and φ̃ = lim

j→+∞
φ̃j. Then

∞∪
j=1

H(φ̃j) is dense in H(φ̃).

It is an important question whether this theorem is true or false when
ϵ = 0. Here by using some potential theoretic properties of subharmonic
functions we show that it holds in one dimension.

Theorem 1.3. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be subharmonic functions on C.
Suppose that φ = lim

k
φk and φ is locally bounded above. Then

∞∪
k=1

H(φk) is

dense in H(φ).

Remark 1.4. Let φ = lim
k
φk. We define ϕ = φ∗ := lim sup

ζ→z
φ(ζ), z ∈ C,

which is the upper regularization of φ. Then ϕ is subharmonic, φ ≤ ϕ,
φ = ϕ almost everywhere on C and we have H(φ) = H(ϕ) (See Theorem
3.4.2 in [10]).

We need the strong openness theorem as follows, see [6], [7], [8], [9].

Theorem 1.5 (strong openness theorem). Let V ⊂⊂ U ⊂ Cn be two open
sets. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be non-positive psh functions on U such that
φ = lim

k
φk and φ is locally bounded above. If f ∈ O(U) is such that∫

U
|f |2e−φdλ <∞,
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then there exists j0 so that when j ≥ j0∫
V
|f |2e−φjdλ <∞.

For convenience, we will use Kφj (z, w)(resp. Kφ(z, w)) to denote the
weighted Bergman kernel corresponding to the Hilbert space H(φj) :=
H(C, φj) (resp. H(φ) := H(C, φ)). As an application of the approxima-
tion theorem 1.3, we will prove

Theorem 1.6. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be subharmonic functions on C.
Suppose that φ = lim

k
φk and φ is locally bounded above. Then

lim
j
Kφj (z, z) = Kφ(z, z), ∀z ∈ C.

Ligocka showed that the classical Bergman kernel of certain Hartogs do-
mains can be expressed as the sum of a series of weighted Bergman kernels
defined on another domain of lower dimension. We set

Ωj = {(z, w) ∈ C× C : |w| < e−φj(z)}

and

Ω = {(z, w) ∈ C× C : |w| < e−ϕ(z)}.

We note that a domain {(z, w) ∈ C × C : |w| < e−ℓ(z)} is open exactly
when ℓ(z) is upper semicontinuous. Hence we use ϕ in the definition of Ω
and not φ.

We denote by KΩj [(z, t), (w, s)] (resp. KΩ[(z, t), (w, s)]) the Classical
Bergman kernel of the Hilbert spaceH(Ωj , 0)(resp. H(Ω, 0)), where z, t, w, s ∈
C. Ligocka’s formula [4] implies that

KΩj [(z, t), (w, s)] =

∞∑
k=0

2(k + 1)K2(k+1)φj
(z, w)⟨t, s⟩k, z, t, w, s ∈ C

where K2(k+1)φj
(z, w) is the weighted Bergman kernel of the Hilbert space

H(C, 2(k + 1)φj).

According to the result of Theorem 1.6 we obtain that

Theorem 1.7. Let {φj} and φ be as in theorem 1.6, then the sequence
KΩj [(z, t), (w, s)] converges to KΩ[(z, t), (w, s)] locally uniformly in Ω× Ω.

The set-up of the paper is as follows: We prove in Section 2 an integral
estimate for subharmonic weights. In Section 3 we discuss some potential
theoretic properties of subharmonic functions which we will need. In Section
4, we prove the Main Theorem, Theorem 1.3. In Section 5, we prove the
convergence of the Bergman Kernel which can be seen as an application of
the main Theorem 1.3.
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2. Subharmonic functions in C

Lemma 2.1. Let αi > 0, zi ∈ C, i = 1, . . . , N and let α =
∑

i αi. For any z
which is not one of the zi we have the inequality

ΠNi=1

(
1

|z − zi|

)αi

≤
N∑
i=1

αi
α

(
1

|z − zi|

)α
.

Proof.

ΠNi=1

(
1

|z − zi|

)αi

= e
∑N

i=1
αi
α

log
((

1
|z−zi|

)α)

Since exp is convex,

≤
N∑
i=1

αi
α
e
log

((
1

|z−zi|

)α)

=

N∑
i=1

αi
α

(
1

|z − zi|

)α
.

□
Lemma 2.2. Let |z0| < R and suppose 0 < α < 2. Then∫

|z|<R

(
1

|z − z0|

)α
dλ(z) ≤ 28R2

2− α
.

Proof. ∫
|z|<R

(
1

|z − z0|

)α
dλ(z) ≤

∫
|z|<2R

(
1

|z|

)α
dλ(z)

= 2π
(2R)2−α

2− α

≤ 28R2/(2− α).

□

As a direct consequence, we obtain

Theorem 2.3. Let αi > 0, |zi| < R, i = 1, . . . , N and let α =
∑

i αi. Suppose
that α < 2. Then ∫

|z|<R
ΠNi=1

(
1

|z − zi|

)αi

dλ(z) ≤ 28R2

2− α
.

Lemma 2.4. Let K be a compact set in Rn. Suppose f(x, y) : K ×K → R
is continuous. Let µ be a positive measure on K with finite total mass α. Let
ϵ > 0. Then there are pi ∈ K and ri > 0 for i = 1, 2, . . . , N , such that the
measure σ =

∑N
i=1 riδpi has total mass α, and if ϕ(x) =

∫
y∈K f(x, y)dµ(y)

and ψ(x) =
∫
y∈K f(x, y)dσ(y) then ψ(x) < ϕ(x) + ϵ.
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Proof. Divide K into finitely many small sets Ki and pick pi ∈ Ki. By
uniform continuity of f we may assume that for any y ∈ Ki we have that
|f(x, y)−f(x, pi)| < ϵ/α. Let ri = µ(Ki). Define σ =

∑N
i=1 riδpi . Let x ∈ K.

Define

ψ(x) =

∫
y∈K

f(x, y)dσ(y)

=
∑
i

f(x, pi)ri

=
∑
i

f(x, pi)

∫
Ki

dµ(y)

=
∑
i

∫
Ki

f(x, pi)dµ(y)

≤
∑
i

∫
Ki

(f(x, y) + ϵ/α)dµ

= ϕ(x) + (ϵ/α)

∫
K
dµ

= ϕ(x) + ϵ.

□

Theorem 2.5. Let dµ be a positive measure on the disc of radius R with
total mass α < 2. Set ϕ(z) =

∫
|ζ|<R log |z − ζ|dµ(ζ). Then∫

|z|<R
e−ϕ(z)dλ(z) ≤ 28R2

2− α
.

Proof. Define ψn(z, ζ) = max{log |z − ζ|,−n}. Define

ϕn(z) =

∫
|ζ|<R

ψn(z, ζ)dµ(ζ) for z ∈ ∆(R).

Then ϕn : ∆(R) → R is continuous and ϕn ↘ ϕ pointwise for z ∈ ∆(R).

Hence e−ϕn(z) ↗ e−ϕ on ∆(R). Therefore, in order to show that∫
|z|<R

e−ϕ(z)dλ(z) ≤ 28R2

2− α
,

it suffices to show that∫
|z|<R

e−ϕn(z)dλ(z) ≤ 28R2

2− α
+

1

n
∀n.
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We fix n. Let δ > 0. Since ψn is continuous, according to Lemma 2.4 we can

find a finite positive measure µn =
N∑
i=1

αiδzi with total mass α so that

ϕ̃n :=

∫
|ζ|<R

ψn(z, ζ)dµn(ζ) ≤ ϕn(z) + δ.

By Theorem 2.3, ∫
|z|<R

ΠNi=1

(
1

|z − zi|

)αi

dλ(z) ≤ 28R2

2− α
.

Hence ∫
|z|<R

e−
∑

i αi log |z−zi|dλ ≤ 28R2

2− α
.

So ∫
|z|<R

e
−

∫
|ζ|<R log |z−ζ|dµn(ζ)dλ(z) ≤ 28R2

2− α
.

Since max{log |z − ζ|,−n} ≥ log |z − ζ|, it follows that

−max{log |z − ζ|,−n} ≤ − log |z − ζ|.

Hence
∫
|z|<R e

−ϕ̃ndλ ≤ 28R2

2−α . Choosing δ small enough we get that∫
|z|<R

e−ϕndλ ≤ 28R2

2− α
+

1

n
.

□

3. Comparison of weights

Lemma 3.1. Suppose that |ζ| < R and z ∈ C. Then

log |z − ζ| ≤ 1

2
log(1 + |z|2) + log 2 +

1

2
log(1 +R2).

Proof.

log |z − ζ| ≤ log(|z|+ |ζ|)
≤ log 2 + max{log |z|, log |ζ|}

≤ log 2 +
1

2
log(1 + |z|2) + 1

2
log(1 + |ζ|2).

□

Proposition 3.2. Let µ be a nonnegative measure on the disc |ζ| < R with
mass M. Let ϕ1(z) =

∫
|ζ|<R log |z − ζ|dµ(ζ) and ϕ2(z) = M/2 log(1 + |z|2).

Suppose that ϕ = ϕ1 + σ and ψ = ϕ2 + σ. Then there exists constant C so
that ∥f∥2ψ ≤ C∥f∥2ϕ. In particular, H(ϕ) ⊂ H(ψ).
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Proof. By the previous lemma,

ϕ1 ≤ ϕ2 +M

(
log 2 +

1

2
log(1 +R2)

)
,

hence

ϕ ≤ ψ +M

(
log 2 +

1

2
log(1 +R2)

)
.

It follows that e−ψ ≤ Ce−ϕ. Thus we have H(ϕ) ⊂ H(ψ). □

For the other direction we need some extra hypothesis.

Proposition 3.3. Let µ be a nonnegative measure on the disc |ζ| < (R+ ϵ)
(ϵ > 0 some constant) with mass β ∈ (0, 2). Let α be the µ mass of ∆(R).
Suppose that ϕ is subharmonic on C and that 1

2π∆ϕ = µ on ∆(R + ϵ). Let

ϕ1(z) =
∫
|ζ|<R log |z−ζ|dµ(ζ) and ϕ2(z) = α/2 log(1+|z|2).Write ϕ = ϕ1+σ

and ψ = ϕ2 + σ. Then H(ψ) ⊂ H(ϕ).

We prove first a lemma:

Lemma 3.4. There exists a constant C so that if |z| ≥ R+ ϵ
2 and |ζ| < R,

then

log |z − ζ| ≥ 1

2
log(1 + |z|2)− C.

Proof. We get

log |z − ζ| = log |z|
∣∣∣∣1− ζ

z

∣∣∣∣
≥ log |z|+ log

(
1− 2R

2R+ ϵ

)
≥ 1

2
log

(
|z|2

(
1

R2
+ 1

))
− 1

2
log

(
1

R2
+ 1

)
+ log

(
1− 2R

2R+ ϵ

)
≥ 1

2
log(1 + |z|2)− 1

2
log

(
1

R2
+ 1

)
+ log

(
1− 2R

2R+ ϵ

)
.

The proof gives that we can choose C = 1
2 log

(
1
R2 + 1

)
− log(1− 2R

2R+ϵ). □

In order to prove the above Proposition 3.3 we also need the following well
known Riesz Decomposition Theorem (see Ransford [10] Theorem 3.7.9).

Theorem 3.5 ( Riesz Decomposition Theorem). Let u be a subharmonic
function on a domain D in C, with u ̸≡ −∞. Then, given a relatively
compact open subset U of D, we can decompose u as

u =

∫
ζ∈U

log |z − ζ|dµ(ζ) + h
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on U , where µ = 1
2π∆u|U and h is harmonic on U .

We prove Proposition 3.3:

Proof. Let F be an entire function so that
∫
C |F |2e−ψdλ <∞. If |z| > R+ ϵ

2 ,
by the previous Lemma,

ϕ1(z) =

∫
|ζ|<R

log |z − ζ|dµ(ζ)

≥ α

2
log(1 + |z|2)− αC

= ϕ2(z)− αC.

Here C is the explicit constant from Lemma 3.4. It follows that∫
|z|≥R+ϵ/2

|F |2e−ϕdλ < eαC
∫
|z|≥R+ϵ/2

|F |2e−ψdλ < +∞.

On the disc of radius R+ϵ, according to Riesz decomposition theorem we can
write ϕ(z) =

∫
|ζ|<R+ϵ log |z− ζ|dµ(ζ)+ τ := Φ+ τ where τ is a subharmonic

function which is harmonic of radius R + ϵ. In particular, τ is bounded on
the disc of radius R+ 2

3ϵ. By Theorem 2.5 we have∫
|z|<R+ 1

2
ϵ
e−Φdλ <

∫
|z|<R+ϵ

e−Φdλ <
2π

2− β
(2(R+ ϵ))2 < +∞

and hence the same is true for the integral |F |2e−ϕ on the disc of radius
R+ 1

2ϵ. That means we have
∫
C |F |2e−ϕdλ < +∞. Thus

H(ψ) ⊂ H(ϕ).

□

4. Proof of Theorem 1.3

In this section we prove the Main Theorem, Theorem 1.3. We prove first
the case when the upper regularization ϕ is a harmonic function. We can
suppose that φ1 is not identically −∞.

Lemma 4.1. If ϕ is harmonic, then there are constants c1 ≤ c2 ≤ · · · , cj →
0 so that φj = φ+ cj = ϕ+ cj.

To prove the lemma, observe that φj − ϕ ≤ φj − φ ≤ 0. Then φj − ϕ
must be constant. Thus we have φ = ϕ. The Lemma follows.

Then the theorem follows in the case when ϕ is harmonic.

We can generalize this to the following case:

Condition (A): The upper regularization ϕ of φ is a subharmonic function
with the following property: ∆ϕ =

∑
i aiδzi where zi is a sequence in C and

ai > 0.

Lemma 4.2. In the case of (A), there exist non-positive constants cj so
that φj = φ+ cj = ϕ+ cj.
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Proof. Fix N. We can write

ϕ =

N∑
i=1

ai log |z − zi|+ ψN

where ψN is subharmonic and ∆ψN =
∑
i>N

aiδzi . We get for any j,N

φj −
N∑
i=1

ai log |z − zi| ≤ ψN

for z ̸= zi. Then φj −
N∑
i=1

ai log |z − zi| extends across zi as a subharmonic

function ψNj . That is φj =
N∑
i=1

ai log |z − zi| + ψNj for any N on C. Thus

φj = −∞ at zi and ∆φj ≥
N∑
i=1

aiδzi . It follows that ∆φj ≥ ∆ϕ on C for all

j. So we can find some subharmonic function λj such that φj = ϕ+λj . But
λj ≤ 0 thus it must be constant. The Lemma follows and hence the theorem
also follows in this case. □

Condition (B): Let ϕ be a subharmonic function on C. Let µ denote the
Laplacian of 1

2πϕ. We say that ϕ satisfies condition (B) if there exist some
constant R > 0 and c > 0 such that on the disc |ζ| < R+ c, the mass of µ is
equal to β, with 0 < β < 2 and the mass of µ on the disc |ζ| < R is α > 0.
According to Proposition 3.2 and Proposition 3.3 with the same notation as
there we have the following Corollary:

Corollary 4.3. If ϕ satisfies the above condition (B), then the spaces L2(C, ϕ)
and L2(C, ψ) are the same. Moreover the norms are equivalent.

Lemma 4.4. Let φ1 ≤ φ2 ≤ φ3 ≤ · · · be subharmonic functions on C
with φ = lim

k
φk. Suppose the upper regularization ϕ of φ satisfies the above

Condition (B). Then
∞∪
k=1

H(φk) is dense in H(φ).

To prove Lemma 4.4 we need the following L2-estimate by Berndtsson
(see [1]).

Lemma 4.5 ([1]). Let Ω ⊂ Cn be a pseudoconvex domain and φ ∈ psh(Ω).
Suppose ψ is a C2 real function satisfying

ri∂∂(φ+ ψ) ≥ i∂ψ ∧ ∂ψ
for some 0 < r < 1. Then for each ∂-closed (0, 1)-form v, there is a solution
u to ∂u = v satisfying∫

Ω
|u|2eψ−φdλ ≤ 6

(1− r)2

∫
Ω
|v|2

i∂∂(φ+ψ)
eψ−φdλ.(4.1)
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Proof of Lemma 4.4 . Put 1
2π∆ϕ = µ, 1

2π∆φj = µj for each j. The mass
of µ (resp. µj) on the disc ∆(R) will be denoted by α (resp. αj). Since φj
is increasing to φ and φ = ϕ a.e., we have that ∆φj converges to ∆ϕ in the
sense of distributions. That means we can find some 0 < c′ < c with the
mass of µj on the disc ∆(R+ c′) belongs to (0, 2) when j is sufficient large.
Moreover the mass of µj on the disc ∆(R) is αj > α/2 for all sufficiently
large j. By the Riesz decomposition theorem we can write

ϕ = ϕ̃+

∫
|ζ|<R

log |z − ζ|dµ(ζ), φj = φ̃j +

∫
|ζ|<R

log |z − ζ|dµj(ζ), ∀j.

Here ϕ̃ and φ̃j are subharmonic functions on C. Put

φ′
j = φ̃j +

αj
2

log(1 + |z|2), ∀j

and

ϕ′ = ϕ̃+
α

2
log(1 + |z|2).

By Corollary 4.3 we have that H(φ′
j) = H(φj) for each j and H(ϕ′) =

H(ϕ) = H(φ). The following proof is similar to [3]. Let χ : R → [0, 1] be a
smooth function satisfying χ|(−∞,log 1

2
) = 1, χ|(0,+∞) = 0 and |χ′| ≤ 3. Set

ψ = − log
(
log(1 + |z|2)

)
.

Then we have

i∂∂ψ = −i∂∂ log(1 + |z|2)
log(1 + |z|2)

+ i
∂ log(1 + |z|2) ∧ ∂ log(1 + |z|2)

(log(1 + |z|2))2

and

i∂ψ ∧ ∂ψ = i
∂ log(1 + |z|2) ∧ ∂ log(1 + |z|2)

(log(1 + |z|2))2
.

For each j, put Φj := φ′
j +

αj

4 ψ = φ̃j +
αj

2 log(1+ |z|2)+ αj

4 ψ and Ψj =
αj

4 ψ.

By calculation, if |z| > 2

i∂∂(Φj +Ψj) ≥ αj
2
i∂∂ log(1 + |z|2)− αj

2
i
∂∂ log(1 + |z|2)
log(1 + |z|2)

+
αj
2
i
∂ log(1 + |z|2) ∧ ∂ log(1 + |z|2)

(log(1 + |z|2))2

≥ αj
2
∂ψ ∧ ∂ψ

=
8

αj
∂Ψj ∧ ∂Ψj ,

while α
16 <

αj

8 < 1
4 . Let f ∈ H(φ) = H(ϕ′). We fix 0 < ϵ < 1

2 . Put

vϵ := f · ∂χ (log(−ψ) + log ϵ) .
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Apply Lemma 4.5 for Ω = C with φ and ψ replaced by Φj and Ψj respec-

tively, we then obtain a solution uj,ϵ of ∂u = vϵ satisfying∫
C
|uj,ϵ|2e−φ

′
jdλ ≤ 6

(1− αj

8 )2

∫
C
|vϵ|2∂∂(Φj+Ψj)

eΨj−Φjdλ

≤ C

αj
ϵ2

∫
1
2ϵ

≤−ψ≤ 1
ϵ

|f |2e−φ
′
jdλ.

Put K := {z : z ∈ C, −ψ ≤ 1
ϵ}. Since f ∈ H(φ), according to the

strong openness theorem there exists j0 so that when j ≥ j0 we have∫
K |f |2e−φjdλ <∞.

Next by using Lemma 3.1 we obtain that for some constant C, indepen-
dent of j and ϵ∫

K
|f |2e−φ

′
jdλ =

∫
K
|f |2e−

αj
2

log(1+|z|2)−φ̃jdλ

≤ C

∫
K
|f |2e−

∫
|ζ|<R log |z−ζ|dµj(ζ)−φ̃jdλ

= C

∫
K
|f |2e−φjdλ <∞.

Set

Fj,ϵ = f · χ (log(−ψ) + log ϵ)− uj,ϵ.

Then Fj,ϵ is an entire function for each j ≥ j0 ≫ 1 with

∥Fj,ϵ∥L2(C,φ′
j)
≤ (1 +

C
√
αj
ϵ)∥f∥L2(K,φ′

j)
< +∞.

That is Fj,ϵ ∈
∞∪
j=1

H(φ′
j) =

∞∪
j=1

H(φj). We also obtain

∥Fj,ϵ − f∥2L2(C,φ) ≤ 2

∫
−ψ≥ 1

2ϵ

|f |2e−φdλ+ C

∫
C
|uj,ϵ|2e−φ

′
jdλ

≤ 2

∫
−ψ≥ 1

2ϵ

|f |2e−φdλ+ C ′ϵ2
∫
K
|f |2e−φjdλ.

Still keeping ϵ fixed, but letting j → ∞, we get

lim sup
j→∞

∥Fj,ϵ − f∥2L2(C,φ) ≤ 2

∫
−ψ≥ 1

2ϵ

|f |2e−φdλ+ C ′ϵ2
∫
K
|f |2e−φdλ.

Finally we let ϵ→ 0. Then
∞∪
j=1

H(φj) is dense in H(φ), which completes the

proof. □
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For any subharmonic ϕ on C, we let µ = 1
2π∆ϕ which is a locally finite

positive measure on C. Then µ decomposes into a sum µ = µ1 + µ2 where
µ2 =

∑
i aiδzi is an at most countable sum of Dirac masses and where µ1

has no point mass. Thus Theorem 1.3 follows as above, using Condition (B)
because of the following lemma.

Lemma 4.6. Suppose µ1 is not identically zero. Then there exist a point
z0 ∈ C and 0 < r < s so that µ(∆(z0, r)) > 0, µ(∆(z0, s)) < 2.

Proof. The support of the measure µ1 is uncountable. Hence we can choose a
point z0 in the support of µ1 which is not one of the zi. Then µ(∆(z0, s)) → 0
as s→ 0 while µ(∆(z0, r)) > 0 for all r > 0. □

5. Proof of Theorem 1.6 and Theorem 1.7

Proof of theorem 1.6. We assume that the upper regularization ϕ of φ sat-
isfies Condition (B). For other ϕ, we may use the same method as in the
proof of Theorem 1.3, we skip the details. Fix r < +∞. We prove that

lim
j→∞

Kφj (w,w) = Kφ(w,w)

for all |w| < r. Set Br = {|z| < r}. Let ϵ ≪ 1. Let χ, ψ, Ψj ,Φj and K as
before in the proof of Lemma 4.4. The proof is similar to [2]. Set

λϵ = χ(log(−ψ) + log ϵ).

Let w ∈ BR := {|z| < R}. Applying Lemma 4.5 with φ and ψ replaced by
Φj and Ψj respectively, we get a solution uj,ϵ of

∂u = Kφ(·, w)∂λϵ
such that∫

C
|uj,ϵ|2e−φ

′
jdλ ≤ C

αj
ϵ2

∫
1
2ϵ

≤−ψ≤ 1
ϵ

|Kφ(·, w)|2e−φjdλ ≤ C ′

αj
ϵ2Kφ(w,w)

for sufficiently large j. The last inequality holds because of the following
argument.

By the strong openness theorem |Kφ(·, w)|2e−φj is integrable on K for
some j, hence by the monotone convergence theorem we have

∫
K
|Kφ(·, w)|2e−φjdλ −→

∫
K
|Kφ(·, w)|2e−φdλ ≤ Kφ(w,w)

for sufficiently large j. Note that if Kφ(w,w) = 0, then Kφj (z, w) ≡ 0 for
all z ∈ C.

Since BR+1 ⊂ {−ψ ≤ 1
2ϵ}. We claim that φ′

j is uniformly bounded above

on ∂BR+1. The reason is that |φj − φ′
j | is uniformly bounded on ∂BR+1
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independent of j and φj ≤ φ is uniformly bounded. uj,ϵ is holomorphic on
{−ψ ≤ 1

2ϵ}, the mean value inequality yields

|uj,ϵ(w)|2 ≤ Cn

∫
BR+1

|uj,ϵ|2dλ

≤ C ′
n,R

∫
BR+1

|uj,ϵ|2e−φ
′
jdλ

≤
C ′′
n,R

αj
ϵ2Kφ(w,w).

It follows that

fj,ϵ := λϵKφ(·, w)− uj,ϵ

is an entire function satisfying

|fj,ϵ(w)| ≥ Kφ(w,w)−
Cn,R√
αj
ϵ

and

∥fj,ϵ∥H(φj) ≤ ∥Kφ(·, w)∥L2(K,φj) + C∥uj,ϵ∥L2(C,φj)

≤ (1 +
C

√
αj
ϵ)∥Kφ(·, w)∥L2(K,φj)

≤ (1 +
C

√
αj
ϵ)
√
Kφ(w,w).

Thus we have

|fj,ϵ(w)|
∥fj,ϵ∥H(φj)

≥
Kφ(w,w)− Cn,R,αj ϵ

(1 + Cαj ϵ)
√
Kφ(w,w)

,

that is

lim inf
j→+∞

Kφj (w,w) ≥ Kφ(w,w).

Since φj ≤ φ we know that Kφj (w,w) ≤ Kφ(w,w) for each j ≥ 1, thus we
obtain

lim
j→+∞

Kφj (w,w) = Kφ(w,w), ∀w ∈ C.

This completes the proof. □
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Proof of Theorem 1.7. For each compact F ⊂⊂ C, each fixed w ∈ F and
z ∈ F , according to the mean value inequality we know that

|Kφj (z, w)−Kφ(z, w)|2

≤ C ′∥Kφj (·, w)−Kφ(·, w)∥2H(U,0)

≤ C∥Kφj (·, w)−Kφ(·, w)∥2H(U,φ)

≤ C∥Kφj (·, w)−Kφ(·, w)∥2H(C,φ)

= C

(∫
C
|Kφj (·, w)|2e−φdλ+

∫
C
|Kφ(·, w)|2e−φdλ− 2Kφj (w,w)

)
≤ C

(∫
C
|Kφj (·, w)|2e−φjdλ+Kφ(w,w)− 2Kφj (w,w)

)
= C(Kφ(w,w)−Kφj (w,w))(5.1)

where U is some neighborhood of the compact set F . By Theorem 1.6,
Kφj (z, w) pointwise converges to Kφ(z, w) in C× C. Similarly

lim
j→∞

K2(k+1)φj
(z, w) = K2(k+1)φ(z, w) ∀z, w ∈ C.(5.2)

On the other hand, from Ligocka’s formula

KΩj [(z, t), (w, s)] =
∞∑
k=0

2(k + 1)K2(k+1)φj
(z, w)⟨t, s⟩k, z, t, w, s ∈ C,

we can easily obtain that

2(k + 1)K2(k+1)φj
(z, w) =

∂2k

∂tk∂sk
KΩj [(z, t), (w, s)]|t=s=0.

For each (z0, t0) ∈ Ω ⊂ C2, there exist r1, r2 > 0 so that

(z0, t0) ∈ P := ∆(z0, r1)×∆(0, r2) ⊂⊂ Ω ⊂ Ωj , j ≥ 1.

Since φj is increasing to φ, for each j ≥ 1

|KΩj [(z, t), (w, s)]| ≤ KΩj [(z, t), (z, t)]
1
2KΩj [(w, s), (w, s)]

1
2(5.3)

≤ KΩ[(z, t), (z, t)]
1
2KΩ[(w, s), (w, s)]

1
2 .

Put M := sup
j

sup
P×P

|KΩj [(z, t), (w, s)]|, we have M < +∞. By Cauchy esti-

mates we obtain∣∣∣∣ ∂2k

∂tk∂sk
KΩj [(z, t), (w, s)]

∣∣∣∣
t=s=0

≤ Ck
M

r2k2
, ∀z, w ∈ ∆(z0, r1).

Let 0 < r′1 < r1, 0 < r′2 < r2, then for each ϵ > 0, there exists kϵ ≫ 1, so
that∑
k≥kϵ

2(k + 1)
∣∣∣K2(k+1)φj

(z, w)(ts)k
∣∣∣ < ϵ, ∀z, w ∈ ∆(z0, r

′
1), ∀t, s ∈ ∆(0, r′2),
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and∑
k≥kϵ

2(k + 1)|K2(k+1)φ(z, w)(ts)
k| < ϵ, ∀z, w ∈ ∆(z0, r

′
1), ∀t, s ∈ ∆(0, r′2).

Since

kϵ∑
k=0

2(k + 1)K2(k+1)φj
(z, w)(ts)k −→

kϵ∑
k=0

2(k + 1)K2(k+1)φ(z, w)(ts)
k

by (5.2), it follows thatKΩj [(z, t), (w, s)] pointwise converges toKΩ[(z, t), (w, s)]
in ∆(z0, r

′
1) × ∆(0, r′2) ⊂ Ω × Ω. By (5.3), the functions KΩj [(z, t), (w, s)]

form a normal family in Ω×Ω. It follows from the normality and the point-
wise convergence just proved that the convergence is uniform on compact
subsets of Ω× Ω. This completes the proof. □
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