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productivity loss for crystal growers. If structure loss could be predicted in advance it 
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For this reason, feature engineering and machine learning by long short-term memory 
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Introduction 
 
The Czochralski method is the main process for producing monocrystalline silicon for 
high-efficiency solar cells. The successful ingots are considered to be dislocation free [1]. 
In around one third of the ingots however, dislocation generation starts and the ingot 
starts to grow multicrystalline in an event called structure loss (SL). This represents lost 
production time or yield for monocrystalline silicon producers as the crystal may be 
remelted or the affected part may be cut away. 
 
In the Czochralski process, high-purity silicon is molten in a silica crucible (Figure 1a-b) 
and a monocrystalline seed crystal is dipped into the top of the melt (Figure 1c-e). The 
crucible and the seed are rotated in opposite directions. When the seed is dipped into the 
melt, it experiences thermal shock and dislocations are generated. First a thin neck is 
grown at high pull speed to make dislocations move out to the surface so that the rest of 
the ingot can grow dislocation free [1]. The diameter is increased in the crown to the 
desired diameter of the useful body of the crystal (Figure 1f-g). A tail is grown to make a 
thin tip at separation of the ingot from the melt, in order to avoid slip and dislocation 
generation into the body (Figure 1h-j). 
 

 
Figure 1: Schematic of the principle of the Czochralski method (left) and illustration of the 
different steps (a–j) of the Cz process for growing a monocrystalline ingot. (a) The polycrystalline 
feedstock is melted (b) in a crucible. (c, d) Seeding procedure: The seed crystal is dipped into the 
melt, followed by Dash necking (e), crown growth (f), cylindrical body growth (g), growth of tail 
cone (h), lift off (i), cooling down and removing of the crystal (j) (modified from [2]). 
 
The process is continuously monitored and data are logged every second in the NorSun 
plant in Årdal, Norway. This allows for mining of big data, and the main objective of this 
study is to test statistical learning and investigate whether the data can be used to predict 
structure loss. There is a potential to use real-time or periodically sampled data during 
growth of an ingot to predict if it will end in structure loss. At least the analysis will 
indicate if it is possible to predict structure loss from production data, and the features of 
the signal that is needed for good prediction can be investigated by controlling the input 
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data. The investigated data include ingot diameter, pull speed, heater power and a 
pyrometer reading. For each of these measurements there is a sequence of up to 
thousands of datapoints, for which long short-term memory (LSTM) [3] is selected for 
classifying ingots as having structure loss or not. Data for a portion of the ingots are left 
to test the trained classifier against the actual occurrence of structure loss. 
 

Methods 
 
The first strategy before turning to machine learning directly on the timeseries is to 
calculate features from the sensor timeseries and assess if they have separate range of 
values from ingots with structure loss than ingots without structure loss. Such a feature 
may be used for prediction and classification of ingots with and without structure loss. As 
a second approach, long short-term memory is applied to aggregated and cleaned 
sensor readings to classify ingots as ending in structure loss or not. Predictions are then 
compared with the actual occurrence of structure loss in test set ingots. The workflow of 
the LSTM analysis is shown in Figure 2. 
 
A. Data 
 
Silicon production industry is highly digitalized, and a lot of information is continuously 
monitored. In this work, focus is given to diameter, pull speed, heater power and a 
pyrometer reading. This choice is motivated by the fact that these parameters are related 
to the growth process and changes in correspondence to growth conditions. 
 
The equivalent of one-year worth of data has been collected. In total, the dataset is made 
of 13589 ingots. Roughly 66% of them without structure loss and 33% are with structure 
loss. In Figure 3, frequencies of structure loss by crystal length are given. Almost 50 % of 
all structure losses happen before 100 mm of body. The first bin with negative lengths in 
Figure 3 represents structure loss in crown or shoulder. 
 
For each ingot, the data are collected from start of neck until ingot growth is stopped in 
crown, shoulder or body, or until the end of body for ingots without structure loss. In order 
to reduce the data size, the sensor readings have been aggregated as averages over 
each 30 seconds. By visual inspection, this is found to resolve the fluctuations in all 
signals. 
 
Occasional sensor readings are erroneous (zeros) and they are replaced by linear 
interpolation. For the diameter reading, also spikes occurs. Diameters differing more than 
2.5 mm from a median filter are corrected to the median filter value. The median is 
calculated for a window of 65 points, as this is the highest value that still tracked the 
signal trend (particularly in the neck). For correct median filter calculation in start and end 
of the signal, the signal is padded with 65 points equal to the first or last sensor reading, 
respectively. This is also done as the signal is split at the start of body in order for the 
median filter to capture a top in diameter here. The padding is subsequently removed 
and the sections merged to represent the whole ingot. The median filter, corrected 
diameter and original diameter readings are shown for the start of an ingot in Figure 4. 
The diameter is calculated from tracking the meniscus in a camera feed. The meniscus 
may be difficult to track in crown growth and the diameter signal may be erroneous over 
long periods in this stage. 
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Figure 4: Diameter reading, median filter and correction in neck, crown and start of body. 
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Figure 3: Frequencies of structure loss occurrence by crystal 
 

Figure 2: Schematic of the 
workflow. 
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B. Calculation of features 
 
A range of features is calculated from the timeseries of different sensor readings and 
their value is compare between ingots with structure loss and ingots without structure 
loss, to visually assess whether each feature can be used to classify ingots as having 
structure loss or not. Table I summarizes the assessment of features inspected visually. 
Table II show features which have their mean for ingots with structure loss and for ingots 
without structure loss compared by t-tests with a 5% significance level. The ingots used 
for Table II have the most typical production type (6.7 inch ingots), crucible and feedstock 
material. The analyses differentiate between first (A-ingot) and second (B-ingot) ingot of 
a run. 
 
Table I: Features calculated from sensor readings and used to visually assess if they can classify 
ingots with structure loss (SL ingots) and ingots without structure loss (non-SL ingots). The 
column “Diff.” indicates whether SL and non-SL ingots could be visually separated by the feature. 
 
Feature Diff. Comment 
Slope of pyrometer reading in body after 
minimum 

Yes Higher slope towards full-length ingots. Lower 
slope of SL ingots likely an effect of short ingots. 

Slope of pyrometer reading in 1 h intervals 
between 10-25 h after start neck 

No  

Diameter at 30 mm crown length No  
Crown angle (to vertical) after 30 mm 
diameter 

No  

Mean diameter fluctuation frequency 
weighted by amplitude 

No  

Prominence of power valley in crown No  
Prominence of power peak following the 
valley in crown 

No  

Change between adjacent pull speed 
points (15s interval) 

No  

Mean of pull speed in neck No  
Duration of neck No  
Length of neck No  
Pyrometer reading at end neck No  
Minimum pyrometer reading No  
Time of minimum pyrometer reading after 
start neck 

No  

Prominence of largest power valley in 
ingot 

Yes The largest power valley extends to the end of the 
ingot, and the separation is due to short SL ingots. 

Power at neck end No  
Minimum power No  
Power drop from neck to minimum in early 
body 

No  
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Table II: Features calculated from sensor readings and used assess if they can classify ingots 
with structure loss (SL ingots) and ingots without structure loss (non-SL ingots). The column 
“Diff.” indicates whether the mean of the feature for SL ingots is significantly different from the 
mean of non-SL ingots at 5% significance level. 
 
Feature Diff. Comment 
Number of power peaks over 
10 standard deviations after  
4 h of body 

Yes Higher number of peaks for non-SL ingots than SL 
ingots, due to manual adjustments which cause peaks 
reduce risk of structure loss [4]. 

Stabilization time from end of 
melting to start neck 

No  

Mean power between  
100-375 mm of body 

No  

Mean pyrometer reading 
between 100-375 mm of body 

 Significantly higher for SL ingots than non-SL ingots for 
B-ingots, but not A-ingots. 

Minimum pull speed after 6 
hours of body 

Yes Significantly higher for SL ingots than non-SL ingots, 
because pull speed is reduced towards the end of full-
length ingots, so this is an effect of short SL ingots. 

Standard deviation of diameter 
fluctuation, in last hour of SL 
ingots and in body for non-SL 

 Significantly higher for non-SL ingots than SL ingots for 
B-ingots, but not A-ingots. 

Power at start neck No  
 
C. LSTM network training and testing 
 
A LSTM network is set up according to an example in MathWorks Documentation [5]. 
The architecture has five layers: Sequence input layer, bidirectional LSTM layer with 75 
hidden units, fully connected layer, softmax layer and classification layer. High accuracy 
of prediction can be achieved with 50, 75 and 100 hidden units in the LSTM layer, while 
300 hidden units yields lower accuracy. 
 
70% of ingots from one or two pullers are used for training, in order to complete training 
within a couple of hours, and the remaining 30% are used for testing. For training on 
ingots only from one puller, all ingots from a second puller is used for testing. 
 
The number of training ingots is at most 270. With such low number of training ingots, 
best results are achieved when all ingots are included in each iteration, meaning the 
minibatch size is up to 256 (the minibatch size is a lower number of ingots included in 
each iteration). The training algorithm pads ingots with zeros to the signal length of the 
longest ingot. The training ingots are sorted according to signal length to minimize 
padding. 
 
The trainings are run for 100 epochs, with all ingots being processed in each epoch, and 
the network is saved after each epoch. To avoid underfitting and overfitting, each network 
is used for classification of test ingots. The accuracy and confusion matrix are assessed 
for each network and the network with highest accuracy and lowest number of ingots 
without structure loss classified as ingots with structure loss (false positives) is selected. 
False positives are considered a more serious error than false negatives (classifying 
structure loss ingots as not having structure loss). In case an algorithm to predict 
structure loss is implemented in production, a false positive could trigger termination of 
an ingot that would continue to grow with high quality, while a false negative would not 
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initiate any action and the structure loss will be handled as before implementation the 
algorithm. The performance of the selected network is also assessed with Receiver 
operating characteristics (ROC) curve. 
 

Results and discussion 
 
First, 70% of ingots from one puller is used to train LSTM networks. After each epoch 
during training a network is saved. The performance of each network is tested on the 
remaining 30% of the data from the puller. Figure 5 shows accuracies and number of 
false classifications for each network. The networks after epoch 44 and 55 reach 100% 
accuracy with no false classification on this test set. 
 

 
Figure 5: Accuracies and number of falsely classified ingots from networks saved after each 

epoch (iteration) during training. 
 

The network after epoch 55 is selected for testing on 
all ingots from a second puller. It provides an 
accuracy of 99% with two ingots without structure 
loss classifies as having structure loss (false 
positives), as shown in the confusion matrix in Table 
III. Figure 6 shows the ROC curve for the prediction, 
having an area under the curve close to one. 
 
 
  

Actual \ 
Prediction 

Non-
SL 

SL 

Non-SL 75 2 
SL 0 132 

Table III: Confusion matrix for best 
network trained on one 70% of ingots 
from puller and tested on all ingots of 
a second puller. 
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Figure 6: Receiver operating characteristics for best network trained on 70% of ingots from one 

puller and tested on all ingots of a second puller. 
 
Best accuracy is achieved when the network is trained and tested on ingots of similar 
diameter. A network trained on a puller with 6.5-6.7 inch diameter ingots achieves 91% 
accuracy when tested on ingots with the same diameters from a second puller. The 
confusion matrix is shown in Table IV and 19 ingots without structure loss is classified as 
having structure loss (false positive). When tested on 8.4-8.5 inch diameter ingots from a 
second puller, the accuracy is 82% and the confusion matrix is shown in Table V with 35 
false positives. Training a network on 8.4-8.5 inch diameter ingots form a third puller 
achieves a higher accuracy of 95% with 5 ingots without structure loss falsely classified 
to have structure loss in the confusion matrix in Table VI. 
 
       Table V: Confusion matrix for ingots trained  
Table IV: Confusion matrix for ingots trained  on 6.5-6.7 inch and tested on 8.4-8.5 inch  
and tested on 6.5-6.7 inch diameter ingots.  diameter ingots.  

 
 
 
 
 

 
Table VI: Confusion matrix for ingots trained  
and tested on 8.4-8.5 inch diameter ingots. 

 
 
  

Actual \ 
Prediction 

Non-
SL 

SL 

Non-SL 96 35 
SL 2 71 

Actual \ 
Prediction 

Non-
SL 

SL 

Non-SL 115 19 
SL 0 75 

Actual \ 
Prediction 

Non-
SL 

SL 

Non-SL 106 5 
SL 3 60 
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To investigate which sensors provide 
information best used to predict structure loss, 
models are trained and tested for all 
combinations of four sensors, namely 
diameter (D), Main Heater power (MHP), a 
pyrometer reading (T) and pull speed (PS). 
Several combinations achieve 99.0% 
accuracy of prediction with one non-SL ingot 
classified as SL as shown in Table VII. Many 
of these combinations include the diameter 
reading. Furthermore, the lowest number of 
sensors achieving this high accuracy is 
diameter alone. It is thus decided to only use 
the diameter reading for further investigations. 
It is noted in Table VII that including all the 
sensors provides the worst prediction, 
possibly due to increasing noise from sensors 
not effective in predicting structure loss. This 
seems different than the high accuracy 
achieved for training and testing on the same 
data presented in Figures 5-6 and Table III.  
 
Different sections of the signal along the 
length of the ingots are tested to assess if only 
part of the signal can be used for prediction of 
structure loss. If structure loss could be predicted in advance, an algorithm could collect 
data during growth and the process could be stopped before structure loss would occur, 
saving production time. Thus it is tested to load an increasing length of the signal of test 
ingots to use for prediction. Structure loss can not be predicted until the whole signal is 
included in the classification algorithm. Actually, structure loss is first predicted when the 
length of the padding after a structure loss extended for a few hours. This indicate that the 
length of the padding may be used by the network to predict structure loss. Using only the 
part of the diameter signal in the body which is relatively constant, structure loss can not 
be predicted and also the first transient at least from the top in diameter at the transition 
from shoulder to body needs to be included in order to predict structure loss. 
 
As an alternative to padding, the diameter signal is stretched to the length of the longest 
ingot so that the signal length of all ingots is equal to the signal length of the longest 
ingot. This is achieved using an algorithm for resizing images with bilinear interpolation in 
which the output value is a weighted average of the nearest two values. A network 
trained on this data is able to predict structure loss in 11 out of 30 ingots with structure 
loss in the test set, with the remaining 19 ingots with structure loss falsely classified as 
not having structure loss. All 67 ingots without structure loss is correctly classified. 
Although this data transformation avoids padding of the signal with zeros, the length of 
the ingots still has effect on the signal as the duration of neck and crown spans an 
increasing number of points for shorter ingots with structure loss. A second approach 
extrapolated the diameter signal including noise that resembles the fluctuations in the 
diameter signal. The network is then not able to predict structure loss and all ingots are 
predicted as not having structure loss, indicating that the padding of the signal plays a 
role in the algorithm for predicting structure loss. 

Sensors Accu-
racy 

Non-SL 
as SL 

SL as 
Non-SL 

D 99.0 % 1 1 
MHP,D 99.0 % 1 1 
MHP,PS 99.0 % 1 1 
MHP,PS,D 99.0 % 1 1 
MHP,T,D 99.0 % 1 1 
T,PS 99.0 % 1 1 
T,PS,D 99.0 % 1 1 
MHP,T 99.0 % 2 0 
MHP,T,PS 99.0 % 2 0 
T,D 99.0 % 2 0 
PS,D 99.0 % 2 1 
MHP 98.6 % 3 0 
T 97.1 % 1 5 
PS 92.3 % 16 0 
MHP,T,PS,D 90.4 % 20 0 

Table VII: Comparison of prediction accuracy 
and number of false positives (Non-SL as SL) and 
false negatives (SL as Non-SL) for different 
combinations of sensor signals: Diameter (D), 
Main Heater power (MHP), a pyrometer reading 
(T) and pull speed (PS). 
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Ingots with structure loss and similar length is 
extracted from all pullers and pooled together with a 
random selection of ingots without structure loss 
with cut-off of the diameter signal to the same 
length. The 5-minute window with the largest 
number of structure loss ingots is 159.5-164.5 min 
(after start neck), encompassing 85 ingots with 
structure loss in this time. Within this window, the 
shorter ingots are padded with extrapolation of the 
diameter and adding noise. 85 ingots without structure loss was added and the signals 
were cut at 164.5 min. Training on 70% of the ingots and testing on 30% of the ingot 
provided the confusion matrix in Table VIII, with a mix of correct and both types of errors. 
The accuracy for predictions on the test set is 61.5%, not much better than random. 
 
Figure 7 are results from training and testing on only part of the diameter signal from start 
neck to 250 minutes of body, after the diameter has stabilized around a constant value. 
The foresight axis counts the number of hours the ingot ends after this window. Ingots at 
zero foresight ends within this window used for training and prediction. It is observed that 
structure loss is only predicted for ingots which ends due to structure loss within the 
window used for prediction, meaning the signal is padded after the structure loss 
occurred. Ingots that ended in structure loss after the window up to 250 minutes of body 
are not predicted to have structure loss, but are predicted as non-structure loss ingots 
like all ingots for which the signal completed the window and is not padded. 
 

 
Figure 7: Predictions for test ingots from neck to 250 minutes of body, showing number of hours 

ingots end after this signal length used for training and classification. 
 
For implementation to a puller, a trained network would predict structure loss for a 
growing ingot. The network should thus be able to predict structure loss for only one 
ingot. Test with only one ingot do not provide any prediction of structure loss, possibly 
because there is no padding of the signal for only one ingot in the minibatch. Prediction 

Actual \ 
Prediction 

Non-
SL 

SL 

Non-SL 19 6 
SL 14 13 

Table VIII: Confusion matrix for 85 
structure loss ingots lasting 159.5-
164.5 min and 85 non-structure loss 
ingots with signal cut at 164.5 min. 
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of structure loss for one specific ingot as a part of a larger minibatch with dummy ingots 
is also not successful. 
 
Bidirectional LSTM is able to use the context from both past and future points at any 
point in the sequence, while unidirectional LSTM only utilize the context from past points. 
The necessity of bidirectional LSTM is assessed by comparing to unidirectional LSTM, by 
replacing the bidirectional LSTM layer in the network architecture. The unidirectional 
LSTM network failed to predict structure loss for training and test sets for which 
bidirectional LSTM predicted 30 correct structure losses, with an accuracy of 100%. 
 
To investigate what features of the diameter signal the network use to predict structure 
loss, the signal is smoothed. A network is trained and tested for the smoothed signal and 
for only the fluctuation remaining when subtracting the smoothed signal from the original 
diameter reading. The smoothing is done with a moving average of 50 points (25 
minutes) window. The smoothed and original signal are shown in Figure 8. 
 

 
Figure 8: Moving average with 25 min window size and original diameter reading of points every 

30 s with average sensor reading. 
 

Using the moving average to train and test a LSTM network results in no structure loss 
ingots being predicted, even though also this signal is padded with zeros after the end of 
ingots. The same result is obtained when using the fluctuation of the signal (subtracted 
by the moving average) for training and prediction.  
Power, pull speed, pyrometer and diameter readings averaged over 30 s does not seem 
to contain information that can be used to predict if an ingot will have structure loss. 
Large fluctuations of the crystallization rate and temporal remelting at local points on the 
solidification front are considered as a cause for structure loss [6], and such fluctuations 
are not captured in the signal of overall pull speed. A more detailed estimation or 
measurement of local crystallization rate and remelting could prove useful to predict 
structure loss and add more information on the effect of crystallization rate fluctuations 
and remelting on the occurrence of structure loss. 
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Conclusion 
 
Feature engineering and long short-term memory (LSTM) is assessed for predicting 
structure loss in industrial Czochralski silicon ingots. Some features have different values 
for ingots with and without structure loss, but except features reported in [4], these were 
due to ingots with structure loss being shorter than ingots without structure loss. LSTM 
can provide high accuracy of prediction using only the diameter signal. However, the 
length of the signal and padding with zeros in the training algorithm could not be 
excluded as the feature used for prediction. Structure loss could only be accurately 
predicted if the signal ends and is padded. 
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