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An inviscid analytical theory of a slow steady liquid-mass rotation during the swirl-type
sloshing in a vertical circular cylindrical tank with a fairly deep depth is proposed by
utilising the asymptotic steady-state wave solution by Faltinsen et al. (2016). The tank
performs a periodic horizontal motion with the forcing frequency close to the lowest
natural sloshing frequency. The azimuthal mass-transport (first observed in experiments
by Prandtl 1949) is associated with the summarised effect of a vortical Eulerian-mean
flow, which, as we show, is governed by the inviscid Craik-Leibovich equation, and an
azimuthal non-Eulerian mean. Suggesting the mass-transport velocity tends to zero when
approaching the vertical wall (supported by existing experiments) leads to a unique
non-trivial solution of the Craik-Leibovich boundary problem and, thereby, gives an
analytical expression for the summarised mass-transport velocity within the framework
of the inviscid hydrodynamic model. The analytical solution is validated by comparing
it with suitable experimental data.

1. Introduction

Prandtl (1949) was probably the first to demonstrate experimentally a slow steady
rotation of the contained liquid during the swirl-type sloshing in an upright circular tank
exposed to an orbital horizontal translatory excitation (swirl-type sloshing = swirling
= azimuthally-propagating wave; see, Chap. 9 by Faltinsen & Timokha 2009). The
azimuthal liquid mass-transport was further observed and measured by Hutton (1964)
and Royon-Lebeaud et al. (2007) who suggested that its theoretical description should
involve the Lagrangian-mean concept, in general, and the Stokes drift (which is an
element of the concept, see, Craik 1986; Bühler 2009; Bremer & Breivik 2017), in
particular, as well as one should account for the free-surface nonlinearity and viscosity.
Recent experiments by Reclari (2013), Reclari et al. (2014), Ducci & Weheliye (2014),
and Bouvard et al. (2017) paid an insight into the Prandtl phenomenon, for both almost
inviscid and strongly viscous liquids (Bouvard et al. 2017, conducted model tests with
silicon oils), to show that viscosity does not qualitatively matter, at least, when the
forcing frequency is close to the lowest natural sloshing frequency, but it affects both a
local vortical flow in a neighbourhood of the moving contact line and the boundary layer
flow along the tank wall. However, the free-surface nonlinearity cannot be neglected at
the resonance conditions.

Existing experimental works report that the mass-transport (a) is co-directed with
swirl-type sloshing in each inner point beneath the free surface, (b) tends to zero when
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approaching the upright wall, (c) reaches the maximum value at approximately the semi-
radius, and (d) is satisfactorily predicted by the Stokes drift only in a neighbourhood of
the tank axis. The peculiarities (a)-(d) require to account for a non-zero Eulerian-mean
(vortical) velocity wE , whose appearance was extensively discussed, but not analysed in
the aforementioned works by Bouvard et al. (2017), Reclari (2013), Reclari et al. (2014),
Ducci & Weheliye (2014). The governing equations for wE are the starting point of the
present paper.

In § 2, we introduce the steady-state potential-flow Narimanov-Moiseev–type solution
by Faltinsen et al. (2016) describing the steady-state resonant sloshing in an upright
circular tank, which is horizontally excited with the forcing frequency close to the lowest
natural sloshing frequency. The lowest-order component of this solution is determined
by the four lowest-order amplitude parameters a, ā, b̄ and b. As follows from Faltinsen
et al. (2016), one can introduce the nondimensional parameter Ξ = ab − b̄ā whose sign
determines the existing steady-state wave types: standing (Ξ = 0), counter- (Ξ > 0) and
clockwise (Ξ < 0) swirling waves (azimuthal progressive wave). In a frequency range,
the steady-state sloshing can be unstable that causes chaotic (irregular) wave motions.
Limitations of the steady-state solution are discussed.

In § 3, the Eulerian-mean (vortical) flow velocity wE is added to the second-order
asymptotic component of the steady-state solution by Faltinsen et al. (2016). The time-
averaging in the vorticity equation derives the dynamic governing equation for wE , which
is the same as the inviscid Craik-Leibovich equation (Craik & Leibovich 1976). In § 4,
we evaluate the mean azimuthal mass-flux M = ME + Ms, where ME is caused by
wE , but the second summand Ms, which is not zero for swirling, is in the standard way
interpreted as a consequence of the non-Eulerian azimuthal (Stokes-drift–type) mass-
transport velocity ws. Mathematical and physical reasons for the difference between ws

(andMs) and the formal mathematical expression of the Stokes drift velocitywS (and the
associated mass-flux MS) are discussed. In the forthcoming analysis, the experimentally-
established mass-transport is associated with the sum wP = wE +ws.

Along with the inviscid Craick-Leibovich equation, the steady solenoidal wE satisfies
the zero normal-velocity conditions on the wall and the mean free surface. Getting a
unique wE requires tangential (azimuthal and vertical) boundary conditions on the
wetted tank surface. An indicative prediction of these conditions can be obtained by
using the nonlinear boundary layer (steady streaming) theory whose details are described
in the Supplementary Materials B. Analysis of these predictions in § 5 shows that they
are mathematically contradictory. However, a much more important fact is that they do
not provide the zero mass-transport velocity wP = 0 on the wetted tank wall, which was
listed above as the peculiarity (b). A physical reason is that the Eulerian steady streaming
theory ignores the non-Eulerian mass-transport (associated with ws) around the wall,
which influences viscous stresses and may modify tangential boundary conditions.

By assuming that the non-Eulerian mass-transport predominates the local tangential
mean rotation of fluid particles in a neighbourhood of the wall, one can arrive, in the
inviscid flow limit, at the tangential boundary condition wP = 0⇒ wE = −ws on the
wall. The latter condition makes the experimental peculiarity (b) automatically satisfied.
It also means that wE counteracts ws and, thereby, implies the return flow. Adopting
this boundary condition makes the inviscid Craik-Leibovich boundary value problem
mathematically correct and allows for deriving an exact analytical solution for wP . As
announced in the paper title, this purely inviscid solution neglects specific viscous streams
and their influence (feedback) on the Prandtl phenomenon. The inviscid approximation
of the azimuthal mass-transport is validated in § 6 by using the measurements by Hutton
(1964) and Bouvard et al. (2017).
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Figure 1. The upright circular container with an infinite liquid depth moves translatory along
an horizontal elliptic orbit defined by η1(t) = η1a cosσt, η2(t) = η2a sinσt. Sloshing is considered
in the tank-fixed coordinate system. The panel (a) introduces the original geometric notations
but (b) shows the mean (hydrostatic) liquid domain Q0, unperturbed free surface Σ0 and the
mean wetted tank surface S0 as they appear in our nondimensional analysis.

2. Steady-state asymptotic solution by Faltinsen et al. (2016)

A rigid circular cylindrical container of radius r0 is partly filled by an inviscid incom-
pressible liquid with a fairly deep depth (figure 1, a). Liquid sloshing is considered in
the tank-fixed cylindrical coordinate system. The tank performs an orbital (longitudinal,
elliptic, or circular) small-magnitude horizontal translatory motion governed by η1(t) =
η1a cosσt, η2(t) = η2a sinσt along the x and y axes, respectively. The forcing frequency
σ is close to the lowest natural sloshing frequency σ1 = σ11. For the infinite liquid depth,
the natural sloshing frequencies are σMi =

√
gkMi/r0, where g is the gravity acceleration

and kMi are the roots of J ′M (kMi) = 0 (JM is the Bessel function of the first kind).

Assuming irrotational flows of an incompressible perfect liquid, Faltinsen et al. (2016)
derived an asymptotic steady-state solution of the nonlinear resonant sloshing problem
for finite deep liquid depths h (1.2 . h∗ = h/r0). The derivations were based on
the Narimanov-Moiseev asymptotic multimodal theory, which is a consequence of the
Bateman-Luke variational formalism for the free-surface sloshing problem coupling the
velocity potential ϕ(r, θ, z, t) and function ζ(r, θ, t) describing the free-surface elevations
by z = ζ(r, θ, t). The constructed asymptotic solution by Faltinsen et al. (2016) exactly
satisfies the Laplace equation, boundary conditions on the wetted tank walls, but kine-
matic and dynamic boundary conditions on the free surface Σ(t) are asymptotically
approximated within to the o(ε)-terms, where the lowest-order surface wave component
has then the order O(ε1/3) and the highest included asymptotic terms O(ε) � 1 are
associated with the nondimenional forcing amplitudes. Why the steady-state resonant
sloshing amplitude is of the order O(ε1/3) while the tank amplitude is of the order O(ε)
was explained by Moiseev (1958) (see also details in chapters 8 and 9 by Faltinsen &
Timokha 2009).

We utilise the steady-state asymptotic solution by Faltinsen et al. (2016) for h∗ →∞
and re-write it with special normalisation, in which 1/σ and r0/k are characteristic time
and length, respectively, (k = k11 = 1.841183781341...). This normalisation simplifies
the forthcoming derivations and analytical expressions. The lowest-order terms in the
asymptotic free-surface Σ(t) representation,

z = ζ(r, θ, t) = ζ(1/3)(r, θ, t) + ζ(2/3)(r, θ, t) + ζ(3/3)(r, θ, t) + ...,
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take then the form

ζ(r, θ, t) = ζ(1/3)(r, θ, t) + o(ε1/3) = J1(r) (−θs cos t+ θc sin t) + o(ε1/3), (2.1)

where

θc = θc(θ) = b sin θ + ā cos θ, θs = θs(θ) = −b̄ sin θ − a cos θ

and a, ā, b̄, b = O(ε1/3) are the only lowest-order nondimensional amplitude parameters.
The asymptotic velocity field relative to the rigid tank is defined by

v(r, θ, z, t) = v1r̂ + v2θ̂ + v3ẑ = v(1/3) + v(2/3) + v(3/3) + ..., (2.2)

where r̂, θ̂, ẑ are the unit vectors in the cylindrical coordinate frame. The lowest-order
potential-flow velocity component is

v(1/3)(r, θ, z, t) = ∇ [J1(r) ez (θc cos t+ θs sin t)]

= [J ′1(r)ez (θc cos t+ θs sin t)] r̂ +
[
r−1J1(r)ez (θ′c cos t+ θ′s sin t)

]
θ̂

+ [J1(r)ez (θc cos t+ θs sin t)] ẑ = v
(1/3)
1 r̂ + v

(1/3)
2 θ̂ + v

(1/3)
3 ẑ, (2.3)

where the velocity potential ϕ(1/3)(r, θ, z) = J1(r) ez (θc cos t+ θs sin t) is taken from
Faltinsen et al. (2016) and θ′c, θ

′
s are derivatives of θc, θs by θ. The relative velocity

component v(1/3) is constructed in the body-fixed coordinate system and, therefore,
it satisfies the impermeability condition on the wetted tank surface as well as the
kinematic and dynamic free-surface boundary conditions (see, details in chapters 2 and
5 by Faltinsen & Timokha 2009).

Depending on the quadratic amplitude quantity Ξ = ab − āb̄, the free-surface rep-
resentation (2.1) determines either standing (only possible for longitudinal horizontal
excitations) or swirling (azimuthal progressive) wave, i.e.

Ξ = 0⇔ standing; Ξ > 0 ⇔ counterclockwise swirl; Ξ < 0 ⇔ clockwise swirl. (2.4)

We construct an inviscid vortical asymptotic solution for the swirl-type sloshing, in
which the lowest-order velocity field coincides with (2.3) but a steady vorticity appears
in the second-order approximation, O(ε2/3). Owing to restrictions of the Narimanov-
Moseev asymptotic theory, proceeding this way implicitly assumes:

(i) the low-viscous contained liquid, for which the boundary layer-thickness at the tank
wall, δ = 1/

√
Res � 1 (Res = (r20σ)/(νk), is the sloshing-related Reynolds number and

ν is the kinematic viscosity) is smaller than the introduced steady vortical component,
i.e.,

δ =
1√
Res

=

√
νk

r20σ
� O(ε2/3); (2.5)

(ii) the fairly deep liquid depth (practically, 2.5 . h∗ = h/r0 to avoid the depth effect
on the natural sloshing frequencies);

(iii) the forcing frequency σ is close to the lowest natural sloshing frequency σ1 = σ11,
so that the Moiseev detuning condition

(σ2
1/σ

2 − 1) = O(ε2/3), k
√
η21a + η21a/r0 = O(ε)� 1 (2.6)

is satisfied, namely, the closeness of the forcing frequency σ to the first natural sloshing
frequency σ1 is measured on the O(ε2/3)-scale, where O(ε) characterises the forcing
amplitude;

(iv) there are no secondary resonances, which occur, e.g., in local neighbourhoods
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of σ/σ1 = σ2k/(2σ1), σ/σ1 = σ0k/(2σ1), σ/σ1 = σ3k/(3σ1), k > 1 and σ/σ1 =
σ1i/(3σ1), i > 2 (the secondary resonances were extensively discussed by Faltinsen et al.
2016).

Remark. Faltinsen et al. (2016, Eq. (3.12)) derived a system of nonlinear algebraic
secular (solvability) equations governing a, ā, b̄ and b as functions of σ/σ1. The secular
system comes from the third-order (O(ε)) approximation and, therefore, its coefficients
can modify due to the introduced second-order vortical component. However, structure
of (2.1) and (2.3) remains the same and, therefore, we can assume that a, ā, b̄, b are the
known amplitude values, but not necessarily the same as computed by Faltinsen et al.
(2016). How a, ā, b̄, b change due to the non-zero vortical flow deserves a dedicated study.

3. The Eulerian-mean velocity field

The original asymptotic solution by Faltinsen et al. (2016) implies the zero mean
velocity field. In the present section, we assume that, after a long, and, generally,
viscous-flow transient wave phase, the velocity field became vortical so that the steady-
state solution contains the non-zero time-averaged (Eulerian-mean) solenoidal velocity
component

〈v〉 = wE(r, θ, z) = (wE1 , w
E
2 , w

E
3 ) = O(ε2/3),

〈∇ × v〉 = ∇×wE = ΩE(r, θ, z) = (ΩE1 , Ω
E
2 , Ω

E
3 ) 6= 0,

(3.1)

such that

∇ ·wE = 0; ∇ ·ΩE = ∇ · [∇×wE ] ≡ 0. (3.2)

This velocity component is associated with the following framed second-order supple-
ment to the original asymptotic solution

v(2/3)(r, θ, z, t) = wE(r, θ, z) +∇ϕcos
2/3(r, θ, z) cos 2t+∇ϕsin

2/3(r, θ, z) sin 2t. (3.3)

To get a governing (dynamic) equation for wE , we follow the asymptotic (time-
averaging) procedure by Craik & Leibovich (1976) (not that in Leibovich 1980). The
procedure uses the vorticity equation written down in the tank-fixed (non-inertial)
coordinate frame (see, Kochin et al. 1965; Faltinsen & Timokha 2009),

Ω̇ = ∇× [(v − vO)×Ω], Ω = ∇× v, (3.4)

where vO = k(η̇1(t), η̇2(t), 0)/(r0σ) = O(ε) is the nondimensional translatory velocity of
the tank, which appears in (3.4) because we employ the non-inertial coordinate system,
and the dot means differentiation by the time. The time-periodic solution of (3.4) is
asymptotically posed as

Ω = ΩE +Ω3/3 +Ω4/3 + . . . ; v = v(1/3) + v(2/3) + ... , (3.5)

in which ΩE is defined in (3.1), v(1/3) comes from (2.3), v(2/3) contains the vortical term
by (3.3)

Substituting (3.5) into the vorticity equation (3.4) derives the time-periodic (3/3)-order
approximation

Ω3/3(r, θ, z, t) =

∫
∇×

[
v(1/3) ×ΩE

]
dt

= ∇×
[
∇(J1θce

z)×ΩE
]

sin t−∇×
[
∇(J1θse

z)×ΩE
]

cos t. (3.6)
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The (4/3)-order asymptotic approximation of the vorticity equation

Ω̇4/3 = ∇× [wE ×ΩE ] +∇× [v(1/3) ×Ω3/3] (3.7)

leads to the time-periodic solution Ω4/3, if and only if, the time-averaged right-hand side
of (3.7) is zero. Tedious derivations (we used MapleTM to simplify them) show that, if
ΩE is solenoidal (satisfies (3.2)), the time-averaging in (3.7) yields the following equation

∇× [wE ×ΩE ] = Ξ e2z

(
1

r
wS ∂θΩ

E − θ̂

[(
(wS)′ − 1

r
wS
)

︸ ︷︷ ︸
3r−1(−2wS+ws)

ΩE1 + 2wS ΩE3

])
, (3.8)

where ws(r) = r−1J2
1 (r) and wS(r) is associated with the formally-defined Stokes drift

velocity†

wS(r, z)
def
=

〈∫
v(1/3)dt · ∇v(1/3)

〉
=

1

2
∇×

〈
v(1/3) ×

∫
v(1/3)dt

〉
≡ Ξe2z 1

2r

[
J2
1 (r) +

(
J ′1 −

J1(r)

r

)2
]

︸ ︷︷ ︸
wS(r)

θ̂ = wS2 (r, z)θ̂. (3.9)

The derived equation (3.8) is the same as the inviscid Craik-Leibovich equation (Craik
& Leibovich 1976) but for swirling, that is, (3.8) admits the well-known equivalent form

∇× [(wE +wS)︸ ︷︷ ︸
wL

×ΩE ] = 0. (3.10)

Equivalence of (3.10) and (3.8) is shown in the Supplementary Materials A.
The governing equations (3.2) and (3.8) with respect to wE require appropriate

boundary conditions, which include, since we employ the tank-fixed coordinate system,
the zero normal velocity conditions on the wall and the mean free surface

wE1 (k, θ, z) = 0 and wE3 (r, θ, 0) = 0, (3.11)

as well as

|wE | → 0 as z → −∞. (3.12)

However, (3.2) and (3.8) also need tangential boundary conditions on the wetted wall.
Where the tangential boundary conditions for the inviscid velocity field wE could come
from is analysed in § 5.

4. The mean mass-transport through the meridional plane

Let us forget, for a while, derivations in the previous section but assume that we know
the axisymmetric time-averaged Eulerian (vortical) velocity by (3.1) in each inner point
of the time-dependent liquid domain, i.e.,

wE(r, z) = 〈v〉+ o(ε2/3), (4.1)

which has already appeared in (3.3). The lowest-order free-surface motion ζ(1/3) and
velocity field v(1/3) are described by (2.1) and (2.3), respectively.

Simple derivations show that the mean mass-flux through the horizontal on z = z1 < 0

† We thank Dr. Herreman who prompted using the second definition of the Stokes drift.
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and annular r = r1, 0 < r1 < k cross-sections are zeros (physically, due to the liquid mass
conservation). However, the integral mass-transport (mass-flux) through the meridional

cross-section (in the θ̂ direction) is not zero and reads as

M =

〈∫ ζ(1/3)(r,θ,t)

−∞

∫ k

0

(
v
(1/3)
2 + v

(2/3)
2

)
drdz

〉
+ o(ε2/3), (4.2)

where v(2/3) is defined by (3.3).
The asymptotic series in (4.2) shows that

M =

∫ 0

−∞

∫ k

0

wE2 (r, z) dr︸ ︷︷ ︸
ME

+

∫ k

0

〈
v
(1/3)
2 |z=0 ζ

(1/3)
〉

︸ ︷︷ ︸
Ms

+o(ε2/3) (4.3)

where ME implies the Eulerian-mean azimuthal mass-flux but the second mass-flux
contribution, Ms, does not depend on wE , but is a consequence of a quadratic quantity
by the lowest-order potential-flow terms. Following derivations by Faltinsen & Timokha
(2009, Sect. 9.6.3) gives

Ms =

∫ k

0

〈[
v
(1/3)
2

∫
v
(1/3)
3 dt

]
z=0

〉
dr + o(ε2/3) = 1

2Ξ

∫ k

0

J2
1 (r)

r
dr + o(ε2/3), (4.4)

which shows that Ms 6= 0 for swirling (Ξ 6= 0).
Derivations in (4.4) utilised the linear kinematic boundary condition on the free surface

ζ̇(1/3) = v
(1/3)
3 |z=0. This boundary condition states that the fluid particles on the free

surface move together with this surface and, in particular, ζ(1/3) = d
(1/3)
3 |z=0, where

d(1/3) = (d
(1/3)
1 , d

(1/3)
2 , d

(1/3)
3 ) =

∫
v(1/3)dt

is the first order Lagrangian displacements. The dual Eulerian-Lagrangian character of

the wave elevation ζ(1/3) = d
(1/3)
3 makes it possible to interpret Ms in (4.3) as being

caused by the Stokes-drift–type mass-transport. This resolves the mathematical paradox
– the extra non-zero contribution Ms into the total mass-flux M , which is formally
computed within the framework of the Eulerian specification and, therefore, should be
equal to ME .

Treatment of the non-zero integrals alike Ms as coming from the non-Eulerian mean
component of the mass-transport is typical for the external progressive surface-wave
problems. Details and discussions can be found in books and review papers, which are
exemplified by Bühler (2009) and Bremer & Breivik (2017). Pursuing a self-contained
presentation, we add an illustrative example in the Supplementary Materials C where the
link between the Stokes-drift mass-flux and an integral alike Ms is shown for progressive
waves in a rectangular channel by using the Stokes integration theorem and (3.9).†

By adopting definition (3.9) of the Stokes drift velocity wS , we can examine whether
the latter fact from the external surface wave theory remains correct for the studied
problem. For this purpose, we consider the integral over the azimuthal Stokes-drift
velocity and apply the Stokes integration theorem:

MS =

∫ 0

−∞

∫ k

0

wS2 (r, z)drdz =
1

2

∫ 0

−∞

∫ k

0

(
∇×

〈
v(1/3) ×

∫
v(1/3)dt

〉)
· θ̂ drdz

† The idea of using (3.9) is proposed by Dr. W. Herreman.
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=
1

2

∫ 0

−∞

〈
v
(1/3)
1

∫
v
(1/3)
2 dt− v(1/3)2

∫
v
(1/3)
1 dt

〉∣∣∣∣
r→0

dz

+
1

2

∫ k

0

〈
v
(1/3)
2

∫
v
(1/3)
3 dt− v(1/3)3

∫
v
(1/3)
2 dt

〉∣∣∣∣
z=0

dr

+
1

2

∫ −∞
0

〈
v
(1/3)
1

∫
v
(1/3)
2 dt− v(1/3)2

∫
v
(1/3)
1 dt

〉∣∣∣∣
r=k

dz

+
1

2

∫ 0

k

〈
v
(1/3)
2

∫
v
(1/3)
3 dt− v(1/3)3

∫
v
(1/3)
3 dt

〉∣∣∣∣
z→−∞

dr. (4.5)

Here, the third and fourth integrals are zeros but the first one implies the limit
− 1

4Ξ[J ′1(r)J1(r)r−1]→ − 1
16Ξ as r → 0.

Because 〈
v
(1/3)
3

∫
v
(1/3)
2

〉∣∣∣∣
z=0

= −
〈
v
(1/3)
2

∫
v
(1/3)
3

〉∣∣∣∣
z=0

;〈
v
(1/3)
1

∫
v
(1/3)
2

〉∣∣∣∣
r→0

= −
〈
v
(1/3)
2

∫
v
(1/3)
1

〉∣∣∣∣
r→0

,

the derivation line (4.5) results in∫ k

0

〈
v
(1/3)
2 |z=0 ζ

(1/3)
〉

︸ ︷︷ ︸
Ms

= MS +

∫ 0

−∞

〈
v
(1/3)
2 d

(1/3)
1

〉∣∣∣
r→0

dz︸ ︷︷ ︸
1
16Ξ

, (4.6)

where d
(1/3)
1 |r→0 =

∫
v
(1/3)
1 dt|r→0 expresses the first-order radial Lagrangian displace-

ment for fluid particles, which belong (but do not cross the tank axis) to a meridional
plane θ = θ0=const as r → 0.

Formula (4.6) links the actual non-Eulerian mean mass-flux Ms and its formal math-
ematic prediction based on the Stokes mass-transport concept, MS . The formula and
derivation line (4.5) also helps to clarify the difference between Ms and MS . Computing
MS ignores the fluid particles in the meridional plane and their first-order Lagrange
displacements, which cross the tank centre, namely, the fluid particles, which move
between in the meridional plane θ = θ0=const and the meridional plane θ = θ0 + π.
In the contrast, Ms determines the azimuthal mass-flux as it stands, including the effect
of these cross-moving particles.

One can rebuild (extract)

ws(r, z) = ws2(r, z) θ̂, Ms =

∫ 0

−∞

∫ k

0

ws2(r, z) drdz,

which would plays the same role as the Stokes drift velocity wS for the external
progressive waves. For this purpose, we replace the finite integration on (0, k) in (4.4)
by a small interval (r, r + ∆r) that gives, in the limit ∆r → 0, that ws2(r, z) =
ΞF (z) r−1 J2

1 (r). To derive F (z), one should exclude integration by r in (4.4), fix
the radial coordinate 0 < r = r0 < k and consider integration by z from −∞ to

d
(1/3
3 |z=z0 = ζz0 = ez0

∫
v
(1/3)
3 (r0, θ, z0)dt+o(ε1/3) in (4.4), where −∞ < z0 < 0 is a fixed

vertical coordinate in the mean cross-sectional area. This gives
∫ z0
−∞ F (z)dz = 1

2e
2z0 and,

therefore, F (z) = e2z. As a consequence,

ws(r, z) = Ξe2zws(r)θ̂ = Ξe2z
J2
1 (r)

r
θ̂, (4.7)
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where ws has already appeared for the inviscid Craik-Leibovich equation.

In summary, to describe the mass-flux (4.3) in the Prandtl experiments one should
consider

wP = ws +wE , (4.8)

where ws implies, according to the generally-accepted physical treatment of Ms, the
non-Eulerian (Stokes-drift–type) velocity (4.7) but the Eulerian-mean velocity wE is
governed by the boundary value problem (3.2), (3.8)-(3.12) whose unique non-trivial
solution requires tangential boundary conditions on the wetted tank wall.

5. The mass-transport velocity wP

5.1. Where the tangential boundary conditions for wE may come from?

There are no physical mechanisms causing tangential boundary conditions for wE

by (3.2), (3.8)-(3.12) within the framework of the fully inviscid hydrodynamic model.
Usually, the steady tangential stresses and associated boundary conditions are related
to steady streaming (Riley 2001), a nonzero Eulerian-mean of fluctuating flows, which
is normally, caused by the action of an oscillating submerged body, or, indirectly, by
the action of viscous stresses in thin boundary layers at no-slip boundaries, here, at the
vertical wall. The Supplementary Materials B derive the tangential boundary conditions
(B 23a) and (B 23b) as they follow from the steady streaming theory for the swirl-type
sloshing. These Eulerian derivations ignore the non-Eulerian mean mass-transport of
fluid particles around (in a small neighbourhood of) the wall, which should, in contrast
to the inner liquid points, influence the viscous stresses and, mathematically, modify
no-slip conditions, which must, in addition, be applied, according to experiments, to the
azimuthal mass-transport on the vertical wall. Physically, this means that moving fluid
particles due to ws, when being not zero at r = k, cause an extra vorticity.

We have no an idea on how to include the non-zerows, r → k into the steady streaming
theory. However, we can either neglect the Stokes-drift–type mass-transport at the wall
or assume that ws predetermines the inviscid Eulerian-mean wE so that other viscous
streams lead to negligible contribution into wP .

5.1.1. Steady streaming with negligible ws at the wall

By ignoring the non-Eulerian mean mass-transport by ws on the wall, the Supplemen-
tary Materials B derive the tangential boundary conditions, (B 23a) and (B 23b), which
express the Eulerian-mean steady streaming. Because Faltinsen et al. (2016) showed that
ā = b̄ = 0 and a ≈ b for undamped sloshing, at least, for the orbital tank forcing,
one can focus on the framed terms in (B 23a) and (B 23b). Comparing (B 23b) with
wE3 = 0 on the mean free surface in (3.11) shows that using (B 23b) in our inviscid
analysis is mathematically contradictory, because this causes wE to be discontinuous
but ΩE = ∇ ×wE becomes singular (infinite) at the contact point r = k, z = 0, and,
as a consequence, asymptotic analysis in § 3 is invalid as involving the infinite function
ΩE in the second-order approximation. This mathematical problem is well known from
viscous CFD simulations. Its resolution requires to relax the no-slip condition about the
moving contact line. However, existing computational approaches are not adoptable in
analytical inviscid studies.

The azimuthal tangential boundary condition (B 23a) states that wE has in each inner
point the opposite sign to Ξ and, therefore, wE implies the return flow (in opposite
direction to swirling). However, (B 23a) does not provide the experimental peculiarity
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(b) consisting of the zero mass-transport on the wall, wP2 = 0, r = k. Indeed, imposing
wP2 = 0 (wE2 = −ws2) at r = k gives

wE2 = −Ξe2zp0 = −Ξe2zps0 at r = k, ps0 =
J2
1 (k)

k
> 0, (5.1)

which should be compared with

wE2 = −Ξe2zp0 = −Ξe2zpV0 at r = k, pV0 =
3(k2 − 1)J2

1 (k)

4k3
> 0 (5.2)

following from (B 23a). Calculations show that pV0 /p
s
0 = 0.5287583024..., and, therefore,

(B 23a) underpredicts (almost twice) the needed value.

5.1.2. The non-Eulerian mass-transport ws plays a dominant role at the wall

Assuming the dominant role of ws at the wall is physically consistent with the inviscid
limit, Res →∞, when purely viscous stresses due to no-slip conditions for oscillatory flow
components and associated viscous steady streams may be neglected. Considering the
inviscid limit and the time-averaging procedure of the no-slip conditions for the resulting
particle motions around the wall make the latter conditions automatically satisfied for
the O(ε1/3) asymptotic component but the O(ε2/3) approximation mathematically leads
to the tangential boundary condition

wP = 0 ⇒ wE2 = −Ξe2zp0 = −Ξe2zps0 and wE3 = 0 at r = k. (5.3)

This condition is exactly the same as required by the peculiarity (b) (see, Introduction).
It means that liquid particles, which are involved into the mass-transport wP , are
unmovable (do not steadily slip) along the wall but their components, ws (non-Eulerian
mean) and wE (Eulerian mean) eliminate each other on the wetted tank surface. The
Eulerian-mean implies the return flow. The mass-transport becomes self-supported when
equipped with (5.3). Decreasing wE at the wall (due to small viscous stresses) makes the
mass-transport around the wall by ws generating a tangential stresses counteracting ws

until (5.3) is fulfilled.
Usage of (5.3) is mathematically not contradictory but we should understand that this

condition neglects purely viscous streams including the poloidal recirculation (details of
the viscous phenomena are extensively discussed by Bouvard et al. 2017). This condition
can also be treated as an hypothetical analogy of the Kutta-Joukowski condition applied
to foils in inviscid fluid with rotational flow.

5.2. The resulting mass-transport velocity

Accepting (5.3) causes an axisymmetric solution of the boundary value problem (3.2),
(3.8)-(3.12). Furthermore, if the vector-function wE(r, z) is continuous and finite in Q0,
the r̂ and ẑ components of the the Craik-Leibovich equation (3.8) reduce to

∂zG = 0 & (r ∂rG+G) = 0
(
G = wE1 Ω

E
3 − wE3 ΩE1

)
⇒ G = G(r) = C/r ⇒ G = 0

(5.4)
and, therefore,

∂z
(
rwE2

)
wE3 + ∂r

(
rwE2

)
wE1 = 0 in Q0, (5.5)

but (3.2) transforms to

∂z
(
rwE3

)
+ ∂r

(
rwE1

)
= 0 in Q0. (5.6)

Eqs. (5.5), (5.6) are restricted to the homogeneous boundary conditions (3.11) and
(5.3b). Because we assume a non-trivial azimuthal velocity component wE2 , which appears
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in coefficients of (5.5), (5.6), the boundary problem (5.5), (5.6), (3.11), (5.3b) can be
solved by using, e.g., method of characteristics, which leads to the trivial solution wE1 =
wE3 ≡ 0.

The θ̂-component of the Craik-Leibovich equation follows then from the boundary
problem

2wE2 ∂zw
E
2 +Ξ e2z

[
3 (2wS − ws) ∂zwE2 + 2wS ∂r(rw

E
2 )
]

= 0,

wE2 (k, z) = −Ξ e2z p0, |wE2 (0, z)| <∞. (5.7)

Substitution wE2 (r, z) = Ξe2zwE(r) reduces (5.7) to the boundary value problem for
the Bernoulli differential equation

2
(
wE
)2

+ 3
(
2wS − ws

)
wE + wS

(
rwE

)′
= 0, |wE(0)| <∞, wE(k) = −p0, (5.8)

which has an exact analytical solution and causes

wE = Ξe2zwE(r) θ̂, wE(r) =
wS(r)

(c0r2 − 1)
, c0 =

1

k2

(
1− wS(k)

p0

)
, (5.9)

where wS(r) is associated with the Stokes drift velocity (3.9); one should require c0 < k−2

to avoid singularity on the interval 0 6 r 6 k.

When p0 = ps0, the resulting mean azimuthal mass-transport velocity reads as

wP = ws +wE = Ξe2zwP (r)θ̂ = Ξe2z
(
J2
1 (r)

r
+

wS(r)

c0r2 − 1

)
θ̂, (5.10)

where wS comes from (3.9) and c0 = 0.10398523061... .

The inviscid theoretical prediction (5.10) includes three consequent multipliers,

Ξ = O(ε2/3), e2z (where |z| = O(1)) and wP (r) = O(1), (5.11)

where Ξ is responsible for the wave amplitude (Ξ = ab for the undamped sloshing),
e2z implies the exponential decay (the formula is true only for fairly deep liquid depths)
and wP (r) describes the radial distribution of the mean mass-transport velocity. As
remarked in § 2, the wave amplitude multiplier Ξ can have a feedback from the mean
mass-transport, i.e., the potential-flow values a, ā, b̄, b by Faltinsen et al. (2016) provide
only an estimate of Ξ. Dependence of a, ā, b̄ and b on wP goes beyond these studies.
Finally, the exponential decay multiplier is formally of the order O(1), which means that
(5.10) is applicable only for z far away from the mean free surface.

Remark. If we assume (even though we proved that it is not true), that the non-Eulerian
mass-transport is described by wS , i.e. wP = wL = wS +wE , and, in addition, require
the experimental peculiarity (b) implying wE = −wS at r = k, the parameter p0 in (5.9)
becomes equal to w(k) that gives c0 = 0 ⇒ wE(r) = −wS(r). The latter means that
the return flow wE fully annihilates wS in each inner point of the liquid domain and,
therefore, the total mass-transport becomes zero, at least, within the framework of the
inviscid hydrodynamic model. This confirms that the first-order radial Lagrangian fluid
particles displacements through the tank axis, which were extensively discussed in § 4 as
causing the difference between ws and wS , play an important role in the description of
the Prandtl phenomenon.
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Figure 2. Functions ws(k r∗) by (4.7), wE(k r∗) by (5.9), and wP (k r∗) by (5.10),
which represent the radial distribution of the mean non-Eulerian, Eulerian, and resulting
mass-transport azimuthal velocities, respectively, by the r0-scaled radial coordinate r∗ = r/k.
The graph wS(k r∗) illustrates the Stokes azimuthal mean velocity by (3.9).

6. Comparison with experiments

Figure 2 presents the theoretical azimuthal mass-transport velocity and its components
along the r0-scaled radial axis (the nondimensional radial coordinate r∗ = r/k). These
contain ws (the non-Eulerian mean, (4.7)), wE (the Eulerian mean, (5.9)) and wP

(summarised mass-transport (5.10)). In addition, we depict the non-modified azimuthal
Stokes drift velocity wS , which is governed by (3.9) and appears in the Craik-Leibovich
equation.

The non-Eulerian mean velocity is co-directed with the swirl-type propagating wave,
ws(k r∗) > 0, 0 < r∗ < 1 but the Eulerian-mean velocity counter-acts it, i.e., wE(k r∗) <
0, 0 < r∗ < 1; here, r∗ = r/k is the r0-scaled radial coordinate. This implies, in particular,
that comparing the experimental data with, independently, ws and wE has no meaning.
The sign of wE (the return flow) is opposite to the experimental discoveries, but ws does
not satisfy, by itself, the experimental peculiarity (b) (zero azimuthal mass-transport
on the vertical wall). Only the summarised mass-transport distribution wP (joint effect
of ws and wE) has a physical meaning for the studied problem and can be adopted
for the forthcoming experimental validation. Obviously, wP satisfies the experimental
peculiarities (a) and (b) (see, the Introduction).

The summarised mass-transport wP reaches its maximum value at about the semi-
radius (satisfies the experimental peculiarity (c)) so that its graph has an arc-type shape.
This shape is independent of the forcing frequency and amplitude (see, discussions on
that by Bouvard et al. 2017; Reclari 2013; Hutton 1964).

Another interesting result is that (wP )′(0) is equal to (wS)′(0) = 1
8 ,

wP (r)− wS(r) = (−0.02862315382...) r3 +O(r5),

and, as a consequence, wP is satisfactory fitted by the Stokes drift (3.9) in a neigh-
bourhood of the tank centre (satisfies the experimental peculiarity (d)). The latter
experimental fact was discussed by Bouvard et al. (2017) who commented that the mean
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Figure 3. Theoretical prediction (6.1) of the nondimensional angular velocity (ωO)∗ = ωO/σ
in the tank centre (r∗ = 0 and z∗0 = z0/r0 = −0.23), the solid line, and the corresponding
measured data by Bouvard et al. (2017) for two liquids with ν = 50 mm2 s−1 (empty circles)
and ν = 500 mm2 s−1 (filled circles). The tank is exposed to the circular orbital forcing with the
r0-scaled amplitude η∗a = 0.057. Experiments (a) and (b) were done with σ/σ1 = 0.78 and 0.75,
respectively. Theoretical amplitude parameter Ξ is computed by using the linear sloshing theory
with potential flows. The logarithmic scale is kept from the original publication by Bouvard et al.
(2017).

mass-transport flow is nearly in solid-body rotation near the centre, rotating in the
direction of the orbital shaking, for 0 < r∗ < 0.3. Comparing wP with wS in figure 2
confirms this interval of r∗.

In summary, the constructed solution satisfies all the experimentally-established pecu-
liarities, which were listed in the Introduction, and, therefore, it qualitatively describes the
Prandtl phenomenon. The next step consists of a quantitative validation of the analytical
result (5.10). Limitations of the Narimanov-Moiseev theory (i)-(iv) (see, § 2) and a lack
of measurements of the Prandtl mass-transport phenomenon (including his pioneering
work) for fairly deep liquid depths makes it difficult to find suitable experimental data
for this validation. With known reservations, only measurements by Hutton (1964) and
Bouvard et al. (2017) can be adopted.

6.1. Experiments by Bouvard et al. (2017)

By using a very special stroboscopic PIV velocimetry technique, which makes it
possible to detect the mass transport, Bouvard et al. (2017) measured the azimuthal
mass-transport (corresponds to wP ) and mean radial (associated with wE1 = 0 in our
inviscid theory) velocities for swirling waves occurring due to the orbital horizontal
circular forcing of the tank. In these experiments, the upright circular container was
filled, consequently, by two different silicon oils so that the experimental series were
characterised by Reynolds numbers equal to Res = r20σ/(k

2ν) = 1000/k2 (ν = 50 mm2

s−1) and 100/k2 (ν = 500 mm2 s−1), respectively (ν is the kinematic viscosity). Silicon
oil with with ν = 500 mm2 s−1 is definitely not low-viscous. The measurements were
done at the horizontal level z∗0 = z0/r0 = −0.23, which is relatively far from the free
surface, |z0| = 0.23 k = O(1) and, therefore, formula (5.10) is applicable.

The liquid depth was sufficiently large, h∗ = h/r0 = 2.168, (r0 = 51.2 mm, the Bond
number is about 500 so that surface tension can be neglected). The forcing amplitude
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Figure 4. The r0σ-scaled measured (Moisy, personal communication) and theoretical (6.2)
liquid mass-transport velocity in the azimuthal (solid circles and solid arc-type line, respectively)
and radial (empty circles, the theory states zero) directions. The results with z∗0 = −0.23, the
forcing frequencies σ/σ1 = 0.78 (a) and 0.75 (b), the forcing amplitude η∗1 = 0.057 (circular
tank motions). The experimental tank has the nondimensional depth h∗ = h/r0 = 2.168.

was O(ε) = η∗a = η1a/r0 = η2a/r0 = 0.057, but the tested forcing frequencies were in the
range 0.48 . σ/σ1 . 0.78, which is generally speaking, away from the primary resonance
zone, 0.9 . σ/σ1 . 1.07, where the Moiseev detuning condition (2.6) is fulfilled. Finally,
the experimental frequency range contains rather dangerous secondary resonances by
the first axisymmetric (01) mode at σ/σ1 = 0.72 (see, an extra small amplitude-response
peak about this value in experiments by Reclari 2013) and for the asymmetric (21) mode
(σ/σ1 = 0.65).

Summarising the aforementioned input parameters shows that conditions (i), (iii), and
(iv) (see, § 1) are, generally, not satisfied. However, the approximate analytical result
(5.10) can, for experiments by Bouvard et al. (2017), be interpreted as the single J1-
mode approximation on the azimuthal mass-transport within the framework of the linear
sloshing theory.

Our first focus is on the mean angular liquid velocity ωO in the tank centre, which
can, according to (5.10), be estimated as ωO/σ = Ξekz

∗
0 (wP )′(0) = 1

8Ξe
kz∗0 , z∗0 = z0/r0,

where z0 is the dimensional horizontal level beneath the mean free surface. Adopting
the single-mode linear potential-flow sloshing prediction of the amplitude parameter Ξ
(Faltinsen & Timokha 2009, Chapter 5) derives the formula

ωO
σ

=
1

8
(k2η∗aα)2e2kz

∗
0

((σ1
σ

)2
− 1

)−2
, α =

∫ k
0
r2J1(r)dr∫ k

0
rJ2

1 (r)dr
, (6.1)

which is compared with the measured data by Bouvard et al. (2017) in figure 3 (the mea-
sured values for ν = 50 mm2 s−1 are marked by the empty circles but ν = 500 mm2 s−1

corresponds to the filled circles). The logarithmic axis scale is kept from the original
experimental work.

Figure 3 demonstrates that viscosity matters for ν = 500 mm2 s−1 so that the theory
only qualitatively fits the corresponding measured values. As for silicon oil with ν =
50 mm2 s−1, discrepancy for σ/σ1 < 0.75 is theoretically clarified by the aforementioned
secondary resonances at σ/σ1 = 0.72 and 0.65, but the theory shows a good agreement
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for the cases (a) (σ/σ = 0.78) and (b) (σ/σ = 0.75), which are away from the secondary
resonances but close to the primary resonance zone. The latter closeness means an
increasing contribution of the lowest natural sloshing mode.

When preparing the paper, Bouvard et al. (2017) measured azimuthal and radial com-
ponents of the mean mass-transport as function of r∗ (z∗0 = −0.23). Professor F. Moisy
(personal communication) granted us with these r0σ-scaled measured data. Adopting, as
in (6.1), the linear potential-flow sloshing theory for computing the amplitude parameter
Ξ derives the formula

(wP1 )∗ = (wP3 )∗ = 0, (wP2 )∗ = k(η∗aα)2e2kz
∗
0

((σ1
σ

)2
− 1

)−2
wP (k r∗) (6.2)

from (5.10).
Figure 4 compares (6.2) with the measured data by Moisy (personal communication)

for the cases (a) and (b) in figure 3. Specifically, (6.2) states that the radial mean mass-
transport is zero ((wP1 )∗ ≡ 0) because we neglect the poloidal recirculation and other
viscous non-azimuthal mean streams. Figure 4 supports the neglecting – the measured
radial mean mass-transport is zero for 0 < r∗ < 0.7 but, even though this mass-transport
is not zero on the interval 0.7 < r∗ < 1, it is clearly lower than the measured azimuthal
mass-transport. This is especially for the case (a), whose forcing frequency is relatively
close to the Narimanov-Moiseev resonant zone.

As for the azimuthal mass-transport velocity in figure 4 (solid arc and filled circles),
the constructed inviscid theory by (6.2) demonstrates quantitatively good prediction.
Especially, if we recall that the theory neglects viscous flows and adopts the approximate
single-mode linear sloshing solution for computing the amplitude parameter Ξ.

6.2. Experiments by Hutton (1964)

Another experimental series for swirling wave mode was reported by Hutton (1964). He
used the longitudinal harmonic excitation (η1a 6= 0, η2a = 0) with the forcing frequency
equal to σ = σ1, i.e., when the swirling wave mode is stable and possesses the same
features as for the orbital forcing (Faltinsen et al. 2016). Hutton (1964) utilised three
different forcing amplitudes, which were, unfortunately, not specified in the original paper
but, instead, he distinguished the corresponding experimental series by documenting the
experimental crest (emax) and through (emin) at the wall in the excitation plane (see,
figure 5). The geometric input was r0 = 22.47 cm, h = 31.45 cm (h∗ = h/r0 = 1.4),
σ1 = 8.91 rad s−1. Tap water with ν = 10−6 m2/s and Res = 4.5 · 105.

To measure the azimuthal mass-transport velocity distribution, Hutton (1964) used
a mechanical device (‘fixture’) whose main element is a rectangular paddle lying in
the meridional plane and rotating together with the contained liquid as depicted in
figure 5. Three different paddles were employed, which are denoted as ‘small paddle’
(rectangle sides are lr × lz=3.937×2.286 cm), ‘medium paddle’ (4.8514×3.6068 cm) and
‘large paddle’ (5.968×4.334 cm). The measurements were made at the vertical levels
z∗0 = −0.59 (z∗0 = −0.43h), z∗0 = −0.92 (z∗0 = −0.67h), and z∗0 = −1.22 (z∗0 = −0.89h).
Hutton (1964) wrote that “the test data also indicated that the transport velocity was
nearly constant over the range of depths”, which means that the azimuthal mass-transport
velocity does not depend on z (as in (5.10)) due to the bottom effect for the liquid filling
h∗ = h/r0 = 1.4, which is not fairy deep. The experimental input in Hutton (1964)
satisfies condition (i), (iii) and (iv) in § 2 but does not (ii).

The azimuthal mass-transport velocities were normalised by its maximum value and
compared with our inviscid analytical solution (5.10), wP (r)/max |wP |. The result is
presented in figure 5. The smaller symbol implies the smaller paddle. The filling depth
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Figure 5. The azimuthal mass-transport velocity scaled by its maximum value for the
experimental case by Hutton (1964), which were done with tap water (Res = 4.5 · 105),
r0 = 22.46884 cm, h∗h/r0 = 1.4. Swirling wave mode was excited by the horizontal longitudinal
tank forcing along the Ox axis (η2a = 0) with the forcing frequency σ = σ1, for which, according
to Faltinsen et al. (2016), the swirling wave mode is stable. The measurements were dome at
the vertical level z0 = −0.43h, z∗0 = −0.59. Three different forcing amplitudes (denoted as
small, middle and large) were used, which are not specified by Hutton (1964) who has linked
these three experimental cases to experimental crest (emax)/trough (emin) at the wall equal
to 8.89/5.334, 11.43/6.35, and 13.97/7.62 cm, respectively. The experimental setup employed
a mechanical measurement technique with rectangular paddles of different sizes. The sizes are
marked as ‘small paddle’ = lr × lz=3.937×2.286 cm; ‘medium paddle’ = 4.8514×3.6068 cm;
‘large paddle’ = 5.968×4.334 cm. The measurements in zone F can according to Hutton (1964)
be affected by the paddle feedback on the liquid flows.

of the used symbols also increases with increasing the forcing amplitude (Hutton 1964,
reports the experimental crest (emax)/trough (emin) of azimuthal progressive wave at
the wall for these three forcing amplitudes as 8.89/5.588, 11.43/6.35, and 13.97/7.62 cm,
respectively). Figure 5 supports our analytical inviscid solution for measurements made
with ‘small paddle’. ‘Medium’ and ‘large’ paddles give clearly larger values for one
measurement probe, which is closely located to the tank centre. Hutton (1964) suggested
that bigger paddles may yield a feedback on the liquid flows for the latter case.

As we mentioned above, because the liquid depth h∗ was not large enough and the
nearly-bottom flows matter, Hutton (1964) states that there is no exponential decay
e2z as predicted in (5.10). Hutton (1964) reports that the azimuthal mass-transport
is uniquely function of r. Speculatively assuming that the nearly-bottom flows play
an ‘averaging role’, one can take the mean value of e2z over the infinite depth, which

implies replacement e2z →
∫ 0

−∞ e2zdz = 1
2 . Furthermore, one can roughly approximate

the amplitude parameters

a =
k (emax + emin)

2 r0 J1(k)
+O(ε), b = a

√
m3

m1
= a
√

1.83...

(meaning of coefficients m1 and m3 is explained by Faltinsen et al. 2016) and formula
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Figure 6. Comparison of theoretical formula (6.3) with measured data by Hutton (1964) with
the input parameters documented in the caption of figure 5. Measurements from zone Z, where
the azimuthal mass-transport was measured with relatively large paddles, which influence the
liquid flows, were excluded.

(5.10) transforms then to the approximate form

(wP2 )∗ =
k
√

1.83

2J2
1 (k)

e2∗w
P (k r∗), e∗ =

emax + emin

2r0
(6.3)

for the r0σ-scaled azimuthal mass-transport velocity.
The theoretical prediction (6.3) is compared with the measured data by Hutton (1964)

except from zone F in figure 5, where, as we stated, the larger paddle feedbacks the liquid
flows. The theoretical results by (6.3) look sufficiently good if we account for how many
assumptions were made to derive formula (6.3).

7. Conclusions

The mean azimuthal liquid mass-transport (Prandtl’ phenomenon, 1949) generated
by swirling waves in a vertical circular cylindrical tank with an infinite liquid depth
is theoretically described by using the asymptotic steady-state wave solution (potential
flows of incompressible liquid) by Faltinsen et al. (2016). The summarised mass-transport
velocity is associated with wP = wE + ws, where wE is the Eulerian-mean (vortical)
velocity, which appears as a second-order supplement to the asymptotic inviscid solution
by Faltinsen et al. (2016) andws is the non-Eulerian mean, which is affected by the Stokes
drift and the first-order radial inflow/outflow into the meridional plane at r = 0. The
non-Eulerian mass-transport component ws is co-directed with azimuthally-propagating
(swirling) wave, but wE implies the return flow.

The Eulerian-mean velocity wE is governed by the inviscid Craik-Leibovich equa-
tion whose special analytical form is derived in the present paper by using the time-
averaging in the vorticity equation. Finding a unique wE requires to know tangential
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boundary conditions on the wall. Derivations of these conditions from the nonlinear
Eulerian boundary-layer analysis (see, the Supplementary Materials B) does not fit the
existing experimental peculiarities of the summarised azimuthal mass-transport, and
causes mathematical conflict with the used asymptotic scheme in a neighbourhood of
the contact curve between the liquid surface and the tank wall. The failure is, in our
opinion, caused by the neglecting of the fluid particles motion by ws in a neighbourhood
of the wall, which acts on viscous stresses and yields an extra vorticity. In the inviscid
limit, we suggest that local mass-transport ws at the wall implies dominant mechanism
to constitute the Eulerian-mean flow. Physically, this implies that typical viscous vortical
streams are neglected. Mathematically, this means that one can use the inviscid Craik-
Leibovich boundary problem, but adopt the time-averaged no-slip condition for the
resulting (Eulerian + non-Eulerian) particle velocities on the wall. The latter causes
the tangential boundary condition wE = −ws on the wall. This tangential condition
can be treated as an analogy of the Kutta-Joukowski condition for steady ambient flow
past a stationary foil but for the studied problem. Provided by this tangential boundary
condition, we were able to derive wP in a simple analytical form. The theoretical result
is compared with the measured data by Bouvard et al. (2017) and Hutton (1964). The
results are in a good quantitative agreement. The comparison confirms that viscosity and
associated viscous streams may play a secondary role for the mass-transport phenomenon
by Prandtl.

The present paper neglects a feedback of the mean liquid rotation on the lowest-order
amplitudes a, b, ā and b̄, which are taken from the steady-state asymptotic solution by
Faltinsen et al. (2016). This fact as well as the nearly-bottom flow effect deserve dedicated
studies.

The authors acknowledge the financial support of the Centre of Autonomous Ma-
rine Operations and Systems (AMOS) whose main sponsor is the Norwegian Research
Council (Project number 223254–AMOS). The authors also thank Professor F. Moisy
for providing unpublished experimental data, which are used for comparative analysis in
figure 4.
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SUPPLEMENTARY MATERIALS

Appendix A. Explicit form of the Craik-Leibovich equation

Explicit form of the continuity equation (3.2) in cylindrical coordinate system can be
written as

∂ΩE1 + ∂ΩE3 = −1

r

(
ΩE1 + ∂ΩE1

)
. (A 1)

Using (A 1) and definition of the Stokes drift (3.9) utilise the derivation line

∇×
[
wS ×ΩE

]
= ∇×

[
r̂
(
wΩE2

)
− ẑ

(
wΩE1

)]
= −1

r
w
[
r̂∂θΩ

E
1 + ẑ∂θΩ

E
3

]
+ θ̂

[
∂z
(
wΩE3

)
+ ∂r

(
wΩE1

)]
= −Ξe2z 1

r
wS
[
r̂∂θΩ

E
1 + ẑ∂θΩ

E
3

]
+ θ̂

[
2wΩE3 + w

(
∂zΩ

E
3 + ∂rΩ

E
1

)
+ΩE1 ∂rw

]
= −Ξe2z

(
1

r
wS ∂θΩ

E − θ̂

[(
(wS)′ − 1

r
wS
)
ΩE1 + 2wS ΩE3

])
.

Adopting the Bessel function definition J ′′1 = −r−1J ′1 − J1 + r−2J1 and employing the
Maplesoft analytical manipulator derive

(wS)′ − 1

r
wS = −3

r

[
1

r

(
J ′1 −

J1
r

)2
]

= −3

r

[
2wS − ws

]
.

Appendix B. Nonlinear (Eulerian-mean) boundary-layer effect

The boundary layer analysis starts with adopting, as in the main paper body, the char-
acteristic length r0/k and time 1/σ. This mathematically computes the corresponding
Reynolds number Res = (r20σ)/(νk) � 1, where ν is the kinematic viscosity. Transition
and turbulent flow is neglected that implies an upper bound for applicable Reynolds
numbers (Eq. (6.2.3) in Faltinsen & Timokha 2009).

B.1. Nonlinear boundary-layer equations

We consider, in parallel way, the non-dimensional inviscid ambient velocity field
v(r, θ, z, t) = v1r̂+v2θ̂+v3ẑ containing the non-zero mean-flow component wE(r, θ, z) =

〈v〉 = wE1 r̂+wE2 θ̂+wE3 ẑ, which is associated with (generally, unknown a priori) steady

streaming, and the non-dimensional velocity field V (r, θ, z, t) = U r̂ + V θ̂ + W ẑ, which
is affected by the viscous boundary layer at the vertical wall. We need also the ambient
pressure field p and P , which is associated with the viscous velocity field, forgetting on
the first stage that these are the same in the lowest-order approximation (this fact will
be shown later, mathematically).

The viscous flow is governed by the continuity equation

(rU)r + Vθ + rWz = 0, (B 1)

and the nondimensional Navier–Stokes equation

U̇ + UUr +
V Uθ
r
− V 2

r
+WUz = −Pr + δ2

[
(rUr)r
r
− U

r2
+
Uθθ
r2
− 2Vθ

r2
+ Uzz

]
+ cos θη̈1 + sin θη̈2, (B 2a)
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V̇ + UVr +
V Vθ
r

+
UV

r
+WVz = −Pθ

r
+ δ2

[
(rVr)r
r
− V

r2
+
Vθθ
r2

+
2Uθ
r2

+ Vzz

]
− sin θη̈1 + cos θη̈2, (B 2b)

Ẇ + UWr +
VWθ

r
+WWz = −Pz + δ2

[
r(Wr)r

r
+
Wθθ

r2
+Wzz

]
, (B 2c)

where δ =
√

1/Res is an asymptotic measure of the boundary layer thickness δ at the
vertical wall and, therefore, δ is small parameter, which is assumed be smaller than the
forcing amplitude (2.5).

The viscous-flow velocity field must satisfy the no-slip condition at the wall and tend
to the inviscid velocity field (including the steady streaming component wE) away from
the boundary layer. These two conditions can mathematically be formalised as

V = 0 at r = k and ||V − v|| = O(δ) as k − r � O(δ). (B 3)

The forthcoming asymptotic derivations will be done in terms of the differences

V = V − v = (R,Θ,Z) = (U − u, V − v,W − w) and P = P − p, (B 4)

between viscous and ambient flow parameters.
Because the ambient flow satisfies (B 1), (B 2) with δ = 0, the governing equations for

the differences take the form

(rR)r +Θθ + r Zz = 0, (B 5a)

Ṙ+RRr+
ΘRθ
r
−Θ

2

r
+ZRz+[uRr+Rur]+

1

r
[vRθ+Θuθ]−

2Θv

r
+[Zuz+wRz] = −Pr

+ δ2
[

(rRr)r
r

− R

r2
+
Rθθ
r2
− 2Θθ

r2
+Rzz

]
+ δ2

[
(rur)r
r
− u

r2
+
uθθ
r2
− 2vθ

r2
+ wzz

]
,

(B 5b)

Θ̇+RΘr+
ΘΘθ
r

+
RΘ

r
+ZΘz+[uΘr+Rvr]+

1

r
[vΘθ+Θvθ]+

1

r
[uΘ+Rv]+[wΘz+Zvz] =

− Pθ
r

+δ2
[

(rΘr)r
r

− Θ

r2
+
Θθθ
r2

+
2Rθ
r2

+Θzz

]
+δ2

[
(rvr)r
r
− v

r2
+
vθθ
r2

+
2uθ
r2

+ vzz

]
,

(B 5c)

Ż +RZr +
ΘZθ
r

+ ZZz + [uZr +Rwr] +
1

r
[vZθ +Θwθ] + [wZz + Zwz]

= −Pz + δ2
[
r(Zr)r
r

+
Zθθ
r2

+ Zzz

]
+ δ2

[
r(wr)r
r

+
wθθ
r2

+ wzz

]
. (B 5d)

The no-slip condition (B 3) transforms to

V = (R,Θ,Z) = V − v = (−v,−u,−w) at r = k, (B 6)

but the closeness of V and v far from the boundary layer will be rewritten as

||V || = O(δ) for (k − r)� O(δ); 0 6 r < k. (B 7)

To clarify what is the mathematical infinity for the closed domain, we introduce the
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boundary-layer spatial variable ξ as

r = k − δξ, 0 < ξ = O(1) (B 8)

and consider the differences as functions of ξ, t and θ, z, i.e., R = R(ξ, t; θ, z), Θ =
Θ(ξ, t; θ, z), Z = Z(ξ, t; θ, z) and P = P(ξ, t; θ, z). Furthermore, we look for the asymp-
totic solution of (B 5)-(B 7)

R = δR1 + ..., Θ = Θ0 + δΘ1 + ..., Z = Z0 + δZ1 + ..., P = δP1 + ... . (B 9)

One must note that R0 = 0 because the normal velocity is zero at r = k, but the
zero-order pressure difference P0 = 0 (the ambient pressure is continuous through the
boundary layer) is according to (B 5b) rewritten in the ξ, t; θ, z coordinates.

Utilising the rule (·)ξ = −δ(·)r for R, Θ and Z and keeping only the O(1) terms derive

R1ξ = Z0z +Θ0θ/k (B 10)

from (B 5a), but (B 5c) and (B 5d) transform to the two equations

Θ̇0 −Θ0ξξ −R1Θ0ξ +
Θ0Θ0θ

k
+ Z0Θ0z + ξūrΘ0ξ +

1

k
[v̄Θ0θ + v̄θΘ0] + [w̄Θ0z + v̄zZ0] = 0,

(B 11a)

Ż0 − Z0ξξ −R1Z0ξ +
Θ0Z0θ

k
+ Z0Z0z + ξūrZ0ξ +

1

k
[v̄Z0θ + w̄θΘ0] + [w̄Z0z + w̄zZ0] = 0,

(B 11b)
in which the bars denote projections of the vector-function v, and its derivatives, on the
wall (these are simply expanded in a Taylor series by δ) so that all coefficients in (B 11)
become the known time-depending functions, which parametrically depend on θ and z,

ūr(t; θ, z) = ur(k, θ, z, t), v̄(t; θ, z) = v(k, θ, z, t), v̄θ(t; θ, z) = vθ(k, θ, z, t),

w̄(t; θ, z) = w(k, θ, z, t), v̄z(t; θ, z) = wz(k, θ, z, t).

Eqs. (B 4), (B 5) are, in fact, nonlinear boundary-layer equations, which are written
in terms of the differences between viscous and inviscid (including steady streaming)
components. According to (B 6), the solution of these ‘difference field’ equations (B 11)
satisfies the inhomogeneous boundary conditions

R1 = 0, Θ0 = −v̄, Z0 = −w̄ at ξ = 0 (B 12)

where the right-hand side is the minus projection of tangential components of the inviscid
ambient flow.

Because Θ0, Z0 = O(1), but R1 corresponds to the first-order approximation in (B 9),
the asymptotic condition (B 7) transforms to the form

|Θ0|+ |Z0| → 0 and |R1| → O(1) as ξ → +∞. (B 13)

B.2. Asymptotic solution of the nonlinear boundary-layer problem

The steady-state wave solution by Faltinsen et al. (2016) implies an asymptotic repre-
sentation of the inviscid (ambient) velocity field by the small parameter O(ε1/3) where the
lowest-order component takes the form (2.3) but the second-order approximation includes
the steady-streaming component and is defined by (3.3). Because the nonlinear boundary-
layer problem (B 10)–(B 13) governs the O(1) approximation on the O(δ) scale and the
asymptotic condition (2.5) is satisfied, one can consider an asymptotic approximation in
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terms of O(ε1/3) as follows

Θ0 = Θ
(1/3)
0 +Θ

(2/3)
0 +O(ε)..., Z0 = Z

(1/3)
0 + Z

(2/3)
0 +O(ε)...,

R1 = R
(1/3)
1 +R

(2/3)
1 +O(ε)...

(B 14)

for ξ > 0, −∞ < t <∞ and z < 0, −π 6 θ < π.

B.2.1. The O(ε1/3) component

Taking (2.3) derives that the first-order approximation of (B 10)–(B 12) comes from
the linear parabolic problems (ξ > 0, −∞ < t <∞):

Θ̇
(1/3)
0 −Θ(1/3)

0ξξ = 0, Θ
(1/3)
0 (0, t; θ, z) = −J1(k)

k
ez [cos t θ′c(θ) + sin t θ′s(θ)] , (B 15a)

Ż
(1/3)
0 − Z(1/3)

0ξξ = 0, Z
(1/3)
0 (0, t; θ, z) = −J1(k) ez [cos t θc(θ) + sin t θs(θ)] , (B 15b)

which consists of the two independent linear Stokes boundary-layer equations (Batchelor
2000) parametrically dependent on z < 0, −π 6 θ < π. The exact time-periodic solution
of (B 15) reads, according to § 3.1.1 in Polyanin & Nasaikinskii (2015), as

Θ
(1/3)
0 (ξ, t; θ, z) = −J1(k)

k
ez−αξ [θ′c(θ) cos(t− αξ) + θ′s(θ) sin(t− αξ)] , (B 16a)

Z
(1/3)
0 (ξ, t; θ, z) = −J1(k) ez−αξ [θc(θ) cos(t− αξ) + θs(θ) sin(t− αξ)] , (B 16b)

(α = 1/
√

2), where the e−αξ-multiplier corresponds to e−α(k−r)/δ in the original nondi-
mensional (r, θ, z)-coordinates, which exponentially decays and becomes small as (k−r) =
O(1).

Substituting (B 16) into the continuity equation (B 10) and using the first boundary
condition of (B 12) gives

R
(1/3)
1 (ξ, t; θ, z) =

∫ ξ

0

(Z
(1/3)
0z +Θ

(1/3)
0θ /k) dξ = − 1

2α
J1(k) ez

(
1− 1

k2

)
×
{
θc(θ)

[
sin t+ cos t− e−αξ(sin(t− αξ) + cos(t− αξ))

]
+ θs(θ)

[
sin t− cot t− e−αξ(sin(t− αξ)− cos(t− αξ))

]}
. (B 17)

One can see that |R(1/3)
1 | → O(ε1/3) and Θ

(1/3)
0 ∼ Z

(1/3)
0 → 0 as ξ → +∞, in what

follows, the asymptotic condition (B 13) is automatically satisfied.

Eqs. (B 16), (B 17) present the well-known solution of the linear boundary-layer prob-
lem given in term of the differences between viscous and inviscid velocity fields. To restore
the viscous velocity field V , one should take this solution, the lowest-order inviscid flow
component (2.3), substitute ξ = (k − r)/δ. This gives

U (1/3) = v
(1/3)
1 , V (1/3) = v

(1/3)
2 +Θ

(1/3)
0 ((k − r)/δ, t; θ, z),

W (1/3) = v
(1/3)
3 + Z

(1/3)
0 ((k − r)/δ, t; θ, z).

This time-periodic solution is zero on the tank surface and rapidly converges to v(1/3)

away from the boundary layer. It does not contain a steady-flow component, which is
expected in the second-order approximation.
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B.2.2. The O(ε2/3) component; steady streaming

Inserting (B 16) and (B 17) into (B 11) leads to the inhomogeneous parabolic equations

with respect to Θ
(2/3)
0 and Z

(2/3)
0

Θ̇
(2/3)
0 −Θ(2/3)

0ξξ = R
(1/3)
1 Θ

(1/3)
0ξ −

Θ
(1/3)
0 Θ

(1/3)
0θ

k
− Z(1/3)

0 Θ
(1/3)
0z − ξū(1/3)r Θ

(1/3)
0ξ

− 1

k

[
v̄(1/3)Θ

(1/3)
0θ + v̄

(1/3)
θ Θ

(1/3)
0

]
−
[
w̄(1/3)Θ

(1/3)
0z + v̄(1/3)z Z

(1/3)
0

]
, (B 18a)

Ż
(2/3)
0 − Z(2/3)

0ξξ = R
(1/3)
1 Z

(1/3)
0ξ −

Θ
(1/3)
0 Z

(1/3)
0θ

k
− Z(1/3)

0 Z
(1/3)
0z − ξū(1/3)r Z

(1/3)
0ξ

− 1

k

[
v̄(1/3)Z

(1/3)
0θ + w̄

(1/3)
θ Θ

(1/3)
0

]
−
[
w̄(1/3)Z

(1/3)
0z + w̄(1/3)

z Z
(1/3)
0

]
, (B 18b)

where the right-hand sides are explicitly-given functions.
Because the steady streaming effect is formally included into the ambient flow, the

time-periodic solution of (B 18) (governing the differences!) should obligatory decay at
the infinity,

Θ
(2/3)
0 (ξ, t; θ, z)→ 0 and Z

(2/3)
0 (ξ, t; θ, z)→ 0 as ξ → +∞. (B 19)

In addition, the second-order differences should satisfy the boundary conditions (B 12)
⇒

Θ
(2/3)
0 (0, t; θ, z) = −v̄(2/3), (B 20a)

Z
(2/3)
0 (0, t; θ, z) = −w̄(2/3), (B 20b)

where, according to (3.3), the right-hand sides include, formally, the time-independent
projections of wE = O(ε2/3) on r = k.

When solving the linear inhomogeneous problem (B 18)-(B 20) with respect to the un-

knowns Θ
(2/3)
0 and Z(2/3), we should distinguish the time-independent (steady) quantities

as well as the cos 2t and sin 2t harmonics.
Huge derivations show that a unique solution exists for the cos 2t and sin 2t compo-

nents. This means that these components of the difference field exist only in the boundary
layer but vanish away from it.

However, considering the time-averaged (time-independent, steady) difference field
yields a requirement on wE . Indeed, derivations show that the time-averaged component
of (B 18), (B 19) (without the boundary conditions (B 20)!!!) has the following unique
solution〈

Θ
(2/3)
0

〉
(ξ; θ, z) =

(k2 − 1)J2
1 (k)

4k3α2
e−αξ+2z

{
(ab− āb̄)

×
[
− 1

2e
−αξ + (αξ − 1) sinαξ + (αξ + 2) cosαξ

]
+
[
1
2e
−αξ + (αξ + 4) sinαξ + (1− αξ) cos(αξ)

]
×
[
(ab̄+ āb) cos 2θ + 1

2 (b2 + b̄2 − a2 − ā2) sin 2θ
]}
, (B 21a)

〈
Z

(2/3)
0

〉
(ξ; θ, z) =

J2
1 (k)

8k2α2
e−αξ+2z

{
1
2 (a2 + ā2 + b2 + b̄2)

×
[
(k2 + 1)e−αξ + 2[k2(αξ + 4)− αξ] sinαξ − 2(k2 − 1)(αξ − 1) cosαξ

]
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+
[
1
2 (a2 + ā2 − b2 − b̄2) cos 2θ + (ab̄+ āb) sin 2θ

]
× (k2 − 1)

(
e−αξ + 2(αξ + 4) sinαξ + 2(1− αξ) cosαξ

)
. (B 21b)

The time-averaging in the remaining boundary conditions (B 20) transforms them to〈
Θ

(2/3)
0 (0, t; θ, z)

〉
= −wE2 (k, θ, z),

〈
Z

(2/3)
0 (0, t; θ, z)

〉
= −wE3 (k, θ, z). (B 22)

Using (B 21) with ξ = 0 derives from (B 22) the tangential boundary condition for the
mean Eulerian wE :

wE2 (k, θ, z) = −
〈
Θ

(2/3)
0

〉
(0; θ, z) = −3(k2 − 1)J2

1 (k)

4k3
e2z
{

(ab− āb̄)︸ ︷︷ ︸
Ξ

+ (ab̄+ āb) cos 2θ + 1
2 (b2 + b̄2 − a2 − ā2) sin 2θ

}
, (B 23a)

wE3 (k, θ, z) = −
〈
Z

(2/3)
0

〉
(0; θ, z) = −J

2
1 (k)

4k2
e2z
{

1
2 (a2 + ā2 + b2 + b̄2)(3k2 − 1)

+ 3(k2 − 1)
[
1
2 (a2 + ā2 − b2 − b̄2) cos 2θ + (ab̄+ āb) sin 2θ

]}
(B 23b)

on the vertical wall.

Appendix C. The Stokes drift in a rectangular channel

For the incompressible wave flow v, the first-order Lagrangian displacement is d =∫
vdt; it is also solenoidal. The Stokes drift velocity (in the second-order approximation)

equals to (see, equation (3.9))

wS =
1

2
∇× 〈v × d〉 . (C 1)

Assume that v implies a three-dimensional progressive wave in the Oy direction in a
rectangular channel confined by the vertical walls at x = ±a, the bottom z = −h, and
the mean free surface at z = 0. We consider the cross-sectional plane at y = 0, which
intersects the time-changing two-dimensional cross-sectional area C(t) confined by the
solid part (walls and bottom, γ0), and the free-surface curve γ(t) by z = ζ(x, t). Within
the framework of the first-order (linear) approximation, ζ, due to the linear kinematic
boundary condition, is linked with the first-order Lagrangian displacements d as follows

z = ζ(x, t) = d3(x, 0, 0, t) (C 2)

(fluid particles are kept on the free surface).
We assume that wS , C(t), and boundaries γ0 and γ(t) satisfy assumptions of the Stokes

integration theorem. Keeping only quadratic terms and taking into account that normal
velocities (and Lagrange displacements) are zero on the solid parts (walls and bottom)
gives

MS =

∫
〈C〉

1

2
∇× 〈v × d〉 · ŷdydz =

∫ a

−a

1

2
〈(v2d3 − v3d2)|z=0,y=0〉dx

=

∫ a

−a
〈(v2d3)|z=0,y=0〉dx =

∫ a

−a
〈(v2)|z=0,y=0ζ〉dx =

〈∫ a

−a

∫ ζ

−h
v2|y=0dzdx

〉
. (C 3)

The backward reading of the derivation line (C 3) shows that, in the second-order
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approximation, the mass-flux through the plane y = 0 due to moving free surface is
the same as the Stokes mass-transport. The latter fact may be violated if there is an
inflow/outflow though the vertical walls as in § 4, i.e. the first-order horizontal Lagrangian
displacements are not zero, e.g., at x = −a. The cross-displacements cause an extra non-
zero quantity of the non-Eulerian mean nature in (C 3) as it happened in (4.6).


