
 1 / 32 

 

Unsteady hydrodynamic forces of solid objects vertically 

entering the water surface 

J. Wang1,2, O. M. Faltinsen2 and C. Lugni2,3 

1College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China 

2Centre for Autonomous Marine Operations and Systems (AMOS), Norwegian University of Science and Technology, N-

7491 Trondheim, Norway  

3CNR-INSEAN: Italian Research Council – Institute for Marine Technology, Roma, Italy 

 

We investigate the unsteady hydrodynamic force of solid objects vertically entering water with 

an air cavity behind the falling body. Physical models are proposed to represent the force 

components corresponding to the body acceleration, the gravity and the velocity of the body and 

the fluid particles. The theoretical or numerical solutions of the physical models are presented to 

understand the evolution of the force components. The body-acceleration force component is 

expressed as the high-frequency added mass times the body acceleration. Near the undisturbed 

free surface, the added mass grows strongly with increasing the submerged depth. It tends to be 

steady after the submerged depth is greater than a few characteristic lengths. The gravity force 

component consists of an upward hydrostatic term and a downward dynamic term. Generally, 

the hydrostatic term, which is obtained by integrating the gravity term in the Bernoulli’s equation 

over the wetted body surface, is much larger than the gravity force component. For the three-

dimensional bodies, the gravity force component is found to vary as a power of the submerged 

depth, where the exponent is about 0.83. The velocity force component is represented as the drag 

coefficient defined by the V-squared law, which is characterized by the body geometry. The drag 

coefficient may experience three successive stages with increasing the submerged depth. 

 

I. INTRODUCTION 

Solid objects entering a water (liquid) surface often involves large unsteady hydrodynamic loads 

and rapid deformation of free surface. The phenomena are of great interest to the study of seaplane 

landing,1 ship slamming,2 planning vessels,3 air-to-sea projectiles,4-7 and the impacting of waves on solid 

structures.8-9 Even the relevant hydrodynamics play an important role in biological creatures walking on 

water.10-11 The initial stage of water entry, characterized by the jet flow on the body surface, has been 

widely studied.12-23 During this period, the hydrodynamic force on the body is dominated by the change 

rate of momentum of the added fluid mass, which can be related to the change rate of area of the wetted 

body surface.1, 2, 24 If the water-entry speed is sufficiently large, an air cavity will be formed behind the 

falling body.7 The cavity expands at the beginning and the gravity effect resists the expansion of the 

cavity causing its contraction and pinch-off (closure).25 This stage involves two important aspects: (i) the 

evolution of the air cavity behind the falling body; and (ii) the hydrodynamic force on the body. The 

cavity dynamics of solid objects vertically entering the water surface have been extensively 

investigated,4-6, 11, 24-32 since Worthington & Cole’s work26. The hydrodynamic force on the body is 

essentially transient and it plays key role in modeling the projectile dynamics. Very few literatures can 

be found on the deep investigation of the transient hydrodynamic force, which is the focus of the present 

work. 
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Plesset & Shaffer studied the drag force of the steady cavity flow past symmetrical wedges.33 A 

cavitation number of zero results in an infinite cavity, which corresponds to the limiting state of a wedge 

vertically entering the water surface with constant speed in a gravity-free environment. It was reported 

that the predicted drag coefficients of zero cavitation number agree well with experimental data.34 May 

& Woodhull investigated the drag coefficients of steel spheres entering water vertically.35 The drag 

coefficient was defined by the relation 𝐶 = drag/(0.5𝜌𝑉 𝜋𝑅 ), where 𝜌 is the density of the water, 

𝑉 is the velocity of the sphere, and R is the radius of the sphere. For the evaluation of the drag coefficient 

defined by the V-squared law, they suggested excluding all forces having a different independence on V. 

Then the equation of motion of the body was expressed as 

𝑀 = 𝑀𝑔 − 𝐶 𝜌𝑉 𝜋𝑅 − 𝜌𝑔ℎ𝑆 + (𝑝 − 𝑝 )𝑆,                  (1)            

where M is the mass of the sphere, 𝑔 is the acceleration of gravity, ℎ is the submerged depth of the 

sphere, 𝑆 is the projected wetted area, 𝑝  is the cavity pressure and 𝑝  is the atmospheric pressure. 

Their analysis used 𝑆 = 0.45𝜋𝑅  instead of the measured value 0.8𝜋𝑅  for the evaluation of the term, 

𝜌𝑔ℎ𝑆, giving satisfactory results. It implies that the force obtained by directly integrating the hydrostatic 

term in the Bernoulli’s equation over the wetted body surface strongly overestimates the force due to the 

gravity effect, which is confirmed by Yan et al.31. The reason for this will be explained by the present 

work and the proper method for the evaluation of the force due to the gravity effect will be proposed. 

The force due to the body acceleration, i.e. the added mass force, was neglected. It is safe because in 

their study the mass ratio defined by 𝐷 = 𝑀/𝐴  (𝐴  is the vertical added mass of the sphere and is 

estimated as 𝜌𝜋𝑅 /3) is as large as about 31 and the Froude number, 𝐹𝑛 = 𝑉/ 𝑔𝑅, is sufficiently high. 

The added mass force should appear as an independent term at relatively small mass ratios and Froude 

numbers.32 Furthermore, the last term in Eq. (1) is due to the air flow and can be neglected at relatively 

small entry velocities.32, 36-37 

 In this work, the unsteady hydrodynamic force of solid objects vertically entering water with an air 

cavity behind the falling body is deeply investigated within the framework of potential flow. By 

neglecting the surface tension and the air flow, the hydrodynamic force is decomposed into the 

components corresponding to the following physics: i) the body acceleration; ii) the gravity; and iii) the 

velocity of the body and the fluid particles. Exact physical models are proposed to represent the force 

components. The physical models for the force components dependent on the body acceleration and the 

gravity are simplified by assuming a uniform air cavity, which gives good results. The 

numerical/analytical solutions of the physical models are presented for understanding the evolution of 

the force components. The key physical parameters of affecting the force components are explored and 

discussed in details.  

 

II. DECOMPOSITION OF UNSTEADY FORCE 

Consider a solid object with mass M and breadth 2c0 vertically impacting the still water surface 

with initial entry speed V0. The surface tension 𝜎 can be neglected provided that the Weber number 

𝑊 = 𝜌𝑉 𝑐 /𝜎 ≫ 1. Viscous effects may be excluded within the short duration of the impact and for 

high Reynolds number 𝑅𝑒 = 𝜌𝑉 𝑐 /𝜇. Further, we neglect the influence of the air flow. Then the impact 

is characterized by the body geometry, the Froude number 𝐹𝑛 = 𝑉 / 𝑔𝑐  , and the mass ratio 𝐷 =

𝑀/𝐴  . Here, the vertical added mass 𝐴   of the body can be estimated as 0.5𝜌𝜋𝑐   for two-

dimensional cases and 4𝜌𝑐 /3 for three-dimensional cases. 
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Fig. 1. Sketch of a symmetrical body vertically entering the water surface. V denotes the instantaneous 

speed of the body. 

 

Fig. 1 illustrates a symmetrical body vertically entering the water surface with an open cavity behind 

the falling body. Ω denotes the water domain, 𝑆  the free-surface boundary and 𝑆  the wetted body 

boundary. In the two-dimensional space, a Cartesian coordinate system is adopted: the 𝑥-axis is along 

the horizontal direction and coincides with the still water surface; the 𝑧 -axis is along the vertical 

direction in the center plane of the body and is positive upwards. In the three-dimensional space, a 

cylindrical coordinate system is adopted: the radial axis, r-axis, is parallel to the still water surface; the 

𝑧-axis coincides with the symmetrical axis of the body and is positive upwards. These notations and 

coordinate systems are used throughout the paper. 

Assuming that the flow is irrotational and the water is incompressible, the water flow can be well 

represented by the potential-flow model.30, 37 The velocity potential satisfying Laplace’s equation  

∇ 𝜑 = 0                                         (2)        

is introduced. The local velocity is given by 𝐮 = ∇𝜑. On the wetted body surface, 𝑆 , the impermeability 

boundary condition holds 

                     = 𝐕 ∙ 𝐧 ,                                       (3)                                                                                           

where 𝐧 is the interior normal to the boundary surface. The water velocity far away from the body 

should vanish   

∇𝜑 = 0.                                       (4)                                                               

On the free surface, 𝑆 , fully nonlinear kinematic and dynamic boundary conditions are satisfied 

𝑿
= ∇𝜑,                    (5) 

 = |∇𝜑| − 𝑔𝑧.                                  (6)                                                                                                

Here, 𝑿 is the position vector of the water particle and the operator, : = + ∇𝜑 ∙ ∇, is the substantial 

derivative following the water particle on the free surface. Based on the Bernoulli’s equation, the vertical 
force acting on the body is expressed as  

𝐹 = 𝜌 ∫ 𝑔𝑧 + + |∇𝜑| 𝑛 𝑑𝑠 .                         (7) 
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The 𝜕𝜑 𝜕𝑡⁄  term can be evaluated by solving the boundary value problem for the auxiliary function 

𝜓 = 𝜕𝜑 𝜕𝑡⁄ + 𝐕 ∙ ∇𝜑. It can be proved that the auxiliary function 𝜓 satisfies the Laplace equation38 

∇ 𝜓 = 0.                                   (8)                                                                    

The Bernoulli’s equation gives the Dirichlet boundary condition for 𝜓 on the free surface 

𝜓 = 𝐕 ∙ ∇𝜑 − |∇𝜑| − 𝑔𝑧 .                             (9)                                                                        

On the body surface, the boundary condition for 𝜓 can be derived as  

= �̇� ∙ 𝐧 .                                 (10) 

Far away from the body, 𝜓 should vanish  

𝜓 = 0.                     (11) 

The solution of the function 𝜓 can be divided into three parts 𝜓 = 𝜓 + 𝜓 + 𝜓 . 𝜓  corresponds to 

the body acceleration and satisfies 

∇ 𝜓 = 0 in Ω,                (12.a) 

𝜓 = 0 on 𝑆 ,           (12.b) 

= �̇� ∙ 𝐧 on 𝑆 ,          (12.c) 

𝜓 → 0 at |𝑿| → ∞.          (12.d) 

𝜓  corresponds to the gravity effect and satisfies 

∇ 𝜓 = 0 in Ω,            (13.a) 

𝜓 = −𝑔𝑧 on 𝑆 ,          (13.b) 

= 0 on 𝑆 ,           (13.c)   

𝜓 → 0 at |𝑿| → ∞.          (13.d) 

𝜓  corresponds to the effect of the velocity of the body and the fluid particles and satisfies 

∇ 𝜓 = 0 in Ω,                                 (14.a) 

𝜓 = 𝐕 ∙ ∇𝜑 − |∇𝜑|  on 𝑆 ,         (14.b) 

= 0 on 𝑆 ,            (14.c) 

𝜓 → 0 at |𝑿| → ∞.          (14.d) 

 

Then the vertical force can be rewritten as 

𝐹 = 𝜌 ∫ 𝜓 𝑛 𝑑𝑠

  

+ 𝜌 ∫ (𝑔𝑧 + 𝜓 )𝑛 𝑑𝑠

  

 +𝜌 ∫ (𝜓 − 𝐕 ∙ ∇𝜑 + |∇𝜑| )𝑛 𝑑𝑠

  

 .       (15)                                                                                                                  

The acceleration term, denoted as 𝐹
( ), is proportional to the body acceleration and can be written as 

𝐹
( )

= −𝐴 �̇�, where 𝐴  is the high-frequency added mass of the solid object in the vertical direction. 

The gravity term, denoted as 𝐹
( ), consists of the ‘hydrostatic’ term 𝜌 ∫ 𝑔𝑧𝑛 𝑑𝑠 and an additional 

term 𝜌 ∫ 𝜓 𝑛 𝑑𝑠 . The latter is called gravity-induced dynamic term, since the dynamic pressure 

component 𝜓  is induced by the gravity. The velocity term, denoted as 𝐹
( ), is related to the body 

velocity and the velocity field of the water on the deformed free surface and on the body. So far, the 

unsteady hydrodynamic force has been exactly decomposed into three parts corresponding to different 
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physics. In the following section, these components of the unsteady force will be analyzed in details.  

 

III. INVESTIGATION OF FORCE COMPONENT 

The acceleration term 𝐹
( ), gravity term 𝐹

( ) and velocity term 𝐹
( )are denoted as the a-term, g-

term and v-term force respectively, which are investigated by the numerical and analytical methods. 

A. Numerical model 

The water-entry problem represented by Eqs. (2)-(6) can be solved by the single-fluid boundary 

integral method. 37, 40 Here, we outline the key steps of the two-dimensional numerical model and then 

generalize it for three-dimensional axisymmetric water-entry flows.  

Using Green’s second identity, the two-dimensional velocity potential can be represented in the 

boundary integral equation (BIE): 

𝜃 ∙ 𝜑(𝑥, 𝑧) = ∫ [log 𝑟  𝐧 ∙ ∇𝜑 − 𝜑 𝐧 ∙ ∇ log 𝑟] 𝑑𝑠(𝜉, 𝜂).                  (16)                                                                                         

Here, (𝑥, 𝑧) are the field point coordinates, (𝜉, 𝜂)  are the integration coordinates, 𝑟 =

(𝜉 − 𝑥) + (𝜂 − 𝑧) , and n denotes the interior normal to the boundary ∂Ω of the water domain Ω. 

In the water, 𝜃 is equal to 2𝜋. On ∂Ω, 𝜃 is the local interior angle of the boundary. The boundary 

integral equation is solved by the linear element method: the boundary of the fluid domain is represented 

by straight line segments; 𝜑 and 𝜕𝜑 𝜕⁄ 𝑛 are assumed to vary linearly along each segment; the boundary 

integral equation is satisfied at the nodal points of segments, which results in the linear equation system 

for the solution of 𝜑 and 𝜕𝜑 𝜕⁄ 𝑛. It notes that other potential functions, such as 𝜓, can be also solved 

by the boundary integral method. The body motion and the water flow are solved in a decoupled manner, 

where the evolution of the free surface is tracked by a second-order Lagrangian method and the motion 

of the body by a first-order method. The position and velocity potential of the fluid particles on the free 

surface and the submergence depth, velocity and acceleration of the body, denoted as  𝑿 , 𝜑  ℎ , 𝑉 , 

�̇�  respectively, are assumed known at time step n. To predict these parameters at step n+1, the following 

time-advancing schemes are adopted: i) solve the velocity potential represented in Eq. (16), based on 

𝑿 , 𝜑  ℎ  and 𝑉 ; ii) evaluate the potential gradient ∇𝜑  , solve 𝜓 for the vertical force 𝐹  based on 

∇𝜑  and �̇� , and use 𝐹  to compute �̇�  by the Newton’s second law; iii) transport the body and the 

fluid particles on the free surface to the intermediate position based on 𝑉  and ∇𝜑 , resulting in 𝑿∗, 

𝜑∗ and ℎ∗ as the first prediction of 𝑿 , 𝜑  and ℎ ; iv) solve the velocity potential once more, 

based on 𝑿∗, 𝜑∗ ℎ∗ and 𝑉∗ = 𝑉 + �̇� ∆𝑡, to obtain ∇𝜑∗; v) finally, we set 𝑿 = 𝑿 + ∆𝑡[∇𝜑 +

∇𝜑∗]/2, 𝜑 = 𝜑 + ∆𝑡[( 𝐷𝜑/𝐷𝑡) + ( 𝐷𝜑/𝐷𝑡)∗]/2, ℎ = ℎ∗ and 𝑉 = 𝑉∗. To avoid the fluid 

particles becoming too close to each other or too far away from each other, the boundary is re-gridded 

every time step. 

The numerical model can be generalized to three-dimensional axisymmetric flows by just changing 

the boundary integral equation (16) to that for the three-dimensional axisymmetric flows,39 i.e. 

𝜃 ∙ 𝜑(𝑟, 𝑧) = ∫ [𝜑 𝐧 ∙ ∇𝐺 − 𝐺 𝐧 ∙ ∇𝜑] 𝑟𝑑𝑠(𝜉, 𝜂).                      (17) 

Here,  𝑧 is the axial coordinate, r is the radial distance, and (𝜉, 𝜂) are the integration coordinates. The 

function G is defined as 𝐺 = 2𝐾(𝑚)/𝐴 , where 𝐾(𝑚) = ∫
/

  is the complete elliptic 

integral of the first kind, 𝐴 = (𝜉 + 𝑟) + (𝜂 − 𝑧)  and 𝑚 = 2 𝜉𝑟/𝐴. 

At each time step, the force components 𝐹
( ), 𝐹

( ) and 𝐹
( )can be evaluated through solving Eqs. 

(12)-(14) by the boundary integral method. Fig. 2 illustrates the evolution of the vertical unsteady force 
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for the water entry of the wedge corresponding to Wang et al. ’s experiment.37 The wedge with a deadrise 

angle of 30o falls vertically into the calm water with an initial entry speed of 2.5m/s. The half breadth of 

the wedge is 0.083m and the mass 32.3kg/m. These parameters correspond to 𝐹𝑛 = 2.77 and the mass 

ratio of 3. The v-term force is dominant at the beginning and is decreasing with increasing the submerged 

depth, which is consistent with the deceleration of the wedge. The g-term force increases with the growth 

of the submerged depth and cannot be neglected when the wedge is deeply submerged. The ‘hydrostatic’ 

component strongly overestimates the g-term since the ‘dynamic’ component results in a significant 

downward force. The a-term force, i.e. the added mass force, seems negligible compared to the sum of 

the v-term force and the g-term force. After the closure of the cavity, the air compressibility matters 

resulting in the oscillation of the hydrodynamic force, which is beyond the scope of this work. 

 

Fig. 2. Evolution of the unsteady force for the vertical water entry of the wedge with deadrise angle 30o, 

initial entry speed 2.5m/s, half breadth 0.083m and mass 32.3kg/m. The numerical simulation ends at the 

closure of the cavity; h is the distance between the top of the wedge and the still water surface; c0 is the 

half breadth of the wedge. The experimental total hydrodynamic force in the z-direction is computed 

from the measured body acceleration through the Newton’s second law, i.e. 𝐹 = 𝑀(𝑔 − �̇�). 

 

Fig. 3 illustrates the evolution of the vertical unsteady force for the water entry of the cone with the 

same parameters. We note that the mass ratio for the cone is defined by 𝐷 = 𝑀/(4𝜌𝑐0
3/3) and is 3. 

The evolution of the unsteady force for the cone is similar to that for the wedge. It has a higher percentage 

of g-term force with increasing the submerged depth. 
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Fig. 3. Evolution of the unsteady force for the vertical water entry of the cone with deadrise angle 30o, 

initial entry speed 2.5m/s, half breadth 0.083m and mass 2.29 kg. The numerical simulation ends at the 

closure of the cavity; h is the distance between the top of the cone and the still water surface; c0 is the 

half breadth of the cone. 

 

B. g-term force 

Wedge. First, we investigate the g-term force for the water entry of the wedges with the deadrise angle 

of 𝛽 and the half breadth of 𝑐 . A simplified model is introduced: a uniform open cavity behind the 

body is assumed; the free-surface boundary above the still water surface is transferred to the still water 

surface; the body boundary keep unchanged; and all corresponding boundary conditions are the same as 

the fully nonlinear case, i.e. follow Eqs. (13.b)-(13.d). The model is illustrated in Fig. 4. We will show 

that the g-term force is not sensitive to the cavity configuration and is well approximated by the simplified 

model. It should be noted that similar simplified models will be used for the g-term force of different 

body geometries and also for a-term forces. 

 

Fig. 4. Simplified model for estimating the g-term force of a wedge vertically entering the water surface. 

The real free-surface boundaries are represented by the dashed lines, which are replaced by the solid 

lines FAB and DEF in the simplified model. 
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Let 𝜙 = 𝜓 + 𝑔𝑧. Obviously, 𝜓  corresponds to the ‘dynamic’ component and 𝑔𝑧 the ‘hydrostatic’ 

component. Integrating 𝜙  over the wetted body surface results in the g-term force. 𝜙  satisfies the 

Laplace equation and the following boundary conditions 

𝜙 = 0, on the free surface,                                (18.a)  

= −𝑔 cos 𝛽, on the body boundary,                 (18.b) 

∇𝜙 = 𝑔𝐤 at 𝑟 = √𝑥 + 𝑧 → ∞.         (18.c) 

Here, 𝐤  denotes the unit vector in the z direction. It notes that ℎ = 0  results in a zero ‘dynamic’ 

component and a ‘hydrostatic’ component equal to the weight of the displaced water by the body. By the 

Schwarz-Christoffel transformation, the upper-half plane of 𝜁 can be mapped into the fluid domain, 

𝑤 = 𝑥 + 𝑧i, as presented in Fig. 5: 

𝑤(𝜁)=𝐶 + 𝐶 ∫
( ) /

( ) / 𝑑𝑡 .                    (19) 

 

Fig. 5. The upper 𝜁-plane, mapped by the Schwarz-Christoffel transformation. 

 

Here, the parameters a, C1, and C2 are determined by 𝑤(0) = −i(𝑐 tan 𝛽 + ℎ) , 𝑤(−1) = −𝑐 −

iℎ, 𝑤(1) = 𝑐 − iℎ, 𝑤(−𝑎) = −𝑐 , and 𝑤(𝑎) = 𝑐 . Then, we have 

|𝐶 | =
/

∫
( ) /

( ) /

,                             (20)   

ℎ/𝑐 =
∫

( ) /

( ) /

∫
( ) /

( ) /

.        (21) 

On the 𝜁-plane, 𝜙 satisfies the Laplace equation and the following boundary conditions 

𝜙 = 0, on (|𝜉| > 1, 0),           (22.a) 

= −𝑔 cos 𝛽  |𝐶 |
( )

( )

𝜉 , on (|𝜉| < 1, +0),     (22.b) 

∇𝜙 = −|𝐶 |𝑔𝐤, 𝑎𝑡 𝜁 → ∞.          (22.c) 

𝜙 can be split into 𝜙 = −|𝐶 |𝑔𝜂 + Φ. Since 𝜂 = 0  on the body surface, the term, −|𝐶 |𝑔𝜂, has no 

contribution to the g-term force. The function Φ satisfies the following boundary conditions 

Φ = 0, on (|𝜉| > 1, 0),          (23.a) 

= 𝑔|𝐶 | 1 − cos 𝛽  
( )

𝜉 , on (|𝜉| < 1, +0),      (23.b) 

∇Φ = 0, 𝑎𝑡 𝜁 → ∞.               (23.c) 

Let Φ = Φ + Φ , we have 
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Φ = 0, on (|𝜉| > 1, 0),           (24.a) 

= 𝑔|𝐶 |, on (|𝜉| < 1, + 0),        (24.b) 

∇Φ = 0, 𝑎𝑡 𝜁 → ∞ ,              (24.c) 

and 

Φ = 0, on (|𝜉| > 1, 0),                                (24.d) 

= −𝑔 cos 𝛽 |𝐶 | 
( )

𝜉 , on (|𝜉| < 1, + 0)         (24.e) 

∇Φ = 0, 𝑎𝑡 𝜁 → ∞.                                    (24.f) 

On the body, i.e. (|𝜉| < 1, +0), 

Φ = −𝑔|𝐶 | 1 − 𝜉 .                     (25) 

Φ  can be represented as  

Φ (𝜉, 𝜂) = 𝑃𝑉 ∫ 𝛾(𝑡) tan 𝑑𝑡,                      (26) 

i.e. the vorticities on the line segment of (|𝜉| < 1, 0). The vortex strength 𝛾(𝑡) is obtained by solving 

the following integral equation 

𝑃𝑉 ∫
( )

𝑑𝑡 = −𝑔 cos 𝛽 |𝐶 |
( )

𝜉   𝑓𝑜𝑟 |𝜉| < 1     (27) 

The solution for the homogeneous problem, corresponding to the right-hand-side of the above equation 

equal to zero, is 𝐶/ 1 − 𝜉 . Here C is a constant and should be determined by some condition. Note 

that the distribution of the vortex strength is antisymmetric. It results in C=0. Let’s change the variables 

as follows: 𝜉 = − cos 𝜒, 𝑡 = − cos 𝜃, and 𝛼(𝜃) = 𝛾(𝜉) sin 𝜃. Then, we have an integral equation 

𝑃𝑉 ∫
( )

𝑑𝜃 = −𝑔 cos 𝛽  |𝐶 |
( )

( ( ) )
(cos 𝜒) .      (28) 

Inserting the Fourier expansion, 

𝛼(𝜃) = −2𝑔 cos 𝛽 |𝐶 | ∑ 𝑎 cos(2𝑛 − 1)𝜃,               (29)                   

  

into Eq. (28), we obtain 

𝑃𝑉 ∫
∑ ( )

𝑑𝜃 =
( )

( ( ) )
(cos 𝜒) .             (30) 

This will require the evaluation of the Glauert integrals 

∫
( )

𝑑𝜃 = 𝜋
( )

.                        (31) 

Then the integral equation (30) becomes 

∑ 𝑎 sin(2𝑛 − 1)𝜒 =
( )

( )

( ( ) )
(cos 𝜒) . 

The coefficients of the above Fourier series can be expressed as 

𝑎 = ∫
(  )

( )

( ( ) )
(𝑐𝑜𝑠 𝜒) sin(2𝑛 − 1)𝜒 𝑑𝜒.           (32) 

So far, we have the vortex distribution 

𝛾(𝜉) = 𝛾(− cos 𝜃) = −2𝑔 cos 𝛽 |𝐶 | ∑ 𝑎 cos(2𝑛 − 1)𝜃.         (33) 

The velocity potential on the body can be obtained:  
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                                             Φ (𝜉, +0) =
𝜕Φ

𝜕𝑡
(𝑡, +0)𝑑𝑡 = −

1

2
𝛾(𝑡)𝑑𝑡 

                       = 𝑔 cos 𝛽 |𝐶 | 𝑎 cos(2𝑛 − 1)𝜃 𝑑𝜃 

= 𝑔 cos 𝛽 |𝐶 | ∑
( )

sin(2𝑛 − 1)𝜒.         (34)

   

The total velocity potential becomes 

Φ(𝜉, +0) = −𝑔 |𝐶 |sin χ + 𝑔 cos 𝛽 |𝐶 | ∑
( )

sin(2𝑛 − 1)𝜒.       (35) 

Thus, the vertical hydrodynamic force due to the gravity effect is written as  

𝐹 = −𝜌cos 𝛽  ∫ 𝜙 𝑑𝑠  

     = −𝜌cos 𝛽  ∫ Φ(𝑡, +0)|𝐶 |
( )

𝑡 𝑑𝑡  

     =  𝜌𝑔|𝐶 | cos 𝛽 ∫ sin θ − cos 𝛽 ∑
( )

sin(2𝑛 − 1)𝜃
( )

( )

( ( ) )
(cos 𝜃) 𝑑𝜃  

 = 𝜌𝑔|𝐶 | cos 𝛽 𝑎 − cos 𝛽 ∑
( )

.             (36) 

The series in the above equation converge very fast. The approximation, 

𝐹 ≈ 𝜌𝑔|𝐶 | cos 𝛽 (𝑎 − 𝑎 cos 𝛽),                       (37) 

is very close to the exact solution. Fig. 6 presents the solutions of the g-term forces at different deadrise 

angles. A larger deadrise angle results in a higher g-term force for a given submerged depth.  

 

Fig. 6. Evolution of the g-term force of wedges vertically entering the water surface. It is predicted by 

the simplified model; h is the distance between the top of the wedge and the still water surface; c0 is the 

half breadth of the wedge; the exact analytic solutions and the approximate analytic solutions are given 
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by Eq. (36) and Eq. (37) respectively. 

 

Asymptotically (𝑎 → ∞, corresponding to an infinite cavity), we have 

ℎ ≈ 𝑎 𝐴(𝛽),                (38) 

|𝐶 | ≈ 𝑎 𝐴(𝛽),         (39) 

𝑎 ≈ ∫ (sin 𝜒) ( ) (cos 𝜒) sin(2𝑛 − 1)𝜒 𝑑𝜒 ,      (40) 

≈ [𝐴 (𝛽)𝐵(𝛽) (cos 𝛽) ] ,           (41) 

where, 𝐴(𝛽) = 1/ ∫ (cos 𝜒) ( ) (sin 𝜒) 𝑑𝜒
/

  and 𝐵(𝛽) = ∫ (sin 𝜒) ( ) (𝑐𝑜𝑠 𝜒) sin 𝜒 𝑑𝜒 . 

Eq. (41) indicates that for deeply submerged wedges the theoretical g-term force is linearly dependent 

on the square root of the submerged depth. This may be applied to other two-dimensional solid objects. 

 Numerical experiments are conducted to verify the simplified model of assuming a uniform cavity 

behind the falling body. The water-entry problem is solved in the time domain by the fully-nonlinear 

model presented in Section A. At each time step, the corresponding g-term force is evaluated after solving 

𝜓 , governed by (13.a)-(13.d), based on the exact free-surface boundary. The numerical solutions of the 

fully-nonlinear model are compared with the analytical solutions of the simplified model at the relatively 

small deadrise angle of 𝛽 = 30  and at the relatively large deadrise angle of 𝛽 = 60  , as shown in Fig. 

7. The agreement between the simplified model and the fully-nonlinear model confirms that the g-term 

force is not sensitive to the cavity shape. The key physical parameters of affecting the g-term are the 

projected wetted area, the submerged depth and the body geometry. It notes that 𝐹
( )

(ℎ = 0) is equal 

to the weight of the water displaced by the body. Excluding this, the g-term force is not sensitive to the 

body geometry near the still water surface. The body geometry has a significant influence on the g-term 

force when the body is deeply submerged.  

 

(a) 𝛽 = 30  
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(b) 𝛽 = 60  

Fig. 7. Comparison of the g-term force of wedges vertically entering the water surface. The solid lines 

represent the analytic solutions, of the simplified model, given by Eq. (36). The colored markers represent 

the numerical solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 

𝑀/(0.5𝜌𝜋𝑐 ), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass ratio 

of 9; the ‘square’ marker denotes the Froude number, 𝑉 / 𝑔𝑐 , of 2, the ‘circle’ marker denotes the 

Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  

 

Flat plate. The flat plate corresponds the wedge with zero deadrise angle, i.e. 𝛽 = 0. The Schwarz-

Christoffel transformation is expressed as 

𝑤(𝜁)=−𝑖ℎ + 𝐶 ∫ 𝑑𝑡.            (42) 

The parameters a and C2 are determined by 𝑤(1) = 𝑐 − iℎ and 𝑤(𝑎) = 𝑐 , which results in  

𝑐 = |𝐶 | 𝑎𝐸 − 𝐾 ,                            (43) 

ℎ = |𝐶 | 𝑎𝐸 − 𝐾 .         (44) 

K is the complete elliptic integral of the first kind and E is the complete elliptic integral of the second 

kind. a is the root of the following equation 

ℎ/𝑐 = .                               (45) 

The coefficient 𝑎  becomes 

𝑎 = ∫
( )

( ( ) )
sin(2𝑛 − 1)𝜒 𝑑𝜒.                     (46) 

The velocity potential on the body is 

Φ(𝜉, +0) = −𝑔|𝐶 | sin χ + 𝑔 |𝐶 | ∑
( )

sin(2𝑛 − 1)𝜒.             (47) 

Further, the vertical force due to gravity can be expressed as 
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𝐹 = −𝜌 ∫ Φ(𝑡, +0)|𝐶 | 𝑑𝑡  

    =  𝜌𝑔|𝐶 | ∫ sin θ − ∑
( )

sin(2𝑛 − 1)𝜃 (sin θ) /(𝑎 − (cos 𝜃) ) 𝑑𝜃  

    = 𝜌𝑔|𝐶 | 𝑎 − ∑
( )

.            (48) 

 

For small ℎ/𝑐 , we have the following approximation 

𝐹 ≈ 𝑔|𝐶2|2 𝜋

2
(𝑎 − 𝑎1

2) with 𝑎 = √𝑎 − 1 + (2 − 𝑎 ) sin ( ) .      (49) 

 

Cone. The above simplified model is generalized to the three-dimensional space for estimating the g-

term force of the vertical water entry of cones. It is difficult to solve the three-dimensional model 

analytically but easy by the proposed boundary integral method. To avoid the infinite still water surface, 

an image flow above the undisturbed free surface is introduced as shown in Fig. 8, where, 𝑧̅ = 𝑧/𝑐  is 

the dimensionless coordinate vertically upwards, �̅� = 𝑟/𝑐  is the dimensionless radial coordinate and 

𝜓 = 𝜓
2

/𝑔𝑐
0
. 

 

Fig. 8. Simplified model for estimating the dynamic component of the g-term force of a cone vertically 

entering the water surface. 

 

Integrating 𝜓  over the wetted body surface will result in the ‘dynamic’ component in the g-term 

force. By including the ‘hydrostatic’ component, the g-term force is expressed as 

( )

= + ℎ

    

+ ∫ 𝜓2 𝑛 𝑑𝑠̅

 

.        (50) 

Excluding the weight of the water displaced by the body, i.e. tan 𝛽 /3, the g-term force is assumed to be 

𝐹
( )

= 𝛼ℎ .                                    (51) 

The numerical solutions, of the simplified model for the g-term force of the cones, at 1 < ℎ < 10, are 

presented in Fig. 9, where 𝐹
( )

= [𝐹
( )

− 𝐹
( )(ℎ = 0)]/𝜋𝜌𝑔𝑐 . It can be seen that the g-term force 

indeed follows Eq. (51) and the coefficient, 𝛾, corresponding to the slope of the solid line, is nearly 

independent on the deadrise angles. The coefficients, 𝛼 and 𝛾, at different deadrise angles are presented 

in Table 1. Similar to wedges, a larger deadrise angle results in a higher g-term force at a given 

submerged depth. 
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Fig. 9. The log-log plot of the g-term force, by the simplified model for cones vertically entering the 

water surface, over the submerged depth. 𝐹
( )

=
( )

−   is the g-term force excluding the 

buoyance of the cone, i.e. the weight of the water displaced by the cone. The solid lines from bottom to 

top correspond to the deadrise angle 0 , 10 ,  20 ,  30 ,  40 ,  50 ,  60 , and 70  respectively.  

 

Table 1. Coefficients of the g-term force, represented as 𝐹
( )

= 𝛼ℎ , for cones at the deadrise angle of 

𝛽. 

𝛽(o) 0 10 20 30 40 50 60 70 

𝛼 0.4860 0.5054 0.5274 0.5531 0.5838 0.6220 0.6714 0.7387 

𝛾 0.8204 0.8216 0.8233 0.8257 0.8292 0.8345 0.8429 0.8575 

 

 

 

Fig. 10. Evolution of the g-term force of cones vertically entering the water surface. The solid lines 

denote the numerical solutions of the simplified model. The ‘circle’ markers denote the approximation 

of the numerical solutions by Eq. (51). 𝛽 denotes the deadrise angle of the cone. 
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Numerical experiments, similar to those for wedges, are conducted to verify the simplified model. 

Fig. 11 presents the solutions of the fully-nonlinear model and the simplified model at the deadrise angle 

of 30  and 60 . Again, the simplified model gives the good approximation of the g-term force. 

 

 

(a) 𝛽 = 30  

 

(b) 𝛽 = 60  

Fig. 11. Comparison of the g-term force of cones vertically entering the water surface. The solid lines 

represent the numerical solutions of the simplified model. The colored markers represent the numerical 

solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 𝑀/(4𝜌𝜋𝑐 /3), of 1, the 

green color denotes the mass ratio of 3, and the red color denotes the mass ratio of 9; the ‘square’ marker 

denotes the Froude number, 𝑉 / 𝑔𝑐 , of 2, the ‘circle’ marker denotes the Froude number of 4, the ‘+’ 

marker denotes the Froude number of 8.  
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Circular cylinder. Fig. 12 illustrates the water entry of circular cylinders. The flow separates from the 

body at the angle of 𝛽 . The steady cavity flow, past the circular cylinder, at zero cavitation number, 

results in the separation angle of about 55  and an infinite cavity.34 It corresponds to the limiting state 

of a circular cylinder vertically entering the water surface with constant speed in a gravity-free 

environment. This section studies the g-term force at the flow separation angle from 55  to 90 , based 

on the simplified model assuming a uniform cavity behind the falling body. Fig. 13 shows the half of the 

simplified model, where the reference length 𝑐   is the half of the maximum wetted length equal to 

𝑅 sin 𝛽𝑠 .  

 
Fig. 12. Sketch of the water entry of a circular cylinder. 𝑅 is the radius of the circular cylinder. 𝛽

𝑠
 is 

the separation angle.  

 

 
Fig. 13. Simplified model for estimating the dynamic component of the g-term force of a circular 

cylinder/sphere vertically entering the water surface. 𝛽  is the flow separation angle. 

 

Fig. 14 compares the g-term force between circular cylinders and wedges. It is observed that, for a 

given flow separation angle of the circular cylinder, there is a wedge with some deadrise angle resulting 

in the good approximation of the g-term force. Table 2 suggests using the g-term force of the wedge of 

the deadrise angle of 𝛽 to approximate that of the circular cylinder with the flow separation angle of 𝛽 . 
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Fig. 14. Comparison of the g-term force between wedges and circular cylinders. 

Table 2. Approximating the g-term force of the circular cylinder with the flow separation angle 𝛽  by 

that of the wedge with the deadrise angle 𝛽. 

𝛽 (deg) 55 60 65 70 75 80 85 90 

𝛽(deg) 41 45 48 51 54 57 60 63 

 

Sphere. The g-term force of spheres is estimated by the simplified model presented in Fig. 13. The 

solutions of the simplified model may also follow Eq. (51), which is confirmed by the log-log plot of 

the g-term force over ℎ as shown in Fig. 15. The coefficients, 𝛼 and 𝛾, at the flow separation angle 

from 55   to 90   are presented in Table 3. It is observed that 𝛾  is weekly dependent on the flow 

separation angle and is close to that of cones.  

 

Fig. 15. The log-log plot of the g-term force, by the simplified model for spheres vertically entering the 

water surface, over the submerged depth. 𝐹
( )

= [𝐹
( )

− 𝐹
( )(ℎ = 0)]/𝜋𝜌𝑔𝑐  is the dimensionless g-

term force excluding the weight of the water displaced by the sphere. The solid lines from bottom to top 

correspond to the flow separation angle 55 ,  70 , and 90  respectively.  
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Table 3. Coefficients of the g-term force, represented as 𝐹
( )

= 𝛼ℎ  , for spheres with the flow 

separation angle of 𝛽 . 

𝛽 (o) 55 60 65 70 75 80 85 90 

𝛼 0.6214 0.6383 0.6567 0.6768 0.6990 0.7234 0.7505 0.7806 

𝛾 0.8298 0.8317 0.8338 0.8362 0.8390 0.8423 0.8460 0.8503 

 

 

Fig. 16. Comparison between May & Woodhull’s approximation35 and the present model for the g-term 

force.  

 

May & Woodhull investigated the drag coefficients of steel spheres entering water vertically.35 For 

the evaluation of the drag coefficient defined by the V-squared law, they excluded all forces having a 

different independence on V and expressed the equation of motion of the body as Eq. (1). It notes that 

the term 𝜌𝑔ℎ𝑆  in Eq. (1) corresponds to the hydrostatic force obtained by directly integrating the 

hydrostatic term in the Bernoulli’s equation over the wetted body surface (here, the weight of the water 

displaced by the sphere is excluded). Their analysis used 𝑆 = 0.45𝜋𝑅  instead of the measured value 

0.8𝜋𝑅   (R is the radius of the sphere) for the evaluation of 𝜌𝑔ℎ𝑆 , giving satisfactory results. The 

projected wetted area of 0.8𝜋𝑅  corresponds to the flow separation angle 𝛽  of about 65 . Fig. 16 

shows that the hydrostatic force strongly overestimates the force due to the gravity effect. May & 

Woodhull’s approximation is close to the present solution throughout the early part of the sphere’s 

trajectory, where the drag coefficient is reasonably constant and was studied.35  

 

C. a-term force 

The a-term force is proportional to the body acceleration and can be written as 𝐹
( )

= −𝐴 �̇�. 

𝐴  represents the high-frequency add mass of the body in the vertical direction and is expressed as  

𝐴 = 𝜌 ∫ 𝜓1𝑛 𝑑𝑠, where 𝜓  is the solution of the following equations 

∇ 𝜓1 = 0 in Ω,         (52.a) 
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𝜓 = 0 on 𝑆 ,         (52.b) 

𝜓1 = −𝑛  on 𝑆 ,         (52.c) 

𝜓 → 0 at |𝑿| → ∞.        (52.d) 

 

Wedge. By assuming a uniform open cavity behind the body and following the procedure presented in 

the previous analysis, we can express the added mass for wedges as 

𝐴 /( 𝜌𝑐 ) = |𝐶 | cos 𝛽 ∑
( )

.                    (53) 

 

Fig. 17. Evolution of the added mass predicted by the simplified model for wedges vertically entering 

the water surface. 𝛽 is the deadrise angle of the wedges. 

 

Fig. 17 presents the evolution of the vertical added mass predicted by the simplified model. With 

increasing the submerged depth, the added mass grows strongly near the undisturbed free surface and 

quickly approaches the value of ℎ = ∞. At ℎ = 0 (corresponding to 𝑎 = 1), 𝐴  is expressed as  

𝐴 (ℎ = 0)/( 𝜌𝑐 ) = ( ) ∑
∫ ( ) ( )

∫ ( ) ( )
/

.          (54) 

It is easy to verify 𝐴 (ℎ = 0) = 𝜋𝜌𝑐 /2 for 𝛽 = 0 , which is exactly the high-frequency added mass 

of the flat plate. Letting ℎ → ∞, we have 𝑎 → ∞ and (𝑎 − (cos 𝜒) ) / ≈ 𝑎. Then, the added mass 

becomes 

𝐴 (ℎ = ∞)/( 𝜌𝑐 ) = ( ) ∑
∫ ( ) ( )

∫ ( ) ( )
/

.      (55) 

The added mass of ℎ = 0 and ℎ = ∞ from 𝛽 = 0  to 𝛽 = 80  is presented in Fig. 18. 
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Fig. 18. Added mass, at ℎ = 0 and ℎ = ∞, for wedges vertically entering the water surface. 𝛽 is the 

deadrise angle of the wedges. 

 

Numerical experiments are conducted to verify the added mass predicted by the simplified model 

of assuming a uniform cavity behind the falling body. The water-entry problem is solved in the time 

domain by the fully-nonlinear model presented in Section A. At each time step, the corresponding added 

mass is evaluated after solving 𝜓 , governed by (52.a)-(52.d), based on the exact free-surface boundary. 

The numerical solutions of the fully-nonlinear model are compared with the analytical solutions of the 

simplified model at the deadrise angle of 𝛽 = 30  and 𝛽 = 60  , as shown in Fig. 19. It confirms that 

the added mass grows strongly near the undisturbed free surface with increasing the submerged depth. 

The simplified model accurately predicts the added mass of the wedges near the still water surface and 

may overestimate that of the deeply submerged wedge (about 6%). The key physical parameters of 

affecting the added mass are the body geometry and the submerged depth.  

 
(a) 𝛽 = 30  

 
(b) 𝛽 = 60  
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Fig. 19. Comparison of the added mass of wedges vertically entering the water surface. The solid lines 

represent the analytic solutions, of the simplified model, given by Eq. (53). The colored markers represent 

the numerical solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 

𝑀/(0.5𝜌𝜋𝑐 ), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass ratio 

of 9; the ‘square’ marker denotes the Froude number, 𝑉 / 𝑔𝑐 , of 2, the ‘circle’ marker denotes the 

Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  

 

Cone. The simplified model is generalized to the three-dimensional space for estimating the added mass 

of the vertical water entry of cones. Again, an image flow above the undisturbed free surface is introduced 

as shown in Fig. 20, where, 𝑧̅ = 𝑧/𝑐  is the dimensionless coordinate vertically upwards and �̅� = 𝑟/𝑐  

is the dimensionless radial coordinate. 𝜑 can be solved by the boundary integral method and then the 

added mass is evaluated by 𝐴 /( 𝜌𝑐 ) = ∫ 𝜓1𝑛 𝑑𝑠. 

 
Fig. 20. Simplified model for estimating the added mass of a cone vertically entering the water surface. 

 

The evolution of the vertical added mass of cones, presented in Fig. 21, is similar to that of wedges. It is 

noticed that the added mass of cones approaches the value of ℎ = ∞ more quickly with increasing the 

submerged depth. The added mass of ℎ = 0 and ℎ/𝑐 = 20 from 𝛽 = 0  to 𝛽 = 80  is presented in 

Fig. 22. For a given deadrise angle, the difference between the added mass of ℎ = 0 and the added mass 

of ℎ/𝑐 = 20 is smaller than that of wedges. The added mass of cones is more sensitive to the deadrise 

angle, comparing to wedges. 

 

Fig. 21. Evolution of the added mass predicted by the simplified model for cones vertically entering the 

water surface. 𝛽 is the deadrise angle of the cones. 
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Fig. 22. Added mass, at ℎ = 0 and ℎ/𝑐 = 20, for cones vertically entering the water surface. 𝛽 is the 

deadrise angle of the cones. 

 

Numerical experiments are conducted to verify the added mass predicted by the simplified model 

of assuming a uniform cavity behind the falling body. The fully-nonlinear model is solved in the time 

domain by the numerical method presented in Section A, which results in the exact cavity configuration 

and added mass. The numerical solutions of the fully-nonlinear model are compared with the analytical 

solutions of the simplified model at the deadrise angle of 𝛽 = 30  and 𝛽 = 60  , as shown in Fig. 23. 

It confirms that the added mass grows strongly near the undisturbed free surface with increasing the 

submerged depth. The simplified model accurately predicts the added mass of the cones near the still 

water surface and may slightly (less than 5%) overestimate that of the deeply submerged cone. It notes 

that the predicted added mass of the disk on the free surface, i.e. 𝐴 (ℎ = 0) at 𝛽 = 0 , agrees with 

Glasheen & McMahon ’s experiments.11 The key physical parameters of affecting the added mass are the 

body geometry and the submerged depth. [𝐴 (ℎ = 0) + 𝐴 (ℎ = ∞)]/2  can be used as the first 

approximation of the added mass of the cone at any submerged depth. 

 

 

 

 

 

 

 

 

 



 23 / 32 

 

 

(a) 𝛽 = 30  

 

(b) 𝛽 = 60  

Fig. 23. Comparison of the added mass of cones vertically entering the water surface. 𝛽 is the deadrise 

angle of the cones. The solid lines represent the numerical solutions of the simplified model. The colored 

markers represent the numerical solutions of the fully-nonlinear model: the blue color denotes the mass 

ratio, 𝑀/(4𝜌𝑐 /3), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass 

ratio of 9; the ‘square’ marker denotes the Froude number, 𝑉 / 𝑔𝑐 , of 2, the ‘circle’ marker denotes 

the Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  

 

Circular cylinder and sphere. The simplified model for estimating the added mass is presented in Fig. 

24, where the reference length 𝑐  is the half of the maximum wetted length equal to 𝑅 sin 𝛽  . The flow 

separates from the body at S resulting in the flow separation angle of 𝛽 . A uniform cavity is assumed 

behind the body. An image flow above the undisturbed free surface is introduced. 

 

 

Fig. 24. Simplified model for estimating the added mass of a circular cylinder/sphere vertically entering 

the water surface.  

 

The evolution of the vertical added mass of circular cylinders/spheres can be shown being similar 

to that of wedges/cones: with increasing the submerged depth, the added mass grows strongly near the 

undisturbed free surface and quickly approaches the value of ℎ = ∞. Table 4 presents the dimensionless 
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added mass of circular cylinders and spheres on the still water surface, i.e. ℎ = 0  and at a deeply-

submerged depth of ℎ = 20. �̅� = 1, i.e. 𝐴 = 𝜋𝜌𝑐 /2 for circular cylinder and 𝐴 = 𝜋𝜌𝑐 /3 for 

spheres, can be used as the first approximation of the added mass at any submerged depth. 

 

Table 4. Dimensionless added mass of circular cylinders and spheres. 𝛽  is the flow separation angle. 

The dimensionless added mass is defined as �̅� = 𝐴 /( 𝜌𝑐 ) for cylinders and �̅� = 𝐴 /( 𝜌𝑐 ) 

for spheres. 

 

Circular cylinder 

𝛽 (o) 55 60 65 70 75 80 85 90 

�̅� (ℎ = 0) 0.891 0.894 0.901 0.910 0.924 0.942 0.967 1.000 

�̅� (ℎ = 20) 1.104 1.110 1.119 1.132 1.149 1.173 1.203 1.241 

Sphere 

𝛽 (o) 55 60 65 70 75 80 85 90 

�̅� (ℎ = 0) 0.975 0.963 0.954 0.949 0.950 0.958 0.974 1.000 

�̅� (ℎ = 20) 1.113 1.100 1.090 1.085 1.084 1.090 1.103 1.126 

 

D. v-term force 

Through the definition of the v-term force, i.e. 𝐹
( )

= 𝜌 ∫ (𝜓 − 𝐕 ∙ ∇𝜑 + |∇𝜑| )𝑛 𝑑𝑠 and the 

governing equations of 𝜓  , it is natural to express the dimensionless v-term force as 𝐶 =

𝐹
( )

/(0.5𝜌𝑉 𝑆). Here, 𝑆 is the area of the maximum cross section of the falling body. 𝐶  may be called 

as the ‘velocity-drag coefficient’. Fig. 25 illustrates the typical evolution of the velocity-drag coefficient 

of wedges vertically entering the water surface until the cavity pinch-off. At the early stage, 𝐶   is 

decreasing strongly with increasing the submerged depth. At the very early stage, i.e. near the still water 

surface, 𝐶  is independent of the mass ratio and Froude number. After the submerged depth is greater 

than a few characteristic lengths, 𝐶  evolves gently. During this stage, 𝐶   is reasonably constant and 

overestimates the steady-state value, corresponding to an infinite open cavity and a constant drag 

coefficient.33 It notes that the steady state is the limiting state of a wedge entering the water surface 

vertically with a constant speed in a zero-gravity environment (equivalent to the infinite Froude number). 

Therefore, 𝐶   is closer to the steady-state value for the larger Froude number. The duration of this stage 

becomes longer for the larger mass ratio. Close to the pinch-off of the open cavity, 𝐶  is growing strongly 

especially for small mass ratios. These physical phenomena will be discussed qualitatively.  
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(a) 𝛽 = 30  

 
(b) 𝛽 = 60  

 

Fig. 25. Evolution of the velocity-drag coefficient of the wedge with the deadrise angle of 𝛽 vertically 

entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/0.5𝜌𝜋𝑐  is the mass ratio. 𝐹𝑛 = 𝑉 / 𝑔𝑐  

is the Froude number. The blue and green lines indicate the numerical solutions of the fully nonlinearly 

model. 

 

Instead of solving 𝜓  , we consider an equivalent problem, 𝜓 = 𝜓 − 𝐕 ∙ ∇𝜑 . Based on Eqs. 

(14.a)-(14.d), 𝜓  can be decomposed into 𝜓 = 𝜓
( )

+ 𝜓
( ), which satisfies the following equations 

∇ 𝜓
( )

= 0 in Ω,                                (56.a) 

𝜓
( )

= − |∇𝜑|  on 𝑆 ,             (56.b) 

( )

= 0 on 𝑆 ,           (56.c) 

𝜓
( )

→ 0 at |𝑿| → ∞,                (56.d) 

and 

∇ 𝜓
( )

= 0 in Ω,                                (57.a) 

𝜓
( )

= 0 on 𝑆 ,                 (57.b) 

( )

= − (𝐕 ∙ ∇𝜑) on 𝑆 ,         (57.c) 

𝜓
( )

→ 0 at |𝑿| → ∞.            (57.d) 

Then, we have 

𝐹
( )

= 𝜌 ∫ (𝜓
( )

+ |∇𝜑| )𝑛 𝑑𝑠

( )

+ 𝜌 ∫ 𝜓
( )

𝑛 𝑑𝑠

( )

 .                (58) 

When the water-entry problem is solved in the time domain by the fully-nonlinear model presented in 

Section A, 𝜓
( ) and 𝜓

( ) can be evaluated by the boundary integral method based on the exact free-

surface boundary at each time step, resulting in the numerical evolution of 𝐹( ), 𝐹( ) and 𝐹
( ).  
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Fig. 26. Numerical evolution of 𝐹( ) , 𝐹( )  and 𝐹
( )  for the wedge with 𝐹𝑛 = 4 , 𝐷 = 9  and 𝛽 =

30o vertically entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/0.5𝜌𝜋𝑐  is the mass ratio; 

𝐹𝑛 = 𝑉 / 𝑔𝑐  is the Froude number; 𝛽 is the deadrise angle. 

 

Fig. 26 illustrates the evolution of 𝐹( ) , 𝐹( )  and 𝐹
( )  for a wedge vertically entering the water 

surface. It can be seen that 𝐹( ) is the dominant component of 𝐹
( ). This fact tends to be confirmed by 

our numerical results of other combinations of Froude number, mass ratio and deadrise angle for the 

wedge/cone vertically entering the water surface.  

Eq. (57.c) is the unique non-trivial boundary condition for 𝜓
( ). Therefore, the solution of 𝜓

( ) and 

the corresponding 𝐶  strongly depend on Eq. (57.c), which is related to the velocity field near the wetted 

body and characterized by the body shape and the shape of the attached open cavity. The cavity dynamics 

of solid objects vertically entering the water surface have been extensively investigated,4-6, 11, 24-32 since 

Worthington & Cole’s work26. Here, we only outline several aspects for the further discussion. If the 

water-entry speed is sufficiently large, an air cavity will be created behind the falling body.7 The cavity 

expands at the beginning and the gravity effect resists the expansion of the cavity causing its contraction 

and pinch-off (closure).25 This procedure is illustrated by Fig. 27. The slenderness of the closed cavity is 

characterized by the ratio, 2𝑐 /𝑙. In general, larger mass ratios of the falling body result in slenderer 

closed cavities.32,40  

 
Fig. 27. Illustration of the evolution of the air cavity for a wedge vertically entering the water surface 

until the cavity pinch-off. The slenderness of the closed cavity is characterized by the ratio, 2𝑐 /𝑙. 
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For the velocity-drag coefficient defined by the V-squared law, the non-dimensional boundary 

condition, i.e. [−𝜕(𝐕 ∙ ∇𝜑)/𝜕𝑛]/𝑉 , should be considered. It can be shown that, 

−
(𝐕∙∇ )/

=𝑐𝑜𝑠𝛽 [
/

]                           (59) 

for wedges. Here 𝑠 refers to the tangential direction. The right-hand side of Eq. (59) is 𝑐𝑜𝑠𝛽 times the 

variation of the dimensionless tangential velocity along the wetted body surface. At the apex of the wedge, 

the dimensionless tangential velocity is fixed to be − sin 𝛽 throughout the water-entry process. Near 

the still water surface, the water particle leaves the knuckle point somehow ‘freely’. For smaller deadrise 

angles, both 𝑐𝑜𝑠𝛽  and the detaching speed are larger, resulting in the stronger variation of the 

dimensionless tangential velocity and therefore greater 𝐶 . At the very early stage, the gravity effect is 

commonly negligible. So, the flow is not sensitive to the mass ratio and Froude number and 𝐶 (ℎ = 0) 

can be regarded to be a constant for a given body. With increasing the submerged depth, the effect of the 

surrounding water constraining the detaching speed becomes stronger, which leads to the weaker 

variation of the dimensionless tangential velocity and therefore the decreasing of 𝐶 . This effect tends 

to be steady after the submerged depth is greater than a few characteristic lengths. Then 𝐶   is not 

sensitive to the increment of the submerged depth. The evolution of 𝐶  goes to the second stage. During 

that 𝐶  is reasonably constant. If the air cavity continues the expansion, the second stage is lasting and 

𝐶  will slowly approach the limiting value presented by Plasset & Shaffer33. The expansion of the air 

cavity is of relevance to the strong transferring of the energy from the falling body to the water. This 

process becomes longer for the falling body with higher energy, i.e. larger mass ratio and/or higher 

Froude number, which results in the longer second stage of the evolution of 𝐶 . Fig. 25 has shown that 

the second stage is very short or even obscure for the wedge with relatively small mass ratio/ Froude 

number. The gravity resists the expansion of the cavity causing its contraction and pinch-off.24, 30 The 

contraction of the open cavity influences the evolution of 𝐶  through modifying the velocity field near 

the wetted body. The numerical experiments show that the contraction of the air cavity strengthens the 

variation of the tangential velocity along the wetted wedge surface. Closer to the pinch-off, this effect 

becomes stronger. Further, smaller mass ratios result in blunter closed cavities32,40 and therefore the 

stronger variation of the velocity field near the wetted body. So, 𝐶  for the objects with small mass ratios 

evolves dramatically close to the pinch-off of the open cavity. These analyses are confirmed by Fig. 28, 

which plots the variation of the tangential velocity along the wetted body surface of the wedge, predicted 

by the fully nonlinear numerical method. At ℎ = 0, the good agreement of the tangential velocity is 

consistent with the good agreement of 𝐶  as shown in Fig. 25. At ℎ = ℎ /2(within the second stage), 

the variation of the tangential velocity becomes closer to the theoretical value,33 corresponding to 

𝐶  closer to the theoretical value. At the pinch-off of the cavity, the variation of the tangential velocity is 

strong especially for the small mass ratio, which results in the large value of 𝐶 .  
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Fig. 28. Variation of the tangential velocity along the wetted body surface of the wedge. 𝐷 = 𝑀/0.5𝜌𝜋𝑐  

is the mass ratio. 𝐹𝑛 = 𝑉 / 𝑔𝑐  is the Froude number. ℎ  is the submerged depth at pinch-off. 

The blue and green lines indicate the numerical solutions of the fully nonlinearly model. 

 

Fig. 29 illustrates the typical evolution of the velocity-drag coefficient of cones vertically entering 

the water surface, which is similar to that of wedges. The evolution of 𝐶  of the cone goes to the second 

stage more quickly compared to the wedge. During this stage, 𝐶  is very close to the theoretical value 

for the relatively large deadrise angle.  

  

 
(a) 𝛽 = 30  

 
(b) 𝛽 = 60  

 

Fig. 29. Evolution of the velocity-drag coefficient of the cone with the deadrise angle of 𝛽 vertically 

entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/(4𝜌𝑐 /3) is the mass ratio. 𝐹𝑛 = 𝑉 / 𝑔𝑐  

is the Froude number. The blue and green lines indicate the numerical solutions of the fully nonlinearly 

model. 

 

For the water entry of spheres, the flow separation point is unnecessarily fixed and its position may 

move along the body surface. May & Woodhull’ experiments showed that the corresponding flow 

separation angle, for the steel spheres, at large Froude numbers (21 < 𝑉 / 𝑔𝑅 < 180), is about 65 .35  
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The experiments by Aristoff et al.32 showed: the flow separation angle, for the steel spheres, at the Froude 

numbers 1 < 𝑉 / 𝑔𝑅 < 10 , is about 70   before the pinch-off; the flow separation angle, for the 

spheres made of polypropylene or nylon (corresponding to relatively small mass ratios), is also about 

70  at the early stage but can become larger than 90  close to the pinch-off. Here, we only discuss the 

evolution of the velocity-drag coefficient of steel spheres, of which the flow separation angle can be 

regarded to be constant. The mass ratio of steel spheres, 𝑀/(𝜌𝜋𝑅 /3), is as large as about 31. Further, 

the flow separation angle of 65  or larger make the steel sphere behave like the cone with a relatively 

large deadrise angle. Based on the previous study, we expect the following: 𝐶  decays quickly at the 

early stage and it goes to the second after the submerged depth is larger than a few characteristic lengths ; 

𝐶  is very close to the limiting value of 0.30-0.3134 at the second stage; the duration of the second stage 

is longer for the higher Froude number; the contraction of the air cavity results in the growth of 𝐶 . 

These are confirmed by the numerical solutions of the fully nonlinear model presented in Fig. 30. 

 
 

Fig. 30. Evolution of the velocity-drag coefficient of the steel sphere vertically entering the water surface 

until the cavity pinch-off. 𝐹𝑛 = 𝑉 / 𝑔𝑐  is the Froude number; 𝛽  is the flow separation angle; 𝑅 is 

the sphere radius;  𝐶 = 𝐹
( )

/(0.5𝜌𝑉 𝜋𝑅 ). 

 

IV. CONCLUSIONS 

This work investigated the unsteady hydrodynamic force of solid objects vertically entering water 

with an air cavity behind the falling body within the framework of potential flow. The unsteady 

hydrodynamic force is exactly decomposed into three components, i.e. the acceleration term 𝐹
( ), the 

gravity term 𝐹
( )  and the velocity term 𝐹

( ) . The acceleration term is equal to the high-frequency 

added mass times the body acceleration, i.e. 𝐹
( )

= −𝐴 �̇�. The gravity term consists of a hydrostatic 

term and a dynamic term. The hydrostatic term is obtained by integrating the term, −𝜌𝑔𝑧 , in the 

Bernoulli’s equation over the wetted body surface, is upwards, and strongly overestimates 𝐹
( ). The 

dynamic term is downwards. The added mass and the gravity term can be well estimated by the proposed 

simplified models, which assume a uniform cavity behind the falling body. Near the undisturbed free 

surface, the added mass grows strongly with increasing the submerged depth. It tends to be steady after 

the submerged depth is greater than a few characteristic lengths (the characteristic length, 𝑐 , is defined 

as half of the wetted breadth). The solution of the added mass of different geometries, at the still water 

surface and deeply submerged, is presented. The added mass can be approximated as 𝐴 = 𝜋𝜌𝑐 /2 for 

the circular cylinder and the wedge with small deadrise angles, 𝐴 = 4𝜌𝑐 /3 for the cone with small 
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deadrise angles, and 𝐴 = 𝜋𝜌𝑐 /3 for spheres. The key physical parameters of affecting the gravity 

term are the projected wetted area, the submerged depth and the body geometry. The gravity term is 

proportional to the projected wetted area. Excluding the buoyance, i.e. the weight of the water with the 

volume of the wetted body, the gravity term is not sensitive to the body geometry at small submerged 

depth, but it is strongly influenced by the body geometry at large submerged depth. The analytical 

solution of 𝐹
( )

 of the wedge with any deadrise angle is presented. Asymptotically (ℎ → ∞), 𝐹
( ) is 

proportional to the square root of the submerged depth. For the three-dimensional bodies, the 

dimensionless gravity term follows 𝐹
( )

= 𝛼ℎ , where ℎ = ℎ/𝑐  and 𝛾 is about 0.83. The velocity 

term is represented as the drag coefficient, 𝐶 = 𝐹
( )

/(0.5𝜌𝑉 𝑆), which is characterized by the body 

geometry. The submerged depth and the cavity shape influence the drag coefficient through modifying 

the velocity field near the wetted body. The evolution of the drag coefficient can be divided into three 

stages: i) near the still water surface, 𝐶  decays strongly with increasing the submerged depth; ii) after 

the submerged depth is greater than a few characteristic lengths, 𝐶  evolves gently and is reasonably 

constant; and (iii) 𝐶  grows due to the contraction of the air cavity. 𝐶  at the second stage becomes 

closer to the limiting value, which corresponds to the steady cavity flow at zero cavitation number. Larger 

mass ratios and/or higher Froude numbers result in the longer period of the second stage. Smaller mass 

ratios can lead to the dramatical growth of 𝐶  close to the pinch-off of the open cavity. 

 

ACKNOWLEDGEMENTS 

J. Wang was supported by National Natural Science Foundation of China (Grant Nos. 51509028 

and 51679043) and the Ministry of Industry and Information Technology of P. R. China (Numerical Tank 

Project, 2016-23). O. M. Faltinsen and C. Lugni were supported by the Research Council of Norway 

through the Centers of Excellence funding scheme AMOS, project number 223254.  

 

REFERENCES 

 

1. T. Von Kármàn, 1929. The impact on seaplane floats during landing. National Advisory Committee 

for Aeronautics. Technical note No. 321. 

2. O.M. Faltinsen, 1990. Sea loads on ships and offshore structures. Cambridge University Press. 

3. O.M. Faltinsen, 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press. 

4. A. May, “Vertical entry of missiles into water,” J. Appl. Phys. 23,1362–1372 (1952).  

5. A. May, 1975. Water entry and the cavity-running behavior of missiles. Tech. Rep. 20910, Nav. Surf. 

Weapons Cent., White Oak Lab., MD. 

6. T. T. Truscott, 2009. Cavity dynamics of water entry for spheres and ballistic projectiles. PhD diss. 

Mass. Inst. Technol., Cambridge, MA. 

7. T. T. Truscott, B. P. Epps and J. Belden, “Water entry of projectiles,” Annu. Rev. Fluid Mech. 46, 

355–378 (2014). 

8. D. H. Peregrine, “Water wave impact on walls,” Annu. Rev. Fluid Mech. 35, 23-43 (2003). 

9. C. Lugni, A. Bardazzi, O.M. Faltinsen, G. Graziani, “Hydroelastic slamming response in the 

evolution of a flip-through event during shallow-liquid sloshing,” Phys. Fluids 26, 032108 (2014). 

10. J. W. Glasheen and T. A. McMahon, “A hydrodynamic model of locomotion in the Basilisk lizard,” 

Nature 380, 340-342 (1996). 

11. J. W. Glasheen and T. A. McMahon, “Vertical water entry of disks at low Froude numbers,” Phys. 

Fluids 8, 2078–2083 (1996). 



 31 / 32 

 

12. H. Wagner, “Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten”, Z. Angew. Math. 

Mech. 12, 193–215(1932). 

13. Z. N. Dobrovol’skaya, “On some problems of similarity flow of fluid with a free surface,” J. Fluid 

Mech. 36, 805–829 (1969). 

14. R. Cointe and J.-L. Armand, “Hydrodynamic impact analysis of a cylinder”, ASME J. Offshore 

Mech. Arc. Eng. 109, 237–243 (1987). 

15. A. A. Korobkin and V. V. Pukhnachov, “Initial stage of water impact,” Annu. Rev. Fluid Mech. 

20,159–85(1988). 

16. R. Cointe, 1991. Free surface flows close to a surface-piercing body. Mathematical Approaches in 

Hydrodynamics, SIAM, Philadelphia, USA, 319–334. 

17. S. D. Howison, J. R. Ockendon and S.K. Wilson, “Incompressible water entry problems at small 

deadrise angles”, J. Fluid Mech. 222, 215–230 (1991). 

18. R. Zhao and O. M. Faltinsen, “Water entry of two-dimensional bodies”. J. Fluid Mech. 246, 593–

612 (1993). 

19. O. M. Faltinsen, R. Zhao, 1998. Water entry of ship sections and axisymmetric bodies, AGARD 

Report 827, High Speed Body Motion in Water. 

20. Y. -M. Scolan and A. A. Korobkin, “Three-dimensional theory of water impact. Part 1. Inverse 

Wagner problem,” J. Fluid Mech. 440, 293–326 (2001). 

21. O. M. Faltinsen, “Water entry of a wedge with finite deadrise angle,” J. Ship Res. 46, 39–51 (2002). 

22. A.A. Korobkin, “Analytical models of water impact,” Eur. J. Appl. Math. 15, 821–838 (2004). 

23. J. Wang and O. M. Faltinsen, “Improved numerical solution of Dobrovol’skaya’s boundary integral 

equations on similarity flow for uniform symmetrical entry of wedges,” Appl. Ocean Res. 66, 23–

31(2017). 

24. J. Wang, C. Lugni and O. M. Faltinsen, “Analysis of loads, motions and cavity dynamics during 

freefall wedges vertically entering the water surface”, Appl. Ocean Res. 51, 38–53 (2015). 

25. V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet and C. Clanet, “Dynamics of transient cavities,” 

J. Fluid Mech. 591,1–19 (2007). 

26. A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous 

photography. Paper II,” Phil. Trans. R. Soc. Lond. A 194, 175–199 (1900). 

27. D. Gilbarg and R. A. Anderson, “Influence of atmospheric pressure on the phenomena 

accompanying the entry of spheres into water,” J. Appl. Phys. 19,127–139 (1948). 

28. M. Lee, R. G. Longoria and D. E. Wilson, “Cavity dynamics in high-speed water entry,” Phys. Fluids 

9, 540–550 (1997). 

29. S. Gaudet, “Numerical simulation of circular disks entering the free surface of a fluid,” Phys. Fluids 

10, 2489-2499 (1998). 

30. R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos and D. Lohse, “Controlled impact of a disk 

on a water surface: cavity dynamics,” J. Fluid Mech. 633, 381–409 (2009). 

31. H. Yan, Y. Liu, J. Kominiarczuk and D. K. P. Yue, “Cavity dynamics in water entry at low Froude 

numbers,” J. Fluid Mech. 641, 441–461 (2009). 

32. J. M. Aristoff, T. T. Truscott, A. H. Techet and W. M. Bush, “The water entry of decelerating spheres,” 

Phys. Fluids 22, 032102 (2010). 

33. M.S. Plesset and P. A. Shaffer, “Cavity drag in two and three dimensions,” J. Appl. Phys. 19, 934-

939 (1948). 

34. R. T. Knapp, J.W. Daily, F.G. Hammitt, 1970. Cavitation. New York: McGraw-Hill. 



 32 / 32 

 

35. A. May and J. C. Woodhull, “Drag coefficients of steel spheres entering water vertically,” J. Appl. 

Phys. 19, 1109-1121 (1948). 

36. I. R. Peters, S. Gekle and D. Lohse, ‘Air Flow in a collapsing cavity’, Phys. Fluids 25, 032104 (2013). 

37. J. Wang, C. Lugni and O.M. Faltinsen, “Experimental and numerical investigation of a freefall 

wedge vertically entering the water surface”, Appl. Ocean Res. 51, 181–203 (2015). 

38. C. Lugni, 1995.A study of the fluid dynamic field around a floating structure. Master thesis, 

University of Rome, La Sapienza. 

39. D. G. Dommermuth and D. K. P. Yue. “Numerical simulations of nonlinear axisymmetric flows with 

a free surface,” J. Fluid Mech. 178, 195–219 (1987). 

40. J. Wang and O.M. Faltinsen, “Numerical investigation for air cavity formation during the high-speed 

water entry of wedges,” J. Offshore Mech. Arct. Eng. 135, n1(2013). 


