
Validation of a three-dimensional Depth-Semi-Averaged model

M. Antuono,1, a) S. Valenza,2, 1 C. Lugni,1, 3 and G. Colicchio1, 3

1)CNR-INM, Institute of Marine Engineering, Rome,

Italy

2)University of Rome �Sapienza�, Rome, Italy

3)AMOS, NTNU, Dept. of Marine Technology, Trondheim,

Norway

(Dated: 15 January 2019)

The present work completes the validation of the Depth-Semi-Averaged model de�ned

in [M. Antuono, G. Colicchio, C. Lugni, M. Greco, M. Brocchini, �A depth semi-

averaged model for coastal dynamics�, Physics of Fluids 29, 056603 (2017)] providing

a numerical implementation in three spatial dimensions. In particular, the model

is aimed at describing a wide variety of phenomena typical of the coastal region,

as for example nonlinear interaction between waves and the bottom bathymetry
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this purpose, the proposed scheme is tested against benchmark experimental data

available in the literature for wave propagation problems in both intermediate and

shallow water conditions. A �nal simulation is carried on by considering a tsunami

wave running over a prototype bathymetry resembling a bay-promontory coastline.

Di�erent widths of the bay have been considered, describing their in�uence on the

run-up dynamics.
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I. INTRODUCTION

The modelling of the wave dynamics from deep water towards the surf and nearshore

region represents a challenging problem in �uid dynamics, for it includes several theoretical

and numerical complexities. The theoretical issues concern the de�nition of models able to

describe the main features of wave propagation, namely non-linearity, dispersion, shoaling,

refraction and di�raction, and provide a simpli�ed description of the �ow dynamics, i.e.

retaining just the spatial- and time-scales of interest. This generally leads to closure

problems that need to be properly modelled. At this stage, the almost unavoidable use

of approximations causes an inaccurate prediction of dispersive e�ects when the wave

propagation occurs in intermediate/deep-water conditions. Numerical issues lie in the

construction of a robust and accurate scheme capable to conciliate both nonlinear and

dispersive e�ects, the latter being non-negligible as waves propagate in intermediate/deep

water condition.

Because of the need of a simpli�ed description, the most widespread models for coastal

dynamics are obtained through integration over the water depth of Laplace, Euler or Navier-

Stokes equations, assuming that the horizontal dynamics predominates the vertical one.

The main drawback of the above approach is that the depth-averaged equations cannot be

completely represented through depth-averaged quantities, namely the water depth and the

depth-averaged velocity �eld. Consequently, some approximations are needed to achieve a

closed system of equations.

The simplest system is represented by the Nonlinear-Shallow Water Equations that

include the principal nonlinear terms (see, for example, Toro 1 , Antuono and Brocchini 2,

3 , Bjørnestad and Kalisch 4) but, in turn, completely disregard the dispersive e�ects. A

correct inclusion of dispersion is of fundamental importance when the wave motion occurs

in intermediate depths, and, for these reasons, the Boussinesq-type equations are usually

preferred to the NSWEs. These equations are obtained through a sort of asymptotic

expansion of the depth-averaged terms in the parameter µ (i.e. the ratio between the vertical

and horizontal reference lengths) and constitute a wide family of models with di�erent

features, according to the accuracy of the adopted expansion (for an extensive review on

Boussinesq models we address the interested readers to Brocchini 5 , Kirby 6). Despite their

ability of providing a satisfactory description of the wave dynamics in the nearshore region,
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the Boussinesq-models show both theoretical and numerical limits. As discussed in Madsen

et al. 7 , the exact linear dispersion relation can be only attained through the use an in�nite

number of terms in the asymptotic expansion. Further, each order of the expansion leads

to the presence of terms with high-order derivatives (generally �fth or seventh order) that

represent a critical issue for the numerical implementation.

The need to overcome the above issues led to the de�nition of a novel class of models that

retain, partially or completely, the vertical dynamics. Despite the increased computational

cost with respect to Boussinesq schemes, these approaches allow for a theoretically sound

description of both nonlinear and dispersive e�ects and for a simpler and more robust

numerical implementation (generally, third-order derivatives appear). These schemes are

usually called non-hydrostatic models, since the pressure �eld is not just the leading-order

hydrostatic contribution and, therefore, require the solution of a Poisson equation for the

dynamics pressure component (see, for example, Yamazaki et al. 8 , Zijlema and Stelling 9 , Ma

et al. 10 , Lu and Xie 11 , Raoult et al. 12).

The Depth-Semi-Averaged scheme proposed in Antuono and Brocchini 13 belongs to such

a class of models but, di�erently from those based on the solution of a Poisson equation for

the dynamic pressure �eld, it relies on the solution of a Poisson equation for the vertical

velocity component or, alternatively, for its semi-integrated value Υ. In particular, the

use of the latter variable has several advantages, as shown in Antuono et al. 14 . From a

theoretical point of view, it provides a closed formulation, since both the forcing term and

the boundary conditions of the Poisson equation are expressed in terms of the principal

depth-averaged quantities. This avoids the use of simpli�cations/approximations and, in

fact, the model described in Antuono et al. 14 results in a rearrangement of the Navier-

Stokes equations. From a numerical point of view, the use of Υ allows for a robust and

accurate implementation, in comparison to the use of the Poisson equation for the vertical

velocity component.

In the present work we complete the analysis started in Antuono et al. 14 (that was limited

to two-dimensional benchmarks) by extending the validation of the model with experimental

data for three-dimensional problems. A �nal simulation of the run-up of a solitary wave over

a prototype bay-promontory coastline is considered as a proof of concept of the ability of

the proposed scheme in describing the wave dynamics in the coastal region.
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FIG. 1. Sketch of the coastal �ow geometry (the y-axis points in the transverse direction, forming

a right-handed Cartesian frame of reference). The horizontal dashed line indicates still water level.

II. THE DEPTH-SEMI-AVERAGED MODEL

Here we brie�y recall the structure of the Depth-Semi-Averaged model proposed in

Antuono et al. 14 (hereinafter referred to as DepSeA model). Incidentally, we highlight that

the theoretical model described in Antuono et al. 14 was already derived in three dimensions

while the numerical validation was only performed against two-dimensional benchmarks. In

the following description we neglect all the turbulent and vortical terms, as well as the friction

along the bottom. In fact, these e�ects generally play a secondary role in the time-scale of

the problems considered hereinafter (see, for example, Alberello et al. 15).

The DepSeA model is obtained through a proper rearrangement of the Semi-Integrated

model proposed by Antuono and Brocchini 13 . The resulting constitutive equations are

written in the following compact form:

dt + ∇ ·Q = 0 , (1a)

M t + ∇ · F = ( g d + pb ) ∇h , (1b)

Υxx + Υyy + Υzz = ∇ ·
(
M

d

)
, (1c)

where g is the gravitational acceleration, ∇ = (∂/∂x, ∂/∂y) is the two-dimensional gradient

operator, and d denotes the total water depth. Figure 1 displays a sketch of a typical

beach nearshore problem and indicates the main geometrical variables. The z-coordinate
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points upward and the tern (x, y, z) forms a right-handed Cartesian reference frame (in

the �gure y acts in transverse direction). In particular, d = η + h where η is the wave

elevation with respect to the still water level (set at z = 0) and h is the sea bottom level

(assumed to be independent of time). Equations (1a) and (1b) express conservation of

�uid mass and momentum, and represent a depth-averaged subset that is similar to the

common Boussinesq-type equations. Equation (1c) is a Poisson equation that accounts for

the three-dimensional dynamics, and is used to derive the dispersive contributions. Here,

Υ represents the semi-averaged vertical velocity component (i.e. averaged over a portion of

the water column) and M is the generalized mass �ux. These are given by the following

expressions:

Υ =

∫ η

z

w dζ , M = Q +

∫ η

−h
∇Υdz , (2)

where the variable w denotes the vertical component of the velocity �eld. As usual,

Q = (U1d, U2d) indicates the mass �ux vector, and U = (U1, U2) is the depth-averaged

velocity vector in the horizontal plane. All terms associated with linear dispersion are

included inside the generalized mass �ux M through the integral of ∇Υ. Note that the

structure of the momentum equations is similar to that of many Boussinesq-type models

(see, for example, Wei et al. 16 , Shi et al. 17) and avoids the presence of time derivatives in

the �ux tensor F. Meanwhile, the �ux term includes the remaining dispersive contributions

and the classic shallow-water terms:

F =

(
g d2

2
+ Disp

)
1+

(
dU ⊗U +

∫ η

−h
(δu⊗ δu) dz

)
, (3)

where ⊗ indicates the dyadic product and δu represents the deviation of the horizontal

velocity �eld, namely u = (u1, u2), with respect to the depth-averaged �eld U . These are

linked through the following relations:

u = U + δu , δu = −∇Υ +
1

d

∫ η

−h
∇Υdz . (4)

The term Disp contains the non-linear dispersive contributions arising from the integral of

the dynamic pressure:

Disp = ∇ ·
(∫ η

−h

∫ η

z

wu dζ

)
−
∫ η

−h
w (w + u · ∇h) dz . (5)

Finally, pb is given below as:

pb = ∇ ·
(∫ η

−h
wu dζ

)
(6)
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The boundary conditions for the Poisson equation are:

∂Υ

∂n

∣∣∣∣
z=−h

= −
[
ht +

M

d
· ∇h

]/√
1 + ‖∇h‖2 ,

Υ|z=η = 0 ,
∂Υ

∂n

∣∣∣∣
DL

= cN ,

(7)

where DL denotes the lateral boundary of the �uid domain and cN is the assigned condition

along such a boundary. We highlight that both the forcing term of the Poisson equation and

the boundary condition along the bottom are expressed in terms of M and d and, therefore,

provide a closed formulation for the system (1a)-(1c). In fact, the knowledge of Υ allows

for the computation of w and δu through equations (2) and (4), and, then, of all remaining

terms.

Regarding the numerical implementation, this follows the scheme described in Antuono

et al. 14 . In particular, a fourth-order �nite-volume discretization based on an HLL-

MUSCL-Hancock scheme and a fourth-order Adams-Bashforth-Moulton predictor/corrector

algorithm for the time integration are used to solve the depth-averaged subset made up by

equations (1a) and (1b). Conversely, a second-order �nite-di�erence discretization with a

di�use-boundary approach is implemented for the Poisson equation (1c). A Cartesian grid is

used to solve both the depth-averaged subset and the Poisson equation. The time stepping

is computed through the formula below:

∆t = Ccfl min

{
min
i

[
∆xi

|U1,i|+
√
gdi

]
, min

i

[
∆yi

|U2,i|+
√
gdi

]}
(8)

where (∆xi,∆yi) denotes the grid spacing of the i-th cell in the x- and y-direction respectively

and Ccfl is the Courant-Friedrichs-Lewy number, here set equal to 0.4. In the Appendices

A and B, we report some details about the solution for Υ in shallow water conditions and

the treatment of the wet/dry interface.

A. Some theoretical insights

It is interesting to investigate the physical meaning of the terms M and Υ, for they are

closely related to the free surface dynamics. Here, we assume that �ow is irrotational and

that the velocity �eld is expressed through the (three-dimensional) gradient of the potential
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φ, namely:

v = (u1, u2, w ) = ∇̂φ , where ∇̂ = ( ∂/∂x, ∂/∂y, ∂/∂z ) . (9)

Using the de�nition of Υ in equation (2), we immediately �nd:

Υ = φF − φ , (10)

where the subscript `F' is hereinafter used to denote the quantities evaluated along the free

surface η. This means that Υ accounts for the di�erence between the potential along the free

surface and the potential inside the �uid domain. Applying the two-dimensional gradient

to equation (10), we obtain:

∇Υ = ∇φF − ∇φ = (uF + wF ∇η ) − u , (11)

where u = (u1, u2), as usual. Finally, substituting the above expression in the de�nition of

M in equation (2), we also �nd:

M = d (uF + wF ∇η ) . (12)

Therefore, the generalized mass �uxM contains a contribution due to the horizontal velocity

components at the free-surface and a further contribution generated by the deformation of

such an interface due to the vertical velocity component wF . In shallow-water conditions this

latter term is expected to be negligible while the former one reduces to Q, since uF ' U .

On the contrary, both terms are non-negligible as waves travel seaward. Incidentally, we

highlight that, di�erently from M , the mass �ux Q becomes less signi�cant as waves

propagate in deep water. In this condition, indeed, the depth-averaging procedure is

performed over a �uid region where, for a large extent, the velocity is practically null.

III. APPLICATIONS

In the present Section we test the proposed three-dimensional model against typical

problems of wave propagation in both intermediate and shallow water conditions. We

introduce here the following dispersive and nonlinear dimensionless parameters:

µ = 2π
h0
L
, ε =

H

h0
, (13)

where L is the wave length, h0 is the reference water depth (generally, the still water depth)

and H is the wave height. These parameters will be used in the continuation to characterize

the problems under consideration.
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A. Wave transformation over an elliptical shoal on a sloped bottom

Here, we consider the experiment conducted by Berkho� et al. 18 in the wave basin of

the Delft Hydraulics Laboratory on the propagation of regular waves over an elliptical shoal

placed along a sloping bottom. This benchmark is widely used for testing the ability of 3D

propagation models in simulating wave di�raction and refraction over uneven bathymetry.

More information about the measurements can be found in Report W 154-VIII of the Delft

Hydraulics Laboratory.

In the experiment the wave tank was approximately 25 m long (x ∈ [-15, 10] m) and 20

m wide (y ∈ [-10, 10] m). A submerged elliptical shoal was located over a plane beach with

slope 1:50 connecting two uniform-depth regions of 0.45 m and 0.1 m. The slope-oriented

coordinates (x′, y′) were rotated by −20◦ with respect to the global coordinate system (x,

y) and both frames of reference had their origin at the centre of the elliptical shoal. In

particular, the minor semi-axis of the ellipse was equal to 3 m while its major semi-axis was

equal to 4 m. The boundary of the shoal was given by:(
x′

3

)2

+

(
y′

4

)2

= 1 (14)

where x
′ = x cos(α) + y sin(α) ,

y′ = x sin(α) − y cos(α) ,
(15)

with α = −20◦. The thickness of the shoal was:

d′(x′, y′) = −0.30 + 0.50

√
1−

(
x′

3.75

)2

−
(
y′

5

)2

(16)

within the elliptical region, while it was zero in the remaining domain. Finally, the bed

elevation was de�ned as:

h(x′, y′) = min[ 0.45, max[ 0.10, 0.45 − 0.02 · (5.82 + x′) ] ]− d′(x′, y′).

Figure 2 displays the depth pro�le along a section at y = 0m.

A wavemaker was installed at x = −15 m, while on the opposite side (i.e. in the shallow

water region) a gravel beach was realized to dissipate the wave energy by a breaking process.

In the experiment, regular waves with period 1.0 s and wave height 0.0464 m were generated
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FIG. 2. Spatial depth pro�le for the elliptical shoal experiment (section at y = 0 m).

and initially propagated over a reference depth of 0.45m. This corresponds to a wavelength

L = 1.485 m, µ = 1.904 (intermediate depth) and ε = 0.103 (weakly-nonlinear waves).

During the experiment, eight measurement section cuts were used to record the wave

elevation: �ve transversal transects above and behind the shoal (1−5) and three longitudinal

transect (6 − 8). The positions of the section cuts are listed in Table I. The experimental

data are available as wave height coe�cients, which represent the maximum wave heights

at a certain point, averaged over several wave periods and normalized with the input wave

height. A schematic view of the gage transect locations is given in Figure 3 along with a

snapshot of the evolution predicted by the numerical solver which highlights the refraction

and shoaling processes and the focusing of the wave pattern past the submerged shoal.

FIG. 3. Left: contour lines of the bathymetry and schematic view of the gage transect locations.

Right: a snapshot of the evolution as predicted by the numerical scheme.

The numerical simulation is performed by discretizing the �uid domain through a

Cartesian grid with uniform spacing in each direction. Speci�cally, we choose ∆x = 0.025m,
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Section cut Orientation Coordinate

1-1 Transverse x = 1.0 m

2-2 Transverse x = 3.0 m

3-3 Transverse x = 5.0 m

4-4 Transverse x = 7.0 m

5-5 Transverse x = 9.0 m

6-6 Longitudinal y = -2.0 m

7-7 Longitudinal y = 0.0 m

8-8 Longitudinal y = 2.0 m

TABLE I. Locations of the eight section cuts.

∆y = 0.1m, ∆z = 0.05m, corresponding to L/∆x = 60 and h0/∆z = 9. For the present test

case, it is a common practice to use a larger spatial step in the y-direction (see, for example,

Zijlema and Stelling 9 , Ma et al. 10 , Lu and Xie 11), since the dynamics in the transversal

direction is slightly weaker than that in the x-direction. Incidentally, we highlight that the

adopted vertical discretization is very coarse in comparison to the wave height. In this case,

the ability of describing wave propagation is essentially due to the use of depth-averaged

quantities along with a basic description of the vertical dynamics. This is typical of non-

hydrostatic models in general (see, for example, Yamazaki et al. 8 , Zijlema and Stelling 9 , Ma

et al. 10 , Lu and Xie 11 , Meftah et al. 19). Finally, a stretched mesh (namely, an acoustic

beach) in the x-direction has been used for x ≥ 18m to simulate the gravel beach in the

physical experiment. The model is run to simulate 40 s of physical evolution, but only the

last 6 s have been saved, after a steady wave �eld is achieved. The wave height is calculated

as the mean ofH = ηmax−ηmin over �ve wave periods, where ηmax and ηmin are the maximum

and minimum water surface elevations, respectively.

The total number of computational nodes for this problem ranges from 1,380,000

to 1,562,000 (the number changes according to the free surface con�guration) and the

simulation has been run on a six-core Intel Xeon(R), CPU X5650, 2.67 GHz. The total

computational time for 40 s of physical evolution is about 16 days with 8906 iterations that

corresponds to about 156 s per iteration. The numerical solution of the three dimensional

Poisson equation represents the most onerous part of the computational e�ort and has

been obtained by using the MUltifrontal Massively Parallel Solver (MUMPS) described in

Amestoy and Du� 20 , Amestoy et al. 21 with 6 cores. Conversely, the depth-averaged subset

has not been parallelized because of its small computational cost.
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FIG. 4. Water surface pro�les of the eight sections in Table I. The black solid lines and the blue

dots show the numerical prediction and the experimental data, respectively.

Figure 4 shows the comparisons between the experimental measures and the computed

wave height at the eight measurement sections. Generally, the numerical prediction well

matches the observed data. In the �rst section (namely, 1−1) the wave �eld is not signi�cantly

a�ected by the presence of the shoal, and just a slight increase in wave height is observed

about y = 0 m. For what concerns the 2−2, 3−3, 4−4 and 5−5 sections, the numerical

code correctly simulates both the maximum peaks (apart from a slight underestimation at

sections 3−3 and 5−5) and the transverse variations of the wave �eld resulting from the

combined e�ect of refraction/shoaling triggered by the co-existence of the elliptical shoal and
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of sloped beach. Since the sloped beach is not parallel to the y-axis but rotated 20◦ clockwise

from the latter, the distributions of the wave height in y direction is not symmetric. This

distinctive asymmetry is also accurately modelled by the present non-hydrostatic model.

The longitudinal sections 6−6 and 8−8 (which are just aside to the maximum peak of the

elliptical shoal, see Figure 3) quite well capture the general trend of the wave �eld, namely

a slight steepening close to the shoal, and a pronounced decrease of the wave height past it.

Finally, along the longitudinal transect 7−7 (placed at y = 0m), the model predicts well

the wave shoaling, the focusing and the gradual decrease of the wave height after the shoal.

Due to refraction, wave focusing occurs behind the shoal and the maximum relative wave

height, located around x = 5m and y = 0m, is about 2.11, that is close to the experimental

data.

B. Wave run-up on a conical island

The interaction of solitary waves climbing up a conical island is studied here. In

particular, we consider the laboratory physical data presented in Briggs et al. 22 as a

benchmark for the validation of the proposed 3D model. The experiments were performed

in both �ume and basin facilities at CERC. The basin was 25m wide and 30m long. The

truncated cone island was located in the center of basin (i.e. x = 13m, y = 15m). The

diameters of the island at the toe, still water line and top were respectively 7.2m, 4.64m

and 2.2m. The conical island with a slope 1:4, which corresponds to a vertical height of

about 0.62m, was placed on a �at bottom in the basin. The water depth of the basin was

0.32m. The wavemaker was installed along the y-axis and was used to generate solitary

waves, while the x-axis was perpendicular to it. The origin of the global coordinate system

was located at the end of the wavemaker. An additional polar coordinate system was de�ned

with the origin at the center of the island. The 0◦ direction corresponded to the positive

x-axis and the angles were measured in counterclockwise direction. Moreover all sides of

the basin were upholstered with wave absorber to minimize the wave impacts. To measure

surface wave elevations, 27 capacitance wave gages were installed. The �rst four gages,

parallel to the wavemaker, were used to measure incident wave conditions. These were

located in front of the island at a distance from the toe corresponding to half wave length of

the generated wave, in order to record the tsunami waves at the same stage of evolution. A
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circular measurements grid of six concentric circles covered the island up to a distance 2.5m

outside the toe. Measurement points were placed at the intersection of the circles with the

90◦ radial lines. The shallowest gages were located in 0.08m water depth and the deepest

gages over the toe. The remaining 8 gages were equally spaced between these points along

the 90◦ radial lines. Two additional gages were spaced in the deep water part at distances

of 1.0m and 2.5m from the toe, except for the 0◦ and 270◦ transects. Furthermore digital

run-up gauge were used to record run-up time histories. A sketch of the island geometry is

shown in Figure 5.

Gauge ID x (m) y (m) z (cm) Position

1 f(L/2) 18.75 32.0 Incident Gage

2 f(L/2) 16.25 32.0 Incident Gage

3 f(L/2) 13.75 32.0 Incident Gage

4 f(L/2) 11.25 32.0 Incident Gage

5 8.4 15.0 32.0 270◦ transect

6 9.4 15.0 32.0 270◦ transect

7 9.72 15.0 24.0 270◦ transect

8 10.04 15.0 16.0 270◦ transect

9 10.36 15.0 8.0 270◦ transect

10 13.0 21.1 32.0 180◦ transect

11 13.0 19.6 32.0 180◦ transect

12 13.0 18.6 32.0 180◦ transect

13 13.0 18.28 24.0 180◦ transect

14 13.0 17.96 16.0 180◦ transect

15 13.0 17.64 8.0 180◦ transect

16 13.0 12.36 8.0 0◦ transect

17 13.0 12.04 16.0 0◦ transect

18 13.0 11.72 24.0 0◦ transect

19 13.0 11.4 32.0 0◦ transect

20 13.0 10.4 32.0 0◦ transect

21 13.0 8.9 32.0 0◦ transect

22 15.64 15.0 8.0 90◦ transect

23 15.96 15.0 16.0 90◦ transect

24 16.28 15.0 24.0 90◦ transect

25 16.6 15.0 32.0 90◦ transect

26 17.6 15.0 32.0 90◦ transect

27 19.1 15.0 32.0 90◦ transect

FIG. 5. Top left panel: top view of the island; the blue diamonds indicate the probes listed in

the Table on the right. Bottom left panel: vertical view of the circular island on the cross-section

y = 15m.

Tsunami waves were modelled by using the solitary wave solution predicted by the

Korteweg-de Vries equation (see, for example, Dean and Dalrymple 23). The surface pro�le
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η(x, t) for a wave centred at x = X1 and time t = 0 is de�ned as:

η(x, 0) = H sech2[ γ (x−X1) ] γ =

√
3H

h0
. (17)

In the experiments three di�erent target initial solitary wave pro�les were used with

ε = H/h0 = 0.05, 0.1 and 0.2. The reference length (which was used in the experiments

to place the gauge 3) is given by the following formula:

L =
2h0
γ

arcsinh(
√

20) (18)

and indicates the distance between the two end points in the symmetric pro�le where the

height is 5 percent of the height at the crest.

Case 1 Case 1

Case 2 Case 2

Case 3 Case 3

FIG. 6. Solitary wave on a conical island (see Table II for details on the test cases). Left: comparison

between the measured free-surface elevation at gauge 3 (dots) and the analytical solution in equation

(17) (solid lines). Right: comparison between the measured free-surface elevation at gauge 3 (dots)

and the numerical solution after the calibration (solid lines).

In the numerical simulations the domain is discretized with a Cartesian grid with

∆x = ∆y = 0.1m and ∆z = 0.08m. Wall conditions are assigned along the lateral

boundaries with exception of the boundary at x = 0m where in�ow conditions are set by

using the analytical solution in (17). An initial comparison for the three cases ε = 0.05, 0.1
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and 0.2 (see left panel of Figure 6) shows that the experimental signals at gauge 3 (the

closest to the wave maker) di�er from the analytical solution in both the wave width and

the crest height. For this reason, a calibration of both the parameters ε and γ in equation

(17) has been carried out to �nd the best �tting between the experiments and the numerical

input datum. The calibrated parameters are reported in Table II. Note that, di�erently

from the analytical solution in equation (17), the parameter γ is treated as a free parameter

(i.e., it has been chosen independently of ε).

Test cases εi εf Hi (m) Hf (m) γi γf

1 0.05 0.045 0.016 0.0144 0.194 1.0

2 0.1 0.09375 0.032 0.03 0.274 1.45

3 0.2 0.1875 0.064 0.06 0.387 2.0

TABLE II. Target solitary wave parameters pre and post calibration: the subscript i indicates

the nominal value of the experiment while the subscript f denotes the value obtained after the

calibration.

The right panel of Figure 6 shows the comparison between the experimental signals at

gauge 3 and the numerical solutions after calibration. The leading wave is well described

both in terms of maximum height and width while the numerical outputs show a slight delay

in the subsequent depression wave caused by the re�ection of the solitary wave during the

run-up on the island. This phenomenon is likely due to a di�erence in the gauge location

in comparison to the physical experiments. Indeed, we recall that in Briggs et al. 22 the

position of the gauge 3 was set by using the reference length of the tsunami wave, but this

was not explicitly reported. Further, the calibration process make the assessment of the

location of the gauge 3 rather ambiguous. To support this hypothesis, we anticipate that

the above delay does not appear in the signals recorded in the remaining gauges. We also

observe that the experimental measurements are a�ected by a spurious noise following the

leading solitary-wave signal. In Briggs et al. 22 no mention is done about this phenomenon

which may be caused to the data acquisition system as well as to the wave-maker motion.

Due to its spurious nature, this cannot be reproduced in the numerical solution.

For the case with the steepest wave input, the total number of computational nodes

ranges between 505, 000 and 542, 000 and the simulations has been run by using two cores.
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Case 1 Case 2

FIG. 7. Comparison for the free-surface time series of the case 1 (left column) and 2 (right

column). See Table II for details on the test cases. Black solid lines: numerical solution. Blue

dots: experiments.

The total computational time for 20 s of physical evolution is about 0.65 days with 1129

iterations that corresponds to about 50 s per iteration. The computational costs for the

remaining cases are similar to those mentioned above.

The left and right columns of Figure 7 displays the comparisons at the gauges 6, 9, 16

and 22 for the case 1 and 2 respectively (see Table II). In all the cases the leading waves

are well described by the numerical solver while a small underestimation of the subsequent

depression waves is observed. The numerical solutions also appear smoother in comparison

to the experiments which show some oscillations after the leading and depression waves.

This phenomenon may be a consequence of the initial noise in the in�ow signals (see Figure

6) even though, at present, we have not enough details to draw de�nite conclusions. On

the lee side of the island the re�ection of the solitary waves at the boundary (wall) of the

domain is also evident (see the gauge 22 in the bottom panels of the same �gure). However,
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a)

b)

c)

d)

FIG. 8. Left: comparison for the free-surface time series of the case 3: black solid lines indicates

the numerical solutions and the dots the experiments. Right: some snapshots of the evolution as

predicted by the numerical scheme.

these re�ected waves do not a�ect the maximum run-up heights observed in the laboratory.

The case 3 is discussed apart from the previous experiments, since a stronger dynamics

occurs and, as reported in Briggs et al. 22 , an incipient wave-breaking event was observed

during the experiments. Despite the numerical scheme does not implement any model for

breaking waves, the agreement with the experimental measurements is still good (see the
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left column of �gure 8). In right column of the same �gure some snapshots of the solitary

wave evolution for the case 3 are displayed. After the initial run-up on the island (panel a

of the right column), the wave front undergoes a strong deformation as a consequence of the

compound action of refraction and di�raction. This phenomenon leads to the generation of

a pair of edge waves (panel b) that travel alongshore the island and, �nally, superimpose at

the lee side generating a secondary run-up (panel c). Then, a run-down and a further pair

of smaller edge waves develops, travelling back toward the front side of the island (panel d).

Incidentally, we highlight that the same dynamics (even if weaker) occurs for the cases 1

and 2.

As a �nal validation, the maximum horizontal run-up around the island is compared to

the measured one (see the left column of Figure 9). The waterline and the island toe are

shown for reference. In the numerical scheme the shoreline has been detected by using a

linear reconstruction algorithm between dry and wet cells (see appendix B for detail) . For

the test case 1 (top left panel) the run-up is fairly uniform around the perimeter of the

island and is lightly higher on the front side. The numerical data slightly overestimates

the experimental run-up on the back side because of di�culties in modelling the interface

between the dry cells and wet cells, especially for small wave heights. For the case test 2

(middle left panel), the run-up on the back side is slightly larger than that on the front

side. Refraction and di�raction cause the wave to bend around the island as edge waves.

Because the island is symmetric, the wave wraps evenly around the island and produces

relatively large run-up on the back side. In any case, a good agreement between numerical

and measured data is observed, apart for a small overestimation of the maximum run-up at

±π/8. This may be due to the di�culty of the shoreline-tracking algorithm in accurately

describing the dynamics on the back side, since this is strong and very localized in both

time and space. Finally, for the case test 3 (bottom left panel), the run-up on the front

side is larger than on the back side of the island. Here, a distinctive pattern of run-up due

to edge waves propagating around the island is evident. Some minor di�erences are shown

between the numerical result and the laboratory data. These maybe due to the fact that

the numerical solver does not include a model for wave breaking.

To complete the analysis, the right column of Figure 9 displays the maximum run-down

around the island as predicted by the DepSeA model (note that in this case no experimental

measurements are available). In the case 1 (top right panel of Figure 9) the maximum

18



FIG. 9. Left column: comparison between the numerical (solid lines) and experimental (dots)

maximum run-up for the test cases 1, 2 and 3 (from top to bottom). Right column: the maximum

run-down predicted by the numerical scheme. The dash-dotted lines represent the mean sea level.
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displacement is rather small while a slightly more pronounced run-down is observed for the

case 2. In this latter con�guration, the displacements on the front and lee side of the island

are comparable. This symmetry is lost in the case 3 (bottom right panel of Figure 9) where

a larger maximum run-down occurs in the front side of the obstacle. This is consistent with

the stronger dynamics of the run-up on the same side of the island (bottom left panel).

In all the cases, the wave focusing on the lee side seems to have a negligible e�ect on the

maximum run-down.

C. Run-up of a solitary wave on a Bay-Promontory pattern

This �nal test is carried out to show a possible application to a full-scale coastline. In

particular, we study the evolution of a solitary wave propagating towards a possible coast,

as realistic as possible, composed by a central bay and two side headlands. The problem is

scaled with h0, that is the reference depth in still-water conditions at the seaward limit of

the domain, and the following scales are used:

x = h0 x
∗, z = h0 z

∗, u =
√
g h0 u

∗, w =
√
g h0 w

∗,

t =
√
h0/g t

∗, h = h0 h
∗, η = h0 η

∗, d = h0 d
∗,

(19)

where x = (x, y), u = (u, v) and the superscript `∗' identi�es the dimensionless variables. In

fact, this corresponds to run a simulation with the gravity acceleration set equal to 1. The

chosen geometry combines a constant-depth bottom (x∗ < 0) with a beach (x∗ ≥ 0) whose

slope is modulated in the along-shore direction (e.g. y-direction). Speci�cally, the beach is

de�ned by:

h∗(x∗, y∗) = 1 − β
[

1 − A cos
(
ω∗y y

∗ ) ] x∗ (20)

where β is the non-modulated slope (set equal to 0.07), A is the amplitude of the sinusoidal

variation in y∗-direction (equal to 0.5) and ω∗y is the phase of this variation. The latter

is function of the cross-cutting dimension of the computational domain, according to the

relation ω∗y = 2π/L∗y. Clearly, the bottom varies linearly in the (x∗, z∗) plane while the

(y∗, z∗) plane presents a sinusoidal variation which is function of the domain dimension.

In practise, it is su�cient to decrease (increase) L∗y to obtain a narrower (wider) bay,

maintaining the same slopes along the symmetry axis (namely y∗ = 0) and at the extrema

of the domain (namely y∗ = ±L∗y/2).
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The computational domain is characterized by L∗x = 70 with x∗ ∈ [−10, 60] and three

di�erent bays are considered, namely L∗y = 30, 60, 90 corresponding to y∗ ∈ [−15, 15],

y∗ ∈ [−30, 30] and y∗ ∈ [−45, 45]. The grid size is the same in all the above cases with

∆x∗ = ∆y∗ = 0.125 and ∆z∗ = 0.2. The in�ow wave is a solitary wave with ε = H/h0 = 0.2

[see the equation (17) for details] and is generated at the seaward limit of the domain, namely

x∗ = −10. Wall conditions are imposed along the remaining boundaries. All simulations

have been run up to t∗ = 150 to simulate the whole wave evolution (run-up and run-down

motions). For L∗y = 90 the total number of computational points ranges between 360,000

and 424,000 while for L∗y = 30 it goes from about 121,000 to 143,000. In all the cases the

three dimensional problem has been solved by using 2 cores. The total computational time

in the former case is about 1.5 days with 3561 iterations that corresponds to about 38 s per

iteration, while for L∗y = 30 it is about 0.44 days with 3568 iterations that corresponds to

about 10.6 s per iteration.

η∗

η∗

y∗

y∗

x∗ x∗

FIG. 10. Snapshots of the solitary wave run-up (contour plot of the surface elevation). Left panel:

bay with L∗y = 90 at t∗ = 33.05. Right panel: bay with L∗y = 30 at t∗ = 33.21.

Incidentally, we highlight that in all the simulations the numerical model predicts the

occurrence of steep wave fronts, probably resembling wave breaking events. Though no

breaking model has been implemented, the conservative structure of the numerical model

allows for a direct simulation of these dynamics. In this case, the dissipation induced by

the breaking event is only due to the entropy condition prescribed by the HLL approximate

solver (see, for example, Toro 1) and is, therefore, underestimated in comparison to real

breaking events.
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In the following part we �rst describe the evolution of the solitary wave over the widest

and narrowest bay, L∗y = 90 and L∗y = 30 respectively. In fact, the dynamics in the L∗y = 60

lies in the middle between the above bathymetries. Figure 10 displays the early stages of

the tsunami wave climbing over the bays. Both the cases show a similar behaviour, even if

for the narrowest bay (right panel) a slightly more intense run-up is observed along the two

lateral headlands.

In the subsequent instants, the di�erent widths of the bays play a relevant role and lead

to di�erent dynamics. In particular, the top panels of �gure 11 show that in the widest bay

(panel a) two lenses of high elevation (red coloured) develops along the headlands and move

towards the centre while in the narrowest bay (panel b) these split in two components, one

re�ected seaward and one climbing along the headlands.

This phenomenon strongly in�uences the subsequent dynamics. In fact, the lateral waves

interact di�erently in the two bays. For L∗y = 90 the wave fronts generated along the

headlands move one against the other and focus at the bay center (panels c and e of �gure

11). Conversely, for L∗y = 30 the waves climbing along the headlands propagate obliquely

to the direction of the incoming wave and, then, intersect and generate a cusped front that

propagates onshore (panels d and f of �gure 11).

We highlight that the dynamics over the widest bay is slightly slower than the case

L∗y = 30 and, at this stage, its maximum wave elevation is larger. This behaviour changes

in the subsequent evolution. Indeed, the left column of Figure 12 (panels a and c) clearly

shows that for L∗y = 90 the wave front advances very weakly in the onshore direction while

it mainly broadens in the y-direction. On the contrary, the constructive interaction of the

lateral fronts in the narrowest bay (right column) further feeds the run-up motion, generating

an �arrow� pro�le that continues moving in the onshore direction (panels b and d of Figure

12). Because of this behaviour, the maximum run-up for the bay with L∗y = 30 is signi�cantly

larger than that observed for L∗y = 90 (see Table III). The snapshots corresponding to the

maximum run-ups are displayed in the middle panels of �gure 12 (namely, panels c and d).

Finally, the run-down stages are plotted in the bottom panels of �gure 12. In this case,

the narrowest bay (namely, L∗y = 30) shows the slowest and weakest dynamics (panel f).

On the contrary, because of the larger amount of water entrapped in the bay, the case with

L∗y = 90 displays a stronger run-down motion and the generation of two strong edge waves

that propagate alongshore (panel e).

22



η∗

η∗

y∗

y∗

x∗
x∗

a) b)

y∗

y∗

x∗
x∗

c) d)

y∗

y∗

x∗
x∗

e) f)

FIG. 11. Snapshots of the solitary wave run-up (contour plot of the surface elevation). Left

column: bay with L∗y = 90 at t∗ = 41.12, 60.63, 68.07. Right column: bay with L∗y = 30 at

t∗ = 41.05, 46.66, 51.20.
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FIG. 12. Snapshots of the solitary wave run-up (contour plot of the surface elevation). Left

column: bay with L∗y = 90 at t∗ = 72.70, 80.79, 98.83. Right column: bay with L∗y = 30 at

t∗ = 58.31, 80.13, 112.36.
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Test cases L∗y = 90 L∗y = 60 L∗y = 30

η∗max 0.717 0.835 1.005

x∗max 49.06 52.43 57.31

TABLE III. Maximum wave elevation and maximum run-up for the three bays.

Finally, Table III shows the maximum run-up for the three bays (namely L∗y = 30, 60, 90)

along with the maximum wave elevation. In all the cases, this is attained at y∗ = 0, i.e.

along the symmetry axis of the bay. As already anticipated, the maximum run-up tends

to increase as the bay width decreases, con�rming the constructing interaction of the wave

fronts re�ected by the headlands. A bit more complex is the evolution of the depth-averaged

velocity �eld, since violent phenomena of run-up/run-down occur in di�erent zones of the

coastline. To better highlight where the dynamics is more intense, we consider the kinetic

energy associated with the depth-averaged velocity, namely Ekin = (U2 + V 2)/2. Figure 13

displays some snapshots of the evolution of Ekin for the bay with L∗ = 90 (for the sake of

simplicity, only the upper plane, namely y∗ ≥ 0, is depicted). The panel a shows that two

run-up events occur almost simultaneously close to the promontory (at about y∗ = 45) and

to the bay center (at about y∗ = 10). In the former case the run-up dynamics is immediately

followed by a strong run-down motion (panel b) that subsequently evolves alongshore towards

the bay center (see the panels b and c). On the contrary, the second run-up event continues

its evolution and slowly moves towards the bay center (panels b and c). In this latter case the

dynamics is weaker than that characterizing the run-down motion close to the promontory

(panel b) and this suggests that an intense beach erosion may occur along the headlands.

Rather di�erent is the dynamics in the narrowest bay, that is for L∗ = 30. In this case,

the run-up/run-down motion close to the promontory still occurs but the kinetic energy

attains smaller values (see the �gure 14). Moreover, di�erently from the case with L∗ = 90,

this phenomenon does not distinctly generate a wave system moving toward the bay center

since, as described in the panel b of �gure 11, waves are re�ected away from the beach.

Apart from this, an intense dynamics is observed in the central part of the bay where the

kinetic energy attains values which are of the order of unity. This explains the occurrence

of a larger maximum run-up in comparison with the widest bay and con�rms that in the

narrowest bay a stronger dynamics occurs in the central part.
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a) b) c)

Ekin Ekin Ekin

FIG. 13. Contour plot of the kinetic energy for the bay with L∗y = 90 at di�erent time instants,

namely t∗ = 45.49 (panel a), t∗ = 49.08 (panel b) and t∗ = 50.36 (panel c).

y∗ y∗

x∗ x∗

a) b)

Ekin Ekin

FIG. 14. Contour plot of the kinetic energy for the bay with L∗y = 30 at di�erent time instants,

namely t∗ = 41.05 (panel a) and t∗ = 44.00 (panel b).

IV. CONCLUSIONS

In the present work we extend the DepSeA scheme described in Antuono et al. 14 to deal

with three-dimensional problems. In the �rst part of the work we test the proposed scheme

against reference benchmarks available in the literature. In particular, we consider the

transformation of a regular wave train propagating over a submerged elliptical shoal placed

over an inclined planar beach. As a second test, the run-up of a solitary wave on a conical

island is simulated. In both the cases the comparisons with the experimental measurements

are good, proving the accuracy and the robustness of the proposed numerical scheme and

suggest that this is a reliable tool for the modelling of the wave motion in the nearshore

region.

As a �nal example, we describe the run-up of a solitary wave over a bay-promontory

pattern and study the in�uence of the bay width on the wave dynamics and on the maximum

run-up. These simulations highlight rather di�erent motions for the widest and narrowest
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bays. In the former case, the beach inundation is smaller and the most intense dynamics

is observed close to the promontory with the generations of a strong run-down event.

Conversely, in the narrowest bay the maximum run-up is larger and the motion is more

intense in the central part of the bathymetry.
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Appendix A: Shallow water conditions

In the water regions where the depth is very shallow and the vertical discretization is

not �ne enough, the three-dimensional problem is not solved but an approximate analytical

solution for Υ is assigned. The �rst step to derive such a solution is to �nd an estimate for

the vertical velocity along the bottom. The simplest approach is to assume that bottom is

a mild-slope beach. Under this hypothesis, we can write:

w|z=−h = −Υz '
∂Υ

∂n

∣∣∣
z=−h

= −
[
ht +

M

d
· ∇h

]/√
1 + ‖∇h‖2 .

In shallow water condition, we can as well assume that the variation along the vertical

direction are negligible in comparison to the horizontal motion. As a consequence, we write:

Υ '
∫ η

z

w dz = (η − z)w|z=−h , (A1)

which is the desired relation. The above approximation is used where the vertical

discretization is less than two points over the depth. In particular, it is adopted to estimate

the deviation (M − Q) and the remaining nonlinear di�usive terms. In the latter case,

the velocity deviations δu are assumed to be negligible and u ' U is imposed. Finally,

the above approximation is used as Dirichlet condition for the three-dimensional Poisson

equation along the boundary with the shallow water region.
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Appendix B: Wet-dry interface

Since the DepSeA model is expressed by means of conservative variables (namely, Q and

d), the depth-averaged velocity �eld U is computed though the ratio Q/d. Numerically, it

is infeasible to de�ne the wet-dry interface as the border of the �uid domain where d = 0,

because the above ratio would be meaningless. Further, even when the depth is positive but

very shallow, such a ratio may be numerically ill-conditioned and may lead to the occurrence

of large spurious oscillations in the U �eld (see, for example, Toro 1). For these reasons, it

is convenient to identify the wet-dry interface through the use of a proper threshold depth:

if the water depth predicted by the model is smaller than such a threshold value, the cell

is set to dry conditions (i.e. η = −h, U = M = 0 and Υ = 0). The threshold depth has

to be large enough to avoid the occurrence of spurious oscillations in the U �eld and, at

the same time, has to be small enough to have a negligible in�uence on the dynamics of

the wet-dry interface. Generally, such a threshold depth has to depend on both the local

spatial resolution and bottom bathymetry. In particular, denoting by ∆x(i) and ∆y(i) the

side lengths of the i-th cell and by h
(i)
x and h

(i)
y the local x- and y-derivatives of the bottom,

we choose:

d(i)ε = max
(
d(i)s , d

(i)
h

)
(B1)

where

d(i)s = 7.5 · 10−4
√

(∆x(i))
2

+ (∆y(i))
2

d
(i)
h = 0.05

√(
h
(i)
x ∆x(i)

)2
+
(
h
(i)
y ∆y(i)

)2
.

Note that dh takes into account the local variation of the bottom and, therefore, is zero

for a planar bathymetry. The numerical values in the de�nition of ds and dh (respectively,

7.5 · 10−4 and 0.05) have been chosen by tuning through several simulations of run-up/run-

down motions over planar beaches with di�erent slopes. These values guarantee that dε is

small enough to have a negligible in�uence on the maximum run-up/run-down and, at the

same time, large enough to ensure smooth solutions for the depth-averaged velocity �eld U

at the shoreline.
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1. Well-balancedness

As a consequence the use of dε, a jump occurs in the surface elevation across the wet/dry

interface. To guarantee the well-balanced property of the scheme, it is therefore necessary

to appropriately reconstruct the values of U and η along the dry side of the interface. While

it is su�cient to impose that the �uid velocity is zero, a more complex algorithm is needed

for the reconstruction of η. The basic idea is to de�ne a value of the water depth on the

dry side of the cell that satis�es the hydrostatic solution when the variation of the surface

elevation across the interface is smaller than dε.

More in depth, let us assume that the wet/dry interface is placed between the i-th (wet)

and (i+1)-th cell (dry) and it is indexed through (i+1/2). On the wet side (here indicated by

the superscript `L'), the reconstructed depth, namely dLi+1/2, is obtained through the method

described in Yamamoto and Daiguji 24 . Conversely, on the dry side (here denoted by `R')

we impose:

dR1+1/2 = min
(
dLi+1/2 , δ

R
i+1/2

)
where δR1+1/2 is a proper depth value that allows the ful�lment of the hydrostatic condition

when

| ηi+1 − ηi | ≤ d(i+1)
ε , (B2)

that is, when the jump of the surface elevation across the interface is smaller than dε.

Imposing the equality in equation (B2) under still water conditions, we obtain the following

de�nition for δRi+1/2:

δRi+1/2 = max
(
ηi+1 + hi+1/2 + d(i+1)

ε , 0
)
.

where hi+1/2 is the bottom level at the cell side. We recall that, in the proposed numerical

scheme, we adopt the data reconstruction algorithm described in Zhou et al. 25 where h

is de�ned on a staggered grid with respect to the cell centres. As explained in Antuono

et al. 14 , the reconstruction is applied on primitive variables (namely, U and η) instead of

conservative variables (i.e. Q and d), since such a procedure proves to be more robust and

reliable in very shallow depths. Then, the reconstructed values for Q and d are computed

by using the reconstructed values for U and η and the usual formulas, namely d = η + h

and Q = Ud.
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