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Summary 
 

The hippocampal formation encodes maps of the physical environment [1, 2, 3, 4, 5]. A key question in 

neuroscience is whether its spatial coding principles also provide a universal metric for the organization of 

non-spatial information. Initial evidence comes from studies revealing directional modulation of fMRI 

responses in humans [6, 7] during navigation through abstract spaces and the involvement of place and 

grid cells in encoding of non-spatial feature dimensions [8]. However, a critical feature of a map-like 

representation is information about distances between locations, which has yet only been demonstrated 

for physical space [4, 9]. Here we probe whether the hippocampus similarly encodes distances between 

points in an abstract space spanned by continuous stimulus-feature dimensions that were relevant to the 

acquisition of a novel concept. We find that after learning, two-dimensional distances between individual 

positions in the abstract space were represented in the hippocampal multi-voxel pattern as well as in the 

univariate hippocampal signal as indexed by fMRI adaptation. These results support the notion that the 

hippocampus computes domain-general, multidimensional cognitive maps along continuous dimensions. 
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Results 
 

In a feedback-based categorization task, participants acquired the concept of two abstract stimulus 

categories, which was defined within a two-dimensional space along the stimulus-dimensions of opacity 

and circle size with the diagonal as category boundary (Figure 1). Prior to the categorization task, six 

objects were associated with six specific abstract stimuli (randomized across participants), to place the 

objects in clearly defined distances to each other. Finally, the abstract space was explored in a free-recall 

task (‘Navigation’, Figure 1), which required collecting certain objects by editing the features of a random 

abstract stimulus until it matched the stimulus associated with the requested object. Learning took place 

over the course of two days. To ensure hippocampal dependency of the acquired information following a 

night of sleep on day 2, we introduced slight changes to the space by associating two of the objects with 

new abstract stimuli. All six associations were treated equally during learning on Day 2. Critically, fMRI 

data were acquired during object viewing blocks, immediately before and after the learning phase in order 

to test whether hippocampal responses to the objects correspond to their relative two-dimensional 

distances in the feature space. 

Object detection task (in fMRI) 
 

The six objects that were associated with abstract stimuli during learning, plus an additional catch object 

were presented multiple times in a randomized sequence that was identical between the pre- and the 

post-learning block. Participants indicated via button press, whether or not a presented object was the 

catch object. The task was performed with high accuracy (pre-learning (mean±SD): 97.19 ± 0.98%, post- 

learning: 98.01±1.74%), indicating that participants paid attention to the objects. 

Learning tasks 
 

The six object-abstract stimulus associations were learned with high accuracy rates (final block on day 1 

(96±4%); final block on day 2 (83±2%)) (Figure S1 A). In the categorization task, each participant’s 

performance exceeded chance-level (=50%) in all six analysis-bins a 60 trials and peaked with an 

average accuracy rate (across participants) of 80% in the final bin (Figure S1 B). When being asked for 

their categorization strategy at the end of the experiment, no participant indicated the use of a spatial rule 

or an imagination strategy of the spatial layout. Navigation/free recall-task data revealed that during the 

second half of the task, participants’ paths (=feature editing process) from start-stimuli to stimuli 

associated with the target-objects were significantly more consistent with the shortest possible paths (day 

1: t(47)=8.1, p<.001; Day 2: t(23)= 2.0, p=.042) (Figure S1 C). This shift to taking shorter paths through 

the feature space might reflect improved recall of associations as well as the build-up of a map-like 

mental representation. 

Neuroimaging 
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We hypothesized that the hippocampus maps distances between objects in an abstract multidimensional 

space defined along the stimulus-feature dimensions, akin to physical space, as closer objects being 

represented more similar, akin to [4] and [9] in the spatial domain. First, we probed the representation of 

two-dimensional distances in the hippocampus in an fMRI adaptation analysis. To this end, we regressed 

each object’s distance to the preceding object against each voxel’s time series in the post-learning block 

and submitted the resulting beta weights, averaged across all voxels within the hippocampal ROI, to 

group level analysis. We found that hippocampal responses decreased with decreasing distance between 

objects (HC: t(33)=1.943, p=.027) (Figure 2). Hippocampal adaptation did not differ significantly across 

sub-regions (one-factorial permutation ANOVA F=0.977, p=0.442). In post-hoc analyses, we did not 

observe effects in other brain regions that survived correction for multiple comparisons on a whole-brain 

level (cluster-extend-based thresholding, z=2.3, p=.05). The distance-effect did not occur in regions in 

which we would not expect coding for distances between the objects in multidimensional feature space 

(postcentral gyrus: p=0.301, t=0.525), specifically also not in sites along the ventral visual stream (LOC: 

p=0.106, t=1.300) which have been shown to code for the two feature dimensions (luminance, size) alone 

[10] (Figure S2 A, B). 
 

Additionally, we investigated representational changes as a consequence of the learning process in the 

hippocampal multivoxel-pattern. We tested if changes in hippocampal pattern similarity across objects 

from the pre-learning to the post-learning block corresponded to the distances between objects as 

introduced in the learning phase. The overall hippocampal pattern did not significantly reflect the two- 

dimensional distances (bilateral HC, t(33)=-0.4331, p=0.3295). However, in accordance with previous 

studies demonstrating coding differences along the long-axes as well as between hemispheres [11, 12], 

we observed a significant main effect of ROIs (F=3.647, p=0.008) in a one-factorial permutation ANOVA 

and post-hoc tests showed that the pattern in the anterior right HC encoded the two-dimensional 

distances (anterior right HC t(33)=-2.869, p=.012; anterior left HC: t(33)=-0.173, p=.500, posterior left HC: 

t=1.593, p=.797, posterior right HC: t(33)=-.728, p=.460). As expected, pattern similarity increased for 

small and decreased for large distances (Figure 3). We did not observe this effect in regions in which we 

would not expect coding for abstract distances (postcentral gyrus: p=0.468, t=-0.091; LOC: p=0.766, 

t=0.677) (Figure S2 A, B). These analyses show that the hippocampus represents the two-dimensional 

distances between objects located at different positions in abstract feature space. 
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Discussion 
 

For the first time, we demonstrate that during concept learning the human hippocampus encodes 

distances in a multidimensional abstract space akin to distances in navigational space. After participants 

had encountered an abstract space that was defined along two task-relevant continuous perceptual 

stimulus-feature dimensions and had learned to associate objects with specific stimuli in this space, their 

hippocampal responses to the objects reflected the relative two-dimensional distances between the 

objects. First, hippocampal adaptation scaled with the distance between successively presented objects, 

and second, multivoxel pattern similarity across objects corresponded to their pairwise distances. 

So far the idea that spatial coding principles apply also to non-spatial domains was supported by studies 

indicating directional modulation of fMRI responses [6, 7] and the involvement of spatially tuned cells in 

the rat hippocampus and entorhinal cortex [8] in representing non-spatial feature dimensions. [6] 

demonstrated that the BOLD signal in vmPFC and entorhinal cortex (EC) encoded the path angle during 

navigation in a two-dimensional space defined by the length of two stimulus features, while [7] showed 

that during a virtual role-playing game, the hippocampal response tracked the angle between a 

participant’s viewpoint and a character’s position in space defined by two social dimensions. Comparing 

the current paradigm to [6] it’s important to note that the grid-cell like signal in EC and vmPFC was related 

the use of structural information only, while in the current paradigm mapping the objects according to their 

conceptual properties, requires a conjunction of structural information (two-dimensional space defined by 

the ratio of opacity and circle size) and object specific (sensory, semantic) information. We do not find 

evidence for a two-dimensional distance representation in the EC (mask from Jülich Histological atlas, 

thresholded at 50% probability; adaptation: p=0.064, t=1.538, RSA: p=0.769, t=0.740). This different 

localization of map-like representations of multidimensional non-spatial information in EC and 

hippocampus between the two studies fits well with the idea that the EC extracts the generalized structure 

of an environment while the hippocampus shows conjunctive codes to set specific information in temporal 

or spatial contexts. Furthermore, these studies focused on ‘navigation- and direction-related’ activity and 

it remained unclear if abstract information would also be represented in a map-like format independent of 

navigational demands (e.g. as in the present object viewing blocks). On that note, [13] showed that the 

entorhinal cortex maps associative strength of implicitly encoded (=not task-relevant), discrete relations, 

that were defined by the temporal distances between sequentially presented objects. While this finding 

provides evidence for the notion that the hippocampal formation encodes information along a non-spatial 

dimension independent of navigational demands, relations were defined via associative regularities of 

discrete variables rather than abstracted information that emerges from a combination of two task- 

relevant continuous dimensions as shown in the present study. Thus, our findings significantly go beyond 

previous research on navigation of abstract spaces [6, 7, 8] and distance coding in physical space [9, 4, 

5], in support of the cognitive map theory [3] and ultimately in support of universal hippocampal coding 

principles underlying the formation of multidimensional spaces that are independent of cognitive domain. 
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Multi-feature similarity coding has also been investigated in the domain of visual perception [14]. Here, 

LOC was shown to encode conjoint representations of behaviorally integral, but not of separable feature 

dimensions during stimulus presentation. Congruent with [14] we do not find a combined representation 

of our two separable dimensions in LOC either. A critical difference of our paradigm though is the 

cognitive nature of the task, involving prior association of ‘perceptually unrelated’ objects to two task- 

relevant stimulus feature dimensions and the visual absence of these features during our critical fMRI 

measurement, imposing the question of how higher-level cognitive areas such as the hippocampus would 

treat two task-relevant but perceptually separable dimensions. In this regard, our results offer insight in 

potential differences in multi-feature similarity coding across cognitive processes and brain regions. 

Importantly, the changes in neural object representations can only be attributed to the introduced 

distances between the objects, as the object-to-abstract stimulus assignment was randomized across 

participants. As during the object viewing blocks participants were not instructed to retrieve any 

information acquired in the learning phase, a fairly automatic process is conceivable. 

The distance effect reflected in hippocampal fMRI adaptation could, in principle, indicate the imagination 

of the path through the two-dimensional feature space (=editing features in the free-recall task) between 

stimuli associated with the preceding and currently presented object, where longer paths would require 

more intense processing and result in less adaptation. We consider this unlikely, as participants were 

neither instructed to perform any cognitive operation involving distance information, nor were the paths 

between objects ever experienced directly. Instead, ‘navigation’ to objects only occurred from different 

start stimuli and distances would thus need to be inferred indirectly, e.g. via construction of a mental map. 

In this context, adaptation among neurons with partially overlapping place fields might account for the 

two-dimensional distance effect on hippocampal adaptation. 

As in the present design perceptual and conceptual similarity map onto the same two-dimensional space, 

it is difficult to explicitly distinguish whether the hippocampus maps the two-dimensional distances 

between objects for the purpose of concept learning or merely in accordance with the perceptual similarity 

of their associated abstract stimuli. We consider the latter explanation less probable given that the 

hippocampal formation was shown to map continuous sensory dimensions only if they are behaviorally 

relevant [8] and behavioral relevance is in the present study to a significant degree ascribed via concept 

learning (the combination of values on both dimensions assigns the category to a given symbol). Still, 

further research is necessary to explicitly distinguish these options. One might further question whether 

the representation of distances between the objects could also be explained by perceptual similarity of 

the input to the hippocampus during a potential pattern completion process in which the associated 

abstract stimuli would be recalled. We regard this unlikely for two reasons: First, participants were not 

instructed to recall the associated stimulus during presentation of the objects in the scanner. As they were 

further engaged in an orthogonal object detection task, increasing their cognitive load, it is questionable 
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that participants spend additional resources on recalling currently irrelevant information. Second, if the 

hippocampal distance effects would reflect a two-dimensional perceptual similarity code forwarded to the 

hippocampus by upstream regions during a pattern completion process, we would expect the distance 

effects in the respective sensory representation cortex (LOC for processing of luminance and size [10]), 

which we did not observe in the present study. Together this suggests, that in the present study the 

hippocampus encodes a combined multidimensional representation of task-relevant non-spatial 

dimensions entailing relational distances across multiple entities in an abstract space for the purpose of 

concept learning. 

We probed distance representations using both fMRI adaptation as well as representational similarity 

analysis. The representation of two-dimensional distances in the hippocampus after learning was shown 

in both analyses, which parallels previous demonstrations of spatial distance coding in the human 

hippocampus (adaptation: [4], similarity-based: [9]). The distance in abstract space between successively 

presented objects was reflected in the adaptation over all hippocampal voxels while the distance effect on 

multivoxel pattern similarity was located anteriorly. This regional difference between the analyses might 

be due to the anterior-posterior gradient in memory integration [15, 11] and the different degrees to which 

information was integrated in each analysis: While the representational similarity analysis reflects a 

multistep integration over all repetitions of each object, fMRI adaptation is a 1-step back analysis and thus 

is likely more sensitive to effects on a fine-grained scale. Further, it has been demonstrated that 

univariate and multi-voxel pattern analyses are susceptible to different sources of variance (subject-level 

variance in mean activation and voxel-level variability in the effect of a condition within subjects, 

respectively) and diverging results between the two do thus not per se allow conclusions about the nature 

of the neural code [16]. It might also be worth noting that in the present RSA as compared to the 

adaptation analysis we additionally remove noise on the single subject level by subtracting the pre- 

learning from the post-learning correlation matrix. While for both analyses the reported group-level effects 

can, due to object randomization, be ascribed to our critical manipulation, the higher susceptibility to 

noise on the individual subject level in the adaptation analysis might be one reason for lower effects as 

compared to the RSA results. While the relationship between the present distance code detected in the 

hippocampal univariate signal and multi-voxel pattern cannot be exactly determined, we can, importantly, 

confirm that both markers used to identify distance coding in spatial navigation (adaptation: [4], similarity- 

based: [9]) can be successfully applied to study abstract spaces. 

The distance code for abstract information demonstrated here provides compelling evidence for the idea 

that the hippocampus encodes new information in form of a cognitive map [3]. Such a map-like cognitive 

representation allows inferences about relationships that are not directly experienced (i.e. participants 

never navigated directly between the six objects and the distances, reflected in hippocampal response 

pattern, might have been inferred through the creation of a two-dimensional representation defined along 

the two stimulus-feature dimensions) and therefore enables cognitive operations such as reasoning, 
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generalization and abstraction [17, 18, 19, 20] which are necessary for the organization and use of 

knowledge [21]. 

An open question refers to the generalizability of the map-like representation to more complex real world 

concepts which are often defined by multiple, not necessarily orthogonal dimensions. It remains to be 

tested whether hippocampal activity would reflect the distances between locations defined in a 

multidimensional space and if the scale of distance representations would be shaped by correlated 

dimensions. 

Furthermore, the question emerges of how the category boundary in the present space would affect grid- 

coding during navigation as demonstrated for a homogeneous and continuous feature space [6]. In 

physical space, environmental boundaries were shown to distort [22, 23, 24] or segment grid patterns [25] 

in entorhinal cortex, while it was also shown that with navigational experience in two neighboring 

compartments, grids rescale to provide a metric for a unified large-scale environment [26, 27]. The latter 

effect could occur in the current concept learning paradigm, if coarse categorical information is acquired 

before representing the exact distances across all objects. 

By demonstrating that the hippocampus encodes distances between locations in a multidimensional 

feature space, the present study critically supports the idea that hippocampal coding principles are 

independent of the cognitive domain and can provide a suitable format to represent conceptual 

knowledge. 
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Figure 1. Two-dimensional concept learning tasks and scanning task. 
(A) Experimental timeline. Learning (outside MRI; task-icons left to right: Association, categorization, 

navigation) took place over two days and was framed by object viewing blocks inside the scanner to 

measure the emergence of neural concept representations. B) Left: In the learning phase, participants 

associated six objects with six abstract stimuli (Association). Middle: Subsequently, they learned to 

categorize abstract stimuli into two categories (A and B) based on a relational rule (=concept) that set the 

diagonal through the two-dimensional feature space as category boundary (Categorization). Right: 

Participants ‘navigated’ the feature space by collecting requested objects through merging a ‘start’ 

stimulus into the stimulus associated with the object (Free recall/ Navigation). (C) In identical object 

viewing blocks inside the scanner, six different objects were presented in a randomized sequence with 30 

repetitions per object. Objects were on screen for 1 s and were followed by a fixation cross for ITIs 

ranging from 3.5-6.5 s. Participants had to indicate via button press for each object whether it was the 

trampoline (catch-object) or any other object. Catch-trial rate was 10%. (See also Figure S1). 
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Figure 2. Two-dimensional hippocampal distance code for feature space revealed by BOLD 
adaptation. 
Schematic of two-dimensional distances (red line) in feature space (left). Average of parameter estimates 

(pe) of the ‘distance to preceding object’ regressor in all hippocampal voxels. Hippocampal adaptation 

decreases with increasing two-dimensional distance between two successively presented objects (right). 

Asterisk (*) indicates significance at p=.05. Error bars indicate SEM. (See also Figure S2). 

 
 

 

 

 

Figure 3. Hippocampal multi-voxel pattern reflects two-dimensional distances in feature space. 
After learning relative to pre-learning baseline, two-dimensional distances between objects in feature 

space (left) significantly correlate with anterior right hippocampal pattern similarity across object pairs 

(middle; both matrices depict data of one example subject). Bars (right) depict the across-subject 

correlations between two-dimensional distances between objects and across-object pattern similarity in 

each ROI. Pattern similarity in the anterior right hippocampus increases significantly with decreasing 

distance. Asterisk (*) indicates significance at p=.05 corrected for multiple comparisons. Error bars 

indicate SEM. (See also Figure S2). 
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STAR★Methods 
 
 

Contact for Reagent or Resource Sharing 

Further information and requests for resources should be directed to Stephanie Theves 
(s.theves@donders.ru.nl). 

 
 

Experimental Model and Subject Details 

Thirty-six healthy students from the Radboud University campus participated in this study. All participants 

were right-handed and had normal or corrected-to-normal vision. Two participants were excluded from 

further analyses: One participant was excluded due to misunderstanding of the task instruction during the 

object-detection task and one due to technical problems during data acquisition. The final group consisted 

of 34 participants (24 females, age 18-30, mean= 23.6, SD= 2.9). All participants gave written informed 

consent and were financially compensated for participation. The study was approved by the local ethics 

committee (CMO Arnhem-Nijmegen, the Netherlands). 

 
 

Method Details 
 

Behavioral procedures 
 
 

The study took place in two sessions over the course of two consecutive days, with a maximum of 30 

hours between both sessions. A pre-learning object-viewing block (scanned) preceded the first learning 

phase (outside scanner). On the subsequent day a second learning phase was performed in between two 

additional object viewing blocks (scanned) identical to the first one (Figure 1A). During these blocks 

participants performed an object detection task (Figure 1C). The research question of this report is 

addressed by the analysis of the first (pre-learning) and the last (post-learning) object-viewing block and 

the report in the main text is thus restricted to those. For reasons of transparency, data of the middle 

scanning session are shown in Figure S2 C. 

 
Object detection task: Images of seven objects (generated with the Video game Sims; 

www.thesims3.com), of which six where used in the following learning phases and one served as a catch- 

trial object, were presented in a pseudo-randomized sequence with a stimulus duration of 1 s and inter- 

stimulus-intervals of 3.5, 5, and 6.5 s (33,3% each). Participants were instructed to indicate for each 

object whether it is a trampoline (=catch trial object) or not, using a button box (buttons counterbalanced 

across participants). The task included 180 trials with a catch trial rate of 10%. Each object was 

presented equally often. 

mailto:s.theves@donders.ru.nl
mailto:s.theves@donders.ru.nl
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In the first learning phase, participants acquired a novel concept, defined by a two-dimensional stimulus- 

feature space (see ‘Categorization’ and Figure 1B) as well as six associations between feature-space 

stimuli and the objects presented during the object-viewing blocks. Object to abstract stimulus 

assignment was randomized across participants, to ensure that similarities between neural object 

representations result from their relative distances in the abstract space but not from visual similarities. As 

on day 2, conceptual knowledge acquired on day 1 might have already entered the consolidation process, 

we introduced slight changes in the second learning phase to ensure hippocampal dependency of the 

acquired concept at the time of measurement (final fMRI session). Therefore, two of the six objects were 

associated with new abstract stimuli, thereby changing their positions in abstract space and the relative 

distances between the six objects. We acquired fMRI data in a middle scanning session as a backup at 

the beginning of day 1, in case participant’s behavioral performance would be significantly de deteriorated 

by the updating manipulation. As his was not the case, we could restrict our analysis of the role of the 

hippocampus in mapping abstract distances to the final block which immediately followed acquisition and 

not a possible consolidation phase (middle scanning session). The first learning phase comprised an 

associative learning, categorization and navigation task, while in the second learning phase the 

associative learning and navigation task were performed. 

 
Associative learning: Six object-stimulus associations had to be learned in seven alternating encoding- 

and test-blocks. In the encoding blocks, objects were presented next to their corresponding abstract 

stimulus and participants were instructed to memorize the presented pairs. The presentation order of the 

six pairs was pseudo-randomized with each object/stimulus being equally often presented on the left/right 

position of the screen. Pairs were presented for 2 s on the screen and each pair was shown 4x in the first 

encoding block and twice in the following encoding blocks (18 repetitions in total). Each encoding block 

was followed by a test block in which the object is presented in the center of the screen along with the six 

abstract stimuli displayed (in a randomized order) below the object. Every association was tested once 

per block in a randomized order. Participants selected the abstract stimulus associated with the 

presented object via key press (1-6) and received feedback (500 ms) on whether the choice was correct. 

Subsequent to the categorization task, associations were tested once more (14 tests per association with 

feedback; named ‘final’ in Figure S1 A). In the second learning phase, new associations (two objects 

were ‘remapped’ by assigning them to new stimuli) were acquired in seven alternating encoding- and test 

blocks with two repetitions per encoding block, once before and once after (summarized as ‘final’ in 

Figure S1 A) the navigation task, respectively. All six object-stimulus associations were included and 

treated the same way. 

 
Categorization: Participants were instructed to categorize abstract stimuli (a black circle on a blue square) 

which varied along two independent feature dimensions (opacity of the blue feature and size of the 

circular feature, see Figure 1), into one of two categories (A- and B-symbols). Categories were, unknown 
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to the participant, delineated via the diagonal through the two-dimensional feature space (dashed line in 

Figure 1 B middle). Consequently, the ratio between opacity and circle size of a given stimulus defined 

whether it is an A- or B-symbol. Both features could take values from 1-10 (opacity: 10%-100% scale with 

10% increase per step; circle size: decrease in size by 10% per each step with the biggest circle being 

0.67’’x 0,83’’), resulting in 100 possible stimuli to sample the space. The 90 off-diagonal stimuli were 

presented 4 times in a randomized sequence. In each trial one abstract stimulus was presented in the 

center of the screen and its category had to be selected via keys press. Participants were given a 

maximum of 6 s to respond and each response was followed by feedback (500 ms). Instructions did not 

include any indications of a spatial rule. All trials were performed in a continuous stream. To depict the 

learning process, performance is plotted as the average in bins of 60 trials in Figure S1. Prior to the 

feedback-based categorization task, participants were given a 3-minutes exploration phase, during which 

they could freely up- and downregulate opacity and size of a given stimulus (using 4 adjacent keys; 

identical to the navigation task) while the corresponding category membership (‘A’ or ‘B’) was updated 

with every edition and displayed above the abstract stimulus (compare trial sequence ‘navigation’ in 

Figure 1B right: Instead of an object requested during navigation, an ‘A’ or ‘B’ is displayed.). This was 

done to accelerate learning. Subsequent to all experimental sessions, participants were asked to describe 

their categorization strategy, to interrogate whether they had a spatial rule or spatial layout in mind. 

 
‘Navigation’/Free recall: In each trial one of the six objects was presented followed by a random stimulus 

(selected from the total pool of 100 possible samples). Participants were instructed to ‘collect’ the 

displayed object by editing the features of the stimulus (again using 4 adjacent keys) until they match the 

stimulus associated with the object. A trial ended when the matching stimulus was created. Participants 

performed 96 trials in the first and 48 trials in the second learning phase. Along with strengthening 

participants’ memory of the six associations through this free-recall, the task was supposed to familiarize 

participants with the conceptual context of the objects. Importantly, no distance relationships between the 

objects were introduced through this process, because participants did not navigate between stimuli 

associated with the objects, but instead started from random positions in the feature space. Furthermore, 

analyzing the length of the paths (=number of clicks made in the editing process) participants take 

provides a behavioral indication of a map-like representation. 

All tasks were conducted using Presentation 16.4 (NBS), except the Navigation/Free-recall task, which 

was programmed using Anaconda 2.7 (Python). 

 
MRI Methods 

 
 

All images were acquired using a 3T PrismaFit MR scanner equipped with a 32 channel head coil 

(Siemens, Erlangen, Germany). A 4D multiband sequence (84 slices (multi-slice mode, interleaved), voxel 

size 2 mm isotropic, TR = 1500 ms, TE = 28 ms, flip angle = 65 deg, acceleration factor PE= 2, FOV = 
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210 mm) was used for functional image acquisition. In addition, a structural T1 sequence (MPRAGE, 

1mm isotropic, TE = 3.03 ms, TR = 2,300 ms, flip angle = 8 deg, FOV = 256 × 256 × 192 mm) was 

acquired. Separate magnitude and phase images were used to create a gradient field map to correct for 

distortions (multiband sequence with voxel size of 3.5 × 3.5 × 2.0 mm, TR = 1,020 ms, TE=10 ms, flip 

angle = 45 deg). 

Preprocessing of functional images was performed with FSL 5.0.9. Motion correction, high pass filtering 

at 100 s and distortion correction was applied to the functional data sets. (Exclusion criteria for excessive 

motion: Mean absolute displacement >2 mm or peak in absolute displacement >3.9 mm; mean and STD 

of absolute displacement of analyzed sample (mean±std): 0.349±0.157mm (pre) and 0.347±0.197mm 

(post). Spatial smoothing was only performed before the univariate analysis of the data. The data were 

not spatially smoothed before being subjected to representational similarity analysis (RSA), see below. 

The FSL brain extraction toolbox was used to create a skull-stripped structural image. The structural 

scans were down-sampled to 2 mm (matching the functional image resolution) and segmented into gray 

matter (GM), white matter (WM) and cerebro-spinal fluid (CSF). Mean-intensity values at each time point 

were extracted for WM and used as nuisance regressors in the general linear model (GLM) analyses (see 

below). Structural images were registered to the MNI template. For each functional dataset (pre-, post- 

learning, post-relearning) the preprocessed mean image was registered to the individual structural scan 

and the MNI template. The co-registration parameters of the mean functional image were applied to all 

functional volumes. 

 
Quantification and Statistical Analysis 

Univariate analysis 
 
 

First level GLM: The two-dimensional distance between objects in the feature space was modelled in a 

GLM using a stimulus onset regressor indicating the occurrence of an object on the screen and a second 

regressor being parametrically weighted by the two-dimensional Euclidean distance between an object to 

its preceding object. Distances between positions in abstract space were calculated given the positions 

feature-based coordinates (values from 1-10 on the opacity and circle size dimension respectively. Step- 

sizes reflected 10% increases in opacity and circle size). Smaller distances were expected to result in 

lower signals, reflecting fMRI adaptation. Further, the GLM included regressors accounting for catch trials 

and button presses as well as six motion parameters as covariates. Resulting beta-maps were 

transformed to MNI space to extract the average beta value of each ROI for subsequent analysis. Group- 

level analysis: First-level beta estimates of the parametric distance regressor were averaged across all 

voxels within an ROI (Hippocampus: Figure 2; EC, LOC, PoCG: Figure S2) for each participant and the 

distribution of these values was tested for significance (at alpha=5%) using a one-sample permutation t- 

test [29] in which 1000 random permutations were computed to estimate the distribution of the null 
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hypothesis. To test for effects on the whole-brain level, individual contrasts of the parametric distance 

regressor were subjected to the second level analysis. Cluster extend-based thresholding (z=2.3, p=.05) 

was performed to correct for multiple comparisons. 

 
Representational similarity analysis 

 
 

First level GLM: Object-specific activity during stimulus-viewing blocks (pre- and post-learning) was 

modelled in a GLM with a stimulus onset regressor for each of the six objects. Furthermore, regressors 

accounting for the presence of a catch trial and the button press, as well as six motion parameters were 

included as covariates. Resulting beta-maps were transformed in MNI space before extracting multivoxel- 

patterns of each ROI for the next analysis step. First level analysis: We defined a priori regions of interest 

(ROIs, see below) and examined the correlation between across-voxel activation patterns of first-level 

beta estimates within these ROIs as a proxy of neural similarity. The six object regressors were 

considered as the regressors of interest, leading to a 6 x 6 matrix of correlations (Spearman's correlation 

coefficient). Each ROI’s pre-learning object-to-object similarity matrix was subtracted from the post- 

learning matrix and the resulting neural change matrix was correlated (Spearman's correlation coefficient) 

with a 6 x 6 prediction matrix including the Euclidean distances (calculated as described in ‘univariate 

analysis’) between each object pair. Distance representations were assumed to be reflected in a negative 

correlation between distance and neural similarity. 

Group-level analysis: The distribution of correlation coefficients was tested for significance (alpha=5%) 

across participants for each ROI (Hippocampus: Figure 3; LOC, PoCG: Figure S2) using one-sample 

permutation t-test [29] in which 1000 permutations were computed via random sign flip to estimate the 

distribution of the null hypothesis. P-values were corrected for multiple comparisons using the "tmax" 

method [31]. 

Due to clear directed predictions on the relations between neural pattern similarity/BOLD response and 

distance (e.g. increasing distance was supposed to be reflected in a decreased pattern similarity and 

fMRI adaptation) one-sided tests were applied. 

 
ROI definition 

 
 

Based on our a-priori hypotheses, analyses were restricted to the hippocampus 

and a hippocampal mask was constructed using the WFU pickatlas [30]. In order to be sensitive to 

potential coding differences between anterior and posterior divisions of the hippocampus [28, 11], we split 

the hippocampal mask in approximately equally long parts along the long axis (posterior portion of the 

hippocampus: from Y = −40 to −30; mid-portion of the hippocampus: from Y = −29 to −19; anterior portion 

of the hippocampus: from Y = −18 to −4) for the left and right side, following [11], and selected the 
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resulting anterior and posterior portions as ROIs. Control regions probability maps of LOC, and PoCG 

from Harvard-Oxford Structural cortical atlas were thresholded at 50% probability. 

 
Data and code availability 
The data that support the findings of this study and the analysis code are available from the 

corresponding author upon request. 



 

 
 
 
 
 

Key Resources Table 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB R2014A MathWorks https://www.mathworks.com 

FSL 5.0.9 FMRIB; [33] https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 

Presentation 16.4 Neurobehavioral Systems https://www.neurobs.com 

Anaconda 2.7 Python https://anaconda.org/anaconda/python 

https://www.mathworks.com/
https://www.mathworks.com/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.neurobs.com/
https://www.neurobs.com/
https://anaconda.org/anaconda/python
https://anaconda.org/anaconda/python
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Figure S1. Participants learn to ‘navigate’ the concept space, Related to Figure 1. 
(A) Percentage of correct responses in the associative learning task on Day 1 (left) and Day 2 (right), 

plotted for each block of the first session (‘1-7’) and over all trials of the second session (‘final’) of the 

respective day. (B) Percentage correct per analysis bin of 60 trials across participants in the 

categorization task. (C) Deviation of participants’ paths (z-transformed) from shortest possible route 

(=number of required edits to transform the stimulus) during the 1st and 2nd half of the navigation task on 

Day 1 (left) and Day 2 (right), respectively. The paths that had to be navigated in both halves of the task 

were identical, but randomized in their order. On both days, participants’ paths travelled in the 2nd half 

deviated significantly less from direct routes as compared to the 1st half. Error bars indicate STD. 
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Figure S2. Distance effects on adaptation and pattern similarity in control regions and time-points, 
Related to Figures 2 and 3. 
(A) Lateral Occipital Cortex (LOC) and Postcentral Gyrus (PoCG) defined by probability masks from 

Harvard-Oxford Structural Atlas, thresholded at 50% probability. (B) Parameter estimates of the 2D- 

distance regressor averaged over all voxels within an ROI (left) and correlation between 2D-distances 

across objects and across-object multivoxel pattern similarity in a given ROI (right). Two-dimensional 

distances were not encoded in LOC (adaptation: p=0.106, t=1.300, RSA: p=0.766, t=0.677) or PoCG 

(adaptation: p=0.301, t=0.525, RSA: p=0.468, t=-0.091) where we would not expect a distance code for 

abstract information. (C) Parameter estimates of 2D-distance regressor averaged across hippocampal 

voxels in the pre-learning session. Hippocampal adaptation does not scale with two-dimensional 

distances between the objects in the pre-learning fMRI session (p=0.368, t=0.347). (D) Contrast of 

parameter estimates of two separate regressors modelling changed distances (transitions between 

objects of which one changed ‘position’ in the second learning phase) vs. unchanged distances within the 

same GLM. The adaptation effect (representation of distances) was stronger for changed vs. unchanged 

distances ((*) approaching significance at p=0.0525, t=1.532), suggesting hippocampal dependency 

through gradual reactivation. (E) Two-dimensional distance effect on fMRI adaptation (left) and pattern 

similarity (right) in the middle scanning session at the beginning of day 2 prior to the second learning 

phase (adaptation: p=0.9, t=-0.00009; RSA: p=0.298, t=-0.511). Error bars indicate SEM. 
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