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Abstract

We develop an application for simulating seismic waves on a GPU cluster using CUDA
and MPI. By using the spectral element method to numerically solve the 3D elastic wave
equation the problem can be paralellized and solved efficiently. The implementation was
tested using up to 16 Nvidia P100 GPUs and the scaling behaviour shows a 14% in-
crease in execution time between 1 and 16 GPUs. The numerical accuracy is examined
by comparing to the analytical solution and with another implementation in an isotropic
homogeneous medium when using a uniform mesh, both comparisons confirming the cor-
rectness of the implementation.
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1 Introduction

Modelling seismic waves is important in several disciplines, such as hydrocarbon exploration,
sub-surface imaging, and earthquake modelling. The problems encountered in these areas are
often very computationally demanding as simulating wave propagation in an earth-size model
can take days even when running on hundreds of CPU cores (S. Tsuboi and D. Komatitsch
2003). One method where the increased performance of the GPU would be beneficial is
Full Waveform Inversion. This method can provide very accurate estimations of subsurface
parameters, but it requires solving the wave equation several times. This method used to rely
on simplifications to be computationally feasible, but the increased availability of powerful
hardware including GPUs in computing clusters could allow this method to be used to model
more complicated phenomena according to Raknes and Arntsen 2017. Because of this we
are interested in developing an implementation with an even higher performance, allowing
us to handle larger systems with even better accuracy. In order to do this we develop and
implement a program for modelling seismic wave propagation using the Spectral Element
Method (SEM) accelerated by multiple Graphics Processing Unit (GPU).

Several approaches are available when it comes to modelling seismic waves. The choices
depend on what kind of information one is interested in and what kind of media are in
question. Situations can include acoustic(fluid), elastic(solid), coupled acoustic/elastic or
poroelastic, either isotropic or anisotropic. Naturally, a full implementation is able to cover
all of these situations, but in this report we will implement just one variant: the elastic wave
equation in isotropic media. The reason for this is its usefulness in modelling many real-world
situations accurately.

Solving the elastic wave equation in an isotropic medium requires the application of some
numerical method. These can be very computationally expensive which is why we use the
Spectral Element Method. The reason for choosing the SEM is that it gives high-accuracy
results and it can be used with unstructured meshes, like with Finite Element Methods (FEM).
One significant advantage is that we can use numerical quadrature with the Gauss-Lobatto-
Legendre points on hexahedral elements, resulting in a diagonal mass matrix in the linear
system. This leads to a more efficient implementation than FEM, since no matrices need to
be inverted in order to solve the system. A drawback of the method is that the mesh must
consist of hexahedral elements, making the construction of meshes more difficult.

Since the method yields a diagonal linear system, we see a great opportunity for parallelization
and potentially a large performance gain by using a computer architecture which is specialised
on parallel problems, such as a Graphics Processing Unit. The GPU architecture consists
of thousands of computing units, capable of executing thousands of threads concurrently.
Using the CUDA language an implementation can be written which is capable of utilising the
hardware of an Nvidia GPU (NVIDIA 2018[a]).

A single GPU is not enough to simulate most real-world problems, unfortunately. Therefore
we seek a way to allow the simulation to run on systems with multiple GPUs. The tool of
choice for this endeavour is the Message Passing Interface (MPI: A Message-Passing Inter-
face Standard 2019). MPI provides a programming interface which can be used to scale a
computation to run on multiple computers. In a reasonable implementation, the computation
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scales to any number of computers without any overhead.

A lot of work has been done in this area and it has spawned a notable implementation called
Specfem (D. Komatitsch et al. 2012). The Specfem package uses the theory behind spectral
elements to implement a very efficient solver which also can run on GPU clusters (Dimitri
Komatitsch, Erlebacher, et al. 2010). Our goal is not to compete with Specfem on perfor-
mance, but rather to provide an alternative implementation in a more modern programming
paradigm. The intent is that our implementation will will be easy to use for new developers
and allow for extension with new methods and techniques as research in this field continues. It
also provides the opportunity for validation of results by comparing the results from different
implementations.

This report describes just a part of a larger package for seismic wave modelling. The intent
is to implement a first version of a solver which runs on a GPU cluster, with a focus on how
it can be implemented correctly, but without trying to maximise the performance. Therefore,
we will focus on developing the mathematics of the spectral element method applied to the
elastic wave equation. Then we look at how to solve the resulting equations on the GPU
hardware in a reasonable but not necessarily optimal way. We will focus on ensuring the
correctness of the implementation by comparing the results with analytical solutions as well
as with Specfem.

2 Theory

In this chapter we present the theory needed to solve the elastic wave equation numerically
using the Spectral Element Method (SEM). The theory comprises the strong and weak for-
mulations of the equation, using the Galerkin projection, numerical quadrature, constructing
a linear system and time marching using the Newmark Method.

2.1 The 3D Elastic Wave Equation

The 3D isotropic elastic wave equation is given by the equations for particle motion

ρ(x)üx(x, t) = ∂xσxx(x, t) + ∂yσxy(x, t) + ∂zσxz(x, t) + fx(x, t) (2.1)
ρ(x)üy(x, t) = ∂xσxy(x, t) + ∂yσyy(x, t) + ∂zσyz(x, t) + fy(x, t) (2.2)
ρ(x)üz(x, t) = ∂xσxz(x, t) + ∂yσyz(x, t) + ∂zσzz(x, t) + fz(x, t) (2.3)

and stress
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σxx(x, t) = [λ(x) + 2µ(x)]∂xux(x, t) + λ∂yuy(x, t) + λ∂zuz(x, t) (2.4)
σyy(x, t) = [λ(x) + 2µ(x)]∂yuy(x, t) + λ∂xux(x, t) + λ∂zuz(x, t) (2.5)
σzz(x, t) = [λ(x) + 2µ(x)]∂zuz(x, t) + λ∂xux(x, t) + λ∂yuy(x, t) (2.6)
σxy(x, t) = µ(x)[∂xuy(x, t) + ∂yux(x, t)] (2.7)
σxz(x, t) = µ(x)[∂xuz(x, t) + ∂zux(x, t)] (2.8)
σyz(x, t) = µ(x)[∂yuz(x, t) + ∂zuy(x, t)] (2.9)

where x = (x, y, z) is any point in the domain Ω shown in Figure 1, ρ is the density of the
medium, λ and µ are the Lamé parameters, up is the particle displacement and üp is the
particle acceleration, σpq the stress and fp the applied force in the direction p, q where p, q is
either x, y or z direction (Ikelle and Amundsen 2005, ch. 2).

Ω

∂Ω

Figure 1: An example domain Ω on which the 3D elastic wave equation could be solved. The
boundary ∂Ω is the entire surface enclosing the cube. This is just an example and in in theory the
domain could have an arbitrary shape as long as it can be properly approximated by a mesh.

We also have the stress-free boundary conditions

σ(x, t) · n = 0,x ∈ ∂Ω (2.10)

where n is the outward unit normal to the domain boundary ∂Ω and the initial condition

u|t=0 = 0, u̇|t=0 = 0 (2.11)

Equations (2.1) - (2.9) and the boundary conditions (2.10) and initial conditions (2.11) to-
gether make up the strong formulation of the 3D elastic wave equation. From this we will de-
rive the weak formulation which has some advantageous properties (Quarteroni 2017, chs. 3,4),
mainly that it permits the solution of partial differential equations by the methods of linear
algebra.
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2.2 Weak formulation of the 3D elastic wave equation

Rather than using the strong form of the equations (2.1) - (2.9) we can use the so-called weak
formulation of the equations. By using the weak formulation we can relax the restrictions on
the second derivative, allowing for solutions where the second derivative is not continuous.
The weak formulation also incorporates the boundary conditions so that they are implicitly
satisfied.

We find the weak formulation by multiplying both sides of each equation by a test function
ϕ(x) and integrating over the domain Ω. The test function ϕ is an arbitrary time-independent
function ϕ : Ω→ R. For Equation (2.1) we get this weak formulation

∫
Ω
ρüxϕdΩ =

∫
Ω
∂xσxxϕ+ ∂yσxyϕ+ ∂zσxzϕ+ fxϕdΩ.

In order to be terse we drop all function arguments where they are obvious for the rest of this
section.

By performing integration by parts we can move the spatial derivatives from the stress func-
tions σxx, σxy, σxz to the test functions ϕ:

∫
Ω
∂xσxxϕdΩ =

∫
∂Ω
σxxϕd∂Ω−

∫
Ω
σxx∂xϕdΩ.

Applying the stress-free boundary condition from Equation (2.10) the integral over the bound-
ary ∂Ω disappears so we are left with

∫
Ω
∂xσxxdΩ = −

∫
Ω
σxx∂xϕdΩ.

Applying this to the other two terms we get

∫
Ω
ρüxϕdΩ = −

∫
Ω
σxx∂xϕ+ σxy∂yϕ+ σxz∂zϕdΩ +

∫
Ω
fxϕdΩ

and rewriting we arrive at

∫
Ω
ρüxϕdΩ +

∫
Ω
σxx∂xϕ+ σxy∂yϕ+ σxz∂zϕdΩ =

∫
Ω
fxϕdΩ.

Doing the same procedure for Equations (2.2)-(2.3) gives the following weak formulations for
the equations of motion
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∫
Ω
ρüxϕdΩ +

∫
Ω
σxx∂xϕ+ σxy∂yϕ+ σxz∂zϕdΩ =

∫
Ω
fxϕdΩ (2.12)∫

Ω
ρüyϕdΩ +

∫
Ω
σxy∂xϕ+ σyy∂yϕ+ σyz∂zϕdΩ =

∫
Ω
fyϕdΩ (2.13)∫

Ω
ρüzϕdΩ +

∫
Ω
σxz∂xϕ+ σyz∂yϕ+ σzz∂zϕdΩ =

∫
Ω
fzϕdΩ. (2.14)

For the stress Equations (2.4)-(2.9) we get

∫
Ω
σxxϕdΩ =

∫
Ω

(λ+ 2µ)∂xuxϕ+ λ∂yuyϕ+ λ∂zuzϕdΩ (2.15)∫
Ω
σyyϕdΩ =

∫
Ω

(λ+ 2µ)∂yuyϕ+ λ∂xuxϕ+ λ∂zuzϕdΩ (2.16)∫
Ω
σzzϕdΩ =

∫
Ω

(λ+ 2µ)∂zuzϕ+ λ∂yuyϕ+ λ∂xuxϕdΩ (2.17)∫
Ω
σxyϕdΩ =

∫
Ω
µ(∂xuy + ∂yux)ϕdΩ (2.18)∫

Ω
σxzϕdΩ =

∫
Ω
µ(∂xuz + ∂zux)ϕdΩ (2.19)∫

Ω
σyzϕdΩ =

∫
Ω
µ(∂yuz + ∂zuy)ϕdΩ. (2.20)

We must also transform the initial conditions from Equation (2.11)

∫
Ω
ϕu|t=0dΩ = 0,

∫
Ω
ϕu̇|t=0dΩ = 0.

By using the weak formulation instead of the strong one we are able to solve the wave equation
using linear algebra. As we will see in the following sections we can apply several techniques
which allow us to find an approximate solution which is stable, consistent and approaches the
continuous solution.

2.3 Galerkin projection

Before we can solve these equations we must approximate the solutions in a finite-dimensional
vector space, thus making it possible to compute the solution numerically (Quarteroni 2017,
ch. 4). This is called the Galerkin method.

Note that from now on and for the rest of the entire theory chapter we will only use the first
equation for particle motion, Equation (2.12), and the first of the stress Equations (2.15).
This is because the other equations are so similar that performing the exact same steps for
them as well would be redundant. We only intend to demonstrate how the equations can be
solved, not give full expressions for each part of the system. The remaining equations can
easily be arrived at by following the methods presented in this chapter.
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We define a set of Nb basis functions ϕi(x) with which we can approximate, i.e. project, a
function from an infinite-dimensional vector space V∞ to a finite-dimensional vector space
V n. We can approximate a function f(x, t) ∈ V∞ by decomposing it in the following way

f(x, t) ≈ f̄(x, t) =
Nb−1∑
i=0

fi(t)ϕi(x).

Here f̄(x, t) ∈ V n is the approximation to f(x, t) defined by the decomposition using time-
dependent coefficients fi(t) and space-dependent basis-functions ϕi(x). The functions ϕi
form a basis of the approximation space, so the accuracy of the approximation depends on
the choice of basis functions.

We can apply this decomposition to the acceleration

üx(x, t) ≈ ¨̄ux(x, t) =
Nb−1∑
i=0

üix(t)ϕi(x) (2.21)

and to the stress

σxx ≈ σ̄xx(x, t) =
Nb−1∑
i=0

σixx(t)ϕi(x). (2.22)

Using this approximation we move from our exact weak Equation (2.12) to an approximation
by choosing the test functions ϕ to be the basis functions ϕq of the approximation space.
Note that we use the index i in the Galerkin approximation, but index q for the test functions
to indicate that these functions should be counted separately. We then get

∫
Ω
ρ¨̄uxϕqdΩ +

∫
Ω
σ̄xx∂xϕq + σ̄xy∂yϕq + σ̄xz∂zϕqdΩ =

∫
Ω
fxϕqdΩ.

Expanding the approximations gives
Nb−1∑
i=0

[∫
Ω
ρüixϕiϕqdΩ +

∫
Ω
σixxϕi∂xϕq + σixyϕi∂yϕq + σixzϕi∂zϕqdΩ

]
=
∫

Ω
fxϕqdΩ. (2.23)

Even though the weak formulation (2.12) has the requirement that ux is a solution for any
function ϕ it is enough for us to require that it is a solution for ϕq since they form a basis for
the approximation space (Quarteroni 2017, p. 61).

For the stress Equation (2.15) we get

Nb−1∑
i

∫
Ω
σixxϕqdΩ =

Nb−1∑
i

∫
Ω

(λ+ 2µ)uix∂xϕiϕq + λuiy∂yϕiϕq + λuiz∂zϕiϕqdΩ. (2.24)
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2.4 Discretizing the domain

Computation of a numerical solution requires decomposition of the domain into simpler geo-
metrical entities called elements. In the SEM in three dimensions these elements are hexahe-
dra. We divide a domain Ω into ne non-overlapping elements Ωe such that

ne−1⋃
e=0

Ωe = Ω

as shown in Figure 2. Now we can separate an integral of a function f(x) over a domain Ω
into

∫
Ω
f(x)dΩ =

ne=0∑
e

∫
Ωe

f(x)dΩe

so we can rewrite Equation (2.23) as

ne−1∑
e=0

Nb−1∑
i=0

[∫
Ωe

ρüixϕiϕqdΩe+
∫

Ωe

σixxϕi∂xϕq+σixyϕi∂yϕq+σixzϕi∂zϕqdΩe

]
=

ne−1∑
e=0

∫
Ωe

fxϕqdΩe.

−1 −0.5 0 0.5 1
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0
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x
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Figure 2: To make computations feasible, the domain Ω is divided into non-overlapping elements
Ω0 . . .Ω3. In 3D we would use hexahedra instead of quadrilaterals as we see here.

The issue with this formulation is that the coefficients üix depend on all the integrals over
every element. To remedy this we choose local basis functions ϕei which are zero everywhere
except on element Ωe (they maybe zero inside the element also, but not everywhere). Note
that ei are two indices, first the number of the element e ∈ [0, 1, . . . , ne − 1] and then the
number of the basis function on that element i ∈ [0, 1, . . . , Nb − 1].
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This means that we can write the approximation of the acceleration ¨̄ux from Equation (2.21)
on a per-element basis as

üx(x, t)|x∈Ωe ≈ ¨̄ux(x, t)|x∈Ωe =
nb−1∑
i=0

üeix (t)ϕei(x)

Now we can rewrite Equation (2.23) as a set of equations, with one for each element

Nb−1∑
i=0

∫
Ωe

ρüeix ϕeiϕeqdΩe

+
∫

Ωe

σeixxϕei∂xϕeq + σeixyϕei∂yϕeq + σeixzϕei∂zϕeqdΩe

=
∫

Ωe

fxϕeqdΩe

(2.25)

which means that we can solve the equations for each element independently of each other.
Note that we also change the naming from i to ei so it includes the element e since we now
have a set of different basis functions for each element, which means a total of neNb basis
functions.

Now we can perform the same treatment on the stress Equation (2.24) and get

Nb−1∑
i

∫
Ωe

σeixxϕeqdΩ =
Nb−1∑
i

∫
Ωe

(λ+ 2µ)ueix ∂xϕeiϕeq + λueiy ∂yϕeiϕeq + λueiz ∂zϕeiϕeqdΩ. (2.26)

These expressions quickly become impractical to compute since we would have to compute
and store every single basis function at multiple points in order to compute the integrals. This
situation can be improved by introducing a reference element which we can map all elements
to and perform computations.

2.5 Mapping to the reference element

We define a reference element Λ and an invertible mapping Fe(ξ) between coordinates of any
mesh element Ωe and the reference element. We do this so that we can treat all elements the
same, only changing the mapping Fe, which will simplify the computations of the integrals.
Let any point in the reference element be given by ξ = {ξ1, ξ2, ξ3} and a point in element
Ωe be given by x = {x, y, z}. We then define a mapping from a coordinate in the reference
element to a coordinate in another element

xe(ξ) = Fe(ξ). (2.27)
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We express this mapping as a sum of na shape functions Na(ξ) multiplied by the na corners
(anchor nodes, 8 in total for hexahedra) xae of the element e

Fe(ξ) =
na−1∑
a=0

Na(ξ)xae .

We choose our reference element Λ to be the unit cube ([−1, 1]3) with corners

ξ0 = (−1,−1,−1), ξ2 = (1,−1,−1), . . . , ξ7 = (1, 1, 1)

and the shape functions as products of three Lagrange polynomials of order 1

Na(ξ) = l1,a(ξ1)l2,a(ξ2)l3,a(ξ3).

with the property that a shape function Na is 0 on all corners ξb except ξa

Na(ξb) = δab

where δab is the Kronecker delta. This gives the following 8 shape functions

N0(ξ) = 1
2(1− ξ1)1

2(1− ξ2)1
2(1− ξ3) (2.28)

N1(ξ) = 1
2(1 + ξ1)1

2(1− ξ2)1
2(1− ξ3) (2.29)

N2(ξ) = 1
2(1− ξ1)1

2(1 + ξ2)1
2(1− ξ3) (2.30)

N3(ξ) = 1
2(1 + ξ1)1

2(1 + ξ2)1
2(1− ξ3) (2.31)

N4(ξ) = 1
2(1− ξ1)1

2(1− ξ2)1
2(1 + ξ3) (2.32)

N5(ξ) = 1
2(1 + ξ1)1

2(1− ξ2)1
2(1 + ξ3) (2.33)

N6(ξ) = 1
2(1− ξ1)1

2(1 + ξ2)1
2(1 + ξ3) (2.34)

N7(ξ) = 1
2(1 + ξ1)1

2(1 + ξ2)1
2(1 + ξ3). (2.35)

A property of the mapping Fe(ξ) is that corners ξa in the reference element map to the
corresponding corner xa in another element

Fe(ξa) = xae .
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Using this mapping we can rewrite Equation (2.25) on the domain Λ, greatly simplifying
computation. The expression becomes rather long so we perform the procedure for each term
instead the whole equation at once. The first term of Equation (2.25) gives

Nb−1∑
i=0

∫
Ωe

ρüeix ϕeiϕeqdΩe =
Nb−1∑
i=0

∫
Λ
ρ(xe(ξ))üeix ϕei(xe(ξ))ϕeq(xe(ξ))Je(ξ)dΛ

where Je is the Jacobian determinant of the transformation Fe which is given by

Je(ξ) =

∣∣∣∣∣∣∣
∂xe
∂ξ1

∂xe
∂ξ2

∂xe
∂ξ3

∂ye

∂ξ1
∂ye

∂ξ2
∂ye

∂ξ3
∂ze
∂ξ1

∂ze
∂ξ2

∂ze
∂ξ3

∣∣∣∣∣∣∣ .
To simplify a bit we rewrite the mapped variables as

ρ(xe(ξ)) = ρ̂e(ξ)
ϕ(xe(ξ)) = ϕ̂(ξ).

We can also note that all of the elemental basis functions ϕei are the same after mapping to
the reference element so we can actually drop the e index.

We then get

∫
Ωe

ρüeix ϕeiϕeqdΩe =
∫

Λ
ρ̂e(ξ)üeix ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

for the first term. The second term of Equation (2.25) includes a spatial derivative which
must be dealt with. This is done by using the chain rule for multiple variables

∂xϕ = ∂ϕ

∂ξ1

∂ξ1
∂x

+ ∂ϕ

∂ξ2

∂ξ2
∂x

+ ∂ϕ

∂ξ3

∂ξ3
∂x

= ∂ξ1
∂x

∂ξ1ϕ+ ∂ξ2
∂x

∂ξ2ϕ+ ∂ξ3
∂x

∂ξ3ϕ.

So for the second term we get

∫
Ωe

σeixxϕei∂xϕeqdΛ =
∫

Λ
σeixxϕ̂i(ξ)(

∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3)ϕ̂q(ξ)Je(ξ)dΛ

while the third and fourth terms give similar expressions. The right hand side of Equation
(2.25) gives the following

∫
Ωe

fx(x, t)ϕq(x)dΩ =
∫

Λ
fx(xe(ξ), t)ϕ̂q(ξ)Je(ξ)dΛ
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After mapping to the reference element the entire Equation (2.25) thus becomes

nb−1∑
i=0

∫
Λ
ρ̂e(ξ)üeix ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

+
∫

Λ
σeixxϕ̂i(ξ)

(
∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3

)
ϕ̂q(ξ)Je(ξ)dΛ

+
∫

Λ
σeixyϕ̂i(ξ)

(
∂ξe1
∂y

(ξ)∂ξ1 + ∂ξe2
∂y

(ξ)∂ξ2 + ∂ξe3
∂y

(ξ)∂ξ3

)
ϕ̂q(ξ)Je(ξ)dΛ

+
∫

Λ
σeixzϕ̂i(ξ)

(
∂ξe1
∂z

(ξ)∂ξ1 + ∂ξe2
∂z

(ξ)∂ξ2 + ∂ξe3
∂z

(ξ)∂ξ3

)
ϕ̂q(ξ)Je(ξ)dΛ

=
∫

Λ
ϕ̂q(ξ)fx(xe(ξ), t)Je(ξ)dΛ.

(2.36)

We perform the same mapping to the stress in Equation (2.26) and get

Nb−1∑
i

∫
Λ
σeixxϕ̂q(ξ)Je(ξ)dΛ

=
Nb−1∑
i

∫
Λ

[λ̂e(ξ) + 2µ̂e(ξ)]ueix
(
∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3

)
ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

+
∫

Λ
λ̂e(ξ)ueiy

(
∂ξe1
∂y

(ξ)∂ξ1 + ∂ξe2
∂y

(ξ)∂ξ2 + ∂ξe3
∂y

(ξ)∂ξ3

)
ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

+
∫

Λ
λ̂e(ξ)ueiz

(
∂ξe1
∂z

(ξ)∂ξ1 + ∂ξe2
∂z

(ξ)∂ξ2 + ∂ξe3
∂z

(ξ)∂ξ3

)
ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ.

(2.37)

What is needed now is a way to numerically evaluate the integrals on the reference element.

2.6 Evaluating the integrals

Having mapped the equations to the reference element Λ we now need a way to compute
the integrals. To do this we use Gauss-Lobatto-Legendre (GLL) quadrature (Fichtner 2011,
appendix A.3). This choice has several desirable properties, one of which is that the collo-
cation points include the ends of the integration interval, which is not the case in Gaussian
quadrature, and that this method leads to a diagonal system of equations, which is trivial to
solve.

Like Gaussian quadrature, GLL quadrature is performed by sampling the integrand at the N
GLL points ξl and multiplying by weights wl

∫ b

a
f(ξ)dξ ≈

N−1∑
l=0

wlf(ξl).
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The GLL points and weights are given in Fichtner 2011, appendix A.3.2 for some polynomial
degrees on the interval [−1, 1].

Since we are dealing with a three dimensional domain, namely the reference cube Λ = [−1, 1]3,
we apply the quadrature three times, once for each spatial direction. We then get

∫
Λ
f(ξ)dΛ ≈

N−1∑
l,m,n=0

wlwmwnf(ξlmn)

where ξlmn is the GLL-point (ξl1, ξm2 , ξn3 ).

Now we have enough information to choose our basis functions ϕ. We will use a product
of three Lagrange polynomials l(nb−1)

i of order nb − 1 collocated at the nb GLL points on
the interval [−1, 1], one polynomial for each spatial direction. Fichtner 2011, appendix A.3.2
gives several reasons to motivate the choice of Lagrange polynomials collocated at the GLL
points as basis functions. It is important to keep in mind that when using nb points for GLL
quadrature it is exact for polynomials of degree 2(nb − 1) − 1 = 2nb − 3 or lower (Fichtner
2011, appendix A.3.2). However the polynomials in our expressions are of order 2nb − 2 so
the quadrature is not exact.

The basis functions thus become, dropping the (nb − 1) superscript for simpler notation,

ϕ̂ijk = li(ξ1)lj(ξ2)lk(ξ3)

and to reflect the fact that the basis function is a product of three polynomials we change
the indexing from i ∈ {0, 1, . . . , Nb − 1} to the triplet i, j, k ∈ {0, 1, . . . , nb − 1} so that the
total number of basis functions in the reference element is Nb = n3

b . We will also start writing
sums as

Nb−1∑
i=0

ϕ̂i =
∑
ijk

ϕ̂ijk

using the sum shorthand

∑
ijk

ϕ̂ijk =
nb−1∑
i=0

nb−1∑
j=0

nb−1∑
k=0

ϕ̂ijk

since all the sums from now on will have this shape.

Let us consider the first term of Equation (2.36) and apply GLL quadrature to compute the
integral
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Nb−1∑
i=0

∫
Λ
ρ̂e(ξ)üeix (t)ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

≈
∑
ijk

∑
lmn

wlwmwnρ̂
e(ξlmn)ueijkx (t)ϕ̂ijk(ξlmn)ϕ̂qrs(ξlmn)Je(ξlmn)

=
∑
ijk

∑
lmn

wlwmwnρ̂
e(ξlmn)ueijkx (t)li(ξl1)lj(ξm2 )lk(ξn3 )lq(ξl1)lr(ξm2 )ls(ξn3 )Je(ξlmn).

Since the Lagrange polynomials satisfy the cardinal interpolation property (Fichtner 2011,
appendix A.2.2)

li(ξj) = δij

we can simplify the expression a lot. The expression consists of a product of several Lagrange
polynomials and we can see that it is zero whenever i 6= l 6= q, j 6= m 6= r and k 6= n 6= s. So
we must have i = l = q which gives

∑
ijk

∑
lmn

wlwmwnρ̂
e(ξlmn)ueijkx (t)li(ξl1)lj(ξm2 )lk(ξn3 )lq(ξl1)lr(ξm2 )ls(ξn3 )Je(ξlmn)

=
∑
jk

∑
mn

wqwmwnρ̂
e(ξqmn)ueqjkx (t)lj(ξm2 )lk(ξn3 )lr(ξm2 )ls(ξn3 )Je(ξqmn)

and j = m = r

=
∑
k

∑
n

wqwrwnρ̂
e(ξqrn)ueqrkx (t)lk(ξn3 )ls(ξn3 )Je(ξqrn)

as well as k = n = s giving the greatly simplified expression

= wqwrwsρ̂
e(ξqrs)ueqrsx (t)Je(ξqrs).

This is the expression for the elemental mass matrix Me

[
M e
qrs

]
= [wqwrwsρ̂e(ξqrs)Je(ξqrs)] . (2.38)

Now we have arrived at an expression for the first term of (2.12) which can be computed
numerically. We then perform the same procedure on the second, third and fourth terms
which all follow the same pattern. The only difference is the spatial derivative of the stress
functions, but we saw how to deal with this in the previous Section 2.5 arriving at Equation
(2.36). Starting with Equation (2.36) we apply GLL quadrature to the second term of this
equation
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∑
ijk

∫
Λ
σeijkxx (t)ϕ̂ijk(ξ)(

∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3)ϕ̂qrs(ξ)Je(ξ)dΛ

≈
∑
ijk

∑
lmn

wlwmwnσ
eijk
xx (t)li(ξl1)lj(ξm2 )lk(ξn3 )l′q(ξl1)lr(ξm2 )ls(ξn3 )∂ξ

e
1

∂x
(ξlmn)Je(ξlmn)

+
∑
ijk

∑
lmn

wlwmwnσ
eijk
xx (t)li(ξl1)lj(ξm2 )lk(ξn3 )lq(ξl1)l′r(ξm2 )ls(ξn3 )∂ξ

e
2

∂x
(ξlmn)Je(ξlmn)

+
∑
ijk

∑
lmn

wlwmwnσ
eijk
xx (t)li(ξl1)lj(ξm2 )lk(ξn3 )lq(ξl1)lr(ξm2 )l′s(ξn3 )∂ξ

e
3

∂x
(ξlmn)Je(ξlmn),

Since the expressions have become very long we split them into one term for each partial
derivative, so that we can write them on multiple lines easily. Because of the spatial derivatives
this expression does not simplify as much as the first term but a much shorter expression can
still be arrived at

∑
ijk

∫
Λ
σeijkxx (t)ϕ̂ijk(ξ)(

∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3)ϕ̂qrs(ξ)Je(ξ)dΛ

≈
∑
l

wlwrwsσ
elrs
xx (t)∂ξ

e
1

∂x
(ξlrs)l′q(ξl1)Je(ξlrs)

+
∑
m

wqwmwsσ
eqms
xx (t)∂ξ

e
2

∂x
(ξqms)l′r(ξm2 )Je(ξqms)

+
∑
n

wqwrwnσ
eqrn
xx (t)∂ξ

e
3

∂x
(ξqrn)l′s(ξn3 )Je(ξqrn).

This procedure must also be applied to the third and fourth terms but the steps will not be
given here as they are exactly the same. Adding the second, third and fourth terms together
gives the elemental vector
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[keqrs] =
∑
l

wlwrwsσ
elrs
xx (t)l′q(ξl1)∂ξ

e
1

∂x
(ξlrs)Je(ξlrs)

+
∑
m

wqwmwsσ
eqms
xx (t)l′r(ξm2 )∂ξ

e
2

∂x
(ξqms)Je(ξqms)

+
∑
n

wqwrwnσ
eqrn
xx (t)l′s(ξn3 )∂ξ

e
3

∂x
(ξqrn)Je(ξqrn)

+
∑
l

wlwrwsσ
elrs
xy (t)l′q(ξl1)∂ξ

e
1

∂y
(ξlrs)Je(ξlrs)

+
∑
m

wqwmwsσ
eqms
xy (t)l′r(ξm2 )∂ξ

e
2

∂y
(ξqms)Je(ξqms)

+
∑
n

wqwrwnσ
eqrn
xy (t)l′s(ξn3 )∂ξ

e
3

∂y
(ξqrn)Je(ξqrn)

+
∑
l

wlwrwsσ
elrs
xz (t)l′q(ξl1)∂ξ

e
1

∂z
(ξlrs)Je(ξlrs)

+
∑
m

wqwmwsσ
eqms
xz (t)l′r(ξm2 )∂ξ

e
2

∂z
(ξqms)Je(ξqms)

+
∑
n

wqwrwnσ
eqrn
xz (t)l′s(ξn3 )∂ξ

e
3

∂z
(ξqrn)Je(ξqrn)

(2.39)

To finish with Equation (2.12) we must also integrate the right hand side. Starting with the
right hand side of Equation (2.36) we perform the same treatment as for the other terms

∫
Ωe

ϕqrs(x)fx(x)dΩ

=
∫

Λ
ϕ̂qrs(ξ)fx(xe(ξ))Je(ξ)dΛ

=
∫

Λ
lq(ξ1)lr(ξ2)ls(ξ3)fx(xe(ξ))Je(ξ)dΛ

=
∑
lmn

wlwmwnlq(ξl1)lr(ξm2 )ls(ξn3 )fx(xe(ξlmn))Je(ξlmn)

=wqwrwsfx(xe(ξqrs), t)Je(ξqrs)

which we can write as a vector

[feqrs] = wqwrwsfx(xe(ξqrs), t)Je(ξqrs). (2.40)

It is important to keep in mind that the approximation of the right hand side by GLL
quadrature may not be appropriate since it is only valid for polynomials up a certain degree.
If the source function fx is far from a polynomial of degree 2(nb−1)−1, like the common case
of a point source, then other methods might be more appropriate such as exact integration
of the point source (Fichtner 2011, ch. 4.2.4).
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Now we can write Equation (2.12) as a system of equations by using the expressions for the
mass matrix Me from Equation (2.38), the vector ke from Equation (2.39) and the vector f e
from Equation (2.40)

Me · üex(t) + ke(t) = f e(t).

We could solve this equation for each element, but the solution would not be continuous at
the boundaries between elements. In Section 2.7 we will deal with this issue, but first we
must compute the stress σ which is needed by Equation (2.39).

Before we can compute the vector k given by Equation (2.39) we need to know the stresses
σxx, σxy and σxz. So now we apply the same ideas to Equation (2.37) in order to arrive at an
expression for σxx which can be computed (expressions for the other stress components can
be found in exactly the same way so it will not be shown here, as mentioned previously). For
the first term of the stress equation we easily find

∫
Λ
σeqrsxx (t)ϕ̂qrsdΛ ≈ wqwrwsσeqrsxx (t)Je(ξqrs).

The terms on the right hand side of Equation (2.37) which include partial derivatives are
slightly longer and when applying GLL quadrature and simplifying we get

Nb−1∑
i

∫
Λ

[λ̂e(ξ) + 2µ̂e(ξ)]ueix (t)
(
∂ξe1
∂x

(ξ)∂ξ1 + ∂ξe2
∂x

(ξ)∂ξ2 + ∂ξe3
∂x

(ξ)∂ξ3

)
ϕ̂i(ξ)ϕ̂q(ξ)Je(ξ)dΛ

= wqwrwsJ
e(ξqrs)[λ̂e(ξqrs) + 2µ̂e(ξqrs)]

[∑
i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂x
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂x
(ξqjs)

+
∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂x
(ξqrk)

]
.

The expressions for the rest of the right-hand side terms are equivalent. Putting all the terms
together we get the whole equation
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wqwrwsσ
eqrs
xx (t)J(ξqrs) = wqwrwsJ

e(ξqrs)[λ̂e(ξqrs) + 2µ̂e(ξqrs)]
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂x
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂x
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂x
(ξqrk)

]

+wqwrwsJe(ξqrs)µ̂e(ξqrs)
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂y
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂y
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂y
(ξqrk)

]

+wqwrwsJe(ξqrs)µ̂e(ξqrs)
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂z
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂z
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂z
(ξqrk)

]

We see that the equation is solved for σeqrsxx (t) simply by eliminating the factor wqwrwsJe(ξqrs)
which gives

σeqrsxx (t) = [λ̂e(ξqrs) + 2µ̂e(ξqrs)]
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂x
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂x
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂x
(ξqrk)

]

+λ̂e(ξqrs)
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂y
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂y
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂y
(ξqrk)

]

+λ̂e(ξqrs)
[∑

i

ueirsx (t)l′i(ξ
q
1)∂ξ

e
1

∂z
(ξirs)

+
∑
j

ueqjsx (t)l′j(ξr2)∂ξ
e
2

∂z
(ξqjs) +

∑
k

ueqrkx (t)l′k(ξs3)∂ξ
e
3

∂z
(ξqrk)

]

(2.41)

Now we have all the pieces needed to compute a solution for each element. To get the solution
for the entire mesh we must assemble the contributions from each element.

2.7 Assembling the global matrices

We now have several local linear systems for each element Ωe
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Me · üex(t) + kex(t) = f ex(t)

but solving them in isolation would give a discontinuous solution at points that lie on the
boundary between elements. This is because when we discretized the domain in Section 2.4
we split the integrals over the domain Ω into a sum of integrals over each element Ωe. Now
we must add those integrals back together. Points that lie on the boundary between elements
are included in multiple integrals and contributions must therefore be counted once for each
element which shares that point. We must therefore assemble the contributions from the local
systems into a global system

M · üx(t) + kx(t) = fx(t).

which can then be solved to give a continuous solution.

In Figure 3 we see a mesh of 4 elements and 25 nodes. It has the associated global mass
matrix

M =


M0 0 . . . 0
0 M1 . . . 0
...

... . . . 0
0 0 0 M24


with 25 entries along the diagonal, one for each node. Each of the elements in the mesh
Ω0 . . .Ω3 is represented by the reference element shown in Figure 4 and have local mass
matrices

Me =


M e

0 0 . . . 0
0 M e

1 . . . 0
...

... . . . 0
0 0 0 M e

8


with 9 entries, one for each node. In order to assemble the global mass matrix, we must take
the entries of each local mass matrix and add them to the corresponding entry in the global
mass matrix. In order to find out which local node maps to which global node we use the
mapping Fe(ξ) which we introduced in section 2.5. Applying this mapping to element Ω0 we
would get the mapping shown in Figure 5. Using the mapping for each element to assemble
the global mass matrix gives

M =


M0

0 +M2
6 0 . . . 0

0 M0
2 +M1

0 +M2
8 +M3

6 . . . 0
...

... . . . 0
0 0 0 M3

4

 .

This procedure can then by applied to the vectors k and f as well.
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Figure 3: A mesh Ω consisting of 4 elements Ω0 . . .Ω3. We have used GLL quadrature of degree
2, resulting in (2 + 1)2 = 9 nodes per element (see Section 2.6) and a total of 25 nodes in the mesh.
Many of the nodes fall on the edge between the elements and contributions from the elements sharing
the node must be added together when assembling the global system.
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Figure 4: The reference element Λ to which all elements in a mesh are mapped for computation.
The nodes are the GLL points of order 2. The integrals are computed on this domain and the result
for each local node is mapped to the corresponding global node in Figure 3 using the element-specific
mapping Fe(ξ).
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Figure 5: The mapping of nodes between the reference element Λ from Figure 4 to element Ω0 in
the mesh in Figure 3. This shows how the local nodes of element Ω0 are mapped to the global nodes
of the mesh Ω.

2.8 Solving the system

What we have now is a diagonal linear system given by

M · üx(t) + kx(t) = fx(t) (2.42)

with one equation for each of the nodes in the mesh. Solving it is trivial since it is diagonal.
We now discretize the time axis and introduce a method for solving the ODE in Equation
(2.42) for the displacement ux(t) and to march the system forward in time. We discretize the
time axis by introducing a constant time step ∆t. This gives time t[n] = n∆t + t0 for any
integer n where n is the time step number and t0 is the initial time when n = 0. Now we can
rewrite Equation (2.42)

M · üx(t[n]) + kx(t[n]) = fx(t[n]).

We can make it a little more succinct by writing the time-dependent vectors as üx(t[n]) = ünx

M · ünx + knx = fnx . (2.43)

To solve the ODE and march the system forward in time we will use the Newmark Method
(Fichtner 2011, ch. 2.5.1) which we can express with the following two equations

u̇n+1 ≈ u̇n + (1− γ)∆tün + γ∆tün+1

un+1 ≈ un + ∆tu̇n + 1− 2β
2 ∆t2ün + β∆t2ün+1
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with a time step ∆t and configurable parameters β ∈ [0, 1
2 ] and γ ∈ [0, 1]. We choose γ = 0.5

which is the only value that gives second-order accuracy while choosing β = 0 at the same
time yields a second order explicit method (Fichtner 2011, ch. 2.5.1). We then get

u̇n+1
x ≈ u̇nx + 1

2∆tünx + 1
2∆tün+1

x (2.44)

un+1
x ≈ unx + ∆tu̇n + 1

2∆t2ünx . (2.45)

Finding the solution for time step n+ 1 amounts to a few simple steps. First solve Equation
(2.43) for the acceleration ün+1

x . Then use (2.44) to compute the velocity u̇n+1
x and Equation

(2.45) to compute the displacement un+1
x .

We choose this method because it is simple to implement, efficient, has a small memory
footprint and has second order accuracy. The reason that it’s simple and efficient is that it is
explicit, so each row of the vector can be evaluated independently with only a few operations.
It is also readily paralellized since there are no dependencies between elements of the vectors.
It does depend on the acceleration of the previous iteration ünx as well as the current ün+1

x ,
but this can actually be improved during implementation so that no extra data needs to be
stored.

3 Architecture

Now that we have developed expressions that can be used to solve the elastic wave equation,
we need to investigate how we can use the parallel hardware of a Graphics Processing Unit
(GPU) to solve the equation quickly.

To explain how something can be implemented on the GPU we take a look at the Nvidia
GPU architecture and how the CUDA language allows us to write programs that utilise the
parallelism of a GPU. Refer to the CUDA Programming Guide, NVIDIA 2018(a), for a more
detailed explanation. The topics discussed in this section applies to most GPUs from other
vendors, but because of the confusion often caused by the different terms used by each vendor
we stick with the jargon used by Nvidia. For an explanation of how these different terms
compare, please see Hennessy and Patterson 2011, ch. 4.4.

3.1 Nvidia GPU Architecture

The Nvidia architecture is based on the parallel execution of so-called CUDA threads. This
is not the same as a traditional CPU thread because it is not independent, instead these
threads are executed in groups of 32 called warps that all perform the same operations, but
on different data. The part of the hardware which executes the warps is called a Streaming
Multiprocessor (SM). In the Nvidia Pascal architecture (which we will be using) each SM can
execute two warps or 64 CUDA threads. So a GP100 GPU (NVIDIA 2018[b]) with 60 SMs
can execute a maximum of 60 ·64 = 3840 CUDA threads concurrently. This means that it can
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execute one instruction on 3840 different numbers in one clock cycle. With a clock frequency
of 1.48 GHz it has a theoretical performance of 3840 FLOP ·1.48 GHz = 5.3 TFLOPS for
double precision numbers and 10.6 TFLOPS for single precision. Compared to a server with
two Intel Xeon E5-2630 v4 with 10 cores running at 3.1 GHz (Intel Xeon Processor E5-2630
v4 Datasheet 2018) with a theoretical performance of 20 FLOP ·3.1 GHz = 62 GFLOPS, it
seems to be much better. This example is of course incredibly simplified, but it does illustrate
the potential of using a GPU instead of a CPU.

Figure 6 shows the floor plan of the GP100 GPU. As we have mentioned, we see that it has
60 SMs each capable of executing 64 CUDA Threads on the single precision execution units
represented by the small green squares, or 32 CUDA Threads with double precision (yellow
squares). We will not look at the hardware in detail, but rather how to use it through the
CUDA programming language.

Figure 6: Floor plan of a GP100 GPU taken from NVIDIA 2018(b). We see the 60 SMs, each with 64
single precision execution units and 32 double precision execution units. When a function is run on the
GPU it is divided in to thread blocks which are assigned to each SM by a block scheduler (GigaThread
Engine). Each SM has a warp scheduler which is capable scheduling two Warps to utilise the 64 single
precision execution units represented by the green squares. The 32 double precision execution units
are represented by yellow squares.

3.2 CUDA programming

Listing 1 shows a simple program written in CUDA C++. The function defined with the
prefix __global__ is called a kernel which is a function that runs on the GPU. It can be
called from normal CPU code using the syntax shown on line 31 in the code listing. The
numbers in the angled brackets are the number of threads per thread block and the number
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of thread blocks respectively. In the code a total of d N
num_threads_per_blocke = 4096 thread

blocks are created with 256 threads each resulting in exactly one thread per entry in the array
x. In the kernel a unique index i is computed for each thread using the block blockIdx, which
identifies which block a thread belongs to, blockDim, the number of threads in a block, and
threadIdx, the the id of the thread within the block. This way, each thread i concurrently
computes one entry of the array x[i] each. A GPU has a dedicated memory called global
memory, 16 GB for a P100 accelerator (NVIDIA 2018[c]), so all data needed for computation
should be stored there if possible since accessing host memory (RAM) is much slower. We do
this by allocating space in the global memory by using cudaMalloc on line 14. The data is
then copied from the host to the device using cudaMemcpy. Launching a CUDA kernel does
not make the CPU wait until it is finished, allowing the CPU to do concurrent work. We
therefore have to use cudaDeviceSynchronise in order to ensure that the GPU has finished
before we access the data.

1 __global__ void Square ( f l o a t ∗ x , i n t n) {
2 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
3 i f ( i < n ) {
4 x [ i ] ∗= x [ i ] ;
5 }
6 }
7

8 i n t main ( ) {
9 constexpr i n t N = 1 << 20 ;

10 f l o a t x [N ] ;
11 f l o a t ∗ d_x ;
12

13 // Al l o ca t e the array in the g l o b a l memory o f the dev i ce
14 cudaMalloc(&x , N∗ s i z e o f ( f l o a t ) ) ;
15

16 // i n i t i a l i z e x the array on the host
17 f o r ( i n t i = 0 ; i < N; i++) {
18 x [ i ] = i ;
19 }
20

21 // Copy the array to the dev i c e
22 cudaMemcpy(d_x , x , N∗( s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;
23

24 // Run ke r ne l on the GPU
25 i n t num_threads_per_block = 256 ;
26 // We must use c e i l ( ) to round the number o f b locks up
27 // to ensure that we do not c r e a t e one block too l i t t l e
28 i n t num_blocks = c e i l ( ( double )N / num_threads_per_block ) ;
29 // The t o t a l number o f threads i s num_blocks ∗ num_threads_per_blocks
30 // which i s g r e a t e r than N
31 Square<<<num_threads_per_block , num_blocks>>>(x , N) ;
32

33 // Do some work on the CPU in p a r a l l e l
34 // . . .
35

36 // Wait f o r GPU to f i n i s h b e f o r e a c c e s s i n g on host
37 cudaDeviceSynchronize ( ) ;
38

39 // Copy the data back to the host
40 cudaMemcpy(x , d_x , N∗ s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;
41
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42 // Free GPU memory
43 cudaFree ( x ) ;
44

45 // Do something with the data
46 // . . .
47

48 re turn 0 ;
49 }

Listing 1: Sample CUDA code adapted from Harris 2018. It shows the definition and
usage of a simple CUDA kernel function. Only a small amount of extra code, mostly
memory allocation and synchronisation, is required to run code on the GPU.

4 Implementation

In this chapter we describe how to implement a solution to the 3D elastic wave equation
based on the theory developed in Chapter 2 using the Graphics Processing Unit (GPU) to
accelerate the most costly computations. Everything is written in C++ while using CUDA to
implement the parts that run on the GPU and MPI for communication between nodes in the
cluster. Of course any implementation might also include mesh processing or mesh creation
as well as post processing of data, but we will only look at solving the wave equation.

4.1 Program structure

The implementation consists of several functions shown in the pseudo-code in Algorithm 1
which summarises the most important steps of the algorithm. The loop runs from simulated
time t = 0 until t = T in steps of ∆t for a total of nt = T

∆t iterations. ComputeStress()
implements Equation (2.41) in order to compute all the stresses σxx, σxy . . . σzz for each of
the n3

b GLL points in each of the ne elements. ComputeLocalK() implements Equation (2.39)
also for each point of each element. AssembleGlobalK() used the ideas behind assembling
explained in Chapter 2.7 in order to take the contributions from each elemental vector ke and
add them all together in the global vector k. Finally the system is solved and marched forward
one timestep in SolveSystem() by using the Newmark Method as explained in Chapter 2.8.

Solve() begin
while t < T do

ComputeStress()
ComputeLocalK()
AssembleGlobalK()
SolveSystem()

end
end
Algorithm 1: Pseudo-code showing the computations performed in the programs time loop.
The loop runs until the simulated time t reaches the total simulation time T . In each timestep
computations are first performed on each element in ComputeStress() and ComputeLocalK()
before the global system is assembled in AssembleGlobalK() and solved in SolveSystem().
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Figure 7: All data is stored in contiguous arrays in GPU memory. Each array has N = nen
3
b entries

which is the total number of local nodes.

The most time consuming steps are the functions ComputeStress() and AssembleLocalK()
which implement Equations (2.41) and (2.39) respectively. Both of these expressions need
many operations to compute just a single element and they must read data from many
different places in memory which make them the most time consuming operations and the
best candidates for optimisation. All the other operations are also accelerated by the GPU,
but they are much simpler computations and leave less to be gained by optimisation so we
will not focus on them.

4.2 Single GPU acceleration with CUDA

Before we start implementing the algorithms, it is important that the data is laid out in
memory in a way which facilitates fast computations. There is one property which we will
seek to obtain and that is locality which means that we want data which is used during a short
period of time to be close in memory. This allows for automatic optimisations by the hardware
such as caching and prefetching so that the computation will be faster with relatively little
work required for it. In order to achieve this we organise all the data (ρ, λ, ∂ξ∂xi

, . . . ) into
separate arrays which are contiguous in memory as shown in Figure 7. We shall see that by
having such a memory layout we can order computations in a way which takes advantage of
it, thus improving speed.

To compute the stress we implement equation (2.41) while trying to make good use of the
memory layout in Figure 7 to improve performance. In the equation we see that for each
index eqrs a total of 15 different arrays must be accessed (that’s σ, λ, µ, (3x)ui, (9x) ∂ξ∂xi

, since
l′ is constant and only has values at the n3

b local GLL points). In order to improve the
performance, we split up the computations such that as few arrays as possible are accessed
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simultaneously. Since the equation consists of 9 sums we can compute each of these sums one
at a time for each node and then add together the contributions, which will allow for much
better utilisation of the cache since only a few arrays are accessed simultaneously for each
computation. This leads us to an implementation of ComputeStress() shown in Algorithm
2.

ComputeStress(σxx) begin
σeqrsxx =

∑
i u

eirs
x l′i(ξ

q
1)∂ξ1

∂x

σeqrsxx + =
∑
j u

eqjs
x l′j(ξr2)∂ξ2

∂x

σeqrsxx + =
∑
k u

eqrk
x l′k(ξs3)∂ξ3

∂x
σeqrsxx ∗ = (λeqrs + 2µeqrs)

tempeqrs =
∑
i u

eirs
y l′i(ξ

q
1)∂ξ1

∂y

tempeqrs+ =
∑
j u

eqjs
y l′j(ξr2)∂ξ2

∂y

tempeqrs+ =
∑
k u

eqrk
y l′k(ξs3)∂ξ3

∂y

tempeqrs+ =
∑
i u

eirs
z l′i(ξ

q
1)∂ξ1

∂z

tempeqrs+ =
∑
j u

eqjs
z l′j(ξr2)∂ξ2

∂z

tempeqrs+ =
∑
k u

eqrk
z l′k(ξs3)∂ξ3

∂z
σeqrsxx + = λeqrstempeqrs

end
Algorithm 2: The algorithm for computing σxx given by Equation (2.41). Since the algo-
rithm is supposed to run on a GPU, there is no need for loops, because there is a single thread
allocated for each index eqrs and each line is executed once for each thread, and thus once for
each index. If implemented with proper synchronisation, the threads in a block (which share
a cache) execute only a single line at a time, which means that it only accesses the arrays
needed by that line and that the cache is not polluted by other memory accesses. The index
eqrs corresponds to the array index i = en3 + qn2 + rn+ s.

In Algorithm 2 we see a way of computing Equation (2.41) which attempts to minimise the
number of arrays that are accessed by threads simultaneously. It utilises a temporary array
temp in order to store the partial results, before multiplying by λ and µ and adding to σxx.
As we can see, it adds together the individual sums in of each part of Equation (2.41) before
multiplying by the factor λ + 2µ and adding to σxx it then adds together the remaining 6
sums, which are then multiplied by λ and added into σxx.

In order to assemble the local k-vector given by (2.39), we can use the same approach as for
the stress. The only difference is the addition of the integration weights w and the Jacobian
determinant J . The integration weights do not affect memory accessing, since there are only
nb different values for them which are known at compile-time. The Jacobian determinant,
however, means that an additional array is accessed in each step. On the other hand, arrays
λ and µ are not needed for this computation, and the temp array is also not needed, since
the sums are not multiplied by anything, so they can be computed and then added directly,
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which gives Algorithm 3.

ComputeLocalA(Ax) begin
Aeqrsx = wrws

∑
l wlσ

elrs
xx (t)l′q(ξl1)∂ξ1

∂x J(ξlrs)
Aeqrsx + = wqws

∑
mwmσ

eqms
xx (t)l′r(ξm2 )∂ξ2

∂x J(ξqms)
Aeqrsx + = wqwr

∑
nwnσ

eqrn
xx (t)l′s(ξn3 )∂ξ3

∂x J(ξqrn)
Aeqrsx + = wrws

∑
l wlσ

elrs
xy (t)l′q(ξl1)∂ξ1

∂y J(ξlrs)
Aeqrsx + = wqws

∑
mwmσ

eqms
xy (t)l′r(ξm2 )∂ξ2

∂y J(ξqms)
Aeqrsx + = wqwr

∑
nwnσ

eqrn
xy (t)l′s(ξn3 )∂ξ3

∂y J(ξqrn)
Aeqrsx + = wrws

∑
l wlσ

elrs
xz (t)l′q(ξl1)∂ξ1

∂z J(ξlrs)
Aeqrsx + = wqws

∑
mwmσ

eqms
xz (t)l′r(ξm2 )∂ξ2

∂z J(ξqms)
Aeqrsx + = wqwr

∑
nwnσ

eqrn
xz (t)l′s(ξn3 )∂ξ3

∂z J(ξqrn)
end
Algorithm 3: The Algorithm used to compute the local k-vector given by Equation (2.39).
It is very similar to Algorithm 2 but does not need a temporary array.

Most of the work done in these algorithms lies in the sums. Therefore it is also important
that the computation of the sums happens in an efficient manner. To compute the sums, we
use the implementation given in Listing 2, which is a rather straight-forward CUDA-C++-
implementation of a sum with a variable stride, however it uses loop unrolling through a
compile-time constant N which avoids the overhead of looping. The implementation would
have been trivial, if it wasn’t for the fact the stride is different for each array in each sum.
Let us look at the example of computing the sum∑

i

ueirsx l′i(ξ
q
1)∂ξ1
∂x

eirs

using SumStride. Since the elements of the arrays ux and ∂ξ1
∂x are adjacent in memory with

indices given by index = en3
b + qn2

b + rnb + s, the stride of this sum is stride = n2
b since

the loop variable i replaces q in the index expression. The sum is thus computed by calling
SumStride(ue0rsx , ∂ξ1

∂x

e0rs
, l′i(ξ

q
1), n2

b).
1 template <i n t N>
2 __device__ f l o a t SumStride ( f l o a t u [ ] , f l o a t x i [ ] , f l o a t l [ ] , i n t s t r i d e )
3 {
4 f l o a t sum = 0 ;
5 #pragma u n r o l l
6 f o r ( i n t i = 0 ; i < N; ++i ) {
7 sum += u [ i ∗ s t r i d e ] ∗ x i [ i ∗ s t r i d e ] ∗ l [ i ∗N ] ;
8 }
9 re turn sum ;

10 }
Listing 2: Implementation of sum with variable stride. The stride of the array l,
which represents the spatial derivatives of the basis functions l′i(ξ), is always N.
The __device__ keyword is needed to make the code a function that can run on the GPU
and be called from a kernel. Since the number of iterations in the loop N is the
same as the number of GLL points nb, we can actually use C++ templates in our CUDA
code to generate one function for each N and force loop unrolling using the
#pragma unroll directive to improve performance.
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We similarly implement a summing function to be used when computing the k-vector. It is
uses the same idea, but is a bit longer since more parameters are involved in the same, as
shown in Listing 3.

1 template <i n t N>
2 __device__ f l o a t SumStride ( f l o a t s [ ] , f l o a t x i [ ] , f l o a t j [ ] , f l o a t w [ ] ,
3 f l o a t l [ ] , i n t s t r i d e )
4 {
5 f l o a t sum = 0 ;
6 #pragma u n r o l l
7 f o r ( i n t i = 0 ; i < N; ++i ) {
8 sum += s [ i ∗ s t r i d e ] ∗ x i [ i ∗ s t r i d e ] ∗ j [ i ∗ s t r i d e ] ∗ l [ i ] ∗ w[ i ] ;
9 }

10 re turn sum ;
11 }

Listing 3: Implementation of sum with variable stride to be used when computing the
k-vector. Uses templates to enable loop unrolling, as described in the caption of
Listing 2.

4.3 Multiple GPU acceleration with MPI

The implementation presented in the previous section is enough to compute a solution using
a single GPU but if we want to solve larger systems we have to use more GPUs. Using the
Message-Passing Interface (MPI) we can implement the algorithm in such a way that it can
run in parallel on any number of computers. An excerpt from the MPI standard MPI: A
Message-Passing Interface Standard 2019 says "MPI addresses primarily the message-passing
parallel programming model, in which data is moved from the address space of one process
to that of another process through cooperative operations on each process". This means
that MPI allows for communication between processes, and these processes may very well
run on physically separate hardware. MPI is therefore a way for us to split computations
over multiple GPUs running on different machines on a network, share the results between
the GPUs and consolidate contributions from each GPU into a single solution for the whole
system. The question is then how the computations should be distributed between the GPUs.
A sensible approach to this is to attempt to minimise the amount of communication between
the GPUs since it is often memory bandwidth that is the bottleneck.

Domain decomposition is a method of solving a PDE by splitting the domain into multiple
non-overlapping regions. In our case the domain will be some mesh, like the one shown in
Figure 8a, and it can be decomposed into multiple partitions as shown in Figure 8b. When
decomposing the domain this way, each GPU is assigned one partition and it needs only
communicate with the adjacent partitions. So in this example each GPU does two communi-
cations (since they only have two adjacent partitions) and it only needs to communicate data
for the nodes which lie in the interface of each partition. This leads to a network topology
as shown in Figure 9. One can of course imagine a different decomposition which attempts
to make the interfaces smaller by partitioning into cubes instead of slices, though this means
each partition is adjacent to more than two other partitions and will need to perform more
communication while less data can be transferred in communication. This could be more
efficient since these communications can be performed in parallel, but it is not as simple to
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(a)
(b)

Figure 8: A mesh (a) decomposed into 4 partitions (b). Only the surface elements are shown. Each
partition shares only its upper and lower faces with another partition, thus information about the
inner elements does not need to be communicated.

implement. Using MPI we can implement a function which communicates the data between
each partition using the functions defined in the MPI standard. Listing 4 shows how the data
in the global K-vector is sent and received between adjacent partitions.
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Node 1

Partition 0
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Communicate()

Communicate()

Communicate()

Figure 9: Network topology used with the partitioning scheme shown in Figure 8b. Each node calls
MPI_Sendrecv() in order to exchange information about points which lie on the interface it shares with
the nodes above and below it. The function Communicate() is described in Listing 4 and describes
how each node uses MPI to communicate with the other nodes.

1 __device__ f l o a t Communicate ( f l o a t send_above [ ] , f l o a t rece ive_below [ ] ,
2 f l o a t send_below [ ] , f l o a t rece ive_above [ ] , i n t n_nodes_per_face ,
3 i n t node_above , i n t node_below )
4 {
5 MPI_Sendrecv ( send_above , n_nodes_per_face , MPI_FLOAT, node_above , 0 ,
6 receive_below , n_nodes_per_face , MPI_FLOAT, node_below , 0 ,
7 MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
8 MPI_Sendrecv ( send_below , n_nodes_per_face , MPI_FLOAT, node_below , 0 ,
9 receive_above , n_nodes_per_face , MPI_FLOAT, node_above , 0 ,

10 MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
11 }

Listing 4: The function which performs communication between GPUs given the
partitioning scheme shown in Figure 8b. The values at the n_nodes_per_face nodes of
each interface is sent and received from the buffers send_above, receive_below and
send_below, receive_above respectively. No special care must be taken for the
uppermost and lowermost partitions, since the MPI implementation should do nothing
if the values given for node_above and node_below do not exist.

5 Results

5.1 Comparison with the analytical solution

To ensure the correctness of the implementation we compare the results of a simulation with
the analytical solution for a point force source in a homogeneous isotropic and unbounded
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medium given by (Aki and Richards 2002, ch. 4)

ui(x, t) = 1
4πρ (3γiγj − δij)

1
r3

∫ r
vs

r
vp

τX0(t− τ)dτ

+ 1
4πρv2

p

γiγj
1
r
X0

(
t− r

vp

)
− 1

4πρv2
s

(γiγj − δij)
1
r
X0

(
t− r

vs

)
.

(5.1)

vp and vs are the primary (pressure) and secondary (shear) wave velocities, respectively,
which are related to the Lamé parameters λ and µ and the density ρ (which we were using
in Chapter 2) in the following way (Mavko, Mukerji, and Dvorkin 2009, ch. 3)

vp =
√
λ+ 2µ
ρ

vs =
√
µ

ρ
.

ui(x, t) is the displacement in spatial direction i (i.e. x, y or z) at position x and time t.
X0(t) is the amplitude of the point force source at time t. We assume that the point source is
situated in (0, 0, 0) which means that the distance from the point source is r = |x|. If a point
x is written as x = (x0, x1, x2) then the coefficients γi can be written as γi = xi/r where is
either 0, 1 or 2. δij is the Kronecker delta.

The mesh used is similar to the the cube shown in figure 8a, but consisting of 100 ·100 ·100 =
106 cubic elements each (10 km)3 in size, making the mesh a cube of (1000 km)3. The density
is ρ = 1000 kg m−3 and the wave velocities are vp = 2000 m s−1 and vs = 1000 m s−1.

Since we are using the explicit Newmark time scheme there exists a maximum value for the
time step ∆t over which the simulation is not stable. To ensure the stability of the simulation
we use the CFL stability condition (Fichtner 2011, ch. 2.5). This condition gives a relation
between the timestep ∆t, maximum wave velocity vpmax and mesh resolution hmin

vpmax∆t
hmin

= C ≤ Cmax

where C is called the Courant number and Cmax is an upper limit which depends on the time
scheme and regularity of the mesh. It is important to choose Cmax correctly, but according
to Dimitri Komatitsch, Tsuboi, et al. 2005 there exists no exact method of determining the
maximum Courant number for the SEM. In practice the value Cmax = 0.5 works well for very
regular meshes, but would need to be smaller for more irregular meshes.

Since all the elements in the mesh have the same size, 10 km, and they are of order 4 we know
that the smallest distance between two GLL points in an element is approximately (Fichtner
2011, appendix A.3.2)

hmin ≈ 0.3454 · 5 km ≈ 1727 m.
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This means that the time step must be no larger than

∆t ≤ Cmaxhmin
vpmax

= 0.5 · 1727 m
2000 m s−1 = 0.432 s.

To be on the safe side, we choose ∆t = 0.25 s. To avoid reflections we simulate only until the
waves reach the edge of the mesh, so we get a total simulation time T

T = 500 km
2 km s−1 = 250 s

which means the number of timesteps nt must be

nt = T

∆t = 250 s
0.25 s = 1000.

We let the point force source be a Ricker wavelet

X0(t) = (1− 2π2f2
0 (t− t0)2)e−π2f2

0 (t−t0)2 (5.2)

with dominant frequency f0 = 1/50 Hz and time shift t0 = 60 s in direction z placed in the
middle of the mesh, at the coordinate xsource = (500 km, 500 km, 500 km) and we record the
z-component of the displacement at the position xreceiver = (500 km, 500 km, 600 km).

A comparison of the simulated solution with the analytical solution is shown in Figure 10.
We see that they are mostly similar, but the error is larger when the derivative is larger, likely
caused by aliasing of high frequency components of the wave.

To investigate the source of the error in Figure 10 we do multiple tests with the same mesh,
but with sources with different dominant frequencies f0. We compute the error using the
following formula

error =
∑
|uz − ūz|2

where uz is the analytical solution and ūz is the simulated solution. The results shown in
Figure 11 show that the error increases with the frequency, as expected.

To verify that the implementation also works when accelerated by multiple GPUs we partition
the mesh as shown in Figure 8b and assign each partition to a GPU. The results shown in
Figure 12 show it works just as well as on a multiple GPUs as on a single GPU.

5.2 Comparison with Specfem

While we have shown that the implementation produces a solution that is close to the an-
alytical solution there is still an error. We wish to know if this error is just a result of the
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Figure 10: Comparison of a simulated Ricker wavelet in an isotropic, homogeneous mesh with the
analytical solution. The simulation time is restricted to 250 s to avoid reflections, since the mesh is
not unbounded whereas the analytical solutions assumes an unbounded medium. The source is at the
centre of mesh in the point (500 km, 500 km, 500 km) and the receiver is in (500 km, 500 km, 600 km),
at a distance of 100 km from the source in the z-direction. The lines across the graphs highlight the
values of each graph at certain times. Where there is a larger gap between the lines, the error is larger.
The error is the largest when the displacement is changing rapidly(larger derivative) because of more
aliasing of high frequency components.
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Figure 11: The error of the simulation compared to the analytical solution for different dominant
frequencies f0 of the Ricker wavelet source. Since the Ricker wavelet with larger f0 contains more
high-frequency components, we expected the error increase with f0 because of aliasing. We see that
expectation confirmed here. The error does not change much until 0.04 Hz, and at 0.05 Hz it quickly
increases to 3 times that of 0.02 Hz.
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Figure 12: Comparison of distributed solver with analytical solution. The simulation was performed
with the same parameters as in Figure 10 but on a mesh divided into 4 partitions as shown in Figure
8b. This should give exactly the same result and with perfect scaling the simulation would run 4 times
faster. We see that the results is exactly the same as for the single-GPU simulation from Figure 10.

method, or whether the implementation has a fault. To check this we compare the results
with another established implementation called Specfem3D (D. Komatitsch et al. 2012).

We run a simulation using Specfem3D with the parameters described in Chapter 5.1 and
compare it with the result of our implementation. The results shown in Figure 13 show that
the results are nearly exactly the same. The error when magnified 10000 times looks like
white noise and is probably caused by floating point arithmetic which has limited precision
and is also not associative.

5.3 Wavefields in a non-uniform mesh

We have verified that the implementation is correct by comparing it to analytical solution
and to another, well-established implementation. However, it would still be interesting to see
the wavefields on the whole mesh, not just in single points, in order to verify the correctness
using our intuition and knowledge of how a propagating wave should look like. It might seem
a little unscientific but it allows us see that the results make sense on a larger scale.

We use the non-uniform mesh shown in Figure 14 which is a smaller version of the one used
previously in Figure 8a which has fewer elements and the area of the top surface has been
reduced, creating a pyramid-like mesh. The reason for choosing a different mesh is that we
want to show that the implementation works for non-uniform meshes as well.

We place a Ricker wavelet force source in the z-direction in the centre of the mesh xsource =
(200 km, 200 km, 200 km) with a central frequency of f0 = 1/50 Hz and offset t0 = 60 s. To
honour the CFL-stability condition we choose a timestep ∆t = 0.2 s. In order to see reflections
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Figure 13: Comparison with Specfem3D. The simulation is the same as the one in Figure 10 which
shows that both this and Specfem3D agree with the analytical solution. Both simulations give the
exact same answer, save for very small differences which we ascribe to properties of floating point
arithmetic such as non-associativity and limited precision.

Figure 14: A non-uniform mesh where all elements are not the same size. The size of the bottom of
the mesh is 400 km × 400 km while the size of the top is 200 km × 200 km and the height is 400 km.
This means that the elements get narrower higher up so they are not all the same size. There are
50 elements in each direction for a total of 503 = 125000 elements. The elements at the top are the
smallest with a size of approximately 4 km× 4 km× 8 km.

35



Number of GPUs Total execution time Overhead

1 13m42s 0%
2 13m47s 3%
4 13m55s 4%
8 14m 5%

16 15m37 14%

Table 1: The total execution time of the tests used to make Figure 16. Over the course of 1000 time
steps, the 15% increase in execution times per timestep becomes two minutes longer than what would
be the ideal time, if there were perfect scaling.

and surface waves we run a longer simulation than previously with nt = 1450 timesteps,
resulting in 290 s total simulated time.

In Figure 15 we see a few visualisations of the wavefields in the mesh from Figure 14 at different
times. We can see the waves propagate out from the source location, hit the boundaries, reflect
and become surface waves.

5.4 Scaling behaviour

All simulations were run on the EPIC cluster at Norwegian University of Science and Technol-
ogy(NTNU) in Trondheim, Norway. The cluster boasts a number of nodes each containing two
Nvidia P100 GPUs which has a total of 56 streaming multiprocessors and 16GB of memory
(NVIDIA 2018[c]).

Since the implementation is intended for use in large-scale simulations utilising multiple GPUs
it is interesting to see how the execution time is affected by the number of GPUs used, when
each GPU is using all of its available memory. Ideally, adding more GPUs does not affect the
execution time since each GPU is working in parallel using the same amount of memory but
in reality there will be some overhead caused by communication between the GPUs. Ideally
this overhead is so small that the execution time is not impacted when adding more GPUs
even though more data is processed. This would mean that solving larger systems is simply a
matter of adding more hardware, since the implementation will support an arbitrary number
of GPUs.

In figure 16 we see the average execution time per time step for a different number of GPUs.
We observe that the execution time increases when the number of GPUs is increased due to
the overhead introduced by communication between the GPUs when assembling the system.
The total execution time and overhead for the tests are given in Table 1.

6 Discussion

The aim of this project was to make an application which can simulate seismic wave propa-
gation in elastic media. In order to verify the correctness of the implementation we compared
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(a) T=160 s

(b) T=230 s

(c) T=290 s

Figure 15: Wavefields in the non-uniform mesh in Figure 14 after 160 seconds (a), 230 seconds (b)
and 290 seconds (c). The leftmost figure shows a slice through the centre of the pyramid to show the
waves as they propagate out from the centre of the mesh. In the middle figure we can see how the
waves propagate differently in the z-direction compared to the x and y-direction. The figure to the
right shows the surface waves.
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Figure 16: Average execution time of the timestep of the algorithm on between 1 and 16 GPUs.
Each GPU performs the same amount of computations, thus the difference in execution time is caused
by communication.

it to the analytical solution in an unbounded, isotropic and homogeneous medium. The re-
sults in Figure 10 show that the simulated wave closely resembles the analytical solution. We
performed the same test with a mesh divided into 4 partitions running on 4 GPUs which
gave the same results shown in Figure 12. One would rightly note that the placement of the
receiver (100 km offset from the source along the z-axis) will not record the S-wave, only the
P-wave, we can however clearly see the S-wave and P-wave in the wavefields in Chapter 5.3
which are discussed below. It would have been interesting to also test the implementation on
partitions of different shapes, but it only supports partitioning into slices as shown in Figure
8b.

The error in the simulation could be caused by a bug in the implementation or it could
be a result of approximations and discretization used in the spectral element method. To
eliminate the latter we performed the same comparison against another implementation of
the same method. The results in Figure 13 show a very small error, indicating that the
implementations give exactly the same results, save for errors caused by the non-associativity
and limited precision of floating point arithmetic. In order to support the conclusion that the
error in Figure 10 is indeed caused by the numerical method, we performed the same test with
sources with different frequency content. If discretization was causing the error we would see
in increase in error with frequency because of more aliasing of the high frequency components.
The results seem to support this, so we are inclined to believe that any error is caused by the
numerical method and not by a bug in the implementation. Discretization in time also causes
aliasing, but in this case the timestep is sufficiently small at 0.2 s giving a Nyquist frequency
of Fs = 5 Hz such that a Ricker wave with dominant frequency f0 = 0.02 Hz causes much less
aliasing than the discretization in space.

Note that the mesh we used from Figure 8a is completely regular so all the elements are
cubes of the same size. It was necessary to impose this limitation in order to compare the
result with Specfem because of difficulties faced when attempting to create more complicated
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meshes with Specfem. We can at least confirm that the implementation is correct for a simple
regular, structured mesh. We would however also like to know that the implementation is
correct for other types of meshes too.

In order to verify that the implementation also works meshes that are non-uniform we per-
formed the same test with the mesh shown in Figure 14. Instead of comparing the result
to the analytical solution, we plot the wavefields on different cross-sections of the mesh at
different times as shown in Figure 15. The wave springs from a point force source in the
centre of the mesh and we clearly see the difference between the P-wave propagating rapidly
in the z-direction and the S-wave in the x and y directions moving more slowly. As expected
we see reflections of the waves as they hit the surface and create surface waves. While this
mesh is also rather regular, it is at least non-uniform, meaning that the elements are not all
the same size. We have not confirmed that the implementation works in the general case of
an unstructured mesh where any point may be shared by any number of elements and the el-
ements may be of arbitrary (hexahedral) shape. While this case should work, we did not have
the time to test it. Furthermore a full implementation should support meshes representing
media with varying wave speeds vs, vp and density ρ, but this has also not been tested.

Another important factor of the implementation is how well it scales with larger problems.
As we see in Figure 16 and Table 1 the execution time does increase when more GPUs are
added up to 14% between 1 and 16 GPUs, and it will probably be larger for more GPUs which
could be significant for very long simulations. This is certainly caused by the communication
between the GPUs, which must exchange information about nodes in the interfaces between
the mesh partitions. This means that it can be eliminated by overlapping communication
and computation, by first computing the nodes that lie in the interfaces and starting the
communication which can run in parallel with the computation of the remaining nodes. This
has previously been demonstrated to work well by Dimitri Komatitsch, Erlebacher, et al.
2010. As mentioned in Chapter 4 the implementation could be more efficient, and we need
only take a look at the source code of Specfem (D. Komatitsch et al. 2012) in order to see
how. However, as mentioned in the introduction, we were not attempting to create the fastest
possible implementation though optimisation will certainly be happening in the future.

7 Conclusion

Because of the significant computational complexity of simulating seismic wave propagation it
is interesting to explore how to use existing hardware to accelerate computations. Because the
SEM allows the elastic wave equation to be easily solved in parallel, the parallel architecture
of a GPU arises as a competitor to the traditional CPU implementation. Furthermore it is
possible to use multiple GPUs in a cluster, just as it is with CPUs, by using MPI. This method
has been used successfully before by Dimitri Komatitsch, Erlebacher, et al. 2010 (Specfem)
and can lead to significant speedups over CPU implementations. We have done the same in
an attempt to create an alternative to Specfem.

We validated the implementation by comparing the results of a simulation first with the
analytical solution and then with Specfem, both comparisons indicating that the results were
correct. We also visualized the wavefields, confirming that the simulated waves propagate the

39



same way a real wave would. Furthermore, we investigated how the implementation scales
when using more GPUs which revealed that there is an overhead caused by the communication
between the GPUs, resulting in a 14% increase in execution time when using 16 GPUs.
Speedup can still be acquired, but will suffer diminishing returns if the number of GPUs
becomes too large.

The main limitation on the implementation is that it only works for simple meshes. However
we have shown that it is correct in those cases and extension to more general meshes is already
supported by the implementation, it just needs to be tested. The main part that which is not
implemented, is support for general partitioning of a mesh. However, the results indicate that
this implementation is correct in the simple cases which we tested. While these cases may
not be interesting for real-world problems, they show that what we have is the groundwork
necessary for a fully functional implementation.

8 Future work

While the implementation works for simple meshes it certainly leaves a few things to be de-
sired. The most important work to be done is to extend the implementation to work with
more general hexahedral mesh. So far it only works with a cubic mesh which can be divided
into simple partitions which share only two interfaces with other partitions and where each
interface has the same number of elements. The plan is to make the implementation compat-
ible with the .msh v4 file format used by the GMSH software (Gmsh homepage 2019). GMSH
is capable of creating and partitioning meshes and exporting the partitions into separate files
which could work well with an implementation intended to run on a cluster.

Once the implementation supports a more general type of mesh and partition, it is impor-
tant to compare it to other existing implementations, to check both numerical accuracy and
performance. It is especially interesting to see if it performs better than existing CPU imple-
mentation, to prove that GPUs are indeed a viable option. It is not obvious how to compare
CPU and GPU performance on clusters, since it depends on the amount of hardware avail-
able. It might instead be interesting to compare based on cost or power consumption, instead
of just speedup.

Performance improvements can be made in several areas. One important improvement is
to eliminate the overhead caused by communication, which has been done by Dimitri Ko-
matitsch, Erlebacher, et al. 2010. This is important because it will allow implementation to
scale indefinitely so that, ideally, the only limitation is the hardware which it runs on. This
is desirable because it might be simpler to solve a larger problem by adding more hardware
instead of writing better software. Furthermore, optimizations can be made to the current
implementation by make better use of the GPU memory by using shared memory and coa-
lescing memory access. An interesting application of a high-performance implementation is
full waveform inversion which requires an effecient solution to the wave equation according
to Raknes and Arntsen 2017.

If the implementation were to scale well, it would be interesting to see how it runs on more,
but cheaper GPUs. We have tested the implementation on a rather small number (16) P100
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GPUs. This is very expensive hardware so it would be interesting to see how the cost and
performance compares to a larger number of cheaper GPUs, such as the Nvidia TITAN X.
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