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1 Introduction

1.1 Problem Description

As the complexity of multi-core architectures grow, it becomes harder and harder to design,

test and verify the bus interconnects that tie all the components in a chip together. Even

though the internal architectural design documents provide an abstract and segmented view of

the design, this does usually not reflect the actual RTL. In this project, the goal is to augment

the RTL description in such a way that meta-information about the bus system and where it

connects to, can be extracted automatically. This information can then be used to:

• Visualize the bus architecture under test

• Automatically generate an address map per master peripheral in the system

• Verify the correctness of this address map with the architectural specification

• Detect design flaws: bus loops, mapped-unmapped ranges, aliased ranges, etc.

• As a stand-alone project, this task is to create an overview of and evaluate the require-

ments and start implementation.

As a master thesis, background research should be performed on existing techniques and ap-

proaches. Results from this initial research can then be used to steer the expected implement-

ation requirements as listed above. Additional investigation on the potential use of this system

enhancement can further drive the requirements and provide options towards formal verification

for example.
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1.2 Steps

• Since the thesis is not a continuation so no pre-study was made a background is needed

in order to understand the theory of bus-based communication.

• Understanding how the Nordic system IPs and design structure by completing a project

in system- Verilog.

• Start looking into ARM Cortex-M4 processor and find a way to extract information.

• After the extraction of the information, a graphical representation should be implemented.

• Compare between the abstract design and the implemented design.

• Think of a solution on how to improve the structure and Detect design flaws.
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Abstract

This thesis gives a comprehensive overview of the extraction of bus information from RTL. Since

this thesis is not a continuation, a pre study had to be made. The difference between looking

at the design and the RTL code is quite substantial. Hence a detailed design was implemented

based on the information extracted from the RTL to create a new design for ARM-M4-processor.

The idea was put into action by changing the RTL code with out changing the characteristics of

the system. The RTL augmentation took place on various modules. The extracted information

was then used to create a graphical representation in python which was then compared to the

existing design. The next step was to look into the address map and from there create a list of

which master can access which slave, not only that but also create a situation where the ranges

overlap multiple of times. Finally explaining how loops are created and ways minimize it. This

thesis starts from scratch and builds up to the implementation.
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1.3 Methodology

Over the years, System-on-Chip (SoC) designs have evolved from a single-processor unit and

single-memory designs to multi-processor multi-processor systems with multiple chip memories,

standard peripherals, and ASIC blocks. More and more components are being integrated into

these designs to share the ever-increasing processing load, and there is a corresponding increase

in communication between these components. Communications between components are often

in the critical path of a SOC design A very common source of performance bottlenecks. It is,

therefore, necessary for system designers to focus on exploring the communication design.

Bus-based Communications architecture based on a common bus such as AMBA is a common

choice to connect the components inside the chip in the current SOC designs. The bus structures

can be configured in several different ways thus, a great effort to re-engineering had to be made

because of the very complex nature Of these systems. Accordingly the focused shifted to the

analysis of bus-based System-on-Chip (SOC).

Extracting bus information from a complex system is not an easy task. Understanding the

function of the signals and how they come together is essential. This was the stepping stone

for the exploration of the system. In order to create a more detailed design rather than the

existing one, the extraction was divided into manual and automatic. The manual represents

the static information opposite to the automatic. After the extraction is completed the next

step was to create a graphical representation.

In the upcoming sections the methodology and contribution are outlined. The background

section gives a detailed overview on how buses work. The next section focuses on the protocols

that are used in the M4-ARM system. Right after that it jumps to the implantation and how

the problems are tackled. Finally come the evaluation and conclusion part.
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2 Background

Buses are critical and vital components of any architecture. They act as a communication

channel connecting distinct component together [1]. The set of paths connecting different

components/modules are labeled interconnection structure. Busses are universally used means

of communication between peripherals and components in the system on chip (SoC). A signal

shared channel can connect multiple components together. The channel can be realized in the

form of a wire. Originally buses are a broadcast medium, in the majority of the situation,

the transmitted data is meant for a precise component and is discarded by the remainder

of the components. The data transfers start to form the output pins in the source through

the wire until it is received by the input pins in the destination. Upon receiving the data an

acknowledgment is sent to the source to indicate the data is received correctly. A set of protocols

are implemented to specifically define the communication characteristics and is divided into:

• Temporal defines the time frame and sequence order

• Spatial defines the message size

2.1 Terminology

System on chips (SoCs) has a different set of components. Components which start and man-

age the read and write data transfers are called masters. A processor is one example of master

components that read/write data from/to different components using the bus as the communic-

ation medium [1]. Every master component is linked to the bus using a series of communicating

signals. Slaves are a set of components that only reply to transfer requests originated from the

masters. Slaves are not able to trigger a data transfer. One example of a slave component is

a memory. The components don´t have to be either master or slave some components can act

as both master and slave. Direct memory access(DMA) is a perfect example of a hybrid com-

ponent. The slave port in the DMA permits the master to read from/write into. The master

port in the DMA starts data transfers between various blocks. Bus based communication is
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established on more than just the master and slave component it also includes logic components

like:

• Decoder: A logic component that translates the destination address during data transfer.

It pinpoints which slave the data transfer is intended to. The decoder can be centralized

or distributed.

• Arbiter: A logic component that has the power to choose which master to grant access

to the bus. Arbiter have different schemes to prevent starvation and make sure critical

data is delivered.

• Bridge: A logic component that has the responsibility of connecting buses together. Buses

have different protocols and clock frequencies that´s why bridges are essential.

Fig.1 shows SoC with a bus-based communication architecture displaying communication com-

ponents.

Figure 1. SoC with a bus-based communication architecture [1]
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2.2 Bus Signal Types

Buses comprise of multiple pathways/lines[2], each line is able to transmit data, Fig.2 demon-

strate signal types. There are three types of lines:

• Address line: The address lines determine the maximum capacity of the system. They

are also responsible for naming the source and destination of the data.

• Data lines: The data lines provide a pathway between system components. They also

hold a number of detached lines, each line can hold one bit at any given time. The number

of lines controls the overall performance of the system.

• Control line: The control lines are used to pass on instructions/commands (example:

Memory read/write signal — Interrupt requests — Clock signals) to coordinate and man-

age the activities.

Figure 2. Classification of bus signals [1]

2.3 Clocking

Buses use different types of clocking for data transfer. The choice will be based on the function

and application.

• Synchronous bus: A bus that incorporates a clock signal to control the transfer. Fig.3

represents a synchronous bus. The master initiates the transfer by sending the address
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ADDR and asserting the write control signal at the first clock cycle. The data is then

will be written at the second clock cycle

Figure 3. Synchronous bus [1]

• Asynchronous bus: Clock signal does not exist in the control signal of the bus. In this

case, synchronization will take place with the help of acknowledgment signals (hand-

shaking protocols) to ensure that the data transfer was concluded. Fig.4 represents the

asynchronous bus where Ack signal is added for synchronization.

Figure 4. Asynchronous bus [1]
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2.4 Decoder

The master(source) initiates the data transfer by transmitting the address to the slave(destination) [2].

Every component in the SoC design is assigned an address map (range of addresses). The func-

tion of the decoder is to translate the address and select the correct slave. There are two types

of decoding:

• Centralized: As the name suggests there is one decoder for all the slaves. A select signal

is constructed to determine the appropriate slave to read/write data. The advantage of

this scheme is that it simplifies the design makes it easily extensible. Fig.5 shows the

centralized design.

Figure 5. centralized decoder [1]

• Distributed: Each slave has its own separate decoder. The data will be transmitted to

every slave during the data transfer. Every slave will decode the address. Only the slave

that corresponds to the address will get to keep the data unlike the rest of the slaves will

discard the message. The distributed scheme is more complex since it will lead to more

hardware. Fig.6 shows the distributed design.
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Figure 6. Distributed Decoder [1]

2.5 Arbitration

It is possible that two or more masters request access to the bus at the same time [3]. This is a

huge problem since starvation and critical data delay is a possibility which can very well occur.

Shared Bus can only manage individual data transfer at any given time. The arbitration scheme

is required in order to decide which master will gain access. Arbitration can also centralized

Fig.5 or distributed Fig.6.

There are various schemes used in bus-based communication. Each scheme is based on the set

of requirement needed. All schemes share the criteria of fairness.

2.5.1 Static priority (SP)

SP is based on assigning fixed priority values to the masters [1]. The master with the highest

priority will be the one who will gain access to the bus first. The SP scheme can be realized in

pre emptive or non pri emptive.

•pre emptive: lower priority is terminated instantly without finishing the data transfer when

higher priority request access to the bus.
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•non pri emptive: lower priority gets to complete the data transfer even if a higher priority

request access to the bus. After the data transfer is completed the bus access is given the high

priority master.

SP is an elementary straightforward scheme that can ensure crucial data transfers are completed

in time. On the other hand, it could lead to starvation for the lower priority masters.

2.5.2 Round robin (RR)

Round robin is based on the idea of granting access to the bus is a circular manner. The scheme

is fair but can lead to delay of critical data transfers.

2.5.3 Time division multiple access (TDMA)

The scheme allocates time slots (frames) of different lengths, depending on the bandwidth

requirements o the master [1]. Choosing the number of time slots is extremely crucial. The

length must be sufficient to complete an individual data transfer, but not too long for starvation

to take place.
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2.6 DATA transfer modes

2.6.1 Single non pipe lined transfer

The elementary form of the transfer of data. The master initiates the transfer by requesting

bus access from the arbiter. After the arbiter grant access to the master, the address is sent on

the next cycle then, write data on the next cycle Fig.7.

Figure 7. Single non-pipelined data transfer mode [1]

2.6.2 Pipelined transfer

The address and the data overlap for multiple data transfer to improve the performance [4].

Fig.8 represents a pipeline transfer where two write transfers started by two different masters.

Master one and two request bus access. The arbiter decides to give access to master one. Master

one sends the address in the first cycle then data to write at the second. During the write of

master one the arbiter grant master two access to the bus when it sends the address. Pipeline

transfer is more complex but has better performance.

2.6.3 Burst Transfer

Commonly any master with multiple data transfers will require multiple arbitrations for each

one of the data transfer. Burst transfer boosts the performance by eliminating the need to

request for multiple arbitrations. Burst mode can be implemented in pipelined or non piplined

Fig.9.
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Figure 8. Pipelined data transfer [1]

Figure 9. Burst pipelined & non-pipelined data transfers [1]
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2.6.4 Split transfer

It is possible that the slave need multiple cycles to read/write data during data transfer. The

bus can only be controlled by a single master [2]. The bus will be in a state of idle until the

slave complete the transfer. In this case, the bus will be under preforming. The split mode

is used to grant another master access to the bus during the idle cycles. The bus initiates a

spilled command where the bus will be under the control of another master. After the initial

slave complete the transaction the bus will issue a un split command to return the bus to the

initial master. Split mode improves the performance drastically without risking any delay in

critical transfers.

2.6.5 Out of order transfer (OoO)

OoO mode makes t possible for the master to start a transfer without waiting for previous

data transfers to complete, which boosts system performance by processing numerous data

transfers. This is achievable by assigning an ID to all data transfers. If a master initiates two

data transfer, it is possible for the second transfer to be complete before the first.

18



2.7 Bus topology

There is a considerable number of bus types and structures which influence area, power, com-

plexity, cost, and performance. Single shared bus Fig.10 is the simplest scheme. The single

shared bus is acceptable for simple Socs with few components but it can’t be scaled to handle

larger systems since it only permits single data transfer at any given time.

Figure 10. Single bus [1]

A more advanced topology is the hierarchical bus Fig.11. In this topology, the components

are connected to multiple buses that connect to each other with a bridge. Concurrent data

transfers are achievable with the hierarchical bus. hierarchical bus improves the performance

but on the expense of complexity [4].

Figure 11. Hierarchical bus [1]

There are a numerous configuration of bus topology which will be mentioned but not explained.

More examples of bus topology Split, Full bus crossbar, Partial bus crossbar, and Ring Bus.
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3 Approaches

Looking for existing techniques and ways to implement the information extraction. The surprise

was that there were no tool or research that could help. It was unexpected since there is a big

difference between looking at the design and RTL source code. The only option was to examine

the Nordic structure and figure out how their IPs are connected. Nordic uses a standard set of

protocol for all communication.

3.1 Bus Protocols

Nordic semi conductor uses ARM communication architecture standards. Those standards are

the guidelines for communication. Advanced Micro-controller Bus Architecture (AMBA) is

one of the most comminly used standards for on-chip communication. This thesis focuses on

bus extraction from ARM cortex-M4 system which uses an advanced peripheral bus (APB)

and advanced high-speed bus (AHB) protocols. Those protocols will be the main core of the

implementation.

3.1.1 advanced peripheral bus (APB)

APB is a part of the AMBA protocol family [5]. It describes a low-cost interface that is

developed for low power consumption. The APB protocol is not pipe-lined, every data transfer

will take at least two cycles. APB enclose a list of signals Fig.12. It also has two independent

data buses, one for data read and the other for data write. The protocol uses PSLVERR to

signify/flag the occurrence of an error either in reading/writing transaction.
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Figure 12. APB signals descriptions [5]

APB has three operating states Fig.13. Starting with the IDLE state which is the default state.

Moving on to the SETUP state where a transfer is requested, PSELx signal is asserted high to

indicate that the slave is selected. Finally comes the ACCESS state where the data transfer is

carried-out and the state machine shift back to the idle state.

Figure 13. APB state machine [5]
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Figure 14. Master interface [6]

Figure 15. Slave interface [6]

3.2 Advanced high-speed bus (AHB)

The AHB bus protocol is designed for high performance/frequency systems [6]. As it was

previously mentioned the master provides address and control information for reading/write

transfer. The master interface can be examined Fig.13. Slaves reply to the transfer started

by the master. The slaves use HSELx single to flag the decoder to identify the intended slave

Fig.14 represent the slave interface.
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3.3 System

The system from which the bus extraction will take place from Arm-M4 processor with M33

cortex. The design details are confidential so it can’t be presented. Fig.16 shows a mock-up

representation of the system, the design contains five main functional blocks. The Cortex-M4

CPU Subsystem is developed to support wide flexibility in how a CPU is connected to code/data

memory blocks and peripherals. Two AMLI blocks which arbitrate accesses from both sources

internal to this subsystem and external sources makes it possible at the system level to connect

several subsystems, as well as other subsystems, into a wide variety of configurations.

The task of bus extraction from RTL will take place by augmenting the source code of a set of

modules and the test-bench. The set of modules are :

• Cache

• CpuCoreCM33

• AHBLiteMultiLayerInterconnect is a module providing a single layer bus interconnect for

the AHBLite protocol.

• Ahb2AhbAsyncBridge: The Ahb2AhbAsyncBridge implements an asynchronous AHB to

AHB bridge between two clock and/or power domains.
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Figure 16. M4 processor with M33 cortex

4 Implementation of extraction algorithm

This chapter will focus on implementing a solution to the problem of having an abstract seg-

mented overview that does not reflect the RTL. Using the insights gained in chapter 2, a plan

was formalized in order to solve the problem.

4.1 Dump

Since no prior pre-study took place, and due to the complexity of the system and shortage of

time some alternatives had to be found in order to extract the information from the system. The

system is written in system verilog. The dump file command is supported by system verilog

which is used in order to dump the changes in the values of nets and registers in a file that is

named as its argument. The dump will be recorded in a file called VCD file that stands for

value change dump.

Performing a wide system dump was proven difficult to handle since millions of lines of inform-

ation were written in the recorded file. Another approach was to take individual modules and
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perform the dump. Localizing the dump made it easier to understand the variables change

and signal information and parameter. In order to improve on the output, a time frame was

added in order to realize more concrete information. The code below shows a part of the dump

command performed on the cache subsystem. Fig.17 shows a part of the output written to the

text file

1 i n i t i a l begin

2 f i l e = $ fopen ( ””Cache . vcd” , ”w” ) ;

3 $dumpfi le ( ”Cache . vcd” ) ;

4 // property d e f i n i t i o n s l e v e l i s s e t to 0 ,dumps ALL the v a r i a b l e s o f that module and a l l the

v a r i a b l e s in ALL lower l e v e l modules i n s t a n t i a t e d by t h i s top module .

5 $dumpvars (0 , Cache ) ;

6 #100;

7 $dumpoff ;

8 #1020;

9 $dumpon ;

10 #1040;

11 $dumpoff ;

12 $ f i n i s h ;

13 end
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Figure 17. Cache Sub System Dump

4.2 Extraction

The next step to be taken after extracting all that information about the signals and their

parameters is to to create a new file in the TestBench in order to extract information about the

bus e.g. size, name of masters,name of slaves . Classes and function were used to optimize the

reuse-ability and make it easier to follow.

The code begins with setting up a package to store and share data that can be used in multiple

other modules and interfaces. Moving on to the creation of queues for masters and slaves and
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then using the push back command in order to return the last element in the queue. There

are two types of masters, one with a connection table and one without which will be discussed

in detail later on. Creating functions for the names of the master, names of slaves, number of

masters and slaves and finally giving an id to discover the connection which will be discussed

separately. The code below is a small part of the actual code just to give an overview of what

was augmented in the source code.

1 package busAnalyser ;

2 l o g i c [ 3 1 : 0 ] busID = 0 ;

3 c l a s s node ;

4 typede f s t r u c t {

5 s t r i n g name ;

6 s t r i n g masters ;

7 s t r i n g s l a v e s ;

8 i n t s i z e ;

9 i n t numberOfInstances ;

10 i n t busS ize ;

11 i n t s laveID ;

12 i n t masterID ;

13 i n t number ;

14 // NEW Master with a connect ion tab l e

15 s t r i n g masters1 ;

16 } ty Bus ;

17 ty Bus s l a v e s [ $ ] ;

18 ty Bus masters [ $ ] ;

19 ty Bus masters1 [ $ ] ;

20 f unc t i on new( s t r i n g name) ;

21 t h i s . name = name ;

22 endfunct ion

23 f unc t i on addMaster ( s t r i n g name) ;

24 ty Bus mBus ;

25 mBus . name = name ;

26 t h i s . masters . push back (mBus) ;

27 endfunct ion

28 f unc t i on numberofmasters ( i n t number ) ;

29 t h i s . numberM = number ;

30 endfunct ion

31 f unc t i on addMaster1 ( s t r i n g name , i n t id ) ;

32 i n t z ;

33 ty Bus mBus ;

34 mBus . masterID = id ;

35 mBus . name = name ;

36 t h i s . masters1 . push back (mBus) ;

37 endfunct ion
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38 endc l a s s

39 c l a s s BusStructureParser ;

40 node nodes [ $ ] ; // empty queue

41 f unc t i on addNode ( node mNode) ;

42 nodes . push back (mNode) ; // removes and re tu rn s the l a s t element o f the queue

4.3 AHBLite-Multi-Layer-Interconnect Connection Table

Moving on to the AMLI. The AMLI module is the only module which contains a connection

table. The connection table is represented in the form of a matrix. The matrix components

are: master, fragment and slave. The fragment is an indication of whether there is a connection

between the master and the slave and the fragment is represented by one bit [0, 1]. There

is a matrix
[
Masters Fragment Slaves

]
for each slave-master pair indicating whether the

master have access to the slave or not.

The code below shows how the connection table was derived from inside the TestBench. A

function was constructed in order to add the connection for each master in the form of a queue

and pushing back the last element.

1 f unc t i on addConnectionsToMaster ( i n t connectedTo [ $ ] ) ;

2 masterConnect ions . push back ( connectedTo ) ;

3 endfunct ion

4

5 f o r each ( nodes [ i ] . masters [ j ] ) begin

6 i n t connectedTo [ $ ] = nodes [ i ] . masterConnect ions [ j ] ;

7 $ fw r i t e ( f i l e , ”MasterName : %s \n ” , nodes [ i ] . masters [ j ] . name) ;

8 $ fw r i t e ( f i l e , ”Connected to s l a v e s : ” ) ;

9 f o r each ( connectedTo [ k ] ) begin

10 $ fw r i t e ( f i l e , ”%d , ” , connectedTo [ k ] ) ;

11 end

12 $ fw r i t e ( f i l e , ”\n” ) ;

13 end
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The matrix will be constructed inside the AMLI module. The number of master and slaves is

not fixed it is created dynamically every time the simulation runs. Two for-loops were devised to

loop through the masters and slaves and check whether the fragment is high or low. One of the

problems that were encountered is that functions are static in nature, i.e., they use the same

memory stack for the all function/task calls. There may be an ambiguity in these function

calls, it can not ascertain that the calls will be working fine, as they use the same stack of

memory. Which was the case in this situation during the simulation, the print was incomplete.

Automatic in a pass by reference inside of pass by value. Pass by reference means the changes

made to arguments of subroutines will be visible outside the subroutine, i.e., during its function

calls also. As they use separate stack memory for each function call, pass by reference is made

possible. The code below is a snippet from the AMLI module.

1 reg Matrix [ 3 ] [ 3 ] ;

2 f o r ( k=0;k<MASTERS; k=k+1)

3 begin

4 automatic i n t connectedTo [ $ ] ;

5 f o r ( l =0; l<SLAVES; l=l +1)

6 begin

7 i f (CONNECTION[l][k])connectedTo.push-back(l);endend

After running the simulation the print-out will be as shown in Fig.18. The figure displays

the number of masters and slaves and their connections. It can be noticed that one master is

connected to every slave which can only mean that the master is the CPU. Another master is

connected to eight slaves which represent the DMA. The print-out match the design document-

ations. There are two different AMLIs (AMLI0 - AMLI1). On one hand AMLI0 relay on APB

protocols and on the other hand AMLI1 relay AHB protocols. The main focus is on AMLI1

since that´s the improved versions where all the connection passes through. The AMLI is the

only module that possesses a connection table but the rest of the modules do not, so a new

plan had to be devised in order to extract information from the rest of the modules.
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Figure 18. AMLI Sub System Connection table

A set of different ideas were formulated in order to extract information from the rest of the

modules. Starting with searching for tools that can extract the information automatically.

There are no tools that can do that kind of extraction right now. Major companies like ARM

working on it.

The next idea was to use the functions that were created in order to add the information

manually. adding the information manually can for a range of different aspects like the size,

number, and size of masters and slaves... etc. The manually added information had to be fixed

and at no point, in the future, there will be a change in their values. The code below is a

snippet that shows the fact that the cache has one master and two slaves.
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1 node myNode= new( ”Cache” ) ;

2 i n i t i a l begin

3 myNode . l o c a t i o n = $ s f o rmat f ( ”%m” ) ;

4 #5;

5 myNode . addMaster ( ”CpuMaster : \ t AhbMasterCpu ” ) ;

6 myNode . addSlave ( ”CodeSlave : \ t S lave0 ” ) ;

7 myNode . addSlave ( ”CodeSlave : \ t S lave1 ” ) ;

8 mBusStructure . addNode (myNode) ;

9 end

The hard part was to represent the rest of the connections. It was found that the best choice

was to create a signal and force it to propagate through the system and give IDs to the masters

and Slaves where the master’s IDs will correspond to the slaves which they are connected to.

The problem is that creating a new signal and initializing that signal across the modules and

TestBench is not the best solution since there are great dependencies, It is not impossible but

it requires a great knowledge of the system. A new improvement had to be made rather than

creating a new signal we hijack an already existing signal and force it to get the connection.
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4.4 Signal Force

Signal Hijacking is not an easy task since the signal to be picked has to be used in all the

modules to get accurate results. In all the modules HWDATA signal is used. The write data

signal propagate to all the modules which makes it a perfect choice.

Commencing with TestBench and initializing a busID, masterID, and slaveID. The ID will be

added to the already existing master and slave functions. Creating a for-loop that loops through

the masters and slaves giving them IDs. The code below is added to the print function in the

TestBench.

1 f o r each ( nodes [ i ] . s l a v e s [ k ] ) begin

2 $ fw r i t e ( f i l e , ”SlaveName : %s \n ID : %d \n ” , nodes [ i ] . s l a v e s [ k ] . name , nodes [ i

] . s l a v e s [ k ] . s laveID ) ;

3 end

4

5 f o r each ( nodes [ i ] . masters1 [m] ) begin

6

7 $ fw r i t e ( f i l e , ”MasterName : %s \n ID : %d \n” , nodes [ i ] . masters1 [m] . name , nodes [ i ] .

masters1 [m] . masterID ) ;

8 end

9 end

The tricky part was the configuration of the modules. Starting with importing the package

to import the ID which was initialized in the TestBench. Afterward creating a one dimension

array of a varying length depending on the size slaves. Then equalizing the array with busID

and using the force statement to a variable to override a procedural assignment or procedural

continuous assignment that takes place on the variable. The code below is a snippet from the

AMLI module which gives a better understanding of the ID process.

1 myNode . l o c a t i o n = $ s f o rmat f ( ”%m” ) ; //myNode . l o c a t i o n = $p sp r i n t f (”%m”) ;

2 f o r ( z=0;z<SLAVES; z=z+1)

3 begin

4 myId [ z ] = busAnalyser : : busID ;

5 myNode . addSlave ( ”SlaveAMLI : \ t SlaveAHBLiteMult iLayerInterconnect ” , busAnalyser : :
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busID++);

6

7 end

8 f o r c e ahbHWDataSlave= myId ;

9 #13;

10 f o r ( z=0;z<MASTERS; z=z+1)

11 begin

12 myNode . addMaster1 ( ”MasterAMLI : \ t MasterAHBLiteMultiLayerInterconnect \n” ,

ahbHWDataMaster [ z ] ) ;

13 end

Subsequently running the simulation in Questa Sim, it was found that forcing the signal was

a success. Fig.19 shows the output from the simulation as it has shown the master have IDs

11, 13, 15, .... 31, which corresponds to the slaves of the Syn Up bridge. Which matches the

output print file. Fig.20 represents a part of the AMLI connection output from the print file.

Figure 19. AMLI Sub System Simulation
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Figure 20. AMLI Sub System Print out file

4.5 Text Parsing

The rest of the modules are set in a similar way. All the modules will print to a file called

”Analyzer.txt”. After the simulation, the file will consist of more than 3000 lines of data

extracted from the processor. The data is not unique, which is a result of modules running

more than once. This will create a large amount of duplicates. This is redundant and makes

it difficult to pinpoint vital data. Since there are a lot of dependencies it is challenging to stop

the modules from running more than once. A simple solution is to use text parsing in python

to remove all the duplicated data and make the file more structured. The code below removes

the duplication. Now after removing the duplication, the file contains around 400 lines which

are a big improvement from 3000.

1 import ha sh l i b

2 o u t p u t f i l e p a t h = ”P:\Workspace\ r t l ”

3 i n p u t f i l e p a t h = ”P:\Workspace\work\ r t l ”

4 comp l e t ed l i n e s ha sh = s e t ( )
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5 o u t p u t f i l e = open ( ” o u t f i l e . txt ” , ”w” )

6 f o r l i n e in open ( ” Analyser . txt ” , ” r ” ) :

7 hashValue = hash l i b .md5( l i n e . r s t r i p ( ) . encode ( ’ ut f−8 ’ ) ) . hexd ige s t

( )

8 i f hashValue not in comp l e t ed l i n e s ha sh :

9 o u t p u t f i l e . wr i t e ( l i n e )

10 comp l e t ed l i n e s ha sh . add ( hashValue )

11 o u t p u t f i l e . c l o s e ( )

The file still need more organization in order to have a clear format of the output data. Applying

text parsing was needed in order to arrange the data. The code below shows how the parsing

took place.

1 import csv

2 with open ( ’ o u t f i l e . txt ’ , ’ r ’ ) as r f :

3 with open ( ’ outputsor t . txt ’ , ’w ’ ) as wf :

4 f o r l i n e in r f :

5 wf . wr i t e ( l i n e )

6 bands = l i s t ( )

7 with open ( ’ o u t f i l e . txt ’ ) as f i n :

8 f o r l i n e in f i n :

9 bands . append ( l i n e . s t r i p ( ) )

10 bands . s o r t ( )

11 f i l ename = ’ bands sor ted . txt ’

12 with open ( ’ outputsor t . txt ’ , ’w ’ ) as f out :

13 f o r band in bands :

14 f out . wr i t e ( band + ’\n ’ )
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4.6 Graph Parsing

Graphical representation was created based on the simulation output and text parsing . The

graphical representation was implemented in python. Utilizing the environment for tree ex-

ploration (ETE), using python toolkit that assists in the automated manipulation, analysis,

and visualization of hierarchical tree structures. The graphs was developed based on the IDs

generated from modules during simulation which represents the connections.

The AMLI masters will be connected to Cache, Syn-up-brigde and halter. The figures (Fig.20,

Fig.21, and fig.22) below represent the python code output from the ETE for the AMLI con-

nection.

Figure 21. AMLI connection to Cache Figure 22. AMLI connection to Syn up bridge

Figure 23. AMLI Connections
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A new complete design was constructed based on the RTL extraction. Unfortunately it can’t be

presented since it contains trade secrets belonging to nordic-semi-conductor. The design shows

aspects of the RTL, giving a better understanding about the design. The design was created

in python using ETE tool and networkx package in python based on the output from the text

file. The design shows the connections of masters and slaves as a substitute to just an abstract

segmented. Which was the main focus of this thesis to have a new design that reflect the RTL.

The design is based on tree structure where it starts from the cortex and move downwards.

During the simulation, there are some masters and slaves showing no connection which is

partially true but since the simulation do not cover every possible scenario it’s not accurate

enough. thus an address map had to be implemented in order to create a table where it is clear

which master can connect to which slave based on the overlapping addresses. This is a time-

consuming process thus starting off with just creating an address map for a single particular

master and build from there.
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4.7 Address Mapping

Building up on the updated design, the next step was to examine a particular master and show

all the salves connected to it. This can be achieved by looking at the address range. The

overlapping of the ranges will signify that there is a connection. starting with taking a single

master and extract/analyze all the overlapping ranges and print out the intersection using

python. The code below is a snippet to map-out the intersection between two ranges and print

out the intersection to a file.

Usually, during data transfers, the master jumps between different nodes before reaching the

destination. Every node has its own set of ranges. Multiple ranges had to be added instead of

just two ranges. In order to test that, a connection was established between AMLI0 and AMLI1

by connecting the slave bus signals. Furthermore, test the connection by changing the settings

of address. There are some glitches during simulation, not all the slaves were shown. This is

mainly because there are some gaps/flaws in the connection between the AMLI0 and AMLI1.

Another solution is to create another AMLI from scratch so as to control all the connections

and dependencies, but due to the lack of time, this wasn’t explored.

1 import numpy

2 f i l ename = ” s e t . txt ”

3 f = open ( ” s e t . txt ” , ”w” )

4 x = numpy . arange (0 , 5000 , 1)

5 y = numpy . arange (2500 , 4500 , 1)

6 #x . i n t e r s e c t i o n (y )

7 #pr in t ( i n t e r s e c t i o n (x , y ) )

8 f . wr i t e ( s t r ( s e t ( x ) . i n t e r s e c t i o n (y ) ) )
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5 Derivations & Conclusion

This section will evaluate and summarize the work achieved and present the results and future

work.

5.1 Evaluation & Results

There is a big difference between the design documents/Architectural design and the RTL

code. The design only shows an abstracted segmented view of the design. Having only a

segmented aspect of the design was the main problem. In order to tackle this problem some

modifications were made on the RTL in order to extract the information and build-up and a new

updated design that reflect both the design and the RTL. The extraction of the information

was implemented in both manual and automatic manner. The manual is based on adding

static information about the bus like size, names, and the number of masters and slaves. The

automatic is based on the connection and the IDs. The extraction phase had one glitch that was

an overflow in one ID belonging to the syn-up bridge module. The occurrence of the overflow

was difficult to solve since it required augmenting the test bench. After the extraction phase

was complected, the focus was shifted to using the extracted information to create a new design.

The next part was to explore the address range. Focusing on a single master showing all

the slaves connection. This is based on analyzing the overlapping address ranges. Moving

on to having more than one node, which means having different address ranges. Based on

the exploring ranges, a small connection table was created to show all the connection for one

particular master.
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5.2 Achieved Goals

The set objective at the start of this thesis was to extract bus information from an ARM

processor based design. Using the extracted information a new design structure was created.

This was the main purpose of the thesis. Moving on to implementing an automatic generation

of address maps per master and Verify the correctness of this address map with the architectural

specification. The generation of the address mapping was carried out for only one master and

based on that a connection table was created.

5.3 Further Work / Possible Improvements

Design flaws like bus looping can be further explored to find a solution and/or reduce the

occurrence of loops. Loops occur when data transfer fails, instead of reaching the destination it

moves in a circular manner. There is some precaution already in place to prevent the circular

manner. One of the precautions is to establish a time frame. Once the time runs out the transfer

will be restarted. This is not an ideal solution since the time wasted will impact efficiency. One

of the solutions is to keep a list on the master side with all the visited node. Once looping

occurs, the master can detect it since the master can already see that this node was visited

before.

Since not all masters can contact all slave. It would come in handy to have a database with

all the connection and range of addresses. This could be achieved by building on what was

implemented for one master but for the entire system. This will come in handy to trace any

errors. All the overlapped ranges will signify that a connection can be established between the

master and slave.
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